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In the presence of transition magnetic moments between active and sterile neutrinos, the search
for a Primakoff upscattering process at coherent elastic neutrino-nucleus scattering (CEνNS)
experiments can provide stringent constraints on the neutrino magnetic moment. We show that a
radiative upscattering process with an emitted photon in the final state can induce a novel
coincidence signal at CEνNS experiments that can also probe neutrino transition magnetic moments
beyond existing limits. Furthermore, the differential distributions for such a radiative mode can also
potentially be sensitive to the Dirac vs Majorana nature of the sterile state mediating the process.
This can provide valuable insights into the nature and mass generation mechanism of the light active
neutrinos.

DOI: 10.1103/PhysRevD.106.035036

I. INTRODUCTION

Coherent elastic neutrino-nucleus scattering (CEνNS)
[1] was first observed in 2017 by the COHERENT
Collaboration with a statistical significance of 6.7σ [2].
Future CEνNS experiments with extremely low nuclear
recoil thresholds now aim to detect neutrino-nucleus
scattering events with OðeVÞ momentum transfers [3,4].
These next-generation experiments will not only test the
Standard Model (SM) CEνNS rate more precisely but
also constrain physics beyond the SM. One such new
physics (NP) scenario is the so-called Primakoff upscat-
tering of light active neutrinos to heavy sterile neutrinos
via a transition magnetic moment. This dipole portal
could be a promising way to probe both the existence of

sterile neutrinos and possible NP generating the dipole
coupling.
The focus of the present work is a closely-related process

that can also produce distinct signatures at CEνNS experi-
ments. This is the upscattering of an incoming active
neutrino to a sterile neutrino, which subsequently decays
to an active neutrino and photon, see Fig. 1. Searches for
such a radiative upscattering process have been suggested
for the DUNE [5], IceCube [6], and Super-Kamiokande [7]
experiments. This process can be used to probe transition
magnetic moments in CEνNS experiments as well as to
distinguish sterile neutrinos of Dirac or Majorana nature,
indicating the corresponding nature of the active neutrinos
[8–16].

FIG. 1. Radiativeupscatteringprocess ναA→νβAγ (ναA→N0Aγ)
via the dipole couplings μανN and μβνN (μN0N) and an intermediate
Dirac or Majorana sterile neutrino N.
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II. NEUTRINO TRANSITION MAGNETIC
MOMENTS

A transition magnetic moment between the three active
neutrinos and a sterile neutrino (or gauge-singlet fermion)
can be described by the effective Lagrangian,

L ⊃
μανN
2

ν̄αLσμνPRNFμν þ μN0N

2
N 0σμνPRNFμν þ H:c:;

ð1Þ

where Fμν ¼ ∂
μAν − ∂

νAμ is the electromagnetic field
strength tensor, ναL is an active neutrino field of flavor
α ¼ fe; μ; τg, N is the sterile neutrino field, and μανN are the
active-sterile dipole couplings. Here, we introduce N0 as an
additional light (mN0 ≪ mN) sterile state with a sterile-
sterile transition magnetic moment to N (with a transition
dipole coupling μN0N). The Lagrangian in Eq. (1) is only
valid at energies below the electroweak (EW) scale because
it is not invariant under the SM gauge symmetry. Above the
EW scale, it must be matched onto operators at dimension-
six and above containing the SUð2ÞL and Uð1ÞY gauge
fields, SM Higgs doublet H, and lepton doublet Lα.
Coherent scattering processes take place at energies well
below the EW scale and hence Eq. (1) remains applicable.
The active and sterile neutrinos in Eq. (1) can either

be Dirac or Majorana fermions. For example, the
active neutrinos ναL can either be the left-handed Weyl
components of Dirac (να ¼ ναL þ ναR) or Majorana
(να ¼ ναL þ νcαL) fields, where in the former case it is
necessary to introduce additional (sterile) Weyl fields ναR.
Similarly, the sterile neutrino N (and N0) can either be
composed of independent left- and right-handed Weyl
fields (N ¼ NL þ NR), or a single right-handed field
(N ¼ Nc

R þ NR). In principle, there are four possible
combinations of Dirac and Majorana active and sterile
neutrinos. However, it can be shown that for energy scales
much greater than the active neutrino masses, Eν ≫ mν, the
rates for processes involving Dirac and Majorana active
neutrinos are approximately equal, in accordance with the
Dirac-Majorana confusion theorem [17,18]. In this work,
we will consider sterile neutrinos with masses similar to the
energy scale of the process, EN ∼mN . Consequently, the
difference between the rates for Dirac or Majorana sterile
neutrinos can be significant.
The active-sterile dipole couplings μανN in Eq. (1) give rise

to the Primakoff upscattering process ναA → NA; see, e.g.,
Refs. [13,19,20]. For relativistic να, it can be shown that the
differential cross section in the nuclear recoil energy ER for
this process is the same for outgoing Dirac and MajoranaN.
The nonobservation of deviations from the SM CEνNS
nuclear recoil rate at experiments can therefore be used to
constrain the dipole couplings μανN as a function of the sterile
neutrino mass mN . Constraints on the dipole couplings μανN
have been set by a variety of experiments (c.f. Fig. 3) and are
generally flavor dependent [5].

The active-sterile dipole couplings μανN can also induce
the radiative upscattering process ναA → νβAγ, depicted in

Fig. 1. The rate of the process is proportional to jμανNμβνN j2
and is therefore suppressed with respect to the Primakoff
upscattering. However, the outgoing photon serves as an
additional signal to the nuclear recoil and provides kin-
ematical information that can be used to discriminate
between Dirac and Majorana N. We would like to remark
that because the outgoing neutrino is not detected, the
actual process is ναA → XAγ, where X may be an active
neutrino νβ or a sterile state N0. The rate is then generically
proportional to jμανN

P
X μXN j2, where the sum is over all

active and sterile neutrinos that are coupled to N via a
transition magnetic moment.
In this work we will examine as a case study the

upcoming NUCLEUS experiment located at the Chooz
reactor facility [3,4]. The planned experimental arrange-
ment and future upgrade make it feasible to detect the
energies and angles of outgoing photons [21]. The (non)
detection of photons at NUCLEUS can thus constrain the
dipole couplings μανN and (if photons are detected) provide
important information towards identifying the nature and
mass generation mechanism of the active neutrinos.

III. ENERGY DISTRIBUTIONS
AS A NOVEL PROBE FOR

DIRAC VS MAJORANA NEUTRINOS

We give the detailed calculation of the differential cross
section for ναA → XAγ in Appendix B. Here, we outline
the main results and the salient features relevant to our
study. The amplitudes for the ναA → XAγ process are given
in the scenarios where the sterile neutrino N is Dirac or
Majorana, respectively, by

iMD
ναA→XAγ ¼ μανNμXN ½ūXσμνPRðpN þmNÞσρσPLuνα �Fμνρσ;

ð2Þ
iMM

ναA→XAγ ¼ μανNμXN ½ūXσμνðpN þmNÞσρσPLuνα �Fμνρσ;

ð3Þ
where Fμνρσ , given in Appendix B, contains the denom-
inator of the sterile neutrino propagator, the hadronic
current of the nucleus A, the propagator of the exchanged
photon, and the four-momentum and polarization of the
outgoing photon. We have taken the dipole couplings to be
imaginary, ðμXNÞ� ¼ −μXN , and thus CP conserving if X
andN have oppositeCP phases [22]. In the Dirac case,N is
created by the Hermitian conjugate of the first term and
annihilated by the second term in Eq. (1). In the Majorana
case, both the second term in Eq. (1) and its Hermitian
conjugate annihilate N; it is then possible to make the
replacement PR → ðPR þ PLÞ ¼ 1 at the decay vertex. The
PR and PL project out the momentum pN and mass mN
terms from the N propagator, respectively. The three-body
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phase space of the final state XAγ is described by four
variables; we choose the nuclear recoil energy ER, photon
energy Eγ, nuclear recoil angle θR, and photon angle θγ
(both angles defined with respect to the incoming neutrino
direction).
For a CEνNS experiment to detect an outgoing photon,

and therefore the process ναA → XAγ, a radiative sterile
neutrino decayN → Xγ must take place within the detector.
The probability for this to occur is given by the N → Xγ
branching ratio BN→Xγ ¼ ΓN→Xγ=ΓN multiplied by the
probability for a decay to take place within the detector,
Pdet
N ¼ 1 − expð− LdetΓN

βγ Þ, where Ldet is the detector length,
ΓN is the total decay width of N, and the boost factors are
given by βγ ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1

p
and γ ¼ EN=mN . It is also possible

that N decays via invisible channels (for example, to a light
dark sector), which contribute to the total width as
ΓN ¼ ΓN→Xγ þ Γinv

N , giving

BN→XγPdet
N ¼ ΓN→Xγ

ΓN

�
1 − exp

�
−
LdetΓN

βγ

��
ð4Þ

as the probability of observing a radiative decay inside the
detector. For example, for mN ∼ 1 MeV, the upper limit on
the active-sterile mixing squared from beta decays is

jVeNj2 ≲ 10−2, implying a rate of ΓN→3ν ¼ G2
Fm

5
N

96π3
jVeN j2 ≲

10−27 MeV for the invisible decay of N to three light
neutrinos. The Primakoff upscattering process is observed,
through the nucleon recoil, if there is an invisible decay, or
a radiative decay occurs outside the detector.
Assuming ΓN ¼ ΓN→Xγ þ Γinv

N to be small and therefore
the total N decay length to be much longer than the detector
length, lN ¼ βγτN ¼ βγ=ΓN ≫ Ldet, the exponential in the
decay probability Pdet

N can be Taylor expanded to give
BN→XγPdet

N ¼ ΓN→XγLdet=ðβγÞ, which is independent of the
total decay width. For a detector length of Ldet ¼ 5 cm, the
rate of ναA → XAγ events is independent of an invisible N
decay width up to Γinv

N ∼ 10−11 MeV. Above this value,
Pdet
N ≈ 1 and the probability that ναA → XAγ occurs within

the detector is suppressed by the small branching ratio.
We therefore consider three benchmark scenarios in this

work. The first is to assume that N → νβγ is the only N
decay channel. The branching ratio is BN→Xγ ¼ 1 and the
decay probability, Pdet

N ¼ ΓN→XγLdet=ðβγÞ ≪ 1. The sec-
ond is to introduce an invisible N decay width of size
Γinv
N ¼ βγ=Ldet ≫ ΓN→Xγ . The branching ratio is now sup-

pressed, BN→Xγ ≈ ΓN→XγLdet=ðβγÞ ≪ 1, while the decay
probability is large, Pdet

N ≈ 0.63. However, the product
BN→XγPdet

N is roughly the same as in the previous scenario.
The third case is to include an additional light sterile state
N0 (mN0 ≪ mN) and a nonzero sterile-sterile dipole cou-
pling μN0N , but no invisible modes. Interestingly, the rate
for N → N0γ satisfies ΓN→N0γ ≳ βγ=Ldet for μN0N ≳ 10−4μB

and Ldet ¼ 5 cm, while the upper limit on the sterile-sterile
transition dipole coupling from invisible vector meson
decays (ϕ → invisible) is μN0N ≲ 5 × 10−4μB [23].
However, stronger bounds of order μN0N ≲ 10−6μB can
be derived from LEP [13]. For μN0N ∼ 10−6μB, the decay
probability is much larger than for μβνN ∼ 10−8μB, increasing
the expected rate for the radiative signal. We want to
emphasize that in this scenario the radiative upscattering
ναA → XAγ can compete with Primakoff upscattering
ναA → NA in constraining the active-sterile dipole coupling.
Regardless of the benchmark choice above, when the

sterile neutrino total decay width ΓN is much smaller than
the sterile neutrino massmN , it is possible to use the narrow
width approximation (NWA). In this limit, the ναA → XAγ
differential cross section in ER can be decomposed in the
NWA as the ναA → NA cross section multiplied by the
N → Xγ branching ratio,

dσDðMÞ
ναA→XAγ

dER

����
NWA

¼ dσναA→NA

dER

ΓDðMÞ
N→Xγ

ΓN
; ð5Þ

where X ¼ fνβ; N0;…g. The differential cross section in
ER therefore has the same shape as for ναA → NA but is
suppressed by an additional factor of jμXN j2. To yield
a differential rate, Eq. (5) must be multiplied by the

incoming neutrino flux dϕνα
dEν

and decay probability Pdet
N

and integrated over the incoming neutrino energy. The
decay rate for Majorana N is twice that for Dirac N, i.e.,

ΓM
N→Xγ ¼ 2ΓD

N→Xγ ¼ m3
N jμXN j2
4π . This is because both decay

channels N → Xγ and N → X̄γ are open for Majorana N,
while only the first is open for Dirac N. It follows that the
differential cross section in Eq. (5) multiplied by the decay
probability is also twice as large for Majorana N compared
to Dirac N for βγ=ΓN ≫ Ldet. However, this difference
cannot be used to distinguish the Dirac vs Majorana nature
of N, as an overall factor of two can absorbed into the
measured value of μXN .
The ναA → XAγ differential cross sections in the photon

energy Eγ and angle θγ can also be computed in the NWA,
but cannot be factorized as in Eq. (5). The double differ-
ential cross section in these two variables can be written as

d2σDðMÞ
ναA→XAγ

dEγdθγ

����
NWA

¼ jμανNμXN j2αZ2Eγ sin θγ
128π2mAEνmNΓN

×
Z

tþ
1

t−
1

dt1
Lγ;DðMÞ
μν HμνF 2ðt1Þ

t21
ffiffiffiffiffiffiffiffiffi
−Δ4

p
����
s1¼m2

N

;

ð6Þ

where Lγ;DðMÞ
μν Hμν is the contraction of leptonic and

hadronic currents for the process and Δ4 is the 4 × 4
symmetric Gram determinant formed from any four of the
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five incoming or outgoing four-momenta, both defined in
Appendix B. Here, the variable t1 ¼ q2 ¼ −2mAER cor-
responds to the four-momentum squared of the exchanged
photon, s1 ¼ p2

N to the four-momentum squared of the
sterile neutrino, and F ðt1Þ is the nuclear form factor. The
limits of integration t�1 are found by solving Δ4 ¼ 0 for t1.
In general, the integral cannot be performed analytically
due to the presence of F ðt1Þ.
In Fig. 2, we plot the double differential cross section of

the ναA → ναAγ process (for a 73Ge target) as a function of
the outgoing photon energy Eγ and angle θγ in the Dirac
(left) and Majorana (right) cases, setting F ðt1Þ ¼ 1 for
simplicity and choosing the benchmark values Eν ¼
3 MeV (approximately the peak of the reactor neutrino
flux at Chooz) and mN ¼ 1 MeV (so that N can be
produced on shell). In the plots, we choose the values
μανN ¼ 3 × 10−8 μB and Γinv

N ≈ ΓN ¼ 10−11 MeV. The dif-
ference between the Dirac and Majorana scenarios is
striking; while both cases predict a considerable number
of events at small photon energies, irrespective of the
photon emission angle, there are more forward emissions of
high-energy photons in the Majorana case.
The single differential distributions in Eγ and θγ are also

different in the Dirac and Majorana scenarios. In the Dirac
case the differential cross section in Eγ decreases linearly
from the minimum to maximum photon energies E−

γ and
Eþ
γ , respectively, while in the Majorana case the distribu-

tion is flat, i.e.,

dσDναA→XAγ

dEγ
¼ 2σDναA→XAγðEþ

γ −EγÞ
ðEþ

γ −E−
γ Þ2

ΘðEγ −E−
γ ÞΘðEþ

γ −EγÞ;

ð7Þ

dσMναA→XAγ

dEγ
¼ σMναA→XAγ

Eþ
γ − E−

γ
ΘðEγ − E−

γ ÞΘðEþ
γ − EγÞ; ð8Þ

where σMναA→XAγ ¼ 2σDναA→XAγ , E�
γ ≈ Eν

2

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − m2

N
E2
ν

q 	
,

and ΘðxÞ is the Heaviside step function. Furthermore,
the angular distribution in the lab frame peaks at slightly
lower angles in the Majorana case compared to the
Dirac case.
The lab-framedistributions are in exact agreementwith the

angular distributions in the rest frame of N, which can be
derived purely from arguments of rotational and charge,
parity and time reversal (CPT) invariance. Due to the
conservation of angular momentum, Dirac N (N̄) can only
decay to left-polarized (right-polarized) photons γ− (γþ) with
an angular distribution in cosϑγ proportional to ð1þ cos ϑγÞ
in the rest frame [10,24–29]. Majorana N can decay equally
to both left- and right-polarized photons with angular
distributions in cosϑγ proportional to ð1þ cosϑγÞ and
ð1 − cos ϑγÞ, respectively; the total distribution is thus
isotropic. The distinctive Dirac and Majorana energy dis-
tributions in Eqs. (7) and (8), respectively, can be readily
derived by boosting these rest-frame angular distributions to
the lab frame. The photon circular polarization provides an
additional handle on the nature of the sterile neutrino and the
CP properties of the transition dipole coupling (see, e.g.,
Ref. [27]); a detailed analysis of the complementarity of a
polarization study is beyond the scope of this work and will
be addressed elsewhere [30].

IV. SENSITIVITY TO ACTIVE-STERILE
NEUTRINO MAGNETIC MOMENTS

In order to study the feasibility of our proposal, we will
now examine the NUCLEUS experiment, which aims to

FIG. 2. Double differential cross sections for the process ναA → ναAγ in the outgoing photon energy Eγ and angle θγ for an incoming
neutrino of energy Eν ¼ 3 MeV scattering from a 73Ge nucleus and an intermediate sterile neutrino of mass mN ¼ 1 MeV. We choose
the values μανN ¼ 3 × 10−8 μB and ΓN ¼ 10−11 MeV. The cases for Dirac and Majorana N are shown to the left and right, respectively.
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detect CEνNS (ν̄eA → ν̄eA) with nuclear recoil energies as
low as ER ∼ 10 eV. Situated at the very-near-site (VNS) of
the Chooz reactor site, the detector will receive an electron
antineutrino flux of ϕν̄e ∼ 1012 ν̄e cm−2 s−1. In the near
future, phase I of the experiment will use a 10 g
Al2O3=CaWO4 detector of size Ldet ∼ 5 cm, while in the
far future, phase II will upgrade to a 1 kg 73Ge detector of
size Ldet ∼ 25 cm [21]. Interestingly, the detector will be
sensitive to nuclear recoils and potentially to outgoing
photons in the 1 keV to 10 MeVenergy range. These can be
detected at the cryogenic outer veto with an ionization
resolution of 50–100 keV for OðMeVÞ photons [21]. A
coincidence study between the nuclear recoil and an
outgoing photon signal which can potentially lead to
excellent background rejection. In this work, we therefore
neglect any secondary backgrounds to the radiative mode
as a first approximation.
For the Chooz reactor antineutrino flux, the maximum

number of events are expected for sterile neutrino masses
mN ∼ 1–5 MeV.We find that the Dirac and Majorana cases
show different differential rates in the photon energy, as
expected from the differential cross sections shown in
Fig. 2. The Majorana case presents a more symmetric
distribution in the outgoing photon energy, while the
Dirac case differential rate is shifted towards lower out-
going photon energies. For a specific sterile neutrino
mass mN , the cross section for the radiative upscattering
process ν̄eA → ν̄eAγ grows with increasing incoming
neutrino energy, with a resonant energy around mN .
Consequently, a different sterile neutrino mass can be
probed for each neutrino energy in the Chooz spectrum.
Average nuclear recoil and photon energies are increased
for larger massesmN . The total number of events falls off at
low energies due to a smaller cross section, and at high
energies due to the decreased flux. Since the number of
events peaks at Eν ∼mN , the decay width can be consid-
ered to be roughly constant. In this work, we only consider
reactor antineutrinos as a proof-of-concept, though in
principle a similar study could be performed for solar,
atmospheric, or beam-dump neutrinos.
In order to identify the reach of the NUCLEUS experi-

ment within the dipole portal parameter space, we consider
both the Primakoff and radiative upscattering processes
at the NUCLEUS detector. For the former process, the
experiment will observe Nobs nuclear recoils over its run
time T. If the expected number of recoil events is given by
Nexp¼NbkgþNνAþNNA, we can construct the chi-squared,
χ2 ¼ ðNobs − NexpÞ2=Nexp. The nuclear recoil background
has been estimated by the NUCLEUS Collaboration to be
Nbkg ¼ 100 keV−1 kg−1 day−1 [4]. The number of recoil
events induced by SM CEνNS, NνA, and Primakoff
upscattering, NNA, are found by integrating the cross
sections of these processes over the incoming energies
of the Chooz ν̄e flux, from the minimum to maximum
nuclear recoil energies, and multiplying by the detector

mass and run time. We now assume that the experiment
does not see an excess of recoil events over the SM CEνNS
signal and background, i.e., Nobs ¼ Nbkg þ NνA, giving
χ2 ¼ N2

NA=Nexp. For simplicity, we do not include a
nuisance parameter in χ2 to account for the presence of
systematic errors. To set bounds at 90% C.L., we find the
allowed values of μeνN satisfying χ2 < 2.71.
For the radiative upscattering process, the NUCLEUS

experiment should in principle be able to detect Nγ
obs

coincidence events of a nuclear recoil accompanied by
an outgoing photon. We assume a negligible SM back-
ground and therefore take the expected number of coinci-
dence events, Nγ

exp ¼ NνAγ, to be Poisson distributed. Here,
NνAγ is found by again integrating the radiative differential
cross section in Eq. (5) over the Chooz ν̄e flux, from the
minimum to maximum nuclear recoil energies, and multi-
plying by the detector mass and operation time. To take
into account the probability of the decay occurring
within the detector, we must also multiply by the factor
Pdet
N ¼ 1 − expð− LdetΓN

βγ Þ. Assuming that NUCLEUS does

not observe any coincidence events, Nγ
obs ¼ 0, we set

bounds at 90% C.L. by finding the allowed values of
μeνN satisfying Nγ

exp < 2.30.
In Fig. 3, we summarize the current and future

constraints on the electron-flavor active-sterile dipole
coupling μeνN as a function of the sterile neutrino mass
mN . We show current bounds from terrestrial experiments
[5–7,13,15,31–34] and astrophysical processes [6,13,15] as
solid lines (with excluded areas filled) and the expected
sensitivities of future experiments as dashed lines. Using
the chi-squared treatment above, we show as thin dashed
red and black lines the near- and far-future sensitivities of
the NUCLEUS experiment to the Primakoff upscattering.
More precisely, these are the sensitivities of the current
NUCLEUS detector (10 g of Al2O3=CaWO4, Ldet ¼ 5 cm)
and future upgrade (1 kg of 73Ge, Ldet ¼ 25 cm), assuming
a run time of 2 years. We also show in cyan the current
constraints derived in this work from Primakoff upscatter-
ing at the COHERENT experiment, noting a good agree-
ment with Ref. [35].
The other red and black lines in Fig. 3 are derived

assuming the nonobservation of a nuclear recoil and photon
coincidence event in NUCLEUS. The solid lines depict
the first benchmark scenario considered in Sec. III in
which N can only decay via the active-sterile dipole
coupling μeνN . While the radiative upscattering is suppressed
by an additional factor of jμeνN j2 with respect to the
Primakoff upscattering, the negligible coincidence back-
ground results in similar sensitivities to the XENON1T and
COHERENT experiments. The dotted red and blue lines
instead depict the second benchmark scenario where N has
additional invisible decay modes with Γinv

N ¼ βγ=ð5 cmÞ ∼
10−11 MeV (Γinv

N ¼ βγ=ð25 cmÞ ∼ 10−12 MeV) for the
near-future (far-future) NUCLEUS phase. It can be seen
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that increasingΓinv
N to this value does not appreciably impact

the sensitivity; larger values of Γinv
N , however, result in

weaker bounds. Finally, the dot-dashed lines show the reach
of NUCLEUS in the third benchmark scenario in which N
decays predominantly to a lighter sterile state N0 via the
sterile-sterile transition dipole coupling μN0N ¼ 10−6μB. As
discussed previously, the sterile-sterile dipole coupling μN0N
is not subject to the same constraints as the active-sterile
couplings μανN (for example, those on μeνN in Fig. 3).
Consequently, the rate for the radiative upscattering process
can be increased with respect to the Primakoff upscattering,
leading to an improvement in sensitivity. FormN ≳ 1 MeV,
the near- and far-future sensitivities now constrain smaller
values of μeνN compared to the bounds from Primakoff
upscattering.

V. CONCLUSIONS

For the radiative upscattering mode, a signal would
consist of the coincidence of a nuclear recoil and an
outgoing photon, separated by the decay length lN of
the sterile state. In this work, we have proposed a novel
approach in which the final-state photons are searched for
in a separate detector to the CEνNS target, and in particular

we have studied the detection prospects of the reactor-
based NUCLEUS experiment. As seen in Fig. 3, the current
limits on the transition dipole coupling μeνN derived from
Primakoff upscattering at the COHERENT experiment are
stringent, almost coinciding with sensitivity of the
NUCLEUS experiment 1 kg upgrade in the radiative
upscattering mode.
Using Primakoff upscattering, the 10 g NUCLEUS

experiment will improve the sensitivity (red thin dashed),
extending the limits to the region excluded by astrophysical
observations for sterile neutrino masses mN ≲ 10 MeV. If
the 10 g NUCLEUS experiment is indeed able to detect the
Primakoff upscattering, it will provide an exciting moti-
vation to search for the radiative upscattering mode in the
1 kg NUCLEUS upgrade. Even though the radiative mode
is doubly suppressed by the dipole coupling as jμeνN j4, its
unique (potentially background-free) signature suggests
that a future detection is not outside the realm of possibility.
Such an observation would act as a smoking gun for our
specific scenario and allow to differentiate it from other
mechanisms.
The reach of the radiative upscattering mode can also be

improved, as the intermediate sterile neutrino can decay
via other transition magnetic moments, specifically with the

FIG. 3. Constraints and sensitivities on the electron-flavor transition dipole coupling μeνN as a function of the sterile neutrino mass mN
from terrestrial experiments and astrophysical processes (solid lines, with excluded areas filled), as well as projected exclusion limits
from future experiments (dashed lines). In black and red lines are the near-future (10 g Al2O3=CaWO4, Ldet ¼ 5 cm) and far-future
(1 kg 73Ge, Ldet ¼ 25 cm) projected sensitivities of the NUCLEUS experiment for Majorana N, respectively, using the coincidence of a
nuclear recoil and an outgoing photon. The solid lines assume that N can only decay via N → νeγ, with μeνN ≠ 0. The dotted lines take N
to have additional invisible decay modes. The dot-dashed lines assume the presence of the additional decay channel N → N0γ, with
mN0 ≪ mN and μN0N ¼ 10−6μB. The thin dashed lines also show the bounds the NUCLEUS experiment can make from the observation
of just nuclear recoils. For the NUCLEUS limits we assume a run time of 2 years. Projections are at 90% C.L. unless shown otherwise.
The dotted purple line corresponding to N → νγ decay [31] is only valid for the muon-flavor coupling μμνN and is included for
comparison.
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νμ and ντ active neutrinos or other lighter sterile neutrinos
N0. The radiative mode is thus generally proportional to
jμeνN

P
X μXN j2, with the sum over all lighter neutrinos in

the final state. This scenario is indicated in Fig. 3 by the
dot-dashed curves for the 10 g (red) and 1 kg (black)
NUCLEUS phases using a sterile-sterile transition dipole
coupling μN0N ¼ 10−6μB. For mN ≳ 1 MeV, the limits are
as stringent as those from Primakoff upscattering and
remain competitive for μN0N ≳ 10−7μB.
Finally, an advantage of reactor-based CEνNS experi-

ments is that they employ known fluxes of antineutrinos. If
the radiative upscattering mode is observed, this opens up
the possibility of discerning the Dirac or Majorana nature
of the intermediate sterile neutrino solely with the energy
and angular distribution of the photon, as demonstrated
in Fig. 2. This would have further implications on the
neutrino mass generation mechanism, as well as theories of
leptogenesis explaining the asymmetry between matter
and antimatter in the Universe. Specifically, if the sterile
neutrino is found to be Majorana, the active neutrinos will
also be of Majorana nature due to a mass term induced by
the transition magnetic moment. We refer the interested
reader to Appendix A, which provides a brief review of
theoretical models in which transition magnetic moments
are generated.
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APPENDIX A: TRANSITION DIPOLE MOMENTS
AND IMPLICATIONS FOR NEUTRINO MASSES

In this appendix we comment on the possible implica-
tions of the discovery of an active to sterile transition dipole
moment for active neutrino masses. If an experiment like

NUCLEUS detects the differential distribution of the out-
going photon in the radiative upscattering process to be
consistent with a heavy Majorana sterile state then that
would necessarily imply that the light active neutrinos are
Majorana. As can be easily noticed from Fig. 4, in the
presence of an active to sterile transition dipole moment
and a nonzero Majorana mass for the sterile state the active
neutrinos will receive a Majorana mass contribution at the
radiative level. While this radiative contribution may not
necessarily account for the dominant contribution towards
the active neutrino mass (making it dominantly Majorana),
it necessarily implies a Majorana nature for the active
neutrinos and hence, violation of lepton number. On the
other hand, no conclusive remarks can be made about the
nature of the active neutrino masses if the differential
distribution of the radiative upscattering process turns out
to be consistent with a Dirac sterile state, leaving both Dirac
and Majorana possibilities open for the active neutrinos.
Furthermore, a detection of radiative upscattering process
mediated by a heavy Dirac or Majorana sterile state can
also give interesting hints towards the mechanism of
generating active neutrino mass.
In many popular models of active neutrino mass gen-

eration the existence of an active to sterile transition dipole
moment can be closely tied with a contribution to active
neutrino masses. Therefore, the smallness of active neu-
trino masses can potentially disfavor many neutrino mass
models or render them to be unnatural if the radiative
upscattering process is observed. In fact, a large active to
sterile transition dipole moment leading to an observable
radiative upscattering rate together with smallness of active
neutrino masses will hint towards a neutrino mass model
with enhanced symmetry, e.g., a horizontal symmetry
reinforcing the Voloshin mechanism [8] or an inverse
seesaw mechanism [36–38]. Below we provide a brief
overview of the relevant constraints and implications for
Dirac and Majorana neutrino mass models.

1. Dirac neutrinos

If the sterile state NR is a Weyl field with a coupling to
the SM neutrino νL via the dipole interaction in Eq. (1),
then the active-sterile transition magnetic moments μνN can
give rise to mass terms of the form L ⊃ mνN ν̄LNR þ H:c:.

FIG. 4. Loop contribution to a Majorana active neutrino mass
from the transition magnetic dipole moment μνN and a Majorana
sterile neutrino N.
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This becomes more apparent when looked at from an
effective field theory point of view as discussed in
Ref. [11]. An effective Lagrangian can be constructed as

Leff ¼
X
d;j

CðdÞ
j ðμÞ
Λd−4 OðdÞ

j ðμÞ þ H:c:; ðA1Þ

where the d ≥ 4 denotes the operator dimension, j runs
over all independent operators of a given dimension, μ is
the renormalization scale, and Λ corresponds to the new
physics scale where new heavy degrees of freedom are
integrated out.
In a SM gauge group invariant theory an effective

transition magnetic dipole moment can be generated by
gauge-invariant, dimension-six (d ¼ 6) operators with
couplings to the SUð2ÞL and Uð1ÞY gauge fields Wa

μ and
Bμ. Above the EW symmetry breaking scale, due to
renormalization group (RG) running these operators will
mix with other d ¼ 6 operators that contain the SM lepton
doublet L ¼ ðνL; eLÞT , NR, and the SM Higgs field H.
One such operator actually leads to generation of a
Dirac neutrino mass term mνN after the EW symmetry
breaking, as can be seen by considering the basis of
independent operators at d ¼ 6 that are closed under
renormalization [11]

Oð6Þ
1 ¼ g1L̄ H̃ σμνNRBμν;

Oð6Þ
2 ¼ g2L̄τaH̃σμνNRWaμν;

Oð6Þ
3 ¼ L̄ H̃ NRðH†HÞ; ðA2Þ

where Bμν ¼ ∂μBν − ∂νBμ and Wa
μν ¼ ∂μWa

ν − ∂νWa
μ −

g2ϵabcWb
μWc

ν are the Uð1ÞY and SUð2ÞL field strength
tensors, respectively, g1 and g2 are the corresponding gauge
couplings, and H̃ ¼ iσ2H�. Starting from the Wilson

coefficients Cð6Þ
j ðμ ¼ ΛÞ at the scale μ ¼ Λ, the RG

running leads to mixings between Oð6Þ
1;2 and Oð6Þ

3 such that

Cð6Þ
3 ðμ ¼ vÞ receives a contribution from Cð6Þ

1;2ðμ ¼ ΛÞ [11].
After the EW symmetry breaking the combination

Cð6Þ
1 Oð6Þ

1 þ Cð6Þ
2 Oð6Þ

2 leads to the magnetic moment

μνN
μB

¼ −16
ffiffiffi
2

p �
mev
Λ2

�
½Cð6Þ

1 ðvÞ þ Cð6Þ
2 ðvÞ�; ðA3Þ

where μ ¼ v corresponds to the EW symmetry breaking

scale. On the other hand Oð6Þ
3 leads to the Dirac mass term

δmνN ¼ −Cð6Þ
3 ðvÞ v3

2
ffiffiffi
2

p
Λ2

; ðA4Þ

yielding a relation between δmνN and μνN given by

δmνN ¼ v2

16me

Cð6Þ
3 ðvÞ

Cð6Þ
1 ðvÞ þ Cð6Þ

2 ðvÞ
μνN
μB

; ðA5Þ

which leads to the constraint

jμνN j
μB

∼ 10−15
�
δmνN

1 eV

�
; ðA6Þ

for Λ ¼ 1 TeV. This implies that for a realistic active
neutrino Dirac mass mν ≲ 1 eV, jμνN j≲ 10−15μB.
However, we note that this constraint is strictly appli-

cable when NR is a Weyl field forming a Dirac pair with νL.
The above constraint does not hold true in a number of
general circumstances. One example is the scenario in
whichN is a Dirac fermion containing twoWeyl fields (i.e.,
N ¼ NR þ NL) and has a Dirac mass mN ≫ mobs

ν , which
can a priori be completely decoupled from the generation
of the active neutrino masses. This is the Dirac scenario we
consider in this work, and therefore the constraint in
Eq. (A6) can be safely neglected. Another example is
the scenario in which the tree-level Dirac mass termmSM

νN is
of the same order but of opposite sign compared to the
δmνN generated by μνN. While some might consider this
cancellation to be unnatural, it is by no means improbable.
A third example is a Dirac seesaw scenario where N is a
Dirac fermion (possibly vector-like) and with a Dirac mass
mN ≫ mobs

ν and the active neutrino νL forms a Dirac pair
with a new SM gauge-singlet Weyl field νR, which can have
a Dirac mass term of the form mνRNN̄LνR (which can arise
naturally from the vacuum expectation value of a SM
gauge-singlet scalar state). In such a situation the active
neutrino can receive a purely Dirac mass contribution of
the form mν ∼mνNmνRN=mN [12,14].

2. Majorana neutrinos

In the case of the type I seesaw scenario, the presence of
a transition magnetic dipole moment via a loop diagram
with heavy NP in the loop also leads to a contribution to
Dirac mass term of the from L ⊃ mνN ν̄LNR, through the
same diagram but with the external photon line removed.
This leads to a naive relation between μνN and the NP loop-
induced δmνN ,

μνN
μB

≈
meδmνN

Λ2
: ðA7Þ

However, one can always tune the tree-level Yukawa
coupling LY ⊃ yνL̄LH̃NR þ H:c: such that the resulting
tree-level contribution to the Dirac mass, yνv=

ffiffiffi
2

p
, nearly

cancels the loop-induced contribution. In this way, one can
lower the right-handed neutrino masses mN to as low as
MeV scales while keeping the active neutrino masses
at mν ≲ 1 eV.
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Exceptions to the relation in Eq. (A7) can naturally occur
when additional symmetries are present. An example is
the so-called Voloshin mechanism, where an approximate
global SUð2ÞH symmetry is introduced such that ðνcL; NRÞ
transforms as a doublet under the SUð2ÞH [8]. While this
symmetry allows for a SUð2ÞH singlet transition magnetic
moment term of the form N̄Rσ

μννL − ν̄cLσ
μνNc

R, it naturally
forbids the SUð2ÞH triplet contribution to the neutrino mass
term N̄RνL þ ν̄cLN

c
R. Instances of recent models employing

the Voloshin mechanism in the context of neutrino mag-
netic dipole moments can be found in Refs. [15,16].
In the presence of a sizeable mass mixing between active

and sterile states (as can be the case in a typical type I
seesaw) an active-sterile transition magnetic dipole moment
can also be induced through loop diagrams involving
charged leptons [9,10]. Such an active-sterile mass mixing
induced contribution to the transition magnetic dipole
moment is given by [13]

jμνN j
μB

¼ 3mνNme

16π2
GFffiffiffi
2

p ∼ 10−13
�

mνN

1 MeV

�
: ðA8Þ

On the other hand, in the presence of a transition
magnetic moment between νL and N, a loop contribution
to the light active neutrino masses is induced through
Fig. 4, which is directly proportional to the Majorana mass
of N,

mν ∼
�
μνN
μB

�
2 α

16π

mNΛ2

m2
e

; ðA9Þ

where Λ is the cutoff scale for the UV completion of the
model. For mN ∼ 1 MeV, Λ ∼ 1 TeV and mν ≲ 1 eV,
Eq. (A9) leads to jμνN j

μB
< 10−8. While a larger Majorana

mass of N would lead to relaxation of the tight constraint
from Eq. (A8), it would make the constraint from Eq. (A9)
more stringent. However, one can easily circumvent these
constraints by considering a scenario with a quasi-Dirac N,
such as in the case of the inverse seesaw mechanism
[36–38], where an approximate lepton number conserva-
tion (due to a very small Majorana mass splitting of a
predominantly Dirac N pair) makes the active neutrinos
very light, while the N being pseudo-Dirac can be
significantly heavier.

APPENDIX B: CALCULATION OF THE
RADIATIVE UPSCATTERING PROCESS

In this appendix we derive the differential cross section
for the radiative upscattering process ναA → XAγ,
X ¼ fνβ; N0;…g. For completeness, we also derive the
differential cross section for the Primakoff upscattering
process ναA → NA.
Firstly, we note that the active and sterile neutrinos να

and N (N0) may either be Dirac or Majorana fermions.

Rates for the Primakoff and radiative upscattering proc-
esses can be therefore computed for the four possible
combinations of Dirac or Majorana να and N (N0). We will
see that in the limit of massless neutrinos in the initial and
final states, i.e., mν → 0 and mN0 → 0, the rates for
processes with Dirac or Majorana να (and N0) are identical,
in accordance with the practical Dirac-Majorana confu-
sion theorem [17,18]. However, for massive mN , there is
indeed a distinction between the rates for the ναA → XAγ
process when N is a Dirac or Majorana fermion.
In both the Dirac and Majorana cases, the transition

magnetic moment between the light active neutrinos να (or
a sterile neutrino N0) and the sterile neutrino N is described
by the effective Lagrangian

L ⊃
μXN
2

X̄σμνPRNFμν þ ðμXNÞ�
2

N̄σμνPLXFμν; ðB1Þ

where X ¼ fναL; N0;…g and μXN ¼ fμανN; μN0N;…g. In
the case where both N and X are Majorana, the second term
can be rewritten to give

L⊃
μXN
2

X̄½σμνPR −CðσμνPLÞTC−1�NFμν ¼ μXN
2

X̄σμνNFμν;

ðB2Þ

where we have defined ðμXNÞ� ¼ −μXN and used
the charge-conjugation properties CPT

LC
−1 ¼ PL and

CσTμνC−1 ¼ −σμν. If X is Majorana and N is Dirac (or vice
versa) it is not possible to make such a simplification; it is
nonetheless convenient to write in the first scenario
(Majorana X, Dirac N),

L ⊃
μXN
2

X̄½σμνPRN − CðσμνPLÞTC−1Nc�Fμν; ðB3Þ

while in the latter case (Dirac X, Majorana N),

L ⊃
μXN
2

½X̄σμνPR − X̄cCðσμνPLÞTC−1�NFμν: ðB4Þ

In the following we will use these interaction terms to
investigate the Primakoff and radiative upscattering proc-
esses for Dirac and Majorana να, N, and N0.
We finally note that if X and N are both Dirac, the

following effective Lagrangian terms can also be written

L ⊃
ζXN
2

X̄σμνPLNFμν þ ðζXNÞ�
2

N̄σμνPRXFμν: ðB5Þ

However, as we are considering purely left-handed (right-
handed) incoming neutrinos (antineutrinos), these terms do
not contribute to the Primakoff or radiative upscattering
processes.
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1. Primakoff upscattering

The active-sterile transition magnetic moment μανN indu-
ces the Primakoff upscattering process shown to the left in
Fig. 5. An incoming Dirac or Majorana active neutrino να
exchanges a photon with a target nucleus A and scatters to
an outgoing Dirac or Majorana sterile neutrino N. As
shown in the diagram, the ingoing nucleus and neutrino and
outgoing nucleus and sterile neutrino have four-momenta
k1, k2, p1, and pN , respectively. The four-momentum
exchanged by the photon is thus q ¼ k1 − p1 ¼ pN − k2.
We first consider the scenario where N is a Dirac

fermion, i.e., N ¼ NL þ NR. An incoming neutrino να,
created by the SM charged current jμW ¼ ν̄αLγ

μlαL, may be
a Dirac or Majorana fermion. If να is Dirac, the neutrino is
annihilated by the second term in Eq. (B1). This results in
the following matrix element for ναA → NA,

iMD
ναA→NA ¼ ðμανNÞ�½ūNσρσPLqσuνα �

ð−igρλÞ
q2

J A
λ ; ðB6Þ

where J A
λ is the hadronic current of the nucleus. In

the following we use the hadronic current J A
λ ¼

−ieZðūAγλuAÞF ðq2Þ, whereF ðq2Þ is a nuclear form factor,
which describes the electromagnetic interaction of a spin-1

2

nucleus. If να is Majorana, the neutrino created by the SM
charged current jμW ¼ ν̄αLγ

μlαL can instead be annihilated
by the first or second term in Eq. (B3). The second term
corresponds to the propagation of a negative helicity
neutrino and is again described by the matrix element in
Eq. (B6). The first term on the other hand corresponds to
the propagation of a positive helicity neutrino; because the
neutrino is ultrarelativistic, this process is helicity sup-
pressed by the small ratio mν=Eν. If να is Dirac, the SM
charged current jμ†W ¼ l̄αLγ

μναL instead creates an antineu-
trino ν̄α, which is annihilated by the first term in Eq. (B1).
The matrix element is

iMD
ν̄αA→N̄A ¼ μανN ½v̄νασρσPRqσvN �

ð−igρλÞ
q2

J A
λ : ðB7Þ

If να is Majorana, the neutrino created by the charged
current jμ†W ¼ l̄αLγ

μναL can again be annihilated by the first
or second term in Eq. (B3). The first term induces the
process ναA → N̄A with the matrix element in Eq. (B7).
The second term induces the process ναA → NA but is
helicity suppressed by mν=Eν.
We next consider the scenario where N is a Majorana

fermion, i.e., N ¼ Nc
R þ NR. If the incoming neutrino να

produced by the charged current jμW ¼ ν̄αLγ
μlαL is Dirac, it

can only be annihilated by the second term in Eq. (B4).
This induces the process ναA → NA with the matrix
element identical to Eq. (B6). Similarly, an antineutrino
created by the charged current jμ†W ¼ l̄αLγ

μναL can only
be annihilated by the first term in Eq. (B4). This induces
the process ν̄αA → NA with a matrix element identical to
Eq. (B7). An incoming Majorana neutrino να created by
jμW ¼ ν̄αLγ

μlαL can be annihilated by both terms in (B2).
However, the contribution to the process ναA → NA from
the first term is helicity suppressed. Likewise, an incoming
Majorana neutrino να created by jμ†W ¼ l̄αLγ

μναL can
also be annihilated by both terms in Eq. (B2), but the
contribution from the second term is suppressed. Conse-
quently, the matrix elements for these processes are also
given by Eqs. (B6) and (B7), respectively.
The differential cross section for the process can now be

found by taking the absolute square of the scattering
amplitude, averaging over the spin of the incoming nucleus
and summing over the spins of the outgoing nucleus and
sterile neutrino. Neglecting the mass of the incoming
neutrino, the differential cross section is calculated as

d2σναA→NA ¼ 1

2ðs −m2
AÞ

1

2

X
spins

jMDðMÞ
ναA→NAj2dΦ2; ðB8Þ

where s ¼ ðk1 þ k2Þ2 is a Mandelstam variable, mA is the
mass of the nucleus, and dΦ2 is the two-body phase space
of the outgoing nucleus and sterile neutrino,

dΦ2 ¼ ð2πÞ4 d3p1

2ð2πÞ3Ep1

d3pN

2ð2πÞ3EpN

δ4ðk1 þ k2 − p1 − pNÞ

¼ dϕ
2π

dt
8πðs −m2

AÞ
: ðB9Þ

In the second equality we have used the Dirac delta
function (enforcing the conservation of four-momentum)
to integrate over four of the three-momentum com-
ponents. We have also reexpressed the integral in terms
of ϕ (the azimuthal angle defining rotations around the
incoming neutrino direction) and the Mandelstam variable
t ¼ q2 ¼ ðk1 − p1Þ2. The physical region of the phase
space is defined by the inequality Δ3 < 0, where

FIG. 5. Diagrams for the Primakoff upscattering ναA → NA
(left) and radiative scattering ναA → XAγ (right), X¼fνβ;N0;…g,
with momentum and Mandelstam variable assignments defined in
the main text.
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Δ3 ¼ −
1

2

������������

0 0 s m2
N 1

0 0 m2
A t 1

s m2
A 0 m2

A 1

m2
N t m2

A 0 1

1 1 1 1 0

������������
ðB10Þ

is the 3 × 3 symmetric Gram determinant constructed from
any three of the four incoming or outgoing four-momenta
[39]. The spin-averaged and summed squared matrix
elements for the process ναA → NA can be written, for
both Dirac and Majorana N, as

1

2

X
spins

jMναA→NAj2 ¼ jμανN j2
e2Z2F 2ðq2Þ

q4
LμνHμν; ðB11Þ

where the leptonic and hadronic components are given by

Lμν ¼ Tr½ðpN þmNÞσμρPL=k2σνλ�qρqλ; ðB12Þ

Hμν ¼ 1

2
Tr½ðp1 þmAÞγμð=k1 þmAÞγν�: ðB13Þ

As mentioned previously, the form of the hadronic current
Hμν in Eq. (B13) is technically only valid for spin-1

2
nuclei,

while most targets considered for CEνNS are spin-0.
However, for small recoil energies, which is the regime
of interest for most CEνNS experiments, the spin of the
nucleus has a negligible impact on the cross section. We
can now insert Eqs. (B9) and (B11) into Eq. (B8) and
express the matrix element squared in terms of the
Mandelstam variables s and t. The matrix element squared
does not depend on the azimuthal angle ϕ, which can
therefore be integrated over. This gives the following
differential cross section in the Lorentz-invariant variable t,

dσναA→NA

dt
¼ jμανN j2αZ2F 2ðtÞFðt; s; m

2
A;m

2
NÞ

2t2ðs −m2
AÞ2

; ðB14Þ

where the functionFða;b;c;dÞ¼−2aðb−cÞ2−2a2ðb−cÞþ
adðaþ2bÞ−d2ðaþ2cÞ has been introduced for con-
venience.
We would now like to determine the cross section

as a function of lab frame variables. In the lab frame,
k1 ¼ ðmA; 0Þ, k2 ¼ ðEν;k2Þ, p1 ¼ ðmA þ ER;p1Þ and
pN ¼ ðEν − ER;pNÞ, where Eν is the incoming neutrino
energy and ER is the nuclear recoil energy. In the lab frame
the Mandelstam variables are s ¼ mAðmA þ 2EνÞ and
t ¼ −2mAER. We transform the variable from t to ER by
multiplying by the Jacobian factor ∂t=∂ER ¼ −2mA, which
gives the standard result

dσναA→NA

dER
¼ jμανN j2αZ2F 2ðERÞ

×

�
1

ER
−

1

Eν
−

m2
N

4ERE2
ν

�
1þ 2Eν − ER

mA

�

−
m4

N

8mAE2
RE

2
ν

�
1 −

ER

mA

��
: ðB15Þ

In this work, we are interested in the limit in which the
momentum exchanged by the photon (and therefore the
nuclear recoil ER) is much smaller than the mass of
the nucleus mA. We also assume that the sterile neutrino
massmN is comparible to the incoming neutrino energy Eν,
but much smaller than mA. In terms of the Mandelstam
variables this corresponds to s ≈m2

A ≫ t; m2
N , and the

function in Eq. (B14) simplifies to Fðs; t; m2
A;m

2
NÞ≈

−2tðs −m2
AÞ2 þ 2m2

Am
2
Nðt −m2

NÞ. This is equivalent to
dropping the terms proportional to 1=Eν and 1=mA
in Eq. (B15).

2. Radiative upscattering

We now outline how to compute the matrix element
squared and differential cross section of the radiative
upscattering process ναA → XAγ, i.e., the Primakoff
upscattering ναA → NA followed by the radiative decay
N → Xγ, where X can either be an active neutrino νβ or
another sterile state N0.
Before doing so, it is useful to derive the decay rate for

the process N → Xγ induced by the transition magnetic
dipole moment μXN . If N and X are Dirac fermions, sterile
neutrinos N and antineutrinos N̄ decay to X and X̄,
respectively. The matrix element for N → Xγ is

iMD
N→Xγ ¼ μXN ½ūXσμνPRuN �ϵμ�pν

3; ðB16Þ

where p3 and ϵ are the four-momentum and polarization of
the outgoing photon, respectively. The matrix element for
N̄ → X̄γ is determined from the second term in Eq. (B1)
and is given by Eq. (B16) with μXN → ðμXNÞ� and
½ūXσμνPRuN � → ½v̄NσμνPLvX�. The same expressions are
valid for Dirac sterile neutrinos N and antineutrinos N̄
decaying to Majorana X as they can only be annihilated by
the first and second terms in Eq. (B3), respectively.
We now examine the case if N is instead a Majorana

fermion. If X is Dirac, N can decay to X and X̄ via the
first and second terms of Eq. (B4), respectively. If X is
Majorana, N can decay via both of the terms in Eq. (B2).
The matrix element for the sum of processes N → Xγ and
N → X̄γ for Dirac X (and N → Xγ for Majorana X) is thus
given by

iMM
N→Xγ ¼ μXN ½ūXðσμνPR − CðσμνPLÞTC−1ÞuN �ϵμ�pν

3

¼ μXN ½ūXσμνuN �ϵμ�pν
3: ðB17Þ
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To compute the decay rate, we multiply the spin- and
polarization-summed squared matrix element by the two-
body phase space of the outgoing neutrino and photon,

d2ΓDðMÞ
N→Xγ ¼

1

2mN

X
spins;pols

jMDðMÞ
N→Xγj2dΦ2: ðB18Þ

As we will later be considering the sterile neutrino N as an
intermediate particle in the scattering process ναA → XAγ,
we do not average over its spin. It is straightforward to find
(neglecting the mass of X)

X
spins;pols

jMM
N→Xγj2 ¼ 2

X
spins;pols

jMD
N→Xγj2 ¼ 4m4

N jμXN j2;

ðB19Þ

where we note the factor of two difference between
the Dirac and Majorana case. Writing dΦ2 in terms of
the angles of the outgoing neutrino and photon, i.e.,
dΦ2 ¼ 1

8π
dϕ
2π

d cos θ
2

, we see that the form of the squared
matrix elements allows to integrate over ϕ and cos θ, giving

ΓM
N→Xγ ¼ 2ΓD

N→Xγ ¼
m3

N jμXN j2
4π

: ðB20Þ

The Majorana decay rate via the transition magnetic
moment μXN is a factor of two larger than the corresponding
Dirac decay rate.
We now return to the radiative upscattering process

ναA → XAγ. The Feynman diagram for this process is
shown to the right of Fig. 5, where we define the momenta
of the incoming and outgoing particles and the Mandelstam
variables s, s1, t1, s3, and t2. The variables s and t1 ¼ q2 are
equivalent to s and t for the ναA → NA process. In the lab
frame, these are

s ¼ ðk1 þ k2Þ2 ¼ mAðmA þ 2EνÞ; ðB21Þ

t1 ¼ ðk1 − p1Þ2 ¼ −2mAER; ðB22Þ

s1 ¼ ðp2 þ p3Þ2 ¼ −2mAER

− 2EνðER −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ERð2mA þ ERÞ

p
cos θRÞ; ðB23Þ

s3 ¼ ðp1 þ p2Þ2 ¼ mAðmA þ 2Eν − 2EγÞ
− 2EνEγð1 − cos θγÞ; ðB24Þ

t2 ¼ ðk2 − p3Þ2 ¼ −2EνEγð1 − cos θγÞ; ðB25Þ

where Eγ and θγ are the outgoing photon energy and angle,
respectively, and θR is the outgoing nuclear recoil angle.
The angles are defined to lie between the direction of the
incoming neutrino and the outgoing states.

We can again compare the scenarios where the sterile
neutrino N is a Dirac or Majorana fermion. For Dirac N,
an incoming active Dirac neutrino (or Majorana neutrino
with negative helicity) triggers the process ναA → XAγ.
Conversely, an active Dirac antineutrino (or Majorana
neutrino with positive helicity) induces the process
ν̄αA → X̄Aγ. In each case we neglect the incoming ‘wrong’
helicity Majorana neutrino. The amplitude for the ναA →
XAγ process for both Dirac and Majorana να can thus be
written as

iMD
ναA→XAγ ¼ ðμανNÞ�μXN

×
i½ūXσμνPRðpN þmNÞσρσPLuνα �ϵμ�pν

3q
σ

p2
N −m2

N þ imNΓN

×
ð−igρλÞ

q2
J A

λ

¼ μανNμXN ½ūXσμνPRðpN þmNÞσρσPLuνα �Fμνρσ;

ðB26Þ

where pN ¼ p2 þ p3, ΓN is the total width of N, and

Fμνρσ ≡ − ϵμ�pν
3
ðJ AÞρqσ

q2ðp2
N−m

2
NþimNΓNÞ. For ν̄αA → X̄Aγ we instead

have

iMD
ν̄αA→X̄Aγ ¼ μανNμXN ½v̄νασρσPRðpN þmNÞσμνPLvX�Fμνρσ:

ðB27Þ

For Majorana N, additional processes are possible. For
example, if να and X are Dirac, the lepton number violating
processes ναA → X̄Aγ is allowed. The situation is similar if
να and X are Majorana; now the outgoing state X can have
negative or positive helicity. However, we emphasise that
the outgoing state X is not measured. We then need to sum
the matrix elements for the processes ναA → XAγ and
ναA → X̄Aγ if X is Dirac (or simply the matrix element for
ναA → XAγ if X is Majorana), which is

iMM
ναA→XAγ ¼ μανNμXN ½ūXσμνðpN þmNÞσρσPLuνα �Fμνρσ;

ðB28Þ

where the decay vertex of N now contains the sum of
chirality projectors ðPR þ PLÞ ¼ 1. The PR projector
isolates the momentum term pN in the sterile neutrino
propagator, while the PL projector selects the mass term
mN . The former corresponds to the process ναA → XAγ and
the latter to ναA → X̄Aγ.We emphasize that lepton number is
not measured in the final state. Considering instead an
incoming Dirac ν̄α (or a Majorana να of predominantly
positive helicity), thematrix element for is given byEq. (B28)
with the replacement ½ūXσλξðpN þmNÞσμρPLuνα � →
½v̄νασλξPRðpN þmNÞσμρvX�.
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The differential cross section for the ναA → XAγ process
can be found by taking the absolute square of the scattering
amplitude, averaging over the possible spins of the incom-
ing nucleus and summing over the spins of the outgoing
nucleus. We also sum over the polarizations of the outgoing
photon. Neglecting the mass of light neutrinos (and any
sterile state N0) in the final state, the differential cross
section is given by

d5σναA→XAγ ¼
1

2ðs −m2
AÞ

1

2

X
spins

jMDðMÞ
ναA→XAγj2dΦ3; ðB29Þ

where dΦ3 is the three-body phase space for the outgoing
nucleus, light neutrino and photon,

dΦ3 ¼ ð2πÞ4 d3p1

2ð2πÞ3Ep1

d3p2

2ð2πÞ3Ep2

d3p3

2ð2πÞ3Ep3

× δ4ðk1 þ k2 − p1 − p2 − p3Þ

¼ dϕ
2π

ds1dt1ds3dt2
256π4ðs −m2

AÞ
ffiffiffiffiffiffiffiffiffi
−Δ4

p : ðB30Þ

In the second equality, the integral has firstly been
decomposed into a pair of two-body phase spaces (and a
trivial integral over the azimuthal orientation of the system)
and then written in terms of four Mandelstam variables s1,
t1, s3, and t2. The function

Δ4 ¼ −
1

16

��������������

0 0 s3 t1 m2
A 1

0 0 0 t2 s1 1

s3 0 0 0 s 1

t1 t2 0 0 m2
A 1

m2
A s1 s m2

A 0 1

1 1 1 1 1 0

��������������
ðB31Þ

is the 4 × 4 symmetric Gram determinant, with Δ4 < 0
defining the physical region of the phase space [39].
The spin-averaged and polarization-summed squared

matrix element in the Dirac and Majorana scenarios can
be written as

1

2

X
spins;pols

jMDðMÞ
ναA→XAγj2 ¼ jμανNμXN j2

e2Z2F 2ðq2Þ
q4

×
Lγ;DðMÞ
μν Hμν

ðp2
N −m2

NÞ2 þm2
NΓ2

N
; ðB32Þ

where Hμν is given in Eq. (B13) and the leptonic parts are

Lγ;D
μν ¼ Tr½p2σλξpNσμρ=k2σνωPRpNσηζ�gληpξ

3p
ζ
3q

ρqω;

ðB33Þ
Lγ;M
μν ¼ Tr½p2σλξðpN þmNÞσμρ=k2σνωPRðpN þmNÞ

× σηζ�gληpξ
3p

ζ
3q

ρqω; ðB34Þ

Inserting Eqs. (B30) and (B32) into the cross section
formula of Eq. (B29) now gives the Lorentz-invariant
differential cross section

d4σDðMÞ
ναA→XAγ

ds1dt1ds3dt2
¼ jμανNμXN j2

αZ2F 2ðt1Þ
128π3t21

×
Lγ;DðMÞ
μν Hμν

ðs −m2
AÞ2½ðs1 −m2

NÞ2 þm2
NΓ2

N �
ffiffiffiffiffiffiffiffiffi
−Δ4

p ;

ðB35Þ

where we have integrated over the azimuthal angle ϕ.

3. Connection to observables

From Eq. (B35) we wish to compute the differential
cross sections in the experimental observables of interest, in
particular the nuclear recoil energy ER, the outgoing photon
energy Eγ and angle θγ (between the incoming neutrino and
outgoing photon). Because Eq. (B35) depends on four
Mandelstam variables, we need an other variable in the lab
frame, which we choose to be the angle θR (between the
incoming neutrino and outgoing recoiling nucleus). We
have already given the Mandelstam variables in terms of
these labe frame quantities in Eqs. (B21)–(B25). We see
that ER and θR only appear in s1 and t1 and Eγ and θγ in s3
and t2. To determine the single differential cross section in
ER, the first step is to therefore integrate Eq. (B35) over s3
and t2, i.e.,

d2σDðMÞ
ναA→XAγ

ds1dt1
¼
Z

tþ
2

t−
2

dt2

Z
sþ
3

s−
3

ds3
d4σDðMÞ

ναA→XAγ

ds1dt1ds3dt2
: ðB36Þ

The limits of integration are such that the complete physical
region of the phase space, Δ4 < 0, is integrated over. The
limits s�3 ðs1; t1; t2Þ are hence found by solving Δ4 ¼ 0 for
s3, while t�2 ðs1; t1Þ are found by solving sþ3 ¼ s−3 for t2.
Performing this integration for the full differential cross
section in Eq. (B35), we obtain for Dirac N

d2σDναA→XAγ

ds1dt1
¼ jμανNμXN j2

αZ2F 2ðt1Þ
16π2

×
s21Fðt1; s; m2

A; s1Þ
t21ðs −m2

AÞ2½ðs1 −m2
NÞ2 þm2

NΓ2
N �

; ðB37Þ

while for Majorana N,

d2σMναA→XAγ

ds1dt1
¼ jμανNμXN j2

αZ2F 2ðt1Þ
16π2

×
s1ðs1 þm2

NÞFðt1; s; m2
A; s1Þ

t21ðs −m2
AÞ2½ðs1 −m2

NÞ2 þm2
NΓ2

N �
:

ðB38Þ
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Taking the ratio of these cross sections, we see that they
vary by the factor

�
d2σMναA→XAγ

ds1dt1

�
�
d2σDναA→XAγ

ds1dt1

�
¼ 1þm2

N

s1
: ðB39Þ

The first term corresponds to the process ναA → XAγ
which possible for both Dirac and Majorana N. The second
term instead corresponds to the process ναA → X̄Aγ which
requires a helicity flip of N and is only possible for
Majorana N.
To determine the differential cross section in the

relevant lab frame quantities ER and θR, we now multiply
Eqs. (B37) and (B38) by a Jacobian, i.e.,

d2σDðMÞ
ναA→XAγ

dERdθR
¼
���� ∂ðs1; t1Þ
∂ðER; θRÞ

���� d2σ
DðMÞ
ναA→XAγ

ds1dt1
; ðB40Þ

where j ∂ðs1;t1Þ
∂ðER;θRÞ j ¼ −4EνmA

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ERð2mA þ ERÞ

p
sin θR. The

differential cross sections in the nuclear recoil energy ER
and angle θR can now be computed by integrating over the
remaining variable,

dσDðMÞ
ναA→XAγ

dER
¼
Z

θþR

0

dθR
d2σDðMÞ

ναA→XAγ

dERdθR
; ðB41Þ

dσDðMÞ
ναA→XAγ

dθR
¼
Z

Eþ
R

0

dER

d2σDðMÞ
ναA→XAγ

dERdθR
: ðB42Þ

The allowed region is bounded by the upper limits

cos θþR ¼ ERðmA þ EνÞ
Eν

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ERð2mA þ ERÞ

p ;

Eþ
R ¼ 2mAE2

ν cos2 θR
mAðmA þ 2EνÞ þ E2

νð1 − cos2 θRÞ
: ðB43Þ

In Fig. 6 we depict the kinematically-allowed region as the
gray shaded area in the main plot. The kinematically
allowed region can be seen to be independent of the sterile
neutrino mass mN . In the subplots above and to the right,
we show the double differential cross section in Eq. (B40)
for fixed θR ¼ 0.5 rad (above) and ER ¼ 10−5 MeV (right)
and three different values of mN . For illustrative purposes,
we set the values of the transition magnetic moment and
total decay width of N to be μανN ¼ 3 × 10−8 μB and
ΓN ¼ 10−3 MeV, respectively. A total decay width of this
size would require additional invisible decay modes of N.
We observe that, even though the double differential cross

sections are non-zero over the entire kinematically allowed
region, they are dominated by sharply peaked regions. This
is a consequence of the total decay width of N being much
smaller than the mass of N, justifying the use of the narrow
width approximation (NWA).
In the ΓN ≪ mN limit, the following replacement can be

made in Eq. (B35),

1

ðs1 −m2
NÞ2 þm2

NΓ2
N
→

π

mNΓN
δðs1 −m2

NÞ ðB44Þ

which sets the intermediate N to be on-shell, i.e.,
s1 ¼ p2

N ¼ m2
N . Inserting the expression of s1 in terms

of the lab frame variables in Eq. (B23) into s1 ¼ m2
N allows

to find the following relationship between the nuclear recoil
angle and energy,

cos θRjNWA ¼ m2
N þ 2ERðmA þ EνÞ

2Eν

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ERð2mA þ ERÞ

p ; ðB45Þ

or equivalently,

E�
R jNWA ¼ 2mAE2

νc2R −m2
NðmA þ EνÞ � EνcR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2

AE
2
νc2R − 4mAm2

NðmA þ EνÞ þm4
N

p
2mAðmA þ 2EνÞ þ 2E2

νð1 − c2RÞ
; ðB46Þ

FIG. 6. Kinematically allowed region in the ðER; θRÞ plane for
the ναA → ναAγ process, indicated by the gray shaded region. For
three different values ofmN the relationship between ER and θR is
shown the narrow width approximation. The side plots depict the
double differential cross section in ER and θR, again for three
different values of mN and in the Dirac (solid) and Majorana
(dashed) cases. The top plot is for fixed θR ¼ 0.5 rad and the
right for fixed ER ¼ 10−5 MeV. As ΓN ≪ mN , it can be seen that
the differential cross sections are sharply peaked at values of ER
and θR satisfying the relationship in the NWA.
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where cR ¼ cos θR. In Fig. 6 we plot the curves of allowed
values in the ðER; θRÞ plane from the condition s1 ¼ m2

N for
three different values of mN . From the plots above and to
the right, we see that the double differential cross section is
sharply peaked at these values of ER and θR. For each value
of mN there is an maximum recoil angle,

cos θmax
R jNWA ¼ m2

NðmA þ Eν þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mAðmA þ 2EνÞ

p Þ
2EνðmAm2

N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mAðmA þ 2EνÞ

p þm4
NÞ1=2

;

ðB47Þ

as well as minimum and maximum recoil energies given by
Eq. (B46) with cR ¼ �1. We now take Eqs. (B37) and
(B38), make the substitution in Eq. (B44) and integrate
over s1 by setting s1 ¼ m2

N . To obtain the differential cross
section in the nuclear recoil energy, we finally multiply by
the Jacobian factor ∂t=∂ER ¼ −2mA to obtain

dσDðMÞ
ναA→XAγ

dER

����
NWA

¼ dσναA→NA

dER

ΓDðMÞ
N→Xγ

ΓN
: ðB48Þ

In the NWA, the differential rate in the nuclear recoil for the
ναA → XAγ process is therefore the Primakoff upscattering
cross section multiplied by the branching ratio for the
radiative decay N → Xγ.
To obtain the differential cross sections for ναA → XAγ

in the outgoing photon energy Eγ and angle θγ, we can
instead integrate Eq. (B35) over s1 and t1 as

d2σDðMÞ
ναA→XAγ

ds3dt2
¼
Z

tþ
1

t−
1

dt1

Z
sþ
1

s−
1

ds1
d4σDðMÞ

ναA→XAγ

ds1dt1ds3dt2
; ðB49Þ

where again the limits s�1 ðt1; s3; t2Þ are found by solving
Δ4 ¼ 0 for s1 and t�1 ðs3; t2Þ by solving sþ1 ¼ s−1 for t1. In
general both integrals are non-trivial for the differential
cross section in Eq. (B35) because s1 appears in the factor
of ½ðs1 −m2

NÞ þm2
NΓ2

N � in the denominator and t1 appears
in the nuclear form-factor F ðt1Þ; it is therefore necessary to

perform this integration numerically. Once this is done, it is
possible to transform to the lab frame by multiplying

Eq. (B49) by the Jacobian j ∂ðs3;t2Þ
∂ðEγ ;θγÞ j ¼ 4mAEνEγ sin θγ .

To obtain the single differential cross sections in the
variables Eγ and θγ , the remaining variables are integrated
over as

dσDðMÞ
ναA→XAγ

dEγ
¼
Z

π

0

dθγ
d2σDðMÞ

ναA→XAγ

dEγdθγ
; ðB50Þ

dσDðMÞ
ναA→XAγ

dθγ
¼
Z

Eþ
γ

0

dEγ

d2σDðMÞ
ναA→XAγ

dEγdθγ
; ðB51Þ

where the maximum allowed photon energy is Eþ
γ ¼

mAEν
mAþEνð1−cos θγÞ.
However, the NWA can also be used to simplify the

calculation above. The substitution in Eq. (B44) can be
made in Eq. (B49) and the s1 integration performed by
setting s1 ¼ m2

N . However, the t1 integral must be still be
performed numerically due to the non-trivial dependence of
F ðt1Þ. Multiplying the double differential cross section by

the Jacobian j ∂ðs3;t2Þ
∂ðEγ ;θγÞ j, we obtain the double differential

cross section in Eγ and θγ,

d2σDðMÞ
ναA→XAγ

dEγdθγ

����
NWA

¼ jμανNμXN j2αZ2Eγ sin θγ
128π2mAEνmNΓN

×
Z

tþ
1

t−
1

dt1
Lγ;DðMÞ
μν HμνF 2ðt1Þ

t21
ffiffiffiffiffiffiffiffiffi
−Δ4

p
����
s1¼m2

N

:

ðB52Þ

In the following, we set F ðt1Þ ¼ 1 and perform the integral
over t1 analytically. In the NWA, the limits of integration t�1
can be found by solvingΔ4 ¼ 0 for t1 with s1 ¼ m2

N . These
limits correspond to the minimum and maximum photon
energies

E−
γ jNWA ¼ 2mAEν þm2

N −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4E2

νm2
A − 4mAðmA þ EνÞm2

N þm4
N

p
4ðmA þ 2EνÞ

; ðB53Þ

Eþ
γ jNWA ¼ 2mAEν þm2

N þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4E2

νm2
A − 4mAðmA þ EνÞm2

N þm4
N

p
4mA

: ðB54Þ

For Eν; mN ≪ mA, these give the simple result

E�
γ jNWA ≈ Eν

2
ð1�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − m2

N
E2
ν

q
Þ.

In Fig. 7, we plot the double differential cross sections
in Eγ and θγ for Dirac (left) and Majorana (right) N. We

choose the values mN ¼ 1 MeV, ΓN ¼ 10−11 MeV and

μανN ¼ 10−7 μB. In the subplots above and to the right of
the contours, we also plot the double differential cross
section for fixed values of the photon energy Eγ (right) and
angle θγ (above). Furthermore, we plot the single differ-
ential cross sections in Eγ and θγ by integrating over the
other variable as in Eqs. (B50) and (B51). Examining the
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single differential cross sections in the photon energy Eγ,
we see a stark difference between the Dirac and Majorana
cases. In the former case, the cross section decreases
linearly with the energy, while in the latter the cross
section is constant. The minimum and maximum photon
energies in Eq. (B53) can clearly be seen. Looking at the
single differential cross sections in the photon angle θγ , the
difference between the Dirac and Majorana cases is less
prominent; the Majorana cross section peaks at slightly
lower angles compared to the Dirac cross section.

4. Differential rates

With the differential cross section for the Primakoff
upscattering in Eq. (B15), we can now calculate the
differential rate of nuclear recoil events in a CEνNS
experiment as

dRναA→NA

dER
¼ 1

A ·mp

Z
Emax
ν

Emin
ν ðERÞ

dEν

dϕνα

dEν

dσναA→NA

dER
; ðB55Þ

where dϕνα
dEν

is the flux of incoming neutrinos να per cm2 per

second and Emin
ν is the minimum incoming neutrino energy

that can produce a sterile neutrino of massmN and a nuclear
recoil energy ER,

Emin
ν ðERÞ ¼

�
ER

2
þ m2

N

4mA

� 
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2mA

ER

s !
: ðB56Þ

In Eq. (B55) we have divided by the mass number A of the
target isotope multiplied by the proton mass mp to

determine the differential rate per unit mass of the target
material.
Similarly, the differential rate for nuclear recoil events

that are coincident with an outgoing photon in the detector
is given (in the NWA) by

dRDðMÞ
ναA→XAγ

dER
¼ 1

A ·mp

Z
Emax
ν

Emin
ν ðERÞ

dEν

dϕνα

dEν

dσναA→NA

dER

ΓDðMÞ
N→Xγ

ΓN
Pdet
N :

ðB57Þ

Here, we simply integrate over the flux dϕνα
dEν

multiplied by
the radiative upscattering cross section and the probability
Pdet
N ¼ 1 − expð− LdetΓN

βγ Þ for the decay to take place inside

the detector. In the NWA, Emin
ν ðERÞ is again given

by Eq. (B56).
As an example, in Fig. 8 (left) we plot the differential

Primakoff upscattering rate in the nuclear recoil energy for
the NUCLEUS experiment situated at the very-near-site
(VNS) of the Chooz reactor site, for mN ¼ 1 MeV and
μeνN ¼ 10−10 μB. The flux of electron antineutrinos induces
the process ν̄eA → N̄A. In the plot we compare the rates for
three different target materials; 73Ge (gray), Al2O3 (blue),
and CaWO4 (orange). For Al2O3 and CaWO4 we average
over the mass numbers of the constituent isotopes. We also
compare the Primakoff upscattering rates to the SM CEνNS
process ν̄eA → ν̄eA (dotted lines). For μeνN ¼ 10−10 μB, the
number of Primakoff upscattering events is comparible the
number of CEνNS events. The horizontal black dotted line
indicates the predicted nuclear recoil background of

FIG. 7. Kinematically allowed region in the ðEγ; θγÞ plane for the ν̄eA → ν̄eAγ process, indicated by the blue (Dirac case, left) and
green (Majorana case, right) shaded regions to the left of the black dashed line. The incoming neutrino energy, nuclear target and sterile
neutrino parameters are indicated in the plots. As in Fig. 2, the contours depict the size of the double differential cross section in Eγ and
θγ . The side plots now depict the double differential cross sections for fixed values of Eγ (right) and θγ (above) as dashed and dotted
lines. Also shown are the single differential cross sections found by integrating over all allowed values of the other variable (solid lines).
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100 keV−1 kg−1 day−1 in the NUCLEUS detector at the
VNS. The gray shaded region shows the range of nuclear
recoils that can be detected by the experiment (i.e., a
nuclear recoil threshold of 10 eV).
In Fig. 8 (right) we plot the differential rate in the nuclear

recoil energy for the radiative upscattering process ν̄eA →
ν̄eAγ, again for the NUCLEUS experiment at the VNS and
for mN ¼ 1 MeV and μeνN ¼ 3 × 10−8 μB. We assume that
the outgoing antineutrino is of electron flavor, ν̄eA → ν̄eAγ
(i.e., there are no additional decay modes ofN), and that the
nuclear recoil is accompanied by an outgoing photon. We
compare the cases where the intermediate sterile neutrinoN
is a Dirac (solid lines) or Majorana (dashed lines) fermion,
again for three different target materials.

One may first notice that there are peaks in these
distributions, which otherwise have the same shape as
the Primakoff upscattering distributions. The origin of these
peaks is as follows; as we assume that N can only decay
radiatively, the branching ratio in the integrand of Eq. (B57)
is unity. For μeνN ¼ 3 × 10−8 μB and Ldet ¼ 5 cm, the total

width satisfies ΓN ¼ ΓDðMÞ
N→ν̄eγ

≪ βγ=Ldet and the decay pro-
bability can be Taylor expanded to give Pdet

N ≈ LdetΓN=βγ.
The peaks occur at values of the nuclear recoil energy
that minimize the minimum incoming neutrino energy
in Eq. (B56) and hence minimize βγ ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1

p
≈ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðEν
mN
Þ2 − 1

q
. This in turn maximizes Pdet

N and the integrand

in Eq. (B57). In other words, for these values of the nuclear

FIG. 8. (Left) Differential rates in the nuclear recoil energy ER for ν̄eA → N̄A per kilogram of a detector at the VNS of the Chooz
reactor site, for mN ¼ 1 MeV and μeνN ¼ 10−10μB. These are compared to the SM CEνNS rates (dotted lines). (Right) Differential rates
in ER for ν̄eA → ν̄eAγ per kilogram of detector, for mN ¼ 1 MeV and μeνN ¼ 3 × 10−8μB. The sterile neutrino, which may be a Dirac
(solid lines) or Majorana (dashed) fermion, is required to decay inside the detector with Ldet ¼ 5 cm. Three possible detector materials
are shown; 73Ge (gray), Al2O3 (blue), and CaWO4 (orange).

FIG. 9. Differential rates of coincidence events in the photon energy Eγ (left) and photon angle θγ (right) per kg of a detector situated at
the VNS of the Chooz reactor site. Three possible detector materials are shown; 73Ge (gray), Al2O3 (blue), and CaWO4 (orange). The
differential rates are different in the Dirac (solid) and Majorana (dashed) cases. The sterile neutrino mass and transition magnetic
moment are chosen to bemN ¼ 1 MeV and μeνN ¼ 3 × 10−8μB, respectively. For a coincidence event to be observed, the sterile neutrino
is required to decay inside the detector with Ldet ¼ 5 cm.
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recoil, the incoming neutrino energy is as close as possible
tomN . The produced sterile state is nonrelativistic and has a
shorter decay length lN ¼ βγτN ¼ βγ=ΓN than average. If
more decays occur inside the detector, we would expect to
observe a peak in coincidence events.
It is also useful to obtain the differential rate for the

radiative upscattering process in Eγ or θγ as

dRDðMÞ
ναA→XAγ

dXγ
¼ 1

A ·mp

Z
Emax
ν

Emin
ν ðXγÞ

dEν

dϕνα

dEν

dσDðMÞ
ναA→XAγ

dXγ
Pdet
N ;

ðB58Þ

where Xγ ¼ fEγ; θγg. In the NWA, the minimum incoming
neutrino energy that can produce sterile neutrino of mass
mN and a photon of energy Eγ is

Emin
ν ðEγÞjNWA ¼ Eγ þ

mAm2
N

4mAEγ − 2m2
N
: ðB59Þ

For a given incoming neutrino energy Eν and sterile
neutrino mass mN , the outgoing photon can be emitted

at any angle in the range θγ ∈ ½0; π�. In the NWA, the
minimum incoming neutrino energy is that which can
produce a sterile neutrino of mass mN ,

Emin
ν ðθγÞjNWA ¼ mNð2mA −mNÞ

2ðmA −mNÞ
: ðB60Þ

In Fig. 9 we show the differential rates for the ν̄eA →
ν̄eAγ process in the outgoing photon energy Eγ (left) and
photon angle θγ (right) for a detector situated at the VNS of
the Chooz reactor site. We again present the distributions
for three target materials: 73Ge (gray), Al2O3 (blue), and
CaWO4 (orange). For the Chooz reactor neutrino flux,
the maximum number of events are expected for sterile
neutrino masses mN ∼ 1–5 MeV. We want to emphasise
that the Dirac and Majorana cases (solid and dashed lines,
respectively) have different distributions in the photon
energy and angle. We again observe enhancements in
Fig. 9 (left) at values of Eγ that minimize the minimum
incoming neutrino energy, i.e., Emin

ν ðEγÞ ∼mN .
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