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I. INTRODUCTION

The goal of this paper is to present the result for the
same-hemisphere three-gluon-emission contribution to
the zero-jettiness soft function at next-to-next-to-next-to-
leading order (N3LO) in perturbative QCD. Soft functions
are required ingredients for a fully-differential perturbative
description of collider processes in the context of so-called
slicing schemes [1,2]. The zero-jettiness soft function is
defined using the jettiness variable [3,4],

τ ¼
Xm
j¼1

min
q∈fn;n̄g

�
2qkj
nn̄

�
; ð1Þ

where kj are four-momenta of final-state partons, and n and
n̄ are two lightlike four-vectors pointing in the direction of
incoming partons. Currently, the zero-jettiness soft function
is known up to next-to-next-to-leading order (NNLO) in
QCD [5,6], and its extension to one higher order is a
nontrivial problem.
Indeed, computation of the zero-jettiness soft function

needs to overcome several technical challenges that were
discussed in Ref. [7]. These challenges stem from the fact
that the observable that defines the soft function—the
so-called jettiness—involves Heaviside functions. These
Heaviside functions are needed to distinguish between
emissions of soft gluons into two hemispheres, defined
relative to directions of incoming hard radiators.

The presence of Heaviside functions complicates the
application of generalized unitarity [8] and integration-by-
parts (IBP) identities [9] to phase-space integrals. We have
discussed in Ref. [7] how to overcome this problem and
explained how to derive useful integration-by-parts rela-
tions for integrals with Heaviside functions. To show the
efficacy of this method, we employed an eikonal function
derived in Ref. [10], which describes emissions of three soft
gluons and integrated it over soft-gluon phase space subject
to zero-jettiness constraints. We restricted ourselves to
contributions where all gluons are emitted into the same
hemisphere.
Unfortunately, in Ref. [7], we have not completed the

computation of this “same-hemisphere” contribution.
Indeed, the representation of the eikonal function derived
in Ref. [10] involves four terms, and in Ref. [7] we have
fully integrated three of them. The fourth contribution can
be written in the following way:

Sd ¼
Z

dΦnnn
θθθω

ð3Þ;d
nn̄ ðk1; k2; k3Þ; ð2Þ

where k1;2;3 are four-momenta of final-state gluons, Φnnn
θθθ

is the phase space subject to zero-jettiness conditions,

cf. Eq. (4), and ωð3Þ;d
nn̄ ðk1; k2; k3Þ is the eikonal function

defined in Eq. (5.49) in Ref. [7]. We note that the integral
in Eq. (2) is the most complicated one, as it contains a
propagator that depends on the relative orientation of four-
momenta of all three soft gluons.
Although we described a possible way to calculate this

contribution in Ref. [7], we did not complete its compu-
tation there. The goal of this paper is to compute the
missing piece and to present the result for the same-
hemisphere three-gluon-emission contribution to the
zero-jettiness soft function.
The rest of the paper is organized as follows. In Sec. II

we explain the general strategy that we used to integrate the
function ω3;ðdÞ

nn̄ . In Sec. III we describe the computation of
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the boundary condition for one of the master integrals that
provides a contribution that has unusual sensitivity to an
analytic regulator. In Sec. IV we discuss checks that we
performed to ensure the correctness of the computation. In
Sec. V we present the result for the same-hemisphere three-
gluon-emission contribution to the zero-jettiness soft func-
tion and conclude in Sec. VI. Abelian contributions to our
result are derived in the Appendix.

II. INTEGRATING ω3;ðdÞ
nn̄

The missing part of the same-hemisphere contribution to
the zero-jettiness soft function, displayed in Eq. (2),

requires integration of the function ω3;ðdÞ
nn̄ , which contains

terms with a propagator 1=k2123, where k123 ¼ k1 þ k2 þ k3.
To integrate the function ω3;ðdÞ

nn̄ , we consider a class of
integrals,

Iθθθ ¼
Z

dΦnnn
θθθ

ðk1nÞνðk2nÞνðk3nÞν
k2123ðk1k2Þðk1k3Þ � � �

; ð3Þ

where n and n̄ are two lightlike four-vectors pointing in the
direction of incoming partons, ellipses stand for eikonal
propagators,1 and dΦnnn

θθθ is the normalized phase-space
measure. It is defined as follows [7]:

dΦnnn
f1f2f3

¼ N−3
ϵ

�Y3
i¼1

½dki�fiðkiÞ
�
δ

�
1 −

X3
i¼1

kin

�
; ð4Þ

where the normalization factor is

Nϵ ¼
Ωðd−2Þ

4ð2πÞd−1 ¼
ð4πÞϵ

16π2Γð1 − ϵÞ ; ð5Þ

the function fi is either θðkin̄ − kinÞ or δðkin̄ − kinÞ, and

½dki� ¼
ddk
ð2πÞd 2πδðk

2
i Þθðk0i Þ: ð6Þ

We note that we set the jettiness variable τ to one since the
final result is a uniform function of τ. We also note that
in the spirit of integration by parts, all propagators that
appear in the integrand in Eq. (3) can be raised to arbitrary
integer powers.
Finally, as can be seen from Eq. (3), we introduced scalar

products of the gluon four-momenta k1;2;3 with the light-
cone vector n raised to power ν into the integrand of Iθθθ.
As we explained in Ref. [7], they are required because some
integrals, that appear in the course of the IBP reduction,
contain divergences that are not regulated dimensionally;

the analytic regulator ν is introduced to regulate them. To
simplify the notation, we define the regulated phase-space
measure to be

dΦν
f1f2f3

¼ dΦnnn
f1f2f3

ðk1nÞνðk2nÞνðk3nÞν: ð7Þ

Unfortunately, even after integrals defined in Eq. (3) are
reduced to master integrals, the master integrals with 1=k2123
propagators appear to be too complicated for direct analytic
integration. For this reason, as explained in Ref. [7], we
derive differential equations satisfied by these integrals and
solve them numerically. To do that, we introduce a mass
parameter into the propagator that contains the momenta
of all three gluons [11],2

1

k2123
→

1

k2123 þm2
: ð8Þ

The appearance of the mass parameter m allows us to
differentiate with respect to it and use integration by parts to
derive differential equations for relevant integrals. We then
fix boundary conditions at m → ∞, solve differential
equations numerically and determine relevant integrals at
m ¼ 0. This can be done by matching the numerical
solution with the formal solution at m ¼ 0 and then taking
the m → 0 limit in an appropriate manner. Since, as we
explained in Ref. [7], the differential equations can be
solved to an arbitrary precision as a matter of principle, and
to more than 2000 digits in practice, we have used the high-
precision numerical results for master integrals to find the
analytic form of the solution by fitting them to a basis of
transcendental constants and rational numbers.
To reiterate, once it is understood how to use generalized

unitarity to write down integration-by-parts identities for
integrals with θ functions, it becomes a fairly standard
problem to derive differential equations for relevant inte-
grals. However, great care is needed when choosing the
basis of master integrals because of the analytic regulator ν;
in essence, we need to find a basis that admits a simple
ν → 0 limit. Ideally, this should happen for master integrals
that appear in the soft function Sd, as well as in
m-dependent differential equations that we need to solve.
To find a suitable basis, we use the following consid-

eration. In spite of the fact that the reduction to master
integrals performed after setting ν ¼ 0 in Eq. (3) is
incorrect, it gives us a good idea about integrals that are
independent of each other in the ν → 0 limit. Hence, to find
a suitable basis for master integrals, we start by performing
a reduction of integrals shown in Eq. (3) at ν ¼ 0. We then
insist that the master integrals found in the course of such a
reduction should be also chosen as master integrals for
the reduction of integrals with ν ≠ 0, to the extent possible.

1These are all possible scalar products q · v, where q is a linear
combination of four-vectors of soft gluons, and v is one of the two
light-cone vectors n or n̄.

2Similar ideas that use auxiliary mass scales have been
presented, for example, in Refs. [12–14].
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We do this for integrals with and without auxiliary mass
parameter m. With this choice of master integrals, we find

that the integral of the soft function ω3;ðdÞ
nn̄ written in terms

of master integrals, as well as the differential equations that
these integrals obey, admit a simple ν → 0 limit.
For example, the result of the reduction of Sd to master

integrals can be written in the following way:

Sd ¼
X
α

cαðνÞIνα þ ν
X
α

c̃αðνÞĪνα; ð9Þ

where the coefficients cα and c̃α are regular in the ν → 0
limit. The list of integrals fIναg coincides with the list of
master integrals for Sd that one obtains performing a
reduction at ν ¼ 0. New integrals that appear in the
reduction, which we denote as Īνα in the above equation,
are multiplied with the parameter ν and, therefore, dis-
appear if the naive ν → 0 limit is taken.
However, the naive ν → 0 limit in Eq. (9) cannot be

taken because some of Īνα integrals are 1=ν divergent and,
therefore, need to be retained. Examples of such integrals
without the 1=k2123 propagator can be found in Ref. [7].
Unfortunately, many integrals among Iνα and Īνα contain

the 1=k2123 propagator; to study these integrals, we use
Eq. (8) and turn them into integrals with the mass parameter
m. We construct a system of differential equations with
respect to the mass parameterm by including every integral
with the 1=k2123 propagator that appears in Eq. (9) and other
integrals that are needed to close it. Such a system takes the
following form:

∂

∂m2
Jν ¼ M1ðνÞJν þ νN1ðνÞJ̄ν;

∂

∂m2
J̄ν ¼ M2ðνÞJ̄ν þ N2ðνÞJν: ð10Þ

In Eq. (11) matrices M1;2 and N1;2 are regular in the ν → 0

limit, Jν integrals are the master integrals that need to
be considered for computing fIναg integrals, and J̄ν are
integrals that are needed for computing fĪανg integrals.
From the structure of differential equations in Eq. (11), it

is clear that taking the limit ν → 0 at the early stages of the
computation is beneficial since this makes the system of
differential equations significantly simpler. However, this is
only possible if we know which master integrals are
singular in the ν → 0 limit and which master integrals
are not. Unfortunately, it is not trivial to answer this
question, and we use several approaches to clarify it.
First, from the computation of integrals of the eikonal

functions ωa;b;c reported in Ref. [7], we know 1=ν-
divergent integrals that appear in cases when the propagator
1=k2123 is absent. Upon inspection, we find that the only
m-independent 1=ν-divergent integral that appears in the
amplitude Sd and in the differential equations reads,

Īν1 ¼ J̄ν1 ¼
Z

dΦν
θδθ

ðk1 · k3Þðk1 · nÞðk12 · n̄Þðk3 · n̄Þ
: ð11Þ

This integral was computed in Ref. [7], and for this reason
we do not discuss it here.
Second, to determine which of the integrals with the

propagator 1=k2123 are singular in the ν → 0 limit, we can
study these integrals at finite values of m and then employ
differential equations to determine the 1=ν behavior of the
corresponding Īνα integrals. To this end, we employed
Mellin-Barnes representation of the relevant integrals
and used public programs MB [15] and MBresolve [16] to
numerically compute all m-dependent integrals that appear
in the differential equations at finite values of m. We also
used the program pySecDec [17,18] for cross-checks of the
numerical computation. Upon doing that, we discovered
yet another integral that is singular in the ν → 0 limit.
It reads,3

J̄ν2 ¼
Z

dΦν
θδθ

ðk2123 þm2Þðk1 · k3Þðk1 · nÞðk12 · n̄Þ
: ð12Þ

This integral is quite peculiar, and we explain in the next
section why this is the case and how to compute it.
To proceed further, we rescale J̄ν integrals that appear in

Eq. (11) by a factor ν. Since, as we just explained, only two
integrals J̄ν1 and J̄ν2 diverge in the ν → 0 limit, we need to
keep them in Oðν0Þ part of the differential equations.
Therefore, we combine Jν integrals together with νJ̄ν1 and
νJ̄ν2 integrals into a vectorJ

ν and use remaining J̄ν integrals,
rescaled by a parameter ν, to define a new vector J̄ ν,

J ν ¼ ðJν; νJ̄ν1; νJ̄ν2Þ;
J̄ ν ¼ ðνJ̄ν3; � � �Þ: ð13Þ

We then obtain a new system of differential equations,

∂

∂m2
J ν ¼ M1ðνÞJ ν þN 1ðνÞJ̄ ν;

∂

∂m2
J̄ ν ¼ M2ðνÞJ̄ ν þ νN 2ðνÞJ ν: ð14Þ

It is straightforward to solve the above equation expanding in
ν → 0 because all the matrices that appear there have smooth
ν → 0 limits and because the integral vectors satisfy
J ν ∼Oðν0Þ, J̄ ν ∼OðνÞ.
Working to order Oðν0Þ, we can drop J̄ ν integrals and

set ν to zero in Eq. (14). This leads to a significant reduction
in the number of integrals that appear in Eq. (14) and allows

3To obtain the integral representation for the integral Īν2, we
only need to replace the propagator 1=ðk2123 þm2Þ with 1=k2123 in
Eq. (12).

SAME-HEMISPHERE THREE-GLUON-EMISSION CONTRIBUTION … PHYS. REV. D 106, 014004 (2022)

014004-3



for solving the system of differential equations in a more
efficient way.
As follows from the differential equation satisfied by νJ̄ν1

and νJ̄ν2, these integrals are independent of m through
Oðν0Þ. In addition, they also have to obey the following
relation:

lim
ν→0

νJ̄ν1 ¼
1þ 6ϵ

1þ 4ϵ
lim
ν→0

νJ̄ν2; ð15Þ

to cancel the 1=ν singularity which is naively present in the
rescaled differential equation. We will show in the follow-
ing section that this condition is indeed satisfied.
We note that the above discussion applies to differential

equations at finite values of m whereas, eventually, we are
interested in the solutions at m ¼ 0. This limit is, poten-
tially, nontrivial. Indeed, to find required values of integrals
at m ¼ 0, we need to compute master integrals using the
following sequence of limits: m → 0, ν → 0, ϵ → 0.
However, as explained above, we would like to simplify

differential equations by taking the ν → 0 limit first, and
there are two problems that may arise if the order of limits
is changed. First, since the mass parameterm can also serve
as a regulator of collinear and soft singularities, m → 0 and
ν → 0 limits should not necessarily commute. Second,
additional contributions can mix into the Taylor m0 branch
of the solution that we require, if the ν → 0 limit is taken
before the m → 0 limit. We will discuss these two prob-
lems now.
Suppose we take the ν → 0 limit for finite m integrals,

but the resulting integrals are still not regulated dimen-
sionally at m ¼ 0. This feature can be detected in the
following way. The dependence of the integral on m and ϵ
at small m has the following form:

J ∼
X

n1;n2;n3

cn1n2n3m
n1þn2ϵ lnn3ðmÞ: ð16Þ

We are interested in taking the m → 0 limit of this solution
at fixed ϵ. However, this is only possible if the coefficients
cn10n3 with n1 < 0 and n1 ¼ 0, n3 > 0 vanish so that there
are no 1=m and logm terms that are not multiplied by
additional powers of mϵ or sufficiently high powers of m.
We have checked that this condition is satisfied for all
ν ¼ 0 integrals that we considered; this implies that the
m → 0 limit does not lead to divergencies in integrals that
are not regulated dimensionally. It follows that indeed Īν1;2
are the only integrals in Īνα that contribute to the amplitude,
all other integrals can be safely discarded.
The second problem concerns the possible mixing

between different branches of integrals if the ν → 0 limit
is taken too early. To see how this comes about, consider a
general solution in the limit m → 0, ν → 0, ϵ → 0,

J ∼
X

n1;n2;n3;n4

cn1n2n3n4m
n1þn2ϵþn4νlnn3ðmÞ: ð17Þ

If there are terms that correspond to n1 ¼ 0, n2 ¼ 0,
n3 ¼ 0, n4 ≠ 0, they will mix with the contribution
n1 ¼ 0, n2 ¼ 0, n3 ¼ 0, n4 ¼ 0, i.e., the m0 branch that
we are interested in.
Hence, we need to understand if such contributions exist

and, if they are there, then how to isolate and remove them.
This can be done by studying the exact differential
equation, Eq. (17), at small values of m but with full ν
and ϵ dependence, and checking if mn4ν solutions without
additional dependencies of exponents on ϵ and additional
powers ofm are possible. We find that this does not happen
at m ¼ 0 and, therefore, the Taylor branch does not receive
any unwanted contributions.
In summary, we can solve the differential equations,

Eq. (17), as an expansion in ν. As discussed in Ref. [7], we
can compute the boundary conditions at m ¼ ∞ and then
find values of integrals J at m ¼ 0 by discarding all terms
that have nonanalytic dependencies on m at m ¼ 0. We
present the results of such a computation in Sec. V; in the
next section we describe computation of a peculiar boun-
dary condition which illustrates that our worry about
potential mixing of a Taylor and mn4ν branches is not
unfounded.

III. INTEGRAL J̄ν2 WITH 1=ν DIVERGENCE

We can illustrate some points discussed in the previous
section by considering the integral J̄ν2 and its contribution to
differential equations. As mentioned there, this integral is
singular in the limit ν → 0. Multiplied by a factor ν, it
appears in the differential equations for two sets of
ν-regular integrals. We will consider one of them for the
sake of example. The integrals in this sector read,

Jνa1 ¼
Z

dΦν
θδθ

ðk2123 þm2Þðk1 · k3Þðk23 · n̄Þ
;

Jνa2 ¼
Z

dΦν
θδθ

ðk2123 þm2Þðk1 · k3Þðk23 · n̄Þ2
: ð18Þ

The differential equations take the following form to order
Oðν0Þ:

∂

∂m2

�
Jνa1
Jνa2

�
¼
 

− 2ϵ
m2− 2ð1þ2ϵÞ

4m2þ1
1

4m2þ1

2ϵð1þ2ϵÞ
m2 − 8ϵð1þ2ϵÞ

4m2þ1
1þ4ϵ
m2 − 28ϵ

4m2þ1

!�
Jνa1
Jνa2

�

−

0BB@
ð1þ4ϵÞ
ð1þ6ϵÞ

�
1
m2− 4

4m2þ1

�
ð1þ4ϵÞ
ð1þ6ϵÞ

�
4ϵ
m2− 16ϵ

4m2þ1

�
1CCAνJ̄ν2

þcontributions from otherJν integrals: ð19Þ
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It follows from the above equation that the integral νJ̄ν2
plays a role of an inhomogeneous contribution to the
differential equation that Jνa1 and Jνa2 satisfy. In fact,
analyzing the homogeneous terms of the above equation
in them → ∞ limit, we find that we do not need to compute
the boundary conditions for these integrals and that the
solution of the differential equation in this limit is obtained
by integrating the inhomogeneous part. We remind the
reader that νJ̄ν2 is independent of m to order Oðν0Þ, which
allows us to write the result of the integration directly,

Jνa1 ¼ m−2
�

4ϵþ 1

4ð6ϵþ 1Þ νJ̄
ν
2

�
þ…; ð20Þ

Jνa2 ¼ m−2
�
ϵð4ϵþ 1Þ
6ϵþ 1

νJ̄ν2

�
þ…: ð21Þ

In Eqs. (20) and (21) dots stand for other contributions,
including homogeneous and inhomogeneous ones.

To calculate limν→0 νJ̄ν2 at m ¼ ∞, we inspect the
various contributions to the asymptotic behavior of the
integral J̄ν2, discussed in Ref. [7], and find that they do not
produce terms that are 1=ν divergent. It turns out that the
integral J̄ν2 provides an example of a situation where the
analysis of different regions that contribute to m → ∞
asymptotic behavior of integrals, performed in Ref. [7], is
incomplete and that there is another region that needs to be
considered. In fact, we have found that the following
scaling of integration variables,

k3 · n̄ ¼ α3 ∼m2 ≫ 1;

k1 · n̄ ¼ α1 ∼ 1;

k1 · n ¼ β1 ∼m−2 ≪ 1; ð22Þ

leads to a 1=ν-divergent Oð1=m0Þ contribution to J̄ν2.
To show this, we write an approximation to the integrand

of J̄ν2 integral in the region defined by Eq. (22),

J̄ν2 ∼ eJν2 ¼ Z dΦν
θδθ

ððk3 · nÞðk2 · nÞ þm2Þðk1 · k3Þðk1 · nÞðk12 · n̄Þ
: ð23Þ

We use the Sudakov variables αi and βi (see Ref. [7] for details) and take into account the condition β1 ≪ 1 to remove β1
from the “jettiness” delta-function δð1 − β1 − β2 − β3Þ → δð1 − β2 − β3Þ. We then extend the integration over β1 to infinity.
We find

eJν2 ¼ 2

Z
∞

0

dβ1

Z
dβ2dβ3dα1dα3β

−ϵþν
1 β−2ϵþν

2 β−ϵþν
3 α−ϵ1 α−ϵ3

δð1 − β23Þθðα1 − β1Þθðα3 − β3Þ
ðα3β2 þm2Þβ1ðα1 þ β2Þ

×

�
θðβ1=α1 − β3=α3Þ

β1α3
2F1

�
1; 1þ ϵ; 1 − ϵ;

α1β3
α3β1

�
þ θðβ3=α3 − β1=α1Þ

β3α1
2F1

�
1; 1þ ϵ; 1 − ϵ;

α3β1
α1β3

��
: ð24Þ

We change integration variables α1 ¼ β1=ξ1 and α3 ¼ β3=ξ3 and obtain

eJν2 ¼ 2

Z
dβ2dβ3dξ1dξ3β

−2ϵþν
2 β−2ϵþν

3 ξϵ−11 ξϵ−13

δð1 − β23Þθð1 − ξ1Þθð1 − ξ3Þ
β3β2 þm2ξ3

×

�
ξ3θðξ1 − ξ3Þ2F1

�
f1; 1þ ϵg; f1 − ϵg; ξ3

ξ1

�
þ ξ1θðξ3 − ξ1Þ2F1

�
f1; 1þ ϵg; f1 − ϵg; ξ1

ξ3

��
×
Z

∞

0

dβ1
β−2ϵþν−1
1

β1 þ β2ξ1
: ð25Þ

Integrating over β1, we findZ
∞

0

dβ1
β−2ϵþν−1
1

β1 þ β2ξ1
¼ ðβ2ξ1Þ−2ϵþν−1Γð−2ϵþ νÞΓð2ϵ − νþ 1Þ: ð26Þ

We use this result in Eq. (25), change variables ξ1 ¼ rξ3, and arrive at

eJν2 ¼ 2Γð−2ϵþ νÞΓð2ϵ − νþ 1Þ
Z

dβ2dβ3β
−4ϵþ2ν−1
2 β−2ϵþν

3 δð1 − β23Þ
Z

1

0

dξ3ξν−13 Jðν; ξ3Þ
β3β2 þm2ξ3

; ð27Þ
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where

Jðν; ξ3Þ ¼
Z

1

0

dr½θð1 − ξ3=rÞrϵ−ν þ r−ϵþν−1�2F1½f1; 1þ ϵg; f1 − ϵg; r�: ð28Þ

It follows from the above expression that the ν pole originates from a singularity at ξ3 ¼ 0. It is straightforward to compute
it since Jðν; ξ3Þ is regular at ξ3 ¼ 0.4 We findZ

1

0

dξ3
ξν−13 Jðν; ξ3Þ
β3β2 þm2ξ3

¼ Jð0; 0Þ
ν

ðβ3β2Þ−1 þOðν0Þ: ð29Þ

Upon further integration, we obtain a 1=ν-divergent contribution to eJν2. It reads,
eJν2 ¼ C2

ν
þOðν0Þ; ð30Þ

where

C2 ¼
2Γ2ð−2ϵÞΓð−4ϵ − 1ÞΓð2ϵþ 1Þ

Γð−6ϵ − 1Þ
�

3F2½f1; 1þ ϵ; 1þ ϵg; f1 − ϵ; 2þ ϵg; 1�
1þ ϵ

− 3F2½f1;−ϵ; 1þ ϵg; f1 − ϵ; 1 − ϵg; 1�
ϵ

�
:

ð31Þ

Using the result of the explicit computation of the 1=ν
pole of Jν2 and the result for J̄

ν
1 reported in Ref. [7], we find

that they satisfy the relation shown in Eq. (15). As we
pointed out earlier, this relation is needed to ensure the
smooth ν → 0 limit of the differential equations.
The above result provides the required boundary con-

dition at m ¼ ∞ and allows us to start solving differential
equations numerically. However, it is interesting to point
out that, from the perspective of the differential equations,
integral J̄ν2 provides an example of a contribution propor-
tional to m−2ν which, therefore, can mix with the Taylor
branch of the required integrals if the ν → 0 limit is
taken first.
Indeed, if we first apply the scaling defined in Eq. (22) to

the integration variables in Eq. (24),

α3 ¼ m2α03; β1 ¼ m−2β01; ð32Þ

and perform the integrations over α03 and β
0
1 in the sameway

as before, then we find that this integration region leads to
an overall factor ð1=mÞ2ν,

νJ̄ν2 ∼ ð1=mÞ2ν½C2 þOðν1Þ�: ð33Þ

This result is identical to Eq. (30) through the leading order
in ν. We also note that since in the limit ν → 0, ð1=mÞ2ν
becomes 1; this region looks like a “normal” Taylor-
expansion region,

νJ̄ν2 ∼ C2 þOðν1Þ; ð34Þ

and, once the ν → 0 limit is taken, the two regions cannot
be distinguished. This is an illustration of the problem
of mixing between different m branches that we discussed
in the previous section; however, in contrast to the
discussion there, our example in this section refers to
m → ∞ limit.
We emphasize one more time that from the point of view

of the differential equation, the contribution shown in
Eqs. (20) and (21) comes from the ð1=mÞ2ν branch, but
once the ν → 0 limit is taken it becomes indistinguishable
from a regular Taylor part of the integral. If a similar
situation had occurred at m ¼ 0, then we should have
identified and removed all the mn4ν regions in all integrals
since the correct sequence of limits that is needed is
m → 0; ν → 0; ϵ → 0. However, as we mentioned earlier,
an analysis of the differential equation atm → 0 leads to the
conclusion that there are no eigenvalues that vanish, if the
ν → 0 limit is taken, so that the problem described above
does not occur.

IV. CHECKS

Given the highly unusual nature of the integrals that need
to be computed to obtain the zero-jettiness soft function and
the complex interplay of the various infrared regulators, it is
important to perform as many checks as possible to ensure
correctness of the result.
The most comprehensive check that can be performed is

the numerical computation of all m-dependent integrals,
which appear in the differential equations, as well as their
derivatives. We constructed Mellin-Barnes representation

4As with any analytic regulator, the ν → 0 limit should be
computed keeping ϵ fixed.
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of the relevant integrals using public programs MB [15] and
MBresolve [16] for this purpose. We also used the program
pySecDec [17,18] as an alternative for the numerical com-
putation. Using these programs, we have calculated all
integrals that appeared in the differential equations at finite
values of m and checked them against numerical solutions
of the differential equations. We found good agreement
between these two results up to the default precision of
the numerical programs that, in practice, can vary between
3 and 10 digits.
Next, we compared the solutions of the differential

equations at m ¼ 0 and ν ¼ 0 with the results of the direct
numerical computation. Unfortunately, although this can be
done for some integrals that contribute to Sd, there are
many integrals for which the numerical integration
becomes next to impossible. To enlarge the set of integrals
at m ¼ 0 that can be checked, we have derived linear
relations between various integrals at m ¼ 0, using the

integration-by-parts identities, and checked that integrals
obtained from m-dependent differential equations and
extrapolated to m ¼ 0 satisfy them. We found that all
the master integrals which appear in Sd fulfill the m ¼ 0
IBP relations to the full precision.

V. RESULTS

Solving differential equations and separating the Taylor
branch at m ¼ 0, we obtain the numerical result for the

integral of the function ω3;ðdÞ
nn̄ . Since we can determine the

solution of the differential equation to, essentially, arbitrary
precision, we can try to obtain the analytic result for Sd by
fitting the numerical results to a linear combination of
various transcendental and rational numbers. By making
use of the PSLQ [19] and LLL [20] algorithms, and
choosing the appropriate basis of transcendental numbers
[21], we find the following result:

Sd ¼
Z

dΦnnn
θθθω

ð3Þ;d
nn̄ ðk1; k2; k3Þ ¼

12

ϵ5
þ 142

3ϵ4
þ 1

ϵ3

�
46π2

3
þ 628

3

�
þ 1

ϵ2

�
196ζ3 þ

650π2

9
þ 18161

27

�
þ 1

ϵ

�
397π4

45
þ 1380ζ3 þ

6808π2

27
þ 165323

81

�
þ
�
8982ζ5 −

2146ζ3π
2

3
þ 191π4

9
þ 4224Li4

�
1

2

�
þ3696ζ3 lnð2Þ − 176π2ln2ð2Þ þ 176ln4ð2Þ þ 46184ζ3

9
þ 66614π2

81
þ 96 lnð2Þ þ 413971

81

�
þ ϵ

�
2304ζ−5;−1 − 4464ζ5 lnð2Þ − 8380ζ23 þ

46934π6

2835
− 6336GRð0; 0; r2; 1;−1

�
− 6336GRð0; 0; 1; r2;−1Þ − 3168GRð0; 0; 1; r2; r4Þ − 6336GRð0; 0; r2;−1Þ lnð2Þ þ

324215ζ5
3

− 45056Li5

�
1

2

�
− 45056Li4

�
1

2

�
lnð2Þ þ 176Cl4

�
π

3

�
π − 1056ζ3Li2

�
1

4

�
−
9634ζ3π

2

3

− 21824ζ3ln2ð2Þ þ 2112ζ3 lnð2Þ lnð3Þ − 1584Cl22

�
π

3

�
lnð3Þ − 4400Cl2ðπ3Þπ3

27
þ 88π4 lnð2Þ

45

−
616π4 lnð3Þ

27
þ 11264π2ln3ð2Þ

9
−
22528ln5ð2Þ

15
þ 8576Li4

�
1

2

�
þ 7504ζ3 lnð2Þ þ

4646π4

27

−
1072π2ln2ð2Þ

3
þ 1072ln4ð2Þ

3
þ 496592ζ3

27
− 32π2 lnð2Þ þ 587380π2

243
− 384ln2ð2Þ þ 832 lnð2Þ

þ 7857076

729
þ

ffiffiffi
3

p �
192ℑ

	
Li3

�
expðiπ=3Þ

2

�

þ 160Cl2

�
π

3

�
lnð2Þ − 16πln2ð2Þ − 560π3

81

��
þOðϵ2Þ; ð35Þ

where ζ−5;−1 ≈ −0.029902 is a multiple zeta value, and ClnðxÞ are Clausen functions. Note that GRða1;…; awÞ is the real
part of the multiple polylogarithm Gða1;…; aw; zÞ evaluated at z ¼ 1 [21],

GRða1;…; awÞ ¼ ℜfGða1;…; aw; 1Þg: ð36Þ

Finally, r2 ¼ expð−iπ=3Þ and r4 ¼ expð−i2π=3Þ. We note that we have computed the master integrals to more than two
thousand digits to check the validity of the analytic result.
Having obtained the result for the integral of the function ω3;ðdÞ

nn̄ , we are now in position to present the complete result for
the same-hemisphere three-gluon-emission contribution to the N3LO soft function. To this end, we write
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Snnn ¼
Z

dΦnnn
θθθ jJðk1; k2; k3Þj2 ¼ τ−1−6ϵ

N3
ϵ

3!
½C3

aSnnn1þ1þ1 þ C2
aCASnnn1þ2 þ CaC2

AS
nnn
3 �; ð37Þ

where we reintroduced the dependence on τ, recovered the symmetry factor 1=3! and the normalization factor N3
ϵ

[cf. Eq. (4)], and split the integral into three color factors following Eq. (7.10) in Ref. [10]. We also note that Ca ¼ CF;A for
the quark (gluon) soft function, respectively.
The computation of the Abelian contributions Snnn1þ1þ1 and Snnn1þ2 is described in the Appendix. We obtain the maximally

non-Abelian contribution Snnn3 by adding results obtained in Ref. [7], and the result of this paper is given in Eq. (35).
We find

Snnn1þ1þ1 ¼
48Γ3ð1 − 2ϵÞ
ϵ5Γð1 − 6ϵÞ ; ð38Þ

Snnn1þ2 ¼ −
9Γð1 − 4ϵÞΓð1 − 2ϵÞ

ϵ2Γð1 − 6ϵÞ ×

�
8

ϵ3
þ 44

3ϵ2
þ 1

ϵ

�
268

9
− 8ζ2

�
þ
�
1544

27
þ 88

3
ζ2 − 72ζ3

�
þ ϵ

�
9568

81
þ 536ζ2

9
þ 352

3
ζ3 − 300ζ4

�
þ ϵ2

�
55424

243
þ 3520ζ2

27
þ 2144ζ3

9
þ 352ζ4 þ 96ζ2ζ3 − 1208ζ5

�
þ ϵ3

�
297472

729
þ 22592ζ2

81
þ 14080ζ3

27
þ 2144

3
ζ4 −

4576

3
ζ2ζ3 þ 3696ζ5 þ 424ζ23 − 3596ζ6

�
þOðϵ4Þ

�
; ð39Þ

Snnn3 ¼ 24

ϵ5
þ 308

3ϵ4
þ 1

ϵ3

�
−12π2 þ 3380

9

�
þ 1

ϵ2

�
−1000ζ3 þ

440π2

9
þ 10048

9

�
þ 1

ϵ

�
−
2377π4

45
þ 440ζ3

3
þ 7192π2

27
þ 253252

81

�
þ
�
−28064ζ5 þ

1972ζ3π
2

3
−
638π4

15
þ 4224Li4

�
1

2

�
þ 3696ζ3 lnð2Þ − 176π2ln2ð2Þ þ 176ln4ð2Þ

þ 13208ζ3
3

þ 78848π2

81
þ 96 lnð2Þ þ 1925074

243

�
þ ϵ

�
2304ζ−5;−1 − 4464ζ5 lnð2Þ þ 25784ζ23 −

67351π6

567
− 6336GRð0; 0; r2; 1;−1Þ

− 6336GRð0; 0; 1; r2;−1Þ − 3168GRð0; 0; 1; r2; r4Þ − 6336GRð0; 0; r2;−1Þ lnð2Þ þ
268895ζ5

3

− 45056Li5

�
1

2

�
− 45056Li4

�
1

2

�
lnð2Þ þ 176Cl4

�
π

3

�
π − 1056ζ3Li2

�
1

4

�
− 3982ζ3π

2

− 21824ζ3ln2ð2Þ þ 2112ζ3 lnð2Þ lnð3Þ − 1584Cl22

�
π

3

�
lnð3Þ − 4400Cl2ðπ3Þπ3

27
þ 88π4 lnð2Þ

45

−
616π4 lnð3Þ

27
þ 11264π2ln3ð2Þ

9
−
22528ln5ð2Þ

15
þ 8576Li4

�
1

2

�
þ 7504ζ3 lnð2Þ þ

4174π4

27

−
1072π2ln2ð2Þ

3
þ 1072ln4ð2Þ

3
þ 554032ζ3

27
− 32π2 lnð2Þ þ 730378π2

243
− 384ln2ð2Þ þ 832 lnð2Þ

þ 1408681

81
þ

ffiffiffi
3

p �
192ℑ

	
Li3

�
expðiπ=3Þ

2

�

þ 160Cl2

�
π

3

�
lnð2Þ − 16πln2ð2Þ − 560π3

81

��
þOðϵ2Þ: ð40Þ
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VI. CONCLUSIONS

In this paper, we have discussed the computation of the
same-hemisphere three-gluon-emission contribution to the
zero-jettiness soft function at N3LO in perturbative QCD.
We have used the approach of Ref. [7], which allows us to
apply integration-by-parts technology and the method of
differential equations to phase-space integrals that contain
Heaviside functions. While the appearance of integrals that
are not regulated dimensionally requires an analytic regu-
lator, and thus complicates the use of differential equations,
we have described a way to bypass this problem in an
efficient way.
Finally, we note that the missing kinematic configura-

tion, in which one of the three gluons is emitted into the
opposite hemisphere can be computed in a similar fashion.
Once a complete result for the three-gluon-emission con-
tribution is known, the contribution that arises from the
emission of a soft qq̄ pair and a soft gluon can be computed
in a straightforward way. Similarly, we expect that virtual
corrections to the double real emissions can be dealt with
using the same method. We leave both problems to future
investigations.
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APPENDIX: COMPUTATION OF ABELIAN
CONTRIBUTIONS

In this Appendix, we describe how to compute Abelian
contributions to the zero-jettiness soft function, i.e., the first
two terms in Eq. (37). The first, so-called fully Abelian
contribution Snnn1þ1þ1 reads,

Snnn1þ1þ1 ¼
Z

dΦnnn
θθθω

ð1Þ
nn̄ ðk1Þωð1Þ

nn̄ ðk2Þωð1Þ
nn̄ ðk3Þ; ðA1Þ

where [10]

ωð1Þ
nn̄ ðqÞ ¼

4

ðnqÞðn̄qÞ : ðA2Þ

Thanks to its fully factorized structure, the integral in
Eq. (A1) is straightforward to compute. Using Sudakov
variables αi and βi, we find

Snnn1þ1þ1 ¼ 64

Z
∞

0

�Y3
i¼1

dαidβiðαiβiÞ−1−ϵθðαi − βiÞ
�

× δð1 − β123Þ ¼
64

ϵ3
Γ3ð−2ϵÞ
Γð−6ϵÞ : ðA3Þ

Making the 1=ϵ poles in the above equation explicit,
yields Eq. (38).
The second Abelian contribution reads,

Snnn1þ2 ¼
Z

dΦnnn
θθθ ½ωð1Þ

nn̄ ðk1Þωð2Þ
nn̄ ðk2; k3Þ

þ ðk1 ↔ k2Þ þ ðk1 ↔ k3Þ�

¼ 3

Z
dΦnnn

θθθ ½ωð1Þ
nn̄ ðk1Þωð2Þ

nn̄ ðk2; k3Þ�: ðA4Þ

We write it as

Snnn1þ2 ¼ 3N−1
ϵ

Z
½dk1�θðk1n̄ − k1nÞωð1Þ

nn̄ ðk1Þ

× N−2
ϵ

Z �Y3
i¼2

½dki�θðkin̄ − kinÞ
�

× δð1 − k123nÞωð2Þ
nn̄ ðk2; k3Þ: ðA5Þ

The inner integral in Eq. (A5) over ½dk2�½dk3� can be
obtained from the same-hemisphere double-real gluon
emission contribution to the NNLO soft function. We find

Snnn1þ2 ¼ 3

Z
∞

0

dα1dβ1θðα1−β1Þ
4ðα1β1Þ−ϵ

α1β1

×Cnn
2 ð1−β1Þ−1−4ϵ¼

12

ϵ

Γð−4ϵÞΓð−2ϵÞ
Γð−6ϵÞ Cnn

2 ; ðA6Þ

where the factor Cnn
2 can be extracted from Refs. [7,22].

Upon doing so, we obtain the result displayed in Eq. (39).
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