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Effective nonlocal parity-dependent couplings in qubit chains
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For the efficient implementation of quantum algorithms, practical ways to generate many-body entanglement
are a basic requirement. Specifically, coupling multiple qubit pairs at once can be advantageous and may provide
multiqubit operations useful in the construction of hardware-tailored algorithms. Here we extend the theory
of fractional state transfer and harness the simultaneous coupling of qubits on a chain to engineer a set of
nonlocal parity-dependent quantum operations suitable for a wide range of applications. The resulting effective
long-range couplings directly implement a parametrizable Trotter-step for Jordan-Wigner fermions, and they
can be used for simulations of quantum dynamics, efficient state generation in variational quantum eigensolvers,
parity measurements for error-correction schemes, and the generation of efficient multiqubit gates. Moreover,
we present numerical simulations of the gate operation in a superconducting quantum circuit architecture, which
show a high gate fidelity for realistic experimental parameters.

DOI: 10.1103/PhysRevResearch.4.033166

I. INTRODUCTION

In recent years, significant advances have been made in
the field of quantum computing in demonstrating applications
in which quantum devices are predicted to be advantageous
[1–4]. A promising near-term application is the simulation of
quantum-mechanical systems [5,6]. In particular, the simula-
tion of fermionic systems is important to predict the properties
of, e.g., molecules [7,8], or to understand many-body systems
such as the Fermi-Hubbard model, which is expected to ex-
plain phenomena of great scientific and industrial interest such
as high-temperature superconductivity [9]. However, map-
ping fermions to qubits poses a major challenge, since local
fermionic couplings can result in nonlocal qubit interactions
[10–12].

To build quantum processors, different physical platforms,
such as trapped ions [13], superconducting qubits [14,15],
quantum dots [16], neutral atoms [17], and photonic qubits
[18], are currently considered. Independent of the platform,
an important characteristic for each device’s capability is
the qubit connectivity, which is typically limited to local
two-body couplings [19], while nonlocal interactions are
challenging to implement and require a large amount of con-
secutive two-qubit gates [20] or auxiliary qubits [21,22].
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An alternative solution is to implement nonlocal terms
by controlling multiple two-body couplings simultaneously
[23–28]. A prime example of such a method is the perfect
state transfer along a qubit chain [29–37], where an excitation
at an initial location is transferred to a final location along
the chain. This technique has a large variety of applications,
such as entanglement generation and effective two-qubit gates
[38–42]. Recently, it has been extended to fractional state
transfer (FST) [43–45], where the quantum state is partially
transferred to the final location while the other part returns to
its original position.

In this work, we build on FST and harness nearest-neighbor
couplings in a linear chain of two-level systems to engineer
effective nonlocal interactions that depend explicitly on the
number of excitations in the chain (see Fig. 1). These interac-
tions directly implement fermionic couplings between qubits
on opposite sides of the chain under Jordan-Wigner transfor-
mation (JWT), and thus they generate a set of matchgates
[46] that correspond to the unitary evolution of free fermions
[47,48]. In addition to fermionic quantum simulation, the
excitation-dependent operation also provides an efficient way
to measure long strings of qubit correlators with potential
applications in quantum error correction [49,50].

II. FRACTIONAL STATE TRANSFER

The Hamiltonian of a qubit chain with length N is
given by

HN =
N∑

n=1

�nσ
+
n σ−

n +
N−1∑
n=1

(Jnσ
+
n σ−

n+1 + H.c.), (1)
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FIG. 1. Qubit chain and effective parity-dependent couplings.
(a) Chain of qubits (circles) with frequencies �n and direct couplings
Jn, as described by HN in Eq. (1). Dark red lines indicate effective
nonlocal interactions that stroboscopically arise for specific parame-
ter choices of �n and Jn. The effective interaction results in a rotation
in the subspaces spanned by |n〉 and |N + 1 − n〉, where n denotes
the location of the excitation. The orientation of the rotation vector
depends on the parity of the qubits between each pair, ⊗N−n

k=n+1Zk .
(b) Illustration of a chain with length N = 3. A single excitation is
prepared at site 1 and partially transferred to site 3 with effective
interaction σ+

1 σ−
3 + H.c. (left chain), which rotates the state by an

angle θ on the Bloch-sphere spanned by the states |1〉 and |3〉 (red
arrow). If an additional excitation is prepared at site 2 (right chain),
the effective interaction changes sign, so that the state is rotated by
an angle −θ on the Bloch-sphere (blue arrow).

where we set h̄ = 1. Here, σ∓
n are the qubit lowering

(raising) operators and �n is the frequency of qubit n.
The coupling between qubits n and n + 1 is mediated via
XY -interactions σ+

n σ−
n+1 + H.c. = (XnXn+1 + YnYn+1)/2 with

time-independent coupling strengths Jn > 0. We use the nota-
tion X , Y , Z , and I for the Pauli matrices and the identity.

To implement FST, we set Jn = JN−n and �n = �N+1−n

to be symmetric about the center. Since evolution under HN

preserves the total number of excitations in the system, each
excitation manifold can be considered separately. Hence, we
first consider FST in the single-excitation manifold, where
HN is tridiagonal and persymmetric, i.e., symmetric around
its antidiagonal:

H (1)
N =

⎛
⎜⎜⎜⎜⎝

�1 J1

J1 �2 J2
. . .

. . .
. . .

J2 �2 J1

J1 �1

⎞
⎟⎟⎟⎟⎠. (2)

As such, it has only mirror-symmetric and mirror-
antisymmetric eigenvectors, |vs

j〉 and |va
j 〉, with real

nondegenerate eigenvalues λ
s/a
j [39,51]. Hence, we can

expand the single-excitation basis state |n〉 = |0 · · · 1n · · · 0〉
and its mirror state |N + 1 − n〉 as

|n〉 =
∑

j

αs
j

∣∣vs
j

〉 + ∑
j

αa
j

∣∣va
j

〉
,

|N + 1 − n〉 =
∑

j

αs
j

∣∣vs
j

〉 − ∑
j

αa
j

∣∣va
j

〉
. (3)

FIG. 2. Simulated occupation dynamics during two consecutive
fractional state transfers (FST) on an N = 15 qubit chain. Hamil-
tonian parameters are chosen to achieve a transfer angle θ = π/2.
(a) Evolution of an excitation prepared at site 1. After a first FST at
time τ (dotted line), the chain is in a superposition of the excitation
being at either of its ends. In the Bloch-sphere spanned by the states
|1〉 and |15〉, this corresponds to a rotation by an angle π/2 (dark red
arrow). At time 2τ after a second FST, the excitation refocuses at site
15, resulting in a 2θ = π rotation on the Bloch-sphere (gray arrow).
(b) Evolution of a state with excitations prepared at sites 1 and 8.
In this case, the first FST rotates the state |1〉 on the Bloch-sphere
by a negative angle −π/2 (dark blue arrow), due to the odd parity
of excitations in the middle of the chain. In contrast, the center
excitation refocuses at its original location and is then removed by an
instantaneous π -flip gate X π

8 at site 8 (blue rectangle), which changes
the parity. Then, with a second FST the dynamics are reverted and the
excitation refocuses at site 1.

Specific transfer angles θ between mirror-symmetric states
can be achieved by choosing the parameters Jn and �n such
that the eigenvalues of H (1)

N have the form

λ
s/a
j τ = ±θ

2
+ φ + ms/a

j 2π, (4)

with ms
j, ma

j ∈ Z and φ is a phase acquired during transfer
(see Appendix A). Evolving the state |n〉 according to these
eigenvalues and eigenstates for transfer time τ results in

e−iH (1)
N τ |n〉 =

∑
j

e−iλs
jτ αs

j

∣∣vs
j

〉 + ∑
j

e−iλa
j τ αa

j

∣∣va
j

〉

= e−iφ

(
cos

(
θ

2

)
|n〉 − i sin

(
θ

2

)
|N + 1 − n〉

)
.

(5)

Thus, qubit n and its mirror qubit on the chain, qubit N +
1 − n, are rotated by an angle θ in their respective two-qubit
subspace, which realizes FST. Using the software package
QUTIP [52], we simulate the dynamics in the single-excitation
manifold for a chain with length N = 15 and parameters
such that θ = π/2 as shown in Fig. 2(a). After time τ , a
system initially in |1〉 is rotated to the superposition state
(|1〉 − i|15〉)/

√
2. After time 2τ , the total transfer angle is

2θ = π and the excitation refocuses in state |15〉.
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III. PARITY-DEPENDENT COUPLINGS

We now consider the full unitary evolution under HN

for arbitrary initial states by using a mapping between
one-dimensional spin chains and free fermions [39]. Thus,
we extend previous results to find that FST with multi-
ple excitations leads to parity-dependent couplings between
mirror-symmetric qubit sites. Specifically, we provide an intu-
ition for the resulting interactions between qubits by mapping
the time evolution under HN to the dynamics of an effective
nonlocal Hamiltonian,

GN = σ+
1 ⊗ Z2 ⊗ Z3 ⊗ · · · ⊗ ZN−2 ⊗ ZN−1 ⊗ σ−

N

+ I1 ⊗ σ+
2 ⊗ Z3 ⊗ · · · ⊗ ZN−2 ⊗ σ−

N−1 ⊗ IN

+ · · · + H.c. (6)

At integer multiples of the transfer time τ , the time evolu-
tion under HN generates the same unitary, up to single-qubit
phases, as the evolution under GN for a transfer angle θ .
Indeed, the unitary KN = exp(−iθGN/2) can be realized by
FST through

exp

(
−i

θ

2
GN

)
= exp(−iHNτ ) exp(iφHz), (7)

where Hz = ∑
n σ+

n σ−
n accounts for the phase difference by

local unitary transformation and would include an additional
phase θ/2 for the middle qubit in odd chains.

The form of GN explicitly shows the parity-dependent
mirror-symmetric rotation of excitations along the chain.
Therefore, at stroboscopic times, the evolution under HN can
be understood as a rotation between each pair of mirror qubits,
where the sign of the rotation angle is given by the parity
of all qubits between them (see Figs. 1 and 2). Since the
different terms in the sum of Eq. (6) commute, these rotations
are independent of each other.

To prove Eq. (7), we analyze the Hamiltonians HN , GN ,
and Hz in terms of fermionic operators using a Jordan-Wigner
transformation (JWT) [12]. We find that all transformed
Hamiltonians describe noninteracting fermions. Therefore,
their complete dynamics can be constructed from the single-
excitation manifold using Slater determinants [53]. Since the
single-excitation dynamics of both sides of the equation are
equivalent, this construction leads to the same unitary evolu-
tion, and therefore Eq. (7) holds in all excitation manifolds
(see Appendix B).

To demonstrate the parity dependence, we simulate the
time evolution under HN in the full Hilbert space for two
consecutive FST processes with θ = π/2 and with a parity
change between them. We prepare two excitations, one at the
origin and one at the center of the chain. After evolving for
time τ , the excitation from the origin of the chain is partially
transferred to the other end of the chain, while the excitation
in the middle of the chain refocuses at the same site. We then
remove the center excitation with an instantaneous X gate,
thus changing the parity in the center of the chain. Evolving
for a further time τ , the rotation angle θ is now inverted,
causing a reversal of the dynamics as shown in Fig. 2(b).
Indeed, the initial excitation at site 1 returns to its original
position, in contrast to the dynamics of Fig. 2(a), where the
parity is identical for both FST processes.

IV. APPLICATIONS

A. Fermion simulation

Fermions can be simulated on a quantum computer
by using the Jordan-Wigner transformation [54,55] with
fermionic annihilation operators an = −(⊗n−1

k=1Zk ) ⊗ σ−
n . For

one-dimensional fermionic systems, nearest-neighbor cou-
plings are easily simulated on qubit systems with local
two-qubit gates [56]. However, in two-dimensional systems
or ladder-type geometries, nearest-neighbor couplings are
challenging because the one-dimensional structure of the
Jordan-Wigner encoding leads to nonlocal operators. The
JWT of GN , GF

N = a†
1aN + a†

2aN−1 + · · · + H.c., creates long-
range couplings between distant fermion sites, which can be
used to implement such nonlocal terms. For example, when
folding an even chain in half, all rung couplings of the system
are directly implemented by GN , which enables efficient sim-
ulation of the fermionic dynamics. To assess the efficiency,
we implement the evolution under GN for arbitrary times
by either applying FST with the correct rotation angle or
by decomposing its action into consecutive two-qubit gates
based on FSWAP-networks [55,57] (see Appendix C). The
correction of single-qubit phases acquired during FST takes
a negligible amount of time since it can be implemented by
single-qubit gates executed in parallel. Assuming that the gate
speed is limited by the maximal achievable coupling Jmax,
we find that by applying FST we can achieve a speedup of
at least a factor 2 for odd N and

√
3 for even N > 4, with

greater improvements for shorter chain lengths (see Fig. 3).
The nonlocal couplings of FST can, therefore, be used to
implement fast Trotter simulations of fermionic systems.

B. Parity measurement

Due to their native parity-dependent property, FST gates
can also be harnessed to quickly measure correlators on long
qubit chains, with applications in error correction, e.g., in low-
density parity-check codes [49]. To this end, consider a qubit
chain in the state |ψm〉 with m excitations. Its parity can be
measured by introducing an auxiliary qubit on each end of the
chain. After applying the sequence of gates

[
X

π
2

L K (π )
N+2Y

π
2

R

]|0〉L|ψm〉|0〉R

=
{−i|1〉L|ψ̄m〉|0〉R for m even,

|0〉L|ψ̄m〉|0〉R for m odd,
(8)

a measurement of the left auxiliary reveals the parity of

excitations in the qubit chain. Here, |ψ̄m〉 = K (π )
N |ψm〉, X

π
2

L

(Y
π
2

R ) is a π -half X (Y ) -rotation on the left (right) auxiliary,
and K (π )

N+2 is the FST gate on the extended chain including
the auxiliary qubits with θ = π . This protocol requires t ≈
N+2

2 τiSWAP, where τiSWAP = π
2Jmax

is the time required for a
nearest-neighbor iSWAP gate [see Eq. (A4)]. In comparison,
a protocol based on two-qubit gates would require at least
N such gates. The operation on the middle part of the chain
can be reversed by applying K (π )

N , increasing the required
time to t ≈ (N + 1)τiSWAP. However, for applications that per-
form repeated parity measurements of the same chain, this
reversion is unnecessary since (K (π )

N )2 = I up to single-qubit
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FIG. 3. Comparison between fractional state transfer (FST) and
equivalent decomposition. (a) An even chain folded in the middle
forms a ladder, where FST introduces effective interactions along
its rungs corresponding to the different terms of GN (red lines).
(b) Decomposition of FST into two-qubit gates for even chains.
Steps one (red and dark blue arrows) and two (light blue arrows)
are repeated N/2 times. Blue arrows symbolize FSWAP gates, while
the red arrow is an iSWAP(θ ) gate. Odd chains are discussed in
Appendix C. (c) Relative speed gain of FST with respect to the
two-qubit gate decomposition of exp(−iθGN/2) as a function of the
chain length N for both odd (red) and even (blue) N . The speed of
FST is assumed to be limited by the maximum coupling in the chain
as given in Eq. (A1). For N > 4 and perfect state transfer, i.e., θ = π ,
FST is at least a factor of 2 (upper solid line) faster. For N > 4 and
transfer angles approaching zero, i.e., θ → 0, the same speedup is
still present for N odd but reduces to

√
3 (lower solid line) for N even.

N = 3 and 4 are special cases since some steps of the decomposition
contain only iSWAP(θ ) gates, which are faster for smaller θ . The
point for N = 3 and θ → 0 is not shown since tFST → 0 in this case.

Z-rotations. Furthermore, by applying single-qubit rotations
before and after the measurement to introduce a basis change,
any desired combination of correlators P1P2 · · · PN with P ∈
{X,Y, Z} can be measured.

C. Three-qubit gate

Applying FST on a three-qubit chain leads to an interesting
multiqubit gate, which directly implements a parametrizable
fermionic next-nearest-neighbor interaction under JWT,

K3 = |0〉〈0|2 ⊗ iSWAP13(−θ ) + |1〉〈1|2 ⊗ iSWAP13(θ ),

where the indices indicate the qubit positions. We assume
that the gate speed is limited by the maximum coupling
Jmax, since high detunings are usually experimentally feasible
[58–60]. Given this assumption, the FST gate is signifi-
cantly faster than its decomposition in two-qubit gates given
by FSWAP12iSWAP23(−θ )FSWAP12, where FSWAP is the
fermionic swap gate [55] [Fig. 4(c)]. Since this speedup
increases for smaller angles, the FST gate is well suited
for variational quantum algorithms and Trotter simulations,
which often require only short interaction steps [61].

FIG. 4. Simulation of the three-qubit fractional-state-transfer
gate for superconducting qubits. (a) Three fixed-frequency transmons
(Q1, Q2, Q3) are coupled via two tunable couplers (C1,C2). By pe-
riodically modulating the coupler frequencies through flux pulses
(�c1,�c2), effective interactions between the qubits arise (Jeff).
(b) Infidelity and leakage (population losses out of the computational
subspace averaged over the computational states) of the optimized
gate at various angles. (c) The total gate time for different θ is set
as theoretically predicted (solid red). The gate time is significantly
shorter than the decomposition into two-qubit gates (dashed blue).
(d) Detuning of both drives (markers lie exactly over each other) and
theoretical prediction (dashed line). The detuning is slightly shifted
from the prediction because of ac-stark shifts.

V. SIMULATION

To assess the experimental feasibility of this three-qubit
gate, we numerically simulate it in a superconducting ar-
chitecture using the q-optimize software package [62]. The
simulated setup contains three fixed-frequency transmons that
are dispersively coupled with two flux-tunable coupler trans-
mons as shown in Fig. 4(a). Each transmon is modeled
as a nonlinear Duffing oscillator with three energy levels
each described by the Hamiltonian stated in Eq. (D1) (see
Appendix D) with the chosen Hamiltonian parameters sum-
marized in Table I. Effective couplings between neighboring
qubits are induced by periodically modulating the coupler
frequency [63]. We adjust the flux drive amplitudes to change
the strength of the effective coupling J and the frequency of
the drives to modify the detuning �, to realize the effective
Hamiltonian H3 required for FST (see Appendix D). As the
interactions are mediated by parametric drives, the gate is
compatible with single-qubit virtual Z gates [64].
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TABLE I. Hamiltonian parameters used in simulation.

Parameter Value

ω1/2π 5.05 GHz
ω2/2π 5.00 GHz
ω3/2π 5.075 GHz
ωc1/2π (at �DC

c1 ) 6.086 GHz

ωc2/2π (at �DC
c2 ) 6.106 GHz

α1/2π , α2/2π , α3/2π −300 MHz
αc1/2π , αc2/2π −350 MHz
�DC

c1 , �DC
c2 0.3�0

dc1, dc2 0.5
g1,c1/2π, g2,c2/2π 100 MHz
g2,c1/2π, g3,c2/2π −100 MHz
g1,2/2π, g2,3/2π −6.6 MHz

As our gate relies on states in the single and second-
excitation manifold having the same energy level spacing,
we position the couplers at frequencies in the dispersive
regime where unwanted ZZ-type couplings vanish [65]
while still having sufficient mediated coupling between the
qubits of approximately 3.7 × 2π MHz [see Eq. (D6)]. For
the drive on coupler ci we use a flattop Gaussian enve-
lope given by Aci(t ) = �A

ci[1 + erf(t/τr − 2)][1 + erf((τfinal −
t )/τr − 2)]/4, where erf is the Gauss error function, τfinal is
the gate length, τr is the rise time of the pulse, and �A

ci is
the amplitude of the drive. We optimize these amplitudes only
once at θ = π and keep �A

c1 = 0.0534�0, �A
c2 = 0.0529�0

fixed for all θ . Here �0 denotes the magnetic flux quantum.
The envelope is sampled with a finite resolution of 2.4 GHz to
realistically model an arbitrary waveform generator and then
mixed with a local oscillator signal.

We optimize the frequency of both gate pulses for a range
of effective transfer angles θ ∈ [0.01π, π ] assuming perfect
single-qubit virtual Z gates [64]. The optimization uses the
L-BFGS-B algorithm [66] with gradients calculated by nu-
merical differentiation. For θ = π , we use a gate time of
τfinal = 212 ns and τr = 2 ns. For smaller angles, the pulse
envelope is scaled following the theoretical prediction for
constant coupling strength in Eq. (D14) [see the red curve in
Fig. 4(c)].

We calculate the average infidelity [67] of the evolution
operator obtained by numerically solving Schrödinger’s equa-
tion. Without taking finite coherence into account, average
infidelities lower than 10−3 are achieved for θ ∈ [0.1, π ] [see
Fig. 4(b)]. The fidelity is mainly limited by leakage to the
second-excited states of the qubits, which oscillates period-
ically with the gate length. This leakage is caused by the
off-resonantly driven transitions to the second-excited qubit
states via higher harmonics of the drive. For θ � 0.1, the
infidelity and leakage increase because of sharp envelopes
needed for the shorter gate durations, which become compa-
rable to an oscillation period of the drive frequencies. In this
regime, the assumption of an effective interaction between the
qubits mediated through the periodic coupler modulation is
not valid anymore. The drive detunings �di closely follow the
theoretical prediction with small deviations caused by ac-stark
shifts induced by the drive [see Fig. 4(d)]. Since the detunings

vary smoothly with θ , it is expected that, in an experiment,
the gate could be optimized for only a few reference transfer
angles and the detunings for other θ extracted by interpolation.

VI. CONCLUSION

We have demonstrated how simultaneous nearest-neighbor
couplings between qubits on a chain can be harnessed to gen-
erate dynamics equivalent to complex nonlocal interactions.
Building on FST, we have engineered long-range couplings
dependent on qubit correlators along the chain. These directly
implement fermionic coupling terms under a Jordan-Wigner
transformation. The resulting multiqubit gates provide a sig-
nificant speedup compared to an equivalent decomposition
into two-qubit gates, making them promising candidates for
the implementation of fermionic simulation or as a building
block in quantum variational algorithms. Furthermore, we
have shown that the parity-dependent property of FST gates
can be harnessed for efficient measurements of qubit correla-
tors, with applications in quantum error correction or quantum
phase recognition [68].

We performed realistic numerical simulations of a
superconducting-circuit three-qubit chain suggesting gate fi-
delities above 99.9% for a wide range of transfer angles under
coherent evolution. The remaining infidelity is mostly caused
by leakage and could be mitigated by pulse shaping [69,70] or
engineering qubits with higher anharmonicities [71]. More-
over, the chosen protocol can readily be implemented with
larger qubit numbers and embedded in a two-dimensional
qubit architecture, since experimental pulse optimization has
been realized successfully for up to 55 pulse parameters [70],
and ZZ-type interactions between neighboring qubits can be
suppressed [72].

In the next step, we can extend the current protocol by
introducing time-dependent controls. Since qubit chains can
be fully understood in the single-excitation manifold, even for
large systems numerical simulations remain tractable. There-
fore, optimal-control techniques can be used to explore the
space of possible operations, thus enabling the discovery of a
variety of high-fidelity multiqubit gates.

The presented data and the programs used for the simula-
tions are available online [73].
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FIG. 5. Hamiltonian parameters Jn and �n as a function of the transfer angle θ for chain length N = 9 in (a) and (b) and N = 10 in (c).
(a) The magnitude of the required detunings decreases linearly with θ if N is odd. Perfect state transfer requires no detunings. For N even, no
detunings are needed. (b) All coupling strengths increase with θ if N is odd. (c) For N even, only the center coupling increases with θ while
all other couplings decrease.

APPENDIX A: HAMILTONIAN PARAMETERS FOR FST

Given its eigenvalues, a persymmetric tridiagonal matrix
can be uniquely reconstructed. Taking the spectrum of H (1)

N

to be as narrow as possible (ms
j = ma

j , ms/a
j+1 = ms/a

j + 1) and
the gate time to be τ , the required Hamiltonian parameters to
achieve FST with a transfer angle of θ for a qubit chain with
length N are [37,43]

Jn =

⎧⎪⎪⎨
⎪⎪⎩

π
2τ

√
n(N−n)((N−2n)2−( θ

π )2)
(N−1−2n)(N+1−2n) for N even,

π
2τ

√
n(N−n)((N−2n)2−( θ

π
−1)2)

(N−2n)2 for N odd,

(A1)

�n =
{

0 for N even,
π
2τ

( θ
π

−1)N
2

(
1

2n−N − 1
2n−2−N

)
for N odd.

(A2)

As the coupling strengths and detunings cannot be chosen
arbitrarily large in experimental realizations, they determine
the speed of our operation. For perfect state transfer, when
θ = π , the formulas simplify to the known result of

Jn = π

2τ

√
n(N − n), (A3)

with �n = 0. Hence, the biggest required coupling is in
the middle of the chain, where JN/2 = π

2τ
N
2 (J(N+1)/2 =

π
4τ

√
N2 − 1) for N even (odd). Then, for a maximal coupling

Jmax, perfect state transfer would be implemented in

τ =
{ Nπ

4Jmax
for N even,

√
N2−1π
4Jmax

for N odd.
(A4)

For FST we analyze the behavior as we reduce the transfer
angle θ from θ = π in the perfect state transfer case: for N
odd we have dJn

dθ
� 0 indicating a speed-up for smaller angles;

for N even dJn
dθ

� 0 ∀n �= N
2 and dJn

dθ
� 0 for n = N

2 resulting
in increased gate times at small angles. In fact, the operation
time is the longest for θ → 0 (see Fig. 5). Upper bounds for
the minimum gate times τ holding for all θ are given, in terms

of the highest coupling Jmax, as

τ �
{

π

2
√

3Jmax

√
N2 − 4 for N even,

π
4Jmax

√
N2 − 1 for N odd.

(A5)

For N odd, the required range of detunings is

�max − �min = N (π − θ )

3τ
. (A6)

APPENDIX B: DETAILS ON THE MAPPING BETWEEN
HN AND GN

The single-excitation manifold matrix elements of UN =
exp(−iτHN ) and KN = exp(−i θ

2 GN ) are

〈n|UN |m〉 = e−iφ

(
cos

(
θ

2

)
δn,m − i sin(

θ

2
)δn,N+1−m

)
,

〈n|KN |m〉 = cos

(
θ

2

)
δn,m − i sin

(
θ

2

)
δn,N+1−m, (B1)

with the special case of the middle qubit when N is odd,〈
N + 1

2

∣∣∣∣UN

∣∣∣∣N + 1

2

〉
= e−i(φ+θ/2),

〈
N + 1

2

∣∣∣∣KN

∣∣∣∣N + 1

2

〉
= 1. (B2)

These matrix elements can be aligned by the local unitary
rotation Uz = exp(iφHz), with

Hz =
{∑

n σ+
n σ−

n for N even,∑
n σ+

n σ−
n + θ

2φ
σ+

N+1
2

σ−
N+1

2

for N odd, (B3)

such that the equivalence KN = UNUz is shown to hold in the
single-excitation manifold. To show this equivalence in all ex-
citation manifolds, we use the Jordan-Wigner transformation
with fermionic annihilation operators an = −(⊗n−1

k=1Zk ) ⊗ σ−
n .

The Jordan-Wigner transformation of the Hamiltonians HN ,
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GN , and Hz is given by

HF
N =

N−1∑
n=1

(Jna†
nan+1 + H.c.) +

N∑
n=1

�na†
nan, (B4)

GF
N = a†

1 ⊗ I2 ⊗ I3 ⊗ · · · ⊗ IN−2 ⊗ IN−1 ⊗ aN

+ I1 ⊗ a†
2 ⊗ I3 ⊗ · · · ⊗ IN−2 ⊗ aN−1 ⊗ IN

+ · · · + H.c. (B5)

and

HF
z =

{∑
n a†

nan for N even,∑
n a†

nan + θ
2φ

a†
N+1

2

a N+1
2

for N odd. (B6)

Since these operators are all quadratic in the fermionic cre-
ation and annihilation operators, they describe noninteracting
fermions [39,47], and their dynamics are fully determined in
the single excitation manifold [53]. Therefore, KN = UNUz,
i.e., Eq. (7) of the main text, holds in all excitation manifolds.

APPENDIX C: DECOMPOSITION OF THE FST GATE
INTO TWO QUBIT GATES

The decomposition of the FST gate uses the two qubit gates

iSWAP(θ ) =

⎛
⎜⎝

1 0 0 0
0 cos(θ ) i sin(θ ) 0
0 i sin(θ ) cos(θ ) 0
0 0 0 1

⎞
⎟⎠,

FSWAP =

⎛
⎜⎝

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 −1

⎞
⎟⎠. (C1)

With the use of fermionic swap (FSWAP) gates played in
parallel, electronic Hamiltonians can be simulated in linear
depth and connectivity [57]. The decomposition presented
here relies on this concept but further takes the effective
ladder connectivity of FST into account to achieve a faster
decomposition.

For N even, the FST gate is decomposed similarly to
[55] by N/2 applications of the unitaries U e

1 U e
2 as defined

in Fig. 6(a). Since for N > 4 both U e
1 and U e

2 include full
FSWAP gates, the decomposition takes time Nπ/(2Jmax) in-
dependent of θ . Comparing with Appendix A, we see that
the direct implementation is at least a factor of

√
3 faster

than its decomposition. For θ = π , the gate takes half the
decomposition’s time. The total amount of gates required is
(N2/2 − N ) FSWAP gates and N/2 iSWAP gates. Since the
gate count grows quadratically in N , coherent errors are also
expected to grow with exp(N2).

For N odd, the gate can be decomposed in a single applica-
tion of U o

start followed by (N − 1)/2 applications of U o
1 U o

2 and
a final application of U o

final as defined in Fig. 6(b). For N > 3
the whole decomposition takes time (N + 1)π/(2Jmax). This
time is at least twice as long as the direct implementation
assuming the gate speed is limited by Jmax and not the avail-
able detuning range. The total amount of gates needed is
(N − 1)2/2 FSWAPs and (N − 1)/2 iSWAPs and also grows
quadratically with N .

FIG. 6. Building blocks of the decomposition of the FST gate
into two qubit gates. The chain is folded in half at the middle forming
a ladder. Yellow arrows symbolize FSWAP gates. Red dotted arrows
symbolize an iSWAP(−θ ) gate. (a) For N even, the FST gate is
decomposed by N/2 applications of U e

1 U e
2 . (b) For N odd, the FST

gate is decomposed by a single application of U o
start followed by

(N − 1)/2 applications of U o
1 U o

2 and a final application of U o
final.

While we do not prove the optimality of these decom-
positions, there has been considerable effort to find efficient
decompositions in the case of N even to enable Trotter sim-
ulation of a 2D-Fermi-Hubbard model [55]. To the authors’
knowledge, no faster decomposition has been found so far.

APPENDIX D: EFFECTIVE HAMILTONIAN
IN DRIVEN THREE-QUBIT CHAIN

The system Hamiltonian is given by

H =
∑

i∈1,2,3

(
ωib

†
i bi + αi

2
b†

i b†
i bibi

)

+
∑

i∈c1,c2

(
ωi(�i )b

†
i bi + αi

2
b†

i b†
i bibi

)
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−
∑
i∈1,2

gi,c1(b†
i − bi )(b

†
c1 − bc1)

−
∑
i∈2,3

gi,c2(b†
i − bi )(b

†
c2 − bc2)

− g12(b†
1 − b1)(b†

2 − b2)

− g23(b†
2 − b2)(b†

3 − b3), (D1)

with 1, 2, 3 (c1, c2) being the qubit (coupler) indices, bi (b†
i )

bosonic annihilation (creation) operators, ωi (ωci) the bare fre-
quencies of the qubits (couplers), αi (αci) the anharmonicities
of the qubits (couplers), gi,c j the coupling between qubit i
and coupler j, and |gi, j | � |gi,c j | the direct coupling between
two neighboring qubits. The frequency ωci of coupler ci is
modulated according to

ωci(�ci) = αci + (
ω0

ci − αci
)
ϕ(�ci), (D2)

where ω0
ci is the maximal coupler frequency,

ϕ(�ci) = 4

√
cos2

(
π�ci

�0

)
+ d2

ci sin2

(
π�ci

�0

)
, (D3)

�ci is the applied flux, �0 is the magnetic flux quantum,
and 0 � dci � 1 describes the asymmetry of the coupler. The
couplers asymmetries dci and their flux bias-points �DC

ci are
chosen such that the average frequencies of the couplers do
not shift substantially during the gate to still operate at the ZZ
zero point.

If the couplers are in the dispersive regime (| gi,c j

ωi−ωc j
| � 1),

they decouple from the dynamics, and the Hamiltonian can
be simplified similarly to [74] by Schrieffer-Wolff transfor-
mation. We neglect terms of the order | αi

ωi−ωc j
| ≈ 0.3 in the

Schrieffer-Wolff transformation since they only lead to shifted
anharmonicities and terms describing ZZ-shifts [75], which
do not contribute to the understanding of the effective interac-
tion derived in the following. Finally, we obtain

HSWT =
∑

i∈1,2,3

(
ω̃ib

†
i bi + αi

2
b†

i b†
i bibi

)

+ g̃1,2(b†
1b2 + H.c.) + g̃2,3(b†

2b3 + H.c.), (D4)

where

ω̃1 = ω1 − g2
1,c1

�1,c1
− g2

1,c1

�1,c1
,

ω̃2 = ω2 − g2
2,c1

�2,c1
− g2

2,c1

�2,c1
− g2

2,c2

�2,c2
− g2

2,c2

�2,c2
, (D5)

ω̃3 = ω3 − g2
3c2

�3,c2
− g2

3,c2

�3,c2
,

and

g̃i, j (�) = gi, j − gi,cig j,ci

2

∑
n∈i, j

(
1

�n,ci(�)
+ 1

�n,ci(�)

)
,

�n,ci(�) = ωci(�) − ωn,

�n,ci(�) = ωci(�) + ωn. (D6)

If we periodically drive the flux through the coupler i with
amplitude Adi and frequency ωdi, we can expand g̃i, j (�(t )) in
a Fourier series with coefficients ḡ(n)

i, j :

g̃i, j (Adi cos(ωdit )) =
∞∑

n=−∞
ḡ(n)

i, j exp(inωdit ). (D7)

Assuming ωd1 ≈ |ω̃1 − ω̃2| and ωd2 ≈ |ω̃2 − ω̃3|, we can
neglect higher sidebands and only consider ḡ(1)

i, j . Restricting
the Hamiltonian to two-level systems and going to a rotating
frame with a unitary transformation given by

U = exp(it [(ω̃2 + ωd1)σ+
1 σ−

1 + ω̃2σ
+
2 σ−

2

+ (ω̃2 + ωd2)σ+
3 σ−

3 ]), (D8)

we end up with the effective Hamiltonian

HRF = �d1σ
+
1 σ−

1 + �d2σ
+
3 σ−

3 + ḡ(1)
1,2(σ+

1 σ−
2 + H.c.)

+ ḡ(1)
2,3(σ+

2 σ−
3 + H.c.), (D9)

where

�d1 = (ω̃1 − ω̃2) − ωd1,

�d2 = (ω̃3 − ω̃2) − ωd2. (D10)

By choosing �d1 = �d2 = � by adjusting the drive fre-
quencies, setting ḡ(1)

1,2 = ḡ(1)
2,3 = J by adjusting the flux drive

amplitudes, and going into the frame rotating at frequency �,
we get the effective Hamiltonian

H3 = −�σ+
2 σ−

2 + J (σ+
1 σ−

2 + σ+
2 σ−

3 + H.c.), (D11)

which is exactly the Hamiltonian needed for FST. The unitary

K3 = exp ( − iθ (σ+
1 Z2σ

−
3 + H.c.)) (D12)

is realized by setting

� = 2J (π − θ )√(
π − θ

2

)
θ

, (D13)

evolving under H3 for

τ =
√(

π − θ
2

)
θ

J
, (D14)

and applying single-qubit Z-rotations. These parameters
where also found in [26], where the middle qubit is replaced
by a transmission line initially in the ground state and the other
two qubits by resonators. The single-qubit Z-rotations needed
are UZ1/3 = exp(i θ

2 σ+
1/3σ

−
1/3) and UZ2 = exp(iθσ+

2 σ−
2 ).
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