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Abstract

The invasion of the extracellular matrix (ECM) by cancer cells is a highly complex process,

but many mathematical models describing it are quite simple. This raises the question

how these simpler models differ from the more complex ones regarding their dependence

on the input parameters and their qualitative results, and whether simpler models are

able to capture and reproduce the results of complex models.

To investigate these questions, three cell invasion models are examined: two simple to

intermediate partial differential equation (PDE) models with six and eight parameters,

respectively, and a complex hybrid model with 17 parameters. The hybrid model was

originally developed for angiogenesis, featuring a Cellular Potts model and a finite element

formulation, and is extended in this work to describe cell invasion as travelling waves.

The models’ parameter sensitivity with respect to initial ECM density, the ECM degrada-

tion rate and the cell proliferation probability, is examined using a variance-based method

at various points in time. At first, the PDE models exhibit mainly first-order effects from

the initial ECM density, and later in time from the ECM degradation rate. At all points

in time, the hybrid model is affected the most by the proliferation probability, and by

interaction effects between all three parameters.

The data fitting abilities are tested by generating data using the hybrid model and esti-

mating the corresponding PDE model parameters. This is done under consideration of

various phenomena of the hybrid model, and with different numbers of parameters to be

estimated. Using the fitted parameters, the shape approximations and the velocities of the

travelling invading waves are compared between the models. The best approximations in

shape are performed by the PDE model with eight parameters, the best approximations

in wave speed are obtained using the model with six parameters.

Overall, the main finding is that even though the model outputs are relatively similar

and can be approximated adequately by the PDE models, the dependence of the hybrid

model on its input parameters differs substantially from the one of the PDE models.
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1. Motivation

Cell invasion describes the process of cancer cells destroying the tissue that surrounds

them, and using the resulting space to intrude further. Coupled with proliferation, this

leads to a disruptive, growing mass of malignant cells – the tumor. Often, the inva-

sion’s first victim is the extracellular matrix, a scaffold-like structure that under normal

circumstances keeps the cells in line and enables the organs to fulfill their functions.

Not only physicians are inclined to understand the mechanisms underlying this fatal

process. While mathematical oncology is a young field, the mathematical modeling of cell

invasion is considered an important task, too. If an adequate model is used, researchers

are able to make accurate predictions of the course of the disease and find promising

treatment options.

Of course, this often rather involves models of the efficacy of certain chemotherapeutic

agents or models of the dependence of tumor size on a certain treatment plan. But

modeling the invasion speed can be very useful in practice as well: for instance if it is

possible to predict the tumor size development by modeling the velocity of the invasive

cell front, physicians can estimate how long surgery can be delayed until the tumor has

reached a critical size that increases the likelihood of metastases or puts the affected organ

in too much danger. This helps organizing hospital resources in times of unusually high

demands, as it was the case during the most difficult times of the COVID-19 pandemic.

Cell invasion models could step in earlier in the medical process as well: the predictions

of mathematical models can be used as an extension to medical trials, where they filter

which drugs or treatment schedules are worthy being tested in an animal trial. This

procedure is already used in certain medical fields such as antibiotics research [1].

The models that could – at least in theory – be used for predictions and filters like this

are numerous and vary a lot regarding their complexity. “Complexity” in this context

refers to the number of considered parameters and processes.

Indeed, cell invasion is a highly extensive phenomenon as it will be shown in this work,

and it is easy to get lost in the biochemical interactions and physical feedback loops.

Luckily there are many simple models, too, which provide some guidance through the

world of cell invasion modeling by focusing only on what is absolutely necessary to pass

as cell invasion model.
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1. Motivation

Despite varying complexity, all models describe the same process, hence they all share

some common features. Between most models, equivalent processes and parameters can

be identified. Nevertheless, this does not mean that these parameters impact the models’

outputs in the same manner. One objective of this work is to gain an understanding of

how the model-inherent processes differ considering models of various complexity. How

different do they react depending on the choice of input parameters?

Also, the qualitative differences of the model outputs depending on complexity will be

studied. How versatile are rather simple models, is it possible to obtain similar results

with them as with the more complex ones?

And, as an implication of the answers to all of these questions: what might be the best

fields of application for the respective model category?

Starting this journey, an overview of the biological processes involved in cell invasion is

provided in chapter 2. It is followed by the introduction of two low- and intermediate-

complexity partial differential equation (PDE) models as well as the rededication of a

high-complexity hybrid angiogenesis model, consisting of a Cellular Potts model and a

finite element formulation, to a model for cell invasion in chapter 3. The relevance and

interplay of the model parameters is investigated in chapter 4, where a sensitivity analysis

is performed with the three models. Chapter 5 focuses on the model outputs and tests

how phenomena exhibited by the most complex model can be captured by the two simpler

models.
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2. Cell Invasion: Actors and Reactions

Before delving into the mathematical modeling, the process of cell invasion and the parties

involved should be well understood. What is the extracellular matrix (ECM)? What is

its purpose and how does it interact with the cells? How is it involved in cancer? What

exactly is cell invasion, and what determines its direction and speed?

These are the questions that are answered in this chapter. While not every detail is

important for the mathematical models that are introduced later in this work, it is worth

having an impression of how many different factors and mechanisms could be considered

in the process of modeling cell invasion.

2.1. Properties and Functions of the ECM

As the name already hints, the extracellular matrix is the non-cellular substance sur-

rounding the cells in every tissue and organ [2]. In mammalian ECM – which is the kind

that is considered here – the main components are water, proteins and polysaccharides.

One differentiates between two classes of macromolecules that shape the ECM, proteogly-

cans and fibrous proteins. Proteoglycans are a type of polysaccharides, and as hydrogels

(meaning that they cannot be dissolved in water, and bind water molecules so that they

appear as viscous liquids) they serve mainly as fillers and lubricants. Furthermore, they

possess growth factor receptors allowing them to participate in cell communication [3].

Fibrous proteins are the main operands building the ECM structure. Among others,

these fibrous proteins comprise collagen, elastin and fibronectin. In terms of protein

mass, collagen is the major fibrous component of the ECM and as the so-called “collage-

nous backbone” [3] of the ECM it determines its mechanical properties through its fiber

orientation [4]. Also, collagen plays a role in cell adhesion, chemotaxis, migration and

differentiation [2]. Elastin fibers are highly extensible and can be found in high concen-

trations in tissues that are subject to repeated stretching, but their elasticity is limited by

the surrounding collagen fibers [2]. Fibronectin serves as “biological glue” [3], regulating

cell attachment and migration.

The components and structure of the ECM vary depending on the given cells and tissue,

and even within the same tissue there can be differences. For instance, the ECM present

3



2. Cell Invasion: Actors and Reactions

in cartilage tissue exposes three different zones to provide the optimal mix of shear and

compression resistance as well as lubrication [4]. Illnesses, especially cancer, alter the

organization of the ECM as well by destroying its structure and making it stiffer by

changing its composure [2].

2.1.1. Mechanical Characteristics of the ECM

In most tissues, the ECM is a nonlinear elastic material, and it increases its stiffness with

increasing deformation. This “strain-stiffening” behavior allows the ECM to transmit

low forces and to be robust under stress at the same time [5]. The ECM achieves this

through fiber reorientation: fiber alignment and densification make it more resistant

against load [6]. The nonlinear elasticity is not only important for the physical protection

of the tissue, it also serves as an information transmitter: several studies have found

that in biological matrices made out of fibrin (a biopolymer that is synthesized during

wound healing and serves as temporal ECM substitute [2, 5]) or collagen (the usual

main component of the ECM), displacements due to cell contractions travel considerably

further than in artificial, linear elastic substrates [7, 8, 9]. The force transmission serves

as a communication tool for the cells such that they are able to organise processes such

as the sprouting of capillaries [6].

The exact mechanical behavior of the ECM depends of course on its composition: collagen

fibers are either semiflexible or stiff, wherease elastin fibers are elastic. A matrix made

out of elastin alone would be linear elastic, but the surrounding collagen produces the

non-linearity in the relationship of stress and strain. Apart from the strain-stiffening,

another interesting mechanical behavior of the ECM is “microbuckling”: under repeated

compression, stiff ECM components, such as collagen or – in case of wound healing –

fibrin fibers, change their shape and, depending on their orientation, might not regain

their original shape when the exertion of force stops. This effect provides a feedback to the

strain-stiffening as the resulting fiber lengthening shifts the material’s response to stress to

greater deformations: after the microbuckling occurred, the same amount of compression

lead to more strain than before. It has to be noted that microbuckling has only been

observed in fibers that are not covalently cross-linked. The researchers who discovered

this property (Stefan Münster and colleagues) assume that it has consequences for cell

migration: travelling cells exert forces on the ECM, compressing collagen fibers which

then either resist the force and support the cells’ motions (if they are cross-linked) or bulk

under the force and lengthen, inhibiting the cells (if they are not) [10]. Interestingly, it has

been found that at least in the case of breast cancer, tumorigenesis leads to collagen cross-

linking [11]. Therefore, Münster et al. suspect that “not only the stiffening of the ECM

4



2.1. Properties and Functions of the ECM

caused by the cross-linking of collagen, but also the inhibition of fiber lengthening might

play an important role for the increased ability of cancer cells to invade the surrounding

ECM” [10]. Regarding cross-links, it should also be mentioned that the collagen cross-

linking, which accompanies cancer, increases the elastic modulus of the tissue by a factor

10 and thereby makes it much stiffer [11].

2.1.2. Tasks of the ECM

Just like its composition, the functions of the ECM can be very different depending on the

tissue it is situated in. To give some examples, the ECM surrounding muscle cells helps

fulfilling their physiological functions by transmitting mechanical force [12], whereas the

mineral-rich ECM in bones provides rigidity and strength at a low weight for the nearby

osteoblasts [13]. The perhaps most obvious function of the ECM is the provision of

structural support for its environment: as mentioned previously, the ECM serves as a

scaffold to which the cells can attach via their cytoskeleton [14]. In this manner, the

ECM, together with the cells, builds tissues and organs with specific physical properties,

e.g. elasticity, tensile and compressive strength. This is especially important for stem cell

differentiation: the composition and mechanical properties of the ECM instruct the stem

cells to develop towards a certain type of cell [2].

The ECM’s chemical composition mediates inter- and intracellular processes. The sur-

rounding cells possess various receptors on their surfaces to communicate with the ECM.

Especially the receptor family integrin should be mentioned since with its 24 members it

is the most widespread and serves as a two-way-mediator: “Integrins activation can lead

to either outside-in signaling, (...) leading to cell polarity differences, cell survival and

proliferation and cytoskeleton rearrangement, or to inside-out signaling, (...) which affect

the cell adhesion and migration” [14]. Various forms of integrins can be found on the

surfaces of both normal and malignant cells: some bind several ECM molecules, others

are more selective and only bind a certain molecule. The strength of a cell’s expression of

certain integrins determines its adhesion to the ECM, how much force it can generate to

move, or how likely it is to die by apoptosis, the programmed cell death that is induced

by the interaction of integrins and appropriate ECM molecules [15]. In the case of cancer,

this variety of tasks which integrins are capable of fulfilling makes the protein involved

in almost every step of cancer progression: integrins can be found in cancer initiation,

proliferation, local invasion, entering the vascular system, survival of the travelling cancer

cells that are in the circulation system, migration into the secondary site, and eventually

the growth of the metastatic tumor [16].

5



2. Cell Invasion: Actors and Reactions

Through ECM remodeling, tissue homeostasis – an equilibrium state of a property within

a tissue, e.g. number of cells – and morphogenesis – the process during embryonic de-

velopment in which tissues assume their functional shape – are being controlled. This

remodeling can take place after an impulse is given by the surrounding cells, but also

autonomously through stimulation by released ECM components [17].

While the cells need the ECM for structure, and as a mediator of the various processes

listed above, the ECM needs the cells, too. For instance in connective tissue, the most

common cell type are fibroblasts, whose main functions are the synthesis of ECM ele-

ments, such as collagen or elastin fibers [18].

2.2. Mechanisms of Cell Invasion

Tissue invasion and the subsequent forming of metastases is one of the “hallmarks of

cancer”, as denoted in the famous paper by Hanahan and Weinberg, and it is the deadliest

aspect of the disease [19]. After uncoupling from the original solid tumor, cancer cells –

individually or as a group of multiple cells – start spreading into the nearby tissue. They

are able to reach sites further away by entering the circulation system. After escaping

the blood circulation, the cancerous cells start to proliferate and build a secondary tumor

at the new site, the metastasis [20].

During the initial growth of the cancer, the ECM is used as a scaffold onto which the

cells can attach to. After this initial growth, the cancer degrades the ECM (a process

known as proteolysis), in order to create space in which to invade into [20]. Here, the

integrins on the aberrant cells’ surfaces play an important role. As mentioned previously,

integrins determine the adhesiveness of the cell to the ECM. Optimal conditions for

cell migration are given when the adhesiveness is at an intermediate level, allowing for

“traction at the cell front while releasing contacts at the rear, resulting in net forward

movement” [15]. Adhesiveness can be altered by lowering the integrin expression or the

attraction strength of integrins for their ligands, which are the molecules that can bind

to the integrin. The simultaneous ECM degradation is promoted by the interaction of

integrins and proteases, the enzymes that disaggregate ECM molecules. Proteolysis has

to be carefully balanced, as excessive ECM degradation could reduce traction in a way

that impedes cell migration. [15]

2.2.1. Migration versus Invasion

Cell migration describes the trajectories and velocities of cells across accessible surfaces,

such as across a Petri dish, or along the ECM scaffold when there is space available.

Cell invasion, on the other hand, is a form of migration that requires the cells first to
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disintegrate a barrier which they are about to transit. Among these barriers are other

cells, or – as it is the case in this work – ECM elements. Invasion is a necessary process

that groups of malignant cells undergo when they proliferate or metastasize. [21]

Cell invasion does not only occur for cancerous cells, but also during normal cell mor-

phogenesis and wound healing. After the cells adhere to the barrier, it is disintegrated to

enable migration (if the barrier is the ECM, the disintegration corresponds to proteoly-

sis). [22]

It should be mentioned that cell migration and invasion can take place both individually

and in groups. In the case of collectively migrating or invading cells, the cells use integrin-

induced cell-cell adhesion to form a bulk divided in two parts: the first part consists of

a single cell, the leader, which dictates the direction for the cohort and degrades only

the parts of the ECM that need to be removed for it to travel through. The second part

consists of subsequent cells widening the gap created by the first cell. The leading cells

have been found to exhibit higher viscosity than their followers [23]. In the case of very

soft tissue, the leading part can consist of multiple cells instead of one single leader [24].

2.2.2. Mesenchymal and Amoeboid Migration

Cancer cells have been observed to travel mainly in two modes: mesenchymal or amoe-

boid. Mesenchymal migration is a process that requires the cell to be able to form strong

adhesions to the substrate, which are alternately dissolved and reassembled, creating

forward movement (to be more precise: the cell needs to build so-called focal adhesions,

which is discussed in detail in section 2.2.4). ECM degradation is an important ingredient

for mesenchymal migration, since otherwise the cell is not capable of creating space for

itself to invade into [25]. Mesenchymal migration can be observed for any tumor type at a

certain stage, but is particularly frequent for cancer migration in connective tissues. [24].

Amoeboid migration on the other hand is less dependent on adhesion or ECM degrada-

tion. The cells hardly adhere on the substrate and move forward by contractions of their

cytoskeleton. Some amoeboid cells exhibit such a high contractility, so that they do not

need to disaggregate the ECM, squeezing instead through the tissue gaps. Amoeboid

cell movement is mostly observable in hematopoietic or neuroectodermal tumor cells, but

most tumor types consist of several amoeboid cells. [24, 25]

Depending on the cells’ environment, i.e. the composition of the ECM, cancer cells can

switch between these modes of migration. If the ECM is three-dimensional (as is is the

case in most in vivo scenarios), an inhibition of cell-ECM adhesion mechanisms and ECM-

degrading enzymes forces mesenchymally migrating cells into the amoeboid migration

mode. [16, 26].
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2.2.3. Hapto-, Duro- and Chemotaxis

When talking about cell movements, several variables can be considered. So far, mostly

the manner of locomotion has been discussed, i.e. whether the cells need to destroy the

ECM on their trajectory. Apart from that, the direction of their movement is important

as well. In theory there are situations in which no direction can be detected – the cells

spread through diffusion only – but most of the time some kind of attractor or repellent

is present and guides the cells. The form of this “pulling” or “pushing” substance defines

the kind of directed movement: if the cells are following a concentration gradient of a

substrate which is dissolved in its environment, then the migration happens on the basis

of chemotaxis. Chemotaxis can be observed not only in cells, but in many creatures –

for example the manner in which many animals find conspecifics by following increasing

concentrations of pheromones in the air which have been emitted by potential mates. [27]

Returning to cell movements along the ECM, another way of attracting or repelling cells

is haptotaxis: it works very similar to chemotaxis, but here the substrate has to be bound

to the ECM in contrast to being dissolved. The exact definition of haptotaxis varies from

author to author; originally, it has been introduced to describe directed cell movement up

a gradient of surface-adhesiveness [28]. Sometimes it is still used in this sense, for instance

by Hood et al. [15], but other authors use the term haptotaxis to describe “chemotaxis

on gradients of surface-bound attractants” [29, 30]. The latter definition – which is also

the definition that is used in this work – allows for a switch between the haptotaxis cell

movement, and the chemotaxis cell movement, when the attractor uncouples from the

surface.

The last form of directed cell movement which is important for ECM invasion processes, is

durotaxis. It is a relatively new discovery and describes how cells are attracted by regions

of higher surface stiffness and repelled by softer ones [31]. Originally, durotaxis has been

observed in fibroblasts, but in 2019 it could also be attested for cells responsible for brain

tumors, breast, skin and bone cancer [30]. The effect of durotaxis on the cancer cells’

movements appears to be a saturation process, meaning that as soon as a certain value

of stiffness is reached, the attraction by even stiffer surfaces is no longer increased [30].

The correlation between the cell velocity and stiffness gradient depends on the cell type:

cancer cells were not observed to increase their cell velocity with an increase in steepness

of the stiffness gradient [30], whereas stem cells do [32]. In cancer research, durotaxis is

worth studying since a strong correlation has been observed between increasing stiffness

of the tumor microenvironment and more aggressive tumor expansion [30].
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2.2.4. Focal Adhesions

To perform durotaxis, there needs to be way for the cells to “feel” the stiffness of the

substrate on which they are placed. It has been mentioned earlier that on the cell’s

membrane multiple receptors can be found, where the various integrins have been stressed

to be among the most common and versatile ones. At certain sites within the cell,

clusters of integrin can be found which directly link the cell’s cytoskeleton to the ECM.

These regions, where force transmission between the cell and the ECM are possible, are

called focal adhesions. Integrins, the main cellular adhesion receptors, can sense not only

chemical, but also physical properties of the ECM [16]. Being sensitive to mechanical

impulses, focal adhesions grow and stabilize (i.e. become less likely to disassemble) under

force, resulting in a stronger “grip” which the cells have on the ECM. It does not matter

whether this force is generated by the cell itself or whether the tension is applied by

its environment, for instance by a rigid, hardly deformable surface. Durotaxis can be

explained by the behavior of the focal adhesions: on soft, flexible surfaces, the tension

acting on the cell’s cytoskeleton may be smaller than the force needed to sustain the

adhesion site, leading to the formation of relatively few and small focal adhesions. On

stiffer surfaces, one can observe the contrary effect, where focal adhesions increase in size

and number. On a stiffness gradient, this behavioral difference leads to an imbalance

of focal adhesion development within the cell, provoking cell polarization (i.e. creating a

spatial asymmetry within the cell) and making it oriented toward the stiffer site. [33, 34]

This phenomenon also influences the shape of the cell: less focal adhesions make the cell

appear small and rounded, and the more focal adhesions are developed, the flatter and

more elongated is the cell’s shape [35].

Of course, asymmetric adhesion to the substrate alone does not create movement. When

the cell is elongated, the front part is responsible for the creation of focal adhesions, and

the back part of the cell is responsible for removing the adhesive sites. There are several

possibilities for this to happen: integrins can be extracted from the cell membrane and

left behind on the substrate, they can diffuse and be placed randomly on the cell surface,

dissolving the focal adhesion to which the belonged, or they are packed into a vesicle

and get more or less randomly transported to the front end of the cell. Especially the

first case makes biosynthesis of new integrins to obtain new focal adhesions at the front

end necessary [33]. It has to be stressed, that the first scenario has not been observed in

malignant cells, but the other two scenarios have been found to occur in cancer. There

even is a motor protein which helps transporting integrin to the cell front, making the

integrin recycling in cancer cells more efficient. [16]
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2.2.5. Proteolysis

As mentioned before, the process by which ECM elements are degraded by malignant cells

is called proteolysis and it can be seen as a form of ECM remodeling. The malignant cells

produce several, ECM-specific membrane-degrading enzymes, the proteases, the protein

integrin, which activates proteases, and proteins that inhibit the interaction between the

proteases and integrin. This inhibition is important, as too much proteolysis removes the

substrate that the cells adhere to, thereby impeding their movement [15]. The cancer

cells also secrete factors which motivate non-malignant inflammatory cells within their

environment to increase their expression of proteases, recruiting them as helpers for their

invasion [36]. Ironically, another accomplice of the cancer cells in their mission of de-

grading the ECM is the ECM itself: the ECM stiffens as a result of the tumor-induced

collagen cross-linking, and this stiffening is a signal for both cancer and healthy cells,

to excrete more proteases, leading to accelerated ECM decomposition. Reducing the

cancer-provoked ECM stiffness and related factors are a current object of research in

oncology [37].

In many cases, only the basement membrane needs to be disintegrated to allow cancerous

cells to invade, not the whole ECM. The basement membrane is part of the ECM and

works like a layer that separates tissue compartments, but of course it also is involved

in cell-communication processes. Before single or multiple cancer cells can start their

movements away from the original tumor, they need to disintegrate part of the basement

membrane that has developed around the tumor itself as well. [15]

Proteolysis can also help cancer cells during the process of migration, not only as a

preparation. ECM degradation does not only create a pathway, it also releases growth

factors that have been bound to the ECM, which could increase invasion speed, creating

a vicious cycle that leads to faster cancer spread [38]. Additionally, the degradation of

ECM molecules at the back of the cell facilitates its release from the substrate. Cancer

cells are using this effect by having their focal adhesions synthesize proteases [39].

2.2.6. Collagen Cross-Linking

Next to proteolysis, collagen cross-linking is another form of ECM remodeling. It is an

important process for healthy tissue function, as it provides more stiffness to the ECM

which is necessary for certain organs. Skeletal deformities can be a consequence of a col-

lagen cross-linking deficiency. However, excessive collagen cross-linking has unfortunate

consequences as well and has been observed during tumorigenesis: pre-malignant tissue

has been observed to exhibit unusually high amounts of the amine oxidase lysyl (LOX),

which serves as a catalysator of the cross-linking of collagen. This surplus of LOX is
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expressed by normal, non-malignant cells, hardening the tissue and thereby creating op-

timal conditions for the growth of pre-malignant cells. Stiffer tissue leads to more focal

adhesions, manifesting the position of the pre-malignant cells. Once these cells have fully

transitioned into tumor cells, they secrete excessive amounts of LOX themselves, further

stiffening the ECM. [11, 40]
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3. Mathematical Models of Cell Invasion

The previous chapter provided some insight into the highly complex world of cell and

ECM interactions. The list of properties and mechanisms that was presented is not

exhaustive, and many processes are yet to be discovered. This however does not pre-

vent mathematicians from developing models, either working with what is observable in

experiments and casting data into a set of formulae (the top-down approach), or by math-

ematically expressing a selection of biochemical and/or physical mechanisms which they

consider most important, and combining them in a system of equations (the bottom-up

approach).

All of the models that are discussed in this work in detail are bottom-up models. They

bear the advantage that most behaviors of the system can be traced back to the un-

derlying mathematical process, which allows to draw conclusions about the connected

biological process. Which are these processes, that mathematicians, physicists or bio-

engineers consider most important for cell invasion? Which types of models prevailed,

and how complex are they?

3.1. Historic Overview

Cell invasion as a matter of mathematical modeling is not a new topic, but the possibilities

of research have not been exploited, given the numbers of publications. Just to give

an example, a search in the PubMed-database [41] for the query (“cell invasion” OR

“tumor invasion” OR “tumour invasion”) AND “mathematical model” leads to the result

statistics shown in Fig. 3.1. Of course it depends on the database, but given that PubMed

tends to feature lots of publications from life science mathematics, it is interesting that

only about 60 results could be found. However, it is not surprising that the first article

covered by PubMed is from the mid-1990s, as it was the time when in general the number

of publications of mathematical papers on cancer-related topics remarkably increased [42].

In the following, a small selection of mathematical cell invasion models is presented to

provide some context to the present work. A more detailed timeline can be found in

appendix A.1.
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Publications on mathematical models of cell/tumor invasion listed in PubMed by Year

Figure 3.1.: Number of PubMed-listed articles per year that match the query (“cell in-
vasion” OR “tumor invasion” OR “tumour invasion”) AND “mathematical
model”. The data was collected in January 2024.

The history of cell invasion modeling starts with the modeling of something else – as it is so

often the case. In 1937, Ronald A. Fisher developed a reaction-diffusion model describing

the replacement of a gene by an advantageous mutation within multiple generations [43].

In the same year, his model was generalized by Andrei N. Kolmogorov, Ivan Petrovskii

and Nikolai S. Piskunov, creating the famous FKPP model [44]. Even though its original

field of application was genetics, this model has been – and still is – widely used for

various biological applications.

The feature that makes this model so popular is that it allows for travelling wave solutions.

Following James D. Murray’s definition, travelling wave solutions are solution curves

that move over time without changing their shape. The waves that are important for

this work are of sigmoid shape, but other shapes such as bells are possible as well.

Mathematically expressed, the solution u(x, t) of a differential equation is called travelling

wave if u(x, t) = u(x − vt), where v denotes the constant velocity at which the wave

moves in positive x-direction. Travelling wave solutions are characteristic for invasion

processes and have been discovered for instance in chemical reactions, epidemics and

species territorial invasion [27].

Perhaps the first mathematical model developed specifically for cell invasion was described

by Robert A. Gatenby in 1995. It is a classic, two-dimensional logistic growth model that

calculates the densities of healthy and malignant cells under competition for space and

nutrients [20, 45]. Together with his colleague E. T. Gawlinski, he refined the model

one year later and included the process of healthy tissue degradation through an acidic

substrate generated by the malignant cells. Their model shows how an “interstitial gap”
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builds at the invasive front of the tumor, creating space for the cancer cells to migrate

into [20, 46].

Continuum models are not the only kind of cell invasion models. In 1999, Emma L. Stott

used the so-called Cellular Potts model (CPM) for the first time in the context of tumor

growth, together with her doctoral advisor Nicholas F. Britton and the physicists James

A. Glazier and Marc Zajac. The CPM is a discrete stochastic model of cell movement

where the cells’ main objective is to save energy. This model is discussed in more detail

in section 3.4.1. Stott and colleagues considered a spherical avascular tumor in a three-

dimensional domain and included four types of cells: healthy cells, proliferating tumor

cells, quiescent tumor cells and necrotic cells. Their model features tumor cell prolifera-

tion, nutrient availability and diffusion, and the decay of dead cells. The kind of growth

they considered is called benign tumor growth, meaning that no healthy tissue is being

destroyed, it is rather pushed away. With their simulation, they were able to reproduce

the characteristic Gompertz growth curve. This curve displays “an initial exponential

growth phase, followed by a deceleration of the growth rate and a final, steady-state size

of the tumor due to exhaustion of growth resources” [47, 48].

In 2014, René F. M. van Oers and colleagues developed a model for angiogenesis (the

sprouting of blood vessels), which bears a resemblance to cell invasion as it requires en-

dothelial cells to detach from their original site, induce degradation of capillary basement

membrane and to migrate toward an angiogenic stimulus [49]. However, in their model

they neglected degradation and oriented attraction. Instead, they focused on cell-cell

interactions and single cell responses to ECM mechanics, creating the first mathematical

model of durotaxis. The model is hybrid, as it combines a two-dimensional CPM with

a finite element method (FEM) description of the surroundings: the cells are discretely

modeled using the CPM, and their movement is mimicked by augmenting or diminishing

the space occupied by the cells, depending on the passive forces acting on them and on the

active forces exerted by the cells themselves. The FEM model explains the cell-induced

deformations of the ECM, which is considered to be an isotropic, uniform, and linearly

elastic material that remains unchanged regarding its local density, but exhibits a cell-

dependent stiffness gradient due to strain-stiffening [50]. Two researchers from van Oers’

team, Elisabeth G. Rens and Roeland M. H. Merks, continued the study of the durotaxis

model and published their extension in 2019: with the inclusion of focal adhesions, they

can describe the cell spreading behavior governed by the ECM stiffness [35].

The relevance of the classic model by Gatenby and Gawlinski is proved by Alexander

P. Browning and colleagues in 2019. They used a version of their model and calibrated it

quantitatively to experimental data – another milestone in cancer invasion modeling, as it

is the first such calibration. They estimated three parameters using a Bayesian sequential
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learning approach: the cancer cell proliferation rate, their diffusivity and the rate at which

the surrounding tissue is degraded. Even though they do not differ between healthy tissue

cells and ECM elements, their model can be understood as a two-component model for

cancer cell and ECM element density. [51]

Browning et al.’s model was simplified two years later by Chloé Colson and colleagues.

They created a very simple continuum model: while Browning et al. assume cancer cell

proliferation to be dampened by the presence of both, other malignant cells and healthy

tissue, Chloé Colson and colleagues assume that the healthy tissue does not constitute

an obstacle for the invading cancer cells. [52]

Continuum models ignore the individual particles (or cells) completely, and the CPM

disassembles the particles into even smaller units – is there a middle ground that considers

just the particles?

In 2023, Rebecca M. Crossley and colleagues did exactly that: they derived a continuum

model that includes stochastics on the particle-level by coarse-graining an agent-based

model. They considered this necessary, as probabilistic effects significantly impact diffu-

sion in the case of rather few diffusing particles [53]. On the single-cell level, volume-filling

is the most important factor of influence: the domain is assumed to be a one-dimensional

grid, a lattice, and each lattice site is occupied by a certain number of cells and ECM

elements. The cells can move to the adjacent lattice site or proliferate and put their off-

spring in the same lattice site they are in, but in each lattice site the number of occupants

– may it be cells or ECM elements – must not exceed an upper bound N . The probability

of a cell to change its location or to proliferate shrinks as the target site of this operation

becomes more crowded. Cells can also degrade ECM elements at a certain rate, but only

if the ECM element is located in the same lattice site. [54]

In the summary above, four levels of model complexity can be distinguished: the most

simple form are the continuum models, as the one by Colson, to pick a more recent

example. They are followed by agent-based models like Crossley’s, and the CPM-based

models, such as Stott’s. The most complex type of cell invasion models are hybrid models

such as the one by van Oers. In this work, three models of different complexity levels are

compared and the relationship between their detailedness and the outputs they produce

is studied. How much complexity is necessary to capture the main dynamics of cell

invasion?
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3.2. Crossley’s Agent-Based Continuum Model

Rebecca M. Crossley and colleagues derived results similar to typical continuum models

coming from the agent-based point of view [54]. While many other continuum models are

derived from general invasion processes, this is a rather unusual approach of developing

a relatively simple model while still incorporating mechanisms on the single cell level,

making it worth to retrace its derivation at least partially.

Before delving into the equations, one word about agent-based modeling: in contrast to

continuum models, agent-based modeling focuses on the objectives of the single particles

(the agents) in the system, may it be cells, birds, or voters. There is no rule for the

system’s dynamics on a higher level – all major trends that become observable beyond

a critical number of agents are a result of the sum of activities on the agent-level [55].

Assuming this critical number of agents is reached, these resulting collective effects can

then be translated to continuum models.

In the following, some terms and explanations from Paul R. Taylor et al.’s article on

compartment-based diffusion models [53] are used. As stated before, for the agent-based

model the domain is assumed to be a one-dimensional evenly spaced lattice, and each

lattice site i can have at most N occupying agents, i.e. cells or ECM elements. While

ECM elements are immobile, cells can move but only to the neighboring lattice site and

only if there is still space. Cells can also proliferate, but only if there is still space in

their own lattice site for the daughter cell. And lastly, a cell can only degrade ECM

that is situated in the same lattice site. Denoting a specific realization (a sample) of the

model with j, the number of cells and ECM elements in lattice site i at time t is given

by uji (t) and mj
i (t), respectively. With this notation, the scenarios described above can

be quantified.

The probability of a cell to attempt a movement during a time step τ is given by

pm ∈ [0, 1], and it is equally likely that the target site is the left lattice site i − 1 or

the right one i + 1. The occupancy level at the target site decides whether the move is

successful: movement success is inversely proportional to occupancy, leading to the fol-

lowing probability of movement to the left (Tmj

i− ) or the right (Tmj

i+ ) in the time interval

[t, t+ τ):

Tmj

i± (t) =
pm
2

(
1−

uji±1(t) +mj
i±1(t)

N

)
.

The same principle holds valid for attempts of a cell to proliferate. The probability that

a cell tries to create an offspring in time step τ is given by pp ∈ [0, 1], and therefore the

probability of proliferation T pj

i during [t, t+ τ) is
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T pj

i (t) = pp

(
1−

uji (t) +mj
i (t)

N

)
.

The ECM degradation is not affected by volume-filling effects, it only depends on the

number of cells present in lattice site i and the probability that one cell degrades one

ECM element pd ∈ [0, 1]. Hence, the number of ECM elements T dj

i that are degraded

during [t, t+ τ) is given by

T dj

i (t) = pdu
j
i (t).

Note that T dj

i is not defined as a probability, in contrast to Tmj

i± and T pj

i . Crossley does

this to facilitate the subsequent derivation of the continuum formulation for the ECM

degradation.

With these quantities, the agent-based model’s formulation is concluded. Now the ob-

jective is to derive a system of partial differential equations (PDEs) using a so-called

coarse-grained description of this model. Coarse-graining means that instead of consid-

ering every single cell or ECM element, one groups these agents – here conveniently by

the lattice site they are in – leading to a reduced number of degrees of freedom in the

system while maintaining the model’s key physical features [56].

The exact steps performed in the coarse-graining can be found in appendix A.2. The

method yields a parameterized system of PDEs, where the evolution of the cell and ECM

density is described spatially for x ∈ R and temporally for t ∈ (0,∞). The equation for

the cell density u(x, t) is given by

∂tu(x, t) =D

(
∂xxu(x, t) +

u(x, t)∂xxm(x, t)

K
− m(x, t)∂xxu(x, t)

K

)
+ ru(x, t)

(
1− u(x, t) +m(x, t)

K

)
,

(3.1)

where D can be interpreted as cell diffusivity, K is the carrying capacity and r is the

proliferation rate or probability. The ECM density m(x, t) can be described in a more

simple manner, its equation is given by

∂tm(x, t) = −λu(x, t)m(x, t), (3.2)

where λ can be regarded as a degradation parameter.

To finalize their model, Crossley and colleagues remove the dimensions from the equations

(3.1) and (3.2) by introducing the following substitutions:
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ũ =
u

K
, m̃ =

m

K
, t̃ = tr, x̃ =

√
r

D
x.

With these – and a bit of rearranging (3.1) using the product rule and the additional

substitution λ̃ = λK/r – one obtains the non-dimensional model

∂t̃ũ = ∂x̃ ((1− m̃)∂x̃ũ+ ũ∂x̃m̃) + ũ(1− ũ− m̃),

∂t̃m̃ = λ̃m̃ũ.
(3.3)

Crossley et al. constrain the diffusion term at x = 0, i.e. they postulate:

(
1− m̃(0, t̃)

)
∂x̃ũ(0, t̃) + ũ(0, t̃)∂x̃m̃(0, t̃) = 0.

This can be interpreted as “building a wall” at x = 0, preventing any cells to leave the

boundary towards negative x-values. In practice, this means that the domain is now

constricted to x ≥ 0.

Additionally, Colson et al. require ũ, ∂x̃ũ → 0 for x̃ → ∞ and set the initial conditions

ũ(x̃, 0) = ũ0(x̃) ≥ 0, m̃(x̃, 0) = m̃0(x̃) ≥ 0, 0 ≤ ũ0(x̃) + m̃0(x̃) ≤ 1 ∀x̃ ∈ R.

3.3. Colson’s Minimal Model

Shortly before Rebecca Crossley constructed her model, another mathematician took on

the challenge to model cancer cell invasion in one dimension [52]. Cloé Colson considers

the same quantities as Crossley, cancer cells and ECM elements, and develops a reaction-

diffusion model without the “detour” via the agents. Her goal is to set up a model that

makes it easy to study the cross-diffusion effects of cells and ECM with analytical tools,

leading to a relatively simple set of PDEs for (x, t) ∈ R× (0,∞):

∂tu(x, t) = ∂x

(
D

(
1− m(x, t)

mmax

)
∂xu(x, t)

)
+ ru(x, t)

(
1− u(x, t)

K

)
,

∂tm(x, t) = −λu(x, t)m(x, t),

(3.4)

where u, m are the cell and ECM density, respectively, D is the diffusivity of cells when

no ECM is present, mmax is the ECM density at which the cells are unable to degrade

and invade it, r is the proliferation rate, K is the carrying capacity, and λ is the ECM

degeneration rate. A summary of the parameters of both PDE models can be found in

Tab. 3.1.
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Parameter notation Parameter name Model

λ ECM degradation rate both

r proliferation probability both

D cell diffusivity both

K carrying capacity both

mmax unconquerable ECM density Colson

m̂0 initial ECM density both

α initially invaded region Crossley

σ initially invaded region Colson

ω smoothness of initial invasion Colson

Table 3.1.: Parameter definitions of the parameterized versions of Crossley’s and Colson’s
models. The parameters in the last four rows correspond to the initial condi-
tions of the numerical solutions, see appendix A.3 for more details.

The similarities and differences between Colson’s and Crossley’s models become more

apparent when considering the dimensionless version of (3.4):

∂t̃ũ = ∂x̃ ((1− m̃)∂x̃ũ) + ũ(1− ũ),

∂t̃m̃ = −λ̃ũm̃,
(3.5)

where λ̃ = λK/r [52]. While the equation for m̃ is the same as in (3.3), the reaction-

diffusion equation for ũ differs: in Crossley’s model, both, the diffusion term ∂x̃((1 −
m̃)∂x̃ũ+ũ∂x̃m̃) and the reaction term ũ(1−ũ−m̃) include volume-filling effects due to cells

and ECM, whereas Colson’s model only incorporates the filling by the cell population [54].

Crossley compares the wave speed of the travelling wave solutions of the models (3.3) and

(3.5), and finds that the additional volume filling effects through the ECM density slow

down the invasion process, with the reaction term having a stronger influence on wave

speed than the diffusion term [54]. The travelling wave solutions and their differing

speeds are shown in Fig. 3.2. For more details on the numerical solution of the PDEs see

appendix A.3.

3.4. Van Oers’ Hybrid Model

While Crossley and Colson developed their models specifically for cell invasion, the

biomedical engineer René F. M. van Oers built his hybrid model for the network-formation

of endothelial cells which happens during the growth of blood vessels [50]. As it has been

mentioned earlier, this process is similar to cell invasion, hence with a few extensions his

model can be used for a very detailed description of mesenchymal, durotactically guided
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Figure 3.2.: Numerical solutions to the dimensionless models of Crossley and Colson for
t = 0, 25, 50. Over time, the cell front in Colson’s model becomes faster
than the one in Crossley’s model. (Parameter values: λ̃ = 10; parameters of
the initial conditions: m̂0 = 0.8, α = σ = 5, ω = 1. See appendix A.3 for
more information about the parameters of the initial conditions.) Remark:
At t = 25, Crossley’s trajectory for the cells exposes slight oscillations close
to the left domain boundary. This is because for certain λ̃-values, the model
equations become stiff, making the numerical solver unstable. In the case of
parameterized versions of the models, this effect is not as pronounced.

invasion in the two-dimensional domain. In this section, the original model by van Oers et

al. are explained and the necessary extensions – ECM degradation and cell proliferation

– are introduced.

3.4.1. The Origins of the Cellular Potts Model

A possibility to translate the interactions of cells into numerical operations was found

by François Graner and James A. Glazier in the early 1990s [57]. Their Cellular Potts

model (CPM) is a modification of the Potts model, which itself is a generalization of the

(Lenz-)Ising model. The (Lenz-)Ising model was originally designed for ferromagnetism

in cristals, using statistical mechanics and physics, but it has become very popular in the

investigation of problems in the field of mathematical biology as well.

It might be helpful for this work’s purposes to have a closer look at the development of

the (Lenz-)Ising model: about 100 years ago, the electron’s spin was discovered and was

suspected to cause ferromagnetism, i.e. the property of certain metals to become magnets

while they are in the proximity of a permanent magnet or lie inside a magnetic field. The

idea was that as soon as the metal is put under the influence of such a magnetic field,

all electron spins start to orient in the same direction – this alignment is the reason for

magnetism in permanent magnets. The issue with this theory was how all electron spins
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could be aligned in such a way, considering how each electron only influences its direct

neighbors. The physicist Wilhelm Lenz proposed a model in which the molecules are

located on the nodes of a (one- or multi-dimensional) grid and each molecule possesses

a spin value +1 (“spin up”) or −1 (“spin down”). He also assumed that the interaction

energy between molecules depends only on the spin values of neighboring nodes of the

grid, meaning that if a molecule is not a direct neighbor of another, the influence they

can exert upon each other is zero. But if they are direct neighbors, there is a tendency

that their spins will become the same, and the probability of this to happen depends on

their interaction energy (and also on the strength of the external magnetic field). [58]

Lenz’ student Ernst Ising analyzed the one-dimensional model in his dissertation and

found that in the case of the one-dimensional grid, the uniform state (where all molecules

have the same spin value) is unstable: if a single spin in the middle of the grid is changed

by coincidence, as it can happen through thermal fluctuations, this could have enough

power to change the spin value of the neighbors, and their neighbors, and so on, until

no clear orientation which explains magnetisation is detectable [59]. However, this is

only the case for the one-dimensional model: years later, Rudolf Peierls introduced the

idea of boundaries between areas of +1- and −1-spins in the two- and three-dimensional

model, which inhibit boundary-crossing change of spins at a sufficient probability. If the

area or volume enclosed in these boundaries is small enough, there might be just enough

molecules with the same spin value to create net magnetisation. Even though his proof

contained an error, he provided a motivation for other scientists to review the model

and soon after, Lars Onsager was able to solve the two-dimensional problem, proving

that the (Lenz-)Ising model can be used as an explanation for ferromagnetism in the

two-dimensional case. [60]

Some years later, in 1951, Renfrey B. Potts introduced the Potts model in his dissertation.

He created two different versions of his model, the vector Potts model and the standard

Potts model. In this work, the standard Potts model is considered since this is the one

that is used for the CPM in most of the literature cited here. Both models assume that

there are not only two spin values for each molecule, but q ∈ N. If the number of possible

spin values q is very large, one also talks about the “large-q Potts model”. Once again,

only the nearest neighbors are considered as factors of influence, and the likelihood for

a specific molecule to change its spin value from qi to qj increases if there are many

neighbors with the spin value qj around (as it is the case for the (Lenz-)Ising model). [61]

As mentioned earlier, the physicists Graner and Glazier used the two-dimensional Potts

model to describe cell sorting, a mechanism by which mixed embryonic cells of two differ-

ent types find cells of the same kind and move closer to them. In the end, all cells of the

same type are clustered together. As in the Potts model, their model assumes the grid
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nodes to contain spin information, but since each node represents a partition of a cell,

one usually finds clusters of nodes with the same spin value. More precisely, let there be

N cells on the lattice, and let each cell have a size of five nodes, or more generally, of five

lattice sites. Each cell has a unique spin value from 1 to N so that it can be identified

(that is why spin values in the CPM can be interpreted as cell identification numbers).

Then, one finds N clusters consisting of five neighboring lattice sites with the same spin

on the grid. Lattice sites without any cells on them have spin value 0. Graner and Glazier

also assign one of the two cell types to each of the occupied lattice sites. In the original

CPM, energy is necessary for two things: the attachment between two cells of different

type costs much more energy than the attachment between cells of the same type, and

cell area changes are possible (e.g. from five lattice sites to four or six), but they cost

more energy than maintaining the original, “target” cell size. Other factors that require

energy can be introduced as well, such as resistance against an attracting substance. The

goal of the system is to minimize the necessary energy by randomly choosing cell motions

and size expansions or reductions and evaluating whether the chosen operation lowers

the overall energy. Counterintuitively, if the system energy increases after the chosen op-

eration, it is still accepted at a certain probability – the so-called Boltzmann probability

– depending on the temperature. This is due to the fact that increasing temperature

makes it more likely that the cells dissociate, meaning that they separate from the sur-

face freeing them from dedicating any energy to the attachment to other cells or to the

maintenance of their occupied area.1 [57]

To summarize, with the CPM the relationship between cell motion and tissue properties

such as pressure, temperature or the presence of attractors or repellents can be compu-

tationally investigated. [47]

3.4.2. Van Oers’ Modification of the CPM

Now it is time to see how van Oers and colleagues combined the CPM with a finite

element method (FEM) to simulate mechanical interactions between cells and ECM.

Conveniently, both methods require a grid-like spatial domain so their combination does

not need any transformations. The grid is assumed to be a square filled with square-

shaped elements, each element having four nodes (one at each vertex). Note that in the

following, “element” and “lattice site” are used synonymously to adhere to the common

terms of the FEM and the CPM, respectively. In van Oers’ version of the CPM, only one

cell type is present, so there are no energy differences depending on which cells adhere

1Some authors, such as van Oers or Szabò, do not use temperature as a parameter, instead they use
a dimensionless factor called “intrinsic cell motility” which accounts for random cell movements and
has the same purpose as temperature in the original CPM. [47, 50]
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to each other, but it is assumed that cell-cell adhesions require more energy than cell-

ECM adhesions. The other factor that influences the system energy is the same as in the

original CPM, namely changes in cell size. Van Oers et al. describe the overall system

energy with the following Hamiltonian:

H =
∑

σ∈cells
λ

(
a(σ)−A(σ)

A(σ)

)2

+
∑
(x,x′)

J(σ(x), σ(x′)) · (1− δ(σ(x), σ(x′))),

where the first sum captures the energy necessary to maintain a certain cell volume

(or area), and the second sum describes the contact energy between the cells. In more

detail, x and x′ are pairwisely different lattice sites, σ(x) is the spin (or cell identification

number) of the cell that sits in lattice site x, λ is a parameter describing the elasticity of

the cells, A(σ) is the target volume of the cell (in the example above it would be A(σ) = 5

for all cells), a(σ) is the volume of the cell in the current state of the system (it can be

equal to A(σ), but it can also be a bit higher or lower), J(σ(x), σ(x′)) is the necessary

attachment energy between the cells at site x and x′, or, if one of the sites, say x′, is not

occupied by a cell, i.e. σ(x′) = 0, then J describes the cell-ECM adhesion energy. δ is

the Kronecker Delta which makes sure that if x and x′ are occupied by the same cell or if

both are free of any cells, then the attachment energy between these lattice sites is zero.

An overview of all parameters of the model and its extensions which are introduced later

can be found in section 3.4.5.

As in the original CPM, after initially placing the cells on the grid, van Oers’ model

iteratively chooses a random site x and a neighbor x′, and computes H for the scenario

where σ(x′) becomes σ(x), i.e. the cell with identification number σ(x) extends the area

it occupies and invades the area occupied by cell σ(x′). Of course it is also possible that

one of the sites does not contain any cells, only ECM, or that both sites contain the

same cell – all of these exceptions are covered by the formulation of H. The algorithm

now compares the old Hamiltonian with the one for the potential new arrangement and

evaluates this difference ∆H with the following rule:

P(∆H) =

1 if ∆H < 0

e−
∆H
T if ∆H ≥ 0,

(3.6)

where P(∆H) describes the likelihood for the switch from σ(x′) to σ(x), and T is a

constant for intrinsic cell motility, which can be imagined analogously to the diffusion

coefficient in diffusion equations [62].

The last step of one iteration of van Oers’ CPM consists of validating whether the switch

violates a connectivity constraint: if the switch σ(x′) → σ(x) splits the cell with iden-
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tification number σ(x′), P(∆H) is set to 0. See Fig. 3.3 for a schematic depiction of the

decision rule (3.6).

Figure 3.3.: Decision process if cell σ(x) should expand to lattice site x′, provided the
expansion does not violate the connectivity constraint.

To gather a bit more theoretical background, the CPM is simulated using a Metropolis-

Hastings algorithm. The same method is commonly used for the CPM’s predecessors, the

(Lenz-)Ising model and the Potts model. The Metropolis-Hastings algorithm is part of the

class of Markov chain Monte Carlo methods which approximate complicated probability

distributions by drawing large samples from simpler distributions that have a known

relationship to the target distribution.

The random variables from this simpler distribution need to fulfill the Markov property,

i.e. their probability needs to be memoryless: let {X(t)}t∈N be a family of random variables

describing the state of a system, where X(t) ∈ X := {x1, x2, ...}. X is a finite or countably

infinite set of states. Then, {X(t)}t∈N is called Markov chain if the transition probability

from step t− 1 to step t is defined by

P(X(t) = x1|X(t−1) = x2, X
(t−2) = x3, ...) = P(X(t) = x1|X(t−1) = x2),

i.e. the state X(t) only depends on the last state X(t−1). [63]

The CPM can be viewed as a Markov chain since the transition probability from the

current configuration X(t) at time t to a different one X(t+1) in the next time step only

depends on the state at time t, making it a memoryless process – hence satisfying the

Markov property. Whereby “configuration” refers to the entity of spins of all lattice sites
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in the system, and changing the spin of one site leads to a new configuration. Based on the

current configuration, a possible new configuration is picked following a proposal density

q. Sampling from q consists of two tasks, first selecting a lattice site from a uniform

distribution, and secondly transferring its spin to a neighboring site. The last ingredient

of the algorithm is the target density π, or at least a density proportional to it, which

is denoted by π̃. The target density is equal to the Boltzmann-weighted configuration

probability, i.e. the likelihood of a certain configuration to appear measured by the system

energy induced by it (the lower the system energy, the more likely the configuration) [64].

The approximative target density is a function of the system energy H(X(t)), (whereby

X(t) is the configuration), and is given by π̃(X(t)) := exp
(
−H(X(t))

T

)
∝ π. Eventually,

by iteratively sampling from q and evaluating these samples using π̃, the goal is to find

configurations that approximate samples from π, and thereby come closer to very low

system energy.

With this interpretation and notation, it is possible to rewrite the above algorithm in

a more compact form following Christian P. Robert’s article on the Metropolis-Hastings

algorithm [65]:

Algorithm Metropolis-Hastings CPM

Given X(t) = x(t)

1: Generate Y (t) ∼ q( · |x(t))

2: Choose X(t+1) =

{
Y (t) with probability ρ(x(t), Y (t))

x(t) with probability 1− ρ(x(t), Y (t))

where ρ(x, y) = min
{

π̃(y)
π̃(x) ·

q(x|y)
q(y|x) , 1

}
The decision rule defined by the function ρ is identical to (3.6): choosing the sample Y (t)

starting from x(t) is just as likely as choosing x(t) starting from Y (t), so it is q(x(t)|Y (t)) =

q(Y (t)|x(t)) and one obtains (using x for the old and y for the new configuration)

π̃(y)

π̃(x)
· q(x|y)
q(y|x)

=
π̃(y)

π̃(x)
=

exp
(
−H(y)

T

)
exp

(
−H(x)

T

) = exp

(
H(x)−H(y)

T

)≥ 1 if H(x) ≥ H(y)

< 1 if H(x) < H(y).

With the familiar definition of ∆H = H(y)−H(x) it can be concluded

ρ(x, y) =

1 if ∆H ≤ 0

e−
∆H
T if ∆H > 0,

which is the same decision rule as van Oers defined it, with the only difference that the

strictness of the inequalities is switched.
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After one Monte Carlo step, by which n iterations of the above algorithm are meant

(where n is the number of lattice sites), the first deformation in the ECM caused by the

cells’ movements is calculated using finite elements. In the following, some terms and

explanations from Wolfgang A. Wall’s lecture script on the FEM [66] will be employed.

As it has been mentioned earlier, the domain is a square filled with square-shaped el-

ements. The setting is two-dimensional, hence each node has two degrees of freedom,

one in x1- and one in x2-direction. A visualization of this local and global geometry of

the domain is shown in Fig. 3.4. In total, assuming there are nx elements per row (and

nx2 = nx1 elements per column), then in total there are nx1 + 1 nodes per row (and

column), leading to (nx1 + 1)2 nodes in the whole grid and hence to 2 · (nx1 + 1)2 global

degrees of freedom. The objective of the FEM is to find the global vector u ∈ R2(nx1+1)2

which contains the displacement of every degree of freedom, whereby u is the solution of

the finite element equations given by

Ku = f, (3.7)

where K is the global stiffness matrix and f is the force vector constituted by the forces

from the cell motions. The global stiffness matrix is a collection of contributions from all

elements: it is assembled by the local stiffness matrices of all elements (the local element

stiffness matrix k(e) ∈ R8×8 is the same for each element).

Figure 3.4.: Local and global FEM setting. Left: definition of the eight degrees of free-
dom in the local, element-wise domain. Middle: definition of the degrees of
freedom in the global domain – note that when the elements share nodes,
they also share the respective degrees of freedom. For instance, the hori-
zontal displacement in the bottom right corner of element 0 is the same as
the horizontal displacement in the bottom left corner of element 1, hence
the shared displacement u2. Right: the numeration of elements starts at the
bottom left element and ends at the upper right element.
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The matrix K in equation (3.7) is built in the setting of linear elasto-statics. The method

is very common in mechanics and it is explained in detail in appendix A.4.

The definition of the force vector f in (3.7) is model specific, so it is explained here.

f contains the externally applied loads, which can be interpreted as the cells’ traction

forces. As proposed by the biomedical engineer Christopher A. Lemmon and biologist

Lewis H. Romer, cell shape and size are used to calculate the magnitude and direction

of the forces they exert [67]. Let i and j be two nodes that belong to elements which are

covered by the same cell. Then it is assumed that these two nodes pull on each other by a

force proportional to their distance, di,j , such that the ensemble of all node forces within

one cell point towards the center of the cell. Using µ as the proportionality constant, and

∆x as the side length of one square element, a two-dimensional force vector Fi can be

obtained for each node i:

Fi = µ∆x
∑
j

di,j . (3.8)

After calculating Fi for all nodes i that belong to elements with cells on them and dis-

secting the Fis into the vertical and horizontal degrees of freedom, they constitute the

global force vector f .

In summary, the cell forces f , together with the stiffness matrix K, dictate how cell

movements deform the ECM. But how does the ECM influence the cell movements in

return? For this purpose, van Oers and colleagues introduce durotaxis in their CPM:

cells prefer ECM regions of higher stiffness, so it is assumed that migration towards high

stiffness reduces the system energy compared to migration towards regions of lower stiff-

ness. Regions in the ECM where stiffness is higher can by identified using the concept

of strain-stiffening, a process during which material becomes stiffer the more it is de-

formed [68]. Once again, assume that a lattice site x and a neighbor x′ were randomly

chosen. Now the difference in system energy is calculated given that σ(x′) is changed to

σ(x), i.e. cell σ(x) extends and invades the space of cell σ(x′). This difference not only

consists in energy changes from cell-cell adhesions and size transformations, but now it

also depends on the durotaxis factor:

∆Hdurotaxis = g(x′, x) ·
(
h(E(ε1)) · ⟨v1, vd⟩2 + h(E(ε2)) · ⟨v2, vd⟩2

)
.

The function g indicates whether cell σ(x) expands or diminishes its size, multiplying

∆Hdurotaxis with g(x′, x) = −1 in case of expansion (the cell moves according to the

durotactic gradient, a motion that requires less energy) and with g(x′, x) = 1 in case

of retraction (the cell opposes the durotaxis-induced motion, a resistance that needs

more energy). The rest of the term combines three properties of the mechanical cell-
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ECM interaction: preference for higher stiffness, strain-stiffening, and the orientation of

stretch.

Stiffness is given by the function E (see below), and the preference for higher values of

E is expressed via the sigmoid function

h(E) =
α

1 + exp(−β(E − Etr))
.

α is the maximum value of h, β describes the steepness of the curve and Etr provides the

point at which h(Etr) =
α
2 . With this function van Oers captures how a certain level of

ECM stiffness is necessary to motivate the cell to expand, but at some point a maximum

is reached and higher values of E do not change the cells behavior anymore, as it is also

described in section 2.2.3.

Strain-stiffening is described using the stiffness E. As mentioned before, the more de-

formed – or stretched – the material, the stiffer it becomes. Hence, stiffness is a result of

stretch ε:

E(ε) = E0 ·
(
1 +

ε · 1ε≥0

εst

)
,

where E0 is the stiffness of the unstretched material, and εst describes how fast the ECM

stiffens under stretch. The indicator function 1ε≥0 = {1 if ε ≥ 0, 0 else} ensures that

only non-negative stretch, i.e. substrate extension, leads to stiffening, whereas negative

stretch, i.e. compression, does not have any effect on the ECM.

The orientation of stretch plays an important role as “a strained ECM is stiffer along

the strain orientation than perpendicular to it” [50], increasing the durotactic effect if

a cell motion follows this orientation. Using the FEM solution, the strain tensor for

each element is calculated. Its eigenvalues ε1 and ε2 yield the maximum and minimum

stretch and they are used to compute the strain-induced maximum and minimum stiffness

E(ε1), E(ε2). Their corresponding eigenvectors v1 and v2 yield their orientation inside

the element. They are used for comparison with the direction of the cell motion which is

given as a unit vector vd = (x′ − x)/||x′ − x||2, so that it can be said whether the motion

follows the orientation of the stretch. The scalar products used for this comparison,

⟨v1, vd⟩ and ⟨v2, vd⟩, are squared so that only values greater or equal to 0 are possible.

Cell movements vd perpendicular to a stretch direction v1 or v2 are not influenced by the

ECM stiffness.

A schematic depiction of the components of ∆Hdurotaxis can be found in Fig. 3.5.

Closing the section on van Oers’ original model, it should be mentioned that after each

Monte Carlo step, the grid is assumed to be undeformed again, and the deformations

are calculated starting from new with the next cell configuration. This simplification is
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Figure 3.5.: Components of ∆Hdurotaxis and their representation in the lattice. After
∆Hdurotaxis has been computed, it has to be summed up with the Hamiltonian
that captures energy expenditures or savings due to volume changes and cell-
cell or cell-ECM adhesion. Then, the decision rule (3.6) can be applied to
∆Htotal. The lattice coloring is the same as in Fig. 3.3.

used because otherwise, the stiffness matrix K can no longer be assumed to be constant,

which would increase the computational expenses significantly. Nonetheless, the grid de-

formations still play an important role in the model as the deformation from the previous

Monte Carlo step influences the Hamiltonian for the next step.

3.4.3. Extending van Oers’ Model: ECM Degradation

So far, only one kind of actor is considered in van Oers model: the cells. In order to

simulate ECM degradation, the ECM elements need to be included as well. They can

be introduced in the CPM as a second type of cells with the properties of the ECM: for

instance, the adhesion energy between a site occupied by a cancerous cell and another

site occupied by an ECM “cell” is equal to the adhesion energy between the cell and the

substrate. Also, ECM “cells” do not mechanically influence the surface.

Each ECM element occupies exactly one lattice site, making it possible to model the

degradation process at a high resultion. When the ECM is initialized at the beginning of

the simulation, its concentration can be regulated with a parameter m̂0 ∈ [0, 1], hence if

m̂0 < 1, some lattice sites are still free of cells and ECM. In the following, let x denote a

lattice site and τ(x) is the ECM element occupying it (analogous to the cell identification

number σ(x)). Lattice sites where ECM elements are present cannot be visited by cells

regardless of whether an expansion onto the ECM-occupied site leads to an energetic

advantage. So, differently from the invasive CPM by Turner et al. (see a summary of

their model in appendix A.1), the ECM is not regarded as a “soft barrier” by including

its presence in the system energy Hamiltonian [62], but as an impenetrable wall that

changes its shape as a consequence of each Monte Carlo step. Its shape is influenced by
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the cells which secrete proteolytic enzymes. The update of the ECM element dissolution

is guided by the following criteria, which are illustrated by Fig. 3.6:

• there is an area of influence A(τ(x)) surrounding each ECM element τ(x) in which

the presence of cells and their proteases have an effect on the element. Cells outside

of this area do not have any effect on the ECM element.

• within A(τ(x)), there is a gradient making cells far away from x less influential than

cells closer to x. This gradient is determined by a function f : A(τ(x)) → [0, 1]

which maps the spatial cell distribution in the area of influence to the probability

of degradation of τ(x).

Figure 3.6.: The ECM element τ(x) at site x is surrounded by an area of influence A(τ(x))
with a radius of 4 layers (or elements). Lattice sites that are part of A(τ(x))
have a blue shading, and if they are part of the same layer, their shading is
of the same intensity. Here, only lattice sites occupied by cell 1 influence the
degradation probability of τ(x), cells 2 and 3 are too far away.

These properties are supposed to describe diffusion of proteases through the ECM and

also through areas where cells are present. Of course it is a simplification to assume that

these enzymes float through ECM just as they float through other cells. This limitation

could be at least partially mitigated by the choice of f . f is not required to be a continuous

function, hence one could select it such that it captures the different material properties

of the entities present in A(τ(x)). Indeed, here f is not defined as a continuous function

either. A(τ(x)) is divided in L “layers” of lattice sites, where the sites in each layer

are assumed to have an equal influence on τ(x) if occupied by cells. In accordance with

the rules defined above, this means that if site x1 and x2 are both part of the same
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layer, their distance to x is equal or at least sufficiently similar. These layers can maybe

best be understood as rings circling x. The influence of each layer i is represented by a

weight wi ∈ [0, 1], increasing as the layers get closer to x, leading to the probability of

degradation of ECM element τ(x)

f(A(τ(x))) =
L∑
i=1

wi
number of sites in layer i occupied by cells

total number of sites in layer i
.

As f needs to produce values between 0 and 1, the additional restriction
∑

iwi = 1 is

made. Of course this still leaves a large variety of options for the choice of the weights.

But as the function f is supposed to describe diffusion, it makes sense to choose weights

that mimick the properties of diffusing enzymes. The concentration of diffusing particles

decays exponentially as the layers are located further away from their source, hence the

following choice of exponentially decaying weights seems reasonable:

wi = ai−1 1− a

1− aL
, i ∈ {1, ..., L},

where a > 1 is a parameter for the steepness of the decay. The sum of the wi is equal to

1, which can be shown easily.

f is called after each Monte Carlo step for every ECM element and is then either degraded,

making space available for nearby cells, or it remains unaffected.

3.4.4. Extending van Oers’ Model: Cell Proliferation

To proliferate, cells must first double their size and then divide [69]. By their nature,

cancer cells do not possess – or only possess very limited – endogenous mechanisms that

control their growth and division, hence cancer cell growth and resulting division is mainly

limited by space and nutrients.

Crossley et al. ignore nutrients and the changes in cell size altogether, making proliferation

a purely space-limited, cell size independent process. The former kind of limitation might

lead to similar results as the nutrient-dependent growth limitation: if the cells are spread

on the surface with a lot of space between each other, diffusing nutrients can reach every

cell equally well and all cells can easily divide. If the cells are clustered in a spheroid,

only the cells at the outer rim have access to enough nutrients for proliferation, and also

they are the only ones that have enough space to do so. The simplifying assumption that

size is not of importance for cell division could however lead to quite different growth

speeds and patterns than what is observed in nature.
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To reduce computational expenses, no additional quantities are introduced, and proli-

feration is implemented to be only limited by space instead of nutrients, too. Just as

Crossley and colleagues did, a proliferation probability pp is included according to which

each cell divides after every Monte Carlo step.

If a cell is selected to proliferate, it places a daughter cell next to it provided there

is enough space right next to it. If there is not enough space available, it ceases to

proliferate. Fig. 3.7 illustrates this decision rule. In the next Monte Carlo step, the same

cell can be selected to proliferate again, and again it is tested whether there is enough

space available. If eventually enough ECM has been degenerated or the cell has moved

away far enough from its neighbors, a daughter cell can be put on the grid. This daughter

is eligible for proliferation as of the next Monte Carlo step.

Figure 3.7.: In this example, the target size of a cell is A(σ) = 9 lattice sites. In both
configurations, the cell in the top image is selected to proliferate. In configu-
ration 1, there is a connected region of 9 unoccupied lattice sites right next to
the cell, so it places a daughter cell there, see bottom image. In configuration
2, no such area is available and the cell does not proliferate, even though it
was selected to do so. The lattice coloring corresponds to the one in Fig. 3.6.
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3.4.5. Summary of the Extended Model and Exemplary Results

From now on, the modified van Oers-model is referred to as CPM-FEM model. An

overview of its algorithm is given in Fig. 3.8, and the authorships of the various compo-

nents of the code are listed in appendix A.5.

Figure 3.8.: Algorithm overview for the CPM-FEM model with k iterations.

The parameter notations and definitions of the CPM-FEM model are summarized in

Tab. 3.2.

To provide an idea of what kinds of results are produced by the CPM-FEM model, the

following examples are considered. First, the proliferation probability is set to zero such

that the only assertive principle is the system energy. The grid is initialized with 100

by 100 elements and a spheroid consisting of 35 cells (its diameter is about 1/5th of the

grid’s side length) is placed in its middle. The rest of the parameters are chosen as in

Tab. 4.1 on page 40 (more on the reasoning behind the parameter choices can be found

in appendix A.6.1), the initial ECM density is set to m̂0 = 0.8, and the radius of the area

of influence A(τ(x)) is chosen as one cell diameter.

The first row of Fig. 3.9 shows how the cells spread over the grid for 1000 iterations. Right

after initialization, at t = 0, the cells’ shapes are random as the only guiding factors are
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3.4. Van Oers’ Hybrid Model

Parameter Parameter name Parameter Parameter name

A target cell area ν Poisson’s ratio

λ cell elasticity E Young’s modulus

JCC cell-to-cell attachment energy E0 reference stiffness

JCE cell-to-ECM attachment energy εst strain-stiffening speed

T intrinsic cell motility α max. durotactic guidance

µ cell force constant Etr durotaxis threshold stiffness

β steepness of durotactic guidance pp proliferation probability

m̂0 initial ECM density initial number of cells

radius of the area of influence A(τ(x))

Table 3.2.: Parameter definitions of van Oers’ model (including the FEM parameters and
the parameters from the extension).

Figure 3.9.: Evolution of the CPM-FEM model for 1000 iterations. Top row: no prolifera-
tion. Bottom row: proliferation probability pp = 0.001. The lattice coloring
corresponds to the one in Fig. 3.6.

connectedness and target size. At t = 50, their shape is already much more rounded

because the inherent cell traction forces had time to act. The left hand side of Fig. 3.10

shows a close-up of this configuration including these forces, where the arrow length is

proportional to the exerted force. It is visible that much stronger forces are acting within

cells that have a lengthy shape (such as the cell at the top right that has escaped the

spheroid), than within circular-shaped cells. This observation and its dependence on

the substrate stiffness is one of the main findings of van Oers and colleagues [50]. As t

progresses further, not only can one see how the surrounding ECM gets degraded more

and more thoroughly, yielding more freedom to move for the cells, but it is also visible

how the initial cell spheroid evolves towards a star by forming “fingers”. These fingers are
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3. Mathematical Models of Cell Invasion

the product of durotaxis, as it can be seen on the right hand side of Fig. 3.10: whenever

cells are moving away from the spheroid, they leave a trace of strain behind them which

motivates fellow cells to follow them. A lot of randomness is involved in this process,

hence it does not always work as it can be seen in the renegade cell at the bottom left.

It probably moved away from the initial site too quickly for other cells to follow.

Figure 3.10.: Details of the example without proliferation. Left: close-up of the spheroid
at t = 50 including the traction forces as blue arrows. Only forces above
0.001 nN are shown. Right: star-shaped spheroid at t = 1000 including
the element-wise direction of maximum substrate stretch depicted as black
lines. The length of the lines is proportional to the stretch magnitude.

Now, let the proliferation probability be elevated to 0.001. The number of cells that are

on the grid at t = 0 is lowered to 5, and the rest of the parameter values is maintained.

The result of this parameter choice is depicted in the bottom row of Fig. 3.9. Similarly to

the scenario without proliferation it can be observed that the cells soon after initialization

assume a rounded shape. While a little bit of durotactic finger formation could be assumed

at t = 500, cell proliferation is without a doubt the factor that determines the outcome

of this simulation.

Of course there are infinitely many parameter combinations to be tested, and the exam-

ples above are only an illustration of what kinds of results the CPM-FEM model can pro-

duce. The interested reader is referred to the Github repository https://github.com/

veronikahofmann/masters-thesis-cellinvasion, where an implementation of the CPM-

FEM model is available such that own parameter combinations can be tested.
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It is time to study the similarities and differences between the CPM-FEM model and the

two PDE models that were introduced earlier. In this chapter, the effects of a selection

of parameters on the model results are collected to see which parameter has the largest

impact on the respective model, and how this impact changes over the temporal and

spatial domain. This is done by performing a sensitivity analysis, which is a practice

that studies “how uncertainty in the output of a model (numerical or otherwise) can be

apportioned to different sources of uncertainty in the model input” [70]. In other words,

how strongly does varying one parameter change the resulting course of the invasion

process? Are there interaction effects that transcend the impact of a single parameter?

These questions are the focus of this chapter.

4.1. One-Dimensional Representation of the CPM-FEM

Results

To make the results of the CPM-FEM model comparable to the ones by Crossley and

Colson, a conversion of the two-dimensional grid to a one-dimensional domain is neces-

sary. This is done by using a similar approach as for the ECM degradation in the two-

dimensional model: starting from an element in the center of the plane, the surrounding

elements are sorted into layers depending on their distance to the starting element. Each

ring-shaped layer has the thickness of one element to make the resolution as high as pos-

sible. Of course, this method ignores elements close to the corners of the domain. As long

as the domain is large enough, this limitation is accepted since the model initialization

starts with a spheroid of cells in the middle of the grid, and the rim of the outermost

layer is only reached after many iterations or in the case of extreme parameter choices.

For each layer, the relative occupancy by cells and ECM elements is calculated, leading

to a one-dimensional representation of cell and ECM density. This representation allows

to perceive travelling wave solutions for the CPM-FEM model, as shown in chapter 5.

See Fig. 4.1 for an explanatory chart and an example of the measure.
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Figure 4.1.: Left: structural image of how the layers are constituted. The elements cor-
responding to layer 2 have a gray shading: if the middle point of an element
lies inside the layer, then the whole element is part of the layer. Layer 2
comprises 16 elements, of which 3 are occupied by cells, 11 by ECM ele-
ments, and 2 are free. The resulting cell density in layer 2 therefore amounts
to 3/16 = 18.75% and the ECM density to 11/16 = 68.75%. Middle and
right: plot of a simulated configuration in the two-dimensional domain (mid-
dle) which is transformed into the one-dimensional cell and ECM densities
(right) using the layer-method. The lattice coloring is the same as in Fig. 3.6.

4.2. Parameter Choice

To focus on the essentials for the sensitivity analysis, only the effects of three parameters

from the CPM-FEM model are studied.

To make comparisons between the models possible, these parameters need to appear in

each of the three models investigated – at least to the extent that it is clear that the

parameter in question is involved in the same process in all models. Three parameters

which fulfill this criterion and are suspected to play an important part in the cell invasion

process are the initial ECM concentration, the ECM degradation rate, and the cancer

cell proliferation probability.

In Crossley’s model, two of these parameters are considered the most influential, namely

the initial ECM concentration m̂0 and the ECM degeneration rate λ [54]. In her dimen-

sionless model (3.3), they are the only parameters left. In the sensitivity analysis, her

parameterized model (3.1)-(3.2) is examined because it also features the proliferation rate

constant r.

The same holds true for Colson’s model [52], and for the same reason her parameterized

model (3.4) is used.

Proliferation probability as the third parameter is selected since it was not investigated

closely by neither, Crossley nor Colson, even though the unimpeded proliferation of cancer

cells and the subsequent growth of the tumor is what characterizes the illness and makes
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4.2. Parameter Choice

it so deadly. In addition, the parameter is quite accessible in terms of interpretation and

all three models feature it.

At this point it should be discussed whether the statement about Crossley’s model being

more complex than Colson’s still holds true. The assumption of Crossley’s superior

complexity is based on the fact that her model incorporates volume-filling effects among

the cells and the ECM, while Colson’s model only considers cell-caused filling. When using

the parameterized model formulations however, Colson’s model features eight parameters,

versus six in the case of Crossley. Hence, from now on the complexity levels of the PDE

models are assumed to be more or less equivalent.

Continuing with the parameter choice in the CPM-FEM model, all three mentioned pa-

rameters occur more or less analogously in the CPM-FEM model. They were introduced

with the model extensions, see sections 3.4.3 and 3.4.4. The effect of initial ECM concen-

tration in the CPM-FEM model can be investigated easily since there is the parameter

m̂0 regulating its concentration directly. The proliferation probability is just as simple to

manipulate, as there is a parameter pp defined for it. The ECM degradation rate is the

only parameter without a direct counterpart in the extended CPM-FEM model. There

are two possibilities of interpreting one of the CPM-FEM parameters as such a rate:

• the radius of the area of influence A(τ(x)): changing the size of A(τ(x)) has effects

that range from restricting the cells’ proteolytic power to a very narrow strip around

an ECM element τ(x), to allowing cells from the other end of the domain to have

an influence on its degradation probability.

• the choice of the weight decay parameter a: it has to be a > 1, since otherwise

the cells farthest away from an ECM element τ(x) have a stronger influence on its

degradation probability than the ones right next to it. If a > 1 is very close to 1,

then all layers within A(τ(x)) have a similarly strong influence on the degradation

of τ(x). If a ≫ 1, then only the occupants of the elements closest to τ(x) make a

difference.

The size of A(τ(x)) is chosen as the parameter corresponding to the degradation rate λ

from Crossley and Colson because its impact on the ECM degradation is more direct and

it is therefore easier to interpret.

Now that is has been determined which parameters will be varied for the sensitivity

analysis, fixed values are selected for the rest of the parameters. The choices for the

CPM-FEM model can be found in Tab. 4.1 and the ones for the PDE models in Tab. 4.2.

A justification for these choices is provided in appendix A.6.

Ranges for the three parameters that will be subject to the sensitivity analysis need to be

selected in a way that does not lead to numerical instabilities in the solutions of Crossley’s
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Parameter Value Unit Reference(s)

domain size 60 by 60 elements chosen

element size 2.5 µm [50]

Poisson’s ratio ν 0.3 - [71]

Young’s modulus E 10 kPa [50, 71]

cell diameter d 20 µm [50, 72]

initial number of cells 2 - [52, 54]

cell elasticity λ 500 - [50]

cell-to-cell attachment energy JCC 2.5 - [50]

cell-to-ECM attachment energy JCE 1.25 - [50]

intrinsic cell motility T 1 - [50]

cell force constant µ 0.01 nN/µm [50, 73]

reference stiffness E0 10 kPa [50, 71]

strain-stiffening speed εst 0.1 - [50]

max. durotactic guidance α 10 - [50]

durotaxis threshold stiffness Etr 14.5 kPa [30]

steepness of durotactic guidance β 0.5 - [50]

Table 4.1.: Parameter choices of the fixed parameters in the CPM-FEM model.

Parameter Value Unit Reference(s)

spatial domain length L 30 length units chosen

cell diffusivity D 0.5 µm²/s chosen

carrying capacity K 1 - [52, 54]

initially invaded region α 5 length units chosen

unconquerable ECM density mmax 1 - [52, 54]

initial invasion σ 5 length units [52]

initial invasion ω 1 length units [52]

Table 4.2.: Parameter choices of the fixed parameters in Crossley’s and Colson’s models.

and Colson’s models, neither should they provoke extensive runtimes in the CPM-FEM

model or produce results where “nothing happens”. Experiments with the models yield

reasonable computational costs and relatively non-stiff behavior, yet interesting results,

for the following parameter ranges.

The challenge in choosing an appropriate interval for the initial ECM concentration

m̂0 consists in the tradeoff between exploring a wide range of different initial conditions

and avoiding coming too close to extreme cases which limit the options for the other

parameters. Small m̂0-values lead to more or less unrestricted expansion of the cells,

which would require either a larger domain or small degradation and proliferation rates.

Large m̂0-values, on the other hand, can drastically slow down the invasion process and
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expose numerical instabilities in the experiments. A broad and yet safe choice is given

by m̂0 ∈ [0.2, 0.8].

The area of influence A(τ(x))’s radius has to be at least of size 0.25d, where d is the

cell diameter. Otherwise, by construction of the algorithm, no element is close enough to

τ(x) to have an influence on it. As a maximum value for the radius, 2d is chosen, which

corresponds to 15 elements to both sides of τ(x). For the PDEs’ degradation rate λ, no

such considerations are necessary and a wide range can be assigned to it: λ ∈ [0.2, 100].

Proliferation is one of the main factors dictating computational cost in the CPM-FEM

model. The proliferation probability pp is therefore chosen to be small, yet large

enough to cover the whole domain with cells if at the maximum of its interval: pp ∈
[0.0001, 0.01]. For Crossley and Colson, two different maximum values are chosen due to

the different invasion speeds depending on the r-dependent reaction terms, whereby Col-

son’s and Crossley’s r values are set to rColson ∈ [0.00005, 0.1] and rCrossley ∈ [0.00005, 0.4],

respectively.

A summary of the parameter ranges can be found in Tab. 4.3.

Parameter Interval Unit Reference(s)

initial ECM concentration m̂0 [0.2, 0.8] - chosen

radius of A(τ(x)) [0.25d, 2d] µm chosen
or degradation rate λ [0.2, 100] - chosen

proliferation probability pp [0.0001, 0.01] - chosen
or rColson [0.00005, 0.1] - chosen
or rCrossley [0.00005, 0.4] - chosen

Table 4.3.: Parameter ranges of the parameters for which the model sensitivity is inves-
tigated.

4.3. Variance-Based Method: Computation of Sensitivity

Indices

Now that a one-dimensional measure for the CPM-FEM model has been defined, the

parameters subject to the sensitivity analysis and their ranges have been identified and

values were assigned to the remaining, fixed parameters, the analysis can start. To choose

an appropriate method, the frame conditions and the goals of the analysis need to be con-

sidered. The input spaces that were defined above are quite large to capture the models’

behaviors under extensive variation of the selected parameters. The PDE models are

both nonlinear, and while at least semi-explicit solutions can be found for them analy-

tically [52, 54], this is not possible for the CPM-FEM model. Also, the output of the
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CPM-FEM model is non-deterministic, requiring a method that considers randomness to

some extent, but is also capable of handling deterministic models. While the primary

objective of the sensitivity analysis here is to investigate which of the three parameters

is the most influential on each model outcome under consideration of the temporal and

spatial development, gathering insights into the interplay between the parameters is in-

teresting as well: if the same pairs of parameters interact strongly for all three models, it

can be concluded that the relationships between the parameters are similar throughout

the models. If not, there must be some differences inherent to the models or the choices

of the fixed parameters.

In conclusion, the sensitivity analysis method of choice has to include the whole in-

put space, handle nonlinearity and randomness, work without exact solutions or deriva-

tives, and it should be able to capture interaction effects between the parameters. A

method which provides all of these features is Sobol’s variance-based sensitivity analy-

sis.1 Variance-based sensitivity analysis tries to answer the question “Which percentage

of the variance in the model output is caused by the variance of each input parameter?” It

can be answered by decomposing the output variance into the variances of the conditional

expectations of the output under variation of a single parameter value or a parameter

combination.

In detail, Andrea Saltelli describes variance-based sensitivity analysis in his book on

global sensitivity analysis [74] as follows: the model is regarded as a function f(X) = Y ,

X = {X1, ..., Xk} being the uncorrelated input parameters and Y the one-dimensional

output. The domain of f is given by the k-dimensional unit hypercube, i.e. each Xi

fulfills 0 ≤ Xi ≤ 1, i = 1, ..., k – this does not restrict the parameter space, as all

parameter ranges can be transformed to this interval. Saltelli describes how his colleague

Ilya M. Sobol’ decomposes the model function f as follows [75]:

f(X) = f0 +

k∑
i=1

fi(Xi) +

k∑
i=1,j>i

fij(Xi, Xj) + · · ·+ f1,...,k(X1, ..., Xk), (4.1)

where f0 is a constant and each of the other fI is a function of the input parameters whose

indices appear in I, I ∈ S := {S : S tuple with ascending elements composed of {1, ..., k}},
e.g. f2 4 5 depends on X2, X4 and X5. The number of terms per sum in (4.1) therefore

increases and decreases again as there is one f0-term, k fi-terms,
(
k
2

)
fij-terms,

(
k
3

)
fijl-

terms, and so on until there is one f1,...,k-term left.

In the following, let XI := {Xi1 , ..., Xij} and dXI := dXi1 , ...,dXij , i1, ..., ij ∈ I.

1Using a variance-based method and the corresponding Python-package SALib was personally recom-
mended by Dr. Pirmin Schlicke, TUM.
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Sobol’ requires all terms of the form fI to have zero mean in the sense that
∫ 1
0 fI(XI)dXI =

0. In this case, it holds
∫ 1
0 fI(XI)fJ (XJ )dXIdXJ = 0, I ̸= J , meaning that the terms

are pairwise orthogonal. With these prerequisites, one can determine the terms of the

decomposition given the expected (conditional) model output Y :

f0 = E(Y ),

fi(Xi) = E(Y |Xi)− f0,

fij(Xi, Xj) = E(Y |Xi, Xj)− f0 − fi − fj ,

and so on. fi hence measures the effect of varying Xi, whereas fij measures the joint

effect of Xi and Xj which arises additionally to the effects of varying Xi or Xj alone. The

same holds true for terms with three or more variables: fijl measures the joint effects

of Xi, Xj and Xl. To answer the initial question about the output variance, one last

step is performed to arrive at a measure of sensitivity. For this, Sobol’ assumes the

model function f as well as the fI to be square-integrable, then (4.1) can be squared and

integrated to ∫ 1

0
(f(X))2 dX − f2

0 =
∑
I∈S

∫ 1

0
(fI(XI))

2 dXI , (4.2)

where the left hand side equals the variance of Y and the right hand side is a sum of

variances. While the former comes directly from the definition of variance as Var(X) =∫
x2f(x)dx − E(X)2, the latter might best be explained by exemplarily inserting the

definition of one of the fi and rewriting the integral by using the definitions of expected

value and variance as well as the law of total expectation:∫ 1

0
(fi(Xi))

2dXi =

∫ 1

0
(E(Y |Xi)−E(Y ))2dXi = E

(
(E(Y |Xi)− E(Y ))2

)
= Var(E(Y |Xi)).

Now, Vi := Var(fi(Xi)) is introduced and it should be noted that E(Y ) can always be

dropped as it is a constant:

Vi = Var(fi(Xi)) = Var(E(Y |Xi)− E(Y )) = Var(E(Y |Xi)),

Vij = Var(fij(Xi, Xj)) = Var(E(Y |Xi, Xj))−Var(E(Y |Xi))−Var(E(Y |Xj)).

With the new notation (4.2) can be rewritten as the so-called ANOVA-HDMR (analysis

of variance – high-dimensional model representation):

Var(Y ) =

k∑
i=1

Vi +

k∑
i=1,j>i

Vij + · · ·+ V1,...,k.
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The decomposed variance terms on the right hand side can be divided by the total output

variance Var(Y ) to obtain a relative measure of the input variables’ effects, leading to

the first-order sensitivity indices (also known as first-order Sobol’ indices) which capture

the sole contributions of the variation of Xi:

Si =
Vi

Var(Y )
,

the second-order sensitivity indices which measure the contributions to the total variance

by the interplay of Xi and Xj :

Sij =
Vij

Var(Y )
,

and so on. One can also summarize the total contribution of the parameter Xi by defining

the total-order index STi, which is the sum of all indices in which Xi appears. The total-

order index captures the first-order effect of Xi plus all higher-order effects in which Xi

is involved. For a model with three input parameters X1, X2, X3 – as it is the case here

– the total-order index of the first parameter is given by

ST1 = S1 + S12 + S13 + S123.

However, it is not necessary to consider all of the indices to capture the leading variance

contributions. In most cases, the first- and second-order indices “have significant contri-

butions to the overall variance of f” [76]. To be certain that one does not miss important

effects, one can additionally compute the total-order indices and compare them with the

ones of first and second order.

To compute these indices, data needs to be generated to be able to measure variance

and means. The values for the three investigated parameters m̂0, A(τ(x)) (or λ), and

pp (or r) have to be chosen carefully such that they cover their ranges evenly (uniform

distributions are assumed for all parameters on their respective intervals) and still allow

for robust estimations of the indices above.

Let k be the number of parameters to be investigated (here, k = 3 for each model). For

the parameters to be selected, the k-dimensional space is transformed from their original

domains (here, the intervals in Tab. 4.3) to the k-dimensional unit cube [0, 1]k. The

goal is to select a set of points in this cube which leave no “holes” between them. True

randomness – or pseudo randomness, as in scientific computing true randomness is hard to

achieve – cannot guarantee the even covering of the space. Deterministic, low-discrepancy

quasi-random sequences such as Sobol’ sequences (named after the same mathematician

who found the ANOVA-HDMR), are better at fulfilling this requirement. Without going

further into detail, Sobol’ sequences generate sets of cardinality 2m, m ∈ N which “fill
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the holes” that were left by the 2m−1 elements of the previous set in the sequence. As

m → ∞, the points in each set become more and more equidistant, which is the definition

of low-discrepancy [77, 78].

It has to be noted that the points of this sequence are quasi-Monte Carlo points, meaning

that they are not chosen independently from each other (new points are selected such

that they are more or less equidistant to the points that already have been set). However,

sample independence is required to be able to use Monte Carlo estimators for expected

value or variance. These estimators can be used provided the sample is modified according

to randomized quasi–Monte Carlo: with random transformations, the points are “jiggled”

to loose their deterministic nature, but they still lie within their pre-defined ranges and

preserve their even spread among the parameter space to some extend [78]. Saltelli does

this by applying a random digital shift and a random linear scrambling to the points from

the Sobol’ sequence, which can be imagined like a combination of shift and permutation,

where both operations include sampling from a uniform distribution over [0, 1)k [78, 79].

This method is referred to as “Saltelli scheme”.

After the sampling and randomization is complete, the parameter samples are re-trans-

formed into their original domains.

Of course the quality of the estimates for the indices does not only depend on the dis-

tribution of the parameter samples, but also on the number of model evaluations. The

necessary number of evaluations depends itself on the number of parameters in the model.

Let n = 2m, m ∈ N, be a number roughly determining the magnitude of model evalu-

ations which is used for the cardinality of the Sobol’ sequence. Usually, more than n

model evaluations are necessary, so to obtain more individual parameter samples, one

does not pick the Sobol’ sequence from the k-dimensional unit hypercube, but from the

2k-dimensional one. Then, these samples are put in an n× 2k-matrix which itself is split

into two n × k-matrices A and B. k new n × k-matrices C1, ..., Ck are built by setting

Ci = A and replacing the i-th column of Ci with the i-th column of B, i = 1, ..., k.

Additional k n × k-matrices D1, ..., Dk can be obtained by repeating the procedure vice

versa, i.e. set Di = B and replace the i-th column of Di with the i-th column of A. This

way, one obtains 2k + 2 matrices (all Ci and Di, as well as A and B), each containing n

parameter combinations, totalling to n(2k+2) different parameter combinations. [74, 80]

Fig. 4.2 shows how n samples generated by a Sobol’ sequence and their transformation

into n(2k+ 2) samples using the Saltelli scheme including the above-described extension

could look like for k = 2.

Saltelli found that with his scheme, the Monte Carlo estimates for the first- and total-

order indices can be efficiently and robustly computed using the results of n(2k+2) model
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Figure 4.2.: Left: Sobol’ sequence with cardinality n = 64. Middle: Sobol’ sequence with
cardinality n = 64 transformed into n(2k+2) = 384 points using the Saltelli
scheme. Right: for comparison, 384 points computed by a pseudo-random
number generator.

evaluations [79]. The output variance Var(Y ) is estimated using 2n evaluations:

Var(Y ) = E(Y 2)− E(Y )2 ≈ 1

n

n∑
j=1

yjAy
j
B −

 1

n

n∑
j=1

yjA

 1

n

n∑
j=1

yjB

 =: V̂ (Y ),

where yA = f(A) is the length-n vector of model outputs resulting from the parameter

sample matrix A, and yjA is the j-th entry of yA. The notation works analogously for

the other parameter matrices B,C1, ...Ck, D1, ..., Dk. Another nk evaluations are used

for the first-order terms, with i = 1, ..., k [80]:

Si =
Var(E(Y |Xi))

Var(Y )
=

E
(
(E(Y |Xi)− E(Y ))2

)
Var(Y )

≈ 1

V̂ (Y )

 1

n

n∑
j=1

yjAy
j
Ci

− 1

n2

n∑
j=1

yjA

(
n∑

l=1

ylB

) =: Ŝi.

Using the estimate for the variance of the conditional expectation by Toshimitsu Homma

and Saltelli [81], the remaining nk evaluations are used for the total-order terms [80]:

ST i = 1− Var(E(Y |X1, ..., Xi−1, Xi+1, ..., Xk))

Var(Y )

≈ 1− 1

V̂ (Y )

 1

n

n∑
j=1

yjAy
j
Di

−

 1

n

n∑
j=1

yjA

 1

n

n∑
j=1

yjB

 =: ŜT i.

The same evaluations also allow to estimate the second-order indices [79]:
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Sij =
Var(E(Y |Xi, Xj))

Var(Y )
− Si − Sj

≈ 1

V̂ (Y )

(
1

n

n∑
r=1

yrDi
yrCj

− 1

n2

n∑
r=1

yrA

(
n∑

l=1

ylB

))
− Ŝi − Ŝj =: Ŝij .

As mentioned earlier, the number of model evaluations determines the quality of these

estimations. Two factors were respected when this number was chosen: the computational

expense regarding the CPM-FEMmodel should be manageable, and if possible, all models

should be evaluated the same number of times to make the estimations most comparable.

Due to the limiting first factor, the number of model evaluations need to be relatively

low, leading to a Sobol’ sequence of length n = 1024, i.e. 8092 parameter combinations.

Concerning the practicalities of the computations, the sensitivity analysis is conducted

using the Python package SALib [82]. The parameter combinations are sampled with

SALib.sample.sobol, and the indices are computed with SALib.analyze.sobol, both

using the methods described above.

4.4. Results

While it turns out that the index estimates for 8092 model evaluations appear quite

reliable in the case of the CPM-FEM model, they are at least slightly flawed for Colson’s

model, and unusable for Crossley’s. For the latter, the estimates of the first-order indices

are in some instances larger than 1, which is unacceptable. Therefore, n = 2048 is chosen

for the PDE models, while n = 1024 is maintained for the other two models.

One flaw in the calculation of the indices for the two PDE models could not be fixed by

elevating the number of samples: when investigating the parameters’ effects on the ECM

density, a few values in the first third of the domain could not be calculated which is

visible in the plots as missing data. The reason for this could be that the output variance

Var(Y ) at these points in the domain is equal to zero. Due to the initial invasion, i.e. the

maximum cell density from x = 0 to x = 4 or 5 – depending on the model –, every model

evaluation starts with a cell density of 1 and an ECM density of 0 in this interval. The

sensitivity indices of the PDE models in this interval can thus be thought of as zero.

Fig. 4.3 and 4.4 show the first-order sensitivity indices for all three models and their

evolution over the domain at three selected time steps, namely t = 10, 20 and 30. The

influence of the parameters is evaluated separately for the progression of the cells and the

degradation of the ECM.
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4. Sensitivity Analysis

Figure 4.3.: Estimations of the first-order sensitivity indices of all models at t = 10 and
20 over the spatial domain, with a 95% confidence interval. See Fig. 4.4 for
more details.
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First-order Sobol indices at t=30 for all models with 95% confidence intervals
(left: cells, right: ECM)

Figure 4.4.: First-order sensitivity indices at t = 30. On the left, the effects of the pa-
rameter variance on the cell density output variance are shown, on the right
it is depicted for the ECM density. The top row shows the influence of the
initial ECM density m̂0, the middle row shows the ECM degradation rate λ
(or the radius of A(τ(x)) in case of the CPM-FEM model), and the bottom
row shows the indices of the proliferation probability pp, rColson or rCrossley,
depending on the model.

It attracts attention how the indices of the two PDE models have a relatively similar

course, with a few exceptions, for instance does the proliferation probability rColson exhibit

a more pronounced influence on the cells’ progression than rCrossley, especially in the

early time steps. Vice versa, Crossley’s degeneration rate λ has a larger effect on the

ECM density than Colson’s, which grows over time. Furthermore, one can assume the

course of the solution curves of the models by observing the first-order index of the ECM

degradation rate λ in case of the cell evolution and the index of the initial ECM density

m̂0 in case of the ECM evolution. The former looks like the invading cell front, while

the latter reminds of the dissolving ECM barrier – a picture similar to the travelling

wave solutions in Fig. 3.2. The similarity goes as far as even the faster wave speed of

Colson’s model is implied by the first-order sensitivity indices, but this of course is just

the result of a fortuitous choice in parameter ranges. Based on the observed progressive

cell fronts, one can make a forecast: for t → ∞, the ECM degradation will become the

only influential parameter in both PDE models. It is also interesting how the proliferation
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4. Sensitivity Analysis

probability’s indices have their peak more or less close to the point of steepest decrease

of the ECM degeneration’s indices (in the case of the cells), and similarly how the ECM

degeneration’s peak is located close to the point of steepest increase of the initial ECM

density’s indices (in the case of the ECM). For the cells, this is especially well visible

for smaller values of t, while for the ECM, this becomes more apparent as t grows, and

it is more precise for Colson than for Crossley. This observation indicates (self-evident)

interaction effects on the cell’s progression between proliferation probability and ECM

degeneration, and on the ECM’s retraction between ECM degeneration and initial ECM

density. Another candidate for second-order effects is the combination of initial ECM

density and proliferation probability in case of the cell evolution. Here, the peak of

the proliferation probability’s indices is close to the x-coordinate where the initial ECM

density index curve rises. There is a similar effect observable in the case of the ECM

evolution, where the decline in the proliferation probability’s influence coincides with

the increasing initial ECM density. These interactions are investigated further once the

second-order indices are evaluated.

The indices of the CPM-FEM model do not exhibit as much variation as the ones of the

PDE models, in most cases they appear quite steady and it is not possible to make a

direct comparison to the model trajectories – except for perhaps the course of the initial

ECM density’s index, which gets shifted to the right domain boundary as the ECM gets

more and more degraded. Concerning the cells, the effect of the proliferation probability

is the most prominent and it grows more influential over time. The same holds true

for this parameter regarding the ECM evolution, with the difference that here, also the

before-mentioned initial ECM density has a strong influence especially on the second half

of the domain in the early time steps.

In the next step, the interaction effects are investigated. The estimates for the total-order

indices (see appendix A.7) are substantially larger than the first-order indices of initial

ECM density m̂0 and radius of A(τ(x)) in the case of the CPM-FEM model, at least

in the first half of the domain. For the PDE models, the differences between first- and

total-order indices are not standing out, but as explained above, pairwise interactions are

still expected.

Fig. 4.5 and 4.6 show the estimated second-order indices for all models. The presump-

tions on the interaction effects between the PDE’s parameters are more or less confirmed

by the plots: ECM degeneration and initial ECM density exhibit large interaction effects

on the ECM evolution, and proliferation and initial ECM density have the most conspic-

uous second-order effect regarding the cells. Further, proliferation probability and ECM

degeneration have at least some joint effect on the cells, but it is comparably low, just as

the interaction effect between proliferation and initial ECM density on the ECM.
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4.4. Results

Figure 4.5.: Second-order sensitivity indices at t = 10 and 20.

The second order indices show an unexpected rise in interaction effect between prolifera-

tion probability and ECM degeneration for the ECM at t = 30. But the results need to be
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Second-order Sobol indices at t=30 for all models with 95% confidence intervals
(left: cells, right: ECM)

Figure 4.6.: Second-order sensitivity indices at t = 30.

put into perspective. In most cases, the total-order indices do not deviate substantially

from the first-order indices in case of the PDE models, hinting at relatively low second-

order effects. So it is surprising to see such strong interactions in many of the mentioned

cases. A possible explanation is the accuracy of the estimated second-order indices, which

often is quite low as it can be seen in the wide confidence intervals. Hence there seem to

be interactions between the mentioned parameters, but they are not substantial – except

for perhaps the combined effect of initial ECM density and proliferation probability in

the case of Crossley’s cell evolution, since here, even with the large confidence region the

difference between first- and total order indices is visible.

Another surprise is the absence of second-order effects in case of the CPM-FEM model.

An explanation could be third-order interactions, i.e. the interaction of all three param-

eters, which can be computed from the estimates of the first-, second- and total-order

indices (using a simplified notation with model parameters X1, X2, X3):

Ŝ123 = ŜT1 − Ŝ1 − Ŝ12 − Ŝ13.

Of course, one can also use the respective lower and total-order indices of the other

parameters, in theory the resulting Ŝ123 should always be the same. To compensate for

inaccuracies, Ŝ123 is calculated for all three combinations and their mean and standard
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4.4. Results

deviation are used, which should be a sufficient error estimate since the purpose of these

computations is only to test the assumption that the CPM-FEM model exhibits strong

third-order effects. The results of this estimation are visualized in Fig. 4.7. While there

is one value above 1 at t = 10 concerning the influence on the ECM density which most

likely is the result of accuracy issues, the rest of the estimates lies within the valid range

and it is clearly visible that indeed there are strong effects coming from the interaction

of all three parameters in the first half of the domain.

Figure 4.7.: Estimates of the third-order sensitivity indices of the CPM-FEM model at
three time steps t = 10, 20, 30.

In summary, the sensitivity analysis revealed some similarities, but also major differences

in the parameter interplay of the models. The PDE models – which behave very similar

in this analysis except for the cases discussed above – exhibit mainly first-order effects,

where in the beginning the leading parameter is the initial ECM density m̂0, and as

t grows, m̂0 gets replaced by the ECM degradation rate λ. In the CPM-FEM model,
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4. Sensitivity Analysis

relevant first-order effects are found only for the proliferation probability pp, and – if t is

small – for the initial ECM density m̂0. A large partition of the model output variance

in the CPM-FEM model is caused not by a single parameter, but by the interplay of all

three parameters m̂0, A(τ(x)) and pp.
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In the previous chapter, major differences between the PDE models and the CPM-FEM

model regarding parameter sensitivity have been detected. One question that arises from

these findings is how the outputs of these models differ in a qualitative manner, given

their unequal inherent dynamics. Can parameters be found that lead to similar results

for all three models?

In this chapter, the trajectories of the parameterized PDE models are compared to the

CPM-FEM model output. Via parameter fits and wave speed comparisons it is studied

how adequately the models approximate each other – first using only the parameters from

the sensitivity analysis for the fit, then including all PDE model parameters to obtain

the whole picture. In this context, it is also investigated whether phenomena such as

durotaxis have an influence on model fit adequacy and whether they affect invasion speed

in a manner that can be detected in the one-dimensional domain.

5.1. PDE Parameter Fit: Three Parameters

To see how well the PDE models are able to capture the characteristics of the CPM-FEM

model output, a parameter fit is performed. For this fit, the same three parameters as in

the sensitivity analysis are used (initial ECM concentration, ECM degradation rate and

proliferation probability). The fitting procedure can be reduced to a two-parameter-fit,

because the initial ECM concentration is a parameter that works like a boundary condi-

tion for both models. If fixed to the same value in all models, it is a helpful information for

the data fitting function and improves the estimations for the remaining two parameters

λ and r (dropping the subscripts for a moment).

The parameter fitting works as follows (see for instance [83]): the CPM-FEM model

incorporates randomness, hence it delivers the (perturbed) observations y for the fit.

Then, the solutions of the PDE models are used as fitting functions f by minimizing the

summed squares of the residuals between the observations and the fitting function. Say

the domain of the CPM-FEM has n layers, meaning that there are n points x1, ..., xn in

the one-dimensional domain for which data is available, then the goal is to find parameters

λ, r such that
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SSR :=
n∑

i=1

(f(xi, λ, r)− yi)
2 = min. (5.1)

The CPM-FEM model is evaluated 100 times after t = 60 iterations to smoothen the

observations. t = 60 is also the time step that is used for the fitting. For all three models,

the same fixed parameter values are used as in the sensitivity analysis.

The initial ECM density is set to m̂0 = 0.8, the radius of the area of influence is chosen

as 0.3d and the proliferation probability is pp = 0.005.

As initial guesses for the PDE parameters λ and r, for both models λ = 0.2 and r = 0.005

are chosen, without any bounds to find an unrestricted optimum. The fitting is performed

using the Python function scipy.optimize.curve_fit [84], which solves (5.1) using a

Levenberg-Marquardt algorithm.

This procedure is performed for three different experimental settings of the CPM-FEM

model: once with all effects, i.e. the full system energy Hamiltonian, once without the

durotaxis-factor in the Hamiltonian, and once without attachment cost.

5.1.1. Parameter Fitting Including All Effects

The results of the parameter estimation with the full CPM-FEM model can be found in

Tab. 5.1.

Parameter Initial guess Found optimum SSR

Crossley’s degradation rate λ 0.2 3.7989
0.8295

Crossley’s proliferation probability rCrossley 0.005 0.1561

Colson’s degradation rate λ 0.2 0.2268
0.1988

Colson’s proliferation probability rColson 0.005 0.1110

Table 5.1.: Optimal parameter values and sum of squared residuals for the PDE models.

Fig. 5.1 shows the PDE solutions that result from the optimal parameter choice together

with the data from the CPM-FEM model, not only at t = 60 (which is the time point

that was used for the fitting), but also for t = 0, 20 and 40.

Even though the shapes of the fitted curves do not represent the CPM-FEM results very

well, they are able to reproduce the wave speed of the travelling waves that are exhibited

by the CPM-FEM model. This is visible in the intersection point of each model’s cell and

ECM density curve: even though only t = 60 was used for the parameter fit, the x-values

of these intersection points are relatively close to each other at every depicted time step.

In the field of PDE modeling of invasion processes in nature, wave speed is usually defined

as the velocity of the propagating wave front [52, 54, 85, 86]. It is difficult to define a front
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Figure 5.1.: Fitted PDE models and the data generated by the average over 100 CPM-
FEM model evaluations, depicted for the time steps t = 0, 20, 40, 60. The
CPM-FEM model average is depicted with a confidence region of one stan-
dard deviation. The solid lines are the cell densities, the dashed lines are the
respective ECM densities.

in the case of the FEM-CPM results because at the early time steps, the cell concentration

at x = 0 is less than 1 due to the small number of initial cells – they are placed in the

middle of the grid, i.e. close to x = 0, but this placement still incorporates randomness,

which on average leads to the low initial concentration that can be seen in Fig. 5.1,

t = 0, and even t = 20. To still be able to perform wave speed measurements, in this

work, wave speed is defined as horizontal shift velocity of the intersection point of the

cell density curve with a horizontal line at y = 0.5. Fig. 5.2 shows the wave speeds for

the three models that result from this definition. The velocities are estimated using the

intersection point shift between t = 0 and t = 5, t = 5 and t = 10, and so on. Compared

to the PDE models which both approximate asymptotes quickly, the CPM-FEM results

keep oscillating for the entire observed timeframe. It is the only model that incorporates

randomness, so this is not surprising. Ignoring the oscillations, its qualitative behavior is

comparable to the ones of the PDEs, while quantitatively it appears to be slightly better

represented by Crossley’s model. The wave speed plot also depicts how Colson’s waves
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are the fastest, as it can also be seen in Fig. 5.1 how over time, Colson’s waves pass

Crossley’s and the CPM-FEM’s.

It has to be noted that the uncertainty for the CPM-FEM wave speed is very high. The

plot in Fig. 5.2 intentionally does not show its standard deviation as it is so large that it

would require a vertical axis of the four-fold length.
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Figure 5.2.: Wave speed estimates of the fitted PDE models and the average of 100 CPM-
FEM model evaluations. The dashed lines are the respective mean values of
these wave speeds, where the mean is calculated for the time steps after
t = 40 to approximate the PDE asymptotes. Note that for all wave speed
plots (i.e. also Fig. 5.4 and 5.7), the same vertical axis limits are used to
make visual comparisons possible.

Returning to the discussion of the parameter fit quality, the SSR values in Tab. 5.1 give

an orientation of the residual magnitude. While they indicate that the fit for Colson’s

model was more successful, it is clear from the graphic that shape-wise, both fits are not

perfectly suited to describe the course of the CPM-FEM model evaluations.

Both, the cell- and the ECM densities generated by the CPM-FEM model proceed in a

much more gradual manner than the solutions of the PDE models – an observation that is

consistent with the findings on the first-order sensitivity indices, where the PDE models

exhibit more accentuated effects. The perhaps most striking difference is the steepness

of the ECM front that is about to be degraded. Even though the area of influence was

chosen quite small to provoke a concise interface between cell front and ECM, for the

CPM-FEM model the ECM front is a gentle ramp, while for both PDE models it has

more similarities with a scarp. There are two possible reasons for both, the steepness of

the PDE curves, and the comparably shallow CPM-FEM simulations.

Regarding Crossley’s model, which is the PDE model with the steepest ramps, it is

noticeable how there is almost no spatial overlap of cells and ECM. In the agent-based
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5.1. PDE Parameter Fit: Three Parameters

model formulation it is stated that cells can degrade ECM elements only if the ECM

element is located in the same lattice site. Hence a critical density of cells needs to reach

the ECM-“wall” before it can effectively degrade it. Independently of the shape of the

invasive front, this is a remarkable limitation to the model, as it shows that if there is

a point in the domain where the ECM density is 1, this point imposes an unbreachable

wall to cell invasion [54] – a phenomenon that is not observed in experiments, where

malignant cells degrade the ECM using diffusing proteases. Colson’s model does not

feature volume-filling by the ECM, which allows a larger cell-ECM-overlap and hence

more gentle slopes.

Regarding the FEM-CPM model, the cause of the shallow curves and the large area of

overlap has to be the frayedness of the simulated cell front, as it can be seen in the

examples of section 3.4.5. But is the rough spheroid boundary solely a result of the

randomized choice of proliferating cells, or could durotaxis provoke a less even spread

of the cells? How do the adhesive forces between cells and ECM influence this pattern?

Does the consideration of these phenomena influence travelling wave speed? These are

the questions that are investigated in the next sections.

5.1.2. Parameter Fitting without Durotaxis

Maintaining all parameter values from the previous section, the CPM-FEM model is now

evaluated while ignoring the durotaxis-component of the system energy Hamiltonian. It

is not too far-fetched to assume that durotaxis leads to a more uneven cell spheroid boun-

dary, given the appearance of the exemplary plots in section 3.4.5 with the “durotactic

fingers”. Of course it is disputable whether such effects are perceivable in the relatively

small spatial and temporal domains that are considered here.

The same method for data fitting is used as before. Its results can be found in Tab. 5.2.

Interestingly, both parameters λ and r in both models have been estimated lower than

in the case with durotaxis, hinting at a likely lower invasion speed. Also, the SSR values

are slightly lower but the improvement is marginal.

Parameter Initial guess Found optimum SSR

Crossley’s degradation rate λ 0.2 3.2647
0.8019

Crossley’s proliferation probability rCrossley 0.005 0.1346

Colson’s degradation rate λ 0.2 0.1880
0.1838

Colson’s proliferation probability rColson 0.005 0.0980

Table 5.2.: Optimal parameter values and sum of squared residuals for the PDE models,
without durotaxis.
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Fig. 5.3 and 5.4 show the fitted models and their averaged wave speeds. Qualitatively, the

plots reveal the same situation as in the case with durotaxis, and especially the frayedness

of the cell-ECM-interface does not seem to have changed in a remarkable way. It might

have been reduced slightly, explaining the lower SSE values, but as mentioned before,

this reduction is not substantial.
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Figure 5.3.: Fitted PDE models and the data generated the durotaxis-free CPM-FEM
model. For more details see Fig. 5.1.

However, both the PDE parameter estimates and the mean wave speed indicate that

the CPM-FEM wave speed might have decreased in the scenario without durotaxis. This

seems like a reasonable hypothesis given the durotactic mechanism in which the substrate

strains caused by one cell leaving the spheroid motivates fellow cells to follow it, as it

is visible in Fig. 3.10. The mechanism might be strong enough to influence the invasion

speed in the one-dimensional representation. It should be emphasized that “durotaxis

increases wave speed” is not the same as “durotaxis increases migratory speed”, as this

would contradict experimental findings [30]. The invading cell front is hypothesized to be

faster in the case of durotaxis because the cells move away from the spheroid in a more

directed manner, not because their migration speed increases.
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Figure 5.4.: Wave speed estimates of the fitted PDE models and the durotaxis-free CPM-
FEM model. For more details see Fig. 5.2.

The assumption of different wave speeds can be investigated more thoroughly using a

statistical test. Let the first sample X := {X1, ..., X100} be constituted by the 100 model

evaluations with durotaxis, the second sample Y := {Y1, ..., Y100} consists of observations

from the evaluations without durotaxis. The respective observations are then given by

the x-coordinates of the intersection points of the cell density curves with y = 0.5 for all

CPM-FEM model evaluations, tested at various time steps from t = 0 to 60 (from now

on, the notations Xt and Yt for X and Y at t is used). Normal distribution is tested for

X and Y at each t using the D’Agostino-Pearson Omnibus test with a significance level

of α = 0.05 which evaluates the symmetry and variance of the samples [87]. If according

to this test both samples can be assumed to be normally distributed, it should be safe

to use the two-sample independent t-test. If at least one of the samples is not normally

distributed (i.e. the p-value of the test is below α), the Mann-Whitney-U-test is used at the

respective time point, which can be seen as a two-sample t-test for arbitrarily distributed

samples [88]. In most cases however, the samples are found to be normally distributed at

the given significance level. The sample sizes are not always equal as in some instances

there is no intersection point (especially at t close to 0 or 60) – but this is not an issue

for this kind of test, as long as the samples contain at least 30 observations [89]. At each

tested time point t, the tested hypotheses are

H0 : E(Xt) = E(Yt),

H1 : E(Xt) > E(Yt),
(5.2)

representing the speculation that the intersection is shifted faster in the case of durotaxis.

The p-values of the tests over time are visible in Fig. 5.5. After only 25 time steps,
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the p-values are consistently below 0.001, strongly supporting a decision in favor of the

alternative hypothesis H1. The suspicion that durotaxis increases wave speed – according

to the definition of wave speed that was introduced here – is confirmed.
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Figure 5.5.: p-values over time for the hypotheses (5.2). Note that the vertical axis is
log-scaled.

5.1.3. Parameter Fitting without Attachment Cost

In this last experiment, durotaxis is again included in the CPM-FEM model, but the

contact energy contribution to the Hamiltonian is ignored. This means that now it does

not matter for the system energy if the cells are closely surrounded by lots of other

cells or spread on the grid with some space between them. The data fitting results are

summarized in Tab. 5.3.

Parameter Initial guess Found optimum SSR

Crossley’s degradation rate λ 0.2 5.6166
0.7882

Crossley’s proliferation probability rCrossley 0.005 0.1637

Colson’s degradation rate λ 0.2 0.2781
0.2037

Colson’s proliferation probability rColson 0.005 0.1219

Table 5.3.: Optimal parameter values and sum of squared residuals for the PDE models,
without attachment cost.

The values of the fitted parameters are the largest obtained in all three experiments,

suggesting that the invasion speed could be faster than in the cases of the full Hamiltonian

and the one without durotaxis, and the SSR values – which are the lowest of all three

scenarios for Crossley, but the largest for Colson – provide mixed signals regarding the
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5.1. PDE Parameter Fit: Three Parameters

frayedness of the cell spheroid boundary. Looking at the comparative plots in Fig. 5.6

and 5.7, the known pattern arises of Colson’s faster invasive front passing Crossley’s after

enough time steps. For the first time, the CPM-FEM wave speed does not appear to

approximate an asymptote, it rises quickly and then gradually drops. More samples and

a larger time frame would be necessary to see whether this is a product of randomness.
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Figure 5.6.: Fitted PDE models and the data generated the contact cost-free CPM-FEM
model. For more details see Fig. 5.1.

To test the assumption that the invasive cell front indeed moves faster than in the full

CPM-FEM model, another statistical test is conducted analogously to the one in the

previous section. The hypotheses – for Xt being the intersection x-coordinates of the

CPM-FEM model without contact cost at a specific t, Yt the intersections of the model

with the full Hamiltonian – are given by

H0 : E(Xt) = E(Yt),

H1 : E(Xt) > E(Yt).
(5.3)

Fig. 5.8 depicts the p-values of this test and again it takes about 25 time steps to arrive

at a significance level below 0.001. However, the p-values do not keep decreasing as it

was the case in Fig. 5.5 of the previous section. Their rise after 40 to 50 time steps is
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Mean wave speeds of the fitted PDEs and the CPM-FEM model without attachment cost
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Figure 5.7.: Wave speed estimates of the fitted PDE models and the contact cost-free
CPM-FEM model. For more details see Fig. 5.2.

most likely a result of the drop in wave speed that was discussed earlier. The purpose

of hypothesis testing is to make sample-independent statements, hence at least for the

given time frame up to t = 60, H1 is accepted, although the decision could be different

for a larger temporal domain. The present decision however leads to the conclusion that

different costs of the attachment between two cells or between cells and ECM elements

(here, the adhesion of cell to cell is set to be more energetically expensive than cell to

ECM) result in slower invasion speeds.
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Figure 5.8.: p-values over time for the hypotheses (5.3). Note that the vertical axis is
log-scaled.

This result is surprising, given that the cell-to-cell attachment energy JCC is set twice as

large as the cell-to-ECM attachment energy JCE. Such a choice of parameters suggests

that the cells are moving away more quickly from the initial spheroid, leading to a faster
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5.1. PDE Parameter Fit: Three Parameters

invasion than in the case JCC = JCE. Studying the two-dimensional model configuration

might deliver an explanation. Fig. 5.9 depicts some exemplary configurations from the

model evaluations with the full Hamiltonian (top row, subfigures a) and c)) and without

attachment costs (bottom row, subfigures b) and d)).

Figure 5.9.: Shape and traction force differences of the full CPM-FEM model (top row)
and the contact cost-free model (bottom row) at t = 60. a) and b): exemplary
configurations of two evaluations of the full model a) and the contact cost-
free one b). c) and d): the same configurations as in a) and b), respectively,
including traction forces as blue arrows.

In Fig. 5.9a) and b), it is visible how random the shapes of the cells in the scenario

without attachment cost b) are, even after 60 time steps, compared to the cells from the

full CPM-FEM model a). Note that in a) there are some convoluted, strangely shaped

cells at the rim of the spheroid as well, but this is because these cells are daughter cells

that were placed in the grid recently. As the surrounding ECM is degraded within the

next time steps, there will soon be enough space for them to assume more rounded shapes.

Given the persisting randomness of cell shapes, it is not astonishing that the forces within

the cells are much larger for the attachment-cost-less model: the traction forces of the

discussed configurations are displayed in Fig. 5.9c) and d). Why do the cells not give in

to these forces and assume more balanced shapes?

One possible reason for this could be that if the cells do not have any incentive to reduce

their contact points with neighboring cells (by decreasing the length of their outline), they
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more or less remain in the random shapes assigned to them at birth, regardless of the

traction forces. While the contact energy is a factor that is included in the system energy

Hamiltonian H, the traction forces only have an indirect influence on H: the forces lead

to substrate deformation, and the substrate deformation influences the durotaxis-term

in H. This influence appears to be too small to have an effect, at least in the relatively

small time scale of 60 steps.

But how is the cell shape linked to the invasion speed? In Fig. 5.9a) and b), it looks

like the rounded cells lead to a more “compact” cell spheroid, with a relatively even

rim and almost no holes, whereas the randomly shaped cells produce a more perforated

spheroid with a very frayed rim. Both of these observations – more holes and a more

frayed spheroid boundary – could lead to increased space consumption, which then makes

the wave speed appear faster.

Concluding the section on the three-parameter-fit, while the trajectories of the PDE

models do not capture the exact shapes of the invasive cell front or the degraded ECM,

it is possible to find parameters which describe the invasion speed relatively well. The

overall quality of the PDE fit is only marginally impacted by the choice of considered

phenomena in the CPM-FEM model. In the observed time frame, the invasion in the

CPM-FEM model is the fastest in the case where attachment cost is ignored, followed by

the full model, and the slowest invasion is observed in the case without durotaxis.

5.2. PDE Parameter Fit: All Parameters

The same procedure as in the previous section is now repeated fitting all PDE model

parameters. In the case of Crossley, there are six parameters to fit, and for Colson there

are eight. The initial ECM density is again given as an a priori information, leading to

five and seven degrees of freedom left, respectively.

Since the number of parameters now differs between the models, it could be useful to

consider another metric for the fit quality next to the SSR. The Aikaike Information

Criterion (AIC) is such a metric which was specifically developed for the task of deciding

which model of various models provides the best approximation. In the case of using

least squares as a data fitting method – as it is done here –, the AIC is given as

AIC = n ln

(
SSR

n

)
+ 2(k + 1),

where n is the number of data points from the CPM-FEM model, and k is the number

of parameters of the respective PDE model [90]. The lower the AIC, the better suited is

the model to describe the given data set.
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The algorithm used to minimize the SSR in the case of Colson’s model is now changed to a

Trust Region Reflective algorithm, since bounds for the parameters need to be provided to

maintain the relationship 0 < ω < σ of the initial conditions. This is done by introducing

an auxiliary parameter c ∈ (0, 1), allowing to compute ω as ω = c σ. The bounds for

Colson’s parameter are given as follows: λ ∈ [0, 100], r ∈ [0, 1], D ∈ [0, 5], mmax ∈ [0, 5],

K ∈ [0, 5], σ ∈ [0, 30], and c ∈ [0, 1].

Fitting all parameters to the data generated by 100 evaluations of the full CPM-FEM

model at t = 60 leads to the SSR and AIC values given in Tab. 5.4. The found optimal

parameter values are listed in appendix A.8, and the resulting trajectories together with

the CPM-FEM model output are visualized in Fig. 5.10.

Model SSR AIC

Crossley 0.7819 -248

Colson 0.0203 -463

Table 5.4.: SSR and AIC values of the fitted PDE models.
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Figure 5.10.: All-parameter fitted PDE models and the data generated by the average
over 100 CPM-FEM model evaluations, depicted for the time steps t = 0,
20, 40, 60. The CPM-FEM model average is depicted with a confidence
region of one standard deviation. The solid lines are the cell densities, the
dashed lines are the respective ECM densities.
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Compared to the SSR values of the previous fit to the full model in section 5.1.1, where

only the degradation rate and the proliferation probability were estimated, the improve-

ment is only minor in the case of Crossley’s model, but substantial for Colson’s. Unsur-

prisingly, the AIC scores clearly favor Colson’s model.

Two interesting differences to the results of section 5.1 regarding Colson’s trajectories are

visible in the plots of Fig. 5.10. First, the gentle slopes of both quantities, the invading

cell front and the retracting ECM, are mimicked better than before, explaining the low

SSR value at t = 60. Secondly, the wave speed is not captured well: at the time point

t = 60 used for the fit, the CPM-FEM wave and Colson’s front coincide almost perfectly,

but going back in time, their intersections with the imaginary line at y = 0.5 disagrees

more and more. Crossley however appears to find a compromise between a mediocre

shape fit and a relatively good invasion speed fit. To confirm the observations on wave

speed, consider Fig. 5.11. It depicts the model-wise averaged wave speeds, calculated as

described in section 5.1.1.
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Mean wave speeds of the fitted PDEs and the full CPM-FEM model
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Figure 5.11.: Wave speed estimates of the all-parameter fitted PDE models and the aver-
age of 100 CPM-FEM model evaluations. The dashed lines are the respec-
tive mean values of these wave speeds, where the mean is calculated for the
time steps after t = 40.

As expected, Crossley’s model fits the invasion velocity of the CPM-FEM model much

more accurately than Colson’s, to the point where after t = 40, their means almost

coincide.

The same situation is observed for the cases without durotaxis and without attachment

cost. The respective SSR and AIC values, as well as the fitting plots and the wave speed

comparisons can be found in appendix A.9.

Concluding the chapter on the qualitative model comparisons, it has been found that

both PDE models have distinctive qualities: if the degradation rate and the prolifera-

68



5.2. PDE Parameter Fit: All Parameters

tion probability are the only degrees of freedom, then both models make similarly good

approximations of wave speed and shape. If all parameters are to be estimated, then

Colson’s model convinces regarding shape fit, whereas Crossley’s strength is the robust

wave speed approximation.
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6. Lessons Learned

It is time to evaluate the methods and results presented in this work. Have answers been

found to all questions? What remains to be investigated?

6.1. Limitations

This work studied the behavior of three cell invasion models of different complexity: two

PDE models which are on a relatively similar level of complexity, and one hybrid model

which by far outshines the PDE models regarding the number of considered parameters

and processes. However, even in the development of the CPM-FEM model, it is obvious

that many simplifying assumptions have been made. Chapter 2 presented a choice of

properties and mechanisms that are involved in cell invasion, and comparing the CPM-

FEM model with this selection alone reveals the extent to which this model deviates

from reality. To name just a few of the simplifications, the finite element formulation is

based on a linear elastic surface without dynamic deformation, even though the ECM is a

non-linear elastic material and in nature, deformations of course outlast one Monte-Carlo

step. Consequently, phenomena such as microbuckling – which can be considered as a

part of dynamic deformation – are ignored, even though they might play an important

role for durotaxis in the early stages of tumorigenesis. The CPM part of the model lacks

obvious details of the invasive process as well: nutrient distribution is ignored completely,

cell death is not considered, and cells do not grow but are born at their target size. The

Hamiltonian which links the CPM with the FEM part could also be made more realistic,

for instance by allowing cell traction force to have a more direct influence on the system

energy.

To see which of these details are worth the additional computation expense, the model

should be validated using experimental data from experiments with real cancer cells. The

same holds true for the PDE models: only the comparison with real data can make a

robust statement about model adequacy.

A limitation that most likely complicated the comparability of the PDE models with the

CPM-FEM model is the size of the simulated tumors. While neither Crossley nor Colson

make assumptions on the size of the tumors from which their modeled invasive cell front
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origins, it can be assumed that they are all either large avascular or vascularized tumors,

i.e. tumors of around two millimeters in diameter or larger [91]. Alexander P. Browning

and colleagues, who calibrated a PDE model similar to the ones studied here using images

from in vitro experiments, used cell spheroids of six millimeters initial diameter [51]. Six

millimiters – or two, even – is one whole magnitude larger than the simulation results.

The CPM-FEM modelled tumors that were investigated in the sensitivity analysis and

the qualitative comparisons were “grown” on a 60 by 60 element domain, hence even if

they use the space to full capacity, they cannot exceed diameters of 150 µm, i.e. 0.15 mm.

But not only the size of the spatial domain is relatively small, also the experimental time

frames are quite short. All investigations in this work were performed with either 30 or

60 time steps, even though it has been shown in section 3.4.5 that hundreds of time steps

are necessary to obtain a clearer impression of the effects in the CPM-FEM model. In

the mentioned calibration by Browning et al., the cells are observed over a time span of

four days. “Time steps” is a unitless quantity, hence it is not straightforward to find the

equivalent duration, but once again, comparisons with data from experiments with real

cells could help with this.

The hypothesis that the combination of a larger tumor spheroid size and more time steps

impacts model comparability is illustrated by the following experiment: the CPM-FEM

model is evaluated a single time using the same parameters as in the proliferation-example

from section 3.4.5, except for the spatial domain size which is augmented to 200 by 200

elements, and the number of time steps, which is stopped at 600. A fit of the PDE models’

degradation rates λ and proliferation probabilities r leads to the fit shown in Fig. 6.1.
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Figure 6.1.: Result of a parameter fit for λ and r using a 200 × 200-grid and 600 time
steps. Solid lines: cell density, dashed lines: ECM density.
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It is striking how the roles have changed: now, Crossley’s model does not appear to

exhibit inadequately steep slopes, but Colson’s slopes are too shallow, especially in case

of the cells. Of course this is just an example and requires further investigation, but it

provides an indication that domain sizes are essential concerning model comparability.

The reason behind the very low choices of spatial and temporal domain sizes were the

computational expenses. Even with parallel computing methods that were used for the

sensitivity analysis model evaluations, the runtimes were too long to use a larger domain.

In potential future works with this model, one of the first aspects to be considered should

be runtime optimization and the use of computers with more processors.

6.2. Conclusions

The result that might be overall most surprising is the difference in parameter sensitivity,

given that in one dimension, all models produce travelling wave solutions. While in

the PDE models, the investigated parameters mostly produce direct, first-order effects

that can therefore be easily retraced to the model-inherent processes, the interplay of

parameters in the CPM-FEM model is more complex and except for the proliferation

probability, no single parameter has a distinct first-order influence on output variance.

Considering the model complexity, a category which is dominated by the CPM-FEM

model, it might on the other hand be evident that this model’s output depends on more

nested parameter interactions than the ones of the PDE models.

Another surprising finding, for which an explanation is not as obvious, is the low quality

of Colson’s wave speed estimate using all parameters for the fit. It is an astonishing

result considering that the shapes of the curves coincide well when using the optimized

parameters. But perhaps the problem is precisely the optimization? For Colson’s model,

a different minimizer had to be used given the condition on the parameters for the initially

occupied domain. As a test, Crossley’s model was fitted to data from the full CPM-FEM

model using the same algorithm as was used for Colson. Both, the shape fit and the

wave speed approximation were comparably good as in section 5.2, see the summary

in appendix A.10. Therefore, the poor wave speed estimations necessarily are a model-

inherent issue, and it is likely that the neglect of ECM volume-filling effects are a cause

of it, given that Crossley’s model performed well in this category under all experimental

conditions.

In the cases where only λ and r were fitted, the shapes of the invading and retracting

fronts provided by the CPM-FEM model were reproduced rather poorly by both PDE

models. However, the wave speeds were approximated relatively well, and it is very likely
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that the use of more than a single time step (or two, to be precise, as the time of origin

is known as well) for the fit will increase its quality even further.

As a last point regarding the parameter fits it should be mentioned that while the PDE

models can be adapted to the CPM-FEM model results, yielding more or less adequate

approximations, by model definition it is not possible to regulate the influence of more

complex processes such as durotaxis or contact energy expenses using these models. How-

ever, these phenomena have significant effects on invasion speed as it has been found here,

at least under the limitations listed above.

Regarding these effects, one finding that was not really looked for but is worth mentioning,

is how in the early time steps after initialization, the contact cost is a major factor

influencing cell shape. Van Oers et al. made a similar observation regarding substrate

stiffness which guides cell shape, but they do not mention contact cost as a determining

parameter [50]. There is some experimental evidence that the shape of epithelial cells is

influenced by its cell-to-cell adhesiveness [92], so perhaps this mechanism is also present

in cancer cells – of course not to the extent that was observed in section 5.1.3, but it is

interesting that the CPM-FEM model appears to exhibit a similar phenomenon.

One of the motivating questions of this work is which areas of application might be best

suited for each of the considered models. Of course, all three models have their right

to exist, from the mathematical point of view alone. The strengths of the PDE models

are their transparency regarding parameter sensitivity and their ability to estimate the

invasion speed with only two degrees of freedom. Especially Crossley’s model reliably

approximated the wave speeds in the scenarios tested here, hence it could be used for

situations as described in the motivation: predicting the tumor growth by estimating

the invasion velocity. The CPM-FEM model incorporates too many parameters to be

adequate for such purposes, but with its versatility it could be used to replace expensive

lab experiments. Yet, before the models can be considered for these tasks, naturally they

would need to be tested and calibrated extensively with experimental data – in the best

case not only with datasets from in vitro, but from in vivo studies.

6.3. Next Steps

Any further work involving a model similar to the CPM-FEM model should start by

improving its computational performance, for instance by grouping the different tasks in

the algorithm more efficiently. Then, the results from this work could be validated or

rejected by repeating the presented experiments on a larger temporal and spatial domain.

This would not only be interesting in regard to model comparability, but also concerning
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the invasion speed differences caused by the in- or exclusion of the diverse Hamiltonian

components.

Another possible working point is the reduction of simplifying assumptions on the CPM-

FEM model. Especially the modeling of durotaxis on a substrate that behaves in a

nonlinear-elastic manner could provide new insights, as well as the implementation of

dynamic deformation. Also, extending the model to three dimensions and featuring the

degradation-dependent switch between amoeboid and mesenchymal migration could lead

to interesting findings.

Finally, regarding applications, the most important step is to test the ability of all models

that were discussed in this work to reproduce experimental data. A good starting point

could be the in vitro data that was used by Browning et al. for their calibrations [51],

which can be found in [93].
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A. Appendix

A.1. More Detailed Cell Invasion Modeling Timeline

This timeline is an extension to the one in section 3.1. It is based on the overview

papers by Robyn Araujo and Sean McElwain [42], and by Nikolaos Sfakianakis and Mark

A. J. Chaplain [20]. To avoid redundancy, the models that have already been explained

in section 3.1 are mentioned in an abbreviated format.

• 1937: Ronald A. Fisher’s mutation continuum model.

• 1995: Robert A. Gatenby’s cell invasion specific continuum model.

• mid- to late nineties: Abbey J. Perumpanani and colleagues followed the recent

findings concerning integrin serving as adhesion control and proteolysis regulator

in tumor invasion. They published multiple PDE models that link cell invasion

with proteolysis and haptotaxis. Among these models, the most famous one is a

diffusion-less three-dimensional reaction-advection system featuring the densities of

malignant cells, ECM elements and proteases, the enzymes that degrade the ECM.

Diffusion, i.e. random cell motility, was omitted as its occurrence is found to be

negligible compared to the haptotaxis-induced directional migration of the invasive

cells. [20, 42, 94]

• 1999: Emma L. Stott’s CPM.

• 2000: using the same three variables as Perumpanani et al., Alexander R. A. An-

derson and colleagues started with the development of another deterministic PDE

model. While they did include diffusion, they excluded proliferation, and they

found that the malignant cells divide in two groups during the process of detaching

from the original tumor: the expression of ECM-degrading enzymes (proteases) by

the cancer cells builds a haptotactic gradient in the tumor’s immediate neighbor-

hood, so that the outer tumor cells start leaving the original tumor site following

this gradient. The main part of the tumor cells, however, remains close to the

original site and mostly spreads via diffusion, not so much via haptotaxis. One
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can observe that the first, haptotaxis-driven group of cells invades the surround-

ing tissue much faster than the second, diffusion-driven one. Anderson et al. use

this first group to explain the development of metastases. With their continuous

model as a basis, they derived a discrete, quasi-stochastic cancer cell invasion model

that allows tracking the movement of individual cells depending on their likelihood

to move in a certain direction (which is influenced by the cancer cell and ECM

element density) [95]. In 2005, Anderson combined both models and added the

nutrient oxygen as a fourth variable. ECM elements, proteases and oxygen are

handled as densities/concentrations, whereas the tumor cells are discrete agents.

His model is considered as a milestone on the way towards hybrid invasion models,

where “hybrid” means the combination of macroscopic, deterministic terms and

microscopic/atomistic, stochastic ones. [20, 96]

• 2001: inspired by Stott et al., Stephen Turner and Jonathan A. Sherratt modified

their version of the CPM to capture malignant tumor invasion. While they omitted

healthy and necrotic cells, they included the ECM as an obstructive factor of cancer

cell movement. Moving to a lattice site which has been visited by many cells in

the past requires less energy than moving to a site which has rarely or never been

occupied by a cell, because the visitors were degrading the ECM over time. In

an extension of their model, they also included proliferation of tumor cells. Both

models exhibit the invading front consisting of outer tumor cells detaching from the

original tumor site, as it was first observed by Anderson and colleagues. [62]

• 2005: after several years of observing the same three variables (cancer cells, ECM

elements and proteases), Marc A. J. Chaplain and Georgios Lolas investigated the

ECM degeneration more closely than their predecessors. They did not assume the

proteases to be one single substrate, but the whole biological system that generates

and activates these enzymes, namely the urokinase plasminogen activation system.

Cancer cells express the enzyme uPA (urokinase plasminogen activator) which con-

verts plasminogen, a chemical precursor of plasmin, to the active ECM-degenerating

enzyme plasmin. The opponent of uPA is PAI-1 (plasminogen activator inhibitor-

1), and in healthy tissues, uPA expression is very limited and strictly controlled

through large abundance of PAI-1 to avoid excessive ECM degeneration. A disrup-

tion of this balance can be a sign for malignant activity. Even though Chaplain

and Lolas included the whole enzymatic cascade in their continuum model, they

achieved a representation which is not too complicated and whose numerical sim-

ulations exhibit similar properties as the ones from Anderson et al., especially the

presence of multiple invading fronts instead of a single wave [20, 39]. Their model is
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modified in 2017 by Lu Peng and colleagues to include not only macroscopic mea-

sures (i.e. tissue-scale), but also dynamics on the microscopic scale (i.e. cell-scale),

namely the processes by which uPA molecules are produced by the cancer cells and

removed by binding to cell-surface receptors. The introduction of a second scale is

considered necessary since these processes only occur in the “(micro) neighbourhood

of the invasive edge of the tumor” [97].

• 2006: so far, the only type of adhesion that has been considered in the mathematical

invasion models was cell-matrix adhesion. But there exists another type of adhesion

as well: cell-cell adhesion, which happens through the binding of adhesive substrates

at the cell surface. It is a crucial process when it comes to tissue development,

enabling cells to selectively adhere to other cells and forming patterns which later

build organs. A change in tumor cell adhesion is also a sign for upcoming invasion.

The first macroscopic continuum model focusing on cell-cell adhesion was developed

by Nicola J. Armstrong and colleagues. Assuming that adhesion attracts cells within

a so-called “sensing radius” to move towards each other, it shows how disassociated,

adhesive cells find cells of the same type and aggregate with them, initiating the

growth of secondary tumors at distinct sites of the body [20, 98]. In 2008, their

model is combined with the ideas of Anderson et al.’s discrete haptotaxis-diffusion-

model [95] by Alf Gerisch and Marc A. J. Chaplain. This new model describes

cancer invasion by both cell-cell adhesion and haptotaxis. [20, 99]

• 2013: the CPM gets refined more and more: Marco Scianna, Luigi Preziosi and

Katarina Wolf made their cells expend more or less energy depending on mechanical

properties of the ECM and introduce details such as nucleus and cytosolic region

in the cells [100].

• 2014: René F. M. van Oers’ hybrid model.

• 2019: Alexander P. Browning’s calibrated continuum model.

• 2020: shortly after the mathematical investigations of durotaxis took place, the in-

fluence of ECM deformation on cell migration became interesting. Adam A. Malik

and colleagues created a single cell model which they compared to experimental

data from durotactic cancer cells. Similarly to the work of van Oers, Rens and

Merks [35, 50], they assumed the ECM to consist of a linearly elastic material, but

they neglected substrate-induced adhesion completely and focused on mechanical

interdependences. The cell in their model has four contact points with the ECM

underneath it, and forces within the cell are approximated through spring forces
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between the contact points and the cell kernel. It has been found that the trac-

tion forces generated by the cells are proportional to the substrate stiffness [101],

and as soon as Malik et al. included this property in their model, they observed

durotaxis. [102]

• 2021: Colson’s minimal continuum model.

• 2023: Rebecca M. Crossley’s agent-based model.

A.2. Coarse-Graining Crossley’s Agent-Based Model

The probabilities Tmj

i± (t), T pj

i (t) and T dj

i (t) from section 3.2 are coarse-grained in the

following to obtain a system of reaction-diffusion equations. The description follows the

procedure from [54].

Let J be the number of samples that is taken from the model at time t. Then one can

define the average occupancy of lattice site i by

⟨ui(t)⟩ :=
1

J

J∑
j=1

= uji (t), ⟨mi(t)⟩ :=
1

J

J∑
j=1

= mj
i (t).

The evolution of the mean cell number in site i during [t, t+ τ) is given by the sum of all

possible events multiplied with their probabilities:

⟨ui(t+ τ)⟩ =⟨ui(t)⟩

+ number of cells from site i+ 1 moving to i

+ number of cells from site i− 1 moving to i

− number of cells from site i moving to i+ 1

− number of cells from site i moving to i− 1

+ number of offspring created in site i,

which, using the notation from the agent-based model, looks like this:

⟨ui(t+ τ)⟩ =⟨ui(t)⟩

+
pm
2
⟨ui+1(t)⟩

(
1− ⟨ui(t)⟩+ ⟨mi(t)⟩

N

)
+

pm
2
⟨ui−1(t)⟩

(
1− ⟨ui(t)⟩+ ⟨mi(t)⟩

N

)
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− pm
2
⟨ui(t)⟩

(
1− ⟨ui+1(t)⟩+ ⟨mi+1(t)⟩

N

)
− pm

2
⟨ui(t)⟩

(
1− ⟨ui−1(t)⟩+ ⟨mi−1(t)⟩

N

)
+

pp
2
⟨ui(t)⟩

(
1− ⟨ui(t)⟩+ ⟨mi(t)⟩

N

)
.

Crossley rearranges the equation above, expands some of the right hand side terms with

∆2/∆2, where ∆ is the lattice spacing, and divides by τ :

⟨ui(t+ τ)⟩ − ⟨ui(t)⟩
τ

=
pm∆

2

2τ
· ⟨ui−1(t)⟩ − 2⟨ui(t)⟩+ ⟨ui+1(t)⟩

∆2

+
pm∆

2

2τN
· ⟨ui(t)⟩ · (⟨mi−1(t)⟩ − 2⟨mi(t)⟩+ ⟨mi+1(t)⟩)

∆2

− pm∆
2

2τN
· ⟨mi(t)⟩ · (⟨ui−1(t)⟩ − 2⟨ui(t)⟩+ ⟨ui+1(t)⟩)

∆2

+
pp
τ
⟨ui(t)⟩

(
1− ⟨ui(t)⟩+ ⟨mi(t)⟩

N

)
,

To obtain the PDE that describes the densities of cells and ECM elements at position

x ∈ R and time t ∈ (0,∞), a Kramers-Moyal-Expansion [103] is used. To do this, the

equation above is interpreted as a master equation, meaning that the left hand side is

considered as the derivative ⟨u̇i(t)⟩. This is possible by taking the limit τ → 0, which of

course also affects the factors on the right hand side. Crossley defines

D := lim
τ→0

pm∆
2

2τ
, r := lim

τ→0
=

pp
τ
.

Let x = hi where h = ∆. The basic assumption of the Kramers-Moyal-Expansion is that

there exists a smooth function u(x, t) with hu(x, t) ≈ ⟨ui(t)⟩ (and similarly hm(x, t) ≈
⟨mi(t)⟩). The functions u and m are the “continuum counterparts” [54] of the number

density of cells ⟨ui(t)⟩/∆ and the density of ECM ⟨mi(t)⟩/∆.1 These definitions allow

to rewrite for instance ⟨ui−1(t)⟩ = hu(h(i − 1), t) = hu(x − h, t) (there are analogue

formulations for ⟨ui+1(t)⟩, ⟨mi−1(t)⟩ and ⟨mi+1(t)⟩), which is plugged into the equation

above:

1Indeed, Crossley et al. use ⟨mi(t)⟩/(µ∆). The factor µ is a conversion factor between number of cells
and unit mass of ECM. µ is not relevant for the purposes described here, so it is omitted for the sake
of simplicity.
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h∂tu(x, t) ≈ ⟨u̇i(t)⟩ =D
hu(x− h, t)− 2hu(x, t) + hu(x+ h, t)

∆2

+
D

N
· hu(x, t) (hm(x− h, t)− 2hm(x, t) + hm(x+ h, t))

∆2

− D

N
· hm(x, t) (hu(x− h, t)− 2hu(x, t) + hu(x+ h, t))

∆2

+ rhu(x, t)

(
1− hu(x, t) + hm(x, t)

N

)
.

To get rid of x ± h in the function calls of u and m, a second order Taylor expansion is

used of the form

u(x+ h, t) = u(x, t) + h∂xu(x, t) +
h2

2
∂xxu(x, t) +O(h3)

u(x− h, t) = u(x, t)− h∂xu(x, t) +
h2

2
∂xxu(x, t) +O(h3)

(analogously for m(x+h, t), m(x−h, t)). Plugging in these expressions – while neglecting

the third order terms and simplifying a bit – yields

h∂tu(x, t) =D
h3

∆2
∂xxu(x, t)

+
D

N
hu(x, t) · h

3

∆2
∂xxm(x, t)

− D

N
hm(x, t) · h

3

∆2
∂xxu(x, t)

+ rhu(x, t)

(
1− hu(x, t) + hm(x, t)

N

)
.

Dividing both sides by ∆ and recalling that h = ∆, leads to

∂tu(x, t) =D∂xxu(x, t) +
D∆

N
u(x, t)∂xxm(x, t)

− D∆

N
m(x, t)∂xxu(x, t) + ru(x, t)

(
1− ∆(u(x, t) +m(x, t))

N

)
.

In the last step, another definition is introduced, namelyK := N
∆ . Using it, one eventually

arrives at the Fokker-Planck equation for the cell density dynamics:

∂tu(x, t) =D

(
∂xxu(x, t) +

u(x, t)∂xxm(x, t)

K
− m(x, t)∂xxu(x, t)

K

)
+ ru(x, t)

(
1− u(x, t) +m(x, t)

K

)
.
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Of course the formulation for m(x, t) is still missing. The corresponding PDE for the

ECM dynamics can be derived with the same approach, but the calculations are now

much simpler as there are not as many factors of influence – the number of ECM elements

is only changed by the degradation through cells in the same lattice site. Hence it is

⟨mi(t+ τ)⟩ = ⟨mi(t)⟩ − number of ECM elements degraded in site i

= ⟨mi(t)⟩ − pd⟨ui(t)⟩⟨mi(t)⟩.

After following the same steps as before for the cell density, the ECM density is given by

∂tm(x, t) = −λu(x, t)m(x, t),

where λ := limτ→0
pd∆
τ .

A.3. Numerical Solution of the PDE Models

The models by Crossley and Colson are given as PDEs. Solving them numerically requires

both, spatial and temporal discretization. Discretization in time is a task that can reliably

be handled by software – here for instance by the Python function scipy.integrate.

solve_ivp [84] which uses a fourth order Runge-Kutta method and can handle moderate

stiffness –, as it only requires solving a system of ordinary differential equations (ODEs)

instead of PDEs. The crucial step is the transformation from the PDE system to the ODE

system, which is done by discretization in space. In the following, it is demonstrated how

the spatial discretization works with the dimensionless model by Crossley (3.3). For the

parameterized system as well as Colson’s model, it is done analogously. The equation for

ũ can be rewritten (dropping the tildes for simplicity) as

∂tu = ∂x((1−m) ∂xu) + ∂x(u ∂xm) + u(1− u−m). (A.1)

A term of the shape ∂x(f ∂xg), f = f(x, t), g = g(x, t), appears twice in this equation:

once with f = 1−m, g = u, once with f = u, g = m. Applying the product rule yields

∂x(f ∂xg) = ∂xf ∂xg + f ∂xxg. (A.2)

As proposed by Crossley et al., the spatial domain [0, L], L > 0 is discretized in increments

of length h := 0.1, yielding a total of I := L
h spatial points (assume L to be a multiple of

h). Then, the notation fi(t) := f(hi, t) is introduced, where i ∈ {1, ..., I}.
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Following the basic concepts of finite differences (see for instance [104]), the first order

derivative can be approximated by a forward difference quotient

∂xf
∣∣∣
x=hi

≈ 1

h
(fi − fi+1),

or a backward difference quotient

∂xf
∣∣∣
x=hi

≈ 1

h
(fi−1 − fi),

and the second order derivative by a central difference quotient

∂xxf
∣∣∣
x=hi

≈ 1

h2
(fi−1 − 2fi + fi+1).

Note that in (A.2), there is a product of two first order derivatives. For balance, it is

approximated using the average of a forward and backward difference quotient, yielding

∂xf ∂xg
∣∣∣
x=hi

≈ 1

2h2
((fi − fi+1)(gi − gi+1) + (fi−1 − fi)(gi−1 − gi)) .

In total, the spatially discretized version of (A.2) is given by

∂x(f ∂xg)
∣∣∣
x=hi

≈ 1

2h2
((fi − fi+1)(gi − gi+1) + (fi−1 − fi)(gi−1 − gi))

+
1

h2
fi(gi−1 − 2gi + gi+1)

=
1

2h2
(−fi(gi−1 − gi) + fi(gi − gi+1)− fi+1(gi − gi+1) + fi−1(gi−1 − gi)

+ 2fi(gi−1 − 2gi + gi+1))

=
1

2h2
(−fi(gi−1 − 2gi + gi+1)− fi+1(gi − gi+1) + fi−1(gi−1 − gi)

+ 2fi(gi−1 − 2gi + gi+1))

=
1

2h2
(fi(gi−1 − 2gi + gi+1)− fi+1(gi − gi+1) + fi−1(gi−1 − gi))

=
1

2h2
((fi + fi−1)gi−1 − (fi−1 + 2fi + fi+1)gi + (fi + fi+1)gi+1).

Plugging in f = 1−m, g = u, and f = u, g = m, as it is given in (A.1), leads to

∂x((1−m) ∂xu)+ ∂x(u ∂xm)
∣∣∣
x=hi

≈ 1

2h2
((1−mi + 1−mi−1)ui−1

− (1−mi−1 + 2(1−mi) + 1−mi+1)ui + (1−mi + 1−mi+1)ui+1
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+ (ui + ui−1)mi−1 − (ui−1 + 2ui + ui+1)mi + (ui + ui+1)mi+1)

=
1

2h2
((2−mi −mi−1)ui−1

− (4−mi−1 − 2mi −mi+1)ui + (2−mi −mi+1)ui+1

+ (ui + ui−1)mi−1 − (ui−1 + 2ui + ui+1)mi + (ui + ui+1)mi+1)

=
1

2h2
· 2(ui−1(1−mi) + ui(mi−1 +mi+1 − 2) + ui+1(1−mi))

=
1

h2
(ui−1(1−mi) + ui(mi−1 +mi+1 − 2) + ui+1(1−mi)).

Eventually, the discretization of the whole system (3.3) is given by2

dui
dt

=
1

h2
(ui−1(1−mi) + ui(mi−1 +mi+1 − 2) + ui+1(1−mi)) + ui(1− ui −mi),

dmi

dt
= −λmiui,

for i ∈ {1, ..., I − 1}. For the cases i = 0 and i = I, Crossley uses the no-flux boundary

condition which allows to set u−1(t) = u0(t) and uI+1(t) = uI(t) because no domain-

boundary-crossing changes in cell density are expected (equivalently for m−1 and mI+1).

Also, one can set m0 = m1 = 0 as the domain length for the simulation should be chosen

large enough such that no ECM elements are expected here. This yields the boundary

conditions

du0
dt

=
1

h2
(u0(1−m0) + u0(m0 +m1 − 2) + u1(1−m0)) + u0(1− u0 −m0)

=
1

h2
(u0 − 2u0 + u1) + u0(1− u0 −m0)

=
1

h2
(u1 − u0) + u0(1− u0 −m0),

and

duI
dt

=
1

h2
(uI−1(1−mI) + uI(mI−1 +mI − 2) + uI(1−mI)) + uI(1− uI −mI)

=
1

h2
(uI−1 − uI − uI−1mI + uImI−1) + uI(1− uI −mI).

Note that no such assumptions are necessary for the equations for the ECM density, as
dmi
dt only depends on mi and ui, i.e. the same indices.

2Note that here, the final discretization differs from the one in equations (B2), (B5) and (B6) of [54].
The reason for this is a miscalculation in the publication. The version used in this work should be
correct.
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The spatially discretized system of equations can now be handed over to an initial value

problem solver such as the before-mentioned scipy.integrate.solve_ivp. As initial

conditions, Crossley uses

u(x, 0) =

1 if x < α,

0 if x ≥ α,

m(x, 0) =

0 if x < α,

m̂0 if x ≥ α,

where α > 0 represents the length of the initially invaded region at t = 0 and m̂0 ∈ [0, 1)

describes the density of non-degraded ECM.

While the same discretization scheme and analogue boundary conditions are used for

Colson’s model, the initial conditions differ. By introducing a sigmoid shaped function

and two smoothing parameters 0 < ω < σ, Colson’s initial conditions are not as sharp:

u(x, 0) =


1 if x < σ − ω,

exp

(
1− 1

1−(x−σ+ω
ω )

2

)
if σ − ω ≤ x < σ,

0 if x ≥ σ,

m(x, 0) =


0 if x < σ − ω,

m̂0(1− u(x, 0)) if σ − ω ≤ x < σ,

m̂0 if x ≥ σ.

A.4. Constitution of the Stiffness Matrix K and the

Finite-Element Equations

To gather more theoretical background on equation (3.7), the strong and the weak form

of the problem as well as the discretization of the latter is derived here, using some terms

and explanations from [66]. In two-dimensional linear elasto-statics, the strong form of

the problem is given by three governing equations and two boundary conditions. The first

of these equations is the so-called Balance Equation, it states that externally applied

loads b̂ (coming from the cells) must be balanced by the resulting stress σ within the

material.
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It is given by

0 = LTσ + b̂ =

(
∂x1 0 ∂x2

0 ∂x2 ∂x1

)
σ + b̂,

where ∂xi means the partial derivative with respect to xi, i.e. LT is the divergence

operator. Note that stress – as well as strain – is a three-dimensional vector: σ =

(σ11, σ22, σ12)
T, where σ11 and σ22 are the normal stresses in x1- and x2-direction, re-

spectively, and σ12 is the shear stress (in two dimensions, it is assumed that the shear

stress σ21 parallel to a surface that is oriented in x1-direction is the same as the shear

stress σ12 parallel to a surface oriented in x2-direction, hence only one of them is given

in σ).

The next equation is the Kinematic Equation which describes the strain ε, i.e. how

the material is stretched and compressed, as a result of the displacements u:

ε = Lu,

where the strain is similarly defined as the stress, but the third component is doubled:

ε = (ε11, ε22, 2ε12)
T.

The last of the governing equations is the Constitutive Equation which links the

stresses and strains under the assumption of given material properties. Van Oers assumes

plane stress conditions, meaning there is a constant mechanical stress state across the

thickness of the ECM. This leads to a material or constitutive matrix of the following

form:

C =
E

1− ν2

 1 ν 0

1 0

sym. 1−ν
2

 ,

where E > 0 is Young’s modulus and −1 ≤ ν ≤ 1
2 is Poisson’s ratio, both material specific

parameters. The equation is given by

σ = Cε.

Van Oers uses Dirichlet boundary conditions for all nodes at the grid boundary Γ: their

displacement is always 0. This condition is emphasized by the constraint that the CPM

is not allowed to place any cells at boundary lattice sites, leading to flux boundary

conditions that suggest themselves: they are given by zero traction along the outward

normal vector n.
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In summary, the governing differential equation of the problem is given by a rearrange-

ment of the field equations inside the domain Ω

0 = LTCLu+ b̂ (A.3)

and the boundary conditions on Γ

u = 0

⟨σ, n⟩ = 0.

To obtain the problem’s weak form, the displacements u are only required to satisfy the

governing differential equation in an integral sense instead of pointwise satisfaction. This

means (A.3) becomes∫
Ω
⟨LTCLu+ b̂, w⟩ dΩ =

∫
Ω
⟨CLu,Lw⟩ dΩ +

∫
Ω
⟨b̂, w⟩ dΩ = 0, (A.4)

where a test function w was inserted to ensure that any approximate solutions u do not

deviate too much from the analytical solution (for instance, if u solves the equation above,

any function u + u∗ with
∫
Ω LTCLu∗dΩ = 0 solves that equation as well, even though

u∗ could be a periodic function with very large amplitude leading to massive errors). In

general, w is an element of the test function space which is given by W := {w : Ω → R2 :

w(x) = 0 for x ∈ Γ and the above integral exists}, but it is possible to restrict the choice

of w (and also the choice of trial functions, i.e. the functions that are used as candidates

for approximate solutions u) using the discretization through the grid. After finishing

the boundary value problem’s weak form in the next step, the specific choice of test and

trial functions are discussed.

This form differs from the one in (A.4) as it implicitly features the boundary conditions on

Γ. An exact solution u of the problem (A.3) fulfills the Balance Equation, i.e. LTσ(u)+b̂ =

0 in Ω, where σ(u) means that the stress vector is calculated with the solution u (with

this approach, the Kinematic and Constitutive Equation are implicitly used, hence it is

not necessary to consider them explicitly). However, if u is an approximate solution, it

does not fulfill the equation, and a residual RBE := LTσ(u) + b̂ ̸= 0 remains. The same

holds true for the flux boundary condition, yielding the residual RFBC := −⟨σ(u), n⟩ ≠ 0

on Γ (as the sign does not matter, it is chosen to be negative which will be helpful in

the next steps). Just as in the derivation of (A.4), only satisfaction of the governing

equations and the boundary conditions over the integral is required, which leads to the

weighted residual formulation
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∫
Ω
⟨RBE, w⟩ dΩ +

∫
Γ
⟨RFBC, w⟩ dΓ = 0,

where w are weighting functions that can be chosen just as the test functions (and there-

fore the same notation is used). This equation can be rearranged using the Divergence

Theorem:

0 =

∫
Ω
⟨LTσ(u) + b̂, w⟩ dΩ +

∫
Γ
⟨−⟨σ(u), n⟩, w⟩ dΓ

=

∫
Γ
⟨⟨σ(u), w⟩, n⟩ dΓ−

∫
Ω
⟨σ(u), Lw⟩ dΩ +

∫
Ω
⟨b̂, w⟩ dΩ−

∫
Γ
⟨⟨σ(u), n⟩, w⟩ dΓ.

Conveniently, the first and the last term cancel and the weak form of the boundary value

problem is obtained by ∫
Ω
⟨σ(u), Lw⟩ dΩ =

∫
Ω
⟨b̂, w⟩ dΩ. (A.5)

Note that the Dirichlet boundary conditions do not appear in the weak form, they have

to be respected by only allowing trial and test functions that fulfill these conditions.

The choice of trial and test functions is resumed: Each quadratic element has four nodes

(one at each corner), so the simplest choice are linear shape functions (with local coordi-

nates r and s):

N1(r, s) =
1

4
(1− r)(1− s)

N2(r, s) =
1

4
(1 + r)(1− s)

N3(r, s) =
1

4
(1 + r)(1 + s)

N4(r, s) =
1

4
(1− r)(1 + s)

(A.6)

Hence, for each element, one can use the trial function u
(e)
h (the subscript h symbolizes

that this is the discrete solution, and the superscript (e) indicates local element level):

u
(e)
h (r, s) =

4∑
i=1

Ni(r, s)di,

where di =
(
d1i , d

2
i

)T
are the discrete displacements for both degrees of freedom of node i

in element e. With this in mind, it should be noted that equation (3.7) is solved for these

discrete displacements d, i.e. one could also write Kd = f instead. The shape functions

and the discrete displacements are shown in Fig. A.1.
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Figure A.1.: Left: definition of the local coordinates r and s and the discrete displace-
ments di. Right: depiction of the shape functions (A.6) from [66].

Van Oers uses the Bubnov-Galerkin method meaning that he chooses the same kind of

functions for the test functions as well: w
(e)
h (r, s) =

∑4
i=1Ni(r, s)gi, where the gi ∈ R2

are discrete weights.

Using a matrix-vector notation for the shape functions and the discrete displacements,

i.e. a 2× 8-matrix for N and an 8× 1-vector for d,

N = N(r, s) :=

(
N1(r, s) 0 N2(r, s) · · · 0

0 N1(r, s) 0 · · · N4(r, s)

)
, d(e) :=


d11
d21
...

d24

 ,

one can write u
(e)
h = Nd(e). Additionally, let B := LN , where L ∈ R3×2 is the transposed

divergence operator, then Lu
(e)
h = Bd(e).

Before the discretization is combined with the weak form of the problem, the Principal

of Virtual Work needs to be introduced. From now on, it is written wh = δuh, and

analogously w = δu, where the δ symbolizes the variation of uh and u – the operation

that allows this conversion. Without going too much into detail, W. A. Wall’s instructions

are followed on how to insert the virtual displacement w = δu into the weak form (A.5)

and then the discretization is resumed. The weak form bears the term ⟨σ(u), Lw⟩, which
can be rewritten as ⟨σ, Lδu⟩. The symmetry of the stress tensor σ and the Kinematic

Equation allow to rearrange this to ⟨σ, δε⟩, which in the last step (see [66] for details; the

definition of ε and the symmetry of C are used) can be brought back to only using the

displacements u as unknowns and yields the form
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∫
Ω
⟨CLu,Lδu⟩ dΩ−

∫
Ω
⟨b̂, δu⟩ dΩ =

∫
Ω
δuTLTCLu dΩ−

∫
Ω
δuTb̂ dΩ = 0. (A.7)

If the discretization of u is inserted in the next step, δu
(e)
h = Nδd(e) are obtained as

virtual nodal displacements.

With the approximating expressions for the displacements, and the Principle of Virtual

Work, the discrete form of (A.7) is given as a sum over all elements

no. of elements∑
e=1

(∫
Ω(e)

δd(e)
T

BTCBd(e) dΩ−
∫
Ω(e)

δd(e)
T

NTb̂ dΩ

)
= 0.

The only quantity in this equation that depends on spatial coordinates is N , and therefore

also B. One can remove d(e) from the integrals and obtain

no. of elements∑
e=1

(
δd(e)

T
(∫

Ω(e)

BTCB dΩ d(e) −
∫
Ω(e)

NTb̂ dΩ

))
= 0.

The integral
∫
Ω(e) BTCB dΩ is called element stiffness matrix k(e), and

∫
Ω(e) NTb̂ dΩ is

the element load vector f (e). With van Oers’ choice of shape functions, these integrals can

be evaluated using Gaussian quadrature (he uses two integration points per axis, i.e. in

local geometry (r, s) =
(
± 1√

3
,± 1√

3

)
). Via a process called assembly, the local element

nodes and their degrees of freedom are assigned to the global nodes, and their respective

values in k(e) and f (e) are added up, leading to the global stiffness matrix K and the

global force vector f . This of course leads to the system

δdT (Kd− f) = 0,

but since the virtual nodal displacements δd is a vector of non-vanishing, arbitrary values,

this equation is equivalent to the finite elements equation (3.7).

A.5. Overview of the Authorship in the CPM-FEM Model

The CPM-FEM model is based on the hybrid angiogenesis model by René F. M. van Oers

et al. [50]. They developed the model in C [105] and published most of its components

as well as a documentation of their code. For this thesis, the public parts of their code

were translated to Python [106] and missing modules and functions were added. Some

of the translations were performed with the help of ChatGPT [107]. Also, new parts

concerning the ECM degradation and the cell proliferation were written. The resulting

XXVII



A. Appendix

code is publicly available at https://github.com/veronikahofmann/masters-thesis-

cellinvasion.

To give an overview of the extended models’ authorship, Tab. A.1 was created.

Module Authorship

analysis.py Hofmann

celldivision.py Hofmann

cellforces.py van Oers et al.

cellmoves.py van Oers et al.

colson.py Hofmann

CPM dH.py van Oers et al.

crossley.py Hofmann

ECM degradation.py Hofmann

FE assembly2.py van Oers et al., reduce_K by Hofmann following the idea of van
Oers et al.

FE local.py van Oers et al.

FE nodes2dofs.py van Oers et al.

FE solver.py van Oers et al.

init conditions.py set_restrictions and set_forces by van Oers et al., init_
cells, init_spheroid and init_ECM by Hofmann

main.py van Oers et al., some extensions by Hofmann

parameters.py van Oers et al., some extensions by Hofmann

plots.py force_movie and strain_movie by van Oers et al., plot_

spread_timeseries by Hofmann

read.py van Oers et al.

structures.py van Oers et al.

write.py van Oers et al., except for write_increment, write_

concentrations and write_total_cellforces

Table A.1.: Authorship of the code components.

A.6. Justifications for the Parameter Choices of the Fixed

Parameters

In the following, the choices for the fixed parameters in all three models that are used in

the sensitivity analysis as well as for the data fitting are explained.

A.6.1. Fixed Parameters of the CPM-FEM Model

The size of the domain is one of the main contributors to the computational cost

and the resulting runtime. It seems reasonable to choose it as small as possible, yet
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large enough to capture the model’s dynamics. Crossley and Colson both set their one-

dimensional domains to a length of 200 “lattice spacing units”, but the travelling waves

are visible for much lower values than this. To obtain numerically comparable results in

terms of the cell spread, the domain size for the CPM-FEM model is chosen as 60 by 60

elements, leading to a one-dimensional representation of length 30. Accordingly, in the

implementations of Crossley’s and Colson’s models a length of 30 units is set.

Van Oers et al. choose the quadratic elements to have a side length of 2.5 µm. Con-

sidering that human cells have diameters in the magnitude of 7.5 to 150 µm [108], this

seems to be a reasonable scale, allowing each cell to spread over multiple elements.

The Poisson’s ratio ν is a material constant describing how much a material deforms un-

der loading. When a sample of some material – for instance a collagen fiber, to remain in

the biological setting – is pulled at both ends, it not only elongates by a factor εlongitudinal,

but it also becomes thinner by a factor εlateral (note that in this case εlateral < 0, as it

usually describes a length augmentation). Poisson’s ratio is then defined as their neg-

ative fraction ν = −εlateral/εlongitudinal. As it represents the simplest case, in the finite

element model the ECM is assumed to be an isotropic material, a class of materials whose

mechanic properties remain the same after rotation. They have Poisson values between

0 and 0.5, where 0 signifies maximal volume change, and 0.5 characterizes an almost

incompressible material. Van Oers and colleagues choose ν = 0.45 – while similar values

of ν = 0.45 up to ν = 0.5 are used in literature [109, 110], they are all slightly inaccurate

as they are deducted from the imagination of the ECM as a linearly elastic and (nearly)

incompressible material. The reality is far more complex, not only because these assump-

tions are simplifying: two samples of the same tissue can expose different Poisson’s ratios

and they might even change over time, making it very difficult to define an appropriate

value for ν. Experiments with breast cancer tumors in mice yielded relatively constant

ν ≈ 0.3 in the tumor environment over a course of three weeks [71], which is the value

chosen for ν in this work.

Similar to Poisson’s ratio, the Young’s modulus E is another material constant. It

measures stiffness, meaning how easily a material can be deformed, as long as this de-

formation is small enough for the stress-strain-ratio within the material to be assumed

to be linear. It is defined as E = σ/ε, where σ is the stress (meaning force per unit

area) and ε is the strain, i.e. the deformation resulting from the applied force. Its unit is

1Pa = 1N/m2. High values for E therefore represent materials which are hard to deform,

while low values are characteristic for easily deformed materials. Different than in the

case of Poisson’s ratio, Young’s modulus can be chosen freely without the need to alter

modeling assumptions. Van Oers et al. found that Young’s modulus is a key parameter

when it comes to cell migration. Most tissues’ Young’s moduli can be found in the range
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of 0.5-30 kPa (see [111] for a summary of publications on different tissues), which is the

range van Oers et al. are using. While at the lower and upper ends of this spectrum the

cells hardly move, they spread over the whole domain for Young’s moduli of 10-14 kPa.

Values of around E = 10 kPa were also observed in the tumor-surrounding tissue of the

before-mentioned mice-experiment [71], hence the choice of E = 10 kPa seems suitable

for the observation of cancer cells’ migratory behavior.

The cell diameter d refers to the target area A(σ) = π(d/2)2 of the cells, i.e. the size

at which no energy is dedicated to maintaining it. The sizes of cancer cells vary, alone

in the case of prostate cancer cells their diameters have been observed to range from 8

µm in the case of circulating cells up to 21 µm for cells attached to the primary tumor.

It appears to be a common phenomenon that the cells forming the tumor are larger

than the ones that are moving in the blood stream, even though the latter expose a

widespread size distribution, complicating a size comparison [112]. The Micro and Nano

Integrated Biosystem (MINIBio) Laboratory of the Pennsylvania State University, who

investigate cell flow dynamics and are therefore very interested in the sizes of their cells,

have performed a lab inventory in which they found that the average diameter of the

cancer cell lines (i.e. tumor-forming cells, in contrast to circulating cells) that are mostly

used for their research are between 15–25 µm [72]. Relying on their expertise and keeping

in mind that the models discussed in this work concern cancer cells that are initialized

in a tumor spheroid, the cell diameter is chosen to be 20 µm. Note that this is the same

value as van Oers uses.

The radius of the initial cell spheroid should be equal to the length of the initially

invaded region of Crossley’s and Colson’s models. Assuming the one-dimensional domain

to have a length of 30 units, a range of 5 units initially occupied by cells has been found

suitable to observe the relevant model dynamics given certain intervals of parameters.

With the current choices of element size and target cell diameter, the imposition of this

5-elements-radius leads to two cells being placed on the domain at t = 0.

The cell elasticity λ is a dimensionless parameter describing the impact of the volume

constraint in the CPM: the larger λ, the higher the system energy savings or expenses

regarding changes in cell size. When comparing to other CPMs in literature, λ is not

derived from mechanic properties of the cells, but it is rather estimated in a way such that

it fits the other parameter values. In the original CPM, it is λ = 1, keeping the influence

of the volume constraint low [57], in Stott et al.s adaption it is a function of space and

nutrient concentration [48], in Turner et al. as well as in Scianna et al.’s publications, λ is

a constant chosen such that volume changes are influential, but not the governing factor

in the CPM [62, 100, 113]. Van Oers and colleagues set λ = 500 to compensate that their

model uses the target volume as a relative quantity, in contrast to the original, absolute

XXX



A.6. Justifications for the Parameter Choices of the Fixed Parameters

formulation of the CPM’s volume constraint. This parameter value is maintained in this

work.3

Regarding the cell-to-cell and cell-to-ECM attachment energy JCC := J(σ(x), σ(x′))

with σ(x), σ(x′) > 0 and JCE := J(σ(x), 0) with σ(x) > 0, respectively, the following

considerations are made: for the cells to spread across the domain, they need to be given

a motivation to leave the primary tumor site. The simplest way to do this in terms of the

CPM is by setting the energy necessary for two cells to hold on to each other higher than

the energy of a cell to hold on to the substrate, i.e. setting JCC > JCE. In the literature

on the CPM that has been discussed so far, the values for both parameters range from

0 to 12 [57, 100, 62, 113]. Here, the same values as in van Oers et al. is used, namely

JCC = 2.5 and JCE = 1.25.

The intrinsic cell motility T “represents the extent to which the active cell motility

can overcome the reactive forces (e.g. volume constraint or adhesions) in the environ-

ment” [50], making it very influential on other parameters such as λ or JCC and JCE.

Van Oers et al.’s example is followed to avoid interference, and T = 1 is set.

The cell force constant µ is the scaling parameter of the traction forces the cells exert

on the nodes. The total force generated by a cell is given by around 300 nN, as van Oers

cites the results of an experiment on the interplay of the cytoskeletal structure and force

production [73]. Hence, µ has to be chosen in a way that on average, each cell generates

a total traction force of 300 nN, at least in the long term behavior. It should suffice

to require an approximate equality, since cell deformations – which happen inevitably

in the model – that deviate from the optimal, energy-saving sphere shape will always

lead to larger forces generated by the cells. This can be seen directly in the formula

(3.8), where the traction forces are larger with larger distances between the nodes. Over

time, when the cells were able to move away from the initial spheroid and their shape

is less dictated by the available space, their geometry comes closer to the traction force

minimizing circle. However, there is one problem: the cell size, which determines how

many nodes are manipulated by the cell and therefore how many summands appear in

(3.8), is not fixed and highly depends on the substrate stiffness, which is one of van Oers

et al.s main findings [50]. Even though the optimal cell size is given by a parameter, in

stiff (32 kPa) environments the cells’ area can deviate from it by up to 125 µm2. Hence,

the appropriate µ can only be estimated for fixed Young’s moduli E. The above-chosen

value of E = 10 kPa is used and values for µ are tested. The total traction force for a

cell c is calculated with the following formula:

3See the supplementary material of van Oers et al. for the consequences of changing λ on cell shape.
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F c
total =

∑
nodes i of elements

covered by c

√
(F x

i )
2 + (F y

i )
2,

where F x
i is the horizontal component of the µ-dependent force vector Fi, and F y

i is the

vertical one. To obtain most accurate results, various values for µ are tested with only

one cell present, without proliferation or surrounding ECM blocking the cell’s movement.

Van Oers et al. use µ = 0.01 nN/µm, which is the starting value for this test. The mark

of 300 nN should not be undercut, but approached closely over time. After 100 Monte

Carlo steps, the evolution of the total cell force is visually assessed, see Fig. A.2. µ-values

between 0.0095 and 0.0105 yield results closest to what is expected, leading to the choice

of µ = 0.01 nN/µm just as van Oers proposes.

Figure A.2.: Total traction force generated by a single cell under various values for µ.
Time in Monte Carlo steps (MCS).

The only parameters left are the parameters of the two functions involved in the durotaxis-

Hamiltonian. The strain-stiffening function E has two parameters, the material stiff-

ness of the undeformed substrate E0, and the strain-stiffening speed εst). It is E0 = E,

so the same choice is made as for Young’s modulus, E0 = 10. The stiffening parameter

εst is chosen as 0.1 according to van Oers proposal.

The durotaxis function h has three parameters, namely its maximum value α, the

steepness β, and the shift to the right Etr. h links durotactic attraction to the stiffness of

the stretched material. Similarly to the cell elasticity λ, the parameter α (and the other

parameters of h to a lesser extent as well) weighs the influence of the durotactic effect on

the total system energy. While α = 10 should best be chosen as in the template by van

Oers not to disrupt the balance of the effect interplay, especially Etr should be examined

more closely and adapted to the durotactic properties of cancer cells. Cancer cell lines
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responsible for brain, breast and skin cancer have been observed to perform the highest

increases in durotactic efficiency on 2-7 kPa stiffness gradients, reaching a plateau for

gradients beyond [30]. Etr marks the value of substrate stiffness at which the durotaxis

function has its steepest increase. With this information alone it seems reasonable to set

Etr = 4.5, assuming the mean of the 2-7 kPa interval is the point of steepest increase.

However, the stiffness of the undeformed substrate has been set to E = 10 kPa, i.e.

Etr < E, which is possible as it just means that the cells are already moving on a surface

where durotaxis is a prominent phenomenon and has similar impacts on the cells in any

direction, regardless of how much their migration stretches the material. For instance,

let a cell that occupies a site x consider an expansion to the neighboring site x′. For

simplicity, let the orientation of the maximum stretch at site x′ coincide exactly with

the direction of the expansion, i.e. ⟨v1, vd⟩ = 1, and let the orientation of the minimum

stretch be perpendicular to it, i.e. ⟨v2, vd⟩ = 0. Further assume that the maximum stretch

is relatively strong: ε1 = 0.5, leading to E(ε1) = 60. The Hamiltonian for the durotaxis

in this case is constituted by ∆Hdurotaxis = −1 · h(60). With the choice Etr = 4.5

and the steepness β = 0.5 as in van Oers’ example, ∆Hdurotaxis ≈ −9.99 is obtained.

Comparing this with a scenario in which the stretch is much smaller, i.e. ε1 = 0.01,

it is E(ε1) = 11 and the Hamiltonian becomes ∆Hdurotaxis ≈ −9.63. The difference

between the two ∆Hdurotaxis is marginal, even though the tested stretches and their

accompanying substrate deformations mark virtually the whole range of possible values.

It is almost equally attractive for the cell to expand in the direction of high strain as in the

direction of hardly any strain. This can be prevented by choosing Etr > E, even though

it might not be in perfect accordance with the findings of [30]. Etr = E + 4.5 = 14.5 is

chosen, considering E as the “baseline stiffness”, which has to be exceeded for significant

durotaxis to happen. In the example above, the difference between the Hamiltonians is

now ∆Hdurotaxis ≈ −9.99 in the case of the large strain versus ∆Hdurotaxis ≈ −1.48 for

the small strain.

A summary of the fixed parameters of the CPM-FEM model is listed in Tab. 4.1.

A.6.2. Fixed Parameters of the PDE Models

Including the initial conditions, the parameterized model (3.1)-(3.2) by Crossley et al. con-

tains six parameters, the cell diffusivity D, the carrying capacity K, the proliferation

probability r, the degradation rate of ECM λ, the initial ECM concentration m̂0, and the

length of the initially invaded region α.
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Colson’s model (3.4) contains two more, the blocking ECM density mmax, and the initial

invasion length is split into two parameters σ and ω. While three of these parameters are

varied during the sensitivity analysis, most of them are fixed.

In accordance with the domain size of the CPM-FEM model, the spatial PDE model

domain length L is restricted to [0, 30].

Even though there are estimates for the cell diffusivity D in literature (e.g. Browning

et al. found D ≈ 0.17 µm²/s [51]), here it is set to 0.5 since otherwise the number

of timesteps that needs to be computed to observe travelling waves requires very large

runtimes for the CPM-FEM model.

The carrying capacity K is set to 1, since all models consider densities u,m ∈ [0, 1].

With a spatial domain length of only 30 length units, the length of the initially

invaded region α must not be chosen too large as otherwise interesting developments

could quickly wander out of the domain. On the other hand, setting α too small leads

to a very narrow interval in which cells and ECM elements initially interact. In that

case, to be able to observe the influence of the other parameters, one needs to solve the

PDEs for larger times t, which is not an issue for the models by Crossley and Colson, but

requires costly additional runtime for the CPM-FEM model. Also, experiments with the

model show that too small α-values lead to unreliable sensitivities or sensitivities that are

difficult to interpret. For a relatively stable sensitivity analysis, α = 5 is found suitable.

The unconquerable ECM density mmax is set to 1 to make the two models more

comparable (Crossley’s model implicitly contains mmax = 1: if one sets m̂0 = 1, the

system does not evolve and remains at the initial configuration [54]).

The last parameters are Colson’s initial invasion parameters σ and ω. From x = 0

to x = σ − ω, the cell density is constant at u(x, 0) = 1. From x = σ − ω to x = σ,

it transitions to u(x, 0) = 0. Making a compromise between model comparability and

model distinctiveness, σ = 5 and ω = 1 are chosen.

A summary of the parameter choices for the PDE models can be found in Tab. 4.2.

A.7. Total-Order Sensitivity Indices

Fig. A.3 and A.4 show the total-order sensitivity indices for the three investigated time

steps t = 10, 20, 30. In Crossley’s model, for some instances the indices exceed 1, which

again is an accuracy issue, even though these estimations were performed with n = 2048.

This inaccuracy is accepted: after all, the total-order indices are only used to obtain an

indication on whether there could be relevant interaction effects between the parameters

which make the calculation of the second-order indices necessary.
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Figure A.3.: Total-order sensitivity indices for the time steps t = 10 and t = 20.
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Total-order Sobol indices at t=30 for all models with 95% confidence intervals
(left: cells, right: ECM)

Figure A.4.: Total-order sensitivity indices for t = 30.

A.8. Found Optimal Values of the Comprehensive

Parameter Fits

Tab. A.2 shows the found parameter values, as well as the SSR and AIC values of all

experiments from section 5.2. For plots of the fits without durotaxis and without attach-

ment cost see appendix A.9.
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Parameter Initial guess Found optimum SSR AIC

Full Hamiltonian

Crossley’s degradation rate λ 0.2 3.3769

0.7819 -248
Crossley’s proliferation r 0.005 0.1351
Crossley’s cell diffusivity D 0.5 0.5620
Crossley’s capacity K 1 1.0211
Crossley’s initial invasion α 5 5.0000

Colson’s degradation rate λ 0.2 0.1846

0.0203 -463

Colson’s proliferation r 0.005 0.1037
Colson’s cell diffusivity D 0.5 0.4449
Colson’s unconquerable density mmax 1 1.8441
Colson’s capacity K 1 1.0532
Colson’s initial invasion σ 5 1.5137
Colson’s initial invasion ω 1 0.7778

No Durotaxis

Crossley’s degradation rate λ 0.2 2.5535

0.7711 -249
Crossley’s proliferation r 0.005 0.1206
Crossley’s cell diffusivity D 0.5 0.5448
Crossley’s capacity K 1 1.0327
Crossley’s initial invasion α 5 5.0000

Colson’s degradation rate λ 0.2 0.1652

0.0277 -444

Colson’s proliferation r 0.005 0.0878
Colson’s cell diffusivity D 0.5 0.4968
Colson’s unconquerable density mmax 1 1.6455
Colson’s capacity K 1 1.0937
Colson’s initial invasion σ 5 1.5561
Colson’s initial invasion ω 1 0.5329

No Attachment Cost

Crossley’s degradation rate λ 0.2 4.4819

0.7457 -251
Crossley’s proliferation r 0.005 0.1647
Crossley’s cell diffusivity D 0.5 0.5852
Crossley’s capacity K 1 0.9762
Crossley’s initial invasion α 5 5.0000

Colson’s degradation rate λ 0.2 0.2238

0.0278 -444

Colson’s proliferation r 0.005 0.1304
Colson’s cell diffusivity D 0.5 0.4874
Colson’s unconquerable density mmax 1 1.5910
Colson’s capacity K 1 1.0020
Colson’s initial invasion σ 5 0.3094
Colson’s initial invasion ω 1 0.1535

Table A.2.: Optimal parameter values for the PDE models.
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A.9. Fit Quality and Plots from the Comprehensive Fit:

No Durotaxis and No Attachment Cost

In the following, the SSR and AIC values as well as the plots of the fitted trajectories and

the wave speed comparisons can be found for the CPM-FEMmodel without durotaxis and

without attachment cost, respectively. The found optima for the estimated parameters

are listed in appendix A.8.

A.9.1. Parameter Fitting without Durotaxis

See Tab. A.3 for the AIC and SSR of the models, Fig. A.5 and Fig. A.6 for an illustration

of the fit and the wave speed comparison.

Model SSR AIC

Crossley 0.7711 -249

Colson 0.0277 -444

Table A.3.: SSR and AIC values of the fitted PDE models, without durotaxis.
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Figure A.5.: All-parameter fitted PDE models and the data generated by the average over
100 CPM-FEM model evaluations ignoring durotaxis. For more information,
see Fig. 5.10.
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A.9. Fit Quality and Plots from the Comprehensive Fit: No Durotaxis and No Attachment Cost
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Mean wave speeds of the fitted PDEs and the CPM-FEM model without durotaxis

Colson
Colson mean after t = 40: 0.9088
CPM-FEM
CPM-FEM mean after t = 40: 0.6471
Crossley
Crossley mean after t = 40: 0.6244

Figure A.6.: Wave speed estimates of the all-parameter fitted PDE models and the aver-
age of 100 CPM-FEM model evaluations. The dashed lines are the respective
mean values of these wave speeds, where the mean is calculated for the time
steps after t = 40.

A.9.2. Parameter Fitting without Attachment Cost

See Tab. A.3 for the AIC and SSR of the models, Fig. A.7 and Fig. A.8 for an illustration

of the fit and the wave speed comparison.

Model SSR AIC

Crossley 0.7457 -251

Colson 0.0278 -444

Table A.4.: SSR and AIC values of the fitted PDE models, without contact cost.
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Figure A.7.: All-parameter fitted PDE models and the data generated by the average over
100 CPM-FEM model evaluations ignoring durotaxis. For more information,
see Fig. 5.10.
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Mean wave speeds of the fitted PDEs and the CPM-FEM model without attachment cost

Colson
Colson mean after t = 40: 1.1433
CPM-FEM
CPM-FEM mean after t = 40: 0.701
Crossley
Crossley mean after t = 40: 0.7534

Figure A.8.: Wave speed estimates of the all-parameter fitted PDE models and the aver-
age of 100 CPM-FEM model evaluations. The dashed lines are the respective
mean values of these wave speeds, where the mean is calculated for the time
steps after t = 40.
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A.10. Comprehensive Fit with Constrained Optimization for Both Models

A.10. Comprehensive Fit with Constrained Optimization

for Both Models

Using the data generated by the full CPM-FEM model, all parameters of Crossley’s

model were fitted using a Trust Region Reflective algorithm (which is the same algorithm

that is used for the comprehensive fit of Colson’s model), to see whether the choice of

optimization algorithm impacts the quality of the fit. The parameter bounds are chosen

as λ ∈ [0, 100], r ∈ [0, 1], D ∈ [0, 5], K ∈ [0, 5], and α ∈ [0, 30]. A comparison of the

found optimal parameter values can be found in Tab. A.5, and Fig. A.9 and A.10 show

the fit and the wave speed using the new parameters.

Found Optima

Parameter Result LM Result TRR

Degradation rate λ 3.3769 2.0956

Proliferation r 0.1351 0.1268

Cell diffusivity D 0.5620 0.6846

Capacity K 1.0211 1.0421

Initial invasion α 5.0000 5.0000

Fit Quality Indicators

SSR 0.7819 0.7128

AIC -248 -253

Table A.5.: Optimization results for Crossley’s model compared by minimization algo-
rithm: Levenberg-Marquardt (LM) versus Trust Region Reflective algorithm
(TRR).
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Figure A.9.: All-parameter fitted PDE models and the data generated by the average over
100 CPM-FEM model evaluations using the full model. For Crossley’s curve,
the parameter values determined by the Trust Region Reflective algorithm
were used. For more information, see Fig. 5.10.
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Mean wave speeds of the fitted PDEs and the full CPM-FEM model

Colson
Colson mean after t = 40: 0.9861
CPM-FEM
CPM-FEM mean after t = 40: 0.6885
Crossley
Crossley mean after t = 40: 0.6885

Figure A.10.: Wave speed estimates of the all-parameter fitted PDE models and the av-
erage of 100 CPM-FEM model evaluations. For Crossley, the parameter
values determined by the Trust Region Reflective algorithm were used. The
dashed lines are the respective mean values of these wave speeds, where the
mean is calculated for the time steps after t = 40.
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