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Nonperturbative treatment of giant atoms using chain transformations
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Superconducting circuits coupled to acoustic waveguides have extended the range of phenomena that can
be experimentally studied using tools from quantum optics. In particular, giant artificial atoms permit the
investigation of systems in which the electric dipole approximation breaks down and pronounced non-Markovian
effects become important. While previous studies of giant atoms focused on the realm of the rotating-wave
approximation, we go beyond this and perform a numerically exact analysis of giant atoms strongly coupled
to their environment, in regimes where counter-rotating terms cannot be neglected. To achieve this, we use a
Lanczos transformation to cast the field Hamiltonian into the form of a one-dimensional chain and employ
matrix-product state simulations. This approach yields access to a wide range of system-bath observables and to
relatively unexplored parameter regimes.
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I. INTRODUCTION

Quantum optical theory provides a solid framework for the
study of light-matter interaction. Yet paradigmatic models are
based on several approximations, such as the rotating-wave,
electric dipole, and Born-Markov approximations [1]. While
the underlying assumptions are typically well justified, recent
experimental advances have paved the way for investigations
of yet unexplored parameter and physical regimes. Supercon-
ducting circuits offer a versatile platform for such studies in
which artificial atoms may be efficiently and strongly coupled
to electromagnetic and sound waves [2]. In particular, giant
atoms challenge standard approximations and can only be ac-
curately described when taking the finite spatial extent of the
artificial atom into account [3], plus a finite propagation speed
if coupled to sound waves [4,5] and counter-rotating terms
beyond the rotating-wave approximation (RWA) at strong
couplings. Recent work has already capitalized on this and
demonstrated several intriguing effects that occur in giant
atomic setups, including decoherence-free interactions [6],
nonexponential atomic decay [7], oscillating bound states [8],
and chiral atom-waveguide couplings [9]. Still, theoretical
treatment has so far been restricted to couplings in the realm
of the RWA.

At elevated light-matter couplings several physical phe-
nomena can only be accurately captured by taking multiple
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field modes into account [10–12]. In this regime, unphysical
properties of single-mode models become more apparent such
as, e.g., causality violations in the form of superluminal sig-
naling [13–16]. In contrast to the single-mode quantum Rabi
model (QRM) [17], the corresponding multimode problem is
not known to be integrable and requires novel techniques for
theoretical treatment. The regime where the coupling strength
becomes comparable to the bare resonance frequencies in
the system is referred to as the ultra-strong coupling (USC)
regime [18]. Previous works have established matrix-product
state (MPS) simulations as a means to explore quantum op-
tics phenomena of small atoms in the USC regime [19],
and they have proven useful for the study of non-Markovian
light-matter interactions [20,21]. While the USC regime is
becoming more and more experimentally accessible, its the-
oretical study still requires improved analytical and numerical
methods, making it a timely research topic. Moreover, at
even stronger couplings and within the deep and extremely
strong coupling regimes, other nonperturbative methods be-
come available again [22,23].

Here we investigate the low-energy physics and the dynam-
ics of giant atoms., beyond the RWA, in the USC regime and
with multimode interactions, using a numerically exact, non-
perturbative approach. We model the giant atoms as two-level
systems. The coupling points we model by a profile function
with a finite width, thus suppressing the coupling to high-
frequency modes and motivating a natural UV cutoff. Apart
from this UV cutoff, our approach requires no further approx-
imations of the model Hamiltonian. While our approach is
general, we mainly focus on superconducting qubits coupled
to acoustic field modes and the resulting non-Markovian ef-
fects which are due to a finite speed of sound. In particular, we
investigate the dynamics of a single giant atom coupled to an
acoustic waveguide with intrinsic time delay, thus extending
the analysis of previously predicted oscillating bound states
[8] beyond the single-excitation subspace. Our theoretical
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FIG. 1. Setup and schematic illustration of chain transformation. (a) Giant atom with M = 3 equidistantly spaced coupling points at
distance τ , coupled to a periodic waveguide of length L. Emitter-waveguide couplings are locally described by Gaussian smearing functions f s

in Eq. (6). (b) Chain transformation maps system-reservoir model with a one-to-all coupling to a linear chain as described by chain parameters
α1,...,N and β1,...,N−1 in Eq. (15), with K̂j = σ̂x ⊗ ( f j â j + f ∗

j â†
j ). (c) Illustration of a two-atom setup with braided coupling points, which can be

chain transformed into a chain with next-to-nearest-neighbor couplings, as indicated in (d).

treatment of the system-reservoir interaction relies on a so-
called chain (also star-to-chain or Lanczos) transformation.
This unitary transformation casts the field into the shape of a
linear harmonic chain, which is particularly suited for numeri-
cal simulation. Rooting back to the numerical renormalization
group [24], these methods are widely used in the study of open
quantum systems (e.g., see [25–27]), but have also proven
useful in quantum optics as seen, for example, in [16,28–
30]. We follow a similar numerical approach as [16], which
allows us to go beyond the single-excitation subspace and
numerically study system and bath observables using MPS
[31,32].

This work is structured as follows. In Sec. II, we introduce
the setup and theoretical model of our study. We show how
the underlying Hamiltonian can be cast into a form amenable
to an efficient numerical analysis even at strong coupling and
beyond the RWA, using chain-mapping techniques. In contrast
to earlier works, our description does not rely on the assump-
tion of a pointlike emitter-bath coupling, but we promote
coupling points to smeared coupling functions with a finite
spatial support. We provide estimates for the required values
of all characteristic system parameters of an experimental
implementation using superconducting circuits at the end of
Sec. II. In Sec. III, we present an analysis of the low-energy
physics of the system. In particular, we discuss elementary
excitations of the ground state as a function of increased
emitter-reservoir coupling strength, in analogy with the well-
understood quantum Rabi model. In Sec. IV, we present a
study of the temporal dynamics of a single giant atom coupled
to an acoustic waveguide, with an intrinsic time delay, at three
coupling points. We showcase and discuss the implications
of the breakdown of the RWA at strong coupling. A stability
analysis of the findings with respect to experimentally rele-
vant parameters is provided. Finally, we conclude our work
in Sec. V, discuss possible future research directions, and
highlight the wide-ranged applicability of our approach, e.g.,
to systems with multiple giant atoms and multilevel emitters.

The latter is particularly important to realistic implementa-
tions in which, depending on the chosen gauge, the two-level
approximation is no longer applicable for sufficiently strong
couplings [33–35]. Note that we use natural units (h̄, c = 1)
throughout this work.

II. SETUP AND THEORETICAL FRAMEWORK

In this section, we present our theoretical framework and
introduce the chain transformation that we employ for the
study of stationary (see Sec. III) and dynamical (see Sec. IV)
properties of two-level emitters coupled to a waveguide.

Setup. A schematic illustration of the setup and the chain
transformation is provided in Fig. 1. We treat a single quantum
emitter as a two-level system coupled to the waveguide modes
at M coupling points; cf. Fig. 1(a). For simplicity, we focus on
equidistantly spaced coupling points, with a nonzero, signifi-
cant propagation time τ between neighboring coupling points.
Such a system may be realized with a superconducting qubit
piezoelectrically coupled to an acoustic waveguide at several
locations [7]. The interaction between emitter and waveg-
uide modes is usually described by a one-to-all coupling,
i.e., the emitter couples to all noninteracting field modes.
Once brought into the form of a linear chain [cf. Fig. 1(b)],
well-developed techniques based on MPS can be utilized for
efficient numerical studies of various system and bath observ-
ables. Note that for setups with multiple emitters, where n
emitters couple to one waveguide as schematically depicted
in Fig. 1(c), the chain transformation, as reviewed in Ap-
pendix C, casts the field into a linear chain, with each mode
coupling to its n nearest neighbors as indicated in Fig. 1(d).

As mentioned, here we model the atom as a two-level
system, i.e., we use the two-level approximation (TLA). For
couplings above the weak coupling regime, the validity is
known to be highly gauge dependent [33–35] and only spe-
cific gauges still allow for the TLA to be applied beyond weak
coupling. Here we chose the TLA interaction Hamiltonian
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akin to the dipole gauge which, for the quantum Rabi model,
was found to perform reasonably well in the USC regime [33].

Model. The total Hamiltonian can be decomposed as the
sum of the atomic, the field, and the interaction Hamiltonian,

Ĥtot = ĤA + Ĥf + Ĥint. (1)

Assuming a two-level emitter with frequency �, and a mass-
less field in a periodic cavity of length L described by modes
with wave numbers k j = 2π j/L, the noninteracting terms in
(1) can be written as

ĤA = �

2
(|e〉〈e| − |g〉〈g|) = �

2
σ̂z, (2)

Ĥf =
∑

j

|k j |â†
j â j, (3)

with the ground and excited states of the emitter, |g〉 and |e〉,
and the annihilation (creation) operator a(†)

j of field mode j.
The interaction Hamiltonian reads

Ĥint = λ(|e〉〈g| + |g〉〈e|) ⊗
∫

dx f (x)π̂ (x), (4)

where λ is a dimensionless coupling constant and π̂ denotes
the field momentum. The smearing function f (x) models
the emitter-waveguide coupling and has the dimensions of a
density. For a giant-atom setup as shown in Fig. 1(a), where
M > 1, we consider a sum of single-point couplings of the
form

f (x) =
M∑

l=1

f s(x − xl ), (5)

with coupling points centered around the positions x1, . . . , xM .
The shape of f s(x) may not directly correspond to the physical
shape of a given coupling point, but should be chosen to
correctly capture the frequency dependence of the coupling
strength [see Eq. (9)]. In this work, each coupling point is
described by a Gaussian profile function,

f s(x) = e−x2/d2

d
√

π
, (6)

with 2d being the effective diameter of each coupling point
and

∫
dx f s(x) = 1. Other choices for f s(x) can equally be

considered, and some examples are discussed in Appendix B.
Note that the choice f s(x) = δ(x) results in a UV divergent
coupling which, however, does not occur in physical models
[36].

Field modes. The field momentum operator π̂ (x), which
is equal to the time derivative ∂t φ̂(x) of the field amplitude,
expressed in terms of field eigenmodes, reads

π̂ (x) = −i
∑

j

√
|k j |
2L

(eik j xâ j − e−ik j xâ†
j ). (7)

Hence, we can rewrite the interaction Hamiltonian as

Ĥint = λ(|e〉〈g| + |g〉〈e|) ⊗
∑

j

f j â j + f ∗
j â†

j , (8)

f j = −i

√
|k j |
2L

∫
dx eik j x f (x). (9)

FIG. 2. Coupling coefficients | f j | in (11) for an atom with a
single coupling point M = 1 (blue triangles), and a giant atom with
M = 3 as in (10), spaced by τ = L/20 (orange squares).

The coefficients f j for a giant atom with equidistant cou-
pling points follow straightforwardly from the coefficients

f s
j = −i

√
|k j |
2L

∫
dx eik j x f s(x) for a single coupling point. For

example, for a giant atom with three coupling points at xl =
−τ, 0, τ (l = 1, 2, 3), we find

f j = [1 + 2 cos(k jτ )] f s
j . (10)

For the Gaussian profile (6), replacing the integral
∫ L

0 dx by∫ ∞
−∞ dx since d � L, we obtain

f s
j = −i

√
jπ

L
e− d2π2 j2

L2 . (11)

The behavior of | f j | is shown in Fig. 2 for emitters coupling
to the waveguide with this smearing function through M = 1
and M = 3 points, respectively.

The decay of | f j | for sufficiently large j allows us to
introduce a UV cutoff and only consider a finite number of
2N field modes, i.e., we restrict the index to −N � j � N and
also discard the zero mode, to which the atom does not couple.
Note that this UV cutoff is the only simplification of the
original physical model that the present approach requires. In
particular, it does not rely on the rotating-wave approximation
(RWA) or the Wigner-Weisskopf approximation.

Chain modes. The dynamics of the Hamiltonian, after
the UV cutoff, is straightforward to treat numerically if the
coupling is weak, such that the RWA can be applied, and if
one restricts attention to the single-excitation subspace of the
approximate Hamiltonian. However, in order to treat many
excitations within the RWA, and to study USC beyond the
domain of the RWA, here we employ a chain transformation
of the field modes. Such a chain transformation yields a new
basis of field mode operators ĉ0, . . . , ĉ2N−1, which we refer to
as chain modes. These are related to the eigenmodes of Ĥf by
a nonmixing Bogoliubov transformation,

ĉi =
N∑

j=−N

�i j â j . (12)

The front chain mode is chosen as ĉ0 = 1√
μ0

∑
j f j â j with

ĉ0 = 1√
μ0

∑
j

f j â j, μ0 =
∑

j

| f j |2, (13)
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FIG. 3. Coefficients appearing in the chain form of the field
Hamiltonian (15) for a giant atom with parameters as in Table I.

such that the interaction Hamiltonian takes the form

Ĥint = λ
√

μ0(|g〉〈e| + |e〉〈g|) ⊗ (ĉ0 + ĉ†
0). (14)

Using Lanczos algorithms (see Appendix C), the chain modes
are appropriately chosen such that they cast the field Hamilto-
nian into the form of a harmonic chain with nearest-neighbor
hopping interactions only,

Ĥf =
2N−1∑
i=0

αiĉ
†
i ĉi + βi(ĉ

†
i ĉi+1 + ĉ†

i+1ĉi ), (15)

with real coefficients αi, βi ∈ R. Figure 3 shows a plot of these
coefficients for the setup that we will use in our numerical
examples (see Table I).

Note that if the atom has an even profile function f (x) =
f (−x) such as (10), it does not couple to the odd sector of
the field modes. Then, by introducing the basis change â(±)

j =
(â j ± â− j )/

√
2, we can restrict attention to the N field modes

of the even sector and, accordingly, only construct N chain
modes as linear combinations of even field modes.

Numerical simulations. The low-energy sector of (1) can be
efficiently described using MPS [31,37], once the interaction
and field Hamiltonians have been cast into their respective
forms (14) and (15). In the following sections, we use both
density-matrix renormalization group (DMRG) and time-
evolution algorithms to study the stationary and dynamical
properties of giant atoms coupled to a waveguide, as a func-
tion of the coupling strength λ and the emitter frequency �.

Unless stated otherwise, the default configuration that we
consider is that of a giant atom coupling to the chain modes at

TABLE I. Giant-atom geometry and parameters used as default
in figures and numerical results, unless stated otherwise. The (peri-
odic) waveguide’s length L sets the overall length scale.

Symbol Giant-atom property Default value

Waveguide free spectral range 2π/L
M Number of coupling points M = 3
τ Coupling point distance τ = L/20
d Width of Gaussian profile (6) d = L/500√

μ0 Interaction energy scale (14)
√

μ0 ≈ 345.1/L
λ Coupling strength λ = 0.4
� Atom frequency � = |k80| = 160π/L

M = 3 coupling points, located at xl = −L/20, 0, L/20, each
modeled by the Gaussian smearing (6), with all parameters as
specified in Table I. The default value for the atom frequency
� is chosen to be resonant with the 80th field mode, which
features the largest coupling coefficient | f j |, as can be seen in
Fig. 2.

At strong coupling λ, care must be taken to ensure that
the truncation errors associated with increasing chain-mode
occupation numbers 〈ĉ†

i ĉi〉 are still negligible in the numerical
calculations. We find that this is possible even deep in the
USC regime, as discussed in Sec. III, using 25 bosons per
site. In our numerical calculations using the ITENSOR software
package [38], we also ensure convergence with respect to the
MPS bond dimension (≈200) and chain length N � 1000 at a
singular value decomposition (SVD) cutoff of 10−12.

Experimental considerations. Experimentally, the present
system and its considered initial state can be realized and
prepared, e.g., using superconducting qubits coupled to an
acoustic cavity [7,39–41]. Based on prototypical parameters
used in our calculations [cf. Table I], one may choose a qubit
frequency of �/(2π ) = 2.4 GHz. At a typical sound velocity
of c = 3 km/s, this yields a distance of ≈5 μm between the
coupling points of the atom. In an implementation, instead of
a periodic waveguide with length L, one can consider an open-
ended waveguide of length L/2 ≈ 50 μm. These ballpark
values are realistic and consistent with recent experimental
implementations. As described in Secs. III and IV, we iden-
tify the onset of USC at around λ ≈ 0.15, which amounts
to an acoustic qubit-waveguide coupling of ≈8.5 MHz per
coupling point. Considering that the qubit couples through
three coupling points, the total coupling between qubit and
waveguide is comparable to the estimated free spectral range
of ≈30 MHz, placing the setup in the strong-multimode
regime. This value is comparable with previously reported
acoustic coupling strengths, and there are various prospects
for state-of-the-art experimental settings to be operated even
more deeply in the strong coupling regime, e.g., by appropri-
ate choice of material [40].

III. LOW-ENERGY SPECTRUM AND EIGENSTATES

With the approach presented above, it is possible to in-
vestigate giant atoms beyond the realm of the RWA and the
single-excitation subspace. Since the field is not traced out for
an effective-system description, the approach also yields full
access to field observables such as photon numbers or field
energy density, and allows for, e.g.,the investigation of virtual
photon clouds. As a first step, here we calculate and charac-
terize the ground state and first excited state of our giant-atom
setup, as a function of the coupling strength. Hereby, we
explore the entire USC regime and access the onset of the
deep-strong coupling (DSC) limit.

For single-mode models, such as the QRM, the USC and
DSC regimes are well understood and characterized [42], and
both have been achieved on several experimental platforms. In
the following, we will see that the lowest energy eigenstates
of our multimode model generally follow the intuition based
on the single-mode QRM. Yet the onset of signatures related
to the USC and DSC regimes is shifted to smaller coupling
strengths, which underlines that the effective emitter-field
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FIG. 4. Lowest eigenenergies of Ĥ as function of coupling λ.
(a) Ground-state energy 〈Ĥ〉 (red, triangle) and contributions from
atomic Hamiltonian 〈ĤA〉 (orange, triangle), field Hamiltonian 〈Ĥf〉
(blue, circle), and interaction Hamiltonian 〈Ĥint〉 (green, triangle).
(b) Gap 
H between ground- and first excited state energies (red,
triangle), and decomposition into contributions as in (a). The labels
are the same in (a) and (b).

coupling is enhanced as the emitter simultaneously couples
to the field via a multitude of modes.

Eigenenergies. Once the Hamiltonian Ĥtot in (1) is trans-
formed into a chain, we compute its ground state |ψGS〉
and its first excited state |ψES〉 using DMRG. In Fig. 4, we
show the obtained ground-state energy 〈ψGS|Ô|ψGS〉 and the
difference, 
O = 〈ψES|Ô|ψES〉 − 〈ψGS|Ô|ψGS〉, for the total
Hamiltonian (Ô = Ĥtot) as well as separately for the atom
(Ô = ĤA), the interaction (Ô = Ĥint), and the field (Ô = Ĥf ),
as a function of the coupling strength λ.

The absolute values for the ground state in Fig. 4(a) be-
have monotonically and, thus, make it difficult to distinguish
different regimes. However, the energy differences plotted
in Fig. 4(b) provide a richer picture: The energy gap of
the Hamiltonian 
Htot starts at 
Htot (λ = 0) = |k1| = 2π/L
for λ = 0, then decreases over an intermediate range of
0.5 � λ � 1.5, and, finally, closes at λ � 1.5. The energy
differences for the separate terms of the Hamiltonian behave
accordingly at low and large λ, but they exhibit prominent
peaks in the intermediate region, where the energy gap 
Htot

is closing most rapidly. The behavior of the spectrum in the
intermediate range of λ resembles the spectrum of the single-
mode QRM [42] in the USC, whereas for λ � 1.5, the spec-
trum resembles the DSC of the QRM. In the QRM, the USC
sets on when the ratio of coupling strength to emitter gap
is of the order of ∼0.1, and DSC sets on at a ratio of ∼1.
In our approach, analogously, the range of USC can be es-
timated by considering the ratio of the energy scale of the
interaction Hamiltonian λ

√
μ0 to the atom’s gap �, where we

have
√

μ0/� ≈ 0.69. From this comparison, one expects the
USC to lie within 0.15 � λ � 1.5, which agrees well with our
numerical findings. In contrast, the coupling strength between
emitter and the resonant field mode is only | f80|/� ≈ 0.076,
which wrongfully would suggest the USC regime to lie at
much higher λ. This underlines that the emitter couples effi-
ciently to many field modes (cf. Fig. 2), and that a single-mode
description would fail.

Structure of eigenstates. We can further investigate the
structure of the obtained lowest eigenstates in the different
coupling regimes, and compare them to our expectations

FIG. 5. Atomic population and occupation of field modes in the
ground and first excited state, as a function of coupling strength λ.
The upper row shows (a) the expectation values of the total photon
number n̂field, as well as the number operator of (b) the first field
mode n̂1 = â†

1â1 and of (c) the atomic occupation. Analogously, (d)–
(f) show the increase of the expectation value in the first excited state,
i.e., 
n1 = 〈ψES|n̂1|ψES〉 − 〈ψGS|n̂1|ψGS〉, etc.

based on the QRM, by characterizing them in terms of ob-
servables such as photon numbers and the atomic population.

In the perturbative regime, as λ → 0, clearly the ground
state of the system approaches the free ground state, i.e., the
product of the atom ground state and the vacuum |ψGS〉 →
|g, 0〉, and the first excited state is obtained by placing a single
photon into the first free field mode, |ψES〉 → â†

1|ψGS〉. In fact,
as shown in Fig. 10 of Appendix D, we find a large overlap
|〈ψES|â†

1|ψGS〉|2 for our numerically obtained eigenstates for
sufficiently small coupling.

To characterize the eigenstates in USC and beyond, we
consider the atomic population pe = (1 + 〈σ̂z〉)/2, the total
excitation number of the field 〈n̂field〉 = ∑

j〈n̂ j〉, with 〈n̂ j〉 =
〈â†

j â j〉 for the jth field mode, and the occupation number of
the lowest free field mode 〈n̂1〉. Figures 5(a)–5(c) show these
expectation values in the ground state, and their increase as
a function of coupling strength λ. Figures 5(d)–5(f) display
the difference 
O = 〈ψES|Ô|ψES〉 − 〈ψGS|Ô|ψGS〉 for each
observable Ô.

For the lowest values of λ, we recognize the results of
|ψGS〉 and |ψES〉 lying close to |g, 0〉 and â†

1|g, 0〉, respectively.
For large couplings, where we saw above that the two pairs
approximately form a degenerate pair, we see that the states
also agree in the occupation observables. This pair is charac-
terized by a large number of field excitations that are spread
out over many field modes, and by the atom approaching half
occupation, pe → 1/2. In fact, this is what one would expect
in the DSC where the interaction Hamiltonian Ĥint dominates
over the other parts of the total Hamiltonian Ĥtot and, thus,
eigenstates of Ĥtot lie close to eigenstates of Ĥint. Eigenstates
of Ĥint, however, would be given by the product of the eigen-
states of σ̂x = |e〉〈g| + |g〉〈e|, given by |±X 〉, and eigenstates
of the field operator ĉ0 + ĉ†

0, which can be approximated well
by coherent states with a (positive or negative) eigenvalue with
respect to ĉ0, thus allowing for the construction of a degen-
erate pair. This behavior is reminiscent of the eigenstates of
the single-mode QRM. Also there, for small coupling, the
ground state of the system contains no photonic excitations,
and in the DSC regime, the number of photonic excitations
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FIG. 6. Dynamic of the atomic population for variation (a) of
the atom frequency � and (b) of the coupling strength λ, whereas
the other parameter is kept at its default value of (a) λ = 0.4 and
(b) �τ/(2π ) = 4. The atom starts excited with pe = 1 at t = 0.
For certain parameter regions, oscillating bound states form. Note
that the coupling point separation τ = L/20 is used as the length
scale. (Step sizes used for plotting: time 
t = 5 × 10−4, frequency

� = 0.04, coupling strength 
λ = 0.0025.)

grows linearly while the atomic population saturates at half
occupation.

IV. OSCILLATING BOUND STATES

This section studies dynamical properties of giant atoms
with a focus on oscillating bound states. These states were
recently predicted to arise for giant atoms in the RWA regime
under certain, fine-tuned conditions. In our approach, we can
simulate the dynamics of giant atoms far into the USC regime,
and up to times set by the waveguide crossing time, before
finite-size effects occur. Here we observe the formation of
oscillating bound states and show that they are robust against
variations in the coupling parameters.

Oscillating bound states are a fascinating phenomenon of
giant atoms: When an initially excited giant atom decays
into a waveguide then, under certain resonance conditions, a
significant part of the energy may end up oscillating back and
forth between the atom and field. The first derivation of this
phenomenon in [8], using RWA and δ-coupling points for the
atom, identified specific combinations of parameter values for
the number of coupling points, the coupling strength, and the
atom’s frequency, at which oscillating bound states appear. In
particular, in view of future experimental studies, this raises
the questions of whether oscillating bound states can also be
expected for finite-width coupling points, whether the appear-
ance of oscillating bound states is robust against deviations in
the coupling and frequency parameters, and whether oscillat-
ing bound states also appear in the strong coupling regimes.
In the following, we are able to answer these questions in the
affirmative.

Figure 6 demonstrates the appearance of an oscillating
bound state for the giant-atom setup as introduced in Table I,
whose parameters were chosen to correspond closely to an
oscillating bound state configuration of [8]. The giant atom
is initially in the excited state |e〉 when it is coupled to the
waveguide in the vacuum at time t = 0, i.e., it starts out with
a population of pe = 1. After the initial decay process, which
takes of the order of approximately 5τ to 10τ , the system

FIG. 7. Visualization of the � − λ-parameter space explored in
Fig. 6, together with a comparison of the exact MPS results to RWA
calculations. The dotted black lines represent the parameters plotted
in Figs. 6(a) and 6(b), with their intersection point corresponding to
the default parameters of Table I. The insets compare results from
Fig. 6 (solid lines) with results obtained using RWA (dashed, red
lines).

can realize an oscillating bound state, for certain parameters.
These states are characterized by a steady oscillation in the
atomic population. Because our setup uses a periodic waveg-
uide, we can only meaningfully describe the atom’s dynamics
up to t � 18τ . After this time, radiation emitted at t = 0 has
traversed the waveguide and reaches back to the atom from
the other direction [13].

The plots of Fig. 6 suggest that the appearance of os-
cillating bound states, to a certain extent, is robust against
variations both in the atom frequency and the coupling
strength. In view of the fact that our approach accounts for
a nonzero, realistic width of the coupling points, this ob-
servation appears encouraging with respect to experimental
implementations. Figure 6(a), where the atom frequency �

is varied while the coupling strength is fixed at λ = 0.4,
shows regions with oscillating bound states appearing roughly
periodically. Figure 6(b), where the atom frequency is fixed
at � = 160π/L while the coupling strength is varied, shows
oscillating bound states only in the range of 0.3 � λ � 0.4.
Within the RWA [8], one expects oscillatory bound states to
appear periodically both in � and in λ. However, based on
the analysis in the previous section, we would count all data
in Fig. 6(a), and all data with in Fig. 6(b) with nontrivial dy-
namics, towards the USC regime, and thus beyond the regime
where the RWA is valid.

Figure 7 demonstrates that the parameter regime we con-
sider requires numerically exact calculations, by comparing
our MPS results to calculations obtained within the RWA.
It also illustrates that the error introduced by the RWA can
change unexpectedly, probably due to the multimode cou-
plings of our approach. At the default values of �τ/(2π ) =
4.0 and λ = 0.4, the agreement between the RWA and MPS
results may still appear acceptable. Estimating the dimension-
less emitter-waveguide coupling by λ

√
μ0/�, one may thus

assume that the agreement between the MPS and RWA calcu-
lations will improve when λ is decreased or � is increased.
As far as the coupling strength is concerned, this is what we
observe. However, in the atom frequency, the agreement of
the RWA and MPS results is highly nonmonotonous. Whereas
there is an overall trend for the agreement to improve as
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� is increased, significant oscillations in the quality of the
approximation can be observed. In Fig. 7, this is illustrated
by the inset for the population dynamics at �τ/(2π ) = 4.5.
Here, in contrast to the reasonably good agreement between
both curves in the presence of the oscillating bound state at
�τ/(2π ) = 4, the RWA results in a significantly different
prediction for the atom population.

The results of this section show that our approach allows
one to explore the dynamics of the system far into the USC
regime. In fact, our numerical results indicate that for the
setup considered here, intermediate-time evolutions are fea-
sible up to a coupling strength of λ ≈ 1.5, at which point (i)
the MPS simulations become too costly and (ii) the system
enters the DSC regime, as outlined in Sec. III. Thus, since
other, perturbative approaches are more suitable at DSC, we
expect our method to be most useful in the intermediate USC
regime. Further improvements of our numerical approach can
be made by careful choice of parameters, e.g.,cavity length L.
Increasing L in order to extend the maximal simulation times,
or to decrease the free spectral range of the cavity, would
result in a larger number of modes in the field below the UV
cutoff that need to be taken into account. However, since the
resulting chain length scales linearly in the cavity length, the
increase in computational costs (cf. [43]) may well be feasible.
This could prove useful for further investigations of systems,
e.g.,motivated by concrete experimental setups.

V. CONCLUSIONS AND OUTLOOK

In summary, we have investigated the low-energy sector
and time dynamics of a giant atom coupled to a waveguide,
beyond the rotating-wave approximation. We have outlined
in detail how a prototypical model describing a giant atom
coupled to all noninteracting field modes below a physically
well-motivated UV cutoff can be conveniently cast into a
form which is amenable to efficient numerical treatment using
matrix-product states. This approach has enabled us to com-
pute the low-energy spectrum of the system at highly elevated
coupling strengths, i.e., going beyond the single-excitation
subspace and identifying the onset of different strong cou-
pling regimes. Based on previous findings in the context of
the thoroughly explored standard quantum Rabi model, we
have identified these regimes as ultra-strong and deep-strong
coupling limits. In contrast to earlier work, we have described
the coupling between emitter and waveguide not as a pointlike
coupling, but using a profile function with a finite spread,
suppressing the coupling to high-frequency field modes and
allowing for a UV cutoff. Since the presented approach is
numerically exact and provides full access to a variety of
system and bath observables, we were able to analyze how the
contributions to the ground- and first excited state energies are
distributed among the system, field, and interaction Hamilto-
nians. Using our numerical toolbox, we have calculated the
low-lying eigenstates with up to ≈10 excitations in the entire
system, including bath and emitter. Based on the relatively
low computational costs of these simulations, our study paves
the way for further numerical investigations of waveguide
quantum electrodynamics with multiple giant atoms in all
coupling regimes. Furthermore, we have studied the time
evolution of the composite system in an acoustodynamical

FIG. 8. Energy density emitted by two giant atoms, as in
Fig. 1(c), initialized in entangled Bell states, in (a) for triplet and
in (b) the singlet state, as the initial state. Each atom has two
coupling points which are arranged in a braided configuration,
i.e., neighboring points are separated by τ/2 and belong to alter-
nating atoms. �1τ/(2π ) = �2τ/(2π ) = 5.0, λ1 = λ2 = 0.208, τ =
L/10, d = L/300. (For details, see Appendix E.)

setting, which may be realized by coupling a superconducting
qubit at several locations to an acoustic waveguide. It has
previously been suggested that such setups, when operated in
the non-Markovian limit, can host bound states characterized
by a persistent exchange of energy between the artificial atom
and its environment. Here we have explicitly taken into ac-
count the significant time delay caused by a finite propagation
speed of the acoustic modes, to investigate the pronounced
non-Markovian features that arise as a consequence. In con-
trast to earlier works, we have not been restricted to the
single-excitation subspace, and demonstrated the emergence
and robustness of oscillating bound states over a wide param-
eter range. In particular, the breakdown of the rotating-wave
approximation can be carefully monitored by applying our
ansatz to the models with and without counter-rotating terms,
respectively.

Beyond the scope of this work, which focuses on single
giant atoms, the chain transformation approach opens up the
opportunity to also nonperturbatively study systems com-
posed of two or several giant atoms coupled to a common
environment, and within the ultra-strong coupling regime. In
fact, already within the rotating-wave approximation, it can
offer advantages since simulations of chain transformed sys-
tems, based on matrix-product states, can treat many numbers
of excitations in the system without any adjustments, whereas
the Hilbert space dimension of direct diagonalization scales
unfavorably.

The investigation of systems with several atoms and many
excitations is motivated by intriguing phenomena that already
arise within the single-excitation subspace and the rotating-
wave approximation. Appendix A and Fig. 8 present two
examples of this: The former derives the formation of an
oscillating bound state between two giant atoms. The latter
shows the emission of radiation from two giant atoms initially
prepared as Bell states. Depending on the relative phase of the
Bell state, either all energy is radiated away into the waveg-
uide or part of it remains bound in the field between the two
atoms. Future research directions include the investigation of
super-radiance, chiral quantum acoustics with and without
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an intrinsic time delay, and explicitly time-dependent models
(see, also, [44]), to implement gates between giant atoms.

At sufficiently strong couplings, it also becomes impor-
tant to go beyond the two-level approximation and consider
higher-lying excited states of the emitter. Numerical simu-
lations based on the matrix-product state ansatz can treat
few-level emitters, and thus the techniques employed in
this work can readily be adapted for future studies of non-
Markovian dynamics beyond the two-level approximation at
strong couplings.
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APPENDIX A: OSCILLATING BOUND STATES
OF TWO GIANT ATOMS

In this Appendix, we study the dynamics of two gi-
ant atoms coupled to a common acoustic waveguide within
the rotating-wave approximation and in the non-Markovian
regime, and sketch the emergence of oscillating bound states
in such setups. Each atom is modeled as a two-level system
and couples to the acoustic field at two points separated by
τ ; see Fig. 1. For the purpose of this Appendix, the total
Hamiltonian of the system reads H = H0 + Hint , where [45]

H0 =
∑
j=1,2

�σ+
j σ−

j +
∑
ν=r,l

∫
dωp ωp aν (ωp)a†

ν (ωp) (A1)

is the total energy of the quantum emitters and of the acoustic
modes, and

Hint =
√

γ

4π

∑
ν=r,l

∫
dωp

[
σ−

1 a†
ν (ωp)e−ikνx1 (1 + e−ikν τ )

+ σ−
2 a†

ν (ωp)e−ikνx2 (1 + e−ikν τ ) + H.c.
]

(A2)

is the interaction between the emitters and the modes, with
σ+ = |e〉〈g|, σ− = |g〉〈e| and the relaxation rate γ . Here the
indices r and l refer to right-moving and left-moving modes,
respectively. In Eqs. (A1) and (A2), � denotes the emitters’
frequency, kr ≡ ωp/c (kl ≡ −ωp/c) denotes the wave vector
of the right (left) propagating mode, c is the speed of sound,
and x1 = 0 (x2 = τs) is the position of the left-most contact
point of the first (second) emitter.

We focus on the single-excitation subspace and are inter-
ested in parameter regimes which give rise not only to purely
dissipative dynamics, but display additional features. Taking
into account the mirror symmetry of the setup, we make the
ansatz

|ψ±〉 = β±(σ+
1 ± σ+

2 )|00〉|vac〉

+
∫
R

dωpα±(ωp)[a†
r (ωp) ± a†

l (ωp)]|00〉|vac〉, (A3)

TABLE II. Conditions for the existence of symmetric and anti-
symmetric dark states.

Case Condition 1 Condition 2

Symmetric nτ

4τs
∈ Z �τ = πn

2
τ

τs
− γ τ sin(πn/2)

Antisymmetric nτ

4τs
= k + 1

2 , k ∈ Z �τ = πn
2

τ

τs
+ γ τ sin(πn/2)

where β+ and β− are associated with symmetric and anti-
symmetric dark-state solutions, respectively. By substituting
this ansatz (A3) into the Schrödinger equation of the system,
integrating out the phonons, and then applying a Laplace
transformation to the resulting equation of motion, we obtain
the probability amplitude of the dark-state solutions we are
looking for. This procedure is a generalization of the result
derived in Ref. [8] to two emitters. In this way, the results
shown in Fig. 9 and discussed below were obtained, i.e., from
solving the coupled, time-dependent differential equations
for the populations of two atoms and their time derivatives
(p(1)

e , ṗ(1)
e , p(2)

e , and ṗ(2)
e ) numerically.

As in the main text, we denote the separation between two
legs of the same atom as τ , while the position of the first leg
of the second atom is located at τs < τ . This geometry is also
referred to as the braided configuration [6]. We find a set of
criteria to judge whether dark states are present in the system.
These conditions are summarized in Table II; a symmetric
(antisymmetric) dark-state solution exists if the correspond-
ing conditions are fulfilled for any n ∈ N. In that case, the
probability amplitudes of the symmetric and antisymmetric
solutions, respectively, will have the form

β+(t ) = eiπnt/2τs

2

{
1 − γ τ

[
1 +

(
1 + τs

τ

)
cos(πn/2)

+ 2i
τs

τ
sin(πn/2)

]}−1

, (A4)

β−(t ) = 1

2

eiπnt/2τs

1 + γ τ [1 − (1 − τs/τ ) cos(πn/2)]
. (A5)

An oscillating bound state in the two-atom setup can be
found in cases where the dark-state conditions in Table II
are fulfilled for various n. In Fig. 9, we show the resulting
dynamics in different parameter regimes, but all in the non-
Markovian regime where γ τ > 1. While Fig. 9(a) displays
a fast decay of the initial excitation, Figs. 9(b) and 9(c)
show the emergence of dark states. In the long-time limit,
these do not decay despite their dissipative environment. The
setup corresponding to Fig. 9(b) hosts a symmetric dark state
for n = 2 (compare Table II). In Fig. 9(c), one symmetric
(n = 10) and two antisymmetric (n = 9, 11) dark states are
present. More explicitly, the long-time limit of the initially
excited atom is given by p(1)

e (t ) = |β+
n=2(t )|2 in Fig. 9(b), and

by p(1)
e (t ) = |β−

n=9(t ) + β−
n=11(t ) + β+

n=10(t )|2 in Fig. 9(c).

APPENDIX B: SMEARING FUNCTIONS FOR
ALTERNATIVE COUPLING POINT PROFILES

As mentioned in Sec. II, other smearing functions than
the Gaussian profile (6) could be used to model the coupling
points and to capture the coupling’s frequency dependence.
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FIG. 9. Population dynamics of coupled system. Red solid curves: population dynamics p(1)
e (t ) of atom 1, initially prepared in the excited

state. Blue dashed curves: population dynamics p(2)
e (t ) of atom 2, initially prepared in the ground state. Parameters: (a) � = 40π, γ τ =

4, τs/τ = 0.39; (b) � = 40π, γ τ = 4, τs/τ = 0.025; (c) � = 10π, γ τ = π, τs/τ = 0.5.

Some generic examples, all of which are normalized as∫
dx f s(x) = 1, are

Lorentzian : fL(x) = d

π (d2 + x2)
,

Rectangle : fR(x) = 1

2d
χ[−d,d](x),

Dirac delta : fD(x) = δ(x), (B1)

where 2d for the Lorentzian and the rectangle function rep-
resents the (effective) diameter of the coupling point. In the
calculation of the coupling coefficients f j , assuming that d �
L, we may replace

∫ L
0 dx in (9) by

∫ ∞
−∞ dx , and obtain

f L
j = −i

√
|k j |
2L

e−|k j |d ,

f R
j = −i

√
|k j |
2L

sin(k jd )

k jd
,

f D
j = −i

√
|k j |
2L

. (B2)

Here, the UV divergence of the δ coupling becomes evident
since the coefficients f D

j diverge as j → ∞, which makes it
difficult to introduce a UV cutoff and limit the calculations to
a finite number N < ∞ of field modes.

APPENDIX C: LANCZOS ALGORITHM AND ITS
IMPLEMENTATION

Here we review the Lanczos algorithm [46–52] which we
used to cast the field Hamiltonian into the chain form (15).
The arithmetically exact form of the algorithm is severely
impacted by roundoff errors in any numerical implementa-
tion [46,47], and hence reorthogonalization of the calculated
vectors is necessary. Here, partial reorthogonalization [48]
provides a method to save the numerical costs of reorthog-
onalization by monitoring the loss in orthogonality over the
iterative steps of the Lanczos algorithm and only triggering
reorthogonalization where necessary. (Our numerical imple-
mentation of this method, as outlined in the following, is
similar to [51,52] which, however, consider complex symmet-
ric matrices A.)

In its simplest form, the Lanczos algorithm takes a Hermi-
tian matrix A and a starting vector v as inputs, and it returns
two matrices T and Q, such that T is tridiagonal and Q is
unitary with

Q†AQ = T . (C1)

The columns of Q = (v1, . . . , vn) correspond to the orthonor-
mal basis vectors of the transformation, and v1 = v/‖v‖.

The simple form of the algorithm is easily derived by
noting that the jth column of the equation AQ = QT yields

Av j = β j−1v j−1 + α jv j + β jv j+1. (C2)

The version of the exact simple Lanczos algorithm which is
most stable in numerical implementations is

Lanczos algorithm:

v0 = 0; β0 = 0;

v1 = v/‖v‖;

for j = 1 to n :

w = Av j − β j−1v j−1;

α j = w†v j ;

r j = w − α jv j ;

β j = ‖r j‖;

if β j = 0 : end;

v j+1 = r j/β j ;

end.

In practical implementations, the break condition can be re-
placed by β j < ε for a sufficiently small bound.

In finite precision arithmetic, rounding errors occur in
(C2), which can be represented by an error vector,

Av j = β j−1v j−1 + α jv j + β jv j+1 + f j . (C3)

Thus, defining ξk, j = v†
kv j as a symbol for the inner products

of the iteratively obtained vectors, these no longer fulfill the
ideal Kronecker relation ξk, j = δk, j . A key point is now that
for the Lanczos algorithm to remain stable, it is not necessary
to reorthogonalize all vectors, but it is sufficient to keep the v j

013702-9



NOACHTAR, KNÖRZER, AND JONSSON PHYSICAL REVIEW A 106, 013702 (2022)

semiorthogonal, i.e., max1�k� j−1 |ξk, j | � √
ε, for the round-

off unit ε. Hence, reorthogonalization is only required when
this bound is violated at any iteration step of the algorithm.

The growth of the ξk, j elements is determined by the recur-
rence relations [48],

β jξk, j+1 = βkξ j,k+1 + αkξ j,k − α jξk, j

+βk−1ξ j,k−1r − β j−1ξk, j−1 + v†
j fk − v†

k f j, (C4)

together with ξ j, j = 1 and ξk,k−1 = v†
kvk−1. These, however,

cannot be exactly calculated in numerical implementations
since the error vectors fk are not known. Instead, the idea of
partial reorthogonalization is to give an estimate for the terms
θk, j ≡ v†

j fk − v†
k f j and ξ j, j+1 by simulating them with random

numbers,

ξ j, j+1 = nε
β1

β j
�, � ∈ N (0, 0.6), (C5)

v†
j fk − v†

k f j = ε(βk + β j )�, � ∈ N (0, 0.3), (C6)

where N (0, χ ) is a zero mean normal distribution with vari-
ance χ . These estimates are then used in the original version
of the algorithm to determine which vectors, if any, should be
reorthogonalized at any given step of the algorithm [48]. After
a reorthogonalization has occurred, the relevant ξk, j elements
are reset to a normal distribution,

ξk, j+1 = ε�, � ∈ N (0, 1.5). (C7)

For our purpose, we found the following simplified version to
be sufficient, applying full orthogonalization to all vectors (we
also used wider normal distributions, as in [51]):

Lanczos algorithm with partial orthogonalization:

v0 = 0; β0 = 0;

v1 = v/‖v‖;

for j = 1 to n :

w = Av j ;

α j = v†
j w;

r j = w − α jv j − β j−1v j−1;

β j = ‖r j‖;

Compute ξk, j+1 for k = 1, . . . , j − 1 using Eq. (C4);

Set ξ j, j+1 using Eq. (C5);

Set ξ j+1, j+1 = 1;

if max1�k� j (|ξk, j+1|) � √
ε :

Orthogonalize r j against v1, . . . , v j ;

Perform orthogonalization in the next iteration;

Reset ξk, j+1 using Eq. (C7);

Recalculate β j = ‖r j‖;

if β j = 0 : end;

v j+1 = r j/β j ;

end. (C8)

For setups where b different emitters couple to the field,
block Lanczos algorithms can be used to transform the field
Hamiltonian. The block Lanczos procedure takes a Hermitian
matrix A ∈ Cn×n and an orthonormal set of complex vectors
Q1 = (v1, . . . , vb) as inputs. The algorithm then iteratively
computes a unitary basis Q = (Q1, . . . , Qp) and a block tridi-
agonal matrix T such that

Q†AQ = T =

⎛
⎜⎜⎜⎜⎝

M1 B†
1 0 . . .

B1 M2 B†
2

. . .

0 B2
. . .

. . .
...

. . .
. . .

⎞
⎟⎟⎟⎟⎠, (C9)

where Mi, Bi ∈ Cb×b. The Mi = M†
i are Hermitian, and the Bi

are upper triangular. Analogously to the single-vector Lanczos
algorithm, we get the following procedure:

Block Lanczos algorithm:

p = n/b;

Q0, B0 = 0;

for j = 1 to p :

Y = AQj ;

Mj = Q†
jY ;

Rj = Y − QjMj − Qj−1B†
j−1;

if max(‖Rj‖) = 0 : end;

Qj+1Bj = Rj ; (QR factorization of Rj )

end.

Also, the block Lanczos algorithm needs to be stabilized in
numerical implementations (e.g.,see [52]).

APPENDIX D: OVERLAPS OF GROUND AND FIRST
EXCITED STATES

As described in Sec. III, we numerically obtained the
ground state of the coupled system |ψGS〉 and its first excited
state |ψES〉 for coupling strengths up to λ � 1.8. In addition to
the discussion there, Fig. 10 further characterizes these states
by presenting their overlap with the states |g, 0〉 and |e, 0〉,
respectively, as well as the overlap of the state â†

1|ψGS〉, ob-
tained by applying the creation operator of the lowest energy
eigenmode of the free field to |ψES〉.

APPENDIX E: ENERGY DENSITY CALCULATION

Figure 8 shows the field energy density in the waveguide
for a setup with two giant atoms. The underlying calculations
and expressions are detailed in the following. The energy
density of the massless field in one dimension (1D),

T̂00(x) = 1
2 {π̂2(x) + [∂xφ̂(x)]2} = π̂2

R (x) + π̂2
L (x), (E1)

is given by the sum of the left-moving and right-moving
energy density, which in turn are given by the squares of the
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FIG. 10. Overlap of (a) |ψGS〉 and |g, 0〉, (b) |ψES〉 and |e, 0〉, and (c) |ψES〉 and â†
1|ψGS〉, as a function of the coupling strength λ.

left- and right-moving sectors of the field momentum,

π̂R(x) =
∑
j�1

(−i)

√
|k j |
2L

(
ei 2π j

L xâ j − e−i 2π j
L xâ†

j

)
,

π̂L(x) =
∑
j�−1

(−i)

√
|k j |
2L

(
ei 2π j

L xâ j − e−i 2π j
L xâ†

j

)
. (E2)

Plugging this into (E1) readily allows for the evaluation of the
energy density expectation value from the covariance matrix
of the field modes.

In the setup of Fig. 8, the initial states of the two atoms
are entangled Bell states and the initial state of the field is the
vacuum, i.e., the system starts in the product state |�±〉 ⊗ |0〉.
In Fig. 8(a), the atoms are initialized in the triplet state |�+〉,

whereas in Fig. 8(b), they are initialized in the singlet state
|�−〉,

|�±〉 = 1√
2

(|e1g2〉 ± |g1e2〉). (E3)

The calculations for Fig. 8 were performed within the RWA.
Hence the time evolution is restricted to the single-excitation
subspace and, in the evaluation of the expectation value of
T̂00(x), terms can be discarded that do not conserve the excita-
tion number, i.e., only terms of the form â†

i â j need to be taken
into account.

The plots of Fig. 8 show that for the singlet state |�−〉, all
energy quickly radiates away from the atoms in the waveg-
uide. However, when the atoms are initialized in the triplet
state |�+〉, then the interference between the atoms’ braided
coupling points results in a significant amount of energy re-
maining bound between the outer pairs of coupling points.
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