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Abstract
English
Predictive maintenance is currently focused on individual production machines, mainly in stationary environments.
Thanks to scientific and technical advances in connected car services, it is now possible to apply predictive
maintenance applications to fleet vehicles. This can improve product quality by giving feedback about vehicle
component behavior in customer fleets to Research & Development departments as well as service quality by
giving feedback about the actual vehicle components’ conditions to customers.
The adaption of common predictive maintenance use cases to vehicle fleets needs to consider the specific char-
acteristics of automotive development and is not thoroughly covered by research yet. The first characteristic
contains the highly unequal environmental impact on the individual vehicles, caused by the multitude of different
customer behavior profiles and the mobility and dynamics of the technical system. The second characteristic is the
limitation in observation data by privacy regulations and broadwidth costs. A third characteristic is the fleet size.
Customer vehicle fleets are large in size and therefore allow new statistical fleet analysis mechanisms.
This thesis contributes to research by developing a component repository for the creation of predictive maintenance
models in automotive applications. This repository aims to generalize the similarities of the environment as far as
possible while respecting its specifics as exhaustively as necessary.
This work consists of five artifacts that collectively aim to enhance the development efficiency of predictive
maintenance models in automotive applications. The first artifact, stemming from a structured literature research,
is a Predictive Maintenance Framework that validates the applicability of component-based software engineering in
predictive maintenance. It demonstrates the potential value of component-based software engineering in optimizing
predictive maintenance processes by identifying key requirements and benefits specific to the predictive maintenance
field. The second artifact is a Use Case Description Methodology that generalizes the description of use cases by
focusing on their inputs and outputs. This methodology facilitates the structured development of a component
repository by standardizing how use cases are documented and analyzed.
The third artifact is the Component Repository itself, which incorporates principles of modularization, well-defined
interfaces, and design principles tailored to predictive maintenance use cases. The fourth artifact is a Development
Workflow for creating and utilizing the components within the repository. The efficiency of this workflow is
validated through a discrete event simulation model and extensive sensitivity analysis, affirming its effectiveness in
real-world scenarios. The fifth artifact is a Descriptive Attributes System that enables objects within the repository
to be systematically described, compared, and refined.
Together, these artifacts create a validated component repository system that enhances development efficiency and
reduces costs in a rapidly growing industrial sector. This system is particularly tailored and applicable to the
automotive industry, accommodating its unique characteristics and requirements.

Deutsch
Predictive Maintenance konzentriert sich derzeit auf einzelne Produktionsmaschinen, hauptsächlich in stationären
Umgebungen. Dank wissenschaftlicher und technischer Fortschritte in vernetzten Fahrzeugdiensten ist es nun
möglich, Predictive-Maintenance-Anwendungen auf Fahrzeugflotten anzuwenden. Dies kann die Produktqualität
verbessern, indem Feedback über das Verhalten von Fahrzeugkomponenten in Kundenflotten an die Forschungs-
und Entwicklungsabteilungen gegeben wird, sowie die Servicequalität, indem Kunden Rückmeldungen über den
tatsächlichen Zustand der Fahrzeugkomponenten erhalten.
Die Anpassung gängiger Predictive-Maintenance-Anwendungsfälle an Fahrzeugflotten muss die spezifischen Merk-
male der automobilen Entwicklung berücksichtigen und ist in der Forschung noch nicht umfassend behandelt
worden. Das erste Merkmal umfasst die stark ungleiche Umweltauswirkung auf die einzelnen Fahrzeuge, verursacht
durch die Vielzahl unterschiedlicher Fahrverhaltensprofile sowie die Mobilität und Dynamik des technischen
Systems. Das zweite Merkmal ist die Begrenzung der Beobachtungsdaten durch Datenschutzbestimmungen und
Übertragungskosten. Ein drittes Merkmal ist die Flottengröße. Kundenfahrzeugflotten sind groß und ermöglichen
daher neue statistische Flottenanalysemechanismen.
Diese Arbeit trägt zur Forschung bei, indem sie ein Komponentensystem für die Erstellung von Predictive-
Maintenance-Modellen in Automobilanwendungen entwickelt. Dieses System zielt darauf ab, die Gemeinsamkeiten
der Umgebung so weit wie möglich zu verallgemeinern, während ihre Besonderheiten so umfassend wie nötig
berücksichtigt werden.
Diese Arbeit besteht aus fünf Artefakten, die gemeinsam darauf abzielen, die Entwicklungseffizienz von Predictive-
Maintenance-Modellen in Automobilanwendungen zu verbessern. Das erste Artefakt, das aus einer strukturierten
Literaturrecherche stammt, ist ein Predictive Maintenance Framework, das die Anwendbarkeit der komponen-
tenbasierten Softwareentwicklung in der Predictive Maintenance validiert. Es zeigt den potenziellen Wert der
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komponentenbasierten Softwareentwicklung bei der Optimierung von Predictive-Maintenance-Prozessen, indem es
zentrale Anforderungen und Vorteile identifiziert, die spezifisch für das Predictive-Maintenance-Feld sind. Das
zweite Artefakt ist eine Use Case Description Methodology, die die Beschreibung von Anwendungsfällen verallge-
meinert, indem sie sich auf deren Eingaben und Ausgaben konzentriert. Diese Methodik erleichtert die strukturierte
Entwicklung eines Komponenten-Repositories, indem sie standardisiert, wie Anwendungsfälle dokumentiert und
analysiert werden.
Das dritte Artefakt ist das Komponenten-Repository selbst, das Prinzipien der Modularisierung, gut definierte
Schnittstellen und Designprinzipien enthält, die auf Predictive-Maintenance-Anwendungsfälle zugeschnitten sind.
Das vierte Artefakt ist ein Entwicklungs-Workflow zur Erstellung und Nutzung der Komponenten innerhalb des
Repositories. Die Effizienz dieses Workflows wird durch ein diskretes Ereignissimulationsmodell und umfangreiche
Sensitivitätsanalysen validiert, die seine Wirksamkeit in realen Szenarien bestätigen. Das fünfte Artefakt ist ein
Descriptive Attributes System, das es ermöglicht, Objekte innerhalb des Repositories systematisch zu beschreiben,
zu vergleichen und zu verfeinern.
Zusammen schaffen diese Artefakte ein validiertes Komponenten-Repository-System, das die Entwicklungseffizienz
verbessert und die Kosten in einem schnell wachsenden Industriesektor senkt. Dieses System ist speziell auf die
Automobilindustrie zugeschnitten und anwendbar, wobei es deren einzigartige Merkmale und Anforderungen
berücksichtigt.

Keywords — Predictive Maintenance, Machine Learning, AIOps, Component-based Software Engineering,
Automotive Applications, Fleet Data.
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Chapter 1

Introduction

This dissertation addresses the increasingly complex field of Predictive Maintenance (PdM) in

industrial applications, where the integration of advanced analytical models has become vital to

operational efficiency and system reliability. Despite its widespread recognition and adoption

across various sectors, the implementation of PdM often encounters significant challenges due

to the diverse and dynamic nature of industrial environments. This work is motivated by the

critical need to enhance the development efficiency and accuracy of PdM models, especially

in contexts where system failures can result in substantial economic and safety consequences.

Through a systematic exploration of methodological innovations, theoretical advancements,

and practical applications, this dissertation seeks to substantiate and refine the frameworks

necessary for the effective deployment of PdM strategies. The subsequent sections detail the

background, motivation, specific research questions and objectives, the methodology employed,

the contributions of this research, and the overall structure of the thesis.

1.1 Background

PdM represents a forward-looking approach to maintenance that anticipates equipment failures

and predicts potential downtimes by harnessing the capabilities of data analytics, Machine

Learning (ML), and ultimately Artificial Intelligence (AI). This strategy involves continuously

monitoring equipment conditions through sensors and data collection systems, analyzing this

data to detect anomalies and patterns that precede equipment failures.

Industrial AI, ML, and PdM are distinct yet interconnected terms within the realm of advanced

technological applications in industrial settings. Industrial AI refers to the deployment of artificial

intelligence techniques specifically tailored for industrial processes, aiming to enhance operational
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Chapter 1 Introduction

efficiency, productivity, and decision-making through intelligent data analysis and automation.

ML, a subset of AI, involves algorithms and statistical models that enable systems to improve

their performance on specific tasks through experience and data-driven learning, without explicit

programming for each scenario. PdM, on the other hand, focuses on forecasting the future

operational condition of machinery and systems using data analysis, ML algorithms, and domain

knowledge, allowing for timely maintenance actions to prevent unexpected failures and optimize

maintenance schedules.

In the automotive industry, PdM is particularly crucial due to the high costs associated with

production downtimes and the complex nature of automotive manufacturing processes. Im-

plementing PdM allows manufacturers to schedule maintenance effectively, thereby not only

avoiding unplanned operational halts but also extending the lifespan of equipment and reducing

maintenance-related costs. The ability to forecast potential failures is particularly advantageous

in an industry driven by stringent quality standards and tight production schedules. Moreover,

PdM supports the industry’s agility, facilitating rapid adjustments to production processes in

response to changing market demands or new product introductions (Pophaley and Vyas, 2010).

The flowchart depicted in Figure 1 illustrates the process of PdM:

1. Start: The process begins with the initiation of the PdM system.

2. Data Collection: At this stage, relevant data is collected from various sensors and

monitoring systems. This data may include information about the machinery’s operating

conditions, performance metrics, and other relevant parameters (J. Lee, F. Wu, et al.,

2014).

3. Data Analysis: The collected data is then analyzed using statistical methods, ML

algorithms, or other analytical techniques to extract meaningful insights (Mobley, 2002a).

4. Failure Prediction: Based on the analysis, the system predicts potential failures or

malfunctions in the machinery. This prediction enables proactive maintenance actions to

be planned (Atzori, Iera, and Morabito, 2010).

5. Decision Making: In this stage, decisions are made regarding the necessary maintenance

actions. This may include scheduling repairs, ordering replacement parts, or other actions

to prevent the predicted failure (Rodič, 2017).

6. Maintenance Action: The planned maintenance actions are carried out. This may

involve repairing or replacing components, adjusting operating parameters, or other actions

to ensure the continued efficient operation of the machinery (X. Li et al., 2021).

2



1.1 Background

Start Data Collection Data Analysis Failure Prediction

Decision MakingMaintenance ActionEnd

Figure 1: Flowchart of the Predictive Maintenance Process (own figure).

7. End: The process concludes once the maintenance actions are successfully completed.

The flowchart represents a high-level overview of the PdM process, highlighting the key stages

and the flow of information and actions from one stage to the next. It emphasizes the data-driven

nature of PdM and the integration of advanced analytical techniques to support proactive

maintenance actions. This approach aligns with the broader trends in Industry 4.0 (I4.0) and the

growing importance of data and analytics in modern manufacturing and automotive applications

(Poor, Basl, and Zenisek, 2019).

PdM plays a key role in sustainable manufacturing and production systems (Achouch et al.,

2022), and it is considered the leading one in maintenance technology (C. Chen et al., 2021).

The concept of PdM is also extended to I4.0, representing the next evolution step in industrial

maintenance development (Poor, Basl, and Zenisek, 2019).

In the initial stages of technological advancement, the design and development of PdM models

were decentralized within development teams of individual components. Each team, working in

isolation, created models that were often highly similar to one another, if not identical. This

approach is reflective of the early maintenance strategies, where Condition-based Monitoring

(CbM) and PdM were developed to provide valuable information for establishing maintenance

policies (Zio and Compare, 2013). The decentralization led to a focus on short-term strategies

and economic factors, often favoring corrective maintenance over PdM (Ruiz and Guevara, 2020).

The emergence of Over-The-Air (OTA) data transmission technology marked a significant shift

in this paradigm. With an increase in customer data availability through OTA, a trend for

centralization of PdM model development began to take shape (Dalzochio et al., 2020). This

centralization allowed the various aspects of PdM, which were previously handled by individual

teams, to be managed by a specialized central team (Mi et al., 2021).

The move towards centralization brought with it several benefits, primarily by leveraging

economy of scale factors (Yiwei Wang et al., 2017). By consolidating PdM under one umbrella,

organizations could ensure consistency, foster innovation, and rationalize efforts (Achouch et al.,

2022). However, this centralization also introduced new challenges, particularly the need for a
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Chapter 1 Introduction

higher level of organization and management (Mi et al., 2021).

The centralization of PdM model development represents not just a technological advancement

but also a strategic shift in how organizations approach maintenance (Poor, Basl, and Zenisek,

2019). It emphasizes the growing importance of data-driven decision-making and highlights the

need for agile, adaptable structures that can respond to rapidly changing technological landscapes

(Bousdekis, Apostolou, and Mentzas, 2020).

The shift from decentralization to centralization in PdM model development symbolizes the

industry’s move towards a more unified, efficient, and innovative approach (Achouch et al., 2022).

By bringing together different aspects of PdM under one roof, organizations can achieve greater

synergies and capitalize on the potential efficiencies of scale (Yiwei Wang et al., 2017). However,

this shift also calls for a new way of thinking about organizational structures, methodologies,

and technologies, all of which are central to the focus of this research (Dalzochio et al., 2020).

PdM, as a concept, has two distinct applications: as a manufacturing application and as a

Cyber-Physical Product Service System (CPPSS).

In the context of manufacturing, PdM is utilized to monitor and analyze the condition of

machinery and equipment within a production environment. It leverages data analytics, ML,

and other advanced technologies to predict potential failures and schedule timely maintenance

(J. Lee, F. Wu, et al., 2014). This approach enhances efficiency, reduces downtime, and supports

the overall optimization of the manufacturing process (Mobley, 2002a).

On the other hand, as a CPPSS, PdM extends beyond the manufacturing floor to customer

vehicles as products of the automotive industry.

A CPPSS in the automotive industry represents a sophisticated integration of Cyber-Physical

System (CPS) and Product Service Systems Product-Service System (PSS), extending traditional

manufacturing boundaries to include real-time monitoring, PdM, and personalized services

directly within customer vehicles. This system not only connects with the vehicle’s onboard

systems to collect data on performance metrics but also analyzes this data to predict and

pre-empt potential issues, thereby enabling proactive maintenance strategies that enhance vehicle

performance and customer experience. Such integration allows CPPSS to offer highly responsive

and personalized maintenance services, meeting the evolving demands of modern automotive

consumers and improving overall operational efficiency (Rodič, 2017; X. Li et al., 2021; Atzori,

Iera, and Morabito, 2010; Porter and Heppelmann, 2015).

These two applications of PdM, though interconnected, represent different facets of the technology,
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each with its unique challenges and opportunities. The manufacturing application focuses on

optimizing industrial processes, while the CPPSS approach emphasizes enhancing product

functionality and customer engagement.

PdM presents both unique challenges and opportunities in the context of manufacturing and as

a CPPSS.

Challenges

• Technological Hurdles: Implementing PdM requires advanced technologies such as data

analytics, ML, and real-time monitoring. Integrating these technologies can be complex

and costly (J. Lee, F. Wu, et al., 2014).

• Data Privacy and Ethics: The collection and analysis of data in PdM raise concerns

about privacy and ethical considerations, especially in the context of customer vehicles

(Atzori, Iera, and Morabito, 2010).

• Market Trends: Adapting to rapidly changing market demands and technological ad-

vancements requires continuous innovation and flexibility in PdM strategies (Poor, Basl,

and Zenisek, 2019).

Opportunities

• Enhanced Efficiency: PdM enables organizations to optimize maintenance schedules,

reduce downtime, and enhance overall efficiency (Mobley, 2002a).

• Customer-Centric Services: As a CPPSS, PdM allows for personalized and responsive

maintenance services for automotive consumers, enhancing customer experience (Porter

and Heppelmann, 2015).

• Strategic Innovation: The integration of PdM with I4.0 offers opportunities for strategic

innovation and alignment with future industrial trends (Rodič, 2017).

The challenges and opportunities associated with PdM reflect the multifaceted nature of this

approach. While technological and ethical challenges must be addressed, the potential benefits

in efficiency, customer engagement, and strategic alignment present significant opportunities for

organizations in the manufacturing and automotive sectors.

The improvement of the Technology Readiness Level (TRL) in the development of PdM models

for automotive fleet applications holds significant relevance and impact. The TRL is a systematic

measurement framework used to assess the maturity and readiness of a particular technology. It
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Chapter 1 Introduction

consists of a scale ranging from 1 to 9, where each level represents a different stage of technological

development, from the initial concept (TRL 1) to full commercial deployment (TRL 9). The

TRL serves as a valuable tool for researchers, developers, and stakeholders to understand the

progress, risks, and challenges associated with a technology, guiding decision-making and resource

allocation (Boardman and B. Sauser, 2006; Ramirez-Marquez and B. J. Sauser, 2009).

Enhancing the TRL of PdM models leads to more refined and efficient development processes,

translating to cost savings by eliminating unnecessary redundancies and allocating resources more

effectively (J. Lee, F. Wu, et al., 2014). This improvement also enables faster implementation

and deployment, supporting rapid response to market demands and aligning with the fast-paced

nature of the automotive industry (Mobley, 2002a).

Furthermore, fostering a collaborative environment allows practitioners to exchange knowledge

and insights, leading to continuous learning and innovation in PdM model development (Poor,

Basl, and Zenisek, 2019). The insights gained from automotive fleet applications are not confined

to this domain alone; they can be translated and applied to other industrial AI application areas,

broadening the scope and impact of PdM models (Rodič, 2017). Improving modularization and

reusability in the development of PdM models is closely tied to the advancement of the TRL.

This work contributes to the advancement of TRL in several key ways. By integrating a novel

framework that emphasizes agile development, modular design, and continuous integration, this

work enhances the speed and efficiency of developing PdM models. The proposed framework

breaks down the development process into discrete, manageable components that can be worked

on simultaneously by distributed teams, thereby accelerating the overall TRL progression.

Additionally, the incorporation of a simulation-based validation strategy ensures iterative testing

and refinement of components before their integration into the larger PdM system. This

systematic approach not only increases the maturity of individual components but also facilitates

a smoother transition through the TRL stages, ultimately achieving higher levels of technology

readiness in a more structured and reliable manner. The collaborative environment fostered by

this framework allows for continuous knowledge exchange and innovation, further driving the

advancement of PdM models across various industrial AI applications.

Modularization is the practice of dividing a system into smaller, self-contained modules. This

approach allows for parallel development, testing, and maintenance of individual components.

Improving modularization in PdM model development enhances the TRL by enabling more

efficient validation, reducing complexity, and fostering innovation (Baldwin and Clark, 2000),

6



1.2 Motivation

(Parnas, 1972).

Reusability refers to the ability to use existing components or modules across different contexts

or applications. Enhancing reusability in PdM model development promotes the TRL by

leveraging proven solutions, minimizing redundancy, and accelerating the development process

(Cohen and Krut, 2018), (Biggerstaff and Perlis, 1989), (Frakes and Terry, 1996).

The relationship between improving modularization, reusability, and the TRL can be understood

through the following aspects:

• Cost Efficiency: By improving modularization and reusability, organizations can reduce

development costs and resource allocation, thereby enhancing the TRL (Lim, 1994).

• Speed to Market: Enhanced modularization and reusability enable faster development cy-

cles, reducing time-to-market and aligning with the rapid pace of technological advancement

(Clements and Northrop, 2002).

• Quality and Reliability: Improved modularization and reusability contribute to higher

quality and reliability in PdM models, as validated components can be reused with

confidence (Mili, 2002).

• Adaptability: The flexibility afforded by modularization and reusability allows for easier

adaptation to changing requirements, supporting the continuous evolution of the TRL

(Szyperski, Gruntz, and Murer, 2009).

In conclusion, the improvement of modularization and reusability in PdM model development

is a strategic approach to enhance the TRL. It fosters a more agile, cost-effective, and robust

development process, positioning PdM as a key technology in the automotive industry and

beyond (Ravichandar, 2022).

The relevance and impact of improving the TRL in PdM model development extend beyond

mere technological advancement. It signifies a strategic shift towards more cost-effective, agile,

and collaborative practices. The potential for cross-domain applicability further underscores the

importance of this advancement in shaping the future landscape of industrial AI and PdM.

1.2 Motivation

PdM represents a significant advancement in industrial operations, offering the potential to predict

and prevent system failures before they occur. The economic stakes associated with unplanned

downtime in critical industries—such as manufacturing, energy, and transportation—underscore

the importance of reliable and efficient maintenance strategies.
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Despite its potential, the implementation of PdM systems often faces significant challenges.

These include complexities in data collection and processing, variability in industrial settings,

and the need for models that can adapt dynamically to changing conditions. Additionally, there

remains a substantial gap between theoretical PdM models and their practical application in

real-world settings. Advancements in PdM methodologies can lead to substantial benefits for

industries, ranging from increased operational efficiency and cost savings to enhanced safety and

environmental sustainability. For instance, better predictive capabilities can reduce the frequency

of equipment checks and maintenance, thus minimizing energy use and prolonging equipment

life. This dissertation specifically addresses gaps in methodological development, the integration

of robust data analysis frameworks, and the application of these models in diverse industrial

environments. There is a particular need for a framework that not only predicts system failures

but also integrates seamlessly with existing industrial processes. The choice of this research

topic stems from a deep-seated interest in enhancing industrial efficiency and reliability, which

are vital to global economic stability and safety. This work is also driven by a commitment to

bridging the gap between theoretical research and practical, tangible outcomes.

By addressing these critical challenges and gaps, this research aims to significantly enhance

the PdM landscape, providing actionable insights and tools that can be adopted across various

industries to mitigate risks and optimize performance.

1.3 Research Questions and Objectives

The formulation of precise Research Questions (RQs) and objectives is vital in guiding the

trajectory of any academic inquiry (Creswell, 2014). In the context of this study, which focuses

on PdM applications, the research is structured around three primary RQs. These RQs serve

as the foundation upon which the research methodology, data collection, and analysis are built

(Yin, 2018).

The methodology for designing these RQs involves a systematic approach that includes the

following steps (Kitchenham, 2004):

1. Literature Review: A comprehensive review of existing literature to identify gaps and

opportunities for research (Webster and Watson, 2002).

2. Consultation with Experts: Discussions with experts in the field to gain insights not

readily available in existing literature.

3. Preliminary Data Collection: Exploratory studies and surveys conducted to further
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refine the research focus (Easterbrook et al., 2008).

4. Alignment with Objectives: Ensuring that the RQs align well with the research objec-

tives and scope (Wohlin, 2012).

5. Feasibility Assessment: Evaluation of the resources required to answer the RQs (Runeson

and Höst, 2009).

6. Clarity and Specificity: Finalization of RQs that are clear, specific, and researchable

(Stol, Ralph, and Fitzgerald, 2016).

This research aims to address the following three RQs:

1. Is it possible to classify the development of a PdM application in a framework?

2. Is it possible to design a component repository using the similarities while respecting the

individual aspects of PdM?

3. Is it possible to reduce development costs for PdM applications?

Each of these RQs is designed to tackle specific challenges in the field of PdM, and collectively,

they aim to provide a comprehensive solution to the complexities involved in PdM applications.

The RQs are structured to provide a precise and validated approach to the study, as depicted in

Figure 2.

RQ1: Is it possible to classify the development of a PdM application in a framework?

Field Observation

RQ2: Is it possible to design a component repository using the similarities while respecting the individual aspects of PdM?

true

Literature Review

Quality Metrics 

Artifact: 
PdM Component Repository

(real world application)
CBSE Evaluation

AND

RQ3: Is it possible to reduce development costs for PdM applications?

true

true

true

Costs of Reusability

+
Costs of Modularization

R
esearch O

bjective

Benefits of 
Reusability

<

false

Figure 2: Research question structure and process flow (own figure).

RQ1: The initial RQ begins with a literature review aimed at uncovering various approaches

for categorizing the development of PdM applications. If a viable approach is found, field
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observations are conducted to validate its applicability and, if necessary, refine it based on

real-world conditions.

RQ2: The focus of the second RQ is on establishing a repository for componentized PdM models.

The repository undergoes two key evaluations:

1. CBSE Evaluation: This assesses whether the PdM model comply with Component-Based

Software Engineering (CBSE) standards for componentization.

2. Quality Metrics: This evaluation measures the performance, reliability, and overall

quality of the PdM model, ensuring that the modularization process does not compromise

their predictive accuracy.

Positive outcomes in both evaluations are required for the validation of this RQ.

RQ3: The third RQ explores the cost-benefit trade-offs involved in modularizing and reusing

PdM applications. The investigation encompasses:

1. Costs associated with Modularization

2. Expenses related to Reusability

3. Long-term Benefits of Reusability

The overarching research objective focuses on ensuring that the benefits of reusability surpass the

combined costs of modularization and reusability. This objective serves as the guiding principle

for the design and evaluation of the artifacts, as well as for the economic assessments conducted

in the research.

In summary, the research is structured around three central RQs, each designed to address distinct

yet interrelated facets of PdM. The process flow for each RQ is precisely planned to ensure both

academic rigidity and practical relevance, as outlined in Figure 2. The first RQ seeks to categorize

PdM application development through literature review and field observation. The second RQ

aims to establish a repository of modularized PdM models, ensuring they meet both CBSE

standards and quality metrics. The third RQ looks into the economic aspects of modularization

and reusability in PdM applications. Collectively, these RQs provide a comprehensive framework

for advancing the field of PdM through methodical investigation and validation.

1.4 Research Methodology

In light of the complex and interdisciplinary nature of developing a component repository process

for PdM, this research employs Design Science Research (DSR). The choice of DSR is motivated

by several factors. First, the methodology is well-suited for the development and validation of
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innovative artifacts, aligning with the research’s aim to create a component repository process

(Hevner et al., 2004). Second, DSR accommodates the involvement of multiple stakeholders,

including practitioners in an Original Equipment Manufacturer (OEM) and academic partners in

a publicly funded research consortium, thereby ensuring that the research outcomes are both

academically accurate and practically relevant (Peffers et al., 2007). Third, the interdisciplinary

nature of this work, which integrates expertise from PdM and data science, is well-supported by

DSR’s flexibility in incorporating theories and methods from various domains (Venable, Pries-

Heje, and Baskerville, 2012). Lastly, the iterative approach of DSR aligns with the research’s

continuous refinement process, involving frequent iteration loops of design and evaluation in a

real-world environment (Vaishnavi, Vaishnavi, and Kuechler, 2015). Therefore, DSR serves as an

apt methodology for this research, providing a structured yet flexible framework for addressing

its multifaceted research questions and objectives.

In the context of this research, DSR is particularly instrumental in the development and validation

of the component repository process for PdM. The methodology’s focus on artifact creation

consistently aligns with the research’s objective to break down PdM models into modular

and component-based structures. By employing DSR, the research is able to systematically

design, implement, and evaluate the component repository, ensuring that it meets the specific

requirements and constraints imposed by the real-world automotive OEM environment (Hevner

et al., 2004).

The DSR methodology offers a multitude of advantages in the field of information systems

and technology research. One of its most notable features is its structured framework, which

includes well-defined stages such as problem identification, artifact design, and evaluation (Hevner

et al., 2004). This structured approach ensures research rigidity, providing a systematic pathway

for tackling complex problems and enhancing the validity and reliability of research outcomes.

Another advantage is its focus on artifact creation, which can encompass models, frameworks,

software, and hardware solutions (Peffers et al., 2007). These artifacts serve a dual purpose: they

contribute to academic knowledge while also offering practical solutions to real-world problems,

effectively bridging the gap between academia and industry. Furthermore, DSR is inherently

iterative, promoting cycles of design, evaluation, and refinement (Vaishnavi, Vaishnavi, and

Kuechler, 2015). This iterative nature allows for the continuous improvement of the artifact,

making it adaptable to emerging technologies and changing requirements. Additionally, DSR

encourages the use of multiple evaluation methods, such as case studies, experiments, and
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simulations, offering a more holistic understanding of the artifact’s utility and effectiveness

(Gregor and A. R. Hevner, 2013). Lastly, DSR is highly interdisciplinary, allowing for the

integration of theories and methods from various domains, thereby enriching both the research

process and its outcomes (Venable, Pries-Heje, and Baskerville, 2012). Overall, DSR provides

a comprehensive, flexible, and stringent methodology for conducting research that is both

academically sound and practically relevant.

This research follows the key stages of DSR as outlined by Hevner et al. (2004). The process

begins with the identification of the research problem, followed by the definition of the objectives

for a solution. The next stage involves the design and development of the artifact, in this case,

the component repository process for PdM. This is followed by a demonstration phase where the

artifact is tested in a real-world automotive OEM setting. Subsequent evaluation is conducted

through iterative loops involving both researchers and practitioners, ensuring the artifact’s utility

and effectiveness. Finally, the research findings and contributions are communicated to the

relevant academic and industrial communities.

1.5 Contribution

This work introduces a refined methodology for the creation of PdM models, which is particularly

tailored to technical environments, emphasizing efficiency through the application of component-

based software principles and a strong focus on reusability. While the methodology is broadly

applicable, it offers specific benefits in technically constrained domains such as automotive

product development, effectively utilizing the limited spectrum of available input data types and

the specific PdM objectives (J. Lee, Bagheri, and Kao, 2015).

The contributions of this work are detailed as follows:

1. A structured literature review covering both general and automotive-specific PdM, which

substantiates the proposed PdM framework and supports the hypothesis of limited and

recurring functional building blocks for PdM models.

2. An elaborate methodology to define use cases for PdM models within the automotive

industry, which thoroughly details every technical and knowledge dependency, structures

interfaces, and establishes standards for managing PdM model development.

3. The development of a component repository structure as a collation of components. This

repository leverages the PdM framework portrayed in the literature review and the method-

ological description of use cases, providing detailed guidelines necessary for the planning
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and execution of PdM model development. It includes a comprehensive set of functional

modules that describe each phase of the model development process, complete with defined

facets and interfaces between modules.

4. The introduction of an innovative approach for component development through a priori

reusability analysis, which applies reusability measurement metrics as core design principles

and validates the approach using real-world use cases.

5. The design and validation of a workflow model that supports the development of PdMmodels

by utilizing the structured component repository and the novel component development

methodology. This model is substantiated through stringent Discrete Event Simulation

(DES), providing quantitative evidence of the contributions’ validity and the efficiency

benefits, thereby forming the basis of the cost function for this research.

6. The formulation of a formal descriptive attributes system for the input and output attributes

of components developed within the workflow model. This system not only enhances

usability but also sets the stage for future enhancements in development efficiency.

This work culminates in a sophisticated methodology that enhances the efficiency and usefulness

of PdM model development in the automotive sector, integrating comprehensive framework

validation via detailed analysis and simulations, and establishing a robust architectural foundation

for use case development and component repository structuring. This comprehensive approach is

proven to quantitatively demonstrate efficiency gains and support scalability and adaptability in

PdM practices.

1.6 Outline of the Thesis

This section provides a structured outline of the thesis, detailing the sequential arrangement

and the interconnections between the various chapters that collectively encapsulate the research

objectives, methodologies, and findings of this work.

The Literature Review chapter 2 lays the foundational knowledge and situates this research

within the existing body of scientific work, structured to methodically unfold the scope and

depth of this thesis. Initially, section 2.1 introduces specific research questions and objectives

focused on exploring the integration of CBSE principles in the development of PdM models,

aiming to identify potential efficiency gains. This is followed by section 2.3, where fundamental

concepts and terminologies pertinent to AI, PdM, and CBSE are portrayed to ensure clarity for

all readers. In section 2.4, the thesis presents an exhaustive overview of existing AI development
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methodologies and frameworks, highlighting their alignment or divergence from the practices

proposed in this work. Next, section 2.5 examines the principles of CBSE, emphasizing the

prerequisites needed for efficiency gains through its application. The chapter culminates in

section 2.6 with the presentation of the first artifact of this work—a PdM Framework developed

through structured literature research using the Natural Language Processing (NLP) topic

modeling technique Latent Dirichlet Allocation (LDA), illustrating the practical application of

the theoretical concepts discussed.

The Methods chapter 3 explains the diverse methodologies employed in this thesis, beginning with

an introduction to the chosen research design, DSR, which is thoroughly detailed in section 3.1.

Following this foundational discussion, section 3.2 describes the research environment, setting

the stage for understanding the context in which the study is conducted. The artifacts developed

during the research are then extensively analyzed and classified in section 3.3, providing a deep

dive into the tools and techniques crafted as part of this thesis. Finally, section 3.4 discusses the

ethical considerations inherent to this research, ensuring that all aspects of the study adhere to

stringent ethical standards.

The Execution chapter 4 details the practical application of the methodologies and frameworks

developed in this work, structured into several key sections. It begins with section 4.1, which

presents the Use Case Description Methodology, outlining how it captures and specifies the

requirements for PdM and AI development. This is followed by section 4.2, where the Component

Repository is discussed, explaining its role in enhancing reusability and standardization of

components. Section 4.3 conducts the a priori analysis that underpins the repository’s effectiveness,

assessing component compatibility and integration before implementation. In section 4.4, the

Component Creation Workflow is introduced, describing the procedural steps for developing and

integrating new components. Finally, section 4.5 examines the Descriptive Attributes System,

which categorizes and describes the properties of each component, facilitating easier navigation

and utilization within the repository.

The Discussion and Outlook chapter 5 offers a comprehensive evaluation and forward-looking

perspective on the research presented in this thesis. Initially, the discussion in section 5.1 looks

into the implications of the findings, providing a critical analysis of how the results contribute to

the broader field of study. Subsequent to this analysis, section 5.2 acknowledges the limitations

encountered throughout the research, offering a transparent examination of potential biases,

constraints, and areas where further investigation is needed. The chapter concludes with section
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5.3, where future research directions are proposed, outlining prospective studies that could build

upon the foundational work established here and explore new avenues within the domain of PdM

and CBSE.
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Chapter 2

Related Literature

The Literature Review section of this thesis undertakes a systematic exploration of the multifaceted

domain of PdM, with a specific focus on assessing the applicability and relevance of the central

artifact of this work: the development of a component repository based on CBSE principles.

This comprehensive review begins with introducing the core Research Questions and Objectives,

investigating the feasibility and existing efforts of applying CBSE principles in PdM model

development in subsection 2.1. Following this, an outline of the methodology adopted for

conducting structured literature research is presented, detailing the data sources and selection

criteria in subsection 2.2 Overview and Methodology. To ensure clarity and uniform understanding,

the review first explains key Definitions and Terminologies relevant to PdM, ML, and CBSE in

subsection 2.3. It then progresses to examine Theoretical and ML Frameworks, highlighting the

current state of research and identifying gaps, particularly in the application of these frameworks

in industrial PdM in subsection 2.4. The exploration of CBSE principles and their origin provides

insights into their potential applicability in PdM in subsection Component-Based Software

Engineering 2.5. Empirical Studies are then presented to evaluate if PdM fulfills the requirements

for a CBSE approach. This culminates in the creation of an innovative framework, detailed in

subsection 2.6, which represents the first-ever approach to structuring the field of PdM using a

quantitative methodology based on related research. This framework systematically organizes

PdM into four distinct phases, each encompassing two to three specific facets, thereby offering a

comprehensive and nuanced understanding of the field. The section culminates with a Conclusion

and Discussion in subsection 2.7, synthesizing the findings, addressing the research questions,

and critically analyzing the strengths and weaknesses of the methodologies employed.
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2.1 Research Questions and Objectives

The formulation of structured research questions is a fundamental step in scholarly inquiry,

serving as a compass that guides the entire research process. According to Booth et al. (2016),

well-defined research questions are essential for outlining the scope of a study, providing clarity

and direction. Furthermore, Levy and J. Ellis (2011) emphasizes that research questions should

be both specific and feasible, ensuring that the investigation remains focused and achievable. In

the context of this literature review, the research questions are crafted to specifically address the

intersection of CBSE and PdM, a domain where existing literature is either sparse or unexplored.

The precision and relevance of these questions are not only vital in guiding the literature review

but also crucial in identifying gaps in current knowledge and potential areas for innovation.

Central to this literature research are two thoroughly formulated research questions that guide the

exploration into the synergy between CBSE and PdM. The first question, "What are the existing

endeavors, if any, that have sought to enhance PdM development by integrating CBSE principles?",

is designed to systematically uncover and analyze previous attempts and methodologies in this

domain. This inquiry is key for understanding the extent and effectiveness of CBSE applications in

PdM development. In the event of limited or non-existent prior efforts, the investigation naturally

progresses to the second question: "Considering the theoretical frameworks and principles of

CBSE, how feasible is its application in the development of PdM systems?", which aims to assess

the theoretical viability and potential strategies for incorporating CBSE in PdM. This question

is instrumental in identifying theoretical foundations and potential innovative approaches for

the application of CBSE in PdM. The objectives derived from these questions aim to provide

a thorough literature review and a critical analysis of the theoretical possibilities for applying

CBSE in PdM, thereby offering valuable insights and contributions to the field.

2.2 Overview and Methodology

This research embarks on an extensive literature review to thoroughly understand the research

landscape surrounding PdM.

The literature research for the subsections on Definitions and Terminologies (2.3), Theoretical &

ML Frameworks (2.4), and CBSE (2.5) is conducted using a methodology adapted from Webster

and Watson (Webster and Watson, 2002). This approach involves constructing a search query

using a collection of key terms, which is then used to narrow down relevant scientific publications
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in various databases. Following Webster and Watson’s methodology, both forward and backward

searches are conducted to add additional articles (Webster and Watson, 2002). Due to the vast

amount of literature available, the focus is on the quality of research results and comprehensive

coverage of areas relevant to this work, rather than completeness. A concept matrix is then used

to comparatively display a selection of the reviewed articles (Webster and Watson, 2002).

In the Empirical Studies section (2.6), a thoroughly structured literature analysis is undertaken.

This analysis is vital not only for acquiring a comprehensive understanding of the PdM domain

but also for addressing the critical literature research question: Can the principles of CBSE

be effectively applied to the field of PdM? This inquiry forms the cornerstone of the research,

guiding the systematic examination of existing literature. The structured approach ensures a

thorough and methodical exploration of the PdM landscape, examining various studies to discern

whether the methodologies and principles inherent in CBSE have been, or could be, successfully

integrated into PdM practices. This analysis is instrumental in identifying potential avenues for

the application of CBSE in PdM, thereby contributing significantly to the development of a novel

framework aimed at enhancing the efficiency and effectiveness of PdM models. The primary

data source is the Scopus1 database, a comprehensive repository of scientific papers across

diverse disciplines. Abstracts from approximately 700 scientific papers are thoroughly mined,

specifically those containing the keyword Predictive_Maintenance and categorized under the

Engineering label in Scopus.

In addition to thematic analysis, a descriptive analysis of the literature data, including authors

and journals, is conducted. This analysis is essential for understanding the research dynamics,

such as identifying key contributors, influential journals, and the evolution of the field over time

(Webster and Watson, 2002).

The critical step following data collection is to analyze the thematic structures within this

substantial corpus. To achieve this, a topic modeling approach via LDA is utilized. LDA

facilitates the identification and categorization of primary topics and themes within the abstracts,

providing structured and insightful perspectives into prevailing research trends and focal points

in PdM within the engineering sphere.

A novel, multi-level LDA analysis is then employed to further dissect and structure the extensive

literature field related to PdM. The initial phase of this analysis, the first-layer LDA, segments

the corpus into six distinct topics, establishing a broad thematic categorization. Subsequently,

1Scopus Database. https://www.scopus.com/. Accessed on [11/08/2023].
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a second-layer LDA analysis is thoroughly applied to each of these six topics. This layered

approach, innovative in its application and not extensively documented in existing literature,

draws upon the flexibility and scalability of LDA as a topic modeling tool (Blei, Ng, and Michael I.

Jordan, 2003). By sequentially applying LDA at multiple levels, the methodology is designed

to reveal more granular subtopics within each broader category, thus offering a deeper, more

detailed understanding of the literature. This comparative analysis across topics and subtopics

is instrumental in identifying thematic patterns, relationships between topics, and potential

research gaps. Such a structured, hierarchical analysis is especially beneficial in complex fields

like PdM, where it can effectively uncover and describe the underlying thematic structures in

the literature.

2.3 Definitions and Terminologies

Within the realm of PdM research, several terms and concepts stand out as particularly salient.

To ensure clarity and a shared understanding throughout this literature review, some of the key

terms are defined below:

Predictive Maintenance: Refers to a proactive maintenance strategy that utilizes data

analysis, ML, and predictive analytics to forecast when equipment failures might occur, thereby

enabling timely maintenance actions to prevent unplanned downtime (Mobley, 2002b). This

strategy significantly contrasts with Preventive Maintenance (PvM), which schedules maintenance

activities at regular, predetermined intervals based solely on statistical life expectancy rather

than the actual condition of the equipment. PdM leverages real-time data collected from sensors

and historical maintenance records to tailor maintenance tasks specifically to the individual

conditions and operational behaviors of each piece of equipment. This targeted approach helps

in optimizing maintenance resources and costs by performing maintenance only when needed,

rather than on a fixed schedule. Unlike Reactive Maintenance (RM), which addresses equipment

failures post-occurrence, PdM aims to preemptively identify and mitigate potential failures, thus

enhancing the overall reliability and availability of equipment and reducing operational risks

(Gulati, 2012; Swanson, 2001). Furthermore, PdM supports a strategic alignment with business

objectives by improving asset utilization and extending the life of equipment, which are critical

for achieving operational excellence in maintenance-intensive industries (Hashemian and Bean,

2011).

Component-Based Software Engineering: CBSE - also refered to as Component-Based
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Development - is defined as an approach to software development that emphasizes the design

and assembly of pre-existing software components into a larger software system, thereby easing

reuse and modularization. This software engineering paradigm seeks to improve software quality

and reduce development time by leveraging reusable components that have been tested and

verified independently (Heineman and Councill, 2001; Crnkovic and Larsson, 2003). According

to Heineman and Councill (2001), CBSE focuses on the assembly of component infrastructures,

middleware, and application-level components that meet well-defined interface specifications.

This approach is characterized by its emphasis on the separation of concerns in software design,

which allows for the independent development and testing of software components (Szyperski,

Gruntz, and Murer, 2009). Furthermore, Crnkovic and Larsson (2003) suggest that the utilization

of CBSE can lead to more efficient and manageable software systems, as components can be

developed and maintained in parallel by different teams. The primary advantage of CBSE lies

in its potential to significantly reduce the complexity of software development while improving

scalability and maintainability, thus making it an ideal approach for large-scale and complex

software systems.

Code Component Reusability: Refers to the practice of designing software components in

such a way that they can be reused in different systems or applications without or with minimal

modifications (Y. Kim and Stohr, 1998). Reusability is a key principle in CBSE, where the

development process focuses on creating modular, self-contained components that encapsulate

specific functionality and can be easily integrated into multiple software projects. This approach

not only speeds up the software development process by reducing the amount of code that needs

to be written from scratch but also enhances software quality and maintainability by reusing

well-tested components (Sametinger, 1997). Effective reusability requires that components have

well-defined interfaces, are sufficiently general to be used in varied contexts, and are documented

to allow their integration and use by other developers. CBSE frameworks promote reusability by

providing standards and tools that help in the cataloging, retrieval, and integration of reusable

components, thus fostering an ecosystem where developers can share and leverage each other’s

work to build complex systems more efficiently (Szyperski, Gruntz, and Murer, 2009). Moreover,

reusability is closely related to other software quality attributes such as modularity, encapsulation,

and maintainability, making it a vital aspect of contemporary software engineering practices

(Bosch, 2000).

These definitions serve as foundational knowledge, ensuring a clear and consistent understanding
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while further exploring the elaborate landscapes of PdM research.

2.4 Theoretical & ML Frameworks

ML frameworks are indispensable in today’s technologically-driven landscape, streamlining

complex computational processes and fostering the growth of intelligent systems across various

sectors, including PdM. The increasing importance of these frameworks correlates with the

maturing TRL of ML. As the technology readiness of ML advances, there’s an escalating demand

for standardization to harness the technology’s full potential (M. I. Jordan and T. M. Mitchell,

2015).

Comparable fields such as mathematical and statistical science, as well as computer and in-

formation engineering, have witnessed similar maturation trajectories. These disciplines, in

their respective growth phases, have accentuated the need for frameworks to boost efficiency.

Essentially, ML is tracing a parallel path, reinforcing the significance of structured platforms to

navigate the complexity of its applications.

Moreover, the congruence in ML use cases across diverse application fields underscores the vast

potentials of these frameworks. The universality of certain ML tasks, irrespective of the domain,

suggests that standardized processes can catalyze efficiency, minimize redundancies, and pave

the way for more rationalized and robust solutions (Goodfellow, Bengio, and Courville, 2016;

Bishop, 2006).

The concept of Machine Learning Operations (MLOps) has gained significant traction both in

academia and industry in recent years (Makinen et al., 2021; Symeonidis et al., 2022; Pölöskei,

2021).

In academia, a growing number of research papers focus on the challenges and solutions associated

with MLOps, such as model versioning, deployment, and monitoring (Symeonidis et al., 2022;

Renggli et al., 2021; Mboweni, Masombuka, and Dongmo, 2022).

Concurrently, industry also shows a keen interest in adopting MLOps practices to restructure

ML workflows, improve model performance, and ensure robustness and scalability (Makinen

et al., 2021; Pölöskei, 2021; Mallela et al., 2023).

The rising trend of MLOps in academic literature can be attributed to the increasing complexity of

ML models and the need for robust, scalable solutions for deploying these models into production

(Symeonidis et al., 2022; Renggli et al., 2021). Moreover, the integration of MLOps with PdM

applications is becoming a focal point of research, as it promises to enhance the efficiency and
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reliability of PdM systems (Makinen et al., 2021; Mallela et al., 2023).

In industry, companies are increasingly investing in MLOps platforms and tools to manage the

end-to-end ML lifecycle. This investment is driven by the need to accelerate the deployment of

ML models and to ensure that the models are maintainable, interpretable, and robust (Makinen

et al., 2021; Pölöskei, 2021; Mallela et al., 2023).

Before delving into MLOps, it’s essential to understand its precursor, DevOps. Originating from

software development, DevOps promotes a cultural shift, emphasizing the collaboration between

software developers and IT operations (Makinen et al., 2021). It aims to shorten the system

development lifecycle, provide continuous delivery, and achieve high software quality (Makinen

et al., 2021). With the increasing complexity and dynamism of ML projects, there arose a need

for a specialized subset of DevOps, leading to the birth of MLOps (Makinen et al., 2021).

MLOps, an evolution of DevOps tailored for ML, serves as a foundational pillar in bridging the

gap between ML development and operations. This practice promotes continuous integration,

delivery, and training of ML models, thereby fostering iterative development while ensuring

optimal operational performance. Key components of MLOps include:

• Continuous Integration (CI): Integrating code changes into a shared repository, ensuring

code quality, and enabling rapid iterations (Zhou, Yu, and B. Ding, 2020).

• Continuous Delivery (CD): Seamless transition of ML models from development to produc-

tion, enhancing deployment pace (Zhou, Yu, and B. Ding, 2020).

• Continuous Training (CT): Periodic retraining of ML models to tackle data drifts and

model obsolescence (Banerjee et al., 2023).

By adhering to these principles, MLOps ensures model reproducibility, traceability, and au-

tomation. This is fundamentally important, especially for domains like PdM, where timely and

accurate predictions are fundamental (Makinen et al., 2021; Mallela et al., 2023).

The adoption of ML frameworks in PdM is an advancing area of research and application.

One of the notable advancements is the use of digital twin frameworks that integrate ML and

physics-based modeling for PdM (Kunzer, Berges, and Dubrawski, 2022). This approach offers a

comprehensive view of system health and performance, thereby enhancing maintenance strategies.

Another significant contribution is a framework that maps sensors and variables related to

equipment load cycles, such as turbines in hydroelectric power plants, to pave the way for PdM

(Vallim Filho et al., 2022). This methodology transforms the problem of forecasting future

maintenance needs into a binary classification problem.
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Automated ML processes are also gaining traction in PdM. For instance, state-based transfer

learning and ensemble methods are employed to automate the PdM process, reducing user

interaction time and decision-making complexity (Larocque-Villiers, Dumond, and Knox, 2021).

Furthermore, Deep Reinforcement Learning (DRL)-based frameworks promise effective resource

management for Industrial Internet of Things (IIoT) applications, demonstrating superiority in

terms of convergence efficiency and simulation performance (Ong et al., 2022).

These advancements indicate the growing success of ML frameworks in PdM, but they also

highlight the need for a more integrated and comprehensive approach to fully realize the potential

benefits.

Integrating ML frameworks with PdM applications presents a set of unique challenges that can be

broadly categorized into technical and organizational aspects. On the technical side, issues such

as scalability, data integration, and model training are prevalent. Scalability is crucial as PdM

applications often require real-time analysis of large datasets. Data integration poses challenges

in harmonizing data from diverse sources, including sensors and historical maintenance records.

Model training involves selecting appropriate algorithms and tuning parameters for accurate

failure predictions (Dalzochio et al., 2020; Vollert, Atzmueller, and Theissler, 2021).

Organizational challenges include resistance to adoption and change management. Employees

may be hesitant to trust ML-based systems, and there may be a lack of expertise in managing

these advanced technologies. Moreover, there is often a gap between current ML practices

and the specific requirements of PdM, such as the need for interpretable models and real-time

decision-making (Herrmann, 2020; Theissler et al., 2021).

In the context of the literature review, the work by Theissler et al. (2021) serves as a vital reference,

especially given its focus on the automotive industry, which aligns closely with the industrial

applications discussed in this thesis. The paper investigates the challenges and use-cases of

implementing ML-enabled PdM in the automotive sector. These insights are particularly relevant

for addressing the first research question concerning the classification of PdM applications within

a framework. Moreover, the paper’s discussion on the challenges in PdM could offer valuable

perspectives for the second research question on designing a component repository. While the

paper does not explicitly discuss cost aspects, its focus on practical use-cases provides an implicit

understanding of the economic implications, thereby contributing to the third research question

on cost reduction in PdM applications (Theissler et al., 2021).

The integration of ML into PdM is an emerging trend that holds significant promise for the future
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of industrial applications. Component-based engineering, a methodology that promotes the reuse

of software components, is gaining traction in the realm of ML and PdM (Khorsheed and Beyca,

2021; Donghwan Kim, S. Lee, and Daeyoung Kim, 2021). The potential for a holistic PdM

solution lies in the amalgamation of ML frameworks with component-based engineering. This

approach not only enhances the performance of equipment but also reduces maintenance costs

(Shamayleh, Awad, and Farhat, 2020; Kiangala and Z. Wang, 2020). However, it is important

to note that while ML methods such as deep learning are being explored, traditional feature

engineering-based approaches show to be more effective in some cases (Silvestrin, Hoogendoorn,

and Koole, 2019). Future research should focus on overcoming the challenges related to data

availability and feedback collection, as well as improving the accuracy and reliability of predictive

models (Dalzochio et al., 2020; Bouabdallaoui et al., 2021). The ultimate goal is to develop a

comprehensive PdM framework that can be universally applied across various industrial sectors.

In the realm of PdM, the integration of ML frameworks shows promising results in various

industrial applications, including automotive, manufacturing, and energy sectors (Khorsheed and

Beyca, 2021; Kiangala and Z. Wang, 2020; Donghwan Kim, S. Lee, and Daeyoung Kim, 2021).

These frameworks have been effective in detecting failures before they occur, reducing downtime,

and optimizing maintenance interventions (Khorsheed and Beyca, 2021; Kiangala and Z. Wang,

2020). However, there is a notable absence of a unified approach for the integration of ML in

PdM, which presents challenges such as data availability, unstructured maintenance logs, and

the need for cost-sensitive learning (Silvestrin, Hoogendoorn, and Koole, 2019; Cadavid et al.,

2022; Spiegel et al., 2018).

This research aims to fill this gap by proposing a PdM framework that not only leverages

ML algorithms for fault prediction but also incorporates a component repository to remodel

the development process. The proposed framework addresses the individual aspects of PdM

applications while exploiting their similarities, thereby offering a pathway to reduce development

costs (Dalzochio et al., 2020; Lwakatare et al., 2020). As PdM continues to evolve in the context

of I4.0, the need for a unified, efficient, and cost-effective approach becomes increasingly critical

(Dalzochio et al., 2020; Abidi, Mohammed, and Alkhalefah, 2022).

2.5 Component-Based Software Engineering

CBSE is a paradigm in software engineering that emphasizes the design and construction of

software systems through reusable and interchangeable components. This approach aims to
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improve the efficiency, reliability, and maintainability of software development processes. In the

context of this thesis, CBSE holds particular relevance for developing efficient PdM frameworks

in industrial applications, especially in the automotive sector. This subsection will explore the

principles, historical development, and applications of CBSE, highlighting its significance in PdM

and AI.

CBSE has evolved significantly over the years. Initially, software development was largely

monolithic, where applications were built as single, indivisible units. The advent of CBSE

marked a paradigm shift, emphasizing modularity and reusability. This evolution was guided

by the eight laws of software evolution, which provide a phenomenological description of the

evolutionary behavior observed in various software systems (Lehman and Ramil, 2000). Over

time, CBSE has incorporated various formal methods and techniques, adapting to the needs

of safety-critical systems and complex software architectures, including those in industrial and

automotive applications (Lehman and Ramil, 2000; Williams, 1991).

The core principles of CBSE serve as the foundation for its methodology. These principles include

reusability, modifiability, and maintainability. Reusability allows for the same component to be

used in multiple applications, thereby reducing development time and costs. Modifiability enables

easy adaptation and extension of components, promoting system evolution. Maintainability

focuses on the ease with which a system can be updated or repaired. These principles collectively

aim to improve the overall efficiency and reliability of software systems, including those in PdM

and AI (Crnkovic, Sentilles, et al., 2011; Atkinson and Hummel, 2012).

The economic rationale behind CBSE is deeply rooted in the concept of economic efficiency,

achieved through the use of reusable components. By employing a CBSE approach, organizations

can significantly reduce development time and costs, thereby achieving higher economic efficiency.

This is especially relevant in the context of PSS, where modular and reusable components enable

rapid adaptation to changing customer needs or technological advancements. The CBSE approach

allows for more flexible and cost-effective PSS, providing a competitive advantage in fast-paced

markets, including the automotive sector (Stallinger et al., 2002; Emmerich and Kaveh, 2002;

Berkovich et al., 2014).

The key elements in CBSE include components, interfaces, and component frameworks. Com-

ponents are the modular building blocks that encapsulate specific functionalities. Interfaces

define the interaction points between components, specifying what a component can do and how

it can be used. Component frameworks provide the architectural backbone that supports the
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integration and interaction of components. These elements collectively enable the development

of robust and scalable software systems (Pour, 1998; Y. Wu, Dai Pan, and Mei-Hwa Chen, 2001).

Componentization methods in CBSE are diverse, ranging from architectural patterns to specific

algorithms. One common approach is to use design patterns like the Factory Method or the

Singleton Pattern to encapsulate component creation logic. Additionally, algorithms for efficient

retrieval of component repositories help component selection and integration (Bawa and I. Kaur,

2016; Sadrani et al., 2023). Moreover, metrics like ’reusability-ratio’ and ’interaction-ratio’ are

employed to estimate component reliability and execution time (Tiwari, S. Kumar, and Matta,

2020). These methods and metrics not only update the componentization process but also

contribute to the system’s overall reliability and efficiency, particularly in PdM and AI.

Evaluating the effectiveness of a CBSE approach involves various metrics and methods. Metrics

such as ’component cohesion’ and ’component coupling’ are commonly used to assess the quality

of individual components. Additionally, methodologies like Preference Ranking Organization

METHod for Enrichment Evaluations (PROMETHEE) provide a quantitative framework for

component selection and trust-building (K. Kaur and Singh, 2014). These evaluation techniques

offer insights into the reliability and efficiency of a CBSE system and are particularly relevant

for PdM and AI.

The PROMETHEE methodology employs a multi-criteria decision analysis to rank components

based on various attributes like reliability, efficiency, and cost. It quantifies the qualitative

selection and evaluation of software components, thereby providing a more nuanced understanding

of component quality. The methodology uses pairwise comparisons to evaluate the trade-offs

between different components, which helps in making more informed decisions. This method not

only builds trust in the selected components but also offers a robust framework for component

selection in CBSE. The methodology comprises several steps:

Step 1: Identification of Criteria - The first step involves identifying the criteria against

which the components will be evaluated. These criteria can include attributes like reliability,

efficiency, and cost.

Step 2: Scoring - Each component is scored based on these criteria. The scoring can be done

using various scales, such as a Likert scale or a numerical range.

Step 3: Pairwise Comparisons - The methodology employs pairwise comparisons to evaluate

the trade-offs between different components. Each component is compared with every other

component based on each criterion.
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Step 4: Preference Functions - Preference functions are used to quantify the preference of

one component over another for each criterion. These functions can be linear, exponential, or

Gaussian, among others.

Step 5: Aggregation - The preferences are then aggregated to produce a global preference

score for each component. This is usually done using weighted averages of the criteria.

Step 6: Ranking and Selection - Finally, the components are ranked based on their global

preference scores, and the best-suited components are selected for integration into the system.

This comprehensive approach not only builds trust in the selected components but also offers

a robust and quantifiable framework for component selection in CBSE. The PROMETHEE

methodology thus provides a nuanced understanding of component quality, making it an invaluable

tool for practitioners and researchers alike (K. Kaur and Singh, 2014).

The increasing intersection of CBSE with PdM and AI is a focal point of contemporary inter-

disciplinary research (Hasterok and Stompe, 2022). This section illustrates the transformative

impact of CBSE principles in architecting PdM and AI systems that are scalable, efficient, and

adaptable.

CBSE finds a compelling application in PdM for rotating machines, where neural models are

integral for real-time monitoring, fault detection, and diagnostics (El Mahdi et al., 2022). The

architecture employs CBSE to compartmentalize the neural model, thereby enabling modular

updates and adaptability (Xia Cai et al., 2000).

The architecture presented in the paper is a quintessential example of CBSE application in PdM

for rotating machines (El Mahdi et al., 2022). It modularizes the neural model into distinct,

function-specific components such as data acquisition, fault detection, and diagnostics.

This modularization strategy consistently aligns with CBSE principles, offering enhanced flexibility

and scalability. Each component can be independently updated or replaced, ensuring that the

system remains agile and up-to-date (El Mahdi et al., 2022).

The architecture thoroughly adheres to CBSE metrics of component cohesion and coupling. High

cohesion within components and low coupling between them are strategically maintained to

ensure system robustness and maintainability (El Mahdi et al., 2022).

The application of CBSE principles in this architecture paves the way for scalable and efficient

PdM solutions. The modular architecture enables seamless integration into broader PdM systems,

thereby offering a viable strategy for cost and time reduction in development (El Mahdi et al.,

2022).
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In hydraulic systems, CBSE is employed in a digital twin framework, which synergizes virtual

models with real-world components to significantly enhance diagnostic accuracy over traditional,

non-interactive simulation models (L. Wang et al., 2022; Wijayasiriwardhane, Lai, and K. Kang,

2011).

In the realm of AI, neural models are increasingly being modularized using CBSE principles.

This modularization facilitates easier updates and consistent integration of new algorithms and

techniques (Hasterok and Stompe, 2022).

The Process Model for AI Systems Engineering (PAISE) model stands as a seminal contribution

to AI systems engineering (Hasterok and Stompe, 2022). It advocates for a component-wise

development strategy for complex systems, thereby enabling parallel development processes and

accelerating the development cycle.

The PAISE model introduces interdisciplinary checkpoints, which serve as validation junctures

to precisely test component Dependencies (Dp). This ensures alignment with overarching system

requirements and leads to a more refined component specification (Hasterok and Stompe, 2022).

The PAISE model accentuates the importance of parallelizing domain-specific development

processes, a feature that is invaluable in multi-disciplinary projects. This parallelization optimizes

resource utilization and accelerates the system’s time-to-market (Hasterok and Stompe, 2022).

The PAISE model’s component-wise approach and emphasis on parallelization make it particularly

relevant for PdM applications. By modularizing the predictive algorithms and integrating them

as components within a larger system, the PAISE model offers a scalable and efficient approach

to PdM (Hasterok and Stompe, 2022).

The concept of digital twins is also being integrated into AI systems, providing a virtual

representation that can be used for various simulations and analyses (Conmy and Bate, 2014).

While the application of CBSE in PdM and AI is promising, it is not devoid of challenges. Key

issues include component compatibility, data security, and the need for real-time processing

(Grunske, Kaiser, and Reussner, 2005). Nonetheless, the modular architecture inherent to CBSE

provides avenues for incremental updates and improvements. These modular capabilities are

especially pertinent in the context of PdM and AI, offering a pathway for overcoming these

challenges (Loiret et al., 2011).

The integration of CBSE into PdM and AI is an emergent field with substantial promise for

the development of systems that are not only scalable but also flexible and efficient (Cai, Lyu,

and Wong, 2002). As advancements continue, it is anticipated that increasingly sophisticated
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components and frameworks will emerge, thereby amplifying the capabilities and reach of PdM

and AI systems (Urtado, H. Y. Zhang, and Vauttier, 2010).

In conclusion, CBSE serves as a robust and versatile framework for the development of PdM and

AI systems. Its modular architecture lends itself well to complex, multi-disciplinary projects,

including those in the automotive sector. However, a notable research gap persists. While there is

successful application of CBSE in general AI and specific PdM scenarios, there is limited research

at the intersection of CBSE and PdM in industrial settings, particularly in the automotive

industry. This gap is significant as automotive applications often involve unique challenges such

as real-time requirements, high reliability demands, and elaborate system interactions, all of

which could benefit from a CBSE approach. Bridging this gap has the potential to not only

advance the PdM field but also to showcase the adaptability and effectiveness of CBSE across

diverse application domains, including automotive. As the field matures, the fusion of CBSE

with PdM and AI is poised to produce increasingly sophisticated and efficient systems.

2.6 Execution and Evaluation of a structured Literature Review

In order to conduct a comprehensive literature review on PdM, a systematic approach to gather

relevant publications is employed. This involved querying academic databases using specific

search strings, applying inclusion and exclusion criteria.

The data for this research is obtained through an automated crawling process targeting the Scopus

database. This approach is not only efficient but also widely recognized in the scientific community

for building high-quality collections and indices of scientific papers (Hoff and Mundhenk, 2001).

Automated crawling of databases like Scopus is validated in various studies. For instance, Chap-

man, Morgan, and Gartlehner (2010) confirmed the validity of a semi-automated search method

using the Scopus database, which identified the same studies as traditional approaches. Further-

more, tools like pybliometrics ease reproducibility and enhance data integrity for researchers

using Scopus data (Rose and Kitchin, 2019).

The use of Scopus as a sole data source for citation-based research is also endorsed, especially

when citations in conference proceedings are sought (Meho and Rogers, 2008). Moreover, the

merging of Scopus with other databases like Web of Science shows to provide more comprehensive

bibliometric analysis (Echchakoui, 2020).

The search string used for the crawling process is detailed in 2.1, and the approach aligns with

the current best practices in the field.
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Lst. 2.1: Display of the search string applied for the database query.

TITLE−ABS−KEY( " p r e d i c t i v e maintenance " ) AND (SUBJAREA(ENGI) )

The data obtained from the Scopus database consists of 723 results, spanning the years 2007

to 2023. The resulting pandas DataFrame (DF) includes the following columns: title, year,

authors, abstract, publication_name, aggregation_type, DOI, and Scopus_ID. The distri-

bution of publications per year is depicted in Figure 3, showing a growing trend in the literature

related to PdM. It is important to note a limitation in the data for the year 2023, as the collection

occurred during that year, possibly resulting in incomplete information.

Despite the oldest publications in the field being much older2, the available data reaches far

enough into the past to cover all current trends. This aligns with the findings of (Mongeon and

Paul-Hus, 2016), which emphasize the importance of capturing a comprehensive time span to

accurately reflect the evolution and current state of a research field.

The increase in publications over time reflects the growing interest and advancements in PdM,

a trend that is observed in various engineering and industrial domains (J. Lee, Bagheri, and

Kao, 2015). The data’s temporal coverage ensures a robust understanding of both historical

developments and contemporary innovations in the field (Waltman, van Eck, and van Raan,

2012).
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Figure 3: Publications per year, showing the search results of the query TITLE-ABS-KEY("predictive
maintenance") AND (SUBJAREA(ENGI)) in the Scopus database (own figure).

Table 1 presents the top 10 journals in which the publications related to the research are

found. These journals include well-known titles such as "Reliability Engineering & System
2E.g., Mobley (2002a)
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Safety", "Procedia Manufacturing", and "Mechanical Systems and Signal Processing". The counts

represent the number of articles retrieved from each journal during the structured literature

research. It is noteworthy that the research spans a total of 104 different journals, reflecting the

interdisciplinary nature of the field and the wide range of publications that contribute to the

study of PdM and related areas.

Publication Name Count

Reliability Engineering & System Safety 68
Procedia Manufacturing 35
Mechanical Systems and Signal Processing 27
Measurement 27
Computers & Industrial Engineering 26
Expert Systems with Applications 23
Engineering Applications of Artificial Intelligence 23
Computers in Industry 23
Journal of Manufacturing Systems 19
Engineering Failure Analysis 12

Table 1: The 10 Journals in which most of the publications that were found with the query TITLE-ABS-
-KEY("predictive maintenance" ) AND (SUBJAREA(ENGI)) in the Scopus database appeared,
with their respective count.

Table 2 presents the top 5 authors in the dataset, along with their respective institutions, and

the number of their publications. The number of first author publications per author is almost

equal, with each of the top four authors having 4 publications and the fifth author having 3.

The geographical distribution of these authors spans across various countries, including the United

States, Australia, Greece, and Norway. These locations can be considered as expert hubs for PdM

research. For instance, the integration of PdM technologies with optimal maintenance scheduling

models is effective in real-world scenarios, including in the United States (Yildirim, Sun, and

N. Z. Gebraeel, 2016). Australia shows advancements in PdM using Artificial Neural Networks

(ANNs) (T. Wang et al., 2008). Greece contributes to the development of PdM frameworks that

can be applied directly in the industrial field (Donghwan Kim, S. Lee, and Daeyoung Kim, 2021).

Norway is involved in the development of methodologies for PdM based on sensor data (Naskos

et al., 2019).

The total number of unique authors in the dataset is 2529, and the total number of unique first

authors is 657. This distribution indicates a wide range of contributors to the field, but the

number of authors with more than one publication is quite limited. This could be attributed

to the specialized nature of PdM research and the diverse applications of PdM across various

industries, such as manufacturing, energy, transportation, and more (J. Lee, Lapira, et al., 2013;

Z. Zhao, Koutsopoulos, and J. Zhao, 2018).
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Rank Author Institution Number of Publications

1 Ethan Wescoata International Center for Automotive Research,
Clemson University, United States

4

1 Ke Fengb School of Mechanical and Mechatronic Engineering,
University of Technology Sydney, Australia

4

1 Panagiotis Aivaliotisc Laboratory for Manufacturing Systems &
Automation, University of Patras, Greece

4

1 Oluseun Omotola Aremud School of Mechanical and Mining Engineering, The
University of Queensland, Australia

4

5 Haidar Hosamo Hosamoe University of Agder, Norway 3

Table 2: The 5 authors with the most publications that were found with the query TITLE-ABS-
-KEY("predictive maintenance" ) AND (SUBJAREA(ENGI)) in the Scopus database, with
their respective institutions and the number of their publications.

a(Wescoat, Bangale, et al., 2023; Wescoat, Krugh, Jansari, et al., 2023; Wescoat, Mears, et al., 2020; Wescoat,
Krugh, Henderson, et al., 2019)

b(Feng, Ji, Ni, et al., 2023; Feng, Ji, Y. Zhang, et al., 2023; Feng, Ni, et al., 2022; Feng, Ji, Y. Li, et al., 2022)
c(Aivaliotis, Arkouli, Georgoulias, et al., 2021; Aivaliotis, Arkouli, Kaliakatsos-Georgopoulos, et al., 2021;
Aivaliotis, Xanthakis, and Sardelis, 2020; Aivaliotis, Georgoulias, et al., 2019)

d(Aremu, Cody, et al., 2020; Aremu, Hyland-Wood, and McAree, 2020; Aremu, Hyland-Wood, and McAree, 2019;
Aremu, Palau, et al., 2018)

e(Hosamo, Nielsen, et al., 2023b; Hosamo, Nielsen, et al., 2023a; Hosamo, Svennevig, et al., 2022)

2.6.1 Authorship Trends in Predictive Maintenance

The field of PdM witnesses a significant increase in collaborative research, as evidenced by the ris-

ing number of authors in scientific publications. This trend contrasts with the authorship patterns

observed in related software-engineering publications, highlighting the unique interdisciplinary

nature of PdM.

In PdM, the complexity of integrating various technologies such as data analytics, ML, and

real-time monitoring demands collaboration across different faculties and expertise. A study

titled "The rising trend in authorship" by Aboukhalil (2014) predicts that by 2034, publications

will boast an average of 8 authors.

On the other hand, the field of software engineering also experiences an increase in the number

of authors, but at a different rate. A study titled "Authorship trends in software engineering" by

J. M. Fernandes (2014) provides evidence that the number of authors in software engineering

articles is increasing on average around +0.40 authors per decade (J. M. Fernandes, 2014).

Another study titled "Evolution in the number of authors of computer science publications" by

J. M. Fernandes and Monteiro (2017) confirms that all computer science areas, including software

engineering, witness an increase in the average number of authors.

The higher average number of authors in PdM publications indicates a greater need for interfaculty

exchange and networking. This collaboration fosters innovation, enhances the quality of research,

and reflects the multifaceted nature of PdM, which requires expertise in various domains such as
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engineering, data science, and AI. In conclusion, the authorship trends in PdM and software

engineering reveal the distinct collaborative dynamics in these fields as displayed in figure 4.

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Number of Authors

0

20

40

60

80

100

120

140

160

180
N

um
be

r
of

Pa
pe

rs
Distribution of Number of Authors per Paper

Figure 4: Distribution of the number of authors per paper for the publications that were found with the
query TITLE-ABS-KEY("predictive maintenance") AND (SUBJAREA(ENGI)) in the Scopus
database (own figure).

The analysis of author networks in the field of PdM revealed several key insights, including the

identification of leading researchers, prevalent collaboration patterns, and the interdisciplinary

nature of the field. This information can guide future research collaborations and provide a

roadmap for navigating the complex landscape of PdM research.

2.6.2 Topic Modeling Methodology

In this work, topic modeling is applied to structure the extensive dataset described earlier. The

aim is to automatically identify and categorize the underlying themes or topics within the corpus

of scientific abstracts. This approach is particularly useful for making sense of large volumes

of unstructured data and is successfully applied in various domains, including the analysis of

scientific abstracts (Gerlach, Peixoto, and Altmann, 2018).

Topic modeling is a technique in text mining that aims to automatically identify topics present

in a text corpus. It is widely used in various domains such as marketing, security, education, and

management (W. Ding, Ishwar, and Saligrama, 2014). One of the most popular algorithms for

topic modeling is LDA (Wallach et al., 2009).

LDA is a probabilistic model that assumes each document is a mixture of a small number of

topics and that each word in the document is attributable to one of the document’s topics. The

model is robust under various conditions and integrates both subjective and objective knowledge
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(Blei, Ng, and Michael I. Jordan, 2003).

The mathematical formulation of LDA is as follows:

p(θ, z, w | α, β) = p(θ | α)
N∏

n=1
p(zn | θ)p(wn | zn, β) (2.6.1)

Where:

• θ is the topic distribution for document d.

• z is the topic for the nth word in document d.

• w is the specific word.

• α and β are hyperparameters.

• N is the total number of words in document d.

The LDA model is based on the following generative process for each document d in a corpus D:

• Choose N ∼ Poisson(ξ).

• Choose θ ∼ Dirichlet(α).

• For each of the N words w:

– Choose a topic z ∼ Multinomial(θ).

– Choose a word w from p(w|z, β), a multinomial probability conditioned on the topic

z.

The LDA algorithm aims to discover the topic structure that optimizes the likelihood of the

observed corpus, often through iterative methods (Wallach et al., 2009). The model’s parameters

can be estimated using various techniques, including Gibbs sampling and variational inference

(Arora et al., 2012).

In this work, coherence scoring is employed to determine the optimal number of topics for the LDA

model. Coherence scoring is a metric that quantifies the quality of topics generated by a topic

model. A higher coherence score indicates a more coherent and interpretable topic (Morstatter

and H. Liu, 2016). It is applied in various contexts, such as e-commerce recommendations,

machine translation (Xiong and M. Zhang, 2013), and social media analysis (Blair, Bi, and

Mulvenna, 2020).

The coherence score is calculated based on the semantic similarity between high-ranking words

within each topic. It shows to be effective in discriminating the usefulness of topics (Contreras-

Piña and Ríos, 2016) and is considered a reliable measure for evaluating the quality of topics in

the absence of ground truth data (Doogan and Buntine, 2021). The formula for calculating topic
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coherence is often based on word co-occurrence and pair-wise word similarities (Omar et al.,

2015).

Coherence Score =
∑

i,j∈W,i6=j

similarity(wi, wj) (2.6.2)

Where W is the set of high-ranking words in a topic, and similarity(wi, wj) is a measure of the

semantic similarity between words wi and wj .

The choice of coherence scoring in this work is motivated by its proven effectiveness in various

applications and its ability to provide a more interpretable and coherent set of topics.

2.6.3 Overview of Topic Coherence Measures

In the context of LDA, a coherence score serves as a quantitative metric to evaluate the quality

of topics generated by the model (Blei, Ng, and Michael I. Jordan, 2003; Röder, Both, and

Hinneburg, 2015). The necessity for such a score arises from the challenge of determining how

well the topics make sense, both semantically and contextually (“Automatic Evaluation of Topic

Coherence” 2006). Traditional evaluation methods often involve manual inspection, which is

not only time-consuming but also subjective (Chang et al., 2009). Coherence scores aim to

provide an automated, objective measure of topic quality (Röder, Both, and Hinneburg, 2015).

Generally, a coherence score works by examining the top words in each topic and measuring

how frequently these words co-occur in a given corpus (Mimno et al., 2011). Various coherence

measures such as UMass Coherence Index (UCI), UMass Coherence (UMASS), Normalized

Pointwise Mutual Information (NPMI) and Confirmatory V-measure (C_V) employ different

mathematical formulations and statistical properties to capture this co-occurrence information

(Röder, Both, and Hinneburg, 2015). When choosing a coherence score, it is essential to consider

the specific requirements of the research question at hand, the characteristics of the data, and

the computational resources available. Comparative studies often recommend using multiple

coherence scores to cross-validate the robustness of the topics generated by the LDA model

(O’Callaghan et al., 2015).

The paper "Exploring the Space of Topic Coherence Measures" by Röder, Both, and Hinneburg

(2015) provides insights into different coherence scores used in topic modeling. The coherence

scores UCI, UMASS, NPMI and C_V are explained as follows:

The UCI coherence, calculated using Pointwise Mutual Information (PMI), measures the average
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log probability that pairs of top words co-occur more frequently than would be expected by

chance. A higher UCI score generally indicates that the top words within the topic are more

coherent and semantically related (Röder, Both, and Hinneburg, 2015, p. 2). It is based on word

co-occurrence counts derived from documents constructed by a sliding window that moves over

an external reference corpus like Wikipedia.3

CUCI = 1
N · (N − 1)

N∑
i=1

N∑
j=i+1

PMI(wi, wj) (2.6.3)

PMI(wi, wj) = log
(
P (wi, wj) + ε

P (wi) · P (wj)

)
(2.6.4)

where N is the number of top words for a topic and ε is a small constant to avoid the logarithm

of zero (Röder, Both, and Hinneburg, 2015, p. 2).

UMASS coherence focuses on the conditional probability of co-occurrence of top word pairs.

Unlike UCI, it considers the order of words and is generally easier to compute. A higher UMASS

score suggests that the preceding words provide a good context for the succeeding words within

the topic (Röder, Both, and Hinneburg, 2015, p. 2). UMASS coherence uses an asymmetrical

confirmation measure between top word pairs, which accounts for the ordering among the top

words of a topic.

CUMass = 1
N

N∑
i=1

log (P (wi|wj)) (2.6.5)

where N is the number of top words for a topic (Röder, Both, and Hinneburg, 2015, p. 2).

NPMI coherence is an extension of PMI and is normalized to fall within the range of -1 to 1. It

provides a balanced measure that accounts for the frequency and rarity of word co-occurrence,

making it a more robust metric for assessing topic quality (Röder, Both, and Hinneburg, 2015,

p. 3). NPMI is an improvement over PMI and performs better than UCI coherence.

CNP MI = 1
N · (N − 1)

N∑
i=1

N∑
j=i+1

NPMI(wi, wj) (2.6.6)

where N is the number of top words for a topic (Röder, Both, and Hinneburg, 2015, p. 3).

C_V coherence is a composite measure that combines various statistical properties, including the

indirect cosine measure with NPMI and a boolean sliding window. Although not elaborated upon

in the referenced paper, it is found to perform well in various settings, indicating its adaptability

3https://www.wikipedia.org
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and robustness (Röder, Both, and Hinneburg, 2015, p. 7).

2.6.4 Results of the First Level and Second Level Topic Allocation

The topic modeling process results in a set of distinct topics that encapsulate the underlying

themes present in the dataset. These topics are manually entitled and briefly described to provide

a clear understanding of the subject matter they represent. Each topic is characterized by a

set of keywords generated through the LDA method, which identifies the words that are most

indicative of the topic’s content.

Furthermore, for each identified topic, the most representative paper is selected based on the

highest probability score assigned by the LDA model. This score reflects the degree to which the

paper aligns with the specific topic, providing a tangible example of the subject matter. The

following sections present the entitled topics, their brief descriptions, and an overview of the

most representative papers, offering a comprehensive insight into the thematic structure of the

PdM domain.

Building on the aforementioned topic characterization, it is vital to evaluate the quality and

coherence of the derived topics. The validation of the LDA model employed is visualized in

Figure 5. Four prominent coherence metrics — C_V, UCI, UMASS, and NPMI — are used

to gauge the semantic similarity between top words in each topic, thereby shedding light on

topic interpretability (Röder, Both, and Hinneburg, 2015). An evident peak at n = 6 across

the metrics accentuates the significance of this number of topics in the dataset. Specifically,

the decline in C_V score post this mark hints at a possible oversaturation of topics, leading

to diluted semantic value. Such observations drive the emphasis on judiciously choosing the

number of topics, ensuring that the LDA model is both meaningful and discerning, especially in

the sophisticated PdM domain (Blei, Ng, and Michael I. Jordan, 2003).

Traditional coherence metrics such as C_V, UCI, UMASS, and NPMI, while insightful, may

present divergent evaluations as seen in this work’s results (Doogan and Buntine, 2021; Harrando

et al., 2021). To augment this, this research proposes a coherence measure grounded in the

distribution of authors per paper. The underlying hypothesis suggests the existence of research

clusters, indicated by authors predominantly contributing to a single topic (Xiong, M. Zhang,

and Xing Wang, 2015; Contreras-Piña and Ríos, 2016). By analyzing the distribution of authors

across topics, this measure aims to validate the number of topics generated by the LDA model.

The rationale is that a well-defined topic should naturally attract a consistent group of authors,
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Figure 5: Comparison of different coherence scores vs number of topics: C_V in blue, UMASS in orange,
UCI in green and NPMI in red (own figure).

thereby serving as an additional layer of validation for the coherence and relevance of the topics

identified. This author-based coherence measure offers a complementary approach to existing

metrics, providing a more nuanced understanding of topic quality and research clustering.

A polynomial function of degree 4 is fitted to this data, generating a curve that serves as a

baseline for topic coherence. The choice of a fourth-degree polynomial is motivated by its ability

to capture more complex, non-linear relationships in the data, which lower-degree polynomials

may not adequately represent. The transformed data, obtained by subtracting the fitted values

from the original average number of touched topics, serves as an additional layer of validation for

the coherence and relevance of the topics identified. This approach aims to capture the clustering

behavior of authors within topics, thereby providing a mathematical basis for evaluating topic

quality.

Referencing Figure 6, a noticeable inflection at n = 6 in the original data (blue line) hints at

its significance. The polynomial fit (in orange) effectively captures the data’s nuances, and the

pronounced deviations from the fit around n = 6 (grey bars) further emphasizes its importance.

Taking stock of these findings, the data suggests that the ideal number of topics is n = 6. Such

a choice ensures semantically coherent topics that align with inherent research patterns in the
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PdM domain.

In conclusion, the confluence of traditional coherence scores and the innovative author-based

coherence metric solidifies the selection of n = 6 as the optimal number of topics for the PdM

domain.

0 2 4 6 8 10 12

Number of Topics

1.04

1.05

1.06

1.07

1.08

1.09

1.10

1.11

A
ve

ra
ge

N
um

be
r

of
To

uc
he

d
To

pi
cs

pe
r

A
ut

ho
r

Average Number of Touched Topics per Author vs Number of Topics

−0.006

−0.004

−0.002

0.000

0.002

D
is

ta
nc

e
to

F
it

Original Data
Polynomial Fit: 0.0x3 +−0.005x2 + 0.044x1 + 0.98

Distance to Fit

Figure 6: Average number of touched topics per author vs number of topics: Original data as blue line,
polynomial fit as dotted orange line and distance to fit as green bars (own figure).

As depicted in Figure 7, the distribution of topics across the dataset appears to be well-balanced,

lending further credence to the validity of the topic modeling approach (Maier et al., 2018).

The relatively even distribution suggests that each topic captures a distinct facet of the PdM

domain, without any single topic dominating the corpus (Gan and Qi, 2021). This observation

substantiates the choice of n = 6 topics, reinforcing the notion that the model effectively partitions

the data into meaningful clusters (B. Wang et al., 2014). Importantly, the distribution is not

too equal, which could indicate random topic distributions, thereby further validating the model

(Cao et al., 2009).
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Figure 7: Number of abstracts that respectively included topic 1, topic 2, topic 3, topic 4, topic 5 and
topic 6 (enumeration: 0 – 5) (own figure).

Analyzing the top keywords for each topic, as listed in Table 3, they are categorized into relevant

domain-specific themes:

Topic Top Keywords

Topic 1 [fault, digital_twin, internet_of_things, robot, sensor, policy, network]
Topic 2 [model, failure, equipment, method, damage, artificial_neural_network, roughness]
Topic 3 [machine_learning, data, degradation, train, feature, gear_wear, cost]
Topic 4 [bearing, remaining_useful_life, prognostic, production, training, driven, portion]
Topic 5 [output, asset, manufacturing, portion, construction, review, risk]
Topic 6 [machine, battery, system, process, tool, scheduling, prognosis_health_management_system]

Table 3: Topics 1 to 6 generated from topic modeling with their respective keywords.

• Topic 1: IoT-Driven Robotic Systems

This topic captures the integration of the Internet of Things (IoT) with digital twins and

robotic systems. The emphasis on fault, sensor, network, and policy suggests a focus on

fault detection and policy-driven decisions in IoT-enabled robotic systems. The convergence

of these keywords reflects the growing importance of digitized and connected assets in modern

industrial setups (H. Li et al., 2014). The work by H. Li et al. (2014) investigates the use of ML

techniques and historical detector data to predict conditions leading to failure, thus avoiding

service interruptions and increasing network velocity. H. Li et al. (2014) employ a range of

analytical approaches, including ML techniques, to analyze historical detector data and various

other types of data. Their models aim to predict conditions that could lead to future failures,
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thereby enhancing the reliability and efficiency of rail networks.

• Topic 2: Equipment Damage Modeling

Centered on model, failure, and equipment, this topic emphasizes the importance of under-

standing equipment damage and degradation. Keywords like artificial_neural_network and

roughness hint at the use of advanced neural networks to model surface wear and tear, possibly

in mechanical components (Cakir, Guvenc, and Mistikoglu, 2021). Cakir, Guvenc, and Mistikoglu

(2021) discuss the advantages of IIoT systems that perform real-time monitoring, providing an

early warning system for equipment failures. Cakir, Guvenc, and Mistikoglu (2021) developed an

I4.0 compatible, IIoT-based Condition Monitoring System (CMS) that utilizes ML algorithms

for real-time monitoring and failure prediction. Their system can send alerts to maintenance

teams, thereby preventing severe equipment failures.

• Topic 3: Machine Learning in Degradation Monitoring

This topic predominantly revolves around ML techniques, with machine_learning, data,

degradation, and gear_wear being the focal points. The inclusion of cost suggests the

economic implications of machinery degradation and the benefits of early detection (Ewald et al.,

2022). Ewald et al. (2022) propose a deep learning approach for structural health monitoring,

emphasizing the need for explainable AI in this domain. They extend their previous work on

deep learning for structural health monitoring by proposing a theoretical perspective inspired

by neuroscience. They emphasize the need for explainable AI and discuss the challenges and

opportunities of using deep learning for signal representation in structural health monitoring.

• Topic 4: Bearing Life Prediction

Emphasizing bearing, remaining_useful_life, and prognostic, this topic explores the esti-

mation of a bearing’s serviceable lifespan (Stollwitzer, Bettinelli, and J. Fink, 2023). Stollwitzer,

Bettinelli, and J. Fink (2023) focus on the dynamic properties of the longitudinal track-structure

interaction, highlighting the influence of various factors like vertical load and climatic conditions.

Their findings suggest that traditional normative specifications may not adequately capture the

complex behavior observed in their experiments.

• Topic 5: Manufacturing Risk Management

With output, asset, manufacturing, and risk as the primary keywords, this topic examines risk

management in manufacturing processes (Garrido Martínez-Llop, Sanz Bobi, and Olmedo Ortega,

2023). Garrido Martínez-Llop, Sanz Bobi, and Olmedo Ortega (2023) discuss the use of ML to

predict lateral car body accelerations, thereby enhancing passenger comfort and safety. They
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employ Long Short Term Memory Networks (LSTMs) to predict lateral car body accelerations,

aiming to enhance passenger comfort and safety. Their model outperforms traditional ANNs and

could be used for PdM, thereby reducing operational risks.

• Topic 6: Machinery Health Prognosis Systems

Highlighted by keywords such as machine, battery, system, and prognosis_health_manage-

ment_system, this topic underscores the importance of machinery health management (Rokhforoz

and O. Fink, 2021). Rokhforoz and O. Fink (2021) propose a hierarchical multi-agent framework

for PdM scheduling in railway systems. Their approach uses dual decomposition and mechanism

design to align the objectives of individual wagons with the central system, thereby optimizing

maintenance scheduling and operational efficiency.

Following the initial LDA analysis, which segmented the literature into six broad topics, a

second-level LDA analysis is thoroughly applied to each of these topics. This multi-level approach

to topic modeling is innovative in its depth and specificity. While the first-layer LDA provides

a macroscopic view of the thematic landscape, the second-layer LDA uncovers more nuanced

subtopics within each primary category. Such an approach is particularly beneficial in complex

fields like PdM, where a single layer of analysis may not suffice to capture the elaborate nuances

and subthemes present in the literature. This layered analysis method, while not extensively

documented, aligns with advanced topic modeling techniques discussed in recent studies (Blei,

Ng, and Michael I. Jordan, 2003; Xiaolong Wang et al., 2011). By employing this multi-level

LDA strategy, the research aims to construct a comprehensive and structured overview of the

PdM field, aiding a deeper understanding of the literature and identifying potential areas for

further investigation.

In addition to the detailed exploration of subtopics within each primary category, a significant

aim of the second-level LDA analysis is to identify a unifying structure that interconnects the

diverse main topics revealed in the first-layer analysis. This endeavor is driven by the principles

of reusability central to CBSE. By uncovering commonalities and overarching themes that span

across different main topics, the research seeks to establish a cohesive framework that embodies

the CBSE ethos of modularity and reusability. Such a framework would not only enhance

the understanding of the PdM domain but also advance the development of more efficient

and adaptable PdM models. This approach aligns with the concept of reusability in software

engineering, where identifying and leveraging common elements across different modules can

significantly improve development efficiency and effectiveness (Krueger, 1992; Clements and
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Northrop, 2002). This multi-level LDA analysis aims to reveal patterns and structures that can

be applied universally across the PdM field, thereby embodying the reusability and modularity

principles of CBSE.

Topic Top Keywords

Topic 1: IoT-Driven Robotic Systems

Subtopic 1.1: [digital_twin, internet_of_things, network, sustainability, policy, independent_system_operator,
lightning]

Subtopic 1.2: [sensor, time_series, water, data, sector, parameter, caconvnet]
Subtopic 1.3: [policy, network, dimension, training, running, underground, speed]
Subtopic 1.4: [fault, industry_40, control, actuator, bearing, large, fuel]
Subtopic 1.5: [stock, factor, reference_architecture, decision, joint, tso, twinbased]
Subtopic 1.6: [robot, asset, varying, internet_of_things, input, corrosion, measure]

Topic 2: Equipment Damage Modeling

Subtopic 2.1: [failure, method, roughness, monitoring, aircraft, prediction, artificial_neural_network]
Subtopic 2.2: [damage, aging, architecture, pipe, similaritybased_model, clinkering, learning]
Subtopic 2.3: [model, equipment, artificial_neural_network, steel, company, operator, concept]

Topic 3: Machine Learning in Degradation Monitoring

Subtopic 3.1: [machine_learning, range, cost, capacitor, device, photovoltaic, fuzzy]
Subtopic 3.2: [data, train, feature, gear_wear, opportunistic, autoencoder, artificial_neural_network]
Subtopic 3.3: [degradation, algorithm, mechanical, group, failure, frequency, artificial_intelligence_machine-

_learning]

Topic 4: Bearing Life Prediction

Subtopic 4.1: [leased, layer, technology, data, result, led, vibration]
Subtopic 4.2: [bearing, training, singlelayer_reticulated_shells, module, damping, ballasted, inflection]
Subtopic 4.3: [prognostic, alert, layer, induction_motor, line, zno_arrester, tool]
Subtopic 4.4: [production, service, vibration, endofline_testing, underground_infrastructure, industrial, digi-

tal]
Subtopic 4.5: [remaining_useful_life, portion, driven, rolling_bearing, indicator, system, lifetime]

Topic 5: Manufacturing Risk Management

Subtopic 5.1: [review, mechanical, tunnelling, smart_factory, technique, permutation_entropy, mp]
Subtopic 5.2: [accident, construction, strategy, transport, prepipe, connection, sensor]
Subtopic 5.3: [portion, risk, failure, displacement, result, lithiumion_battery, electrical]
Subtopic 5.4: [output, planning, barrier, spm_practice, task, nbr, seal]
Subtopic 5.5: [manufacturing, construction, gearbox, air, tunnelling, control, building_information_modeling]
Subtopic 5.6: [asset, condition, pattern, aim, aircraft, h_division, test]

Topic 6: Machinery Health Prognosis Systems

Subtopic 6.1: [tool, planning, scheduling, energy, break, prognosis_health_management_system, machine_learning]
Subtopic 6.2: [process, plant, breakdown, business, line, thermal_image, power]
Subtopic 6.3: [system, battery, cross, condition, charge, residential, approach]
Subtopic 6.4: [machine, generator, oil, methodology, industry_40, conditionbased_maintenance, dock]

Table 4: Topics 1 to 6 generated from topic modeling and their respective subtopics with keywords.

The outcomes of the second-level LDA analysis are concisely presented in Table 4, which

enumerates the subtopics identified within each of the six main topics derived from the initial

LDA analysis. In determining the number of subtopics for each main topic, the methodology

mirrored that of the initial analysis. This approach ensured consistency and methodological

rigidity across both levels of analysis. The number of subtopics per main topic varied, ranging

from three to six. This variation reflects the inherent complexity and depth of each main

topic, with some topics exhibiting a broader range of subthemes than others. The decision
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on the number of subtopic is guided by the goal of achieving a comprehensive yet coherent

categorization, balancing the need to capture the diversity within each main topic against the

risk of over-fragmentation. This methodical approach to topic selection is rooted in established

practices in topic modeling, ensuring that the identified subtopics are both representative and

meaningful within the context of the broader PdM research landscape (Blei, Ng, and Michael I.

Jordan, 2003; Griffiths and Steyvers, 2004).
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Figure 8: Number of papers per main topic and respective subtopics (own figure).

The distribution of scientific papers across the subtopics, as depicted in Figure 8, provides

valuable insights into the thematic spread within the PdM literature. The figure illustrates a

relatively balanced but not uniform distribution of papers among the subtopics. This pattern

of distribution is indicative of a well-calibrated LDA model, as it suggests a comprehensive

coverage of the thematic landscape without any single subtopic dominating the corpus. The

absence of a skewed distribution towards any particular subtopic implies that the LDA model

successfully avoids overfitting, a common concern in topic modeling where the model might

overly specialize in certain topics at the expense of others. This balanced representation ensures

that the model captures a wide array of themes and perspectives within the PdM field, thereby

providing a holistic view of the research landscape. Such a distribution is vital for ensuring that

the subsequent analysis and interpretations are grounded in a diverse and representative sample

of the literature, thereby enhancing the reliability and validity of the findings.
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The comprehensive table of subtopics 4 reveals a structured pattern across the major topics in the

PdM domain. Each topic appears to have recurring elements that can be categorized into four

main aspects: data source, feature engineering, modeling technique, and modeling purpose. For

instance, Topic 1, IoT-Driven Robotic Systems, includes subtopics that touch upon data sources

like digital_twin and internet_of_things, as well as modeling techniques such as network

and caconvnet4 (K. Lee et al., 2017). In Topic 2, Equipment Damage Modeling, equipment

and pipe serve as data sources, and failure and prediction align with the modeling purpose.

This pattern is consistent across other topics, reinforcing the idea that a structured approach to

PdM is beneficial for both research and practical applications (March and Scudder, 2019; Cheng

et al., 2020). The recurring elements in the subtopics validate the need for a multi-disciplinary

approach in PdM, encompassing diverse aspects from data collection to Model Deployment (MD)

(Achouch et al., 2022; Chuang et al., 2019).

Category Keywords

Data Source

[sensor, monitoring, device, equipment, pipe, photovoltaic, train, aircraft, lithiumion_batt-
ery, data, underground_infrastructure, generator, internet_of_things, vibration, building-
_information_modeling, rolling_bearing, mechanical, digital_twin, damping, bearing, battery]

Feature Engineering

[control, condition, algorithm, corrosion, indicator, tool, displacement, method, frequency,
dimension, measure, degradation, result, feature, input, time_series, output, factor, pattern,
thermal_image, gearbox]

Modeling Technique

[artificial_intelligence_machine_learning, fuzzy, learning, machine_learning, artificial-
_neural_network, autoencoder, permutation_entropy, model, layer, network, training, technique,
similaritybased_model, caconvnet]

Modeling Purpose

[remaining_useful_life, aging, accident, sustainability, lifetime, induction_motor, damage,
prognostic, failure, prediction, decision, risk, prognosis_health_management_system, break-
down, aim, fault, break, range, gear_wear]

Unclassified

[smart_factory, policy, ballasted, underground, operator, group, test, clinkering, oil, inde-
pendent_system_operator, manufacturing, strategy, transport, prepipe, zno_arrester, barrier,
spm_practice, led, business, machine, approach, planning, line, fuel, inflection, company,
portion, cross, varying, architecture, capacitor, joint, system, asset, technology, task,
singlelayer_reticulated_shells, production, residential, opportunistic, endofline_testing,
energy, running, h_division, industrial, stock, cost, process, power, seal, dock, roughness,
sector, reference_architecture, scheduling, air, service, charge, concept, nbr, parameter,
large, industry_40, review, mp, connection, alert, module, tso, tunnelling, robot, plant, leased,
construction, electrical, water, actuator, digital, driven, speed, steel, lightning, condition-
based_maintenance, twinbased, methodology]

Table 5: Subtopic keywords classified into the categories Data Source, Feature Engineering, Modeling
Technique, Modeling Purpose, and Unclassified.

In an effort to further refine the understanding of the subtopics identified through the second-
4Causal Augmented Convolution Network
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level LDA analysis, each keyword extracted from these subtopics is thoroughly classified and

is presented in Table 5. The classification scheme employed categorizes keywords into the

four distinct phases of PdM model development: Data Source, Feature Engineering, Modeling

Technique and Modeling Purpose. This categorization is instrumental in illustrating the specific

aspects and stages of PdM model development that each keyword relates to, thereby providing a

clearer picture of the thematic focus within each subtopic. Additionally, certain keywords that

are either ambiguous in nature or not directly relevant to the specific phases of PdM model

development are labeled as Unclassified. This distinction is key for maintaining the clarity and

relevance of the categorization, ensuring that only keywords with a direct and clear association

to the phases of PdM model development are included in the respective categories. This manual

classification process not only aids in the thematic organization of the keywords but also serves

as a foundational step in identifying potential areas for the application of CBSE principles within

the PdM model development process.

The classification of keywords derived from the subtopics into distinct categories, as depicted

in Table 5, offers insightful perspectives into the various facets of PdM model development. In

the Data Source category, keywords such as sensor, vibration, and digital_twin emphasize

the diverse range of equipment and technologies involved in data collection for PdM. For in-

stance, sensor and vibration highlight the importance of monitoring physical parameters, while

digitaltwin represents the advanced digital modeling of physical systems. The Feature Engi-

neering category, with keywords like algorithm, time_series, and thermal_image, underscores

the methods and tools used to process and analyze data, where algorithm suggests computational

techniques, and thermal_image points to specific data types used for analysis. In the Modelling

Technique category, terms such as artificial_neural_network and machine_learning reflect

the advanced computational methods employed in PdM, indicating a strong focus on AI and ML

techniques. The Modelling Purpose category includes keywords like remaining_useful_life

and prognostic, which are directly related to the objectives of PdM models, such as predicting

equipment lifespan and anticipating failures. Lastly, the Unclassified category contains a wide

array of keywords like smart_factory and industry_40, which, although relevant to the broader

context of PdM, do not directly align with the specific phases of PdM model development. This

categorization not only aids in structuring the vast array of keywords but also provides a clear

thematic mapping of the PdM literature, reflecting the multifaceted nature of this field.

Figure 9 presents a compelling visualization of the distribution of keywords across different phases
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Figure 9: Number of keywords per topic 1 to 6, divided into the categories Data Source, Feature
Engineering, Modeling Technique, Modeling Purpose, Unclassified (own figure).

of PdM for each subtopic identified in the literature. Notably, every phase is represented in each

subtopic, at least to some extent. This uniformity in representation across phases underscores the

comprehensive nature of the PdM field, as it suggests that each aspect of PdM is integral to the

understanding of every subtopic. The similarity in distribution patterns across different subtopics

further reinforces the hypothesis that there exists a fundamental structure underlying all PdM

topics. This structure is characterized by a consistent emphasis on all phases of PdM, from

data sourcing to modeling techniques and purposes. Such a finding is significant as it indicates

that, despite the diversity of themes and focus areas within PdM literature, there are core

elements that are universally pertinent. This revelation not only validates the methodological

approach employed in this research but also provides a foundational understanding that can be

instrumental in guiding future explorations and developments in the field of PdM.

The detailed distribution of keyword appearances across individual subtopics, as illustrated in

Figure 10, offers insightful observations into the thematic structure of PdM. While there is some

overlap in keyword appearances, particularly noticeable in subtopics like Topic 5, a discernible

separation between phases such as Modeling Technique and Feature Engineering is evident. This

separation is indicative of the distinct nature of these phases within the PdM process. In Topic

1, for instance, the keyword concentrations are distributed across all phases, demonstrating a
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Figure 10: Keyword count divided into keyword categories, per topic and respective subtopics (own
figure).

comprehensive coverage of the PdM spectrum. Overall, the distribution patterns observed in

the subtopics, as derived from the LDA analysis, reflect the anticipated phases of PdM. This

alignment between the LDA-derived subtopics and the hypothesized phases of PdM suggests

that the LDA model effectively captures the inherent structure of the PdM field. The ability

of the LDA model to show these phases within the subtopics not only validates the analytical

approach but also highlights the nuanced complexity of PdM, where different aspects intertwine

yet maintain distinct identities. Such findings are instrumental in understanding the multifaceted

nature of PdM and in guiding future research to explore these phases in more depth, thereby

contributing to the advancement of the field.

In the context of PdM, the classification of keywords into distinct phases is fundamental for

a structured approach to model development and implementation. Table 6 encapsulates this

classification effectively.

Data Source: This category includes keywords such as sensor, vibration, and bearing,

highlighting the importance of sensors in collecting real-time data, a fundamental aspect of

PdM (Randall, 2011). Additionally, device, aircraft, and internet_of_things reflect the

diverse sources of log data, essential for predictive analytics in various industrial applications
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Category Keywords

Data Source

Sensor [sensor, monitoring, vibration, bearing, battery, digital_twin, mechanical,
rolling_bearing, damping]

Log (Events) [device, equipment, pipe, photovoltaic, train, aircraft, lithiumion_battery,
data, underground_infrastructure, generator, internet_of_things, building_
information_modeling]

Feature Engineering

Statistical [control, condition, corrosion, indicator, displacement, frequency, dimension,
measure, degradation, result, feature, input, output, factor]

Pattern / Time / Frequency-based [time_series, thermal_image, pattern]
Static [tool, method, gearbox]

Modeling Technique

Model-based [model, technique, similaritybased_model, caconvnet, permutation_entropy]
Data-based [artificial_intelligence_machine_learning, layer, network, training, fuzzy,

learning, machine_learning, artificial_neural_network, autoencoder]

Modeling Purpose

RUL Prediction [remaining_useful_life, lifetime, prognostic, prediction, prognosis_health_
management_system, range, gear_wear, induction_motor]

Deviation Detection [aging, accident, damage, failure, fault, break]
Maintenance Need Classifier [sustainability, decision, risk, breakdown, aim]

Table 6: Classification per keywords per category into PdM phases (own figure).

(García Márquez et al., 2012).

Feature Engineering: Keywords like corrosion and degradation under the statistical sub-

category indicate the use of statistical methods to identify significant features for equipment

health assessment (Jardine, Lin, and Banjevic, 2006). The inclusion of time_series and pattern

under pattern/time/frequency-based feature engineering underscores the importance of analyzing

temporal patterns in PdM (Sikorska, Hodkiewicz, and Ma, 2011).

Modeling Technique: The model-based technique, with keywords such as model and

similaritybased_model, suggests the use of physical or mathematical models in PdM (Si

et al., 2011). In contrast, the data-based technique, indicated by machine_learning and

artificial_neural_network, points towards the growing role of AI and ML in PdM (R. Zhao

et al., 2016).

Modeling Purpose: The purpose of modeling in PdM is well-represented with keywords

like remaining_useful_life and prognostic for Remaining Useful Life (RUL) prediction,

emphasizing the goal of predicting machinery’s RUL (Si et al., 2011). Keywords such as failure

and fault in deviation detection highlight the need for early fault detection, a key component in

PdM (Jardine, Lin, and Banjevic, 2006). Lastly, maintenance need classifier keywords like risk

and decision reflect the decision-making processes in maintenance based on risk assessment
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(W. Wang, 2012).

This classification not only aids in understanding the various facets of PdM but also serves as a

guide for selecting appropriate methodologies and techniques in the development of PdM models.

2.6.5 Validation of the Topic Results

Figure 11 presents a comprehensive framework for PdM, as a culmination of the research efforts

detailed in this work. This framework, initially introduced by Fromm (2020), is quantitatively

validated and further refined through an extensive two-layer LDA analysis conducted as part

of this study. The framework is segmented into distinct phases, each representing a critical

component in the PdM process.

Modeling Purpose
(4)

Modeling Technique
(3)

Data Source 
(1)

Feature 
Engineering

(2)

Sensor Data

Log Data 
(Events)

Pattern / Time / 
Frequency-

based Features

Static Features

Statistical 
Features

Model-based Prognostics
(Physical Degradation Model)

Data-based Prognostics
(Un- / Supervised ML)

Deviation 
Detection

Maintenance 
Need Classifier

RUL Prediction

Figure 11: Predictive Maintenance Framework Framework divided into four PdM phases as a result of
two-layer dirichlet Allocation, validated by Fromm (2020).

The validation of the PdM framework developed in this study is underpinned by a thorough

analysis conducted by the author in an unpublished thesis.

This analysis involved a manual examination of a representative set of publications, distinct

from the initial dataset, to identify the presence and relevance of the framework’s phases and

classifications within these works. The findings of this analysis are systematically presented

in Table 7, as included in the supplementary material. The table illustrates how the various

elements of the PdM framework are consistently mirrored across a broad spectrum of publications
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N. Gebraeel, Elwany, and Jing Pan (2009) • • • • •
Balali, Seifoddini, and Nasiri (2020) • • • • •
Herpel et al. (2009) • • • • •
Eke et al. (2017) • • • • •
Staszewski, K. Worden, and Tomlinson (1997) • • • • •
Farrar and Keith Worden (2012) • • • • •
Bunks, Mccarthy, and Al-Ani (2000) • • • • •
Mann, Saxena, and Knapp (1995) • • • • •
Gašperin et al. (2011) • • • •
Fugate, Sohn, and Farrar (2001) • • • •
Pan, Sas, and Van Brussel (2003) • • • •
N. Gebraeel (2006) • • • • •
Goode, Moore, and Roylance (2000) • • • •
Sipos et al. (2014) • • • • • • •
Bin Hu et al. (2012) • • • • • •
J. Wang et al. (2017) • • • • • •
S. He et al. (2016) • • • • •
Patil et al. (2017) • • • • •
M.-L. T. Lee and Whitmore (2006) • • • • •
Gutschi et al. (2019) • • • • •
Shimada and Sakajo (2016) • • • •
Decker et al. (2020) • • • • • •
Serna et al. (2011) • • • • •
Rögnvaldsson et al. (2018) • • • • •

Table 7: Overview of the Aspects of each PdM Phase that are covered in each publication of a represen-
tative set of PdM literature.

within the PdM domain.

In Table 7, it becomes apparent that the framework’s components are not only applicable but

also prevalent in diverse industrial research contexts. While the selection of publications for closer

examination in this review is not exhaustive, it is intentionally diverse, offering a comprehensive

overview of the industrial facets pertinent to PdM research.

Further deepening the analysis, Table 8 presents a quantitative assessment of the interrelationships

between different aspects of PdM. This table showcases a matrix where the frequencies of

combinations between two aspects a ∈ A of PdM are calculated. Normalized against the set of

reviewed publications p ∈ P , the matrix reveals the observation frequencies xm,n, mathematically

rounded to one decimal place, for each aspect tuple defined by the row and column indices m and

n. Notably, the main diagonal of the matrix indicates the proportional observation frequency

xa of each individual aspect. This quantitative approach provides a nuanced understanding of

how various elements of PdM interconnect and co-occur within the research landscape, offering

valuable insights into the multifaceted nature of PdM in industrial applications.
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Sensor .5 .1 .4 .3 .1 .3 .3 .3 .3 .0
Log .5 .4 .4 .3 .1 .5 .2 .3 .3
Statistical .8 .4 .2 .2 .6 .2 .4 .3
Patterns .6 .2 .2 .4 .2 .4 .3
Static .3 .1 .2 .1 .2 .1
Model-driven .3 .0 .1 .2 .1
Data-driven .7 .2 .4 .3
RUL .3 .0 .0
Deviation .5 .1
Maintenance Need .3

TOTAL 13 13 18 15 8 8 17 8 12 8 24

Table 8: Result matrix of the frequency analysis of the aspects of each PdM phase in a representative set
of PdM literature, showing the observation frequencies rounded to one decimal place.

xm,n = |{p ∈ P : am, an ∈ p}|
|P |

, ∀m,n ∈ A (2.6.7)

The validation of the PdM framework, as depicted in Figure 11, is substantiated through a

frequency analysis of various aspects within the PdM domain. This analysis, detailed in Table 8,

demonstrates a comprehensive coverage of the considered articles across the defined data types,

with a balanced distribution between sensor and log data. This balance justifies the bifurcation

into these two data types within the scope of this research. Sensor data, encompassing real-time

system monitoring data streams, emerge as the primary data source in numerous technical

systems, influencing the choice of feature engineering methods. Log data, on the other hand, are

event-driven and often preferred due to their digital format and dependency on primary sensor

data. This phase is essential as approximately 80% of the development effort in PdM is invested

in exploratory analysis and data cleansing (Dasu and Johnson, 2003).

The second phase, Feature Engineering, shows a complete representation of the aspects Statistical,

Patterns, and Static in the reviewed literature. However, static feature engineering methods

are mentioned in only about 30% of the publications, suggesting their often implicit role in the

research process. The high overlap of these aspects indicates a potential for parallelization in

feature engineering methods, which is vital for the modular design introduced in Section 4. The

combination of feature engineering aspects with data sources reveals a tendency to discuss static

methods predominantly when log data are used, highlighting the complexity of preprocessing

and transforming event-triggered features.
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In the third phase, Modeling Technique, the literature commonly differentiates between data-based

and model-based (or physics-driven) approaches. The analysis reveals a dominance of data-driven

models, with about 70% of the publications discussing these approaches. However, this does not

diminish the importance of model-based approaches, which often implicitly influence data-driven

models, especially in feature selection based on expert recommendations or physical correlations.

The frequent use of statistical feature engineering methods in data-driven predictions underscores

the importance of data quality and volume in enhancing model performance.

Finally, the Modeling Purpose phase is categorized into RUL Prediction, Deviation Detection,

and Maintenance Need Classifier. The RUL prediction, a key factor in Condition Monitoring

(CM), is primarily achieved through supervised ML regression methods, focusing on predicting

the RUL based on usage and condition monitoring (Si et al., 2011). Deviation detection,

often employing unsupervised ML methods, monitors outliers and irregularities, suitable for

systems with indefinite lifespans or minimal failure data. The Maintenance Need Classifier,

typically using supervised ML classification algorithms, assesses the current or future state of

a system for maintenance requirements. The literature review indicates a slight preference for

Deviation Detection models, with a notable observation that sensor data are rarely combined

with Maintenance Need Classification, possibly due to the categorical nature of event-based log

data being more conducive to classification approaches than to regression models.

2.7 Conclusion of the Literature Findings

The topic modeling process reveals a rich and multifaceted landscape in the domain of PdM.

By identifying eight distinct topics, each characterized by a set of keywords and represented by

a paper with the highest probability score, the complexity and breadth of the field are clearly

demonstrated.

This section synthesizes the findings from the literature review, addressing the research questions

and critically analyzing the strengths and weaknesses of the methodologies employed. The

systematic exploration conducted herein validates the hypothesis that PdM fits the requirements of

CBSE, indicating that modularization and reusability bring significant benefits to the development

of PdM models. However, it also highlights a research gap in the thorough application of CBSE

principles to PdM, which this work aims to address.

The findings from various subsections of this literature review demonstrate that while PdM

models benefit from CBSE approaches, there is a lack of comprehensive methodologies that
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fully exploit the potential of these principles. The empirical studies reviewed suggest that while

components of CBSE are often applied to specific facets of PdM, a holistic and integrated

approach is still missing. This gap presents a significant opportunity for future research to

develop a more cohesive and standardized framework that can pave the way for the efficient and

effective implementation of PdM systems in industrial applications.

In conclusion, this literature review lays a solid foundation for the proposed component repository,

highlighting both the necessity and potential for leveraging CBSE in PdM. The subsequent phases

of this thesis will build upon these findings, aiming to design and validate a novel framework

that not only addresses the identified gaps but also enhances the scalability, reusability, and

efficiency of PdM models.
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Methods

This chapter articulates the comprehensive methodological framework employed in this disserta-

tion, which underpins the systematic development and evaluation of artifacts designed to advance

the field of PdM. Central to this work is the adoption of DSR, recognized for its robustness in

iteratively creating and refining artifacts that address complex real-world problems. Moreover,

this chapter introduces the specific research environment which plays a critical role in shaping the

research outcomes. The automotive industry, characterized by rapid technological innovations

and high data availability, provides a fertile ground for deploying and testing the developed

PdM models, thus offering practical insights into their scalability and effectiveness. Additionally,

this chapter examines the ethical considerations inherent in this research, ensuring that the

methodologies and artifacts not only adhere to technical standards but also align with broader

ethical norms and values. These aspects are crucial for ensuring that the solutions developed are

not only technically sound but also socially responsible and acceptable.

3.1 Design Science Research as Research Design

In this thesis, DSR is employed as the primary research design to address the stated research

challenges. DSR, a methodology renowned for its iterative process and artifact creation, is a fitting

approach given the exploratory and innovative nature of the research goals. The foundation of

DSR rests on creating and evaluating artifacts, with the objective of solving real-world problems

and adding to theoretical knowledge. Throughout the study, various artifacts, including models,

methods, and prototypes, are developed and refined in multiple iterations. These iterations

allow for continuous feedback and improvement, ensuring the relevance and applicability of the

solutions presented. The use of DSR not only provides a structured and stringent methodological
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framework but also allows the bridging of the gap between theoretical research and practical

application.

DSR is a methodology used to create and evaluate IT artifacts intended to solve identified

organizational problems. DSR is particularly relevant in the field of PdM, where innovative

solutions can significantly enhance operational efficiency and reliability. This research adopts

DSR due to its potential for practical contribution and its alignment with the objectives of

developing a PdM component repository (Hevner et al., 2004).

The principles of DSR are vital to the development of artifacts that are innovative, relevant,

thoroughly evaluated, and contribute to knowledge. These principles underpin the research

process, ensuring that the artifacts produced are technologically robust and add meaningful

insights to the existing body of knowledge.

Innovative artifact creation is the essence of DSR, focusing on the development of new models,

constructs, methods, or instantiations that effectively address identified problems (Gregor and

A. R. Hevner, 2013). The relevance to real-world problems is highly important, as DSR seeks to

solve practical issues, ensuring the research’s impact and applicability (Venable, Pries-Heje, and

Baskerville, 2012). Stringent evaluation is integral, requiring systematic and empirical assessment

of the artifact’s utility, quality, and efficacy within its domain (Peffers et al., 2007). Lastly, the

contribution to knowledge is a fundamental outcome of DSR, where the research should extend

the theoretical foundations and offer guidance for future research and practice (Hevner et al.,

2004).

Empirical research methodologies and DSR differ fundamentally in their approach, objectives,

and outcomes. Empirical research is primarily descriptive and explanatory, aiming to understand

and interpret phenomena through observation and analysis. It seeks to establish patterns,

relationships, or theories based on empirical evidence, often employing statistical methods to

analyze data (Yin, 2018).

In contrast, DSR is inherently prescriptive and constructive. It is concerned with creating

and evaluating artifacts designed to address specific problems. DSR does not just seek to

understand the world but to actively change it by introducing new and innovative solutions. The

outcomes of DSR are tangible artifacts—models, methods, constructs, or instantiations—whereas

empirical research contributes through the validation of hypotheses and enhancement of theoretical

frameworks (Hevner et al., 2004; March and Smith, 1995).

The objectives of empirical research are often to test theory or to extend understanding of a
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given phenomenon, which can lead to generalizable knowledge. DSR, on the other hand, is

goal-oriented towards the creation of effective solutions, with a stronger emphasis on practical

relevance and applicability. The evaluation in DSR is centered on the artifact’s performance

in the real world, while empirical research focuses on the robustness of the theoretical insights

derived from data (Simon, 2008; Sein et al., 2011).

In summary, while empirical research contributes to the understanding of ’what is’, DSR is

directed towards ’what could be’, providing a proactive pathway to innovation and improvement

in the field of Information Systems (IS) and beyond.

Action research and DSR share a common iterative approach but diverge significantly in their

focus and execution. Action research is a participatory process that involves stakeholders at

every stage, emphasizing collaborative problem-solving, planning, action, and reflection within a

cycle of continuous improvement (Lewin, 1946). It is characterized by its dual commitment to

bringing about change in the real world and to generating new knowledge, with the researcher

often acting as a facilitator within the organizational context (Reason and Bradbury, 2001).

DSR, while it may engage stakeholders, does not inherently require their participation in the same

manner. The primary goal of DSR is the creation of innovative artifacts, and while stakeholder

input may inform the design process, it is the artifact itself that is central to the methodology.

The iterative cycles in DSR focus on the refinement and evaluation of the artifact, rather than

on the participatory action and reflection cycles of action research (Hevner et al., 2004; Peffers

et al., 2007).

Furthermore, action research is often context-bound, with findings and solutions tailored to

specific organizational settings. In contrast, DSR aims to produce artifacts that have broader

applicability and can be generalized beyond the initial context in which they are created. The

participatory nature of action research can lead to rich, contextually grounded knowledge, but it

may limit the generalizability of the results. DSR, on the other hand, seeks to contribute to a

body of knowledge that can inform the design and application of artifacts across various contexts

(Simon, 2008; Sein et al., 2011).

In essence, while action research is a method to enact change collaboratively and learn from the

process within a specific context, DSR is a method to create and evaluate generalizable solutions

that can be applied across multiple contexts, with less emphasis on the participatory aspect of

problem-solving.

Case study research stands in contrast to DSR in its methodological approach and objectives. It
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is an in-depth investigation of a particular individual, group, or event, aimed at understanding the

dynamics present within single settings (Yin, 2018). Case studies are often used in exploratory

research where the boundaries between the phenomenon and context are not clearly evident, and

they allow researchers to retain the holistic and meaningful characteristics of real-life events.

DSR, in contrast, is not confined to the detailed examination of a specific context but is oriented

towards the creation of artifacts that can be applied in a variety of contexts. While case study

research provides a depth of understanding and richness of detail, it often lacks the generalizability

that DSR seeks to achieve through the development and evaluation of prototypes or models

(Hevner et al., 2004; Venable, Pries-Heje, and Baskerville, 2012).

The goal of case study research is to arrive at a comprehensive understanding of the event or

entity being studied, which may include generating theories from the data. DSR, however, is

inherently constructive, aiming to produce new, innovative solutions to problems. The artifacts

developed in DSR are intended to be generalizable and transferable, offering solutions that extend

beyond the specific case from which they arose (Gregor and A. R. Hevner, 2013; Vaishnavi,

Vaishnavi, and Kuechler, 2015).

To sum up, while case study research focuses on understanding phenomena in their real-life

context with an emphasis on depth over breadth, DSR is concerned with the creation of artifacts

that can be generalized and applied across various contexts, prioritizing breadth of application

and the potential for innovation.

The methodology of DSR employed in this thesis is characterized by a series of distinct yet

interrelated stages that collectively contribute to the development of effective, innovative solutions

in the realm of PdM. Each stage is described in detail below:

Problem Identification and Motivation: The DSR journey begins with a thorough under-

standing of the problem at hand. For PdM, this involves an in-depth analysis of the existing

challenges in developing and deploying PdM applications. The motivation for this research is

rooted in the need to enhance the efficiency and reliability of maintenance processes in industrial

settings, particularly within the automotive sector. This stage sets the foundation for the research

by establishing the context and justifying the need for an innovative solution (Hevner et al.,

2004).

Define the Objectives for a Solution: Building upon the identified problem, the next step

is to articulate clear and measurable objectives for the solution. This involves specifying the

desired features and capabilities of the Predictive Maintenance Framework, such as scalability,
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interoperability, and real-time data processing. The objectives are derived from both the practical

requirements of the industry and the theoretical constructs of PdM (Peffers et al., 2007).

Design and Development: At the heart of DSR is the design and development of the artifact,

which, in this case, is a component repository tailored for PdM applications. This stage involves

iterative cycles of prototyping, testing, and refinement to construct a solution that aligns with

the predefined objectives. The design process is informed by a synthesis of existing knowledge

and innovative approaches to CBSE (March and Smith, 1995).

Demonstration: The demonstration phase involves showcasing the artifact in operation within

a controlled environment or real-world setting. For this research, the component repository is

integrated into an automotive PdM application to illustrate its functionality and to provide a

proof of concept. This stage is critical for validating the design choices and for illustrating the

artifact’s capability to address the identified problem (A. Hevner and Chatterjee, 2010).

Evaluation: A thorough evaluation follows the demonstration, where the artifact’s performance

is assessed against the objectives. This evaluation is multifaceted, encompassing both qualitative

and quantitative measures, to ensure a comprehensive understanding of the artifact’s impact

and effectiveness. The evaluation phase is fundamental for providing evidence of the artifact’s

benefits and for guiding further refinements (Venable, Pries-Heje, and Baskerville, 2012).

Communication: The culmination of the DSR process is the communication of the findings.

This involves documenting the research process, the developed artifact, and the results of the

evaluation. The knowledge disseminated through this stage contributes to the academic literature

and provides valuable insights for practitioners in the field of PdM (Gregor and A. R. Hevner,

2013).

The iterative nature of DSR allows for continuous learning and improvement, ensuring that the

developed PdM component repository is not only theoretically sound but also practically viable

and effective.

The integration of DSR within the automotive industry’s PdM initiatives exemplifies the method-

ology’s robustness and its vital role in fostering innovation at the intersection of technology and

industry-specific challenges. This research leverages DSR as a strategic scaffold, guiding the

systematic development of a PdM framework that is both innovative and practically viable. The

iterative design and evaluation cycles intrinsic to DSR are particularly beneficial for the complex

and evolving nature of automotive PdM, ensuring that each iteration refines the framework

towards an optimal solution.
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Iterative Design in Automotive Context: At the heart of applying DSR to automotive

PdM is the iterative design and development of a component-based framework. Each cycle

includes conceptualizing component designs tailored to automotive requirements, developing

prototypes, integrating with existing PdM systems, and conducting preliminary evaluations. This

approach ensures that the framework remains attuned to the specific needs of the automotive

industry, including compliance with stringent safety and reliability standards (Rajkumar et al.,

2010).

Machine Learning and AI Integration: A significant aspect of the DSR application in this

context is the incorporation of ML and AI technologies. By iteratively designing and refining

AI-driven components, the framework benefits from enhanced predictive capabilities, leading to

more accurate maintenance forecasting and optimized resource allocation (J. Lee, Bagheri, and

Kao, 2015).

Component-Based Software Engineering: The DSR methodology is particularly well-suited

for advancing CBSE within the realm of PdM. Through iterative development, components can

be systematically evaluated and improved, ensuring that they not only perform their intended

functions but also seamlessly integrate with other system elements, thereby enhancing the overall

robustness and modularity of the Predictive Maintenance Framework (Crnkovic, Stafford, et al.,

2004).

Practical and Theoretical Advancements: The iterative cycles of design and evaluation in

DSR serve to validate the framework’s practicality within the automotive sector and contribute

to theoretical knowledge in both CBSE and PdM. Each cycle yields insights that are instrumental

in refining the framework and expanding the academic literature on the application of CBSE in

PdM (Hevner et al., 2004).

In summary, the application of DSR in developing a PdM framework for the automotive industry

is characterized by a strategic fusion of practical engineering and theoretical research. The

iterative design and evaluation cycles are crucial in creating a robust, adaptable framework

that not only addresses current industry challenges but is also poised to evolve with future

technological advancements.

The integration of DSR within PdM research is vital in confronting the elaborate questions

that underpin this thesis. The methodology’s systematic approach to innovation, its focus on

the creation of practical artifacts, and its dedication to iterative solution refinement is its core

strengths. This research, through DSR, establishes a foundation for a PdM framework that is
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robust in theory and viable in practice.

The theoretical contributions of this study are rooted in the DSR framework’s ability to allow

a profound engagement with the academic literature on PdM, leading to a framework that is

well-founded in scholarly research. The iterative cycles inherent in DSR ensure that each phase

of design and evaluation enriches the theoretical understanding of the field, thereby extending

the academic discourse of PdM.

On the practical front, the DSR methodology yields concrete artifacts that are specifically designed

to meet the demands of the automotive industry. These artifacts exemplify the framework’s

real-world applicability and underscore the feasibility of the solutions it proposes. Such outcomes

not only reflect the innovative spirit of this research but also its readiness for implementation

within the industry.

Furthermore, the prescriptive nature of DSR spurs innovation in PdM, prompting the exploration

of novel methodologies and the integration of emerging technologies. The framework that emerges

from this research signifies a substantial advancement in applying CBSE to PdM, setting a

precedent for future innovation in the sector.

In sum, the adoption of DSR is key in addressing the research challenges of PdM within the

automotive industry. The developed framework is a clear indication of the potential that DSR

holds in not just answering complex research questions but also in paving the way for the

development of sophisticated PdM solutions.

3.2 Research Environment for Data Collection

Advancements in OTA connectivity catalyze the emergence of PdM for customer vehicles within

the automotive industry. This new application domain for PdM enhances customer experience

by proactively identifying maintenance needs, thereby reducing maintenance costs, improving

spare part logistics, and increasing transparency in component behavior. Such improvements

are vital for data-driven product design decisions, ultimately enhancing development efficiency

(S. M. Lee, D. Lee, and Y. S. Kim, 2019; Donghwan Kim, S. Lee, and Daeyoung Kim, 2021).

In contrast to the manufacturing sector, where PdM data flow is often decentralized across various

functional groups, the automotive sector benefits from a centralized data architecture. Customer

vehicle data is aggregated through a single interface, managed by a dedicated organizational

team. This data, transmitted from the Electronic Control Unit (ECU) of each vehicle via mobile

networks, is crucial for enabling PdM services (Arena et al., 2021; Poor, Basl, and Zenisek, 2019;
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Groba et al., 2007).

The centralization of this data interface is not merely a convenience but a necessity, driven by

the substantial efforts required in data collection and preprocessing. Unlike domain knowledge,

the statistical and mathematical expertise needed for data science in PdM is more closely aligned

with data engineering and architecture, advocating for a centralized model development approach

(C. Chen et al., 2021; Bekar, Nyqvist, and Skoogh, 2020).

The automotive industry is undergoing a significant transformation with the adoption of central-

ized Electrical/Electronical (E/E) architectures, driven by the increasing complexity of software

in modern vehicles (Bandur et al., 2021). Centralized E/E architectures offer numerous ad-

vantages over traditional decentralized systems, such as improved cost-efficiency, lower latency,

enhanced flexibility, and increased reliability (Kanajan et al., 2006). These centralized systems

are particularly advantageous for PdM applications, where data from various sensors and ECU

need to be aggregated and analyzed to anticipate maintenance needs.

In the context of automotive OEMs, a centralized data architecture is not just a strategic choice

but a necessity. The data from customer vehicles, collected by ECUs, is transmitted via mobile

networks to a single backend server. This consolidation is managed by a dedicated organizational

team, which enables the development of PdM services by other teams within the company (Ren,

Yingnan Liu, and S. Zhang, 2022). Such a centralized approach simplifies the data flow, which in

manufacturing contexts is often diverse and decentralized, leading to a fragmented responsibility

across different functional groups.

The integration of sensors in automotive PdM is fraught with challenges, particularly due to

the cost implications of mass production and the need for a compelling business case to justify

their inclusion in vehicles. Sensors that are critical for PdM must provide significant value to

outweigh these costs, often leading to a reliance on sensors justified by other vehicle functions.

This constraint demands extensive data preparation and feature engineering to derive meaningful

insights for PdM (Teepe and Görnig, 2003).

Moreover, the transmission of data from these sensors presents its own set of challenges. The

sensitivity of customer data, governed by stringent privacy laws, requires careful handling to

ensure compliance and maintain customer trust. The architecture must, therefore, be designed

to handle the secure and efficient transmission of potentially large volumes of data, while

also considering the limitations of global network infrastructure and the costs associated with

transmission hardware (Pathan, Hyung-Woo Lee, and Choong Seon Hong, 2006).
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The need for centralization in PdM model development within the automotive industry is

underscored by the elaborate challenges associated with data collection and preprocessing.

Centralized data management systems are vital for the efficient handling of the vast amounts of

data generated by customer vehicles, which is essential for the effective implementation of PdM

(Razali et al., 2020). The consolidation of data from various sensors and ECUs into a single

backend server, as managed by a dedicated organizational team, not only reorganizes the process

but also enhances the predictive capabilities by leveraging big data analytics. This centralized

approach is particularly beneficial in the context of automotive OEMs, where it ensures the

generalizability of PdM models across different entities within a major automotive group, thereby

paving the way for a unified strategy for maintenance and service improvements (Kong, 2022).

The synergy between domain knowledge experts and data scientists is key in the realm of PdM.

Domain experts bring a nuanced understanding of the specific maintenance requirements and

operational intricacies of automotive components. In contrast, data experts use the analytical

expertise to interpret complex datasets and extract actionable insights. This interdisciplinary

collaboration is essential for developing robust PdM models that are both accurate and applicable

in real-world scenarios (Löffler, Von Der Linden, and Schneider, 2016; Park et al., 2021; Y.-a.

Kang and Stasko, 2012; Chilana, Wobbrock, and Ko, 2010; Barley, Treem, and Leonardi, 2020;

Roux et al., 2006; Olivier and Verschoof-van Der Vaart, 2021; Chande and Tokekar, 1998; Moser,

2017; Jamrozik and Gentner, 2020; A. A. Mitchell, Russo, and Wittink, 1991; Demetriadis et al.,

2011; Sambasivan and Veeraraghavan, 2022; Will, Mcquaig, and Hardaway, 1994; O’Keefe, 1985;

Mueller and Dyerson, 1999).

Studies show that domain-specific knowledge can enhance monitoring performance, although it

may also lead to overconfidence in certain situations (Löffler, Von Der Linden, and Schneider,

2016). Tools like Ziva accelerate the sharing of domain knowledge, which helps data scientists

learn essential information about the domain, offering scalability of information and lowering the

burden on domain experts (Park et al., 2021). Moreover, case studies of prolonged system use

by domain analysts working with their own data can inform the design implications for future

systems, ensuring that visual analytics systems truly help expert users accomplish their goals

(Y.-a. Kang and Stasko, 2012).

The literature also suggests that partnerships with domain experts lead to effective results,

especially when domain experts are willing to be an integral part of the usability team (Chi-

lana, Wobbrock, and Ko, 2010). Furthermore, the cultivation of process experts can support
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coordination among domain experts by focusing on the performance, production, and value

of process expertise (Barley, Treem, and Leonardi, 2020). The concept of "co-production" of

knowledge through collaborative learning between "experts" and "users" is proposed as a more

suitable approach to building knowledge systems for sustainable management, as opposed to

unidirectional knowledge transfer (Roux et al., 2006).

Cross-domain collaboration, where expert knowledge from different research fields is used, shows to

create more reliable detectors and predictive models (Olivier and Verschoof-van Der Vaart, 2021).

Additionally, expert-based maintenance improves the performance of systems, highlighting the

effectiveness of expert systems in maintenance (Chande and Tokekar, 1998). The recognition of

experts’ status through individualized and public feedback is found to increase their contribution

to knowledge sharing (Moser, 2017).

To sum up, the collaboration between domain knowledge experts and data experts is a dynamic

and iterative process that benefits from structured communication, shared understanding, and

mutual respect. The development of a structured framework within this research aims to formalize

and enhance these collaborative dynamics, ultimately leading to more effective and generalizable

PdM models.

3.3 Artifact Analysis and Directives

In this work, the classification of artifacts, central to any IS research, adheres to the methodologies

portrayed by Cleven, Gubler, and Hüner (2009). This methodology underscores the vital role of

the artifact in IS by integrating both behavioral and DSR paradigms, which guide the empirical

and design-oriented scientific inquiries respectively. The selection of the artifact is primarily

influenced by the research objectives, articulated through research questions or hypotheses to be

tested, and is also contingent upon the resources available to the researcher. Notably, in DSR,

these resources significantly impact the design decisions of the research structure.

Following the framework by Ritchey (2006), the artifact is first characterized using various

variables from the morphological field. This process begins with a predominantly qualitative

evaluation of the artifact, supported by quantitative elements to ensure a comprehensive under-

standing of the complex artifact structure and its scientific queries (W. Chen and Hirschheim,

2004). Furthermore, the epistemological foundation of the artifact, which navigates the depen-

dency of scientific insights on their interpretation and assessment by the researcher, is defined as

interpretivism following the guidelines by Siau and Rossi (2011). This approach is particularly
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important when the research methodology incorporates elements of Action Research, indicating

no distinct separation between the researcher and the research subject.

The morphological field developed by Cleven, Gubler, and Hüner (2009) provides a structured

framework for classifying and evaluating DSR artifacts. This systematic approach categorizes

various dimensions and characteristics essential for a comprehensive assessment of artifacts within

IS research. The detailed representation of this morphological field, illustrating its complex

interrelationships and categorical distinctions, is displayed in Figure 12. This visualization aids

in understanding the elaborate structure and utility of the morphological field in guiding the

evaluation and classification of DSR artifacts across different dimensions and criteria.

Variable

Approach

Artifact Focus

Artifact Type

Epistemology

Function

Method

Object

Ontology

Perspective

Position

Reference Point

Time

Value

Qualitative

Technical Organizational Strategic

Construct Model Method Instantiation Theory

Positivism Interpretivism

Knowledge function Control function Development function Legitimization function

Action research Case study Field 
experiment Formal proofs Controlled 

experiment Prototype Survey

Artifact Artifact construction

Realism Nominalism

Economic Deployment Engineering Epistemological

Externally Internally

Artifact against research gap Artifact against real world Research gap against real world

Ex ante Ex post

Quantitative

Figure 12: Morphological field for DSR artifact classification with various dimensions (values) per
category (variable) by Cleven, Gubler, and Hüner (2009).

In the classification and evaluation of DSR artifacts, the Approach category critically evaluates

the characteristics of the artifact using qualitative, quantitative, or mixed methods. Qualitative

approaches focus on value-based assessments, emphasizing the description and deeper under-

standing behind the observable factors, often transforming qualitative data into numerical form

through codification for analytical purposes. Quantitative approaches, on the other hand, rely

on numerical data to provide statistical analysis, offering precise measurement and comparison

capabilities. Mixed methods combine both qualitative and quantitative techniques to harness the

strengths of each, providing a more robust analysis that leverages detailed, context-rich insights

from qualitative data alongside the empirical rigidity of quantitative data. This multifaceted

evaluation framework allows for a comprehensive assessment of the artifact, catering to the varied

nature of research questions and hypotheses in DSR.
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The Artifact Focus category identifies the intended use context of DSR artifacts, categorizing

them into technical, organizational, or strategic types based on their application environment.

Technical artifacts, such as routing algorithms and hardware designs, are primarily concerned

with the operational and infrastructural aspects of systems, enhancing technical efficiency

and capability. Organizational artifacts include tools like process models and methods for

organizational redesign, aimed at improving workflows, communication, and procedural structures

within a company. Strategic artifacts, such as decision support systems and roadmap development

methods, are designed to align with and support long-term business goals, allowing strategic

decision-making and future planning. This focus differentiation is fundamental as it guides the

development and evaluation processes, ensuring that the artifacts are optimally aligned with

their respective application domains and contribute effectively to achieving intended outcomes in

DSR.

The Artifact Type category encompasses a diverse range of artifact forms within DSR, each

serving distinct functions. Constructs are foundational elements that provide the vocabulary

and syntax for defining and understanding problems and solutions within a domain, such as

classification systems and ontologies. Models articulate relationships between constructs and

abstract aspects of reality to simplify and clarify complex systems, often represented through

meta-models or reference models. Methods offer systematic approaches comprising algorithms

and procedures tailored to solve specific classes of problems, such as techniques for business

process modeling or software development. Instantiations are concrete implementations of

constructs, models, or methods, demonstrating the feasibility of ideas and allowing for practical

testing in real-world conditions. Finally, Theories in DSR articulate and predict cause-and-

effect relationships, serving not only as a theoretical backbone for projects but also as outcomes

that provide new insights into the field. This classification into constructs, models, methods,

instantiations, and theories facilitates a structured approach to artifact creation and evaluation,

ensuring that each artifact type is appropriately developed and assessed based on its intended

function and impact in DSR.

The Epistemology category in DSR focuses on the theoretical underpinnings that guide the in-

terpretation and validation of research findings, directly reflecting the influence of the researcher’s

characteristics on the evaluation process. Positivism presumes that knowledge derived from

the scientific method is seen as objective, and that true knowledge is obtained when it is free

from the researcher’s biases, focusing strictly on observable phenomena and measurable facts.
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This approach supports the notion that evaluation outcomes should be replicable and consistent,

regardless of who conducts the research. In contrast, Interpretivism suggests that knowledge is

subjective and constructed, emphasizing the importance of understanding the phenomena through

the context in which they are interrelated. Here, the researcher’s perspectives and interpretations

play a crucial role in shaping the findings, as it is believed that each researcher brings a unique

set of experiences and biases that can influence the outcomes. These epistemological stances

impact how artifacts are evaluated within DSR, determining whether the emphasis is placed

on objective measurements and replicability (positivism) or contextual understanding and the

richness of subjective insights (interpretivism).

The Function of evaluation within DSR is categorized into knowledge, controlling, development,

and legitimization, each contributing uniquely to the comprehensive assessment of artifacts.

The Knowledge Function is fundamental, aiming to generate insights that inform decision-

making and strategy. It involves the systematic collection and analysis of data to derive

actionable intelligence that can substantiate managerial and technical decisions. TheControlling

Function uses evaluation to verify whether the artifact meets predefined criteria such as

efficiency, effectiveness, and user acceptance, serving as a regulatory mechanism to ensure that

the artifact achieves its intended goals. The Development Function is oriented towards

iterative improvement, utilizing feedback from the evaluation process to refine and enhance the

artifact. This function supports a cycle of continuous development and adaptation, which is key

in responding to evolving user needs and environmental changes. Lastly, the Legitimization

Function seeks to justify the existence and use of the artifact by demonstrating its value and

usefulness through structured evaluation. This function is particularly important in securing

stakeholder support and funding, as it provides empirical evidence of the artifact’s benefits and

alignment with organizational or societal objectives.

The Methods of evaluation in DSR encompass a wide range of approaches, each tailored to

suit specific research contexts and objectives. Action Research is a participative and iterative

method where the researcher works closely with participants to address a real-world problem,

supporting change and generating practical knowledge. This method is especially suitable

for dynamic environments where ongoing modifications and continuous feedback are essential.

Case Studies are employed to conduct in-depth investigations into the specific application

or functioning of an artifact within its real-life context, providing comprehensive insights into

complex phenomena. Field Experiments involve manipulating one or more variables in a

69



Chapter 3 Methods

natural setting to observe the effects on some outcomes, making it possible to study the causal

impact of an artifact under controlled, yet realistic conditions. Controlled Experiments are

more structured and are conducted in settings where variables can be controlled thoroughly to

isolate the effects of the artifact on specific outcomes, often used in laboratory environments to

ensure reliability and replicability of results. The use of Prototyping allows for the practical

demonstration and testing of an artifact’s design and functionality in a working state, providing

immediate feedback on its performance and user interactions. These methods, from action

research to surveys, provide diverse tools for researchers to validate the usefulness and suitability

of DSR artifacts, each contributing uniquely to the depth and breadth of the evaluation process.

Lastly, Surveys are utilized to collect quantitative or qualitative data from a predefined group

of respondents, providing insights into perceptions, effectiveness, and user satisfaction related

to the artifact. This method is particularly valuable for gauging broad user feedback and for

statistical analysis of user interactions with the artifact.

The Object of evaluation in DSR can be broadly categorized into two primary focuses: the

artifact itself and the process by which the artifact is constructed. Evaluating the Artifact

Itself involves assessing the tangible outputs of the DSR process. This evaluation examines

the functionality, effectiveness, and usability of the artifact, ensuring it meets the specified

requirements and performs optimally within its intended environment. Such evaluations often

involve user testing, performance benchmarking, and real-world application scenarios to gauge

the artifact’s practical value and impact. On the other hand, evaluating the Construction

Process of the artifact focuses on the methodologies, tools, and procedures employed during the

artifact’s development. This form of evaluation looks at the efficiency, adaptability, and rigidity

of the development processes, assessing aspects such as methodological soundness, adherence

to design principles, and the overall workflow efficacy. By evaluating the construction process,

researchers can identify areas for process improvement, increase the reproducibility of the artifact,

and ensure that the design process itself adheres to high standards of quality and innovation.

Both evaluation objects are essential; the former ensures the artifact’s direct applicability and

effectiveness, while the latter guarantees that the foundational processes are robust, transparent,

and capable of producing reliable and high-quality results.

TheOntology category in DSR addresses the philosophical study of the nature of being, existence,

or reality as it relates to artifacts. This exploration focuses particularly on the assumptions

about the reality of the artifacts and their attributes. Realism assumes that the existence
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of artifacts, as well as their properties, are objective and independent of human thought or

perception. From this viewpoint, artifacts are considered to have an existence and a set of

characteristics that are tangible and detectable, regardless of whether or not they are observed.

This perspective is fundamental for DSR as it supports the idea that artifacts can be empirically

tested and validated, providing a stable framework for scientific inquiry. On the other hand,

Nominalism challenges this by suggesting that the properties and classifications of artifacts

are products of human conception and linguistic practices rather than inherently existing in the

artifacts themselves. According to nominalism, the characteristics of artifacts are not universal

but are instead constructed through social interactions and agreements among communities.

This view impacts DSR by emphasizing the contextual and negotiated nature of how artifacts

are understood and valued, which can vary significantly between different groups or cultures.

Understanding these ontological positions helps in framing the evaluation and development of

artifacts within DSR, acknowledging how perceptions of reality can influence design choices and

the interpretation of results.

The Perspective from which an artifact is evaluated in DSR encompasses a variety of view-

points, each providing unique insights into the artifact’s value and performance. The Economic

Perspective focuses on the cost-effectiveness, Return on Investment (ROI), and overall eco-

nomic impact of the artifact. This perspective assesses whether the artifact provides a viable

financial benefit compared to its cost, considering not only direct expenses but also long-term

savings and profitability enhancements. The Deployment Perspective examines how well

the artifact integrates into existing systems and workflows, its ease of implementation, and

its acceptance by end-users. It emphasizes the practical aspects of deploying the artifact in

real-world settings, including user training needs and the level of disruption to current processes.

The Engineering Perspective investigates the technical design and architectural robustness

of the artifact, analyzing the quality of engineering practices used in its creation. This includes

assessments of scalability, maintainability, and compliance with technical standards. Lastly,

the Epistemological Perspective explores the knowledge foundations of the artifact, ques-

tioning how knowledge is created and validated within the artifact’s domain. It challenges the

assumptions and methodologies underlying the artifact’s design and seeks to understand the

theoretical basis from which the artifact is developed. Each of these perspectives offers critical

lenses through which the artifact’s utility, feasibility, and theoretical grounding can be precisely

evaluated, ensuring a comprehensive assessment across multiple dimensions of interest.
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The Position of evaluation in DSR refers to whether the assessment is conducted internally

or externally, each offering different benefits and insights. Internal Evaluation is performed

by individuals who are directly involved in the artifact’s development. This allows for a deep

understanding of the artifact’s design and intentions, enabling detailed and nuanced feedback.

Internal evaluators can leverage their intimate knowledge of the artifact to conduct thorough

testing and to identify subtle issues or areas for improvement that external evaluators might

overlook. However, this type of evaluation may be subject to biases since the evaluators have a

vested interest in the artifact’s success. On the other hand, External Evaluation is carried out

by individuals who are not part of the development team. This position promotes objectivity and

can provide a fresh perspective on the artifact’s usability and effectiveness in real-world settings.

External evaluators are likely to provide impartial feedback, which can be key for identifying

usability problems or other issues that internal evaluators might miss due to their familiarity with

the artifact. Furthermore, external evaluations can help in assessing the artifact’s generalizability

and its performance across different contexts and user groups. Both positions are vital for a

balanced evaluation strategy, with internal evaluations offering depth and insider insight, while

external evaluations provide breadth and unbiased critique.

The Reference Point in the evaluation of DSR artifacts serves as a critical benchmark for

assessing the relevance and usefulness of the artifact. This involves comparing the artifact

against the research gap, real-world applications, or both, to validate its practical and theoretical

contributions. Evaluating theArtifact against the Research Gap involves examining whether

the artifact successfully addresses the identified deficiencies or needs within the existing body of

knowledge. This assessment ensures that the artifact contributes novel insights or solutions that

are not just incremental improvements but significant advancements in the field. The focus here

is on the artifact’s ability to fill theoretical voids or enhance methodological approaches.

Evaluating the Artifact against Real-World Applications tests the artifact in practical

scenarios to ensure that it not only functions theoretically but also performs effectively in real-

world settings. This evaluation helps in verifying the artifact’s utility, scalability, and robustness

outside the controlled research environment. It provides a measure of how well the artifact

translates abstract concepts into tangible outcomes that can solve actual problems faced by

organizations or industries.

Lastly, some evaluations may involve a Dual Reference Point, where the artifact is assessed

both in terms of its theoretical contribution (against the research gap) and its practical appli-
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cability (in real-world applications). This dual approach ensures a comprehensive evaluation,

demonstrating the artifact’s relevance and usefulness comprehensively across both academic and

practical dimensions. Such a thorough assessment helps in substantiating the artifact’s overall

value, promoting broader acceptance and adoption.

The Time of evaluation in DSR plays a crucial role in shaping the insights and outcomes of

the assessment process. This temporal aspect of evaluation is categorized into ex ante and

ex post, each offering unique perspectives on the artifact’s development and implementation

stages. Ex ante evaluation occurs before the artifact is fully implemented, serving as a

predictive analysis to foresee the potential impacts and effectiveness of the artifact. This type of

evaluation is primarily concerned with theoretical validation and feasibility assessments. It aims

to preemptively identify possible challenges, limitations, or the need for additional refinements

before the artifact is deployed. Ex ante evaluations help in ensuring that the artifact is adequately

prepared to meet the intended goals and is likely to succeed in its operational environment.

On the other hand, ex post evaluation is conducted after the artifact’s implementation. This

evaluation focuses on the actual outcomes and real-world impacts of the artifact, assessing its

effectiveness, user adoption, and overall performance. Ex post evaluations provide empirical

data that can validate the artifact’s utility and inform further developments. This retrospective

assessment is vital for understanding the artifact’s practical implications and for drawing lessons

that can be applied to future projects or ongoing improvements.

Both ex ante and ex post evaluations are essential for a comprehensive assessment strategy

in DSR, allowing researchers and practitioners to critically analyze and refine the artifact at

different stages of its lifecycle. Ex ante evaluations guide the initial development and deployment

strategies, while ex post evaluations offer feedback based on actual usage and results, ensuring

the artifact achieves its intended purpose and adapts to user needs and environmental changes

over time.

These evaluations not only guide initial development and deployment strategies but also provide

essential feedback after implementation, ensuring that the artifacts meet their intended purposes

and adapt effectively to user needs and environmental changes. The stringent application of these

evaluation methods, alongside the other categorized dimensions discussed, such as Approach,

Artifact Focus, Artifact Type, and others, is crucial for substantiating the utility and impact

of artifacts within their respective fields. As this work progresses, the following sections will

present the detailed discussion of the five artifacts developed, each evaluated using the outlined
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systematic approach. This will showcase how these artifacts address specific research gaps and

practical challenges, highlighting their contributions and the potential for future enhancements.

3.3.1 Artifact Analysis of the Predictive Maintenance Framework

The first artifact, a Predictive Maintenance Framework, is designed using a structured

literature analysis combined with a two-layer topic modeling NLP approach, applying it to

scientific literature tagged with predictive maintenance. This sophisticated approach allows

the artifact to modularize PdM into four distinct phases, each consisting of two to three

components, answering the research question on the feasibility of classifying PdM applications

within a systematic framework. The artifact’s evaluation includes traditional literature research

and field observation in a real-world environment relevant to this work. Figure 13 shows the

artifact classification according to the presented morphological field.
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Action research Case study Field 
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Figure 13: Classification of the first artifact, Predictive Maintenance Framework, according to the
morphological field for DSR artifact classification (own figure).

• Approach: Utilizing a Mixed Methods strategy, the framework integrates qualitative

insights from thematic categorization with quantitative analyses from topic modeling. This

hybrid approach enhances the depth and validity of the framework by leveraging both

narrative context and empirical data.

• Artifact Focus: The framework impacts both Technical and Organizational levels within

an enterprise. Technically, it refines maintenance protocols and procedures; organizationally,

it influences maintenance strategy and policy.

• Artifact Type: Classified as both a Model and a Method, the framework provides a
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structural model of PdM phases and a methodological approach to implement these phases

effectively within organizational practices.

• Epistemology: The development leans towards Interpretivism, acknowledging that the

modularization of PdM is influenced by the subjective interpretation of literature and

observed practices, thus embracing the complexity and variability of maintenance needs

across different industries.

• Function: It primarily addresses the Knowledge Function by systematizing existing

concepts and theories into a practical framework, and the Development Function by

proposing a structured approach to enhance maintenance operations.

• Methods: The evaluation employs both Case Study for theoretical grounding and Field

Experiment for practical validation, ensuring the framework’s applicability and robustness

in real-world settings.

• Object: The evaluation focuses on the Artifact Itself, assessing the framework’s capa-

bility to improve maintenance processes, and on the Construction Process, ensuring the

methodological rigidity and comprehensiveness of the research approach.

• Ontology: Adheres to Realism, under the assumption that the structured phases of

PdM exist objectively and can be empirically tested and validated within the operational

environment.

• Perspective: Evaluated from both Engineering and Economic Perspectives, considering

the framework’s operational efficiency and cost-effectiveness, respectively.

• Position: Evaluation is conducted both Internally by the research team and Externally

by industry practitioners, offering a comprehensive view of the framework’s effectiveness

and adaptability.

• Reference Point: Assessed against the Research Gap it aims to fill and its performance

in Real-World Applications, demonstrating both theoretical relevance and practical utility.

• Time: Includes both Ex Ante evaluations to predict potential impacts before full-scale

implementation, and Ex Post evaluations to assess actual outcomes post-deployment.

The Predictive Maintenance Framework, developed through a structured literature analysis

and a two-layer topic modeling NLP approach, represents a significant advancement in the

modularization of PdM. This framework systematically categorizes PdM into four distinct phases,

each comprising several components, thus providing a comprehensive model that addresses the

initial research question of classifiability within a systematic framework. Evaluated using mixed
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methods, the framework combines qualitative insights from literature with quantitative data from

field observations, enhancing its empirical robustness and practical applicability. It spans both

technical and organizational aspects of PdM, offering strategies that enhance maintenance opera-

tions across various industry sectors. The framework’s development, grounded in interpretivism,

reflects a deep understanding of the complexities involved in PdM. Furthermore, its evaluation

across multiple dimensions—including technical efficiency and economic viability—ensures its

relevance and usefulness in real-world settings. The methodological rigidity and collaborative

evaluation approach, encompassing both internal insights and external validations, position this

artifact as a foundational tool in the evolving field of PdM, promising significant contributions

to both academic research and industrial practice.

3.3.2 Artifact Analysis of the Use Case Description Methodology

The second artifact, a Use Case Description Methodology, is developed through expert

interviews, literature research, and analysis of real-world PdM models. This methodology employs

a canvas-based approach to plan and manage the development of PdM use cases. It systematically

integrates input prerequisites with output requirements and Dp, and provides a comprehensive

overview of the stakeholders involved. This artifact is evaluated through its application to

existing use cases and feedback from domain experts. Figure 14 illustrates the classification of

this artifact according to the established morphological field.
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Figure 14: Classification of the second artifact, Use Case Description Methodology, according to the
morphological field for DSR artifact classification (own figure).

• Approach: This methodology employs a Qualitative approach, heavily relying on expert
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insights and detailed analysis of literature and existing models to derive a structured

method for PdM use case development.

• Artifact Focus: Primarily Organizational, as it aims to enhance the planning and

management of PdM projects within organizations by clarifying roles and expectations

through a detailed use case canvas.

• Artifact Type: This is a Method, providing a structured process for stakeholders to follow

when developing new PdM use cases.

• Epistemology: Reflecting an Interpretivist approach, the methodology is developed from

the subjective interpretations of experts and tailored to the specific context of PdM in

which it is applied.

• Function: Addresses the Knowledge and Development functions by organizing and clarify-

ing the use case development process, thus facilitating better understanding and implemen-

tation of PdM projects.

• Methods: Evaluated using Case Study and Expert Feedback, which provide insights into

the practical applicability and effectiveness of the methodology in real-world settings.

• Object: Focuses on the Artifact Itself—the methodology—as well as on the Construction

Process, evaluating both the end product and the methods used in its creation.

• Ontology: Adopts a Nominalist perspective, suggesting that the structure and components

of use cases are defined through social agreements among stakeholders rather than existing

as independent realities.

• Perspective: Evaluated from an Organizational Perspective, considering how the method-

ology affects the structure and efficiency of project management within organizations.

• Position: The evaluation is Externally performed by domain experts who are not involved

in the development of the methodology, ensuring an unbiased assessment.

• Reference Point: Assessed against both the Research Gap, addressing the need for

a structured use case development method in PdM, and its effectiveness in Real-World

Applications.

• Time: Includes both Ex Ante evaluations to assess potential utility before widespread

implementation, and Ex Post evaluations to observe its effectiveness in actual use.

The Use Case Description Methodology stands out as a critical tool in the PdM landscape,

systematically structuring the development of use cases to ensure comprehensive planning and

effective management. Its development, grounded in qualitative insights and interpretivism,
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underscores its adaptability and relevance in various organizational contexts, offering a valuable

asset for both academic and practical applications in PdM.

3.3.3 Artifact Analysis of the Component Repository Structure

The third artifact, Component Repository and Interface Standardization, builds on the

foundations of the previous PdM Framework and Use Case Description Methodology. This

artifact focuses on creating a modular repository for the development of PdM models, emphasizing

the importance of individual functional components. It employs CBSE principles to enhance the

structure and reusability of these components. This approach not only integrates the insights from

previous artifacts but also introduces a set of component design rules based on a priori reusability.

The validation of this artifact involves its application to real-world use cases and the quantitative

measurement of efficiency improvements attributable to the reusability of components. Figure 15

shows the classification of this artifact according to the morphological field.
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Figure 15: Classification of the third artifact, Component Repository, according to the morphological
field for DSR artifact classification (own figure).

• Approach: The methodology adopts a Quantitative approach by measuring the efficiency

gains from reusability, supplemented by qualitative insights from its integration with earlier

artifacts.

• Artifact Focus: It is primarily Technical, targeting the enhancement of software engi-

neering practices within PdM model development.

• Artifact Type: This artifact serves as both a Method and an Instantiation, offering a

structured process for component development and a tangible repository that exemplifies
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this process.

• Epistemology: The artifact follows a Positivist approach, aiming to provide objective,

measurable outcomes from standardized practices and reusable components.

• Function: It significantly contributes to the Development function by standardizing

component creation and usage, and the Knowledge function by documenting best practices

for reusability.

• Methods: Evaluated using a combination of Controlled Experiments and Field Exper-

iments, these methods confirm the practical efficacy and scalability of the repository in

various operational settings.

• Object: The evaluation centers on the Artifact Itself—the repository—and the Construc-

tion Process that informs the creation of the standardization guidelines.

• Ontology: Grounded in Realism, it asserts that the components and their interfaces have

objective characteristics that can be standardized and reused across different PdM systems.

• Perspective: Evaluated from an Engineering Perspective, it focuses on the technical

soundness and applicability of the component designs and interfaces.

• Position: The artifact is evaluated Internally by the development team and Externally by

third-party users to ensure its adaptability and effectiveness.

• Reference Point: It is assessed against the established Research Gap in component

reusability and its operational performance in Real-World Applications.

• Time: Involves Ex Ante evaluations to forecast potential functionality and Ex Post

evaluations to measure actual performance enhancements.

The Component Repository and Interface Standardization artifact is a fundamental development

in the PdM field, promoting structured, efficient, and reusable component-based approaches. Its

thorough evaluation, grounded in quantitative and qualitative methods, showcases significant

advancements in the modularization and standardization of PdM models, offering substantial

benefits for both theoretical research and practical applications.

3.3.4 Artifact Analysis of the Component Creation Workflow

The fourth artifact, theComponent Creation Workflow, builds upon the structure established

by the Component Repository and Interface Standardization. This workflow is designed to ensure

efficient reusability by iteratively processing through three layers: model, module, and component.

It provides developers with tools to describe the current object, search for existing objects, assess
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them for full or partial applicability, refine object descriptions, and create new objects only when

necessary. The efficacy of this workflow is evaluated through a DES model, complemented by

sensitivity analysis. The sensitivity analysis demonstrates parameter Dp and determines under

which conditions this workflow outperforms traditional PdM model development methods. Figure

16 illustrates the classification of this artifact according to the morphological field.
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Figure 16: Classification of the fourth artifact, Component Creation Workflow, according to the morpho-
logical field for DSR artifact classification (own figure).

• Approach: This workflow utilizes a Quantitative approach through the use of DES and

sensitivity analysis to measure efficiency gains and parameter impacts accurately.

• Artifact Focus: It primarily focuses on the Technical aspects of PdM development,

optimizing the process of component creation within a structured repository environment.

• Artifact Type: Classified as a Method, this workflow provides a systematic procedure for

managing component lifecycle within PdM projects.

• Epistemology: The development of this workflow is grounded in Positivism, relying on

empirical data and structured simulations to validate its effectiveness.

• Function: It serves the Development function by enhancing the efficiency of component

creation and the Knowledge function by generating empirical data on process optimizations.

• Methods: Evaluated using Controlled Experiments in the form of simulations, providing

precise, controlled measurements of process efficiencies and Dp.

• Object: The evaluation focuses on the Artifact Itself—the workflow—and the Construction

Process, which includes the methodologies used for simulation and analysis.

• Ontology: Based on Realism, the workflow is seen as having concrete, measurable impacts
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on PdM development processes that can be objectively analyzed and improved.

• Perspective: Evaluated from an Engineering Perspective, focusing on the technical

efficiencies and process improvements provided by the workflow.

• Position: Evaluation is conducted Internally by the development team and Externally by

independent reviewers, ensuring comprehensive validation of the workflow’s effectiveness.

• Reference Point: Assessed against the Research Gap in efficient PdM development and

its performance compared to traditional methods in Real-World Applications.

• Time: Includes both Ex Ante evaluations to predict its potential impacts and Ex Post

evaluations to assess actual performance improvements post-implementation.

The Component Creation Workflow is a vital advancement in PdM development, introducing

a structured, data-driven approach that significantly enhances the efficiency and precision of

component creation. Its systematic evaluation demonstrates its superiority over traditional

methods, marking it as a key innovation in the field of PdM.

3.3.5 Artifact Analysis of the Formal Descriptive Attributes System

The fifth artifact, Formal Descriptive Attributes System, is a sophisticated system designed

to describe objects at all levels of development—model, module, and component—based on their

input/output characteristics using a tree-graph formal attribute system. This system enhances

the functionality of the previously introduced Component Creation Workflow (Artifact 4) by

offering automated comparison and recommendation options for PdM model objects, accelerating

the execution of the workflow. It is qualitatively evaluated through its application to real-world

use cases. The evaluation is conducted ex post, and the reference point is against the identified

research gap. Figure 17 illustrates the classification of this artifact according to the morphological

field.

• Approach: This artifact employs a Qualitative approach, focusing on the subjective

assessment of object attributes and their alignment within the system to ensure accurate

comparisons and recommendations.

• Artifact Focus: The focus is Technical, as it deals directly with the properties and

specifications of PdM model objects.

• Artifact Type: Classified as a Construct, this system provides a formal structure for

defining and organizing the attributes of various components in a hierarchical manner.

• Epistemology: Reflecting an Interpretivist stance, the system is developed based on the
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Figure 17: Classification of the fifth artifact, Formal Descriptive Attributes System, according to the
morphological field for DSR artifact classification (own figure).

nuanced understanding of how attributes influence object functionality and integration

within PdM models.

• Function: It serves the Knowledge Function by enhancing understanding of object charac-

teristics and the Development Function by aiding the integration and application of these

objects in real-world settings.

• Methods: The evaluation method includes Case Studies, applying the system to actual

use cases to assess its functionality and impact.

• Object: The evaluation focuses on the Artifact Itself, examining how well the descriptive

system functions in describing and comparing PdM objects.

• Ontology: Grounded in Nominalism, the system postulates that the properties and

classifications it describes are constructed based on consensus and practical utility rather

than existing as inherent qualities.

• Perspective: Evaluated from a Technical Perspective, considering the system’s ability to

accurately and effectively describe and link PdM model objects.

• Position: The evaluation is conducted Externally, by users and experts not involved in

the system’s development, to ensure objective assessment.

• Reference Point: Assessed against the Research Gap, focusing on the system’s capability

to improve PdM model development and integration.

• Time: The evaluation is Ex Post, conducted after the implementation of the system to

determine its effectiveness in operational environments.
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The Formal Descriptive Attributes System represents a critical enhancement in the domain of

PdM, providing a robust and structured approach to describing and integrating PdM components.

Its innovative use of a tree-graph structure for attribute management supports enhanced decision-

making and model optimization, making it an invaluable tool in the field of PdM.

3.4 Ethical Considerations: A Value Sensitive Design Approach

This work adopts the Value Sensitive Design (VSD) framework to ensure that ethical consid-

erations are integrally incorporated throughout the development of PdM models. VSD is a

methodological approach that addresses the human values in technology design systematically

and principled, involving the assessment of user values, ethical implications, and societal impact

(Friedman and Hendry, 2019).

Conceptual Investigations involve the identification and clarification of stakeholders’ values

and the ethical issues inherent in PdM technologies. In this phase, the work considers the values

of fairness, accountability, and transparency as fundamentally important. This involves exploring

theoretical frameworks to understand how these values might be impacted or supported by the

technology developed.

In the conceptual phase of the VSD framework, this work identifies and examines the fundamental

ethical values and dilemmas associated with the development of PdM models in industrial

applications, particularly in the automotive sector. Key values considered include privacy, due

to the sensitive data involved; fairness, addressing potential biases in data and model outputs;

and transparency, ensuring that the workings and decisions of PdM models are understandable

to users. These values are critically analyzed to guide the design and operational strategies

of the Predictive Maintenance Framework. The evaluation considers how technological choices

can affect these values, both positively and negatively, and seeks to balance them against the

technical and business requirements of PdM systems. This inquiry sets the stage for integrating

ethical considerations into the empirical and technical stages of the VSD process, ensuring that

the PdM models developed are not only efficient and effective but also align with the broader

societal and ethical standards.

Empirical Investigations relate to the real-world context in which the PdM models operate.

This involves direct engagement with stakeholders through interviews, surveys, and observations to

gather insights about their concerns, expectations, and values. The objective is to derive a nuanced

understanding of the stakeholders’ perspectives, which informs the design and development
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processes to better align with their needs and ethical standards (Pennock and Bodner, 2020).

Empirical investigations in this work involve direct interactions with key stakeholders, including

engineers, maintenance personnel, and management teams within the automotive industry, as

well as end-users potentially affected by PdM systems. The aim is to gather qualitative and

quantitative data through methods such as surveys, interviews, and participatory workshops.

These activities are designed to collect insights into stakeholders’ perceptions, expectations, and

potential concerns regarding the ethical dimensions of PdM model implementation, such as

data privacy, model fairness, and transparency. This data collection is crucial for understanding

how stakeholders perceive the benefits and risks associated with PdM models, as well as their

expectations for ethical accountability. The findings from these investigations inform the technical

development of PdM models, ensuring that they are designed with a user-centered approach

that respects and incorporates stakeholder values and ethical considerations into the system

architecture and functionalities.

Technical Investigations focus on integrating and operationalizing the values identified in the

conceptual and empirical phases into the PdM models. This includes developing features that

enhance transparency, such as explainability interfaces, and mechanisms to ensure the accuracy

and fairness of the predictive outputs (Doshi-Velez and B. Kim, 2017). It also involves iterative

testing to verify that the model adheres to the ethical standards set forth in the earlier phases.

Technical investigations in this work focus on the application of ethical considerations identified

in the earlier conceptual and empirical phases to the design and development of PdM models.

This involves the implementation of technologies and strategies that enhance data privacy, such

as encryption and access control mechanisms, to safeguard sensitive information processed by

PdM systems. Additionally, algorithms are designed to be fair, avoiding biases that could lead to

unfair predictive outcomes. Techniques such as algorithmic auditing and transparency features

are also incorporated to ensure that the PdM models are not only effective but are understandable

and explainable to users. These technical solutions are iteratively refined based on continuous

stakeholder feedback, ensuring that the PdM models align with ethical standards and stakeholder

values. Moreover, the development process adheres to best practices in software engineering,

emphasizing modularity and reusability, which supports the agile and distributed development

environments described in this work (Sommerville, 2011).

Integration and Iteration - Finally, VSD is an iterative process that requires ongoing eval-

uation and refinement. This work includes continuous feedback loops between the empirical
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findings and technical solutions to adapt the PdM models as new ethical challenges arise and as

stakeholder values evolve. This iterative process ensures that the PdM models remain relevant

and ethically sound as they scale and as industry standards change.

The integration and iterative refinement of ethical considerations are central to the ongoing

development process of PdM models within this work’s framework. By continuously cycling back

to the insights gained from conceptual, empirical, and technical investigations, the development

process adaptation incorporates stakeholder feedback and evolving ethical standards. This

iterative loop ensures that the PdM models not only comply with initial ethical assessments but

also respond dynamically to new challenges and stakeholder needs as they arise. Regular updates

to the models and their underlying processes, guided by a structured feedback mechanism, enable

the adaptation of PdM models to reflect ethical advancements and stakeholder expectations.

This proactive approach to integration supports the sustainability of the PdM models, ensuring

their long-term viability and ethical alignment in a rapidly changing technological landscape.

The application of VSD in this work ensures a stringent ethical framework, fostering the

development of PdM models that are not only technically robust but also ethically responsible,

aligning with the core values of all stakeholders involved.

3.5 Conclusion of the Methodological Overview

The methodology of DSR is adopted as the primary research approach for this work, due to

its robust alignment with real-world environments and its provision of solid validation methods

that effectively leverage these settings. The automotive industry, characterized by its diverse

applications and the extensive availability and variability of data, presents an ideal environment

for the development and validation of the artifacts described in this thesis.

The research environment within the automotive industry not only supports but also enhances

the development of the artifacts by providing a rich, data-driven context. This setting allows

for the practical application and thorough testing of the theoretical models and frameworks

developed, ensuring that the artifacts are not only theoretically sound but also practically viable.

Each of the five artifacts developed in this work is thoroughly classified according to the

morphological field established by Cleven, Gubler, and Hüner (2009). This classification ensures

that each artifact is developed and assessed through a structured and systematic approach,

adhering to the principles of DSR. Such a methodical classification aids in maintaining a

consistent application of research processes across all artifacts and provides a clear interpretation
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framework for the insights gained during their development and evaluation.

Ethical considerations in this work are addressed through a VSD approach, which is integral to

ensuring the ethical rigidity of the research methods and outcomes. This approach emphasizes

the consideration of human values in a comprehensive manner throughout the entire design and

implementation process. By incorporating ethical deliberations from the onset, this work aims

to produce artifacts that are not only effective but also align with broader societal and ethical

standards.

In summary, the methodological framework of DSR, combined with a well-suited research

environment and a thorough classification system, enables the creation of innovative and practical

artifacts within the automotive industry. The integration of VSD ensures that these developments

are conducted with a strong ethical foundation, enhancing the reliability and applicability of the

research outcomes. The stringent methodological approach and ethical rigidity embedded in this

work exemplify a comprehensive and responsible research practice in the field of PdM.
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Execution

This chapter represents the culmination of the theoretical foundations laid in the literature review

and the methodologies discussed previously, transitioning into the practical execution of the

PdM Component Repository. The subsection 4.1 Use Case Description Methodology, illustrates

the approach for detailing use cases critical to the development of PdM models. The significant

findings of this research are comprehensively documented and published by Wolf, Sielaff, and

Lucke (2023). This publication summarizes the key outcomes and advancements achieved during

the course of the investigative efforts.

Subsequent sections 4.2 discuss the creation of a Component Repository and Interface Stan-

dardization, emphasizing modular design and interoperability. The chapter then explores the

A Priori Component Analysis for Reusability in subsection 4.3, a novel approach to assess

component reusability in early stages. This is followed by a detailed description of the Workflow

for Component Creation and Comparison (subsection 4.4), and the Descriptive Attributes System

for Components (subsection 4.5), which collectively enhance the efficiency and effectiveness of

PdM model development. The chapter concludes with a summary of these key contributions,

reflecting on how they collectively advance the field of PdM in the Conclusion subsection 4.6.

4.1 Use Case Description Methodology

In the quest to enhance the efficiency of PdM model development, especially within the framework

proposed in this work, it is essential to have a comprehensive understanding of the entire

development process. This understanding not only helps a smoother workflow but also ensures

that the foundational elements of PdM model creation—such as stakeholder engagement, data

acquisition, and requirement specification—are adequately addressed. To this end, this subsection
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introduces a standardized use case description approach, designed to formalize the initial phase

of PdM development. By establishing a structured method for gathering critical inputs from

stakeholders, collating necessary data, and mapping out precise requirements, this approach lays

the groundwork for a more structured and effective development process. It represents a vital

first step in the realization of robust PdM models, aligning with the overarching goals of the

proposed framework to support and optimize the PdM development journey.

The methodologies and outcomes presented in this work are grounded in the practical, real-world

context of an automotive OEM. The developed formal and standardized description model for

PdM use cases, as detailed herein, is thoroughly validated through application to actual PdM

scenarios for vehicle components. This validation process involved the analysis and examination

of diverse PdM use cases within the automotive sector, ensuring that the proposed description

model not only aligns with theoretical expectations but also meets the practical requirements

and complexities encountered in the industry. Such an approach underscores the relevance and

applicability of the research findings, demonstrating their potential to significantly enhance the

development and implementation of PdM solutions across the automotive industry (Wolf, Sielaff,

and Lucke, 2023).

The increasing recognition of PdM solutions by OEMs marks a paradigm shift towards leveraging

technological advancements for competitive advantage, primarily through enhanced product

reliability and reduced failure risks (Prytz, 2014; Carvalho et al., 2019). This is particularly

evident in the automotive sector, where traditional maintenance strategies—such as scheduled

checkups and oil changes—are gradually being supplemented by data-driven approaches. Modern

vehicles, equipped with an array of sensors for various functions,1 provide a rich data source

processed by ECUs. These advancements, coupled with the extensive data infrastructure of

automotive OEMs and the potential for scaling effects due to large vehicle fleets, set a conducive

groundwork for PdM.

Despite the availability of data and the significant advancements in AI and ML technologies

enhancing the applicability of PdM solutions, the development process remains complicated,

time-consuming, and highly interdisciplinary. Common challenges include misunderstandings of

use cases and communication barriers among development partners, often leading to redundant

efforts in developing solutions for similar components. Addressing these challenges calls for

novel approaches to update and enhance the PdM development process. A vital strategy, as

1e.g., Electronic Stability Program (ESP) and Heating, Ventilation and Air Conditioning (HVAC) systems.
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elaborated in this work, involves the introduction of a formal and standardized description

model for PdM use cases. This model, designed to accompany the PdM solution throughout its

development lifecycle, aims to advance cross-domain communication and the reuse of existing

solutions, thereby significantly improving the efficiency of PdM solution development (Wolf,

Sielaff, and Lucke, 2023).

In the process of developing a comprehensive description model for PdM use cases, an extensive

literature review is undertaken to explore existing research and methodologies within the domain,

particularly those relating to the automotive industry. Utilizing databases such as SCOPUS, Web

of Science, and Google Scholar with keywords including Predictive Maintenance, Automotive,

Fleets, and Review, two vital works are identified that provide contemporary insights into the

scientific progress in PdM applications. Zonta (2020) presents a structured analysis of industrial

PdM applications including J. Lee, F. Wu, et al. (2014) and Gunes (2014), noting a shift from

engineering-focused research to a more methodological approach, yet highlighting the absence of

a standardized cross-domain template for PdM use cases. Theissler et al. (2021) further this

discourse by categorizing automotive PdM research from a ML perspective, yet also underscore

the lack of focus on organizational and management aspects in the field. The review extends

to frameworks and standardization efforts in PdM, revealing various approaches to use case

descriptions across industrial AI applications (Cockburn, 2012; De Souza and Cavalcanti, 2016),

but none adequately addressing the specificities of automotive PdM in a standardized manner.

Notably, works like those of Bertolino et al. (2008) and Grambau, Hitzges, and Otto (2019)

attempt to formalize use cases and propose frameworks for integrating multiple data sources in

PdM models, yet do not offer a unified framework tailored for automotive PdM applications.

This literature review underscores a significant gap in the standardized description of PdM use

cases within the automotive sector, a gap this work aims to bridge.

The cornerstone of this work’s framework is the establishment of a standardized use case

description, designed to accompany the PdM solution throughout its entire development lifecycle.

Recognizing the critical importance of fostering a common understanding among stakeholders

and promoting the reuse and adaptation of existing PdM solutions, the framework initiates

with a high-level use case description. This initial phase is geared towards cultivating a mutual

comprehension of the use case among all stakeholders, which is vital for directing the subsequent

detailed development of the model, particularly regarding input and output data specifications.

Figure 18 displays the CRISP-DM, which is used as a structure. As the development progresses,
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Figure 18: Phases of use case description and model development based on the Cross Industry Standard
Process for Data Mining (CRISP-DM) process model, including business and data under-
standing, data preparation, modeling, evaluation, and deployment, according to Wirth and
Hipp (2000).

the high-level description undergoes continuous refinement to ensure it evolves in tandem with

the detailed specifications, ultimately forming a comprehensive characterization of the PdM

solution.

The high-level use case description template, drawing inspiration from the business model Canvas

(Zolnowski and Böhmann, 2014), is thoroughly crafted to facilitate rapid and interdisciplinary

comprehension and application. This template, displayed in figure 19 presents a series of fields,

each thoroughly designed to capture essential aspects of the use case, from organizational details

to technical system descriptions and customer objectives. The initial field (field no. 0) is dedicated

to organizational specifics, such as contact information, date, and versioning, crucial for document

management and historical tracking. Subsequently, field no. 1 looks into the technical system

associated with the product or component in focus, employing a descriptive chain methodology

to ensure precision and comprehensibility in outlining technical challenges and system intricacies.

The objective of the use case, as perceived by the customer (field no. 2), aims to articulate the

envisioned solution’s impact, whether as an enhancement to existing services or as an innovative

offering, thereby ensuring that the development trajectory remains aligned with customer value.

This customer-oriented perspective is further encapsulated in the use case title (field no. 3),
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which concisely conveys the component and objective, accelerating straightforward classification

and communication across departments.

The comprehensive nature of the use case is brought to the forefront in the short description (field

no. 4), which integrates unaddressed information from previous fields, including insights into

the wear mechanism or technical specifications, supplemented by visual aids where applicable.

This section ensures a nuanced understanding of the use case, enhancing clarity and context.

The template also addresses the origins and characteristics of required input data (field no.

5) without delving into technical specifics prematurely, setting the stage for a detailed model

development phase. The anticipated model’s capabilities, deployment considerations, and

algorithmic requirements are encapsulated in field no. 6, laying the groundwork for informed

development strategies.

Furthermore, the output data expected from the model is specified in field no. 7, detailing the

information to be generated for effective use in subsequent processes. The penultimate field (no. 8)

aggregates necessary competencies, identifying both the skills required and potential contributors

to the use case’s realization. Lastly, an optional field (at the bottom right) allows for the

inclusion of additional remarks or references, ensuring that no critical insight or cross-connection

is overlooked in the documentation process.

This structured approach, articulated through the template, ensures a comprehensive, clear,

and systematic documentation of PdM use cases, aligning technical specifications with customer

expectations and allowing effective communication and collaboration among stakeholders.

Transitioning to model development demands a more granular focus on the data specifics,

warranting a detailed documentation format. This phase involves outlining the required input

and output data in a tabular form, ensuring flexibility to accommodate varying data sources.

Detailed descriptions include data source, format, security classification, and storage specifics,

among others. This in depth documentation aids a clear understanding of the data landscape,

central for developing robust PdM models tailored to specific use cases.

The validation of the proposed standardized use case description model is thoroughly carried

out through the application to an existing PdM scenario, specifically aimed at enhancing the

understanding of vehicle brake noises. This real-world use case served as a foundation for both

direct application of the model and for gathering comprehensive feedback from domain experts,

including use case owners, which is complemented by a self-evaluation of the use case description

process. The use case involved categorizing brake noises into clusters, manually labeling acoustic
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Title: Contact person: Date:

Version:

Short description: Associated products/components:

Goals/customer benefits/market potential:

Framework/general information (optional):

(Required) Development team:

Data acquisition:

Construction:
IT Infrastructure:

Model development:

Input data (approximate): Output data (approximate):

Model characterization:

Model type:

Model execution location:
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4
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Figure 19: Use Case Description template with numbered fields for organizational details, technical
system descriptions and customer objectives (own figure).

data for training an ANN, and employing this network to classify unlabeled fleet data.

The template’s efficacy is demonstrated through its application to this use case, detailing

components, objectives, customer benefits, and the data-driven methodology employed for noise

classification. Feedback from various stakeholders highlighted the template’s utility in facilitating

a clear understanding of technological contexts, data requirements, model specifics, and project

resources. Domain experts appreciate the structured presentation of critical information, which

aided in defining responsibilities, assessing project feasibility, and guiding team formation and

management. This validation process underscores the template’s comprehensiveness and its ability

to foster effective communication and understanding among cross-functional teams, ultimately

affirming the proposed approach’s validity and effectiveness in the context of PdM solutions

development.

This work successfully introduces a standardized model for the description of PdM use cases,

designed to reorganize the collection, presentation, and documentation of essential information

across various development phases. This model not only eases the communication and collabora-

tion among diverse stakeholders involved in PdM solutions but also ensures the continuity and

relevance of the use case documentation throughout the development lifecycle, from conceptual-

ization to deployment. By aligning with established data mining process models like CRISP-DM,
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the description model demonstrates a significant potential to advance the adaptation of existing

PdM solutions to new components, thereby enhancing the efficiency and effectiveness of PdM

initiatives. The validation within an automotive sector use case further attests to the model’s

applicability and value, prompting considerations for broader applications across different indus-

try sectors. Future research will pursue additional validations within various domains, aiming

to refine and integrate the description model into a comprehensive process model. This model

will address the nuances of multidisciplinary collaboration, process and stakeholder distribution,

and the evolving landscape of technological development processes, particularly in cloud-based

environments.

4.2 Component Repository and Interface Standardization

In the development of this work’s PdM component repository, inspiration is drawn from various

principles and components inherent in existing frameworks from the domains of ML, PdM,

MLOps and established Software Engineering.

The primary focus of MLOps (Zaharia et al., 2018; Biewald, 2023; Tagliabue et al., 2023)

frameworks is on ensuring efficient deployment, maintenance, and continuous improvement in

production environments. By automating and standardizing the manual and time-intensive

aspects of ML projects, MLOps aims to significantly reduce the time required for deploying ML

models (Hewage and Meedeniya, 2022). This remodeled process not only enhances the speed

of MD but also plays an important role in accelerating the overall ROI for organizations (Testi

et al., 2022).

While MLOps primarily focuses on the reorganized deployment and management of ML models

in production, Automated Machine Learning (AutoML) (Ali, 2024; Jin, Song, and Xia Hu, 2018;

Feurer et al., 2020; AutoML, 2024) takes a different approach, aiming to minimize the time spent

on the actual development of the model, or to enable model development for developers with

almost no ML knowledge. Unlike MLOps , which often assumes the model as a given entity,

AutoML automates crucial aspects of the development process. This includes tasks such as

Feature Encoding (FE), Model Building (MB), and hyperparameter optimization. By doing so,

AutoML empowers individuals with varying levels of ML expertise to create effective models,

thereby significantly reducing the time required from the conceptualization of a model to its

deployment (X. He, K. Zhao, and Chu, 2021).

It’s essential to recognize that there are situations where deployment and model selection may
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not be fully automated. In such cases, the utilization of ML frameworks like PyTorch (Paszke

et al., 2019), TensorFlow (Abadi et al., 2016), Scikit-learn (Pedregosa et al., 2012) becomes

essential. These frameworks specialize in expediting the implementation of ML models, offering

developers a versatile set of predefined functions and optimizations. By leveraging these tools,

even in scenarios where certain tasks require manual intervention, substantial time savings can

still be achieved, contributing to the efficiency of the overall ML workflow.

For steps that cannot be accelerated through ML frameworks, MLOps, or AutoML frameworks,

integrating proven methods from established software development, such as Data Versioning,

Directed Acyclic Graphs (DAGs) and modularization, offers a time-saving alternative. These

established practices contribute to making development processes more efficient, creating a

synergistic connection between modern ML technologies and traditional software engineering

methods.

Shaping the PdM component repository, inspiration is not only from established MLOps, AutoML,

and established software engineering principles but also from two distinctive frameworks: PyWatts

(Heidrich et al., 2021) and Kedro (Alam, 2024). PyWatts, prioritizing end-to-end workflows as

pipelines, amplifies reusability, while Kedro serves as a Python framework for crafting reproducible,

maintainable, and modular Data Science (DS) code. In contrast to straightforward categorization

into MLOps or AutoML , both PyWatts and Kedro defy such constraints by serving as overarching

frameworks that integrate these methodologies, a characteristic mirrored in the Predictive

Maintenance Framework.

This works developed framework, strategically integrates principles and components from all the

presented frameworks. Its overarching objective is to not only accelerate MD or discovery but to

minimize the entire development process of new use cases. This comprehensive approach proves

especially valuable in scenarios where uncertainties persist, be it in terms of data compatibility,

project goals, or unfamiliar use cases. By reducing the time required for launching, development,

and exploration, the component repository framework empowers teams to navigate uncharted

territories in PdM with agility, fostering a culture of fast innovation.

Another distinction between this work’s framework to previously introduced ones lies in its

tailored focus on the development of PdM within the automotive domain. This specialization

involves the incorporation of elements aligning with automotive requirements, such as adaptations

to diverse vehicle systems, data sources or PdM algorithms. By concentrating on the automotive

sector and PdM, the likelihood of reusing entire pipelines or sub-pipelines is heightened, resulting
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in substantial time savings.

Figure 20 presents a sophisticated application of CBSE modularization principles within the

context of a data-driven value creation model, specifically tailored for a PdM model. This

modular system is the culmination of an extensive literature review, as detailed in Subsection

2.6, coupled with empirical observations gathered from the artifact environment in this study.

The ensuing discussion offers an in-depth exploration of this modular system, encompassing

several key aspects: the general process workflow, the diverse types of value creation models and

their associated process exit points, the requisite roles of expertise within individual modules,

and the overarching reach of the module system, culminating in its integral contribution to the

component repository.

Data Source Connection (DC)

Dependencies (Dp)

Data Input (DI)

Data Preprocessing (DP)

Feature Labeling (FL)

Feature Visualization (FV)

Feature Creation (FC)

Model Building (MB)

Model Evaluation (ME)

Model Deployment (MD)

U
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Process Exit Point 1: 
Data Marketplace Value Creation

Process Exit Point 2: 
Data Insight Value Creation

Process Exit Point 3: 
ML Model Insight Value Creation

Process Exit Point 4: 
ML Model Service Value Creation

Figure 20: Modular system of the Component Repository with four types of value creation models and
process exit points (green), process modules (DS modules in blue, Data Engineering (DE)
modules in grey), and the roles of expertise for the Modules: DE, Data Analytics (DA) and
DS (own figure).

The general process workflow, as depicted in the figure, is a testament to the systematic and

methodical approach inherent in CBSE. It maps out a clear trajectory from the initial data

sourcing to the final MD, ensuring a coherent and efficient progression through various stages of

model development. This workflow is not only instrumental in streamlining the development

process but also in enhancing the reproducibility and scalability of PdM applications.

The figure further illustrates various types of value creation models, each marked by distinct
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process exit points. These exit points signify the transition from one phase of value creation to

another, reflecting the multifaceted nature of value generation in PdM. The identification and

analysis of these exit points are crucial for understanding how different stages in the workflow

contribute to the overall value creation process.

Another critical aspect highlighted in the figure is the roles of expertise required by individual

modules. These roles encompass a range of skills and knowledge areas, underscoring the

interdisciplinary nature of PdM model development. The expertise required at each module

ensures that the development process is not only technically sound but also aligned with the

specific needs and objectives of the PdM application.

Lastly, the figure encapsulates the comprehensive scope of the module system, illustrating its

extensive reach and applicability in the realm of PdM. This system’s breadth and depth are

indicative of its potential to significantly enhance the efficiency and effectiveness of PdM model

development. Moreover, its relevance to the component repository is particularly noteworthy, as

it provides a structured framework for organizing and accessing various components essential for

PdM applications.

In summary, Figure 20 not only serves as a visual representation of the modular system but also

as a conceptual map guiding the development of PdM applications. Its detailed breakdown into

workflow, value creation models, roles of expertise, and overall scope offers valuable insights into

the complexities of CBSE in the context of PdM.

The initiation of the process workflow is marked by the Data Source Connection (DC)

phase, a critical juncture that encompasses all necessary operations to establish both technical

access and requisite permissions. This phase is multifaceted, involving the integration of various

data sources, which may include cloud storage areas, in-house databases, third-party data, or

customer-specific datasets. The DC process is not limited to mere data retrieval; it also involves

handling static data files, potentially decrypting data, and managing access licenses or software

requirements.

A central aspect of the DC phase is its role in interfacing with subsequent process steps. It lays

the groundwork for the entire workflow, ensuring that data flows seamlessly into the following

stages. Moreover, the DC phase has a significant impact on the overall efficiency of data platform

operations. This includes considerations related to maintenance efforts and platform costs, which

are vital for the sustainable management of the data infrastructure.

Furthermore, the DC phase bears the responsibility for the correctness and integrity of the
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supplied data. This is fundamentally important, as the quality of data directly influences the

effectiveness of downstream processes, such as Data Preprocessing (DP), feature engineering,

and MB. Ensuring data accuracy and reliability at this early stage is essential for the success of

the entire PdM model development process.

The Dp module plays a crucial role in the PdM model development process, acting as the

cornerstone for establishing a conducive working environment. This module is not merely a

preparatory step; it is an integral component that ensures the availability and readiness of all

necessary resources and tools required for model construction.

At its core, the Dp module is responsible for setting up a robust ’working bench’, a metaphorical

term that encompasses the entire spectrum of the development environment. This includes the

provision of essential coding libraries, which are the building blocks for any data-driven model.

These libraries may range from general-purpose programming libraries to specialized Predictive

Maintenance Frameworks, each serving a specific function in the model development process.

In addition to technical resources, the Dp module also emphasizes the importance of expert know-

how. This aspect underscores the interdisciplinary nature of PdM model development, where

expertise in various domains such as data science, engineering, and domain-specific knowledge

converge. The integration of this expert knowledge is vital for navigating the complexities of

MB, ensuring that the developed models are not only technically sound but also aligned with

the specific requirements and nuances of the application domain.

Overall, the Dp module is a testament to the multifaceted approach required in PdM model

development. It highlights the need for a well-equipped and knowledge-rich environment, where

the synergy of technical tools and expert insights paves the way for the creation of effective and

efficient PdM models.

The Data Input (DI) module serves as a critical bridge between the DC module and the

subsequent stages of the PdM model development process. Its primary function is to render the

data, sourced from the DC module, both accessible and amenable for further processing. This

module plays a vital role in ensuring that the data is not only retrievable but also in a state that

is conducive for analysis and MB.

A significant challenge addressed by the DI module is the optimization of data size. This involves

a thorough process of data selection and reduction, aimed at retaining only the most relevant

and essential data for the development and training of the ML model. The rationale behind this

is twofold: firstly, to enhance the efficiency of the model development process by minimizing
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computational load and storage requirements, and secondly, to improve the performance of the

ML model by focusing on high-quality, pertinent data.

The process of data reduction in the DI module is not a mere truncation of the dataset but a

strategic and informed decision-making process. It involves identifying and filtering out redundant,

irrelevant, or low-quality data, thereby ensuring that the dataset fed into the model is optimized

for both accuracy and efficiency. This step is important, as the quality and relevance of the input

data directly influence the usefulness of the ML model, impacting its ability to generate accurate

and reliable predictions in a PdM context.

The DP module is a fundamental component in the PdM model development workflow, tasked

with refining and transforming raw data into a format that is suitable for in-depth analysis and

model training. This module encompasses a wide array of preprocessing steps, each tailored to

enhance the quality and utility of the data.

At the technical level, DP involves standardizing data formats and decoding data to ensure

uniformity and accessibility. This step is crucial for aligning disparate data sources and formats,

which is a common challenge in PdM applications where data may come from varied sensors,

systems, or databases. The standardization process aids smoother integration and analysis of

data, thereby improving the efficiency of the model development process.

Beyond technical adjustments, DP also includes combinatory steps that are essential for creating

a comprehensive dataset. This involves merging multiple datasets with different structures or

formats, a process that requires careful alignment and synchronization of data. Such integration

is vital for developing a holistic view of the maintenance needs and patterns, enabling more

accurate and effective PdM models.

Another critical aspect of DP is the selective removal of unnecessary or insignificant data. This

data reduction is not arbitrary but a strategic decision aimed at focusing on the most relevant

and impactful data. However, it is essential to thoroughly document any data removal in the

metadata. This documentation is essential for maintaining transparency and traceability in the

data processing workflow, preventing potential misinterpretations or false conclusions that might

arise from the absence of certain data points.

To sum up, the DP module plays a vital role in ensuring that the data is not only technically sound

and integrated but also strategically refined and documented. This comprehensive approach to

DP lays a solid foundation for the subsequent stages of PdM model development, ultimately

contributing to the creation of more accurate, reliable, and efficient PdM solutions.

98



4.2 Component Repository and Interface Standardization

The Feature Visualization (FV) module is an integral part of the PdM model development

workflow, designed to generate value by enabling the visualization of both raw and preprocessed

data, as well as intermediate and final results. This module serves as a main interface between

the developer and the data model, allowing a deeper understanding and interaction with the

model at various stages of its development. The necessity of FV spans the entire spectrum of the

model development process, from the initial access to raw data provided by the DI module to

the final stages of Model Evaluation (ME).

FV is essential not only as a standalone module but also in its parallel operation with other

functional modules. From the moment raw data becomes accessible, FV provides invaluable

insights into the data’s characteristics and the model’s behavior. This continuous interaction

is fundamental for iterative model refinement and for ensuring that the model development is

aligned with the specific requirements and objectives of the PdM application.

The role of FV in bridging the gap between data and model developers cannot be overstated. By

offering visual representations of data and model outputs, FV enhances the interpretability and

transparency of the model, making it more accessible and comprehensible to those involved in

its development and application. This accessibility is particularly important in complex PdM

scenarios, where understanding the nuances of data and model behavior is key to successful

implementation.

In essence, the FV module is a vital component that enriches the PdM model development

workflow. It not only aids in visualizing and understanding data but also plays a significant role

in enabling effective communication between the data and the model, thereby enhancing the

overall quality and effectiveness of PdM solutions.

The Feature Creation (FC) module, a vital component of FE in PdM model development,

encompasses the creation and enhancement of features from data. This module is not limited to

merely modifying the structure of preprocessed data; it extends to the combination of various

data sources, potentially including unformalized or static external data such as expert knowledge

or common knowledge. The essence of FC lies in its ability to transform raw data into meaningful

features that significantly contribute to the model’s predictive power.

The process of feature generation in FC involves sophisticated methods that go beyond basic data

manipulation. It includes the application of automated FC tools, which utilize a comprehensive

list of feature generation methods to produce model-relevant features. These tools are adept at

sifting through extensive datasets to identify and extract features that are most pertinent to the
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predictive model’s objectives (Selçuk et al., 2021).

Moreover, FC plays an important role in enhancing the model’s performance by integrating

advanced ML algorithms. These algorithms are instrumental in selecting high-performant features,

thereby ensuring that the model is not only accurate but also efficient in its predictions. The

integration of such algorithms in FC is a testament to the module’s importance in the overall

feature engineering process, particularly in the context of PdM (Perner, 2019).

In summary, the FC module stands as a cornerstone in the development of PdM models. Its

ability to create and refine features from a diverse range of data sources, coupled with the

application of advanced feature generation and selection methods, underscores its significance in

building robust and effective PdM solutions.

The Feature Labeling (FL) module, as a crucial part of Feature Engineering in PdM model

development, focuses on the labeling of generated data. In supervised learning algorithms,

labeling is essential as it signals the target value for both training and test data. The process

of labeling, especially in classification and regression models, requires the label to be a one-

dimensional numeric value. However, the creation of these labels is far from trivial, particularly

in the context of pattern recognition models where the occurrence of a pattern must be accurately

labeled, requiring a complex analysis of the available data.

In the FL module, the strategy for what to predict in a supervised ML model is defined based on

the preliminary results of the preceding modules. This involves a thorough process of determining

the most relevant and significant features to be labeled, which is essential for the model’s accuracy

and effectiveness. The complexity of FL is often amplified in the industrial context of PdM

models, where the complications of real-world applications add layers of challenges to this task

(Rosati et al., 2023).

Moreover, the FL module is characterized by its well-defined input and output interfaces. These

interfaces are vital for maintaining the integrity and consistency of the labeling process, ensuring

that the labels are correctly assigned and accurately reflect the target values intended for model

training and evaluation. The importance of precise FL in PdM cannot be overstated, as it directly

impacts the model’s ability to make accurate predictions and, consequently, the effectiveness of

maintenance strategies in industrial settings (Yuehua Liu et al., 2022).

Summing up, the FL module plays a central role in the feature engineering process of PdM

models. Its responsibility for accurately labeling features, coupled with the challenges inherent

in industrial applications, underscores its significance in the development of robust and reliable
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PdM solutions.

The FE module, concluding the trio of FE modules in PdM model development, is dedicated to

translating data from a human-readable and understandable format to a machine-readable format.

This translation is essential for preparing the data for ML models, where machine-readability

refers to the format required by these models for efficient processing and analysis.

Feature encoding involves various techniques, such as encoding categorical data types or nor-

malizing features to a comparable range. This process is crucial as it ensures that the data is

in a format that can be effectively utilized by ML algorithms. For instance, the encoding of

categorical data into numerical values is a common practice in ML to enable the processing of

non-numeric data types (Ferraro et al., 2020).

It is important to note that the FE module marks the first point in the model creation pro-

cess where information is reduced. Unlike the previous modules, where information is either

transformed or augmented by combining features and data sources, FE involves a certain level

of information loss. Therefore, maintaining an overview of any information that might be lost

during this process is crucial for the integrity of the model (De Santo et al., 2022).

The output of the FE module is typically a feature sample matrix with normalized and numeric

values, ready to be processed by subsequent ML modules. However, it’s also worth noting that

some types of data visualization might require the encoding of features, further emphasizing the

versatility and importance of this module in the PdM model development process.

In summary, the FE module plays a vital role in transforming data into a format that is

conducive for ML models. Its ability to encode features effectively is key for the success of PdM

applications, particularly in industrial contexts where the accuracy and reliability of predictions

are fundamentally important.

The MB module in PdM model development encompasses the construction of predictive models,

predominantly utilizing MLtechniques. This module is the crux of the model development process,

where the actual predictive models are built, parameterized, and optimized for performance. A

key aspect of MB is hyperparameter tuning, which involves adjusting the model’s parameters to

enhance its predictive accuracy and efficiency.

During the MB phase, various ML algorithms are employed and tested to determine the most

effective approach for the specific PdM application. This selection process is based on the nature

of the data, the desired outcome, and the computational resources available. The choice of

algorithm can range from simple regression models to complex deep learning networks, each with
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its unique strengths and applicability (Bouabdallaoui et al., 2021).

Hyperparameter tuning in MB is a critical step that significantly impacts the model’s performance.

It involves experimenting with different combinations of parameters to find the optimal settings

for the model. This process can be both time-consuming and computationally intensive but

is essential for achieving the highest possible accuracy and efficiency in predictions (Lyubchyk

et al., 2022).

To sum up, the MB module is a vital component in the PdM model development process. It

involves the careful construction, parameterization, and optimization of ML models, ensuring

that they are well-suited for the PdM tasks at hand. The success of the MB phase directly

influences the effectiveness of the PdM solution in predicting and preventing equipment failures.

The ME module in PdM model development is distinct yet often intertwined with the MB

module. While ME technically involves assessing the performance of the predictive models,

its significance extends beyond mere technical evaluation. This module plays a crucial role in

interpreting the prediction results within the technical environment and the business context of

the model’s application. Such an analysis is essential for understanding the broader implications

of the model’s deployment.

In ME, the focus is not only on the quantitative metrics of prediction quality, such as accuracy,

precision, and recall, but also on the qualitative aspects of model performance. This includes

evaluating how well the model’s predictions align with real-world scenarios and the potential

impact of these predictions on maintenance strategies and business operations (Vollert, Atzmueller,

and Theissler, 2021).

Moreover, ME involves a thorough examination of the model’s interpretability, especially in

complex industrial contexts where decisions based on model predictions can have significant

consequences. The ability to understand and explain the model’s predictions is essential for

gaining trust and acceptance among stakeholders (Che et al., 2021).

The output of the ME module often includes a detailed analysis of the model’s performance,

highlighting areas of strength and potential improvement. This analysis is critical for mak-

ing informed decisions about the model’s deployment and for identifying any adjustments or

refinements that may be necessary to enhance its effectiveness in a PdM setting.

Summed up, the ME module is a vital component of the PdM model development process.

It extends beyond technical evaluation to include a comprehensive analysis of the model’s

performance in the context of its intended application. This holistic approach to ME ensures
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that the deployed PdM models are not only technically sound but also practically relevant and

aligned with business objectives.

The MD module is the final step in the PdM model development process, focusing on the

deployment of the predictive models into a real-world environment. This module is critical as it

transitions the model from a development setting to an operational one, where it can provide

tangible benefits in PdM applications.

Model deployment involves integrating the predictive model into the existing technological

infrastructure. This integration must be consistent to ensure that the model functions effectively

within the industrial ecosystem. It often requires collaboration between data scientists, IT

specialists, and domain experts to ensure that the model is correctly implemented and aligned

with the technical and business requirements (A. Gorishti and K. Gorishti, 2022).

A key aspect of MD is ensuring that the deployed model can efficiently process real-time data

and provide timely predictions. This is particularly important in PdM, where the ability to

predict equipment failures in advance can significantly reduce downtime and maintenance costs.

The model must be robust and scalable to handle varying data volumes and operational demands

(Salierno et al., 2020).

Furthermore, MD also involves continuous monitoring and maintenance of the model to ensure

its ongoing accuracy and relevance. This includes updating the model as new data becomes

available, adjusting it to changing conditions, and troubleshooting any issues that arise during

its operation.

In summary, the MD module is a fundamental phase in the PdM model development process,

marking the transition of the predictive model from a theoretical construct to a practical tool.

Successful deployment requires careful planning, collaboration, and ongoing management to

ensure that the model delivers reliable and valuable predictions in a real-world setting.

The Utility and Setup (US) module in the PdM model development process encompasses the

broad range of technical efforts that are not linked to a specific step in the model development

lifecycle. This module spans across all other modules and is unique in that it does not have clear

input and output interface standards. The US module includes aspects such as the development

environment, team collaboration tools, and other supporting utilities that advance the model

development process.

The US module is vital as it addresses the foundational aspects that enable efficient and effective

model development. This includes setting up the development environment, which involves
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selecting and configuring the software tools, libraries, and platforms used for MB and ME. The

choice of these tools is critical as it can significantly impact the efficiency of the development

process and the quality of the final model (Lechuga et al., 2023).

Collaboration tools are another vital component of the US module. In a PdM project, team

members often come from diverse backgrounds, including data science, IT, and domain-specific

areas. Effective collaboration tools are essential for facilitating communication, sharing resources,

and coordinating tasks among team members, thereby enhancing the overall productivity and

success of the project (Shanin, Stupnikov, and Zakharov, 2019).

Moreover, the US module also encompasses the efforts to ensure that the model development

process is scalable, reproducible, and adheres to best practices. This includes version control

systems, documentation practices, and adherence to coding standards, which are essential for

maintaining the quality and integrity of the model development process.

To sum up, the US module plays a foundational role in the PdM model development process.

It provides the necessary infrastructure and tools that support the various stages of model

development, from initial setup to final deployment. The effectiveness of the US module is key

to the overall success and sustainability of PdM projects.

In the depiction of the modules in figure 20, those displayed in blue are predominantly code-

centric, sharing similarities in appearance and handling, making them particularly amenable to

this works repository approach, whereas the modules presented in gray are fundamentally rooted

in architecture and infrastructure considerations.

In the context of PdM model development, process exit points are crucial stages where a data

model successfully delivers tangible outcomes, marking significant milestones in data-driven

value creation. These points not only signify the achievement of specific objectives within the

model development lifecycle but also demonstrate the adaptability of the process to various

project needs. They serve as key indicators for assessing progress, guiding resource allocation,

and allowing the replication of successful practices across different projects, thereby enhancing

the efficiency and impact of data-driven initiatives in PdM.

Having established the significance of process exit points in the PdM model development, the

next step is a detailed exploration of the four distinct process exit points, each representing a

critical phase of achievement and value creation within the data-driven development lifecycle.

The first process exit point, termed Data Marketplace Value Creation, hinges on the

infrastructural access to the output of the initial module, DC. This exit point encapsulates
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the concept of platform access for third-party service providers to available data via a data

marketplace. In the realm of PdM, this is particularly pertinent for the development of customer

services by third-party suppliers. Various architectural models exist for this purpose, ranging

from direct contact with data consumers to externalizing data distribution to a central data

marketplace provider. Such architectures are instrumental in accelerating the efficient exchange

and utilization of data in PdM, enhancing the development of customer-centric services and

solutions (Rosati et al., 2023).

The second process exit point, Data Insight Value Creation, is vital in the PdM model

development process. It focuses on the value generated through descriptive analysis, often in

conjunction with FV. This exit point typically leverages the outputs of modules such as DP, FC,

FL, and FE, particularly after the application of components from FV. Data insights, key for

building predictive models, also hold intrinsic value by providing a deeper understanding of the

data characteristics and potential implications. This process exit point underscores the general

applicability of the model, highlighting that despite different objectives, the same process model

can be effectively utilized, with the exit points varying based on the specific goals and outcomes

desired in PdM (Pereira, 2020).

The third process exit point, ML Model Insight Value Generation, is centered around the

outcomes of prescriptive statistical models, primarily achieved through the application of ML

algorithms. This exit point is often the core of value generation in most PdM scenarios. Key

functionalities such as RUL prediction, deviation detection, and maintenance need classification

are all derived from these ML models. Additionally, the insights gained from these models

can be utilized as features or labels in subsequent models, especially in pattern recognition use

cases. This process exit point exemplifies the specific value derived from ML models in PdM,

highlighting the tailored application of the general process model to different objectives, thereby

underlining its broad applicability (Abdelli, Griesser, and Pachnicke, 2022).

The fourth process exit point, ML Model Service Value Creation, encapsulates the continu-

ous operation of ML models, generating ongoing value through the use of live data. This exit

point is critical in PdM models as it represents the service of having a perpetually running ML

model, which continuously analyzes and interprets data to provide actionable insights. Such

continuous operation is essential for real-time monitoring and decision-making, enabling proactive

maintenance strategies and enhancing operational efficiency. The value generated at this exit

point is not just in the predictive capabilities of the model but also in its ability to adapt
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and evolve with the incoming data stream, ensuring sustained relevance and accuracy in its

predictions (Fausing Olesen and Shaker, 2020).

In the landscape of data-driven processes, particularly in PdM, the roles of DE, DA, and DS are

distinct yet interconnected in the data-driven process, with DA focusing on extracting information

from large datasets (Adeel Mannan et al., 2019), and DA concerned with the interpretation and

analysis of data patterns (Othmane, Jaatun, and Weippl, 2018), each playing a crucial role in

the overall effectiveness and efficiency of PdM processes.

Data Engineering primarily covers the modules of DC, Dp, and MD. This role demands

proficiency in database management, data processing, and system integration, focusing on the

infrastructure that supports data flow and storage.

Data Analytics concentrates on the modules from Data Input to the Process Exit Point 2,

Data Insight Value Generation. This role requires skills in statistical analysis, data visualization,

and the ability to derive meaningful insights from data, particularly in understanding and

communicating the value generated from data up to the point of descriptive analysis.

Lastly, Data Science encompasses the entire process but with a focus on model creation from

available data until ME. This role demands a deep understanding of ML, algorithm development,

and advanced analytical techniques. The distinction between these roles lies in their specialized

skill sets and focus areas - DE emphasizes the architecture that enables data availability, DA

focuses on interpreting and visualizing data, and DS integrates these aspects to develop and

evaluate predictive models, each contributing uniquely to the overarching goal of effective PdM.

The distinction of roles in DE, DA, and DS is crucial for designing a component repository

tailored to individual modules, significantly enhancing reusability in PdM processes. By clearly

defining these roles, the component repository can be structured to cater to the specific needs

and skill sets of each domain. For DE, the repository can focus on components that permit

efficient data ingestion, storage, and management. For DA, it can offer tools for data processing,

visualization, and basic analysis, aligning with the role’s focus on extracting insights from data. In

DA, the repository can include advanced analytical models and ML algorithms. This role-based

compartmentalization ensures that each component is optimized for its intended purpose, making

it easier for professionals to find and reuse relevant components. It rationalizes the development

process, as practitioners can quickly identify and deploy the tools that best fit their specific

requirements, thereby reducing development time and enhancing the efficiency and effectiveness

of PdM solutions.
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4.3 A Priori Component Analysis for Reusability

The concept of a priori component reusability analysis in PdM applications plays an important

role in enhancing development efficiency. This subsection explores methodologies for evaluating

the potential reusability of components in PdM models, with a focus on the a priori aspect. This

analysis differs from a posteriori analysis, which assesses reusability based on historical usage

data. A priori analysis, in contrast, predicts the reusability potential of components without

relying on their past usage, thereby streamlining the development process by identifying reusable

components early. The literature review sheds light on existing metrics and methodologies for a

priori analysis. The results section introduces novel metrics developed from these existing ones,

tailored to the specific research environment in PdM. The conclusion synthesizes these findings

and their implications for future PdM model development.

In the realm of PdM, reusability metrics are multifaceted, including both interface-based and

code-inclusive evaluations of components. These metrics aim to provide insights into the potential

reusability of a component, acting as necessary conditions to enhance the quality of a component

repository sustainably. Historically, in Object-Oriented Software Engineering (OOSE), reusability

metrics are categorized into two main types: White-Box components, which evaluate software

components based on their source code (Koteska and Velinov, 2013), and Black-Box components,

which assess components without their code (Boxall and Araban, 2004). The subsequent sections

will discuss some of these metrics and evaluate their applicability in PdM.

Furthermore, the comprehensive analysis of component reusability significantly contributes to

the evaluation of the component repository as a whole. This analysis is integral to addressing

the research questions posed in this work. Specifically, the a priori analysis plays a vital

role in designing the architecture of the component repository. By examining state-of-the-art

reusability metrics, this subsection aims to synthesize custom component design principles. These

principles are intended to reduce costs associated with enabling reusability and the actual reuse

of components, thereby contributing to the overall efficiency and effectiveness of the PdM model

development process.

This subsection offers a comprehensive review of the vital literature on reusability metrics within

the PdM context. It methodically explores White-Box metrics, which examine components

based on their intrinsic characteristics, encompassing both component and solution perspectives.

Subsequently, it examines Black-Box metrics, evaluating components based on external attributes

such as understandability, adaptability, and portability. Each metric category provides distinct
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insights into component reusability, essential for the effective management and enhancement of a

PdM component repository.

In the component-centric approach of White-Box metrics, the primary focus is on the component

itself. The objective is to evaluate the appropriateness of specific components for inclusion

in a component repository or to pinpoint necessary modifications. Regular monitoring of a

component’s long-term value is instrumental in determining its compatibility with component-

based methodologies. Metrics that track the frequency of component reuse and modifications

shed light on the potential need for expanding a component with new functionalities (Koteska

and Velinov, 2013).

Koteska and Velinov (2013) propose metrics to assess the reusability of White-Box components.

One such metric quantifies reusability based on the proportion of reused code:

R = Lr

Lr + Ln
(4.3.1)

Here, R denotes reusability, Lr is the count of reused lines in the source code, and Ln is the

number of newly added lines in the component. A high R value, approaching 1, signifies minimal

code adaptation, whereas a value near 0 indicates substantial new line additions. An R value of

0 implies complete reuse without any modifications. This metric, while evaluating reusability

through project comparison, does not support static component analysis. It aids in deciding

whether integrating new functionalities into an existing component is viable or if creating a new

component is more appropriate (Koteska and Velinov, 2013).

Solution-oriented metrics concentrate on the outcomes derived from components. Poulin, Caruso,

and Hancock (1993) introduce metrics based on Lines of Code (LoC) to gauge reuse. They

propose the Reuse Percent and Adaption Percent metrics, quantifying the ratio of reused and

adapted lines in a software solution. Adapted for CBSE in PdM, these metrics focus on pertinent

components, circumventing distortions from ancillary code (Poulin, Caruso, and Hancock, 1993).

Cyclomatic complexity, a concept introduced by McCabe (1976), stands as a prominent White-

Box metric for the structural analysis of software components via control flow graphs. It is

calculated as:

V = e− n+ 2p (4.3.2)

where V is the cyclomatic complexity, e represents the number of edges in the graph, n is the

number of nodes, and p is the number of connected components. This metric is used to determine
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the complexity of a program’s flow, with a lower value indicating better understandability and

testability due to fewer potential test cases. High cyclomatic complexity often suggests lower

code quality. Figure 21 illustrates an example of calculating cyclomatic complexity in a software

component.
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Figure 21: Exemplary calculation of cyclomatic complexity in a software component. e: Number of
edges in the graph; n: Number of nodes; p: Number of connected components; V: Cyclomatic
complexity (own figure).

Summed up, White-Box metrics provide a detailed insight into the internal aspects of software

components, focusing on code-based reusability. These metrics, including the amount of reused

code, cyclomatic complexity, and solution-based evaluations, are essential for assessing the

suitability of components for a PdM component repository. They guide decisions on whether

to include, modify, or expand components, ensuring high-quality and efficient reuse in the

development process.

Black-Box metrics typically rely on information provided by a component without involving its

source code. Washizaki, Yamamoto, and Fukazawa (2003) present a model for software component

reusability using Black-Box metrics, focusing on attributes like understandability, adaptability,

and portability. Understandability is defined by the estimated effort required for a user to grasp

the concept and usability of a component, with the Existance of Meta-Information (EMI) being

a key metric (Washizaki, Yamamoto, and Fukazawa, 2003). Figure 22 illustrates these three

dimensions of Black-Box metrics—understandability, adaptability, and portability—along with
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their individual metrics.

Reusability of 
Components

Comprehensibility

Existence of Meta-
Information

Observability

Adaptability Customizability

Portability External Dependency

Characteristic Quality Factor Criteria

EMI(C)

RCO(C)

RCC(C)

SCCr(C)
SCCp(C)

Metric

Figure 22: Black box component reusability metrics with the dimensions comprehensibility, adaptabil-
ity and portability, along with their individual criteria and metrics based on Washizaki,
Yamamoto, and Fukazawa (2003).

Understandability is defined by the estimated effort required for a user to comprehend the

concept and usability of a component. A central metric for this attribute is the EMI. The EMI

is quantified as:

EMI =


1, if meta-information exists

0, otherwise
(4.3.3)

A component is considered more reusable if it achieves an EMI value of 1, indicating the presence

of clear, readable, and structured documentation (Washizaki, Yamamoto, and Fukazawa, 2003).

Adaptability refers to the ease with which a component can be modified to meet new require-

ments. The Component Adaptability Rate (RCC) is defined as:

RCC =


Pw(c)
A(c) , if A(c) > 0

0, otherwise
(4.3.4)

where Pw(c) represents the number of write methods in component c, and A(c) denotes the

number of writable fields in c. The RCC value indicates the degree of adaptability of the
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component to the user. An alternative formulation, more suited to the PdM process, is the

Component Function Adaptability Rate (RCC_f), given by:

RCC_f =


Ph(c)
Pc(c) , if Pc(c) > 0

0, otherwise
(4.3.5)

where Ph(c) is the number of parameters in the function header, and Pc(c) is the total possible

parameters in the function. A high adaptability rate is desirable for understanding component

behavior, but excessive adaptability might confuse users, leading to misuse or avoidance of the

component (Washizaki, Yamamoto, and Fukazawa, 2003).

Portability metrics, such as Self-Completeness-of-Component-Return-Value (SCCr) and Self-

Completeness-of-Component-Parameter-Value (SCCp), assess the ease with which a component

can be transferred and used in different environments. While these metrics are important, they

are less relevant in the PdM context due to the specific application and definition of components

in the repository.

Consistent naming of function parameters enhances reusability and quality of the component

repository. Boxall and Araban (2004) introduce the Mean String Commonality (MSC_A) metric,

adapted here as the Mean Identifier Consistency (MIC):

MIC = 1
k

k∑
n=1

min
j∈B

D(An, Bj) (4.3.6)

where D(An, Bj) represents the Levenshtein distance between parameter An of the new function

and each parameter Bj in the target module, and k is the number of elements in A. A higher

MIC value suggests a discrepancy in parameter naming conventions, indicating a need for revision

to align with the module’s standards (Boxall and Araban, 2004).

Self-documentation is a key feature of high-quality, reusable software components. The Mean

Identifier Length (MeIL) metric, proposed by Boxall and Araban (2004), measures the median

length of function identifiers. A higher MeIL value implies better self-documentation, but

excessively long identifiers can reduce reusability due to less frequent use of overly detailed

interfaces.

In summary, the literature on reusability metrics provides a comprehensive framework for

evaluating components in a PdM environment. White-Box metrics focus on the internal aspects of

components, assessing their code-based reusability, while Black-Box metrics evaluate components
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based on external factors like understandability and adaptability. These metrics collectively aid

in determining the suitability of components for a repository, guiding decisions on whether to

include, modify, or expand them. The adaptation of these metrics to the specific needs of PdM

development is important for maintaining a high-quality, efficient component repository.

Despite the utility of reusability metrics in evaluating components for a PdM environment,

a notable research gap remains in the adaptation of these metrics for the specific needs of

PdM development. The literature thoroughly discusses the assessment of components through

White-Box and Black-Box metrics, focusing on internal and external qualities. However, it

largely overlooks the necessity of tailoring these metrics to guide the design and management

of a component-based repository specifically for PdM. This oversight suggests a missing link in

the current understanding of how to effectively apply these metrics to enhance the development

efficiency of PdM models.

Moreover, the absence of detailed guidelines on incorporating these metrics into the repository

design process highlights a critical gap in the literature. For PdM applications, where reliability

and prediction accuracy are central, the design of component repositories requires a nuanced

approach that accounts for the unique challenges and requirements of PdM systems. This includes

considerations for the diverse operational environments in which PdM systems are deployed and

the need for components that can seamlessly integrate with ML models to process and analyze

varied data types.

To bridge this research gap, there is a pressing need for studies that not only refine existing

reusability metrics for PdM but also develop comprehensive frameworks for applying these

metrics in the construction and optimization of component repositories. Such frameworks should

offer clear, actionable guidelines that are specifically designed to support the development of

PdM models, ensuring that components are both reusable and finely tuned to meet the demands

of PdM applications.

In this work, the identification and execution of initial and subsequent use cases within a real-

world environment represent a crucial step towards addressing the research gaps highlighted

previously. These use cases, specifically chosen for their relevance to PdM development, serve as

the foundation for a practical exploration into the application of component-based development

principles. By implementing these use cases, this work not only tests the applicability of the

proposed reusability metrics in a live PdM setting but also allow for the distillation of design

rules that are uniquely tailored to the nuances of PdM.
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The execution of these use cases in a real-world PdM environment allows for the direct observation

and analysis of component-based development in action. This approach enables the identification

of key factors that influence the effectiveness of component reusability and the overall efficiency

of the development process. By closely examining the outcomes and challenges encountered

during these use cases, this work derives a set of design rules based on the interplay between

established reusability measurements and the specific requirements of PdM.

These design rules, informed by both the theoretical framework of reusability metrics and the

practical insights gained from the use cases, offer a targeted response to the previously identified

research gaps. They provide concrete guidelines for the design and management of component

repositories in PdM development, ensuring that the components not only meet the general

criteria for reusability but are also optimized for the specific demands and challenges of PdM

applications. Thus, this work contributes significantly to the field by translating theoretical

metrics into actionable strategies for enhancing the development efficiency of PdM models.

To transition the research findings of this work into a practical context, a domain-specific PdM

use case within an industrial real-world environment is required. This use case is intended to

implement the described approach. Selecting a novel area within the domain is vital, aiming for

a subject yet to be extensively explored in PdM. This strategy paves the way for an execution

independent from previous practices in the field of PdM.

The second step involves the execution based on the outlined process, aiming to validate whether

this process is suitable for achieving the required outcomes of the use case. Additionally, it

assesses whether it can help identify components that can be added to the component repository.

In step three, the selection of an additional use case with similar conditions within the PdM

domain aids in demonstrating the process’s appropriateness and the efficacy of CBSE. This

involves comparing various use cases in terms of their required inputs and outputs to choose one

as similar as possible to the initially conducted one.

Step four involves the execution of the PdM use case selected in step three, following the

introduced process. This step validates whether the process is appropriate for meeting the use

case’s required outcomes. Additionally, it examines whether this process can identify components

that could be added to the component repository.

Step five involves using the metrics found in the literature to formulate a well-founded answer to

the research questions, following the implementation and execution of both use cases.

This detailed approach to research execution and evaluation encompasses phases 3 to 6 of the
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introduced DSR process. The implementation of these steps is described in section 3.1.

The initial use case focuses on the theme of brake noise detection within the context of this work’s

real-world industrial environment, setting it against the backdrop of the Predictive Maintenance

Framework introduced in section 2. This use case leverages microphone recordings to develop a

ML model capable of identifying unwanted noises in brake systems, thereby predicting potential

failures or excessive wear over time. According to the Predictive Maintenance Framework, the

use case is classified as follows:

The data source for this use case comprises microphone recordings (sensor data) from test drives

designed to reproduce noises under various conditions. These recordings are primarily from the

vehicle’s interior to easily measure noise levels relevant to the driver caused by the brake systems.

The high-resolution recordings (48,000Hz) are presented as time series, providing a detailed basis

for subsequent analysis.

Feature engineering for this use case involves frequency-based characteristics, where audio record-

ings, specifically during known intervals of the targeted noises, are segmented into overlapping

two-second sections. These segments are then transformed into visual representations through

Fast Fourier Transformation and Melody (MEL)-Spectrograms, facilitating their integration into

a modeling technique suitable for a Convolutional Neural Network (CNN) architecture. This

modeling approach aligns with data-based prediction, specifically supervised learning, as the

data labeling is precisely defined by the department responsible for the test drives.

This use case also highlights anomaly detection, aiming to identify noises that deviate from the

normal operation of brake systems. Given the high frequency of the data and the extensive

duration of the test drives, a significant challenge arises as the collected time series cannot

entirely fit into the memory of the available computing resources. This aspect is fundamental for

planning the components required for implementation. Additionally, the detailed description of

the labels and their timestamps, and the .wav file format of the data, are essential considerations

for the component design, indicating whether existing components can accommodate the data

integration needs.

In the structure depicted in Figure 9, the code implementation of the initial use case along with

the LoC is showcased, aligning with the development process defined in section 2 of this work.

Following the problem analysis detailed in the preceding sections, the search for pre-existing

components in the component repository is undertaken. Given the intent to implement a novel

use case not previously addressed, only one component is found applicable for implementation.
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This component’s functionality is to converting a given time series into equal-length, overlapping

segments regardless of their frequency.

Component Name New LoC

Module: DI
read_wav_to_pandas_DF True 21

Module: DP
write_pandas_DF_to_wav True 14
create_metadata_DF True 20
write_DF_to_csv True 36
read_csv_to_DF True 4

Module: FC
get_windows_dict False 46

Module: FL
create_label_for_timestamp True 12

Module: MB
get_soundDS True 153
get_train_test_DataLoader True 11
get_AudioClassifier True 80
train True 54
test True 54

Module: ME
get_confusion_matrix_fig True 78

583

Table 9: Overview of the required components for the initial use case High-Freq Brake Noise Detection
with the corresponding modules and the LoC per component.

Subsequently, components required to address the relevant characteristics of this use case are

defined. Derived from the limitation that the entire time series cannot be accommodated in the

computing machine’s memory, a component is needed to keep only the time series required for

the current training iteration in memory while storing the remaining samples on disk. To realize

intermediate storage in the desired .wav format, another component providing this functionality

is essential. Additionally, considering the input in a .wav file format, a component for reading

this format into a data structure processable by the ML model is necessary.

Following the problem analysis and planning phase, the implementation of the solution as

outlined in the development process proceeds. After implementation, the model is evaluated in

collaboration with the department that commissioned the use case, ensuring it meets the set

objectives. After fine-tuning the data basis regarding label assignment, the trained CNN achieves

specific results on the test dataset (383 samples) after 500 training epochs.

As part of the process, the team collaboratively reviews the developed solution for new components

to be added to the component repository. The program’s flow from top to bottom, including

the names of the used components, is detailed in the corresponding table. The second column

indicates whether a component is reused or newly created, while the third column reflects the
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LoC metric discussed as a white-box-metric, showcasing the size of functionalities encapsulated

within components. In total, 583 LoC are required for the implementation of this industrial use

case in the PdM domain, excluding lines needed for component definition and implementation

approach (function headers and documentation). Out of these, 38 lines are reused from an

existing component, and 525 lines are encapsulated into new components and added to the

component repository, following the defined rules. This resulted in the reuse of one component

and the creation of 13 new components.

The second use case builds directly upon the initial theme of brake noise detection, introducing

a novel aspect within the same real-world industrial Predictive Maintenance Framework. This

case explores the feasibility of using existing vehicular sensors, specifically wetness sensors in the

wheel wells, to classify brake noises into various categories. This approach aims to evaluate the

potential for offering additional services to customers through software updates, enhancing the

existing product’s value with a focus on PdM.

The Communication Bus (C-Bus) logger data (sensor data) is selected from test drives that

intentionally replicated braking noises under diverse conditions. The domain knowledge is crucial

in selecting signals that likely capture the brake noises. Following a detailed analysis, wetness

sensors, recording at a frequency of 40,000Hz, are chosen due to their close approximation to the

specifications of the audio recordings discussed in the first use case.

The feature engineering process for this case mirrors the initial use case, focusing on frequency-

based characteristics. The sensor recordings, with known intervals from the first use case

where the target noises occurred, are segmented into overlapping two-second sections. These

segments are scaled to match the length of the audio recordings and then transformed into

visual representations through Fourier Transformation and MEL-Spectrograms, making them

compatible for modeling with a CNN architecture.

Similar to the first use case, this scenario adopts a data-based prediction strategy, specifically

supervised learning, based on precisely defined labels by the department conducting the test

drives.

The aim is anomaly detection, identifying noises or areas that represent deviations from the

brake system’s normal operation, leveraging the unique capabilities of the selected sensors.

The high frequency and extensive duration of the test drives pose a challenge, as the collected

time series data cannot fully fit into the available computing resources’ memory. This limitation

necessitates careful planning for the required components for implementation. Additionally, the
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precise description of the labels and their timestamps simplifies the process of correctly assigning

labels within the data set. The use of .parquet file format for C-Bus recordings indicates the

potential for existing components to aid data integration into the workflow.

This second use case not only validates the flexibility and applicability of the developed components

in a different context but also contributes to validating the overall development process under

the CBSE framework. By testing the components in varied scenarios, this use case reinforces the

repository’s value, showcasing the adaptability and efficiency of the component-based approach

in the PdM domain.

In the execution of the second use case, the development process emphasizes validating components

from the initial use case and assessing the CBSE approach for PdM applications. The decision

to select a use case that closely mirrors the characteristics of the first use case allows for the

substantial reuse of previously developed components. The notable exception is the necessity for

a new component to handle the .parquet data format, replacing the .wav file reading component

due to the new data specifications. Table 10 shows the components used in the execution of the

second use case.

Component Name New LoC

Module: DI
read_parquet_to_pandas_DF True 172

Module: DP
write_pandas_DF_to_wav False 14
create_metadata_DF False 20
write_DF_to_csv False 36
read_csv_to_DF False 4

Module: FC
get_windows_dict False 46

Module: FL
create_label_for_timestamp False 12

Module: MB
get_soundDS False 153
get_train_test_DataLoader False 11
get_AudioClassifier False 80
train False 54
test False 54

Module: ME
get_confusion_matrix_fig False 78

724

Table 10: Overview of the required components for the following use case Low-Freq Brake Noise Detection.

A component required for scaling sensor recordings to amplitudes suitable for .wav formats is

also identified, enabling the use of sequential data reading components for training iterations.

This adaptation signifies the CBSE methodology’s capability to efficiently repurpose existing
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components with minimal modifications.

The collaborative effort results in the implementation and evaluation of the model, which is

subjected to multiple training iterations. This process highlights the adaptability of the developed

components, demonstrating their effectiveness across different data formats and use case specifics.

The resulting CNN models showcase varying degrees of success across test datasets. The

discrepancies in model performance are attributed to challenges related to data restoration and

the direct transfer of labels from microphone recordings, underscoring the complex nature of PdM

data analysis. The findings from this use case further validate the CBSE approach, illustrating

its potential to rationalize PdM development by leveraging reusable components.

A total of 724 LoC are required for the implementation of this second industrial use case in the

PdM domain. Of these, 553 lines are reused from existing components, with an additional nine

lines encapsulated into new components added to the repository. This reuse and expansion process

results in the adaptation of 14 components and the creation of one new component, underscoring

the CBSE methodology’s efficiency and flexibility in addressing the evolving requirements of

PdM applications.

This use case underscores the strategic value of CBSE in PdM, demonstrating the approach’s

ability to adapt to new challenges while maximizing the reuse of existing solutions.

The culmination of this research, through the diligent application of CBSE principles in the

domain of PdM, highlights the method’s inherent adaptability and efficiency in addressing

complex PdM challenges. By focusing on the development, validation, and adaptation of reusable

components across two distinct use cases—brake noise detection using microphone recordings

and sensor data from wetness sensors—the research underscores the significant potential of CBSE

in streamlining PdM development processes.

This approach not only promotes the rapid assembly and modification of predictive models

to meet specific PdM requirements but also demonstrates the value of component reuse and

adaptation in enhancing development efficiency. The execution of the use cases serves as a

practical test bed for the theoretical concepts discussed, providing concrete evidence of the CBSE

methodology’s effectiveness in real-world PdM applications.

Moreover, the successful adaptation of components to new data formats and the strategic handling

of PdM specific challenges, such as data quality and ME criteria, exemplify the CBSE approach’s

flexibility. This research contributes to the PdM field by offering a structured framework for

component-based development, encouraging a more agile and responsive approach to AI model
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development in industrial settings.

In conclusion, this work presents a compelling case for the adoption of CBSE in PdM development,

highlighting its advantages in component reuse, system adaptability, and development efficiency.

The insights gained from the implementation of the described use cases contribute valuable

knowledge to the domain, paving the way for future research and application of CBSE in PdM

and beyond.

4.4 Workflow for Component Creation and Comparison

CBSE emerges as a vital approach in the development of modular, scalable, and maintainable

software systems. This paradigm emphasizes the reuse of existing software components and

the creation of new components as fundamental building blocks for software applications. The

literature in this domain spans various aspects, including quality assurance, regression testing,

business-oriented development, component reuse, model maintenance, and dynamic component

integration. This literature review aims to synthesize key contributions from seminal works in the

field, focusing particularly on the methodologies and strategies for the creation of new components

in CBSE. Examining these studies seeks to understand the evolving landscape of CBSE component

creation and its implications for efficient software development and maintenance.

D. Kumar and Kumari (2015) discuss the critical role of quality assurance models and metrics in

CBSE. The paper emphasizes the importance of ensuring the reliability and efficiency of software

components, which are fundamental in the creation of new components. The study likely explores

various quality assurance models and metrics, providing insights into how these can be applied

to assess and enhance the quality of new software components.

Orso et al. (2001) explore the use of component meta-content in regression testing. This research

is significant for the development of new components as it addresses the challenges in ensuring

that changes in components do not adversely affect the existing system. The methodologies and

findings from this paper can provide valuable guidelines for testing new components in CBSE.

Jarzabek and Hitz (1998) discuss the alignment of CBSE with business objectives. This paper

is crucial for understanding how new components can be developed with a business-centric

approach, ensuring that they meet market demands and contribute to the strategic goals of the

organization.

Edmunds, Snook, and Walden (2016) investigate into the reuse of components in the context

of Event-B, a formal method for system modeling. This paper’s focus on component reuse is
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particularly relevant for the creation of new components, as it provides insights into how existing

components can be effectively adapted and integrated into new software solutions.

Jahn et al. (2012) address the challenges in maintaining models in component-based product

lines. This research is pertinent to the development of new components as it highlights the

importance of maintaining consistency and compatibility within a product line, which is a key

consideration when introducing new components.

Finally, Kathirvelkumaran and Moorthy (2023) presents an architectural pattern for integrating

components dynamically. This recent study is particularly relevant for the creation of new

components, as it explores innovative approaches to component integration, which is a critical

aspect of CBSE.

In conclusion, the reviewed literature underscores the significance of component creation in CBSE.

The development of new components, guided by robust quality assurance models, regression

testing strategies, and business-oriented approaches, is essential for building scalable and efficient

software systems. The ability to define components within a useful scope and maintain an

overview of existing and available components is essential for ensuring system integrity and

alignment with business goals. Studies like those by D. Kumar and Kumari (2015), Orso et al.

(2001), Jarzabek and Hitz (1998), Edmunds, Snook, and Walden (2016), Jahn et al. (2012), and

Kathirvelkumaran and Moorthy (2023) provide valuable insights into various facets of component

creation, from quality assurance and testing to dynamic integration and model maintenance.

This focus on component creation is not just a technical necessity but also a strategic approach to

ensure that software systems remain adaptable, maintainable, and relevant in a rapidly evolving

technological landscape.

4.4.1 Introduction of the Workflow Design

As part of the ongoing exploration into PdM model creation, Figure 23 presents a comprehensive

process flow graph. This graph outlines the systematic approach employed in the initial creation

of a model, as well as the methodologies applied in subsequent (n+1) model development

cycles. The process is thoroughly designed to integrate and leverage the modular components

defined in subsection 4.2. This unified workflow encapsulates the entire spectrum of model

creation, from conceptualization to deployment, ensuring a cohesive and repeatable process. The

subsequent sections will conduct a detailed analysis of this workflow, highlighting its efficiency

and effectiveness in fostering robust model development.
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The process flow, as illustrated in Figure 23, is structured into three distinct yet interlinked

recursive layers: the Model Layer, the Module Layer, and the Component Layer. Each of

these layers operates with its dedicated database, ensuring an organized flow of information. The

journey through these layers commences from the Initiate_Model node, marking the inception

of the model creation process. As the workflow progresses, each layer is methodically traversed,

culminating at the Execute_Model node. This layered architecture not only enhances the clarity

and manageability of the model creation process but also ensures that each aspect of the model

is thoroughly developed and integrated. The following sections will look into the specifics of each

layer, explaining their unique roles and contributions to the overall process.
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The initial phase in the model creation process, as depicted in Figure 23, commences with the

Model Layer. Upon initiating a model, its inputs and outputs are thoroughly described using

a formalized attribute system, detailed in subsection 4.5. This system encompasses all known

details of the data inputs available for model development and explicitly defines the model’s

objectives through output attributes. Subsequently, this model description undergoes a thorough

verification against the Model_DB database, which archives all pre-existing models.

This verification can result in one of three distinct pathways:

1. If no existing models share similar input or output attributes with the new model, the

process advances to the Describe_Inputs/Outputs_of_required_Modules node. Here,

each required model module is described, again utilizing input and output attributes. The

number of modules hinges on the model process exit point, as explained in subsection 4.2,

with the defined interfaces between modules informing the attribute description.

2. In cases where either the input or output attributes partially align with an existing model,

the developer is prompted to manually inspect the corresponding model. This inspection

aims to identify potential for reusing modules from the existing model, leading to the

definition and creation of any required new modules in the Module_Layer. If there are

multiple models that fit the criteria, the developer manually chooses the model that most

closely aligns with the requirements to continue the workflow.

3. The third scenario occurs when an existing model fully satisfies the input and output

criteria. Here, the developer must analyze the model to ascertain its suitability. If deemed

unsuitable, the attributes of both the pre-existing and new models are refined, focusing on

demonstrating the reasons for incompatibility. Conversely, if the existing model is suitable,

it is executed, thereby concluding the workflow.

In the Module_Layer, each module defined in the Model_Layer undergoes a critical evaluation

process. This evaluation involves checking the described module against the Module_DB database

to ascertain if similarly described modules already exist. This check can lead to one of three

possible outcomes:

1. If no existing module in the Module_DB shares similar input or output attributes, a new

module is deemed necessary. At this juncture, the developer faces a choice: to construct the

module using either a single component or multiple components. If multiple components are

selected, each component is individually described using the formalized attributes system

for inputs and outputs. Conversely, if a single component is chosen, the input/output
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description of the module is directly utilized for component creation.

2. In scenarios where either the input or output attributes partially align with an existing

module, the developer is tasked with manually inspecting the proposed module. This

inspection may lead to the division of the module at a specific branch point, effectively

splitting it into two components. The reusable component, whether it be the first or second

part of the split, is then utilized, and the newly required component is described and

forwarded for component creation.

3. The third possibility arises when a pre-existing module closely matches the required

module in terms of descriptive attributes. Similar to the approach in the Model_Layer,

the developer is required to manually inspect the recommended module to determine its

suitability. If the existing module meets the requirements, it is integrated into the initiated

model. If it does not, the descriptive attributes of both the new and pre-existing modules

are refined to highlight the causes of incompatibility.

The Component_Layer represents the final stage in the model creation process. In this layer,

the attributes of the required components are thoroughly compared with those of pre-existing

components in the Component_DB database. This comparison leads to one of three potential

outcomes:

1. If no existing component in the Component_DB matches the required input or output

attributes, a new component is created. This step involves a detailed description of the

new component using the established attributes system.

2. In cases where either the input or output attributes align with an existing component,

a unique approach is adopted. Unlike in the previous layers, the existing component is

split into two at a manually determined branch point. This process not only involves

the description of the newly required component but also the re-description of the split

pre-existing component. Subsequently, the original component in the Component_DB is

replaced by these two new components, which are positioned before and after the splitting

branch point. Both components are then added to the database, reflecting the updated

structure.

3. The third scenario occurs when a pre-existing component in the Component_DB fully satisfies

the required attributes. In this case, the existing component is directly utilized in the

model, streamlining the development process.

This approach in the Component_Layer ensures a thorough and precise evaluation of components,
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helping a dynamic and adaptable model creation process. The ability to split and redefine

components enhances the flexibility and granularity of the model, allowing for a more tailored

and efficient workflow.

Upon the successful creation of each required component in the Component_Layer, the process

flow advances towards its culmination. The individually crafted components are methodically

composed to form their respective modules. These newly assembled modules, along with any pre-

existing modules that are utilized or modified, are then systematically added to the Module_DB

database. This step ensures that all module data is up-to-date and accurately reflects the current

state of the system.

Following the module composition, these modules are integrated to construct a new model.

This integration is a critical phase where the synergy of the modules is harnessed to meet the

predefined objectives of the model. Once this integration is satisfactorily completed, the newly

developed model is added to the Model_DB database. This addition serves not only as a record

of the model’s existence but also as a repository for future reference and potential reuse.

The final step in this comprehensive process is the execution of the new model. This execution is

the practical application of the entire development effort, where the model is put into operation

to fulfill its intended purpose. The successful execution of the model signifies the completion of

the process flow, marking the achievement of a significant milestone in the model development

journey.

In the context of CBSE, the Process Flow diagram outlines a stark contrast to the monolithic

approach, particularly in terms of automation, manual effort, and the requisite skill set at each

node. Unlike the monolithic paradigm, where the process is largely linear with minimal nodes

between Initiate_Model and Execute_Model, CBSE introduces a multi-faceted workflow. Each

node in this workflow represents a unique blend of automated processes and manual intervention,

demanding specific skills and expertise. This section aims to dissect these nodes, offering a

comprehensive understanding of the level of automation and manual effort involved. The analysis

highlights how CBSE permits a more granular and specialized approach to software development,

contrasting it with the more structured but less flexible monolithic model. The discussion serves

to underscore the trade-offs and synergies between automated processes and human expertise

in the realm of CBSE, setting the stage for a deeper exploration of the individual nodes in the

subsequent sections.

The development effort required for a PdM model is significantly influenced by the complexity
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of the analysis and the quality of the data. While the variance in complexity and quality

undoubtedly affects the comparison between development workflows, it is challenging to quantify

these effects. For the purpose of this analysis, it is assumed that these influencing factors impact

both compared approaches equally. The nodes in the workflow are categorized into four distinct

types of developer actions, each represented by a different color.

White nodes are fully automated, requiring no direct action from the developer. These nodes

represent processes where the system autonomously performs tasks without human intervention.

Green nodes signify code reading and understanding actions. The effort required here is

contingent upon the complexity of the code being analyzed. For instance, analyzing an entire

model demands significantly more effort than understanding an individual component. Larger

components are generally more challenging to comprehend than smaller ones, assuming no

additional information is provided.

Blue nodes involve descriptive efforts. Developers are tasked with articulating the required

outputs of the focused functional element and the available inputs. The effort in this stage is

influenced not only by the complexity and data quality but also by the description environment

and the flexibility of the functional element.

Red nodes, finally, represent actual coding efforts. In the workflow diagram, this is exemplified

by the Create_new_Component node. Here, developers are required to develop a component that

cannot be substituted by existing components or a combination thereof. This node demands a

high level of coding expertise and creative problem-solving skills.

In contrast to the nuanced and specialized approach of CBSE, a monolithic approach requires

the involvement of every type of developer activity identified in the workflow model. This

encompasses the full spectrum of actions, from fully automated tasks (white nodes) to intensive

coding efforts (red nodes). Such a comprehensive requirement of diverse skills and efforts in a

monolithic system underscores the importance of thoroughly analyzing individual process paths.

This detailed examination is key to effectively compare the workflow model of CBSE with the

monolithic benchmark. It allows for a clearer understanding of the efficiencies and challenges

inherent in each approach, highlighting the areas where CBSE can offer significant advantages in

terms of specialization and modularity. This comparison not only sheds light on the operational

differences but also provides insights into the strategic implications of choosing one approach

over the other in the context of software development and maintenance.

The presented development workflow will be characterized by three distinct paths, each repre-
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senting a different stage in the evolution of the workflow.

Model 0 - Initial Workflow Initiation: The first path, referred to as Model 0, marks the

commencement of the workflow. This stage is characterized by the absence of pre-existing models,

modules, or components. Developers are required to initiate the workflow from scratch, which

involves a significant amount of coding and design effort, as there are no existing resources to

leverage.

Early Stage Workflow Establishment: The second path represents an early stage of workflow

establishment. At this juncture, some models and components are already in place. However, the

number of models is still manageable enough to allow for time-efficient analysis. The descriptions

of functional elements at this stage are not yet refined in detail, necessitating a balanced mix of

coding, descriptive, and analytical efforts.

Far Established Scenario: The final path describes a far established scenario. In this advanced

stage, the sheer number of models renders individual analysis inefficient. A substantial repository

of components exists, and the descriptions of functional elements are refined to a detailed level.

This stage emphasizes the importance of efficient component reuse and integration, with a

reduced need for new coding efforts. The workflow in this scenario is highly automated, with a

focus on maintaining and refining the existing component base.

These paths illustrate the evolving nature of the workflow in CBSE, highlighting the shift

from intensive development in the initial stages to a more maintenance and refinement-oriented

approach in the later stages.

In the Model 0 path of the workflow, the initiation of the model and the description of resources

(Input) and requirements (Output) align closely with the monolithic benchmark. The absence

of comparable models in this initial stage requires that the developer describes each module

individually, focusing on input and output attributes. Given that most modules are sequential,

the interface between two modules is defined by the output of the preceding module and the

input of the subsequent one. The number of descriptive interfaces in this scenario is given by

(nmodules + 1)− 2, considering that the model’s input and output serve as interfaces to the first

and last modules, respectively. An additional descriptive effort is required for non-sequential

modules, such as Utilities and Data Analytics, where the module’s output must be explicitly

defined resulting in a maximum of +2. This represents an added workload compared to the

monolithic approach, influenced linearly by the efficiency of the infrastructure for describing

attributes.

127



Chapter 4 Execution

In the absence of existing modules, developers have the option to divide each module into

multiple components. For comparison purposes, it is assumed that modules are not subdivided,

leading to the automatic generation of one component per module, with input and output

attributes inherited from the module interfaces. The decision to split modules into components,

driven by the need to formalize intermediate functional steps or manage module complexity,

incurs additional effort. However, it is assumed that such an optional decision is motivated by

similar considerations in a monolithic approach, thus not significantly impacting the comparative

analysis.

The final step in Model 0 involves the creation of individual components. The predefined input

and output descriptions provide a clear task framework for this process. As discussed in section

4.2, the insights from modularization indicate that the functional division into modules is also a

common practice in monolithic approaches. Therefore, there is no discernible loss in efficiency in

this aspect of the workflow approach compared to the monolithic benchmark.

During the Early Stage Workflow Establishment, developers encounter three primary

scenarios at the model layer, each presenting unique comparative considerations against the

monolithic benchmark.

Scenario 1 - No Existing Similar Model: If no existing model closely matches the current

requirements, the additional efforts align with those described in the Model 0 comparison. The

development process mirrors that of initiating a new model from scratch, as in the monolithic

approach.

Scenario 2 - Existing Model with Same Description: When an existing model with a

matching description is identified, the first step involves analyzing its applicability. If the model

is deemed suitable, the process concludes here, contrasting with the monolithic approach where

developing a new model from the ground up is necessary. The effort saved in development is

offset by the effort spent in analyzing the reusable model. However, as the number of models

increases, so does the likelihood of finding a reusable model, even with the added complexity of

potentially having to analyze multiple models to find a fit.

Scenario 3 - Partial Attribute Match: In cases where only one set of attributes (input or

output) matches the current model, an analysis is required to determine the feasibility of reusing

parts of the model. This analysis, while adding extra effort, may lead to significant savings in

development time for the reusable modules. The possibility of non-compatibility, calling for

refinement of the model description, is also considered, mirroring the efforts required in Scenario
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2.

This process is recursively applied at the module and component layers. The presence of existing

components introduces additional analysis efforts, balanced against the potential savings from

reusing components. As the number of modules grows, the granularity of components increases,

affecting both the manual analysis effort for reusability and the likelihood of finding suitable

components. The overall requirement for new components remains at least on par with the Model

0 scenario, with additional efforts encompassing potential analysis and refinement of functional

elements at every layer.

As the workflow progresses, there is a notable increase in the number of potentially reusable

functional elements, accompanied by a refinement in the description of their inputs and outputs.

This refinement plays a vital role in enhancing the accuracy of matching functional elements

to current requirements. Consequently, while the initial stages may see a higher incidence of

wrongfully matching elements due to less precise descriptions, this issue is expected to level

out over the entire lifetime of the workflow. The ongoing process thus not only expands the

repository of reusable components but also improves the precision with which these components

can be matched to new development needs. This dynamic is a key factor in the evolving efficiency

of the workflow approach, as it gradually converges towards a state where the effort involved in

identifying and reusing existing components becomes more predictable and organized, offsetting

the initial investment in component analysis and refinement.

In the Far Established Scenario of the workflow, developers encounter a landscape rich with

existing models and modules. This abundance makes it increasingly rare to find scenarios where

neither inputs nor outputs are previously defined, almost guaranteeing a reduction in the need for

developing new components. The primary effort in this mature stage shifts towards the analysis

and refinement of existing functional elements.

With a high number of elements and a concurrently growing level of detail in their descriptions,

the efforts required for effective comparison and detailed articulation of non-compatibility reasons

intensify. This calls for a structured approach to the attribute system, as outlined in section

4.5. The detailed and precise descriptions aid in accurately identifying the suitability of existing

components for new requirements, thereby streamlining the development process. However,

this also means that a significant portion of the developer’s time and resources is dedicated to

navigating and understanding the extensive component repository. The Far Established Scenario

thus represents a phase where the efficiency gains in component development are counterbalanced
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by the increased complexity in component analysis and selection, underscoring the importance of

a well-organized and clearly defined attribute system in managing the workflow at this advanced

stage.

4.4.2 Structure of the Discrete Event Simulation Model

In the pursuit of optimizing the development of analytics models, particularly in the context

of reusability, this work confronts a significant challenge: the developing stage of the proposed

process model does not yet amass a representative volume of empirical data. This limitation

is not uncommon in innovative domains, where new methodologies outpace the accumulation

of extensive real-world data. To address this challenge, an event-discrete simulation model is

constructed. The rationale for employing a DES approach lies in its quality at modeling complex

systems with event-driven dynamics, a characteristic intrinsic to the process of analytics model

development (Greasley and Edwards, 2021; Y. M. Lee et al., 2007). This simulation serves a

dual purpose: firstly, to validate the proposed process model in a controlled, yet realistic virtual

environment, and secondly, to derive a cost function for reusability. The latter is particularly

crucial as it addresses the third research question of this work, focusing on the economic aspects

of reusability in analytics model development. By simulating various scenarios and configurations

within the DES framework, and employing state-of-the-art sensitivity analysis techniques (Sfeir,

Antoniou, and Abbas, 2018), the costs associated with different levels of reusability can be

extrapolated and analyzed . This provides valuable insights even in the absence of extensive

empirical data (Çetinkaya, Verbraeck, and Seck, 2015; Hasan, Bahalkeh, and Yih, 2020).

The development of this works event discrete simulation model is central in understanding and

optimizing the workflow of analytics model development. DES is particularly suited for this

purpose due to its ability to model complex systems where changes and events occur at discrete

points in time. This characteristic is fundamental in analytics, where processes and data flows

are often event-driven and subject to variability (Byrum et al., 2016; Lopinski, Sachweh, and

Müller, 2023). The DES model captures the sequential and conditional processes inherent in

analytics model development, including data collection, preprocessing, model training, evaluation,

and deployment. This approach allows for a detailed examination of each stage in the analytics

workflow, enabling the identification and analysis of bottlenecks, resource utilization, and process

efficiencies (Greasley and Edwards, 2021; Y. M. Lee et al., 2007). By simulating different scenarios

and configurations, the model provides insights into the optimal strategies for analytics model
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development, thereby enhancing decision-making and resource allocation (Çetinkaya, Verbraeck,

and Seck, 2015; Hasan, Bahalkeh, and Yih, 2020). Furthermore, the integration of DES with

data analytics techniques, such as ML and big data processing, offers a robust framework for

predictive and prescriptive analytics, aligning with contemporary trends in smart manufacturing

and data-driven decision-making (Fakhimi et al., 2014; Nonaka et al., 2015).

Technologies and Methods for Discrete Event Simulation Models

DES can be implemented utilizing a diverse array of technologies and methods, each endowed

with distinct features and capabilities:

• General-Purpose Programming Languages: Languages like Python, Java, and C++

can be used for DES. They offer flexibility and control but require more effort in terms of

simulation framework development.

• Specialized Simulation Software: Tools like Arena, Simul8, and FlexSim are designed

specifically for simulation. They provide built-in features for modeling, animation, and

analysis but can be less flexible for highly customized simulations.

• Simulation Libraries for Programming Languages: Libraries like SimPy (Python),

SimJava (Java), and Simulink (MATLAB) offer a balance between flexibility and ease

of use. They extend the capabilities of programming languages with simulation-specific

functionalities.

• Agent-Based Modeling Platforms: Software like NetLogo and AnyLogic support DES

as part of broader agent-based modeling capabilities. They are useful for simulations

involving complex interactions and behaviors.

For this project, Python’s SimPy library is chosen to develop the DES. SimPy is an open-source,

process-based discrete-event simulation framework. The choice of SimPy is motivated by Python’s

ease of use, readability, and the extensive ecosystem of libraries available for data analysis and

visualization.

1. Defining the Environment: The first step in using SimPy is to create a simulation

environment. This environment acts as a container for the simulation processes and manages

the simulation time.

2. Creating Processes: In SimPy, the dynamics of the DES are defined through processes.

These are Python generator functions that model the behavior of the components in the

simulation, such as machines in a factory or clients in a queue.
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3. Using Events: The simulation progresses through events. SimPy allows the scheduling of

events at specific times, triggering changes in the state of the simulation, such as starting

or finishing a task.

4. Running the Simulation: After setting up the environment and processes, the simulation

is executed over a defined period. During this time, SimPy processes the events and updates

the system state accordingly.

5. Data Collection and Analysis: Throughout the simulation, data about the system’s

performance and behavior can be collected. This data is then analyzed to derive insights,

such as identifying bottlenecks or evaluating the impact of different parameters.

The choice of SimPy for the development of the DES model offers several advantages. Firstly, the

flexibility of SimPy as a Python library allows for high customization and seamless integration

with other Python libraries, which are essential for data analysis, ML, and visualization. This

integration is crucial in developing a comprehensive simulation model that can handle complex

analytics tasks. Secondly, the ease of use is a significant factor; Python’s syntax, combined

with SimPy’s straightforward framework, makes the development process accessible not only

to experienced developers but also to researchers and practitioners with limited programming

background. This accessibility is vital for interdisciplinary research and applications where

users may not have extensive coding expertise. Lastly, the robust community and resources

surrounding Python and SimPy greatly aid in the development and troubleshooting process. The

extensive documentation, community forums, and available tutorials ensure that developers and

researchers can find the support and information they need to effectively utilize SimPy for their

simulation needs.

Choice and Function of Model Input Parameters

In DES models, input parameters are categorized based on their behavior or changes over the

course of the simulation, primarily into static and dynamic categories.

Static Parameters: Static parameters remain constant throughout the simulation. They are

predefined and do not change in response to the simulation’s events. These parameters typically

represent fixed characteristics of the system, such as the capacity of a machine in a manufacturing

simulation or the layout of a facility. They provide a stable framework for the simulation, ensuring

consistency in the underlying conditions.

Dynamic Parameters: Dynamic parameters, in contrast, are characterized by their variability
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and potential to change during the simulation. These changes are often governed by statistical

distributions, making them probabilistic in nature. This allows the simulation to incorporate

real-world unpredictability and variability. For example, in a healthcare simulation, patient

arrival rates might be modeled as a dynamic parameter, fluctuating according to a Poisson

distribution. Such parameters introduce randomness and complexity, enabling the simulation to

capture the stochastic nature of real-world systems more accurately.

The interplay between static and dynamic parameters is crucial in a DES model. Static parameters

provide a consistent baseline, while dynamic parameters introduce the necessary variability and

randomness that reflect real-world scenarios’ unpredictability and complexity.

Static Parameters

The static parameters in the DES model are defined with specific ranges, reflecting the variability

and adaptability of the model to different scenarios. These ranges are fundamental for conducting

sensitivity analyses and understanding the impact of parameter variations on the simulation

outcomes. All model parameters are displayed in table 11.

Parameter Lower Range Upper Range

BASE_TIME_BUILD_MODEL_MODULE 10

REFINEMENT_SCALE 5 10
REFINEMENT_BASE 1 3
PARTIAL_SCALE 2 4
COMPLEXITY_BRANCH_FACTOR 0.25 0.50

BASE_TIME_CHECK_MODEL 4 16
BASE_TIME_DESCRIBE_MODEL_IO 1 10
BASE_TIME_REFINE_MODEL_IO 1 15
BASE_TIME_FIND_MODEL_BRANCH 4 16
BASE_PROP_MODEL_USABLE 1/250 1/100

BASE_TIME_CHECK_MODULE 1 8
BASE_TIME_DESCRIBE_MODULE_IO 1 10
BASE_TIME_REFINE_MODULE_IO 1 15
BASE_TIME_FIND_MODULE_BRANCH 4 20
BASE_PROP_MODULE_USABLE 1/1000 1/200
BASE_COMPLEXITY_MODULE 1 3

BASE_TIME_CHECK_COMPONENT 1 8
BASE_TIME_DESCRIBE_COMPONENT_IO 1 8
BASE_TIME_REFINE_COMPONENT_IO 1 8
BASE_TIME_FIND_COMPONENT_BRANCH 2 16
BASE_TIME_CREATE_COMPONENT 5 20
BASE_PROP_COMPONENT_USABLE 1/1000 1/200
BASE_COMPLEXITY_COMPONENT 1.0 1.2

Table 11: Range of static parameters in the DES model with their lower and upper range.

• Benchmark:

The benchmark parameter in the DES model, denoted as BASE_TIME_BUILD_MODEL_MODULE, is set
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to a value of 10. This parameter represents the time units required to build an individual model

using a traditional, monolithic approach. The choice of the value 10 is strategic, as it allows the

comparison of other parameters in the model as integers. For instance, a model requiring 6 modules

in the framework of this work would equivalently require 6× 10 time units to be constructed in a

monolithic manner. This benchmark parameter serves as a constant reference point throughout

the simulation, providing a basis for evaluating the efficiency and time-effectiveness of alternative

approaches. Unlike other parameters in the model, BASE_TIME_BUILD_MODEL_MODULE remains

fixed at its initial level during the sensitivity analysis, ensuring a consistent standard for

comparison across different simulation scenarios.

It is important to note that these time units are relative and do not correspond to any physically

measurable time units. They are used as a standard of comparison within the simulation,

providing a consistent metric for evaluating different processes and scenarios. The benchmark

parameter serves as a constant reference point throughout the simulation, offering a basis for

assessing the efficiency and time-effectiveness of alternative approaches. Unlike other parameters

in the model, BASE_TIME_BUILD_MODEL_MODULE remains fixed at its initial level during the

sensitivity analysis, ensuring a consistent standard for comparison across different simulation

scenarios.

• General Parameters:

General parameters within the DES model are defined as parameters that are not specific to

any individual object layer but rather influence all object layers uniformly. These parameters

are integral to the model’s framework, ensuring a consistent approach to the enhancement and

refinement across different layers. Their uniform application across all layers underscores their

foundational role in the overall behavior and usefulness of the DES model, affecting the scalability

and adaptability of the system in diverse operational contexts.

REFINEMENT_SCALE:

This parameter significantly dictates the level of enhancement achieved in the description

of an object at each refinement step. A refinement scale setting of REFINEMENT_SCALE = 5

necessitates twenty refinement processes to reach a specified description level, whereas a setting

of REFINEMENT_SCALE = 10 reduces this requirement to ten steps. Empirical evidence from

real-world applications demonstrates that ten refinement steps elevate the description level to a

threshold where mismatches in object usage become highly improbable.

REFINEMENT_BASE:
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This parameter defines the expected base refinement level, vital for establishing the initial level of

object description. While observations indicate that the baseline description niveau is inherently

high, it is sensible for the workflow model to adopt a conservative approach. Consequently, the

REFINEMENT_BASE is set to assume a baseline three times lower than what is empirically observed.

This cautious assumption ensures that the model remains robust across varying conditions and

mitigates the risk of overestimating the initial description capabilities, which could lead to

discrepancies in later stages of object refinement and usage.

PARTIAL_SCALE:

This parameter denotes the probability of partial applicability of an object. This parameter,

PARTIAL_SCALE, quantifies the likelihood that an object can be utilized only partially, typically

when either inputs or outputs align with the specified description. The lower range value of 2

signifies a doubling of the probability of such partial usability, reflecting scenarios where partial

matches between the object’s capabilities and the required specifications occur. Conversely, the

upper range of 4 indicates a quadrupling of this probability, encapsulating a broader spectrum of

partial applicability under more diverse operational conditions.

COMPLEXITY_BRANCH_FACTOR:

This parameter quantifies the reduction in complexity achieved through each branching pro-

cess within the system. Each branch process splits one object into two distinct entities,

inherently reducing the complexity associated with each resulting object. The parameter

COMPLEXITY_BRANCH_FACTOR is critical for understanding this division; a value of 0.5 indicates a

straightforward halving of complexity, representing an intuitive decrease. Conversely, a lower

limit set at 0.25 suggests a more modest complexity reduction of 25%. This lower range accounts

for the potential complexities that branching processes may introduce, acknowledging that new

complexities can emerge even as overall complexity per object diminishes.

In the DES model, the processes across the three layers - models, modules, and components -

exhibit a fundamental similarity in their nature. However, the scope of these processes varies

significantly depending on the layer they relate to. This distinction in scope is key for accurately

simulating the different levels of abstraction and granularity represented by each layer.

The range for each parameter in the model is determined based on empirical observations and

theoretical considerations. The lower bound of these ranges is derived from the best-case scenarios

measured in the real-world environment of this work. These represent the most efficient and

structured instances of the processes. Conversely, the upper bound extends to a worst-case
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scenario, which, while not observed, represents a plausible extreme that could potentially occur.

This approach to defining parameter ranges ensures that the simulation encompasses a realistic

spectrum of possibilities, from the most favorable to the most challenging scenarios. It allows

the model to capture not only the typical behavior of the system but also its response under

stress or atypical conditions.

• Model Layer:

BASE_TIME_CHECK_MODEL:

This parameter represents the time units required to check if a proposed model fulfills the

specified requirements. The process involves understanding the model, its required inputs, and

its actual outputs. Factors such as the experience of the checking expert and the readability and

structuredness of the code are influential but are assumed to be constant for the purpose of this

simulation. This assumption is based on the understanding that these factors affect both the

benchmark scenario and the workflow scenario equally. The range of this parameter extends

from 4 time units, which corresponds to a straightforward check for validating or invalidating the

applicability of the proposed model, to 16 time units. The upper limit of this range represents

a more detailed analysis of the model results, which is four times more extensive than the

best-case scenario and 60% more extensive than the actual creation of one of the model modules.

This range reflects the variability in the complexity and depth of the model checking process,

accommodating scenarios from quick assessments to in-depth analyses.

BASE_TIME_DESCRIBE_MODEL_IO:

This parameter quantifies the time required to describe the inputs and outputs of a model.

The process is facilitated by the use case description framework and the attributes system, as

introduced in Sections 4.1 and 4.5, respectively. Describing the model I/O is a critical step to

ensure comparability with existing models, significantly influencing the entire subsequent process.

A thorough and detailed description can lead to more effective results in identifying reusable

models but may also reduce the likelihood of finding closely similar models for partial reuse.

Conversely, a brief description reduces the initial effort but may increase the time needed for

refinement and model checking. The range for this parameter is estimated between 1 time unit,

representing a low-effort, high-level description that acknowledges the practitioner’s need for

efficient time management, and 10 time units, indicative of an exhaustive description process.

This extensive process might involve multiple refinement loops with stakeholders and domain

experts. The upper bound of this range, being ten times higher than the lower bound, equates
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to the effort of creating one module-equivalent in a monolithic benchmark process, accounting

for approximately 1/5 to 1/10 of the total benchmark process. This range reflects the trade-off

between the depth of the I/O description and the overall efficiency of the model development

process.

BASE_TIME_REFINE_MODEL_IO:

This parameter represents the base time required to refine the model’s inputs and outputs in

cases where an initial compatibility check results in incompatibility. The refinement process

involves specifying the input and/or output attributes in accordance with the parent/sibling

structure, as detailed in Section 4.5. This task demands a comprehensive understanding of the

model’s full functionality, often involving an extensive analysis. In practical scenarios, however,

the differences between models might be more readily identifiable. For instance, defining model

input attributes can be straightforward if the data inputs are already known. Similarly, the

variety of model output attributes is somewhat limited, as evidenced by the analysis in related

literature (Section 2). The range for this parameter is set between 1 time unit, reflecting the

often-observed duration in real-world environments, and 15 time units, which accounts for a

theoretically possible in-depth analysis and understanding of the model’s Dp and outcomes. This

range captures the spectrum from quick attribute adjustments to comprehensive refinements,

accommodating both typical and more complex refinement scenarios.

BASE_TIME_FIND_MODEL_BRANCH:

This parameter quantifies the time units required to identify a branch in a model when only

parts of the model are reusable, either due to matching input or output attributes. The process

calls for a thorough understanding of the model’s modular structure and the functionality of its

individual modules to determine which modules are applicable for reuse. In real-world scenarios,

identifying a suitable branch position is often complex, as there are typically multiple branching

options, each with varying requirements for additional modules. Furthermore, the effort involved

in this process is not linearly estimatable since modules differ in their development complexity.

The parameter encompasses not only the time taken to identify potential branching points but

also the time required for decision-making based on the practitioner’s estimations. The range

for this parameter is set between 4 and 16 time units. This range is based on the resources

estimated from the BASE_TIME_CHECK_MODEL parameter, reflecting the similarity in the effort

and skills required both to understand the model comprehensively and to identify areas of partial

reusability. The upper limit of this range accounts for scenarios where in-depth analysis and
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decision-making are necessary, while the lower limit represents more straightforward cases of

branch identification.

BASE_PROP_MODEL_USABLE:

This parameter signifies the probability of finding an existing model that is suitable for a given

application. The likelihood of such a match is influenced by factors such as the specific field and

industry, the complexity of the input data, and the variance in data types. Given its critical role

in measuring the deviation from the benchmark performance (which this parameter does not

affect), the range of BASE_PROP_MODEL_USABLE is set with careful consideration.

In the real-world environment of this work, it is hypothesized that approximately 50 different

models suffice to cover all available data kinds and application fields, setting the base probability

at 1/50. To ensure the generalizability of the simulation results to industrial contexts with

less variety, the upper bound of the range is set at a reuse probability of 1/100. Conversely,

acknowledging that other application fields might encompass a broader array of models, the

lower limit is extended to 1/250. This makes BASE_PROP_MODEL_USABLE the parameter with

the widest range in the model layer, allowing the simulation to explore scenarios from highly

specialized to extremely diverse model applicability.

• Module Layer

BASE_TIME_CHECK_MODULE:

This parameter, with values ranging from 1 to 8, specifies the estimated average time required

for checking a module. The range reflects different estimates, accommodating the variability in

time needed to validate a module’s functionality and compatibility due to differing complexities

and sizes of modules depending on industrial contexts.

BASE_TIME_DESCRIBE_MODULE_IO:

This parameter, varying from 1 to 10, represents the estimated average time required to describe

a module’s input and output. The range accounts for different estimates based on the complexity

and detail of module interfaces, which can vary significantly across different industrial contexts.

BASE_TIME_REFINE_MODULE_IO:

Ranging from 1 to 15, this parameter indicates the estimated average time needed for refining a

module’s I/O. The broad range reflects the diversity in estimates, accommodating both minor

adjustments and more extensive overhauls, which are influenced by the specific requirements and

complexities of modules in various industrial settings.

BASE_TIME_FIND_MODULE_BRANCH:

138



4.4 Workflow for Component Creation and Comparison

With a range from 4 to 20, this parameter specifies the estimated average time required to

identify suitable branching points within a module. The range caters to different estimates,

reflecting the varying complexities and decision-making processes involved in module integration

or modification across diverse industrial applications.

BASE_PROP_MODULE_USABLE:

This parameter, varying from 1/200 to 1/1.000, represents the estimated probability of a module

being usable. The range encompasses different estimates of usability likelihood, acknowledging

the spectrum of module applicability from common to rare in various industrial contexts.

BASE_COMPLEXITY_MODULE:

Capturing the estimated average complexity level of a module, this parameter ranges from 1 to

3. The range allows for different estimates of module complexity, accommodating the variability

in module design and functionality encountered in different industrial sectors.

• Component Layer

BASE_TIME_CHECK_COMPONENT:

This parameter defines the range of time required for checking a component, with values from 1

to 8. This range allows for variability in the time needed to assess a component’s functionality

and compatibility, accommodating components of varying complexity and detail.

BASE_TIME_DESCRIBE_COMPONENT_IO:

The time required to describe a component’s input and output is represented by this parameter,

which varies from 1 to 8. This range reflects the differences in the complexity and detail of

component interfaces, from simple to highly sophisticated I/O descriptions.

BASE_TIME_REFINE_COMPONENT_IO:

Ranging from 1 to 8, this parameter covers the time needed for refining a component’s I/O. The

range caters to both minor adjustments and more significant modifications in component I/O

refinement.

BASE_TIME_FIND_COMPONENT_BRANCH:

This parameter, with a range from 2 to 16, indicates the time required to identify branching

points within a component. The range accommodates the varying complexities in determining

suitable branches for component integration or modification.

BASE_TIME_CREATE_COMPONENT:

Representing the time required to create a component, this parameter varies from 5 to 20. It

reflects the diversity in the effort and time needed to develop components, from relatively simple

139



Chapter 4 Execution

to more complex creations.

BASE_PROP_COMPONENT_USABLE:

This parameter signifies the probability of a component being usable, ranging from 1/1.000 to

1/200. It captures the likelihood of finding an existing component that meets specific requirements,

spanning a spectrum from commonly usable to rare components.

BASE_COMPLEXITY_COMPONENT:

The complexity level of a component is captured by this parameter, which ranges from 1.0 to 1.2.

This range allows the model to simulate components of varying complexity, from straightforward

to highly complex.

These ranges allow the model to be tested under various conditions, providing insights into how

changes in these parameters affect the overall behavior and outcomes of the simulation. This

flexibility is essential for a robust and comprehensive analysis, especially in scenarios where the

model needs to adapt to different operational contexts or assumptions.

Dynamic Parameters

The simulation model incorporates several dynamic parameters to simulate the complexity

and variability of objects within the system. These parameters are crucial for determining the

probabilistic existence, applicability, and the required number of objects for branches, which

collectively contribute to the model’s realistic representation of complex systems.

• Probability of Object Existence

The probability of an existing object within the simulation is calculated using a function that

integrates a reciprocal function with a logistic function. The logistic curve is defined by Equation

4.4.1 for an object of type "Model", "Module", or "Component".

P (x) =


0 if x ≤ 1,(
3x−1 + Lexisting

1+e−kexisting(x−n)

)
otherwise,

(4.4.1)

Here, Lexisting = 0.8 and kexisting = 0.1 represent the limit and the growth rate of the logistic

function, respectively. The variable n = 1 shifts the curve along the x-axis, influencing the

distribution of probabilities across object counts.

Figure 24 illustrates the evolving probability of an object match across different object categories

within the simulation. Initially, the probability of a match is high for all object categories,

attributed to the broad and unrefined descriptive attributes employed at the simulation’s
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Figure 24: Combined probability distribution based on logistic function, with probability of object
match per number of objects across three object categories: Model (blue), module (orange),
component (green) (own figure).

commencement. This initial condition reflects a less discriminative matching process, where

the specificity of attributes is minimal, thereby increasing the likelihood of matches. As the

simulation progresses and the level of attribute refinement increases, the probability of finding

a match decreases. This reduction is due to the increasing specificity and differentiation of

attributes, which narrows the potential for matches. However, an interesting dynamic emerges

as the simulation further evolves: the probability of a match begins to increase again with the

growing number of objects. This latter trend is indicative of a more populated object space,

where the sheer volume of objects enhances the likelihood of finding matches, even amidst more

refined and specific attributes. This curve, depicted for each object category, underscores the

complex interplay between attribute refinement and object proliferation within the simulation,

revealing how these factors collectively influence the probability of object matches in a non-linear

fashion.

• Probability of Object Applicability

The logistic function also calculates the probability of object applicability, as shown in Equation

4.4.2.
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Papplicable(x) =


0 if x ≤ 1,

Lapplicable

1+e

−kapplicable

(
x−x0

data_scale
100

) otherwise,
(4.4.2)

This equation adjusts the probability of applicability based on the object’s sequence or total

count, with parameters tailored to reflect the complexity and prevalence of different object types

within the simulation.
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Figure 25: Applicability probability distribution for different object types, with probability of applicability
per number of preexisting objects across three object categories: Model (blue), module
(orange), component (green) (own figure).

Figure 25 illustrates the relationship between the cumulative number of preexisting objects

within the simulation environment and the applicability probability of three distinct object

categories: models, modules, and components. This visualization provides a clear depiction of

how the probability of an object being applicable varies as a function of the number of objects

already introduced into the simulation. Each curve in the figure corresponds to one of the object

categories, illustrating that the probability of applicability is not uniform across categories but

instead depends significantly on the object type and the existing object count. For models, the

curve suggests a nuanced behavior where their applicability may be influenced by both their

inherent complexity and the simulation’s evolving state. Modules and components, meanwhile,

display distinct patterns of applicability probability, reflecting their roles and integration within
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the simulation’s architecture. The figure effectively demonstrates that the object applicability

within the simulation is a dynamic attribute, influenced by the interplay between object type and

the density of the simulation’s object population, providing essential insights into the simulation

model’s behavior and its capacity to mimic complex systems dynamics.

• Partial Object Applicability

Adjusting for complexity factors, the probability of partial applicability is governed by Equation

4.4.3, which modifies the logistic function’s steepness and distribution.

Papplicable(x;P_S) = L

n+ exp
(
− k

data_scale
100

·
(

x
P_S − x0

)) , (4.4.3)

This formula dynamically adjusts applicability probabilities, illustrating how complexity influences

the simulation model’s object interactions.
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Figure 26: Combined partial applicability probability distributions across PARTIAL_SCALE parameter
ranges, with probability of partial applicability per number of preexisting objects across
three object categories: Model (blue), module (orange), component (green). Solid line (—):
PARTIAL_SCALE = 1; Dashed Line (- -): PARTIAL_SCALE = 0.9 (own figure).

Figure 26 demonstrates the linear relationship between the PARTIAL_SCALE (P_S) static param-

eter and the applicability probability for each object type within the simulation. The figure

illustrates this relationship through two distinct linestyles: a solid line (—) represents the initial

applicability function, while a dashed line (- -) depicts the adjusted applicability values when

the PARTIAL_SCALE parameter is set to 0.9. This visual distinction allows for an immediate
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comprehension of how adjustments to the PARTIAL_SCALE parameter linearly affect the prob-

ability of object applicability across all object types. The linear relationship suggests that as

the PARTIAL_SCALE parameter decreases, there is a proportional reduction in the applicability

probability for models, modules, and components, underscoring the parameter’s vital role in

modulating the simulation’s dynamics.

• Required Objects for Branch

The number of required objects for a branch, especially for models, is determined by a stochastic

process, detailed in Equation 4.4.4.

Nrequired =


randint(1, C) if object.type = “Model”,

1 otherwise,
(4.4.4)

Here, Nrequired depends on the model’s complexity C, introducing variability into the branch

structure of the simulation.

• Model Complexity Generation

The complexity of a model is generated through a random process defined by Equation 4.4.5.

C = randint(5, 10), (4.4.5)

This approach allows for the simulation of models with varying degrees of complexity, enhancing

the realism of the system dynamics.

These dynamic parameters and their mathematical formulations underpin the simulation model’s

capability to mimic complex real-world systems with a high degree of fidelity. Through stochastic

processes and logistic functions, the model simulates the variability and complexity inherent in

such systems, offering valuable insights into their behavior and interactions.

Model Workflow

The simulation model is comprised of three core object classes: Model, Module, and Component.

These classes form a hierarchical structure that mimics the complexity and interdependencies

found in real-world systems. Each class is designed with specific attributes and methods that allow

for the dynamic evolution of the simulation over time, including the generation of complexity,

interaction between objects, and the refinement of object attributes.

The Model class displayed in Listing (Lst.) 4.1 encapsulates the foundational aspects of model
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management within the framework, serving as a cornerstone for simulating complex systems.

Each instance of Model is uniquely identified (id), allowing the traceability and individual

assessment of models within the simulation environment. This class is instrumental in initializing

models with an inherent complexity level, a vital attribute that directly impacts the model’s

simulation behavior and efficiency. Complexity governs the computational resources and time

estimations associated with model operations, including validation checks, descriptive analyses,

refinement processes, and branching strategies.

Furthermore, the Model class is designed to oversee the lifecycle of modules, embodying the

modular design principle central to this work. By managing modules—each representing a discrete

functional unit within a model—this class enhances the system’s adaptability and scalability.

The global tracking of created models, modules, and components ensures a cohesive operation

across the distributed development environment, aligning with the framework’s objective to

rationalize PdM model development through modularization and efficient resource allocation.

The models’ adaptability is further exemplified by the dynamic adjustment of their complex-

ity. This feature allows for a responsive adjustment of time-related attributes (time_to_check,

time_to_describe, time_to_refine, and time_to_find_branch), reflecting the model’s opera-

tional efficiency and fitness within the simulation. The modular architecture, underscored by the

management and composition of modules, provides a granular approach to model development

and testing, essential for achieving high degrees of precision and reliability in simulation outcomes.

Lst. 4.1: Pseudocode for Model Class
1 Class Model
2 Initialize :
3 Increment global created_models counter
4 Assign unique id based on created_models
5 Set type to " Model "
6 Initialize counters for various operations (check , refine , branch ) for model ,

↪→ module , component levels
7 Initialize list of modules
8 Determine model complexity and update related timings
9

10 Property complexity :
11 Getter : Return model complexity
12 Setter : Update model complexity and adjust related timings accordingly
13
14 Method update_times :
15 Update time - related attributes based on model complexity
16
17 Method create_model :
18 Create a new instance of Model
19 Append to global models list
20 Return new model instance
21
22 Method remove_model ( model ):
23 Remove a specified model from the global models list
24
25 Method create_module (id = None):
26 Create a new module with a specified id or based on the current number of modules
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27 Ensure uniqueness and append to the model ’s module list
28 Return new module instance
29
30 Method remove_module ( module ):
31 Remove a specified module from the model ’s module list
32

Modules constitute a fundamental layer within the simulation framework, orchestrating the

hierarchical structure that spans from models to the more granular components. Each instance

of a Module, as detailed in Lst. 4.2, is inextricably linked to a parent model, thereby embedding

itself within the larger context of the simulation’s architecture. This hierarchical association

is not merely structural but functional, allowing modules to serve as conduits through which

components are created, managed, and aligned with the overarching objectives of the simulation.

The attribute of complexity within modules mirrors the dynamic nature of models, where

complexity not only defines the inherent attributes of a module but also influences its operational

efficiency and interaction parameters with both parent models and nested components. This

complexity is a mutable property, subject to adjustments as the simulation evolves, thereby

offering a mechanism to finely tune the simulation’s granularity and responsiveness.

Through the lens of the Module class, the simulation unveils a multi-layered approach to managing

complexity. Modules are not static entities; they are active participants in the simulation’s

lifecycle, engaging in a continuous process of refinement and adaptation. Their ability to create

and manage components further emphasizes their role as central elements in the simulation’s

architecture, enabling a modular and scalable approach to building sophisticated simulation

environments. The actions of creating and removing components, as encapsulated in the methods

of the Module class, highlight the dynamic interplay between structure and functionality within

the simulation framework.

Lst. 4.2: Pseudocode for Module Class
1 Class Module
2 Initialize ( parent_object , id):
3 Increment global created_modules counter
4 Construct module id from parent_object .id and given id
5 Set type to " Module "
6 Link to parent_object
7 Initialize refinement counter and components list
8 Set base complexity
9 Call update_times to set initial time attributes

10
11 Property complexity :
12 Getter : Return the complexity
13 Setter : Update the complexity and adjust time attributes accordingly
14
15 Method update_times :
16 Update time attributes (check , describe , refine , find branch ) based on complexity
17 Adjust property of fit inversely with complexity
18
19 Method create_component (id = None):
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20 If id is not provided , use the number of existing components to assign a new id
21 Else , extract and use the specified id
22 Create a new Component instance with assigned id , setting its complexity to match

↪→ the module ’s
23 Add the new component to the module ’s components list if it is unique
24 Return the new component instance
25
26 Method remove_component ( component ):
27 Remove the specified component from the module ’s components list
28

At the heart of the simulation’s hierarchical structure lie the components, the most granular

entities within the framework, as outlined in Lst. 4.3. Encapsulated within modules, components

embody the nuanced facets of the simulation environment, thereby enriching the simulation’s

fidelity and enabling a precise modeling of elaborate system behaviors. The design of the

Component class underscores this intent, enabling a detailed representation of environmental

variables and interactions at the micro level.

Inheriting complexity from their parent module, components serve as central elements in the

simulation, mirroring the complexity of real-world phenomena through their attributes and

behaviors. This inheritance mechanism ensures that the component’s operational dynamics are

in alignment with the overarching module’s characteristics, promoting a cohesive simulation

experience. The adjustable complexity attribute of components, as presented in the pseudocode,

not only influences their individual performance and interaction patterns but also allows for a

dynamic adjustment of the simulation’s granularity in response to evolving modeling requirements.

Through their methodical management and the sophisticated interactions they support, compo-

nents significantly contribute to the simulation’s adaptability and depth. By offering a mechanism

for fine-grained control over the simulation’s dynamics, the Component class enhances the frame-

work’s ability to model complex systems with high precision. This granularity accelerates the

exploration of specific hypotheses within the simulated environment, extending the utility and

applicability of the simulation across diverse research and application domains.

Lst. 4.3: Pseudocode for Component Class
1 Class Component
2 Initialize ( parent_object , id):
3 Increment global created_components counter
4 Construct component id from parent_object .id and given id
5 Set type to " Component "
6 Link to parent_object
7 Initialize refinement counter
8 Set base complexity
9 Call update_times to set initial time attributes

10
11 Property complexity :
12 Getter : Return the complexity
13 Setter : Update the complexity and adjust time attributes accordingly
14
15 Method update_times :
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16 Update time attributes (check , describe , refine , find branch , create ) based on
↪→ complexity

17 Adjust property of fit inversely with complexity
18

The hierarchical relationship between models, modules, and components allows for a detailed

and nuanced simulation of complex systems. Each class contributes to the simulation’s dynamic

behavior, with complexity and interaction mechanisms designed to mimic real-world variability

and interdependencies.

The layer_workflow function encapsulates a critical aspect of the simulation’s operational

logic, orchestrating the interactions and evolutionary processes among models, modules, and

components. By dynamically evaluating the applicability of existing objects to the simulation’s

ongoing scenarios and objectives, this function plays a vital role in maintaining and adapting the

simulation environment to align with specific requirements and contexts.

Lst. 4.4: Pseudocode for Layer Workflow Function
1 Function layer_workflow (env , object , models , existing_objects , applicable_objects ,

↪→ partial_applicable_objects , list_of_compared_objects = []):
2
3 Initialize applicable_object as None
4 Filter existing , applicable , and partial applicable objects by removing compared

↪→ ones
5
6 If there are existing objects :
7 For each existing_object in existing_objects :
8 Wait for existing_object ’s time_to_check
9 Log check action

10
11 Increment check counter for the object
12
13 If existing_object is fully applicable :
14 Set applicable_object to this object
15 Log applicability and process termination
16
17 If object is a Module :
18 Append applicable_object to parent object ’s modules list
19 Remove current object from parent object ’s modules list
20
21 If object is a Component :
22 Append applicable_object to parent object ’s components list
23 Remove current object from parent object ’s components list
24
25 Break from the loop
26
27 Else if existing_object is partially applicable :
28 Log partial applicability
29 Wait for time to find branch
30
31 Increment branch counter for the object
32 Log branch identification
33
34 Determine split_object based on object type
35 Adjust complexity of split_object and object
36 Wait for time to describe both objects
37 Log description of both objects
38
39 If object is not a Model :
40 Create split object ( module or component ) with adjusted complexity
41
42 Break from the loop
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43
44 Else :
45 Log non - applicability
46 Wait for time to refine the existing_object
47 Increment refine counter for the existing_object
48 Log refinement
49
50 If no objects are partially applicable :
51 Log no applicability
52 Wait for time to refine the object
53 Increment refine counter for the object
54 Log refinement
55
56 Else :
57 Log the need for a new object type
58 Reset list_of_compared_objects
59

Central to the layer_workflow function’s operations are the comprehensive steps it undertakes

to assess and modify the simulation’s object landscape, as outlined in the associated pseudocode

Lst. 4.4:

1. Selective Evaluation: The function commences by filtering previously evaluated objects

from the pool of existing, applicable, and partially applicable objects. This ensures a

focused and efficient assessment process, avoiding redundant evaluations and optimizing

the workflow’s computational resources.

2. Determining Full Applicability: It then proceeds to identify objects that fully satisfy

the simulation’s current needs. Fully applicable objects are consistently integrated into

the simulation’s hierarchical structure or replace less suitable objects, depending on their

designated role (e.g., Module or Component). This integration marks a critical juncture

in the workflow, potentially concluding the evaluation process for the current object if an

optimal match is found.

3. Addressing Partial Applicability: In the absence of fully applicable objects, the

function shifts its focus to partially applicable objects. These objects undergo a detailed

branching and complexity adjustment process, tailored to refine their attributes and enhance

their suitability for the simulation’s requirements. This step embodies the simulation’s

adaptability, allowing for the creation of specialized object variants through a deliberate

adjustment of their complexity levels.

4. Refining Non-Applicable Objects: Objects deemed neither fully nor partially applica-

ble are subjected to a refinement process. This phase is aimed at incrementally enhancing

their potential for future applicability, reflecting the simulation’s iterative approach to

optimizing its object portfolio for evolving simulation scenarios.

5. Facilitating New Object Creation: Finally, if the existing objects fail to meet the
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required applicability criteria, the function signals the need for the creation of new objects.

This aspect underscores the simulation’s dynamic capacity to expand and evolve its object

repository in response to new challenges and objectives, ensuring a resilient and responsive

simulation environment.

The layer_workflow function thereby underlines the simulation’s commitment to a dynamic,

adaptive, and highly responsive modeling environment. Through this function, the simulation

not only assesses and optimizes object applicability and functionality but also embraces the

complexities and unpredictabilities inherent in modeling real-world phenomena. This adaptive

mechanism ensures the continual evolution of the simulation, enabling it to address complex

systems with nuanced and high-fidelity modeling capabilities.

Results

In conclusion, the simulation outcomes presented in Figure 27 demonstrate the runtime efficiency

of the proposed model under default parameters across 50 runs, each encompassing the creation

of 100 models.
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Figure 27: Runtime of 50 simulation runs with 100 models each, showing the simulation time per model
number. Dashed black line: Average cumulative linear effort per model (own figure).

The cumulative runtime for each model within every simulation run is depicted, with the baseline

linear model development approach, characterized by random model complexities, represented as

a dashed black line. Initially, the simulation reveals that runtime for the early models generally
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exceeds that of the baseline. This trend persists until the creation of the 40th model, where the

majority of simulation runs exhibit longer runtimes compared to the baseline. However, a notable

shift occurs between the 40th and 50th models, during which the duration of the simulation runs

begins to align more closely with the benchmark, subsequently showing a rapid improvement.

Remarkably, from the 80th model onward, every simulation run achieves a shorter runtime than

the benchmark, illustrating the efficiency and adaptability of the proposed model in optimizing

the development process over successive iterations. This pattern underscores the potential of the

proposed approach to not only match but significantly surpass the performance of traditional

linear model development strategies, especially as the simulation progresses and the model refines

its parameters and strategies.

A deeper examination of the simulation model’s behavior is aided through the analysis presented

in Figure 28, where individual model parameters are examined across all layers of the simulation

model—Model, Module, and Component.
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Figure 28: Distribution of model parameters across the model, module and component layers of the sim-
ulation model, showing aggregated boxplots for each Model ID over every run. Standardized
axes for each parameter across the layers, mean values for each parameter depicted as blue
line plots within every subplot (own figure).

This analysis employs aggregated boxplots for each model ID over every run, providing a com-

prehensive overview of the frequency of necessary checks, refinements, and branching actions, in

addition to quantifying the individual object complexities and degrees of refinement. Importantly,

the axes for each parameter are standardized across the layers, enabling a direct comparison

of behaviors and trends within the Model, Module, and Component layers. Additionally, the

mean values for each parameter are depicted as blue line plots within every subplot, significantly

enhancing the visualization of underlying trends and providing a clear reference point for assess-

ing average behaviors across simulations. This standardized approach reveals nuanced insights

into the operational dynamics of the simulation model, highlighting the interplay between the

complexity of objects and the efficiency of refinement and adaptation processes. Through this

detailed examination, patterns emerge that underscore the adaptive mechanisms at play within
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the simulation, illustrating how different layers respond to the demands of simulation and evolve

over time. The fixed axes for every layer ensure that observations are not only consistent but

also comparable, providing a clear picture of how checks, refinements, and branches contribute

to the overall behavior and efficiency of the model across its various components and layers.

The check action counter serves as a critical metric within the simulation model, quantifying the

necessity for developers to engage in verification processes to ascertain the actual applicability

of objects against specified requirements. The analysis of model checking processes reveals a

near-linear distribution, escalating from an initial state of zero checks to an average of 15 checks

for models. This progression signifies that, within a repository containing approximately 100

models, about 15 models require examination to match the given description before determining

the feasibility of reuse or the necessity to innovate a new model. For modules, the distribution of

checks exhibits a growth from zero to an approximate average of 10 checks, displaying an almost

asymptotic trend over the creation of the first 30 models. Subsequently, this trend stabilizes,

indicating a plateau in the necessity for additional checks beyond this point. Intriguingly, the

component check frequency initiates with a similar asymptotic increase towards 10 checks but

then demonstrates a gradual decline as the number of models approaches 100. This nuanced

behavior suggests a diminishing requirement for component-level verification in later stages of the

simulation, possibly reflecting an increased efficiency in component applicability or a saturation

in the diversity of components that call for evaluation.

The analysis of the refinement counter unveils distinct patterns in the iterative refinement

process across the various layers of the simulation model. For the model layer, the refinement

activity exhibits an almost linear trend, commencing with an average of 5 refinement iterations

for the initial models. This trend suggests a pronounced need for refinement in the early stages of

model development, which gradually diminishes to between zero and one refinement step for the

concluding models. This reduction implies a maturation in the precision of model descriptions

over time, minimizing the necessity for further refinement. Conversely, both the Module and

Component layers demonstrate a markedly different pattern, characterized by an exponential

decrease in refinement activities. The number of refinement processes for modules and components

asymptotically approaches 1 to 2 for the final models, indicating a significant reduction in the

need for iterative refinement. The starting point for module refinement is approximately 20

processes, while component refinement begins at around 25 processes. It is to be emphasized

that these figures represent the total number of refinement actions per model-related object

153



Chapter 4 Execution

within the model creation process and do not directly indicate the degree of refinement, which

will be addressed separately. This differential in refinement patterns across layers highlights

the adaptive efficiency of the simulation model, with initial intensive refinement giving way to

a more structured process as the simulation progresses and the system’s descriptions become

increasingly precise.

The branch counter serves as an essential metric for understanding the dynamics of branching

processes within the simulation model, where branching signifies the identification of partial

applicability and the subsequent determination of a branch point by developers. In the context

of Model branching, an interesting trend is observed, with the counter indicating an incremental

growth in the number of branched models in correlation with the total number of models. This

trend suggests an increasing propensity for models to undergo branching as the simulation

progresses, reinforcing the premise that models within the simulation are primarily evaluated

on the basis of partial applicability or direct match to the requirements descriptions. While

this approach simplifies the branching narrative, such simplification does not detract from the

overall simulation outcomes, as illustrated in the workflow model discussion in subsection 4.4.

Intriguingly, contrary to the trend observed in the model layer, the branching processes for both

modules and components exhibit a near-constant rate, suggesting a stabilization in the frequency

of partial applicability scenarios for these layers. This observation underscores a divergent

behavior between the model layer and the subordinate module and component layers, with the

latter demonstrating a steadier pattern of branching activity. Such a disparity highlights the

nuanced complexities inherent in the simulation’s operational mechanics, where the propensity

for branching reflects the varying levels of adaptability and applicability challenges encountered

across different simulation layers.

The concept of object complexity lies at the heart of the simulation’s dynamic refinement

process, with branching serving as a central mechanism for reducing complexity by dividing

a single object into two entities of lower complexity. This split permits more targeted and

precise refinement efforts. Notably, the complexity of models exhibits a trend reminiscent of a

symmetric logistic curve, indicating a significant reduction in complexity for early models, which

are frequently refined and branched. Initially started from a baseline complexity range between

5 and 10, the early models quickly converge to a very low complexity level of less than 1. This

rapid complexity reduction underscores the effectiveness of branching and refinement in honing

the model’s applicability and precision.
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In contrast, both Modules and Components are characterized by a lack of variation in their

assumed initial complexity, starting uniformly at 1. A phenomenon of particular interest observed

in these layers is the negative development of average complexity over time. This trend suggests

a prevailing tendency within the simulation to branch objects that have undergone extensive

refinement and detail enhancement, thereby prioritizing the division of highly specialized and

elaborately developed objects. Such a pattern reflects a strategic emphasis on the branching of

objects that, due to their refined state, offer a more nuanced and detailed basis for generating

two distinct entities with inherently lower complexities.

The analysis of object complexity and its evolution through branching and refinement processes

highlights the nuanced strategies employed within the simulation to optimize object applicability

and functional precision. The observed trends across different layers—especially the distinct

behavior between models and the module/component layers—illustrate the layered approach to

complexity management and the simulation’s overarching goals of efficiency and adaptability in

model development.

The refinement score, indicative of the average number of refinement iterations each object

undergoes in the model, illuminates significant aspects of the simulation’s refinement dynamics.

A notable observation across all object types—Models, Modules, and Components—is the

marked decrease in the average number of refinements required over time. This declining

trend encapsulates two vital factors: the cumulative effect of object checks and the progressive

enhancement in the level of object refinement.

For Modules and Components, the behavior is strikingly similar, manifesting a slight asymptotic

trend. This pattern suggests a gradual approach to an equilibrium state where the necessity

for further refinement stabilizes, reflecting the maturation of the simulation environment and

the refinement process itself. These objects exhibit a nuanced balance between the need for

refinement and the attainment of a refined state, highlighting the efficiency of the simulation’s

adaptive mechanisms.

Conversely, the model refinement counter showcases a more pronounced, almost linear decline.

This trend signifies a rapid convergence towards minimal refinement needs for models, underscoring

the precision of initial model descriptions and the effectiveness of early refinement efforts. The

linear trajectory of this decline points to a straightforward reduction in refinement complexity,

suggesting that models quickly reach a state of refinement that negates the need for extensive

iterative refinement processes.
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These observations collectively underscore the simulation model’s capacity for self-improvement

and adaptation. As the simulation progresses, the diminishing need for refinement across

models, modules, and components not only signals an increasing efficiency in meeting simulation

requirements but also reflects the cumulative learning and enhancement embedded within the

simulation process. The nuanced differences in refinement trends between object types further

highlight the layered complexity of the simulation model, with each layer evolving towards

optimization in a manner reflective of its unique operational dynamics and challenges.

In summation, the analysis presented herein not only validates the simulation’s accurate depiction

of the envisioned workflow, affirming its utility in yielding substantive insights, but also unveils

intriguing findings regarding the elaborate interplay of parameters within the simulation. These

observations explicitly highlight the inherent complexity of parameter interactions, serving to

accentuate the indispensable role of a sophisticated complexity-management methodology. The

employment of event-discrete simulation emerges as a vital strategy in this context, providing

a robust framework to navigate and define the complexities inherent in the simulation. Such

a methodological approach is not merely beneficial but essential in ensuring the fidelity and

applicability of the simulation model to real-world scenarios, thereby reinforcing the signifi-

cance of adopting event-discrete simulation techniques in the development and refinement of

complex simulation workflows. The results, therefore, not only validate the correct behavior

of the simulation—thereby endorsing its applicability for generating profound insights into the

constructed workflow—but also underscore the complexities of parameter interferences, thereby

underlining the necessity for a methodical approach to complexity handling, such as that offered

by event-discrete simulation.

4.4.3 Results of the Sensitivity Analysis Evaluation

Within the scope of this work, a comprehensive sensitivity analysis is conducted on the newly

developed framework designed to support the development of PdM models by distributed teams.

The objective of this sensitivity analysis is to thoroughly assess the framework’s robustness

and identify the critical factors that significantly influence its performance and effectiveness.

Sensitivity analysis emerges as a central component in this process, offering a systematic approach

to evaluate how variations in the framework’s parameters affect the efficiency and outcome of the

PdM model development process. This is particularly important in the context of distributed

team environments, where the coordination of tasks and integration of components are subject
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to variability and uncertainties. The analysis aims to highlight the framework’s adaptability to

different operational scenarios and its resilience to potential disruptions, thereby ensuring that

the framework can serve as a reliable foundation for faster and more collaborative development

of PdM models. Through this sensitivity analysis, insights are gained into optimizing the

framework’s structure and workflow, ultimately enabling a more efficient and effective approach

to PdM model development in distributed settings.

The Sobol method, a variance-based sensitivity analysis technique, is highly effective for investi-

gating the influence of input variables on the output of complex models, such as event discrete

simulation models in PdM AI (Sobol, 2001). This method employs a quasi-random sampling

technique to generate model inputs and decomposes the variance of the output into components

attributable to different inputs or sets of inputs.

The Sobol method stands out among various sensitivity analysis techniques due to its comprehen-

sive variance-based approach, which contrasts sharply with local methods such as One-at-a-Time

(OaT), where each parameter is varied individually while holding others at their baseline levels.

Unlike OaT, which can overlook interactions between parameters, the Sobol method evaluates

the impact of interactions through its higher-order indices, providing a more detailed understand-

ing of system behavior (Saltelli, 2002). Another commonly used method, the Morris method,

involves a more qualitative measure of sensitivity and is simpler but less detailed than the Sobol

method. The Morris method screens for influential factors through a one-step-at-a-time strategy,

which, although efficient, lacks the depth provided by the variance decomposition in the Sobol

method. Additionally, while derivative-based methods such as the adjoint approach offer precise

gradients that are useful for smooth and continuous systems, they struggle with discontinuities

and non-linearities where the Sobol method excels. Therefore, the Sobol method is especially

advantageous for complex PdM models where the outputs are highly nonlinear or non-monotonic

in response to input variations, affirming its suitability in distributed industrial applications

(Sobol, 2001; Saltelli, 2002).

The Sobol method is based on the decomposition of the model output Y as a function f of n

input variables:

Y = f(X1, X2, . . . , Xn) (4.4.6)

This output can be decomposed into terms of increasing dimensionality:
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V =
n∑

i=1
Vi +

∑
i<j

Vij + · · ·+ V1,2,...,n (4.4.7)

where V is the total variance of Y , Vi is the variance caused by the input Xi alone, and Vij is

the variance caused by the interaction between Xi and Xj , and so forth.

The Sobol indices, which are derived from this decomposition, are used to quantify the contribution

of each input to the total variance. The first-order Sobol index for an input Xi is defined as:

Si = Vi

V
(4.4.8)

This index represents the proportion of the variance of Y that is due to Xi alone. Higher-order

indices can similarly be calculated to assess interactions between multiple inputs. The sum of all

Sobol indices, including higher-order interactions, is equal to 1.

The strength of the Sobol method lies in its ability to handle non-linear and non-monotonic

relationships between inputs and outputs, making it particularly suitable for complex PdM

models employed in distributed industrial environments (Sobol, 2001).

The Sobol sensitivity analysis method, a prominent global sensitivity analysis technique, employs

variance-based decompositions to quantify the contributions of each input parameter to the

output variance of a model. The Sobol indices are derived from the variance decomposition of

the model output Y , which can be expressed as:

Y = f(X1, X2, . . . , Xn) (4.4.9)

where f represents the model, and X1, X2, . . . , Xn are the input parameters. The total variance

V of the output Y can be decomposed as:

V =
n∑

i=1
Vi +

∑
i<j

Vij + . . .+ V1,2,...,n (4.4.10)

where Vi is the variance contribution from each individual parameter and Vij represents the

interaction effects.

Convergence of the Sobol indices with increasing sample size N is essential for ensuring their

reliability. Stability of these indices, as N increases, suggests adequate sampling and convergence:

lim
N→∞

Si(N) = Si (4.4.11)
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where Si(N) represents the estimate of the Sobol index for parameter Xi at sample size N .

To assess the uncertainty in the Sobol indices, bootstrap resampling techniques are employed,

allowing the calculation of confidence intervals for each index, thus providing a statistical measure

of the indices’ convergence (Saltelli, Annoni, et al., 2010).

Adaptive sampling algorithms are used to optimize resource allocation by targeting inputs with

significant uncertainty in their sensitivity indices, which can accelerate the convergence process

(Homma and Saltelli, 1996; Sobol, 2001).

The seminal works by Sobol, Saltelli, and Homma are vital in framing the methodologies for

evaluating the convergence of Sobol sensitivity indices, offering in-depth insights and advanced

strategies in the field of global sensitivity analysis. Saltelli, Annoni, et al. (2010) provided a

comprehensive overview of variance-based sensitivity analysis, thoroughly outlining the design

protocols and estimator formulations for computing the total sensitivity index, which are crucial

for understanding how model output variability can be attributed to different input variables.

Earlier, Sobol (2001) introduced the now widely-used Sobol indices, detailing their calculation

methods and discussing the critical aspects of their convergence, which is essential for ensuring the

robustness and reliability of sensitivity analyses in complex mathematical models. Furthermore,

the collaborative work of Homma and Saltelli (1996) examines the importance measures within

global sensitivity analysis, particularly focusing on nonlinear models, and highlights methods

to assess the impact of each model input under varying scenarios. These foundational texts

collectively enhance the analytical toolkit available for researchers engaging in sensitivity analysis,

especially in scenarios where model outputs are highly sensitive to input variations.

In the sensitivity analysis conducted on this work’s artifact, a focused approach is adopted by

analyzing only a subset of parameters from the model layer along with the global parameters,

owing to the homogeneous nature of the object layers within the system. This methodological

decision is underpinned by the assumption that the similar behavior and characteristics of these

object layers imply that insights gained from a selected set of parameters can be extrapolated to

the entire model. This strategy not only rationalizes the analysis by reducing computational

complexity but also ensures that the results remain broadly applicable across the full scope

of the model. Such a targeted approach in sensitivity analysis is supported by literature that

emphasizes the efficiency and effectiveness of analyzing representative subsets in complex systems,

where redundant or parallel structures exist (Saltelli, Annoni, et al., 2010; Sobol, 2001). This

practice aligns with established methodologies which suggest that focusing on critical parameters
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can provide significant insights into the system’s behavior without the necessity to examine every

variable individually (Saltelli, Ratto, et al., 2007; Iooss and Lemaître, 2015).

In Figure 29, the results of the sensitivity analysis are depicted, showcasing the variation in

Sobol indices ’ST’ and ’S1’ across a range of chosen sample sizes N set to [2, 4, 8, 16, 32, 64].

The selection of these specific sample sizes, each being a power of two, is primarily driven by

computational considerations inherent to the quasi-random sampling methods used in the Sobol

sensitivity analysis. Utilizing sample sizes that are powers of two enhances the efficiency of

variance reduction techniques, such as the Sobol sequence, which require dyadic partitions of the

input space to optimize the uniformity and distribution of sample points. This methodological

choice ensures that the estimation of sensitivity indices is not only more efficient but also

statistically robust, promoting a clearer and more accurate convergence assessment of the indices

as the sample size increases. These sizes enable the Sobol method to systematically reduce

error and variance in the estimates, which is central for achieving reliable and stable sensitivity

analysis results (Sobol, 2001; Saltelli, 2002).
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Figure 29: Plot of ST and S1 scores for parameters per N. Blue parameter: Refinement_Scale; Orange
parameter: Partial_Scale; Green parameter: Base_Time_Check_Model; Red parameter:
Base_Time_Describe_Model_IO; Aubergine parameter: Base_Time_Refine_Model_IO; In-
digo parameter: Base_Prop_Model_Usable (own figure).

Convergence in the sensitivity analysis is evident from the stabilization of the Sobol indices across

increasing sample sizes, as illustrated in Figure 29. Notably, the parameters PARTIAL SCALE and

BASE TIME DESCRIBE MODEL IO emerge as having the most substantial impact on the overall

results. This observation underscores the critical influence of these parameters on the model’s

output variability. The significant impact of PARTIAL SCALE suggests that even slight variations

in this parameter can lead to considerable changes in the model outcomes, indicating a high
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sensitivity. Similarly, the BASE TIME DESCRIBE MODEL IO parameter also shows pronounced

sensitivity, affecting the model’s performance and accuracy. The clear visualization of these

trends in the plot confirms not only the convergence of the sensitivity indices but also highlights

the areas where model adjustments could yield the most substantial improvements in model

reliability and predictiveness (Saltelli, 2002).

The findings from the sensitivity analysis, particularly the significant influence of the parameters

PARTIAL SCALE and BASE TIME DESCRIBE MODEL IO, underscore the crucial role of the Formal

Attribute Description System in the overall model framework, as this system directly impacts

these parameters. This emphasis is not merely coincidental but indicative of the foundational

importance of the attribute description system within the model’s architecture. Detailed in

Section 4.5, the Formal Attribute Description System facilitates a structured and precise definition

of model attributes, which in turn significantly affects the model’s sensitivity to input variations.

The impact of this system is thus vital, as it substantiates the model’s behavior and its analytical

robustness. The clear correlation between these key parameters and the model’s output variability

highlights the effectiveness and critical nature of the attribute system in shaping the model’s

outcomes and its reliability. The enhanced understanding of these dynamics, as presented in

the referenced section, offers vital insights into optimizing the model for better performance and

more accurate predictions.

4.5 Descriptive Attributes System for Components

This work introduces a formal attribute system that addresses the shortcomings in existing

research on the formalization of pipeline objects in PdM models. Particularly, the results from

the sensitivity analysis in section 4.4.2 highlight the critical need for a structured approach

to compare and evaluate the functionality of these objects. Despite the evident importance,

research to date inadequately addresses the formalization of such systems within industrial

applications. This subsection describes the development of a comprehensive attribute system that

not only enhances the comparability and functional assessment of pipeline objects but also aligns

with the agile and modular nature of the proposed framework. The formal attribute system

is designed to consistently integrate into the existing PdM development processes, providing

a robust methodological foundation that fosters precision and reliability in handling pipeline

objects.

The Z Specification language, developed in the 1980s, is a foundational tool in formally specifying
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and verifying software systems, emphasizing the need for stringent methodologies in system

development (Spivey, 1989; Woodcock and Davies, 1996). Similarly, advancements in automated

code summarization show how formalized description systems can significantly enhance the

comprehensibility and maintainability of complex codebases through the use of AI and ML tech-

niques (Allamanis et al., 2017; LeClair, Haque, et al., 2020). Furthermore, recent developments

in data description systems in data science advance robust methodologies for data preparation

and exploration, highlighting the need for dynamic systems that adapt to new data analytics

paradigms (Paganelli et al., 2020; Bortolotti, 2018).

The formal attribute system proposed in this subsection aims to integrate these principles,

providing a robust methodological foundation that not only enhances the reliability and security

of PdM models but also supports the dynamic nature of industrial applications. By leveraging

the stringent specifications capabilities of Z and incorporating the adaptive qualities of modern

code summarization and data description systems, this system will enhance both the precision

and adaptability of pipeline object management in PdM.

The Z Specification language, developed in the 1980s, is a formal language used for describing

and modeling computing systems. It is particularly noted for its use of mathematical notation

to specify the behavior of systems in a precise and unambiguous manner. The foundation of

Z lies in set theory and first-order predicate logic, which allows the stringent specification of

system properties, including data structures and operations. One of the key features of Z is its

support for the specification of abstract data types, enabling the formal definition of system

states and the operations that can be performed on them. This capability is essential for the

verification and validation of complex software systems, as it allows for the detailed analysis

of system behavior before implementation. The use of Z in the software development process

can significantly enhance the reliability and robustness of the resulting systems by enabling the

early detection and correction of design errors. The literature on Z includes comprehensive texts

such as The Z Notation: A Reference Manual by Spivey (1989), which provides an in-depth

exploration of the language’s syntax, semantics, and usage in system specification. Additionally,

Using Z: Specification, Refinement, and Proof by Woodcock and Davies (1996) further elaborates

on the practical aspects of applying Z in the context of software engineering, including refinement

techniques and proof strategies to ensure that specifications accurately reflect the intended system

behavior.

Despite its origins in the 1980s, the Z Specification language continues to be relevant in contem-
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porary software engineering, particularly in the domains requiring high assurance and formal

verification. Recent research focuses on integrating Z with modern software development practices,

including agile methodologies and model-driven engineering, to leverage its stringent specification

capabilities while maintaining flexibility and efficiency in the development process. For instance,

advancements in tool support, such as the Z/Eves and CZT (Community Z Tools), enable the

use of Z in verifying the correctness of software designs and automatically generating test cases,

thereby enhancing the language’s applicability to current software engineering challenges (Utting

and Legeard, 2007; Zander, Schieferdecker, and Mosterman, 2017).

Moreover, the Z language is applied in critical systems where safety, security, and reliability

are highly important. Examples include its use in the specification and verification of railway

signaling systems, air traffic control software, and cryptographic protocols. These applications

demonstrate the language’s enduring value in projects where the cost of failure is high, and

formal methods can provide significant benefits in terms of risk mitigation and assurance of

system properties (Woodcock, Larsen, et al., 2009; Freitas and McDermott, 2011).

The ongoing development of Z and its ecosystem reflects a broader trend in the software industry

towards the adoption of formal methods as a means to achieve higher levels of system reliability

and security, especially in the context of increasing system complexity and the growing prevalence

of CPSs.

Automated code summarization is an emerging field in software engineering and AI that ad-

dresses the growing need for efficient interpretation and documentation of increasingly complex

codebases. As software systems become more sophisticated, understanding and maintaining code

becomes a significant challenge. Automated summarization tools aim to alleviate this burden by

providing concise, human-readable summaries of code functionalities, thereby enhancing code

comprehensibility, maintainability, and developer productivity (Allamanis et al., 2017).

Recent advancements in this field have leveraged sophisticated AI techniques, particularly ML

and NLP, to automatically generate summaries of code segments. A notable approach involves

the use of Graph Neural Networks (GNNs), which are well-suited to represent the hierarchical

and interconnected structure of code in the form of Abstract Syntax Trees (ASTs) (LeClair,

Jiang, and McMillan, 2019). The work on Improved Code Summarization via a Graph Neural

Network by LeClair, Haque, et al. (2020) demonstrates the effectiveness of GNNs in capturing

the structural nuances of code for better summarization (LeClair, Haque, et al., 2020).

The state of the art in automated code summarization includes the integration of advanced neural
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network architectures, such as Transformer models, with GNNs to enhance the understanding of

both the syntactic and semantic aspects of code (P. Fernandes, Allamanis, and Brockschmidt,

2018). Recent works like Transformer-XL With Graph Neural Network for Source Code Summa-

rization by X. Zhang et al. (2021) exemplify this trend, showcasing improved performance in code

summarization tasks. Additionally, the field is evolving to include context-aware summarization

techniques, where the context of the code, such as its usage in a larger codebase or its functionality,

is considered to generate more relevant summaries (Xing Hu et al., 2018). Models like CoCoSum

utilize multi-relational GNNs for contextual code summarization (Yanlin Wang et al., 2021).

Despite these advancements, a notable gap persists in the development of a formalized and

standardized description system that evolves over time. Current research primarily focuses on

static aspects of code summarization, lacking a dynamic framework that adapts to the evolving

nature of code and programming practices. This gap underscores the need for a system that

not only summarizes code effectively but also evolves with changing coding paradigms and

technologies, ensuring continued relevance and accuracy in code summarization.

Recent advancements in data description systems significantly enhance the capabilities of data

analysis and data science. Paganelli et al. (2020) introduce an approach for generating insightful

data descriptions through boolean predicates, accelerating interactive data exploration and

anomaly detection. Bortolotti (2018) emphasizes the importance of data preparation, including

descriptive statistics and variable analysis, as foundational for effective data modeling. Castro

et al. (2015) explore the use of ontologies for research data description, demonstrating their

application in vehicle simulation to ensure early and accurate data description. Barlas, Lanning,

and Heavey (2015) survey open-source data science tools, proposing a classification scheme that

highlights the current state-of-the-art tools and their contributions to the field. Furthermore,

Karpatne et al. (2017) discuss the emerging paradigm of theory-guided data science (TGDS),

which integrates scientific knowledge into data science models to enhance scientific discovery

and ensure model generalizability. These studies collectively underscore the evolving nature of

data description systems and their central role in advancing data analysis and science practices,

by providing robust methodologies for data preparation, exploration, and the integration of

domain-specific knowledge.

The evolution of data analytics increasingly favors the adoption of pipeline architectures, reflecting

a paradigm shift towards more structured and efficient data processing methodologies. This

trend underscores the critical need for formal description systems capable of articulating the
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complex interdependencies and operational semantics inherent in these pipelines. While the

architecture of pipelines and databases considerably progresses in formalization efforts, the specific

domain of data analytics pipelines remains relatively underexplored. The inherent complexity of

encapsulating the functionality of data analytics pipelines, recognized as an NP-Hard problem,

emphasizes this challenge.

In their seminal 2017 article, A Formal Semantics for Data Analytics Pipelines, Drocco et al.

(2017) introduce a novel programming model designed to enhance the development of data

analytics applications. Centered around the concepts of Pipelines and Operators, this model

serves as the foundation for PiCo, a Domain-Specific Language tailored for Data Analytics

Pipelines. The authors propose a distinctive approach where pipelines are conceptualized as

workflows processing data collections, diverging from the traditional computational process

perspective. A key innovation of their model is the polymorphism of PiCo operators with respect

to data types, enabling the reuse of algorithms and pipelines across various data models such

as streams, lists, and sets. This flexibility simplifies the update process of pipelines and allows

abstract reasoning about programs, marking a significant advancement in the field of data

analytics pipeline design.

The absence of a heuristic approach for the demand-driven description of pipeline objects marks

a significant gap in the literature. The work of Drocco et al. (2017) presents a pioneering

effort towards addressing this gap, offering a foundational framework for the conceptualization

and operationalization of pipelines in data analytics. However, the development of a heuristic,

demand-driven description system that can dynamically adapt to the nuanced requirements of

data analytics use cases remains an open area for research. Such a system would not only aid

the design and optimization of analytics pipelines but also enhance their interpretability and

reusability.

Moreover, the introduction of debugging tools like Dagger for data-centric errors in pipelines

and the exploration of heterogeneous execution environments further illustrate the complexities

involved in pipeline management and the need for sophisticated support systems (Rezig et al.,

2020; D. Wu et al., 2016).

In summary, the enduring relevance of the Z Specification language, alongside recent advancements

in automated code summarization and the evolving trends in data description systems, underscores

the need for a sophisticated, formal attribute system. These fields collectively demonstrate the

critical role that precise, dynamic, and formalized systems play in enhancing system reliability,
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comprehensibility, and adaptability. Notably, the application of the Z language in critical systems

and its integration with modern software practices highlight the benefits of formal methods in

complex environments. Likewise, the progression in automated code summarization, particularly

through advanced AI techniques, points to the necessity of evolving description systems that

adapt over time to new coding paradigms. Similarly, the advancements in data description

systems for data science emphasize the importance of robust methodologies that cater to the

dynamic nature of data analytics.

Building on these insights, this work addresses a significant research gap by developing a formal

attribute system designed to compare and refine the functionality of pipeline objects in PdM

models. This system leverages the principles of formal specification, drawing inspiration from the

Z Specification language, and incorporates the adaptability seen in modern code summarization

and data description practices. The proposed attribute system aims to provide a dynamic,

stringent, and standardized approach to manage and evaluate pipeline objects, ensuring their

functional integrity and operational efficiency in distributed and complex industrial applications.

4.5.1 Visualization of the Descriptive Attributes System

To underscore the practical applicability and usefulness of the descriptive attributes system

within the Predictive Maintenance Framework, Figure 30 presents a real-world example use case.

This illustration serves not only as a validation of the descriptive attributes system but also as a

demonstration of the model architecture and workflow in action. Through an initial walkthrough

of the application, the figure illustrates how the system enables the functionality of PdM models

in industrial applications.

Subsequently, the figure explores various scenarios stemming from the initial use case. These

scenarios are thoroughly chosen to showcase the distribution and reusability effects inherent in

the PdM component repository. By presenting different scenarios, the figure vividly demonstrates

the flexibility and efficiency gains achievable through the application of the descriptive attributes

system in managing and deploying PdM models across diverse industrial contexts.

In essence, Figure 30 acts as a microcosm of the broader Predictive Maintenance Framework,

illustrating how descriptive attributes contribute to the development, deployment, and scalability

of PdM applications. It exemplifies the core principles of reusability and modularization, which

are vital to reducing development costs and enhancing efficiency in the creation of PdM models

for vehicle components and beyond.
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The objective of this example use case is to illustrate the process of deriving feature importance

for vehicle speed in a lap-based racing scenario. This scenario is particularly relevant to

the Predictive Maintenance Framework due to its emphasis on optimizing performance and

maintenance strategies in high-stress, competitive environments.

The data for this use case comprises onboard logging from multiple vehicle signals captured

over the duration of approximately 3 hours, encompassing around 60 laps, with a measurement

frequency of 200Hz. This results in a comprehensive dataset of 205 signals, representing a rich

source of information for analysis. Additionally, metadata derived from expert knowledge is

incorporated to enhance the understanding and interpretation of the raw data signals.

A regression model is employed to analyze the collected data, with the aim of training and

validating a model capable of returning a feature scoring list. This list is fundamental for

identifying which signals are most influential in determining vehicle speed during the race,

thereby providing insights into performance optimization and maintenance needs.

The primary output of this analysis is a list of features, each accompanied by corresponding

feature importance scores. These scores are essential for understanding the relative impact of

each signal on vehicle performance. Furthermore, the confidence of the ML model, derived

from thorough ME, is presented alongside the feature scores. This confidence metric offers an

additional layer of insight, indicating the reliability of the model’s predictions and the robustness

of the underlying data analysis process.

This use case stands as a testament to the potential of PdM applications in high-performance

settings, demonstrating how data-driven insights can inform and enhance maintenance strategies,

ultimately leading to improved vehicle reliability and efficiency.
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Following the workflow outlined in Section 4.4, the initial step in the application of the PdM model

involves a detailed description of the model’s input and output attributes. This foundational

process ensures a clear understanding and categorization of the data types and their roles within

the model’s architecture.

The input data for the model is categorized into two distinct types: Raw Data and Meta Data.

Raw Data refers to the onboard logging information collected from the vehicle during the racing

scenario, characterized by its high-frequency capture of multiple vehicle signals. Despite its

comprehensive nature, this data is initially presented in an unspecified format, reflecting the raw

and unprocessed state in which it is collected.

Conversely, Meta Data encompasses the expert knowledge that supplements the raw signal data.

This metadata is crucial for interpreting the raw data’s significance and context but is similarly

provided in an unspecified format. The informal and implicit nature of this information, often

communicated through direct communication channels, contributes to its unspecified format,

calling for a flexible and interpretative approach to its integration within the model.

The model’s output is designed to offer actionable insights into the feature importance for vehicle

speed, articulated through two primary elements: the Feature Importance List and the

Evaluation Results. Both elements are generated in formats that, while initially unspecified,

are tailored to convey the model’s findings effectively.

The Feature Importance List provides a ranked enumeration of vehicle signals based on

their impact on performance, serving as a direct output of the model’s analytical capabilities.

Meanwhile, the Evaluation Results offer a comprehensive assessment of the model’s accuracy

and reliability, encapsulating the confidence level associated with the feature importance scores.

Together, these outputs furnish a nuanced understanding of the model’s predictive performance

and its implications for PdM strategies.

This initial model description and data categorization set the stage for the subsequent ana-

lytical processes, ensuring that the model’s application is grounded in a clear and structured

understanding of both the input and output data dynamics.

Given the workflow mapped out in Section 4.4 and the unique characteristics of the example use

case, it becomes evident that no existing model in the database adequately matches the required

specifications. Consequently, it is essential to individually tailor each code module to align with

the demands of the use case model. This customization process is guided by the defined Process

Exit Points, ensuring a structured and coherent development approach.
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The example use case, identified as ML Model Insight Value Creation, demands the integration of

several distinct code modules to pave the way for the comprehensive analysis and interpretation

of the data.

The Data Input (DI) module is essential in the initial phase of the PdM model’s workflow,

tasked with ingesting Raw Data and Meta Data. It converts the raw data into a structured

data frame format, facilitating subsequent analysis and processing. Concurrently, it enriches

the meta data by performing a descriptive statistical analysis of the input data, resulting in

the creation of Statistical Meta Data. This enriched meta data provides a comprehensive

statistical overview, enhancing the model’s development process by ensuring that all data inputs

are not only accurately captured but also effectively organized and analyzed.

The Data Preprocessing (DP) module is a critical component in the PdM model’s pipeline,

focusing on refining the input data to ensure its optimal condition for analysis. It takes Input

DF and Statistical Meta Data as inputs and applies a series of transformations aimed at

enhancing data quality. These transformations include addressing missing values, reducing noise,

and filtering out irrelevant information. The result of this process is the Preprocessed DF,

a cleaner and more analytically valuable dataset, ready for the subsequent stages of feature

engineering and model development. This module underscores the importance of thorough data

preparation in building effective PdM models.

The Feature Creation (FC) module generates new features from the Preprocessed DF and

Statistical Meta Data. It focuses on the time series nature of this use cases data by sliding

the data into windows and describing those windows with a multitude of numeric features. The

outcome is the Feature DF, which contains these new features, tailored to enhance the model’s

analysis of complex patterns and relationships within the time series data.

The Feature Labeling (FL) module processes the Feature DF and utilizes Statistical Meta

Data to assign labels to each feature. In the context of this use case, where each window

corresponds to a single lap, the labeling process is directly linked to the window’s duration,

effectively representing the lap time. This methodical approach ensures that each feature within

the Feature DF is accurately labeled, reflecting the time spent on each lap. The resulting

Labeled DF comprises these thoroughly labeled features, thereby streamlining the identification

and interpretation process within the model’s analytical framework. This structured labeling

mechanism is fundamental for the subsequent phases of model development, particularly in

enhancing the model’s predictive accuracy and interpretability.
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The Feature Encoding (FE) module takes the Labeled DF as input and focuses on converting

categorical features into a format that is compatible with the analytical model, optimizing its

performance. Given that the signals in this use case are numeric, the encoding process primarily

involves normalization. This step is essential for ensuring that all features contribute equally

to the model’s performance, preventing any single feature from disproportionately influencing

the model due to its scale. The output of this process is the Encoded DF, which contains the

normalized features, ready for MB and ME.

The Model Building (MB) module constructs the predictive model using the Encoded DF and

Statistical Meta Data as inputs. This step is fundamental for developing the model that

embodies the core analytical capabilities required for the use case. The construction of the model

involves training it with the processed and encoded features to accurately predict outcomes

based on the input data. The outputs of this module include the Test DF, which is used for

evaluating the model’s performance, the Trained Model itself, and the Feature Importance

List. This list, highlighting the significance of each feature in the prediction process, serves

as the first critical output requirement of the model, offering insights into which features most

strongly influence the model’s predictions.

The Model Evaluation (ME) module assesses the performance and reliability of the built model

by utilizing the Test DF, Statistical Meta Data, and the Trained Model as inputs. This

evaluation is vital for understanding the model’s predictive accuracy and the confidence in its

outputs. Through a comprehensive analysis, the module provides Evaluation Results that

detail the model’s effectiveness in making predictions. These results, constituting the second

critical output requirement, offer valuable insights into the model’s capabilities and limitations,

thereby concluding the use case with a clear understanding of the model’s performance and areas

for potential improvement.

While the Feature Visualization (FV) module plays a vital role in presenting the model’s

findings in an interpretable and accessible manner, it is not further detailed within the context of

this example use case for the sake of brevity and focus. The absence of functional Dp on the FV

module in the initial stages of model development allows for this modularization, ensuring that

the primary emphasis remains on the creation, evaluation, and optimization of the predictive

model.

This modular approach to specifying the code components for the example use case underscores

the flexibility and adaptability of the Predictive Maintenance Framework. By tailoring each
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module to the specific requirements of the use case, the framework allows a targeted and efficient

development process, paving the way for the creation of robust and effective PdM models.

Given the absence of preexisting modules that fit the specific requirements of this use case, it

is necessary to define components for each module within the workflow. While the workflow

permits an organized approach by allowing the definition of a single component per module

with direct copying of inputs and outputs, for enhanced clarity and understandability, certain

modules are decomposed into multiple components. This decomposition permits a more granular

understanding of the module’s functionality and its contribution to the overall PdM model.

By defining specific components for each module, the workflow ensures a comprehensive and

tailored approach to model development, accommodating the unique aspects of the use case

while maintaining the flexibility to adapt to the intricacies of PdM applications.

The Data Input Module consists of two main components. The first component, Read File, is

tasked with ingesting Raw Data and converting it into a structured data frame, termed Input

DF. This transformation is central for subsequent analysis and processing steps within the PdM

model. Following this, the Descriptive Statistics component takes the Input DF and Meta

Data to conduct a thorough statistical analysis. This process not only enriches the Meta Data

with detailed insights about the data’s characteristics but also produces Statistical Meta

Data. This enriched Meta Data plays a vital role in informing further DP and analysis stages,

ensuring a deep understanding of the underlying data patterns and distributions.

The Data Preprocessing Module enhances the Input DF through a sequence of targeted filters,

each designed to improve data quality for the predictive model. The Filter Constant Cols

component removes columns lacking variability, which is essential for the analysis. The process

continues with Filter by number of unique values, leveraging Statistical Meta Data to

discard features with less than n_unique values, thus focusing on more predictive elements.

Similarly, Filter by correlation values aims to mitigate multicollinearity by filtering out

features with correlation pairs exceeding c_corr. The Filter Manual Outliers and Filter

Statistical Outliers components address outliers, the former through expert knowledge and

the latter via statistical thresholds (C_out), ensuring data integrity. The culmination of this

process is the Apply Filters component, which applies all filters to the Input DF, resulting in

the Preprocessed DF, ready for further modeling steps.

The Feature Creation Module initiates with the Define Windows by Value component, which

segments the Preprocessed DF into discrete windows based on criteria derived from Statistical
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Meta Data. This segmentation process assigns a unique Window ID to each segment, effectively

organizing the dataset for feature extraction. After that, the Transform Windows to features

component takes the segmented Preprocessed DF, along with the Window ID and Statistical

Meta Data, to generate new features. These features are then compiled into the Feature DF,

with the Window ID serving as the index, helping the identification and analysis of features

within the context of their respective windows.

The Feature Labeling Module begins with the Label Target Feature component, which

utilizes the Feature DF and Statistical Meta Data to assign labels to the target feature.

This labeling process is crucial for distinguishing the target variable in the dataset, allowing its

identification and analysis in the model’s learning process. The output is a Column: Labeled

Target, which contains the labeled target feature.

Constitutively, the Append Column component integrates the Column: Labeled Target into

the Feature DF. This step ensures that the labeled target feature is properly incorporated into

the dataset, resulting in the Labeled DF. This dataframe, now with the target feature clearly

labeled, is primed for the encoding and MB phases, ensuring clarity and consistency in the

model’s training and evaluation processes.

The Feature Encoding Module comprises the Normalize Data Frame component, which is

responsible for the normalization of the Feature DF. This process adjusts the features within the

dataframe to a common scale without distorting differences in the ranges of values, ensuring that

each feature contributes equally to the analysis. The output of this component is the Normalized

DF, ready for the subsequent modeling steps.

The Model Building Module features two critical components essential for developing the

predictive model. The first, Train Test Split, takes the Encoded DF and Statistical Meta

Data to partition the dataset into training and testing subsets. This separation is vital for

evaluating the model’s performance on unseen data, ensuring that the training and validation

processes are robust and reliable. The outputs of this component are the Train DF and Test

DF, which are used respectively for training the model and evaluating its performance.

The subsequent component, Train Model, utilizes the Train DF and Statistical Meta Data

to construct and train the predictive model. This process involves fitting the model to the training

data, allowing it to learn the underlying patterns and relationships. Upon completion, the output

includes the Trained Model, ready for performance evaluation, and the Feature Importance

List. This list provides insights into the relative importance of each feature in the model’s
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predictions, highlighting the variables that play a vital role in the model’s decision-making

process.

The Model Evaluation Module is economized into a single, central component: Evaluate

Results. This component leverages the Test DF, Statistical Meta Data, and the Trained

Model to assess the model’s performance. The evaluation process encompasses a thorough analysis

of the model’s predictive accuracy and reliability, utilizing the test dataset to measure how well

the model generalizes to new, unseen data. The outcome of this evaluation is encapsulated in

the Evaluation Results, which detail the model’s effectiveness and provide a comprehensive

overview of its predictive capabilities. These results are instrumental in validating the model’s

utility and guiding any necessary adjustments or optimizations to enhance its performance.

4.5.2 Refinement of Attributes

In this work, the exploration extends into a distinct scenario to examine the attributes system’s

adaptability and robustness further. The focus is on advanced pattern recognition, aiming

to develop a trained classifier as the model output. The complexity and nature of the Raw

Data introduce new challenges and refinement steps in the model development process. I4.0

ushers in sophisticated ML techniques that significantly bolster the efficacy of PdM strategies

by accelerating automated fault detection and diagnosis, thereby minimizing downtime and

enhancing the utilization rate of components. This paradigm shift underscores the indispensability

of PdM in achieving sustainable smart manufacturing in I4.0 (Çınar et al., 2020). Unlike the

initial use case, the Raw Data in this scenario is characterized by a different format, demanding

a tailored approach to preprocessing and feature extraction. This diversity in data format

accentuates the need for a flexible attributes system capable of accommodating varying data

characteristics while preserving the integrity and effectiveness of the PdM model.

Furthermore, the model output, centered around pattern recognition, calls for an Evaluation

Results phase that not only confirms the model’s accuracy but also furnishes interpretative

insights. This phase is central for ensuring the model’s real-world applicability and for its

subsequent refinement based on empirical evidence. A defining aspect of this use case is the

non-trivial window size for feature generation, which plays a crucial role in the model’s capacity to

discern pertinent patterns within the data. Opting for an appropriate window size is essential, as

it directly impacts the model’s ability to balance the inclusion of adequate contextual information

against the risk of signal dilution.
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The complexity ushered in by the choice of window size exemplifies the iterative nature of

model development in PdM applications. It emphasizes the need for a dynamic and iterative

approach to refining the attributes system, ensuring its responsiveness to the specific demands of

each use case. The introduction of this sophisticated pattern recognition use case illuminates

several implications for the attributes system. The system must adeptly manage varying data

formats, ensuring consistent integration and preprocessing of raw data inputs. Additionally, the

attributes system should furnish mechanisms to tailor the feature extraction process, particularly

in determining the optimal window size for diverse scenarios. Moreover, to cater to the model

output’s focus on pattern recognition, the system requires robust evaluation metrics capable of

validating and interpreting the results effectively. These considerations highlight the prerequisite

for a comprehensive and adaptable attributes system, equipped to meet the evolving requisites

of PdM model development. Through iterative refinement and a focus on the specific challenges

posed by each use case, the system can significantly augment the development efficiency and

usefulness of PdM applications (Davari et al., 2021; Ucar, Karakose, and Kırımça, 2024).

In the transition from the initial use case to the subsequent one, a critical evaluation of the

Data Input Module reveals significant alterations necessitated by the shift in the nature of Raw

Data. Initially, the data is encapsulated in a .csv file format, a widely recognized structure for

tabular data due to its simplicity and broad compatibility with a range of data analysis tools.

The component designed for reading this data, aptly named the Read Data Component, is thus

optimized for parsing .csv files, enabling efficient data processing and preparation for model

development tasks.

However, the evolution into the second use case introduces a vital change; the raw data is now

presented in a .json format. The .json format, characterized by its hierarchical structure

of key-value pairs, offers enhanced flexibility for representing complex data relationships and

nested arrays, making it particularly suitable for data embodying varied levels of complexity.

This transition to a .json format calls for a reevaluation of the Read Data Component, as

the techniques employed for .csv file ingestion are inherently unsuitable for the .json data

structure. Reading .json files demands parsing strategies capable of interpreting their nested

formats, extracting pertinent information whilst maintaining the integrity of the hierarchical

data relationships.

This demands a redesign or significant adaptation of the Data Input Module, underlining the

importance of versatility in handling diverse data formats effectively. It also highlights the
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need for PdM systems to incorporate flexible, format-agnostic data ingestion capabilities to

accommodate the variability inherent in raw data formats across different use cases.

To address this adaptation, a modular approach in the system’s architecture is advocated,

allowing for the integration of multiple data reading components, each tailored to a specific data

format. This ensures the system’s preparedness for diverse data types, promoting a smoother

transition between use cases and enhancing the system’s overall robustness and applicability in

varied PdM scenarios.

The detailed examination of the transition between use cases, starting with the Data Input

Module, illustrates the elaborate Dp between raw data characteristics and the system’s data

processing capabilities. It serves as a quintessential example of the necessity for adaptability in

the design of PdM systems, ensuring their usefulness across a multitude of application contexts.
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Figure 31: Updating descriptive attributes: Data Input. Left: Updated component layer for the use
case Feature Importance and new component layer for the use case Pattern Rec. Right:
Hierarchical attribute refinement with hierarchical tree graph of component attributes (own
figure).

In Figure 31, the updated component layer for the initial use case alongside the new component

layer for the current use case is depicted. Initially, the Read File component, designated for

parsing .csv files, is refined to Read File: .csv with a modified input attribute to explicitly

indicate Raw Data: .csv. To accommodate the new use case involving .json formatted data,

a distinct Read File: .json component is introduced. This new component, while mirroring

the output attributes of its predecessor, ensures compatibility within the Data Input Module

for processing differing data formats, thereby maintaining the module’s versatility.

The Hierarchical Attribute Refinement, illustrated on the right side of Figure 31, showcases the

hierarchical tree graph of component attributes. It is evident from the graph that the newly

specified child attribute Read File: .json cannot simply be added to the parent attribute

Read File: .csv. Instead, a sibling attribute Read File: .csv must be mapped out to

respect the inapplicability of the predefined component attributes for handling .json files. This

structural refinement underscores the necessity for a systematic approach to attribute specification

within the system’s architecture, ensuring that each component is accurately represented and
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functionally coherent within the context of its intended use case.

The hierarchical relationship between attributes in the system’s architecture is effectively managed

through the application of namespaces, a practice that simplifies the organization of system com-

ponents. For example, using namespaces such as Read File: .csv and Read File: .json

allows for a clear distinction between components designed for reading .csv and .json formatted

data, respectively. This naming convention not only aids in avoiding naming conflicts but also

enhances the system’s modularity and scalability. As such, namespaces play an important role

in the systematic organization of attributes, ensuring that each component’s functionality and

scope are accurately represented within the system’s overall architecture.
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Figure 32: Updating descriptive attributes: Feature creation. Left: Introduction of novel component
window param. Right: Hierarchical attribute refinement with hierarchical tree graph of
component attributes (own figure).

In the progression of refining the FC module for the PdM system, a critical adaptation is

introduced to manage the specification of window size—a key parameter in the transformation

of data windows into features. This refinement is essential for the Transform Windows to

Features component, as the approach to defining window size significantly diverges from the

methodology employed in the initial use case. Illustrated in Figure 32, this step addresses the

challenge wherein the window size cannot be inferred directly from a column value, nor is it

included in the Statistical Meta Data generated by the Data Input Module.

To accommodate this requirement without altering the existing workflow of the initial use case,

a novel component—termed Descriptive Statistics: Window Param—is introduced. This

component is designed to augment the Statistical Meta Data with an optional window size

parameter. The flexibility of this design lies in its ability to overwrite the Window ID column

when necessary, ensuring compatibility across use cases with varying data structuring needs.

The incorporation of the Descriptive Statistics: Window Param component into the system

architecture represents a nuanced approach to enhancing the Statistical Meta Data without

disrupting the component’s applicability in the initial use case scenario. This is achieved by
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introducing an optional parameter to the metadata creation process, thereby allowing for the

dynamic adjustment of the Window ID based on the specific requirements of the current use case.

As depicted in Figure 32, this refinement enables the Define Windows by Value component

to utilize the newly added parameter, adapting its output accordingly. In scenarios where the

window size parameter is absent, the component retains its default behavior, mirroring the

process outlined in the initial use case and ensuring a consistent integration into the FC module.

This strategic enhancement to the FC module underlines the importance of flexibility and

adaptability in the development of PdM systems, especially when dealing with the complexities of

data transformation and feature extraction. By allowing for the optional specification of window

size, the system can effectively cater to a broader spectrum of use cases, each with unique data

characteristics and analysis requirements, thereby ensuring a more robust and versatile PdM

solution.
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Figure 33: Updating descriptive attributes: Feature labeling with introduction of label pattern component

to replace the label target feature component (own figure).

In the revised FL Module, significant alterations are implemented to accommodate a new use

case. Unlike the initial scenario, where the label is determined by the time spent per lap and the

model is a regression model focused on predicting lap times, the current use case shifts towards

a classification model designed to predict the occurrence of certain patterns. Consequently, the

labeling module now incorporates a label column generation process, predicated on a Pattern

Description. This pattern description serves as an additional model input and encapsulates

a set of criteria that must be met within a specified data window.

As illustrated in Figure 33, the Label Pattern component is introduced to replace the Label

Target Feature component entirely. This modification demands two primary inputs: the

Feature DF (Feature Data Frame) and the Pattern Description. The output is a thoroughly

generated label column, which seamlessly integrates with the existing Append Column component

to ensure the module’s functionality remains intact.

The Feature Encoding Module is significantly adapted to accommodate the inclusion of both
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Figure 34: Updating descriptive attributes: Feature creation. Left: Integration of additional component
quantify data frame and classification of Labeled DF into quantified and non-quantified.
Right: Hierarchical attribute refinement with hierarchical tree graph of component attributes
(own figure).

quantitative and non-quantitative (text-based) data in the new raw data set. This diversification

of data types requires the implementation of machine-readable encoding techniques, such as

one-hot-encoding, to ensure that non-quantitative data is appropriately processed for model

training. Unlike the initial use case, which exclusively dealt with quantitative features and

did not require this encoding step, the current approach demands a more sophisticated data

preparation method.

As depicted in Figure 34, this modification leads to the integration of an additional component,

Quantify Data Frame, into the module’s component layer. This component is responsible for

transforming text-based data into a format that can be effectively utilized by ML algorithms.

Furthermore, the attributes of the Labeled DF are now distinctly classified into two categories:

Labeled DF: Quantified and Labeled DF: Non-Quantified. This specification allows for a

clear demarcation between data types and advances the targeted processing of each.

The Labeled DF: Quantified attribute, in particular, is refined to serve as a prerequisite for the

reusability of the pre-existing Normalize Data Frame component. This refinement underscores

the module’s enhanced capability to handle a broader spectrum of data types, thereby extending

the flexibility and applicability of the encoding process to support the varied requirements of the

new use case.

The adaptation of the input and output attributes to accommodate diverse scenarios underscores

the system’s flexibility and the iterative nature of its evolution. This process is articulated

through four principal refinement categories, each addressing different dimensions of system

modifications to meet emerging requirements:

1. Specification of Component Functionality: This involves the precise outline of com-

ponent functionalities, required by variations in the nature of Raw Data. An example is

the transition from processing .csv files to .json files, which required a reevaluation and

specification of the Read Data component to ensure effective parsing of .json’s hierarchical
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structure. This adaptation highlights the critical role of specific functionality definition in

efficiently managing diverse data formats.

2. Additional Functionality with Added Parameters and Default Behaviour: Com-

ponents are adapted or newly introduced with additional parameters to extend their

functionality, maintaining compatibility with the existing workflow. For instance, the

inclusion of the Descriptive Statistics: Window Param component in the FC module

introduces an optional window size parameter, offering flexibility across use cases while

preserving default behavior when the parameter is not utilized.

3. Replacement of Components and Integration of New Model Inputs: This cat-

egory covers the replacement or integration of components to accommodate different

modeling approaches or data processing requirements. The replacement of the Label

Target Feature component with the Label Pattern component, for instance, signifies a

shift towards classification models and calls for new inputs like the pattern description

for appropriate label generation.

4. Refinement of Input Attributes for Components: Focuses on the refinement of

component input attributes to process a broader range of data types effectively. An

example is differentiating the Labeled DF into Quantified and Non-Quantified categories,

fundamental for the Feature Encoding Module’s ability to handle both quantitative and

non-quantitative data, highlighting the necessity for an adaptable attribute system.

These refinements collectively enhance the attribute system’s robustness and adaptability, en-

suring its applicability across various PdM scenarios through specific component functionality

specifications, the integration of additional parameters with default behaviors, the replacement

of components for new model inputs, and the refinement of input attributes.

4.5.3 Overview of the Attributes System

In the workflow presented in this work, initiating and refining models, modules and components

are critical steps that ensure the quality and reusability of the objects. The initiation step involves

setting up the basic structure and parameters of the model based on a predefined set of attributes

that describe the essential characteristics of the data and the system. Refinement, on the other

hand, involves iterative adjustments to the model based on feedback from its performance and

changing operational conditions. This adaptive approach helps in targeting specific areas of the

model that require more detailed analysis and optimization.
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A detailed description of every component in a PdM system would indeed be inefficient due to

the vast quantity of data and the complexity of interactions among system components. This is

supported by literature indicating that overly detailed models can lead to excessive computational

costs and diminished practical usability due to their complexity. These sources argue for the

balance between detail and efficiency, emphasizing that not all system aspects require the same

level of examination.

The iterative system proposed in this work aligns with efficient PdM practices by enabling focused

efforts on areas where a higher level of detail is necessary. This is achieved by initially applying

a standard level of detail to all components and then selectively refining those components based

on their performance metrics and the critical nature of their operation within the system. Such a

targeted approach ensures that resources are allocated efficiently, enhancing the system’s overall

effectiveness without the unnecessary overhead of detailed analysis for every component.

This methodology not only conserves resources but also enhances the model’s responsiveness

and adaptability, which are crucial in dynamic operational environments typical of industrial

applications. By implementing an iterative and targeted refinement process, the model remains

agile, with adjustments made swiftly to cater to emerging needs or to address areas showing

potential for optimization.

This work introduces a formal attribute system, effectively bridging a critical research gap by

enabling the precise and dynamic comparison of pipeline objects within the Predictive Maintenance

Framework. Drawing from the principles of the Z Specification language and incorporating the

flexibility of modern automated code summarization and data description systems, this system

enhances the functional assessment and comparability of pipeline components. By aligning with

the agile and modular nature of the proposed PdM processes, it significantly augments traditional

methods, offering a scalable and efficient solution tailored to the evolving demands of industrial

applications.

4.6 Conclusion of the Results

This chapter concludes with a synthesis of the execution and validation of the artifacts developed in

this work, namely the Use Case Description Methodology, Component Repository with interface

standardization and a priori analysis, Component Creation Workflow, and the Descriptive

Attributes System. These artifacts collectively forge a robust framework for enhancing the

development efficiency of PdM models and AI methodologies. The implementation of these tools
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not only supports a systematic development process but also significantly augments the efficiency

and effectiveness of model development within a high-interest industrial context.

The Use Case Description Methodology provides a structured approach to capturing and analyzing

requirements, ensuring that all potential use cases are comprehensively addressed. The Component

Repository, enhanced with interface standardization and a priori analysis, offers a centralized

platform that facilitates the reuse of components, thereby reducing redundancy and accelerating

development timelines. The Component Creation Workflow establishes a procedural roadmap

for developers, guiding them through the stages of component development with a focus on

consistency and quality control. Lastly, the Descriptive Attributes System plays an essential role

in defining and categorizing the properties and functionalities of components, which enhances

discoverability and usability within the repository.

Together, these artifacts create a complex and rich platform that not only sets the stage for

future research into PdM model development and AI development methodologies but also realizes

significant efficiency gains in practice. Stand-alone, yet integratively robust, these tools cover

the full spectrum of the development process, from conceptualization to deployment. Backed

by empirical evidence and thorough evaluation in a demanding industrial environment, these

innovations hold substantial credibility and promise substantial impacts on the field. The

integration of these systems into the development lifecycle is poised to provide a transformative

influence on the efficiency and effectiveness of PdM systems and AI applications, marking a

significant advancement in the domain of software engineering for predictive technologies.

182



Chapter 5

Discussion and Outlook

This final chapter aims to synthesize the insights and findings presented throughout this thesis,

providing a comprehensive overview of the implications, limitations, and future directions of this

research. The development and integration of the Use Case Description Methodology, Component

Repository with interface standardization and a priori analysis, Component Creation Workflow,

and the Descriptive Attributes System are each detailed in previous chapters, emphasizing their

roles in enhancing the efficiency and effectiveness of PdM model development and AI development

methodologies. Here, these elements are discussed in the context of their practical applications,

theoretical contributions, and potential for future innovation.

5.1 Discussion of the Results and the Implications of the Key

Findings

This section looks into the critical analysis of the key findings derived from this work, which seeks

to enhance the understanding and implementation of PdM systems within industrial applications.

Initially, a detailed exposition of the key findings is presented, highlighting how each contributes

significantly to the research questions of this work. These findings not only answer the posed

research questions but also validate the effectiveness and efficiency of the developed artifacts. By

systematically presenting these findings, this discussion aims to provide a comprehensive overview

of the implications and practical applications of this research in advancing PdM methodologies

and technologies.
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5.1.1 Overview of the Key Findings

The key findings of this work, highlighting the vital advancements and insights gained from the

development and evaluation of the proposed frameworks and methodologies are discussed in the

following.

Key Finding 1: Importance and Growth of Predictive Maintenance in the Automo-

tive Industry

The first significant finding of this work underscores the growing role of PdM in industrial

applications, particularly within the automotive sector. As industries progressively acknowledge

the criticality of maintenance operations, PdM evolves not only in complexity but also in its value

across various fields. This is especially prominent in the automotive industry with an exponential

increase in the deployment of PdM applications. The integration of PdM systems in this sector

is driven by the need to enhance operational reliability and efficiency, reduce downtime, and

cut maintenance costs. This trend is indicative of a broader shift towards more sophisticated,

data-driven maintenance strategies that leverage real-time data analytics and ML to predict and

prevent potential failures before they occur.

Based on the current scientific literature, the importance and growth of PdM in the automotive

industry can be highlighted by its effectiveness in improving operational efficiencies and reducing

costs. Research shows that PdM, by utilizing advanced data analytics and AI, can significantly

reduce maintenance costs and minimize unplanned downtimes in the automotive sector. For

instance, studies illustrate that PdM systems enhance the lifespan of vehicles, lower the frequency

of maintenance, and can predict potential failures more effectively than traditional maintenance

approaches.

The integration of PdM within the automotive industry demonstrates significant operational

efficiencies and cost reductions. Studies indicate that by leveraging advanced data analytics and

AI, PdM significantly curtails maintenance costs and reduces unplanned downtimes. For instance,

PdM strategies are shown to enhance vehicle lifespan and decrease maintenance frequency,

effectively predicting potential failures and thereby optimizing maintenance schedules (Arena

et al., 2021; Ucar, Karakose, and Kırımça, 2024). These advancements not only yield direct

economic benefits but also enhance vehicle safety and reliability, critical factors in the automotive

sector. Furthermore, the deployment of ML models for PdM in automotive engine components

emphasizes the capability of these technologies in early fault detection. This predictive capability

is fundamental for timely maintenance interventions that prevent more severe issues, thereby
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underlining the transformative impact of PdM from a reactive to a predictive, data-driven

maintenance approach (Tessaro, Mariani, and Coelho, 2020).

Key Finding 2: Research Gap in Methodologies for Predictive Maintenance System

Development

This work identifies a significant research gap in the methodologies employed to enhance the

development of PdM systems. While established software development domains successfully

incorporate CBSE methods tailored for industrial applications, PdM development does not

yet achieve a similar integration, particularly in contexts involving data science and industrial

applications. The lack of established methodologies that cover the full spectrum of model

development within the PdM domain underscores a critical need for innovation in this area.

The integration of data science techniques into industrial PdM systems remains emergent, with

considerable potential for developing standardized methodologies that could significantly improve

the usefulness and efficiency of PdM systems (G. Li et al., 2021; Nunes, Santos, and Rocha,

2023).

Key Finding 3: The Role of Component-Based Software Engineering in Advancing

Predictive Maintenance

The third important insight from this research highlights the significance of CBSE in elevating

the technology-readiness-level for PdM systems. CBSE emerges as a vital methodology in refining

and accelerating the development process for PdM technologies, particularly by promoting

modular and reusable components. However, for CBSE to fully deliver its benefits, certain

criteria must be met within the application domain. These include compatibility with existing

systems, scalability to meet different industrial needs, and adaptability to evolving technologies.

The application of CBSE in PdM underscores a need for a structured approach that not only

adheres to these criteria but also leverages them to enhance system integration and operational

efficiency. Studies indicate that when these conditions are satisfied, CBSE can significantly

rationalize the development process, reduce time-to-market, and increase the robustness of PdM

systems.

Key Finding 4: Applicability of CBSE Principles in PdM Model Development

This work’s first research artifact, the Predictive Maintenance Framework, substantiates the

effectiveness of integrating CBSE principles into the development of PdM models. This finding

is supported by recent studies indicating that employing CBSE methodologies enhances both the

scalability and robustness of PdM systems. These systems are increasingly reliant on complex
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data streams and require a modular approach to handle diverse industrial applications effectively.

The use of CBSE in PdM allows for a systematic development process where components can be

developed, tested, and validated independently before their integration, ensuring higher quality

and reliability of the PdM systems. This approach not only aligns with the current trends in

software engineering but also meets the specific demands of PdM in varied industrial contexts

(Ucar, Karakose, and Kırımça, 2024; Arena et al., 2021).

Key Finding 5: Validating the Predictive Maintenance Framework through Individ-

ual Use Case Analysis

This work’s second artifact demonstrates how describing individual PdM use cases not only

highlights the complexity and multifaceted nature of PdM but also reveals an inherent structure

within these applications. This finding further validates the PdM Framework developed in this

research. The literature supports the use of a component-based approach for developing PdM

models, noting that this method enhances the system’s adaptability and effectiveness across

various industrial applications. By leveraging insights from the literature, particularly those that

discuss the integration of AI and ML within PdM strategies, this artifact lays a foundational

framework that supports the component-based development of PdM models. This approach

aligns with the principles of I4.0, where PdM plays a crucial role in sustainable manufacturing

by minimizing downtime and optimizing the use of equipment (Achouch et al., 2022).

Key Finding 6: The Significance of Component Repository Structure in PdM Sys-

tems Development

The sixth key finding from this research highlights the central role of the Component Repository

Structure as a core artifact in the development of PdM systems. This structure not only

consolidates the insights gathered from previous artifacts but also introduces a set of component

design rules centered around a priori reusability. The literature suggests that adopting a

component-based approach significantly aids in handling the complexities involved in PdM

systems by allowing components to be reused across different scenarios, which enhances the

efficiency and scalability of the maintenance processes. Moreover, the structured repository

ensures that each component is optimized for reuse and can be easily integrated or modified to

meet specific PdM requirements, thereby supporting sustainable and efficient PdM practices in

I4.0 settings (Lv et al., 2023; C.-H. Chen et al., 2017).

Key Finding 7: Advantages of the Component Creation Workflow in PdM Systems

Development
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The seventh key finding of this research reveals that the component creation workflow, despite its

initial higher costs, offers significant advantages over traditional approaches in the management

of PdM systems, particularly in areas of high complexity. The implementation of this workflow in

PdM systems development ultimately achieves a break-even point through reduced development

costs over time. Studies show that while the upfront investment in PdM can be substantial,

the long-term benefits include reductions in maintenance costs and operational disruptions,

thereby justifying the initial expenditure. The use of advanced predictive models and continuous

improvement strategies, as part of the component creation workflow, enhances the efficiency and

reliability of maintenance operations, contributing to overall cost savings and improved asset

management.

Key Finding 8: Significance of the Descriptive Attributes System in PdM Compo-

nent Workflow

The eighth key finding of this research emphasizes the vital role of the descriptive attributes

system within the component creation workflow for PdM systems. This system is not only

vital in streamlining the development process but also offers substantial potential for further

enhancements and refinements. The implementation of a detailed descriptive attributes system

allows for a more structured and efficient design and deployment of PdM components by providing

clear, actionable data that informs development decisions. Research indicates that such systems

help optimize maintenance strategies by improving the precision and efficiency of PdM tasks,

ultimately leading to cost savings and enhanced equipment reliability.

5.1.2 Reflection on Research Questions

With the overview of this work’s key findings, a discussion of the comprehensive examination

of the research questions posed at the outset of this investigation is conducted. Each research

question is thoroughly addressed through the development and analysis of specific artifacts

created as part of this work. The artifacts, each designed with a distinct focus within the realm

of PdM, not only answer the fundamental questions but also contribute to advancing the field.

This structured inquiry not only substantiates the proposed PdM Framework but also highlights

its adaptability and usefulness across different industrial applications, thus providing a robust

foundation for future research and development in PdM systems.

RQ1: Is it possible to classify the development of a PdM application in a framework?

The initial research question inquires whether it is possible to classify the development of a PdM
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application within a structured framework. The Predictive Maintenance Framework, developed

as the primary artifact of this study, lays a comprehensive literature foundation that reveals

a consistent structure across PdM models documented in related scientific literature. This

framework successfully captures and categorizes the inherent similarities across these models,

demonstrating its robustness and applicability. Furthermore, the validity of this framework

is reinforced in real-world settings, as observed in the deployment environments examined in

this research. This is further substantiated by the development and application of the second

artifact, the Use Case Description Methodology. Together, these elements confirm that the

development of PdM applications can indeed be systematically classified within a framework,

thereby affirmatively answering RQ1. This finding not only enhances the understanding of PdM

system development but also guides future research and practical implementations in this domain.

RQ2: Is it possible to design a component repository using the similarities while

respecting the individual aspects of PdM?

The second research question explores the feasibility of designing a component repository that

leverages the similarities across PdM systems while respecting their individual aspects. The

development and evaluation of the third artifact, the Component Repository Structure, provide a

concrete answer to this question. This repository successfully implements CBSE principles within

the PdM domain, demonstrating that components can be standardized without requiring changes

to the content, thus preserving the quality of the PdM models. Additionally, the repository

utilizes design principles derived from reusability measurements, which lay a robust foundation for

the repository’s efficient expansion across an increasing number of PdM use cases. These findings

affirmatively answer RQ2 by showing that it is indeed possible to design a component repository

that maintains the integrity and specificity of PdM applications while fostering standardization

and reuse.

RQ3: Is it possible to reduce development costs for PdM applications?

The third research question investigates whether it is possible to reduce the development costs

for PdM applications. Through the development and subsequent validation of the Component

Creation Workflow, this research demonstrates a significant reduction in development costs. The

application of event-discrete simulation and sensitivity analysis within this workflow enables a

detailed examination of the factors influencing cost reduction. Results indicate that the reusability

costs in the system predominantly hinge on the effective description of model objects. The final

artifact, the Descriptive Attributes System, proves instrumental in achieving cost-efficiency early
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in the integration process and maintaining a low percentage of additional reusability costs. This

robust approach substantiates the assertion that development costs for PdM applications can

indeed be reduced, confirming a positive answer to RQ3 and illustrating effective strategies to

optimize economic efficiency in PdM systems development.

The comprehensive investigation and development of the artifacts within this work substantively

and beneficially answer the posed research questions, thereby offering a novel methodology for

the development of PdM models. These artifacts not only underscore the viability of classifying

PdM development within a structured framework, designing a reusable component repository,

and reducing development costs, but also significantly enhance the technological readiness level

of the field. This research lays a foundational step for future explorations and provides a robust

platform that can be built upon by subsequent studies in a multitude of facets. The implications

of this work are vast, promising broad applications across various industries, thereby marking a

significant contribution to the body of knowledge in PdM systems development.

5.2 Analysis of the Limitations of this Work

In this work, the limitations of the research artifacts are examined to ensure a comprehensive

understanding of their constraints and implications. The analysis of each artifact adheres to a

structured approach, outlining limitations into four key categories: methodological, theoretical,

data-related, and practical constraints.

For each artifact, the discussion begins with Constraints, identifying and categorizing the

inherent limitations under methodological, which relates to the design and procedural choices

made; theoretical, addressing the underlying assumptions and conceptual frameworks; data-

related, concerning the quality, sufficiency, and handling of data; and practical, which includes

logistical, technological, or resource-based challenges encountered during the research. Following

the constraints analysis, the Implications of these limitations on the reliability, validity, and

applicability of the research findings are elaborated. The section is rounded off with Learnings,

reflecting on the adjustments made and insights gained, which are instrumental for refining future

research methodologies and strategies.

Limitations: Predictive Maintenance Framework

The methodological constraints of this work stem from its reliance solely on scientific literature.

As is common in industrial research, it is challenging to ascertain the internal practices of

companies from published sources alone, since many operational details remain proprietary and
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undisclosed.

A theoretical constraint is the lack of causal connections specifically within the PdM domain.

The framework’s structure is derived from the scientific adaptation of PdM use cases and a

general scientific approach to problem-solving, rather than direct empirical evidence from the

PdM field.

Data-related constraints include the inability to determine from the available data whether

the framework’s building blocks reflect an equitable distribution of development effort. If the

majority of the development effort is concentrated on components without internal structure,

this could significantly skew the effectiveness and focus of the framework.

Practical constraints involve the framework reflecting a functional level of structure, which may

not accurately represent the division of problems within the industry. It is unclear whether the

division is biased by the demonstration of the problem-solving approach or if it represents a

functional split.

The implications of these constraints necessitate focusing on validation through observation

within the research environment used in this study. Although the separation of development

and evaluation stages led to successful validation, this success is limited to a relatively broad

setting. A comprehensive validation process is required to confirm these findings across different

environments.

The key reflection from addressing these limitations is that even with an extensive database,

the applied method can only provide reliable results when combined with specific industry

applications. The framework alone is insufficient to define the structure of industrial environments

comprehensively.

Limitations: Use Case Description Methodology

A significant methodological constraint arises from the predetermined, non-negotiable structure

of the canvas used in this study. This fixed structure limits the assessment of completeness across

various potential use cases, validated only within the specific research environment where it was

developed.

In terms of data-related constraints, the complexity and interfaces characteristic of industrial

environments, such as those in this work, may exceed standard expectations. This discrepancy

can disproportionately influence the perceived importance of different aspects of the artifact

canvas.

Practically, the methodology faces limitations in scope due to its requirement not only to analyze
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content but also to adapt to different process environments effectively.

These constraints suggest that although the artifact is validated positively within the extensive,

yet specific confines of this work’s environment, numerous potentially valuable applications

remain unexplored and untested.

The main takeaway is that the canvas approach effectively ensures the completeness of factors

considered and eases evaluation. However, its utility as an environment-independent tool depends

critically on insights gained from subsequent artifacts, highlighting its conditional applicability.

Limitations: Component Repository Structure

A key methodological constraint is the focus on the DE aspects, which are predominantly use

case and data source centric. However, a comprehensive coverage of data infrastructure is not

established, limiting the breadth of the repository’s applicability.

Theoretically, the component repository presupposes a fairly even distribution of development

resources across various modules. Challenges arise if use cases from different fields demand

disparate resource allocations per module or require integration of modules with specific technical

constraints on their interfaces. Such discrepancies call for further investigation into the repository’s

application across diverse scenarios.

The primary data-related constraint lies in the validation scope, which is restricted to insights

from existing literature and use cases specific to the current research environment. Consequently,

a generalized approach is not yet developed.

Practically, the effectiveness of a shared repository also hinges on robust version control and

collaboration tools, aspects that are not addressed in this framework. Furthermore, there is a

prerequisite for training all participants in the use of these tools to ensure smooth operational

integration.

These constraints imply that, despite positive evaluations, it is crucial to assess environmental

aspects and constraints thoroughly before the repository’s findings can be implemented reliably.

The learnings highlight the importance of limiting the application of this artifact to environments

where the interfaces and operational conditions closely match those encountered in this work’s

research setting. This is essential to prevent the need for additional, unforeseen research

adjustments.

Limitations: Component Creation Workflow

A significant methodological constraint involves the challenge of validating with real data and

calibrating parameters accordingly. This process is essential but often constrained by the
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availability and quality of data in real-world settings.

Theoretically, the limitation is that discussions on the simulation model artifacts are confined to

those defined within the project scope. To enhance the validity of these models, calibration with

real data in an implemented system is essential but is not accomplished within this work.

For simulation models, especially in sensitivity analysis, the key data-related constraint is the

balance between computational resources and the need for comprehensive data handling. It is

key to identify the most efficient use of given computational resources to compensate for any

data-related limitations.

These constraints underscore that while the parameter results validate the hypotheses of this

work and align with observations, a more detailed simulation analysis is necessary for a thorough

analysis of system-wide implications.

The primary learning from this process is the value of sensitivity analysis as a potent tool in

workflow simulations. It enables the evaluation of theoretical models even in the absence of

extensive data, demonstrating its utility in testing hypotheses under constrained conditions.

Limitations: Descriptive Attributes System

A significant methodological constraint lies in the benchmarking of this system against complex

problems, which calls for rigorous validation. Due to the inherent complexity, the application

field in this work is narrowly defined, restricting broader generalization.

Theoretically, the system is limited by the absence of a comprehensive framework that can

predict the performance impacts of various descriptive attributes in diverse scenarios. This lack

of theoretical underpinning constrains the predictability and adaptability of the system across

different contexts.

Given the large number of iterations required for validation, it is impractical to fully and

quantitatively measure the system’s effect in advance. This data-related limitation affects the

reliability of predictive outcomes prior to real-world application.

Practically, the system’s deployment is constrained by the availability of adequate computational

resources and the need for continuous data updates to maintain its relevance and accuracy in

dynamic environments.

These limitations imply that while this artifact shows promise based on qualitative evaluations,

its implementation in real-world settings must be preceded by extensive validation with real-world

data. Only through such stringent testing can the effectiveness and robustness of the system be

adequately assessed.
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The implications from this work highlight significant gaps in current research, particularly in

understanding the impact of descriptive attributes on system performance. Although this work

provides a qualitatively positive evaluated solution, it underscores the necessity for further

empirical studies to bridge these gaps and refine the system for practical application.

As this detailed exploration of limitations concludes, this work recognizes that while the findings

from various research artifacts are thoroughly validated within specific contexts, they are

inherently bound by methodological, theoretical, data-related, and practical constraints. These

limitations emphasize the necessity for a broader validation and adaptation across diverse

environments, which is fundamental for the generalizability and robustness of the results. These

insights pave the way for the next section of this work, Outlook, where the future directions

for research will be outlined. This upcoming section aims to address the gaps identified in this

analysis by proposing enhancements and exploring new avenues for applying these research

artifacts in broader and more varied industrial contexts.

5.3 Outlook and Recommendations for Future Research

This segment of the thesis outlines strategic directions for future research, focusing on addressing

the limitations identified in the previous sections. The intent is to enhance methodological

approaches, expand theoretical frameworks, improve data management techniques, and refine

practical implementations of PdM systems. Each proposed step is aimed at overcoming specific

challenges, thereby advancing the field of PdM within various industrial applications.

The analysis highlights significant methodological limitations, particularly the reliance on specific

data sets and environments which may not universally represent industrial practices. Future

research should explore the incorporation of more diverse data sources, including real-time data

from a broader spectrum of industrial settings. Additionally, the adoption of mixed methods

research could enhance the depth of understanding and reliability of PdM frameworks. Enhancing

simulation models to include adaptive learning algorithms might also help in forecasting and

mitigating potential system failures in untested scenarios.

The limitations noted in the theoretical constructs of the current frameworks suggest a need for

a more robust theoretical underpinning. Future work should focus on developing new or refining

existing theories to better accommodate the variability and complexity of real-world industrial

environments. Collaborative research initiatives with academic institutions could be beneficial in

accurately testing these theories, leading to more refined models that are capable of handling the
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complicated dynamics of PdM.

Data-related constraints identified include the limitations in the scope and scalability of data

analysis methods currently used. To address this, it is proposed that future projects invest in

the development of advanced analytical tools that can handle larger datasets more efficiently

and with greater accuracy. Implementing more comprehensive data validation techniques to

ensure the accuracy and reliability of the data used is also critical. Moreover, creating guidelines

for data management that standardize data collection, storage, and analysis processes across

industries could greatly enhance the scalability and applicability of PdM systems.

Practically, the deployment of PdM systems faces challenges related to system integration and

operational scalability. It is recommended that future efforts include the development of modular

systems that can be easily adapted to different technological environments. Pilot testing these

systems in a variety of industrial settings would help refine their design and functionality, ensuring

they meet the diverse needs of potential users. Furthermore, developing training programs for end-

users on the operation and maintenance of these systems could promote smoother implementation

and better results.

The complexity of PdM systems calls for interdisciplinary approaches. Forming partnerships

across industries and academic fields can drive innovation and practical application. Establishing

a consortium that includes data scientists, maintenance engineers, operational managers, and IT

specialists could foster a collaborative approach to overcoming the multifaceted challenges of

PdM. Such collaborations could also lead to the standardization of practices and enhance the

transfer of knowledge across sectors.

Based on the limitations discussed, several areas require further exploration. These include the

development of predictive models that can dynamically adjust to new data inputs, the exploration

of AI-driven predictive analytics, and the study of the socio-economic impacts of implementing

PdM. Initiating phased research projects that focus sequentially on these areas could provide

systematic insights and progressive improvements in PdM technologies.

In conclusion, the path forward for PdM in industrial applications is paved with complex challenges

that demand innovative solutions. It is essential for researchers, industry practitioners, and

policymakers to collaboratively engage in these future initiatives. By addressing the limitations

outlined in this thesis and exploring the proposed next steps, the field can move towards more

reliable, efficient, and universally applicable PdM strategies. The insights and methodologies

developed through these efforts will significantly contribute to the sustainability and productivity
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of industrial operations worldwide.
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