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The continuous adaptation of networks like our vasculature ensures optimal network performance when
challenged with changing loads. Here, we show that adaptation dynamics allow a network to memorize the
position of an applied load within its network morphology. We identify that the irreversible dynamics of
vanishing network links encode memory. Our analytical theory successfully predicts the role of all system
parameters during memory formation, including parameter values which prevent memory formation. We
thus provide analytical insight on the theory of memory formation in disordered systems.
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Network architecture determines network performance.
Strengthening and weakening links in a network over time
is key for maintaining optimal performance under changing
loads for stability in mechanical networks [1–3] as well as
transport efficiency in traffic [4,5] or vasculature [6–15].
Understanding the physical principles of how an adaptive
network’s past is governing its current state is eminent in a
world where even social and economic networks are
currently facing massive adaptation. For the prototype of
adaptive networks, living flow networks, data evidences
that changes in loads drive the permanent adaptation of
network architecture [16–20]. Do adaptive networks
memorize information about past loads while continuously
striving for their optimal state?
Memory in disordered, passive systems, like granular

media [21–23] or non-Brownian suspensions [24–26] as
well as in neural networks [27,28], is encoded in persistent
configurations of the microstructure of the system [29].
During a training period, irreversible dynamics lead to
specific microstates; the system memorizes the past direc-
tion or amplitude of the training load. Do the active
dynamics of the continuous optimization of adaptive net-
works allow for irreversibility to encode information about
the past?
Adaptive flow networks [9,30–33], as well as adaptive

mechanical [34–43] and resistor networks [44–47], can
evolve individual link conductance to minimize a desired
loss function like power loss [15,30,39,46–50]. This
optimization is constrained by a fixed building cost.
Particularly, the architecture and adaptation of living flow

networks, like plant and animal vasculature, have been
successfully described as optimal adaptive networks
[15,30,46,47]. For animal vasculature, the adaptation
dynamics of individual links [6,30] has even been sub-
stantiated experimentally [8,10]. These living adaptive
networks are facing omnipresent fluctuations in loads
[9,15,47,51–54], which might erase any memories encoded
in the microstructure of a network.
Here, we show that adaptive networks retain information

on the position of an applied load in their architecture.
Despite the presence of fluctuating loads, the applied load’s
position is retrieved upon reapplication. Specifically, we
find that links with vanishing conductivity are responsible
for the irreversibility of optimization dynamics allowing for
memory encoding. We analytically show that irreversibility
is a direct consequence of the adaptation dynamics,
providing deep insight into the physical role of all systems’
parameters on memory. Strikingly, our analytical calcula-
tions predict that the cost function can limit memory
formation, which we confirm in our simulation. Our
Letter thus not only discovers that adaptive networks are
able to store memories of previous loads but provides an
analytical tractable theory of memory formation in disor-
dered systems.
We follow the standard model for adaptive networks

most often used in the context of flow networks [15,30,46–
48,55,56]. The network consist of N nodes that are
connected by links, whose flow rates Qij are linearly
dependent on their conductances Cij for fixed potential
differences. At every time step t, the flow in the network is
driven by loads qiðtÞ applied at each node i, where only one
node has a negative load, q1ðtÞ ¼ −

P
i>1 qiðtÞ, i.e., it acts

as the outlet, while all other nodes have qiðtÞ ≥ 0 [15,47].
Conservation of flow at every node, known as Kirchhoff’s
law, uniquely determines individual flow rates QijðtÞ from
the entire network’s conductances CijðtÞ and the loads qiðtÞ
at every node.
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The adaptation rule first introduced by Murray [6]
minimizes power loss E ¼ P

hiji QijðtÞ2CijðtÞ−1 under
the constraint of fixed building cost

P
hiji CijðtÞγ ¼ Kγ .

Here,K quantifies the overall constraint, and the exponent γ
determines how link conductances contribute to the cost; see
the Supplemental Material [57]. For example, resistor net-
works or porous media typically exhibit γ ¼ 1, while flow
networks with Hagen-Poiseuille flow have γ ¼ 1

2
or γ ¼ 1

4

when the overall tube volume or the surface area is fixed,
respectively. Iterative adaptation of Cij with discrete time
steps δt locally solves the optimization problem [46,57]. To
account for fluctuating loads qiðtÞ, we additionally average
over a period T, implying the update rule [15,47]

Cijðtþ δtÞ ¼ KAðtÞ−1
γhQijðtÞ2i

1
γþ1

T ; ð1Þ

where AðtÞ ¼ P
hijihQijðtÞ2iγ=ðγþ1Þ

T is a normalization fac-
tor. Taken together, thismodel defines how the conductances
adapt for a given time series of loads qiðtÞ [57].
Memory is the storage of information in a noisy

environment [29], so that previously written information
can be retrieved at a later time. To probe for memory in
adaptive networks, we consider a disk-shaped geometry
with its primary outlet i ¼ 1 at the center; see Fig. 1(a). We
model the fluctuating environment by stochastically
switching on and off background loads with equal prob-
ability, which describes open-close switches ubiquitous in
biological flow networks [9,47]. The mean and the standard
deviation of the fluctuations are parametrized by the
average background load qð0Þ on every node. Note that
our results are robust and also hold when we consider a
different noise distribution or a continuous optimization
algorithm; see the Supplemental Material [57].
To test for memory formation, we follow the protocol

used in disordered systems [58,59], where awriting stimulus
is applied and the information about the stimulus is
subsequently retrieved by applying the full possible range
of stimuli. In our case, we apply an additional load qadd at the
boundary of the network at a particular angle θ1 over a
duration ttrain. This stimulus imprints a treelike structure on
the networkmorphology; see Fig. 1(a). However, the system
quickly returns to a seemingly isotropic morphology when
the additional load is removed; see Fig. 1(b). To test whether
this morphology still carries information about the writing
stimulus, we applied after a time period twait a probing
stimulus at various angles θ2 and measured the total power
loss E. Figure 1(c) shows that the power loss is minimal for
precisely the angle at which the writing stimulus was
applied, indicating that this configuration is more optimized
due to memory of the stimulus. In contrast, the power loss is
independent of the angle in an untrained network where the
writing stimulus was never applied. This demonstrates that
adaptive networks can retain memory despite lacking an
obvious visual imprint.

To unveil the mechanism of this memory, we quantify
the memory read-out signal S as the relative change in
power loss,

S ¼ 1 −
hEtrainedðθ2 ¼ θ1Þi
hEuntrainedðθ2 ¼ θ1Þi

: ð2Þ

Strikingly, we find that data for different ttrain and twait
collapse onto a straight line of the form

S ≈Mð1 − e−ttrain=τmemÞ þ Ce−twait=τcor ; ð3Þ
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FIG. 1. Networks with γ ¼ 1
2
undergo memory formation and

retrieval. (a) Network evolved under writing stimulus which is
additional load qadd, equally distributed over outer nodes around
θ1 (blue filled), for training time ttrain. Outlet node depicted in red.
(b) Network adapted without stimulus over waiting time twait.
Memory is subsequently probed by applying probing stimulus at
angle θ2 (empty blue). (c) Power loss E over 200 independent
simulations versus θ2 − θ1 for varying θ2 for trained dataset (red)
and for untrained data set (blue). (d) Memory read-out signal S
collapses when plotted using Eq. (3) for all ttrain shown by the
colorbar. (τmem ¼ 29δt, τcor ¼ 7.5δt). qð0Þ ¼ 1, qadd ¼ 2000qð0Þ,
N ¼ 1945, and T ¼ 30δt.
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see Fig. 1(d). This functional form was motivated by an
individual analysis of the dependencies [57]. The structure
of the two terms suggests that the signal consists of
persistent memory, Mð1 − e−ttrain=τmemÞ, as well as correla-
tions that decay over time, Ce−twait=τcor . Note that the
correlations start at the maximal value C and decay with
a time scale τcor during the waiting period; see the
Supplemental Material [57]. Conversely, memory builds
up during the training period with a timescale τmem,
saturates at the value M, and is retained indefinitely.
To understand how adaptive networks can encode

memory, we next quantify how the links’ conductances
Cij evolve in time. Figure 2(a) shows that after the initial
training period low conductance links tend to shrink, while
high conductance links tend to stay the same. In fact, we
observe that the weakest links eventually reach the minimal
conductance value allowed in the simulation [see Figs. 2(b)
and 2(c); details in the Supplemental Material [57] ] and
can never grow back under the adaptation dynamics given
by Eq. (1), despite the background load fluctuations. We
show in the Appendix that azimuthally oriented links decay
fastest in the vicinity of the stimulus. Consequently, the
orientations of irreversibly shrinking links retain memory
of the spatial stimulus, comparable to memory formation in
disordered systems [29].
Figure 2(a) suggests a simple functional form for the

dynamics of the network: conductances C above a

threshold value Cth fluctuate minimally to maintain fixed
building costs [57], while those below shrink with a power
law behavior:

Cðtþ δtÞ
CðtÞ ≈

8<
:

h
CðtÞ
Cth

i
β

CðtÞ < Cth

1 CðtÞ ≥ Cth:
ð4Þ

Fitting the data shown in Fig. 2(a), we find
hCðtþ δtÞ=CðtÞi ¼ 1� 0.03 for large conductances and
β ¼ 0.31� 0.07 for small conductances in the case without
stimulus (colored dots). Remarkably, we find a very similar
exponent (β ¼ 0.31� 0.07) when a stimulus is present
(gray dots), although the threshold value Cth is clearly
lower. This suggests that the exponent β is constant and
characterizes the adaptation dynamics of the network,
while Cth depends on the stimulus strength. These obser-
vations point to the dynamics of small conductance links as
key for memory formation in adaptive networks. The
irreversible dynamics break ergodicity [57], implying that
not all configurations can be explored in the long time limit
and memory persists.
To show that the links’ dynamics observed in the

numerical simulations are universal, we next consider
the dynamics of the simplest adaptive networks analyti-
cally. For simplicity, we focus here on constraints with
γ ¼ 1

2
, but the general case is discussed in the Supplemental

Material [57]. We start by considering the simplest network
consisting of three nodes in a triangular arrangement; see
Fig. 3(a). For given loads q2 and q3, the optimal network
has a V-shaped morphology [46] with a negligible con-
ductance between nodes 2 and 3. We then perturb the
system around the optimal state by altering the load at
node 2 to q2 þ δq and examine the adaptation of all
conductances under the dynamics given by Eq. (1). We
derive that the high conductance links barely change [57],

(a)

(b) (c)

FIG. 2. (a) Ratio of conductance of two subsequent iterations
versus preceding conductance during adaptation for 3ttrain iter-
ations after training phase of duration ttrain ended. Above thresh-
old conductance Cth (vertical red dashed line) conductances
fluctuate around ½Cðtþ δtÞ=CðtÞ� ¼ 1 (horizontal red dashed
line). Low conductance links follow a power law with exponent
1=3 (red line). Only threshold conductance Cth is stimulus
strength specific; compare gray (qadd ¼ 40000qð0Þ) and color
(qadd ¼ 0). (b) A network adapted for ttrain, iterating for longer,
4ttrain, links with conductance smaller than threshold Cth dis-
appear (c). γ ¼ 1=2, qð0Þ ¼ 1, N ¼ 526, and T ¼ 30δt.

(a)

(b)

FIG. 3. Optimized networks for analytical calculations. (a) Sim-
plest network, with one link (dotted line) of vanishingly small
conductance. Nodes 2 and 3 bear positive load balanced by outlet
node 1 (red dot). (b) General asymmetric network, where all
nodes of the upper layers are connected to node 3. qð0Þ mean
fluctuating load on all the nodes, blue dots denote stimulus of
additional load qadd distributed among those nodes.
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C12ðtþ δtÞ
C12ðtÞ

¼ C13ðtþ δtÞ
C13ðtÞ

¼ 1þO
�
δq
q2

�
: ð5Þ

Conversely, the small conductance changes as

C23ðtþ δtÞ
C23ðtÞ

¼
�
C23ðtÞ
Cth

�1
3

; ð6Þ

where the threshold Cth is proportional to the constraint K
and otherwise only depends on the loads [57]. This
analytical result qualitatively agrees with the numerical
results presented in Fig. 2(a). In particular, we predict an
exponent of 1

3
for the evolution of small conductances.

To show that the analytical result is universal and to
study the parameter dependence of the threshold value Cth,
we next extend the analytical treatment to larger networks;
see the Supplemental Material [57]. Here, we build more
complex trees by adding additional layers. Since the
dynamics of C23 are governed by the load difference
between node 2 and node 3, we first focus on fully
asymmetric trees, where the load difference is maximized
by funneling all additional loads through node 3; see
Fig. 3(b). For simplicity, we consider a scenario described
by an additional load qadd applied at the last layer, while the
fluctuations are represented by their average value qð0Þ at
each node and load perturbation at node 2 of δq. This
implies q2ðtÞ ¼ qð0Þ þ δq and q3ðtÞ ¼ ðN − 2Þqð0Þ þ qadd.
Focusing on the adaptation dynamics of the small con-
ductance C23, we again find the power law with exponent 1

3
,

and the associated threshold value reads as

Cth ≈
K

ð1þ δq
qð0ÞÞ4ðN þ qadd

qð0Þ Þ
4
3

; ð7Þ

assuming q2 ≪ q3; see the Supplemental Material [57].
This expression demonstrates how the additional load qadd

and load perturbation δq compete with the average of the
background load fluctuations quantified by qð0Þ: Larger
perturbations, a stronger stimulus, and a larger system size
N result in a smaller threshold, slowing down the decay of
weak links. Conversely, a larger average background load
increases the threshold, allowing for a fast decay of weak
links. We find very similar results for fully symmetric trees,
suggesting that all treelike networks exhibit this behavior;
see the Supplemental Material [57].
Despite the simplicity of the considered networks, our

analytical results agree with the numerical data shown in
Fig. 2(a). In particular, they confirm that high conductance
links are invariant, while links with a conductance below
the threshold Cth shrink with a 1

3
-power law. Moreover,

Eq. (7) predicts how the model parameters affect the
dynamics of links leading to memory formation in adaptive
networks. The analytical result suggests that links of weak
conductance have universal ensemble dynamics governed

only by the threshold Cth given by Eq. (7). To test this
prediction, we quantified Cth by fitting the dynamics of the
conductances as a function of N for various qð0Þ and qadd.
Figure 4 confirms that the scaling predicted by Eq. (7)
agrees with numerical simulations despite the simulation’s
more complex network morphology; see also the
Supplemental Material [57]. We further confirm that Cth
is independent of background load fluctuation in the
absence of a stimulus qadd (see the Supplemental
Material [57]), and the memory effect is independent of
load fluctuation when qadd=qð0Þ is kept constant [57], as
predicted by Eq. (7).
We have shown that adaptive networks, which minimize

power loss under the constraint of constant building cost,
exhibit memory. However, so far we have focused on the
particular constraint parameter γ ¼ 1

2
, which is known to

result in treelike optimal morphologies [30,46,48,55], or
hierarchical morphologies with loops [15,47,60] ignoring
that other constraints are also possible and often lead to
quite different optimal solutions [15,30,46,47,50,60]. How
does memory formation change if we consider a general
constraint parameter γ? Our detailed calculations (see the
Supplemental Material [57]) reveal that the dynamics of
high conductance links are independent of γ. Conversely,
weak links follow the γ-dependent power law

Cðtþ δtÞ
CðtÞ ∝ CðtÞ1−γ1þγ; ð8Þ

which reveals that weak links shrink faster for smaller γ.
This equation indicates that memory exists for γ < 1 and
the precise value of γ hardly affects the dynamics.
Conversely, Eq. (8) predicts that weak links grow for
γ > 1. Consequently, links never disappear, loops form
[60], and memory formation should be impossible in this
case. In fact, we expect that these systems are ergodic (see
the Supplemental Material [57]), so that transient changes
are erased in the long term.
To test memory formation in these systems, we performed

numerical simulations with γ ¼ 1. Figure 5 reveals that the

N=120
N=480
N=1090
N=1945

FIG. 4. Numerically determined threshold conductance Cth of
disk-shaped networks (inset) follows analytical prediction on
model parameters; compare Eq. (7). γ ¼ 1=2,T ¼ 30δt.
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dynamics of the links hardly dependon their conductancesC,
implying that weak links typically do not vanish. These
qualitatively different dynamics result in loopy networks, in
contrast to the treelike networks that are observed for γ ¼ 1

2

[47]. Numerical simulations also show that the networks do
not retain anymemoryof the direction of the stimulus; see the
inset of Fig. 5 and the Supplemental Material [57]. Taken
together, the analytical results and the numerical simulations
indicate that memory formation relies on vanishing weak
links and is only possible for γ < 1.
We have shown that adaptive networks can retain

memory of a stimulus despite background load fluctua-
tions. Applied loads lead to irreversible change in the
networks’microstructure by eroding weak links that cannot
be revived. Our analytical calculations and numerical
simulations consistently describe a power law for the decay
rate of low conductances, functionally determined by the
networks’ building cost. The irreversibility of the dynamics
arises from the trade-off between building cost constraint
and minimizing power loss. A high local load increases
conductances locally for efficient flow while also eroding
weak, unimportant links due to the constraint of a fixed
building cost, thereby imprinting memory. Yet, if the cost to
build high conductance links is too high (γ ≥ 1) networks
adapt to low hierarchy, loopy architecture, which erases
memories of loads over time. Future work needs to show
whether memory is also erased in adaptive networks on
growing tissue, which achieve the global optimum [61], or
in adaptive networks with the special ability to create new
links [62].
Unraveling how adaptive networks can encode memories

changes our physical understanding of these active sys-
tems. In particular, it provides a conceptional change in
how we may look at and control adaptive networks when
designing smart mechanical materials or treating the
plethora of malfunctions of our very own vasculature.

This work was supported by the Max Planck Society.
This project has received funding from the European

Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation program (Grant
Agreement No. 947630, FlowMem).

Appendix: Spatial signature of memory.—To unveil
the spatial signature of memory, we analyze the location
of the shrinking weak links, which contain the memory,
in detail. Our analytical calculations [57] indicate that
links with a direct path from inlets to the outlet shrink
more easily if they are far away from the stimulus.
Conversely, links perpendicular to such direct paths
decay quickly if they are close to the stimulus. We thus
expect that azimuthally oriented links decay quickly
close to the stimulus in our disk-shaped networks. To
quantify this, we measure the fraction of minimal
conductance links with radial positions between R − Δr
and R, where R is the radius of the network and Δr the
width of the annulus. With stimulus, the network has a
significantly higher fraction of such minimal links where
the stimulus was applied; see Fig. 7(d). To get further
details, we also measure the orientation of minimal link
ij (see Fig. 6) as the angle ϕij ∈ ½0; ðπ=2Þ� between its

orientation vector X̂0
ij and its location vector X⃗l

ij,

ϕij ¼ sin−1
�kX⃗l

ij × X⃗o
ijk

kX⃗l
ijkkX⃗o

ijk

�
: ðA1Þ

Consequently, ϕij ¼ 0 corresponds to radially oriented
links, while ϕij ¼ ðπ=2Þ indicates azimuthally oriented
links.
We quantify the angle averaged over small regions of

space in networks evolved without [Fig. 7(e)] and with a

FIG. 6. Measure of vanishing link orientation for spatial
signature of memory. Example network, highlighting vanishing
links in light blue. Other links’ width is scaled by their
conductance value, and the outlet node is depicted in red. On
network enlargement, a link orientation angle ϕij (dark blue
dotted curve) is indicated as the angle between the orientation

vector X⃗0
ij of link ij and the location vector of the center of the

considered link ij with respect to the outlet in the network (X⃗l
ij).

10-15 10-10 10-5 10010-4

10-2

100
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FIG. 5. Memory formation is absent when the cost function
scales with γ ¼ 1. In this case, all links are stable and the power
loss E in trained and untrained network is identical (inset). Same
protocol as in Fig. 1(c).
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stimulus [Fig. 7(f)]. While both plots reveal the sixfold
symmetry of the underlying irregular network, there are
also significant differences: The average orientation hϕi is
slightly higher in the wedge defined by the stimulus,
indicating that azimuthally oriented links are more likely
to decay. Conversely, hϕi is slightly reduced at the
boundary of this region, in agreement with our analytical
calculations [57]. Taken together, our analysis shows that
the decay of azimuthally oriented links in the vicinity of the
stimulus memorizes its location.
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