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Abstract

The use of mathematical models in the field of tumor-immune interactions o�ers an
analytical framework, which allows the study of specific questions related to tumor-
immune dynamics and potential approaches for tumor treatment. This thesis deals
with various mathematical approaches to describe tumor-immune interactions using
systems of ordinary and delay di�erential equations.

Zusammenfassung
Die Verwendung mathematischer Modelle bei der Untersuchung von Tumor-Immun
Interaktionen bietet einen analytischen Rahmen, welcher die Untersuchung spezi-
fischer Fragen im Zusammenhang mit der Tumor-Immun Dynamik und möglicher
Ansätze für die Tumortherapie erlaubt. Die vorliegende Arbeit befasst sich mit
verschiedenen mathematischen Ansätzen zur Beschreibung von Tumor-Immun In-
teraktionen mithilfe von Systemen von gewöhnlichen und retardierten Di�erential-
gleichungen.
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1 Introduction

Cancer is a group of diseases which are characterized by the uncontrolled prolifer-
ation of abnormal cells. They have the ability to exceed their typical boundaries
to infiltrate neighboring regions and propagate to other organs. According to the
WHO, cancer stands as the world’s second leading cause of death, which is respon-
sible for approximately 9.6 millions of deaths, constituting one out of every six
deaths in 2018. While lung, prostate, colorectal, stomach, and liver cancer are the
most common cancer types among men, women most commonly experience breast,
colorectal, lung, cervical, and thyroid cancer types [WHO].

There is biological evidence that supports the role of the immune system in
tumorgenesis. In fact, the immune system reacts to a growing tumor in a cell-
mediated fashion, which is primarily driven by cytotoxic T cells and natural killer
cells. It is observed that these immune cells are able to actively attack and eliminate
tumor cells. However, there are still many important questions which remain unan-
swered, such as which elements of the immune system hold significant importance
in responding to immunotherapy and how the strength of an individual’s immune
response e�ects the outcome of tumor progression. The application of mathematical
models to describe the tumor-immune systems provides an analytical framework to
address and understand such questions. Over the past decades, many researchers
have developed di�erent mathematical models to understand various aspects of the
tumor-immune system. For an overview, see for example [EKM14; BP00].

This thesis begins with a short description of the biological background of tu-
mor progression as well as the role of the immune system, including the aspect of
T cell exhaustion and di�erent countermeasures developed by tumor cells in the
interaction with immune cells. After that, the third chapter gives a sketch of the
mathematical background consisting of formal definitions of dynamical systems,
ordinary di�erential equations, and delay di�erential equations as well as relevant
properties of such systems, which will be used in the later chapters. As all mathe-
matical models discussed in this work are based on the model in [Kuz+94], chapter
four summarizes their relevant results, which serve as a basis for the rest of the chap-
ters. The subsequent two chapters five and six modify the model in [Kuz+94] by
introducing other facets of the tumor-immune interactions, which establish similar
phenomena as the original model, while enabling more flexibility in the dynamics.
A detailed analysis of the model is also conducted in chapter five, where the model
is further modified and extended into a delay model, presented in chapter seven.
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1 Introduction

In the last chapter, we conclude the work by discussing how to further extend the
considered models.
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2 Biological background

Most cancers manifest in tumors, which are not foreign bodies, but masses derived
from normal tissues. Oncologists usually reserve the word cancer for malignant cells
that have a substantial potential of threatening the life of the individual carrying
them. However, in the scope of this thesis, we use cancer more loosely to include all
types of abnormal growths of cells and particularly, it is used synonymously with
tumor. The following chapter provides some background on the immune system
and the development of tumors and builds on publications in [Wei14; SOS11; LS16;
CM13; Jia+21]. Following a brief overview of tumor formation and the functionality
of the immune system in presence of foreign substance, we briefly summarize the
important aspects of cancer immunoediting, immune escape mechanisms and, lastly,
T cell exhaustion in the tumor microenvironment.

The formation of a tumor is a complex process, which usually progresses over
a long period of time and consists of multiple stages. The term tumor progres-

sion is used to describe the process through which normal cells evolve into cells
with increasingly neoplastic phenotypes. This process is driven by a sequence of
mutations and epigenetic modifications of the cancer cells’ genome that a�ect so
called proto-oncogenes and tumor suppressor genes. In the early stage of tumor
progression, cancer cells multiply uncontrollably near the site where their ancestor
cells first began to proliferate, resulting in a primary tumor mass. Keeping in mind
that a cubic centimeter of tissue contains approximately 109 cells, tumors may often
reach a size of 1010 or 1011 cells before they become detectable. Cancer cells that
leave the primary tumor mass to seek out new sites throughout the body are able to
form new colonies are referred to as metastases. In the scope of this work, we will
focus on the development of a primary tumor mass and refer to the environment
around it as the tumor microenvironment (TME).

Besides each cell’s internal mechanisms to prevent it from transforming into a
cancerous cell, the immune system acts as another line of defence. It consists of the
innate and the adaptive immune system and aims to recognize and eliminate foreign
agents from the body. It also detects and targets deregulated tissue cells while
preventing damage to the body. Immunocytes, which express Fc receptors, such
as macrophages and natural killer cells (NK cells), belong to the innate immunity.
They have the innate ability to recognize cells that should be destroyed.

With few exceptions, human cells routinely present oligopeptide fragments of the
proteins they produce on their cell surface using major histocompatibility complex
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2 Biological background

class I molecules (MHC class I molecules). Professional antigen-presenting cells,
such as macrophages and dendritic cells, use MHC class II molecules to present
fragments collected from tissue environments to T lymphocytes. These oligopeptide
fragments represent the antigens, which are recognized by T cell receptors of helper
and cytotoxic T cells. T lymphocytes are part of the adaptive immunity. They
develop the ability to recognize antigenic targets through the display of T cell
receptors. These T lymphocytes largely consist of cytotoxic T cells (cytotoxic T
lymphocytes, CTLs, TC’s, or CD8+ cells), helper T cells (TH’s), and regulatory
T cells (Treg’s). The helper T cells aid cytotoxic T cells to develop the ability to
eliminate cells that need to be destroyed, while the regulatory T cells are responsible
for the suppression of helper T cells and cytotoxic T cells to prevent the development
of autoimmune attacks on the body’s own tissue. A simplified illustration of this
process is shown in Figure 2.1, which is created with [Bio] on the basis of [cf. Wei14,
Figure 15.11].

Figure 2.1: Activation of T cells by dendritic cells and killing of antigen-expressing
target cells by cytotoxic T cells.

In general, we refer to immune cells with the ability to kill as e�ector cells.
Elimination of tumor cells by e�ector cells can happen through direct damage of
the tumor cell’s membrane via the protein perforin (PRF1), or by the initiation of
apoptosis through the Fas ligand (FasL) molecules. These proteins are produced
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2 Biological background

by e�ector cells in a limited amount leading to the decrease of their ability to kill
after each interaction.

In order to initiate a priming and an activation of tumor-specific T cells, tumor
cells must express immunogenic tumor antigens, which are essential to provoke
an adaptive immune response. Cancer cells are derived from normal cells and
are, in many respects, indistinguishable from the body’s normally functioning cells.
However, certain tumor-associated antigens (TAAs) may nevertheless induce an
immune response, because they are expressed at aberrant level or because they are
usually displayed only in certain specific circumstances, e.g. in embryos, which is
why tolerance towards these cellular antigens has not developed. Killing of the
cancer cells releases additional TAAs, which are able to recruit more T cells.

In 2001-2002 a hypothesis was proposed to describe the process, where the im-
mune system not only protects against tumor formation, but also stimulates the
development of cancer cells that are capable of escaping immune control. This phe-
nomenon is called immunoediting and consists of three component phases – elimi-
nation, equilibrium, and escape. Experimental studies have demonstrated that the
immune system is able to identify and destroy growing cancers (elimination phase),
sustain tumor cells in a state of immune-induced growth dormancy (equilibrium

phase), and shape or decrease the immunogenicity of tumor cells, resulting in “al-
tered”/“edited” tumor cells that are capable of evading immune regulation (escape

phase).

2.1 The three E’s of cancer immunoediting

Elimination. The elimination phase is also known as cancer immunosurveillance.
It involves both the innate and the adaptive immune system identifying and eradi-
cating an evolving tumor prior to its clinical appearance. It has been observed that
the activation of innate immunity can protect against tumor development, however,
in most scenarios, it is generally the engagement of the adaptive immune system
that yields e�ective cancer immunosurveillance responses. In case of a successful
tumor cell destruction, the elimination phase signifies an endpoint of the cancer
immunoediting process.

Equilibrium. When uncommon tumor cell variants survive the elimination phase,
they may enter the so-called equilibrium phase, during which the adaptive immune
system hinders the proliferation of tumor cells while shaping the immunogenicity of
the tumor cells. In particular, the immune system is no longer capable of eliminating
remaining tumor cells but still manages to maintain them in an equilibrium state
called immune-mediated dormancy. Many researchers, including Schreiber, Old,
and Smyth, regard this phase to be the longest phase of the cancer immunoediting
process as it can extend throughout the lifetime of the host.
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2 Biological background

Escape. During this stage of the cancer immunoediting process, “altered” cancer
cells begin to grow unhindered due to immune escape mechanisms including reduced
immune recognition of the tumor cells and immune suppression by the tumor cells.
In the next section, we will discuss di�erent immune escape mechanisms leading to
“altered” cancer cells.

2.2 Immune escape mechanisms
To avoid immune-mediated elimination, antigenic tumor cells can escape elimina-
tion by decreasing their immunogenicity using various mechanisms. This leads to
the creation of localized microenvironments, in which immune function is compro-
mised. As mentioned earlier, one of the methods used by cytotoxic lymphocytes to
eliminate cancerous cells is to bind and activate the Fas death receptor displayed on
the cells’ surface using the FasL molecules. This leads to the activation of the ex-
trinsic apoptotic pathway. However, many tumor cells are able to develop resistance
to FasL-mediated killing or produce and release soluble forms of FasL themselves.
These molecules do not a�ect the tumor cells, but they may activate the Fas death
receptors displayed on the surface of lymphocytes resulting in their death. Another
strategy is used by many types of human cancer cells, which have been found to
release either TGF-— or interleukin-10 (IL-10). Both of these proteins are greatly
immunosuppressive and can have strong inhibitory e�ects on T lymphocytes, pre-
vent the matruation of dendritic cells, and suppress their expression of MHC type
II molecules.

Another immunoevasive strategy involves the release of the chemotactic factor
CCL22 to attract and activate regulatory T cells. These cells can directly inhibit and
even kill cytotoxic and helper T cells, which recognize the same antigen as the one
recognized by the regulatory T cells. Among the population of CD4+ lymphocytes
in normal individuals, 5 to 10% are regulatory T cells, while the remainder consists
of helper T cells. However, in cancer patients, this number may increase to 30%.
Furthermore, regulatory T cells have been found in large numbers among the tumor-
infiltrating lymphocytes.

2.3 Exhausted cytotoxic T cells in the TME
The following section deals with the aspect of T cell exhaustion and is based on
[Jia+21]. When naive CD8+ T cells encounter antigens during an acute infection,
they are activated and di�erentiate into cytotoxic e�ector T cells, which clear the
pathogen. However, when encountering persistent antigen stimulation in chronic
virus infections or tumors, T cell di�erentiation is found to be in a hyporesponsive
state called exhaustion. T cell exhaustion is therefore defined as progressive loss of
e�ector function and sustained expression of inhibitory receptors, such as PD-1. In
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2 Biological background

particular, the term exhaustion describes a functional but yet hyporesponsive state
of cytotoxic T cells.

Tumorgenesis is a long-term process in which interactions between tumor and
immune cells remodel the TME, which influences the di�erentiation of CD8+ T
cells. While the immune system eliminates tumor cells during immune surveillance,
immunosuppressive cells may be recruited as a countermeasure. As we have seen
in the previous section, these can secrete related inhibitory factors to generate
the immunosuppressive tumor environment in order to persistently suppress T cell
immune function with increasing tumor development. This may lead to a situation
where cytotoxic T cells often go into an exhaustion state and fail to control tumor
progression in the later stages.
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3 Mathematical background

In the scope of this thesis, we will consider continuous-time approaches to describe
the tumor-immune dynamics. The following chapter deals with a brief overview of
mathematical concepts and ideas, including ordinary di�erential equations (ODEs)
as well as delay di�erential equations (DDEs), which will serve as a foundation for
the later work.

3.1 Di�erential equations and dynamical systems
First, we give a brief outline of the concepts related to the theory of dynamical
systems and ordinary di�erential equations. Main results in this section are adapted
from [BK20; Küh23; Kut20].

Dynamical systems

Following [Küh23], we consider the following definitions and properties of dynamical
systems.

Definition 3.1 (Dynamical system). A dynamical system is a triplet (T, X, „t),
where T is the time set, X is the state space, and „t : X æ X is a family of
evolution operators parametrized by t œ T satisfying

(i) „0 = id,

(ii) „t+s = „t ¶ „s ’ t, s œ T .

Definition 3.2 (Equilibrium). A point x̄ œ X is called an equilibrium (steady
state), if „t(x̄) = x̄ for all t œ T .

Definition 3.3 (Cycle). A cycle is a non-equilibrium periodic orbit L̄, such that
there exists a fixed T̄ > 0 such that each point x̄ œ L̄ satisfies „t+T̄ (x̄) = „t(x̄) for
all t œ T .

Definition 3.4 (Stability). Let (T, X, „t) be a dynamical system and x̄ be an
equilibrium. We say that x̄ is stable if for any given neighbourhood U of x̄, there
exists another neighbourhood V µ U such that „t(V ) µ U holds for all t Ø 0. If
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3 Mathematical background

x̄ is not stable, it is called unstable. Lastly, x̄ is called asymptotically stable if it
is stable and there exists a neighbourhood U such that limtæŒ „t(x0) = x̄ for all
x0 œ U .

Further, we use the term local asymptotic stability to emphasize that U may
have to be chosen small enough.

Ordinary di�erential equations

One way to define a continuous-time dynamical system is by a system of di�erential
equations with X = Rn, and T µ R. In the scope of this work, we consider
dynamical systems generated by ODEs and DDEs. The latter will be discussed
in the later part of this chapter. Following [BK20], we introduce the following
properties of ODEs.

Definition 3.5 (Systems of ODEs). A system of ODEs has the form

ẋ = f(t, x), t œ R, x = (x1, . . . , xn)T
œ Rn

and it consists of n ODEs ẋi = fi(t, x). We refer to it as an autonomous system, if
f does not depend on t and thus, ẋ = f(x).

In what follows, we consider a system of ODEs ẋ = f(t, x) with the correspond-
ing initial value problem ẋ = f(t, x), x(t0) = x0.

Definition 3.6 (Solution of a system). Let I µ R be an interval, D µ R ◊ Rn

be open, and f : D æ Rn. A function x : I æ Rn is a solution of the system of
ODEs in the interval I, if x is di�erentiable in I and for all t œ I, it holds that
(t, x(t)) œ D and ẋ(t) = f(t, x(t)) are satisfied. If furthermore (t0, x0) œ D with
t0 œ I and x(t0) = x0 is given, then x is a solution of the corresponding initial value
problem.

Definition 3.7 (Lipschitz continuity). Let D µ R◊Rn. A function f : D æ Rn is
called Lipschitz continuous on D with respect to x, if there exists a constant L > 0
such that for all (t, x), (t, y) œ D, we have

Îf(t, x) ≠ f(t, y)ÎŒ Æ LÎx ≠ yÎŒ.

L is called a Lipschitz constant for f on D. The function f is called locally Lipschitz
continuous on D with respect to x, if for every (t0, x0) œ D, there is an open set
U µ R ◊ Rn with (t0, x0) œ U such that f on U µ D is Lipschitz continuous with
respect to x.

The following theorem and lemma prove the existence and uniqueness of the
solution of the initial value problem.
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3 Mathematical background

Theorem 3.1 (Picard-Lindelöf, local). Let D µ R ◊ Rn be open, (t0, x0) œ D.
Furthermore, let f : D æ Rn be continuous and locally Lipschitz continuous with
respect to x. Then, there exists a ” > 0 such that the initial value problem has a
unique solution in the interval [t0 ≠ ”, t0 + ”].

Proof. A proof is provided in [cf. BK20, Theorem 2.4].

Lemma 3.1. Let D µ R ◊ Rn be open, (t0, x0) œ D. Further, let f : D æ Rn be
continuous and locally Lipschitz continuous with respect to x. If x1, x2 : J æ Rn

are solutions of the initial value problem on the intervall J = (a, b), then x1 = x2

holds true on J .

Proof. A proof is provided in [cf. BK20, Lemma 2.5].

Theorem 3.2. Let D µ R ◊ Rn be open, f : D æ Rn be continuous and locally
Lipschitz continuous with respect to x. Then, for every (t0, x0) œ D, there exists
an open interval I and a solution x of the initial value problem in I such that for
every solution y of the initial value problem on the interval J , we have that

J µ I, y = x|J .

We refer to I as the maximal existence interval of the solution of the initial value
problem.

Proof. A proof is provided in [cf. BK20, Theorem 2.6].

Theorem 3.3. Let D µ R ◊ Rn be open, f : D æ Rn be continuous and locally
Lipschitz continuous with respect to x. Further, let x be the unique solution of
the initial value problem and I be the maximal existence interval. Then, neither
{(t, x(t)) : t œ I, t Ø t0} nor {(t, x(t)) : t œ I, t Æ t0} is contained in a compact
subset of D.

Proof. A proof is provided in [cf. BK20, Theorem 2.7].

From the previous properties, it follows that if f is continuous on D and locally
Lipschitz continuous with respect to x, then there exists a unique solution of the
initial value problem where the corresponding graph extends to the boundary of D.

3.1.1 Linear systems and linearization
Equilibria and their stability behavior play an essential role in the dynamics of
biological systems. In the following section, we will work with autonomous systems
and provide a brief overview of some statements on the stability conditions of such
systems. We first consider the linear case. In particular, the stability of a stationary
point can be shown with the following theorem.

11
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Theorem 3.4 (Linear system stability). We consider the linear system

ẋ = Ax, A œ Rn◊n

and set a = max{Re(⁄) : ⁄ is an eigenvalue of A}. For the stationary point x̄ = 0
of the system, it holds that

(i) x̄ is asymptotically stable if a < 0, and

(ii) x̄ is unstable if a > 0.

Proof. A proof is provided in [cf. Küh23, Theorem 2.10].

In what follows, we consider a non-linear autonomous system given by ẋ =
f(x) for x œ Rn, where f œ C

1. An equilibrium x̄ œ Rn is called hyperbolic, if
the Jacobian Df(x̄) has no eigenvalues with vanishing real parts. In particular,
hyperbolicity for equilibria implies that eigenvalues are not on the imaginary axis.
Using Taylor’s Theorem, we can write

f(x̄ + x) = Df(x̄)x + R(x),

where R œ o(|x|). The corresponding linearized system is given by ż = Az, where
A = Df(x̄). Since x̄ is hyperbolic, A is a hyperbolic matrix and therefore, there
exists a splitting

Rn = E
s(x̄) ü E

u(x̄),

where E
s(x̄) and E

u(x̄) denote the stable and unstable eigenspace of x̄, respectively
given by

E
s(x̄) = {y œ R

n : lim
tæŒ

e
tA

y = x̄},

E
u(x̄) = {y œ R

n : lim
tæ≠Œ

e
tA

y = x̄}.

By studying the behavior of the linearized system, we have the following result on
the stable and unstable manifolds of the non-linear autonomous system.

Theorem 3.5. Suppose Df(x̄) has k eigenvalues with negative real part and
n ≠ k eigenvalues with positive real part. Further, let E

s(x̄) and E
u(x̄) denote

the eigenspaces of the corresponding linearized system. Then, there exists a neigh-
bourhood U of x̄ with local stable and unstable manifolds denoted by W

s
loc(x̄) and

W
u
loc(x̄), respectively, where

W
s
loc

(x̄) = {y œ U : lim
tæŒ

„t(y) = x̄ and „t(y) œ U ’t Ø 0},

W
u
loc

(x̄) = {y œ U : lim
tæ≠Œ

„t(y) = x̄ and „t(y) œ U ’t Æ 0}.

Furthermore, W
s
loc

(x̄) and W
u
loc

(x̄) are tangent to E
s(x̄) and E

u(x̄).

12
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Proof. A proof is provided in [cf. Küh23, Theorem 3.8].

Before proceeding to the stability analysis of the non-linear autonomous system,
we first consider the following concepts of topological equivalence and conjugacy.

Definition 3.8. A dynamical system (T, X, „t) is called topologically equivalent to
a system (T, X, Ât) if there exists a homeomorphism h : X æ X which maps orbits
of the first system to orbits of the second system while preserving the direction of
time. If the time parametrization is also preserved, then the systems are called
conjugate.

Definition 3.9. A dynamical system (T, X, „t) with equilibrium x̄ is called locally
topologically equivalent to a system (T, X, Ât) near x̄, if there exist neighbourhoods
U(x̄), V (ȳ) with Ât(ȳ) = ȳ for all t œ T , and a homeomorphism h : U(x̄) æ V (ȳ),
which maps orbits of the first system to orbits of the second system while preserving
the direction of time.

We thus have the following theorem on the stability analysis of non-linear au-
tonomous systems.

Theorem 3.6 (Hartman-Grobman). Consider the non-linear autonomous system
ẋ = f(x) with flow „t and the corresponding linearized system ż = Az. Further,
let x̄ be a hyperbolic equilibrium. Then „t is locally topologically conjugate to the
flow exp(tA).

Proof. A proof is provided in [cf. Küh23, Theorem 4.5].

3.1.2 Two-dimensional systems
For a two dimensional system of di�erential equations, the following theorem allows
us to exclude the occurrence of closed orbits lying entirely in a set D under certain
circumstances.

Theorem 3.7 (Negative criterion of Bendixson-Dulac). Let D µ R2 be a simply
connected region and h1, h2, fl œ C

1(D,R), such that fl(x, y) > 0 for all (x, y) œ D

and div(fl · h1, fl · h2) = ˆ
ˆx(flh1) + ˆ

ˆy (flh2) is not the zero function and does not
change sign. Then the system

ẋ = h1(x, y)
ẏ = h2(x, y)

has no closed orbits lying entirely in D.

Proof. A proof is provided in [cf. Kut20, Proposition 7].
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3.1.3 Hopf bifurcation
Following [Kut20], we present the Hopf bifurcation theorem, which can be used to
establish the existence of periodic orbits. In particular, we refer to bifurcation as
the appearance of a non-equivalent phase portrait under variation of a bifurcation
parameter.
Theorem 3.8. Consider the system ẋ = f(x; µ), where x œ Rn. Suppose that at
µ0, x̄ is an equilibrium of the system, where the Jacobian f

Õ(x̄; µ0) has a simple pair
of purely imaginary complex eigenvalues and no other eigenvalues with vanishing
real parts. Then, there exists a (locally) smooth curve of equilibria (x(µ), µ) with
x(µ0) = x̄. The eigenvalues ⁄(µ) and ⁄̄(µ) of the Jacobian f

Õ(x(µ); µ), which are
purely imaginary at µ = µ0, depend smoothly on µ. If in addition,

d := d

dµ
(Re(⁄(µ)))|µ=µ0 ”= 0,

then there exists a unique three-dimensional center manifold passing through (x̄, µ0)
in Rn

◊ R and a smooth system of coordinates (preserving the planes µ = const.),
for which the system can be formulated on the surface corresponding to the eigendi-
rections of the pair of purely imaginary eigenvalues (depending on (x, µ) œ Rn

◊R)
as follows:

ẋ = (dµ + a(x2 + y
2))x ≠ (Ê + cµ + b(x2 + y

2))y + higher order terms
ẏ = (Ê + cµ + b(x2 + y

2))x + (dµ + a(x2 + y
2))y + higher order terms

If a ”= 0, then there exists a surface of periodic solutions in the centre manifold,
which has a quadratic tangency with the eigenspace of ⁄(µ0) and ⁄̄(µ0) agreeing to
second order with the paraboloid µ = ≠(a/d)(x2 +y

2). If a < 0, then these periodic
solutions are stable limit cycles, while if a > 0, the periodic orbits are repelling.

3.2 Delay di�erential equations
In the following section, we provide an overview of the theory of DDEs. In a system
of ODEs, the derivatives only depend on the current state of the system. However,
in a system of DDEs, the derivatives can also depend on earlier states of the system.
This allows us to model biological system, in which certain processes occur with a
delay.

Let x(t) be a function of time. Then, we can introduce a time delay r by
considering x(t ≠ r). Such a delay is called a constant discrete-time delay. In the
scope of this work, we will only deal with systems of DDEs with a single constant
delay.

Furthermore, DDEs can be considered as elements of the general class of retarded

functional di�erential equations (RFDEs). The notation and properties presented
in the following section are adapted from [Kut22; Bar13; Hal77; Smi10; HL93;
Die+95; RW03; Rua09].
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Definition 3.10. Let h > 0 and n œ N. We consider the following Banach spaces:

1. The set C := C([≠r, 0];Rn) of continuous functions „ : [≠r, 0] æ Rn with the
norm Î„ÎC := sup≠rÆtÆ0

|„(t)|;

2. The set C
1 := C

1([≠r, 0];Rn) of continuously di�erentiable functions „ :
[≠r, 0] æ Rn with the norm Î„ÎC1 := Î„ÎC + Îˆ„ÎC , where ˆ : C

1
æ C

denotes the continuous linear operator of di�erentiation.

The general RFDE takes the form

ẋ = F (t, xt),

where F : D æ Rn is a functional defined on an open subset D µ R ◊ C and
the function xt : [≠r, 0] æ Rn

, s ‘æ x(t + s) indicates the piece of solution of the
RFDE in the interval [t ≠ r, t]. We refer to xt as solution segment or state of x at

time t. In particular, if x is a continuous function, then xt is an element of C and
the RFDE is well-defined. We say that a function x is a solution on an interval
[t0 ≠r, t0 +”] if there exist t0 œ R and ” > 0 such that x œ C([t0 ≠r, t0 +”]; Rn) and
for all t œ [t0, t0 + ”), we have (t, xt) œ D and x(t) satisfies ẋ = F (t, xt). A RFDE
is called autonomous, if the right-hand side does not explicitly depend on time, i.e.
ẋ = F (xt), where F : U æ Rn is a functional defined on an open subset U µ C.
Solutions of autonomous RFDEs are invariant under time translation. In the scope
of this work, we will mainly deal with autonomous RFDEs. Before moving on to the
general theory of existence and uniqueness of solutions, let us first consider some
properties of DDEs with a single constant discrete-time delay.

3.2.1 The method of steps for discrete delay equations
Let t0 œ R be given and let „ : [t0 ≠ r, t0] æ R be continuous. Consider the
non-linear DDE of the form

ẋ(t) = f(t, x(t), x(t ≠ r)) (3.1)

for t Ø t0 and

x(t) = „(t) (3.2)

for t0 ≠ r Æ t Æ t0 with a single delay r > 0, where f : R3
æ R and its partial

derivative fx(t, x, y) are both continuous. Note that we interpret ẋ(t0) as the right-
hand derivative at t0. The system given by (3.1) and (3.2) can be solved by the
method of steps in the following manner. For t0 Æ t Æ t0 + r, x(t) must satisfy

ẏ(t) = f(t, y(t), „(t ≠ r))
y(t0) = „(t0),

(3.3)
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which is an initial-value problem of an ODE. Since g(t, y) := f(t, y, „(t ≠ r)) and
gy(t, y) are continuous, a local solution of (3.3) is guaranteed from the theory of
ODEs. If this local solution x(t) exists for the entire interval [t0, t0 + r], then
the method applied above can be repeated to extend the solution farther. For
t0 + r Æ t Æ t0 + 2r, a solution x(t) must satisfy

ẏ(t) = f(t, y(t), x(t ≠ r))
y(t0 + r) = x(t0 + r).

(3.4)

Once again, results from ODE theory guarantee the existence of a local unique
solution for the problem (3.4). If the solution exists on the entire interval [t0 +
r, t0 + 2r], then the procedure can be repeated in an analogous way. We consider
the following theorems from [Smi10].

Theorem 3.9. Let f(t, x, y) and fx(t, x, y) be continuous on R3, t0 œ R, and let
„ : [t0 ≠ r, t0] æ R be continuous. Then there exists ‡ > t0 and a unique solution
of the initial-value problem

ẋ(t) = f(t, x(t), x(t ≠ r)) for t Ø t0

x(t) = „(t) for t0 ≠ r Æ t Æ t0

on [t0 ≠ r, ‡].

Proof. We have seen earlier that for t0 Æ t Æ t0 + r, the initial-value problem is
reduced to the initial-value problem given by (3.3). By Theorem 3.1 there exists a
” > 0 such that the initial-value problem (3.3) has a unique solution in the interval
[t0 ≠ ”, t0 + ”]. Setting ‡ := t0 + ” > t0 finishes the proof.

Definition 3.11. Let x on [t0 ≠ h, —1) and y on [t0 ≠ h, —2) both be solutions of the
same initial-value problem of a DDE. If —2 > —1, then y is said to be a continuation
of x. A solution x is called non-continuable if it has no continuation.

In case of a single discrete-time delay, the following theorem gives a su�cient
condition, which guarantees the continuability of solutions for all positive times.

Theorem 3.10. Let f satisfy the conditions of Theorem 3.9 and let x : [t0 ≠r, ‡) æ

R be the non-continuable solution of the initial-value problem in Theorem 3.9. If
‡ < Œ, then

lim
tæ‡≠

|x(t)| = Œ.

Proof. A proof is provided in [cf. Smi10, Theorem 3.2].

Remark 3.1. Theorem 3.9 and Theorem 3.10 can be extended to the case of
x : R æ Rn.
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3.2.2 Positivity of solutions
In many biological applications, it is essential that the delay di�erential equations
maintain non-negative quantities. Therefore, for the model to be biologically mean-
ingful, it is important to guarantee that non-negative initial values result in non-
negative solutions. We consider the following theorem from [Hal77].

Theorem 3.11. Let f : R◊Rn
+

◊Rn
+

æ Rn, such that f(t, x, y) and fx(t, x, y) are
continuous, t0 œ R, and let „ : [t0 ≠ r, t0] æ Rn be continuous. Further, let f satisfy

xi = 0 ∆ fi(t, x, y) Ø 0

for all i, t and for all x, y œ Rn
+

. If the initial function in (3.2) satisfies „ Ø 0, then
the corresponding solution x(t) of (3.1) satisfies x(t) Ø 0 for all t Ø t0 where it is
defined.

Proof. A proof is provided in [cf. Smi10, Theorem 3.4].

3.2.3 More general existence and uniqueness theory
For a more general setting, we consider the initial-value problem of a non-autonomous
system

ẋ(t) = F (t, xt), t Ø t0

xt0 = „,
(3.5)

where F is a (with respect to t and xt) continuous functional defined on a subset of
R ◊ C, t0 œ R, and „ œ C is the state of the system at time t0. Besides continuity
of F , we further assume it to be locally Lipschitz continuous.

Definition 3.12 ((Global) Lipschitz continuity). Let F : [t0, tf ] ◊ C æ Rn and
A µ [t0, tf ] ◊ C. The functional F is (globally) Lipschitz continuous on A with
constant K if there exists K Ø 0, such that

ÎF (t, „) ≠ F (t, „̃)Î Æ KÎ„ ≠ „̃ÎC

is satisfied for any (t, „), (t, „̃) œ A.

Definition 3.13 (Local Lipschitz continuity). Let F : [t0, tf ] ◊ C æ Rn. F is said
to be locally Lipschitz continuous if for each given (t̃, „̃) œ [t0, tf ] ◊ C, there exist
a, b > 0, such that

B :=
1
[t̃ ≠ a, t̃ + a] fl [t0, tf ]

2
◊ {„ œ C : Î„ ≠ „̃ÎC Æ b}

is a subset of [t0, tf ] ◊ C and F is Lipschitz continuous on B.

We further consider the following results on the existence and uniqueness of
solutions and define CA = C([≠r, 0]; A), where A µ Rn.
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Theorem 3.12 (Uniqueness). Assume F : [t0, —) ◊ CD æ Rn to be continuous and
locally Lipschitz continuous. Then for any „ œ CD, system (3.5) has at most one
solution on [t0 ≠ r, —1) for any —1 œ (t0, —].

Proof. A proof is provided in [cf. Kut22, Theorem 3].

Theorem 3.13 (Local existence). Assume F : [t0, —) ◊ CD æ Rn to be continuous
and locally Lipschitz continuous. Then for any „ œ CD, system (3.5) has a unique
solution on [t0 ≠ r, t0 + ‡) for some ‡ > 0.

Proof. A proof is provided in [cf. Kut22, Theorem 4].

Theorem 3.14 (Global existence). Let D = Rn and assume F : [t0, —) ◊ CD æ Rn

to be continuous and locally Lipschitz continuous. Further, we assume that

ÎF (t, Â)Î Æ M(t) + N(t)ÎÂÎC

holds on [t0, —) ◊ C, where M and N are both continuous positive functions on the
interval [t0, —). Then the unique non-continuable solution of system (3.5) exists on
the whole interval [t0 ≠ r, —).

Proof. A sketch of proof is provided in [cf. Kut22, Theorem 6].

3.2.4 Linear systems and linearization
Similar to the ODE case, one of the key concepts in analyzing DDEs is to determine
the local stability of the equilibria. In particular, we linearize the system about the
equilibrium and study the exponential growth and decay rates for the corresponding
linearized system. We first consider the dynamics of linear autonomous DDEs before
moving on to the general non-linear autonomous setting. Main results of this section
are adapted from [Smi10; Kut22].

For autonomous systems, we can without loss of generality assume t0 = 0. We
consider the linear autonomous equation

ẋ(t) = Lxt (3.6)

for t Ø 0 and x(t) = „(t) for ≠r Æ 0, where L : C
C

æ Cn is a continuous linear
map. Furthermore, we set C

C := C([≠h, 0];Cn) with a corresponding norm denoted
by Î · Î.

We derive the characteristic equation of (3.6) by seeking exponentially growing
solutions of the form

x(t) = e
⁄t

v

for ⁄ œ C and 0 ”= v œ Cn. We use the notation

exp⁄ : [≠r, 0] æ C, exp⁄(s) = e
⁄s

,
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leading to xt(z) = x(t + z) = e
⁄(t+z)

v = e
⁄t exp⁄(z)v. For x(t) to be a solution of

(3.6), it must satisfy ẋ(t) = L(xt), which is equivalent to ⁄e
⁄t

v = e
⁄t

L(exp⁄ v) and
further

⁄v = L(exp⁄ v).

With {ej}j being the standard basis for Cn and L being linear, we can write v =qn
j=1

vjej and L(exp⁄ v) = qn
j=1

vjL(exp⁄ ej). Hence, we have L(exp⁄ v) = L⁄v,
where L⁄ is the n ◊ n matrix defined by

L⁄ = (L(exp⁄ e1) L(exp⁄ e2) . . . L(exp⁄ en≠1) L(exp⁄ en)) .

It follows that x(t) = e
⁄t

v is a non-zero solution of (3.6) i� ⁄ œ Cn is a solution of
the characteristic equation given by

det(⁄In ≠ L⁄) = 0. (3.7)

Particularly, such a solution ⁄ œ C is referred to as a characteristic root.
We now focus on the special case of a system of DDEs with a single constant

discrete-time delay r given by

L(„) = A„(0) + B„(≠r),

where A, B are n ◊ n matrices and „ œ C
C . We say that L is bounded if there is a

constant K > 0, such that

ÎL(„)Î Æ KÎ„ÎC

holds for all „ œ C
C . We can see that

ÎL(„)Î = ÎA„(0) + B„(≠r)Î Æ ÎAÎÎ„ÎC + ÎBÎÎ„ÎC Æ (ÎAÎ + ÎBÎ)Î„ÎC ,

which shows that L is bounded. Since L is linear and bounded, it is continuous and
also satisfies the global Lipschitz condition in Definition 3.12, i.e. for „, Â œ C

C ,
we have that

ÎL(„) ≠ L(Â)Î = ÎL(„ ≠ Â)Î Æ KÎ„ ≠ ÂÎC ,

where K = ÎAÎ + ÎBÎ. Further, with

ÎF (t, Â)Î Æ ÎF (t, 0)Î + ÎF (t, Â) ≠ F (t, 0)Î Æ ÎF (t, 0)Î + KÎÂÎC

the conditions in Theorem 3.14 are satisfied by choosing M(t) = ÎF (t, 0)Î and
N(t) = K. Thus, it follows that there exists a unique, non-continuable solution
defined on the entire interval [≠r, Œ). Due to the linearity of L, we can apply the
superposition principle, i.e. a linear combination of solutions is again a solution.
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In case of a single discrete-time delay, (3.6) takes the form

ẋ(t) = Ax(t) + Bx(t ≠ r).

with initial function

x(t) = „(t)

for ≠r Æ t Æ 0. The corresponding characteristic equation takes the form

det
1
⁄In ≠ A ≠ Be

≠⁄r
2

= 0. (3.8)

Before proceeding to some properties of the characteristic equation and char-
acteristic roots, we first introduce the concept of an analytic function. Consider
a complex-valued function f : D æ C, where D µ C is open. The function f

is said to be analytic on D if f is di�erentiable at each point of D. In particu-
lar, we say that f is an entire function if f is analytic on the entire domain C.
Coming back to the characteristic equation (3.7), one can prove that the function
h : C æ C, ⁄ ‘æ h(⁄) := det(⁄I ≠ L⁄) is an entire function [cf. Smi10, Lemma
4.1]. Following from some properties [Die+95; Bel+63; Kua93; Hal77] of non-trivial
entire functions, the following holds for h:

(i) Each characteristic root has finite order.

(ii) There are at most countably many characteristic roots.

(iii) The set of characteristic roots has no finite accumulation point.

Particularly, the following lemma shows that there are only finitely many charac-
teristic roots with positive real part.

Lemma 3.2. Given a value ‡ œ R, there are at most finitely many characteristic
roots with Re(⁄) > 0. Further, if there are infinitely many distinct characteristic
roots {⁄n}n, then

lim
næŒ

Re(⁄n) æ ≠Œ

holds true.

Proof. A proof is provided in [cf. Smi10, Lemma 4.2].

Similar to the ODE case, we can analyze the stability of solutions of systems
of linear autonomous DDEs by studying the corresponding characteristic roots.
To that extend, we refer to x(t0, „) as the solution of (3.6) with initial function
xt0 = „. The solution x = 0 is said to be stable if for any s œ R and any Á > 0,
there exists a value ‡ = ‡(s, Á) such that for all Â œ C with ÎÂÎ < ‡, we have
that Îxt(s, „)Î < Á holds true. We say that it is asymptotically stable if it is stable
and there exists fl(s) > 0 such that for all Â œ C and ÎÂÎ < fl(s), we have that
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limtæŒ x(s, Â)(t) æ 0. Finally, we say that x = 0 is unstable if it is not stable.
The following lemma is discussed in [cf. Kut22, Proposition 2] and provides some
information on the stability of the equilibrium x = 0 of (3.6), depending on the real
part of the corresponding characteristic roots. The proof follows from properties
given in [HL93, Chapter 7].

Lemma 3.3. Suppose that there exists a value µ such that Re(⁄) < µ for every
characteristic root ⁄. Then for all „ œ C

C , we have that for the solution x(t0, „) of
(3.6) with initial function „, there exists a value K = K(µ) > 0 such that

Îxt(t0, „)ÎC Æ Ke
µt

Î„ÎC

for all t Ø t0. In particular, the trivial equilibrium x = 0 is asymptotically stable if
Re(⁄) < 0 for all characteristic roots ⁄. It is unstable if there exists a characteristic
root ⁄ such that Re(⁄) > 0.

We now move on to some properties of a non-linear autonomous RFDE given
by

ẋ(t) = f(xt), t Ø 0, (3.9)

with initial function „ œ C and f : U æ Rn, where U µ C is open. Let x
ú

œ C,
x

ú(t) = x̄ œ Rn be an equilibrium of the system. Assume that there exists a linear
bounded map L : C æ Rn and ‚ : C æ Rn such that |‚| œ O(ÎÂÎC). Then, in
proximity of the equilibrium, we can write f(xú + Â) = f(xú) + L(Â) + ‚(Â) =
L(Â) + ‚(Â). The corresponding linearized system is given by

ż = L(zt), t Ø 0.

By studying the behavior of the linearized system, we have the following result on
the local stability of the non-linear system (3.9).

Theorem 3.15 (Principle of linearized stability). The equilibrium x
ú = x̄ of (3.9)

is

(i) unstable if Re(⁄) > 0 for some root ⁄ of the corresponding characteristic
equation of the linearized system,

(ii) locally asymptotically stable if Re(⁄) < 0 for all roots ⁄ of the corresponding
characteristic equation of the linearized system.

Proof. A proof is provided in [cf. Die+95, Theorem 6.8].
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3.2.5 Transcendental functions
In the following section, we will consider some properties of a type of transcendental
functions, which we will later use in our model analysis in Chapter 7. Results of
this chapter are adapted from [RW03; Rua09].

Theorem 3.16. Let B µ Rn be an open connected set and h(⁄, µ) be continuous in
(⁄, µ) œ C◊ B and analytic in ⁄ œ C. Further, assume that there exists a constant
c > 0 such that the absolute values of the roots of h(⁄, µ) in the right half plane
{⁄ œ C : Re(⁄) Ø 0} are bounded by c for any µ. If for any µ œ B1 µ B, where
B1 is bounded, closed, and connected, h(⁄, µ) has no roots on the imaginary axis,
then the sum of the orders of the roots of h(⁄, µ) with Re(⁄) > 0 is a fixed number
for B1, i.e. it is independent of the parameter µ œ B1.

Proof. A proof is provided in [cf. RW03, Theorem 2.1].

Corollary 3.1. In particular, we observe that under the assumptions of Theo-
rem 3.16, as the bifurcation parameter µ varies, the sum of the orders of the roots
of h(⁄, µ) in the open right half plane (Re(⁄) > 0) can change only if a root appears
on the imaginary axis.

A special type of transcendental functions

Following [Rua09], we consider the transcendental function

⁄
2 + p⁄ + a + (b⁄ + q)e≠⁄r = 0, (3.10)

where p, a, b, q œ R and r Ø 0. In case of r = 0, the function equals

⁄
2 + (p + b)⁄ + (a + q). (3.11)

Note that all roots of (3.11) have negative real parts i�

(H1) p + b > 0;

(H2) a + q > 0.

Assume that (H1) and (H2) are satisfied and let ⁄ be a root of (3.10). Using r as the
bifurcation parameter, we want to determine if Re(⁄) reaches zero and eventually
becomes positive as we vary r. To this end, we search for values of r, such that the
corresponding roots take the form iÊ.

With exp(≠⁄r) = exp(≠Re(⁄)r)(cos(Im(⁄)r) ≠ i sin(Im(⁄)r)), inserting ⁄ = iÊ

into (3.10) yields

≠Ê
2 + ipÊ + a + (ibÊ + q)(cos(Êr) ≠ i sin(Êr)) = 0.
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3 Mathematical background

By separating the real and the imaginary parts, we have

≠Ê
2 + a = ≠q cos(Êr) ≠ bÊ sin(Êr)

pÊ = ≠bÊ cos(Êr) + q sin(Êr).
(3.12)

Squaring both equations and adding them together yields Ê
4

≠ 2aÊ
2 + a

2 + p
2
Ê

2 =
q

2 + b
2
Ê

2
, which gives

Ê
4

≠ (b2
≠ p

2 + 2a)Ê2 + (a2
≠ q

2) = 0. (3.13)

The possible real roots of (3.13) are given by Ê± and ≠Ê±, which have to satisfy

Ê
2

± = 1
2(b2

≠ p
2 + 2a) ±

1
2

Ò
(b2 ≠ p2 + 2a)2 ≠ 4(a2 ≠ q2). (3.14)

It follows that if

(H3) (b2
≠ p

2 + 2a) < 0 and a
2

≠ q
2

> 0, or (b2
≠ p

2 + 2a)2
< 4(a2

≠ q
2),

we have Ê
2

± < 0, or Ê
2

± is not real. Thus, (3.13) does not have any real roots, which
shows that (3.10) has no purely imaginary roots. Further, since the assumptions
(H1) and (H2) ensure that all roots of (3.11) have negative real parts, it follows
from Corollary 3.1 that all roots of (3.10) have negative real parts. On the other
hand, we observe that if

(H4) a
2

≠ q
2

< 0, or (b2
≠ p

2 + 2a) > 0 and (b2
≠ p

2 + 2a)2 = 4(a2
≠ q

2)

then (3.13) has one positive root Ê+ and if

(H5) a
2

≠ q
2

> 0, (b2
≠ p

2 + 2a) > 0 and (b2
≠ p

2 + 2a)2
> 4(a2

≠ q
2),

then there are two positive roots Ê+ and Ê≠ for (3.13). In case of (H5), (3.10) can
only have a pair of purely imaginary roots ±iÊ+ or ±iÊ≠ for r = r

+

n or r = r
≠
n ,

where

r
±
n = 1

Ê±

A

arcsin
A

pqÊ± + bÊ±(Ê2

± ≠ a)
q2 + b2Ê

2
±

B

+ 2nfi

B

, n œ {0, 1, 2, . . . }.

Furthermore, in case of (H4), (3.10) can only have a pair of purely imaginary roots
±iÊ+ for r = r

+

n .
Next, we examine if the real part of the roots of (3.10) for r œ {r

+

n , r
≠
n } crosses

the imaginary axis from left to right or vice versa in order to study the existence of
roots with positive real part.

Di�erentiating (3.10) with respect to r gives

2⁄
d⁄

dr
+ p

d⁄

dr
+ b

d⁄

dr
e

≠⁄r + (b⁄ + q)e≠⁄r

A

≠
d⁄

dr
r ≠ ⁄

B

= 0,
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which yields

d⁄

dr

1
2⁄ + p + (b ≠ r(b⁄ + q))e≠⁄r

2
= ⁄(b⁄ + q)e≠⁄r

.

For any n œ {0, 1, 2, . . . }, we write ⁄
+

n = –
+

n (r) + iÊ
+

n (r), which satisfy –
+

n (r+

n ) = 0
and Ê

+

n (r+

n ) = Ê+. Substituting ⁄
+

n = iÊ
+

n (r+

n ) leads to

d⁄
+

n

dr
(r+

n ) = (≠bÊ
2

+
+ iqÊ+)(cos(Ê+r

+

n ) ≠ i sin(Ê+r
+

n ))
2iÊ+ + p + (b ≠ ir+

n bÊ+ ≠ r+
n q)(cos(Ê+r+

n ) ≠ i sin(Ê+r+
n ))

= –nom + i—nom

–denom + i—denom

= (–nom + i—nom) · (–denom ≠ i—denom)
–

2

denom
+ —

2

denom

,

where

–nom = ≠bÊ
2

+
cos(Ê+r

+

n ) + qÊ+ sin(Ê+r
+

n ),
—nom = qÊ+ cos(Ê+r

+

n ) + bÊ
2

+
sin(Ê+r

+

n ),
–denom = p + (b ≠ r

+

n q) cos(Ê+r
+

n ) ≠ r
+

n bÊ+ sin(Ê+r
+

n ),
—denom = 2Ê+ ≠ (b ≠ r

+

n q) sin(Ê+r
+

n ) ≠ r
+

n bÊ+ cos(Ê+r
+

n ).

We thus have

dRe(⁄+

n )
dr

(r+

n ) = –nom–denom + —nom—denom

–
2

denom
+ —

2

denom

=
Ê

2

+

1
≠(b2

≠ p
2 + 2a) + 2Ê

2

+

2

–
2

denom
+ —

2

denom

,

where the last equality follows from (3.12). With (3.14) and the fact that Ê
2

+
> 0,

we thus have

dRe(⁄+

n )
dr

(r+

n ) > 0 and dRe(⁄≠
n )

dr
(r≠

n ) < 0,

where the case for Ê≠ follows from an analogous calculation. Following [CG82;
Rua09], we have the following properties:

(i) If (H1)-(H3) hold, then all roots of (3.10) have negative real parts for all r Ø 0.

(ii) If (H1), (H2), and (H4) hold, then for r œ [0, r
+

0 ), all roots of (3.10) have
negative real parts. When r = r

+

0 , (3.10) has a pair of purely imaginary roots
±iÊ+, and if r > r

+

0 , (3.10) has at least one root with positive real part.

(iii) If (H1), (H2), and (H5) hold, then there exists a positive integer k such that

0 < r
+

0
< r

≠
0

< r
+

1
< · · · < r

≠
k≠1

< r
+

k

where for r œ [0, r
+

0 ), (r≠
0 , r

+

1 ), . . . , (r≠
k≠1

, r
+

k ), all roots of (3.10) have negative
real parts while for r œ [r+

0 , r
≠
0 ], [r+

1 , r
≠
1 ], . . . , [r+

k≠1
, r

≠
k≠1

], and r Ø r
+

k , (3.10)
has at least one root with non-negative real part.
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3 Mathematical background

3.2.6 Hopf bifurcation
The Hopf bifurcation theorem, which we will present in the following section, is one
of the most important results for DDEs. The theorem can be used to establish the
existence of periodic solutions, which are often relevant for applications. Following
[Smi10; Kut22], we consider a family of autonomous delay equations

ẋ(t) = F (xt; µ), (3.15)

where F : C ◊ R æ Rn is twice continuous di�erentiable in its arguments and
x = 0 is an equilibrium for all µ, i.e. F (0; µ) = 0. We linearize F about x = 0 as
described in Section 3.2.4, where the corresponding linearized system is given by
ż(t) = L(zt; µ). We assume the following condition on the corresponding character-
istic equation to hold.

(H) For µ = 0, the characteristic equation has a pair of simple roots ±iÊ0, where
Ê0 ”= 0 and no other root is an integer multiple of iÊ0.

Let h(⁄, µ) = 0 denote this characteristic equation. In particular, (H) implies
that for the partial derivative, h⁄(iÊ0, 0) ”= 0 holds. From the implicit function
theorem it follows that there exists a continuously di�erentiable family of roots
⁄ = ⁄(µ) = –(µ) + iÊ(µ) for small µ, which satisfy ⁄(0) = iÊ0. We further assume
that

dRe(⁄)
dµ

(0) = d–

dµ
(0) > 0, (3.16)

which implies that the roots cross the imaginary axis transversally as µ increases
through zero. In particular, the pair of roots has negative real part for µ < 0
and positive real part for µ > 0. Note that if d–

dµ (0) < 0, we can consider the
bifurcation parameter µ̃ = ≠µ such that (3.16) holds. The Hopf bifurcation theorem
is formulated as follows.

Theorem 3.17. Let (H) and (3.16) hold true. Then, there exist Á0 > 0, real-valued
even functions µ(Á) and T (Á) > 0 with µ(0) = 0 and T (0) = 2fi

Ê0
, and a non-constant

T (Á)-periodic function p(t, Á), with all functions being continuously di�erentiable in
Á for |Á| < Á0, such that the following holds.

(i) p(t, Á) is a solution of the system (3.15) and

(ii) p(t, Á) = Áq(t, Á), where q(t, 0) is a 2fi
Ê0

-periodic solution of q̇(t) = L(0)q.

Furthermore, there exist µ0, —0, ” > 0, such that if (3.15) has a non-constant
periodic solution x(t) with period P for some µ satisfying |µ| < µ0 with maxt |x(t)| <

—0 and |P ≠ 2fi/Ê0| < ”, then µ = µ(Á) and x(t) = p(t + ◊, Á) for some |Á| < Á0 and
some ◊.
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If F is five times continuously di�erentiable, we then have

µ(Á) = µ1Á
2 + O(Á4)

T (Á) = 2fi

Ê0

1
1 + ·1Á

2 + O(Á4)
2

.

If all other characteristic roots for µ = 0 have strictly negative real parts except for
±iÊ0, then p(t, Á) is asymptotically stable if µ1 > 0 and unstable if µ1 < 0.
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4 A model by Kuznetsov et al.

In the work of [Kuz+94] in 1994, the authors present a mathematical model to
describe a cell mediated response to a growing tumor cell population. The two-
population model accounts for both the infiltration of the tumor by e�ector cells
as well as the possibility of e�ector cell inactivation by the interaction with tumor
cells. Additionally, the model is shown to exhibit oscillatory growth patterns in
tumor cells, growth dormancy, as well as the “sneaking through” phenomenon.
The latter describes the state where for high e�ector cell levels, the tumor cell
population quickly approaches an apparent dormancy, in which the e�ector cell
level gradually decreases leading to an eventual escape of the tumor. In particular,
for two stimulated patients beginning with the same tumor cell level, the “sneaking
through” phenomenon results in one having a progressive disease while the immune
system of the other patient is able to keep the tumor in a dormancy state. Non-
intuitively, the latter begins with a lower e�ector cell level than the former. This
behavior can be explained by the presence of a separatrix in the phase plane of the
system, where the stable manifold of the unstable, saddle equilibrium separates the
basins of attraction of the two stable equilibria.

4.1 Model assumptions and formulation
The tumor-immune model is based on the “predator-prey” approach first proposed
by Lotka in 1910, which is then used by Kolmogorov and subsequently by Volterra
in year 1925 to study the dynamics of fish populations in the Adriatic. In the
context of tumor-immune interaction, tumor cells play the role of the prey, while
the e�ectors cells are the predators. Let T and E denote the tumor cell and e�ector
cell population, respectively. The assumptions of the model are given as follows:

(1) In the absence of e�ector cells, the growth of the tumor cell population follows
a logistic function.

(2) Interaction between tumor and e�ector cell populations is able to induce signals,
such as released cytokines, which are able to recruit more e�ector cells to the
site of the tumor. There is a limit at which the e�ector cells can be stimulated.

(3) In the absence of tumor cells, most e�ector cells undergo apoptosis.
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4 A model by Kuznetsov et al.

(4) Each cytotoxic T cell will eventually become inactive after some number of
interactions with tumor cells due to e.g. the aspect that e�ector cells can only
produce a limited amount of proteins, which damage/kill tumor cells, and the
ability of tumor cells to develop mechanisms to induce apoptosis of some nearby
e�ector cells.

(5) The number of interactions between tumor and e�ector cells is proportional to
the product of the two cell populations.

(6) E�ector cells, such as NK cells and macrophages, are present even in the absence
of a specific threat.

Putting these assumptions together and assuming Michaelis-Menten kinetics
for the stimulated recruitment of e�ector cells by tumor cells yields the system of
di�erential equations

dT

dt
= aT (1 ≠ bT ) ≠ d̃ET

dE

dt
= ‡ + j̃ET

g̃ + T
≠ q̃ET ≠ m̃E,

(4.1)

where all parameters are assumed to be positive. Table 4.1 contains the biological
interpretation of the parameters, their units as well as the estimated values from
[Kuz+94] based on experimental data in mice. Further, the stimulated recruitment
rate by tumor cells per e�ector cell for j̃ = 0.8 day≠1 and g̃ = 1 · 108 cells is shown
in Figure 4.1.

The interaction terms in the system (4.1) are derived from the law of mass-
action, reflecting Assumption (5). This assumes a homogeneous environment, i.e.
each tumor cell is equally likely to encounter an e�ector cell. In reality, this will
not be the case, for example due to space limitations. In the later chapters, we will
discuss various other approaches to describe the interaction term.

We further observe that the set [0, b
≠1] ◊ [0, Œ) µ R2 is positively invariant for

the system (4.1) since the following is satisfied:

T = 0, E Ø 0 : dT

dt
= 0

T = 1
b
, E Ø 0 : dT

dt
= ≠

dE

b
Æ 0

E = 0, T œ

5
0,

1
b

6
: dE

dt
= ‡ > 0.

Further, for (T, E) œ (0, b
≠1)◊ (0, Œ), which is a simply connected region, we have,
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4 A model by Kuznetsov et al.

Table 4.1: Description of parameters in (4.1), their units, as well as the estimated
parameter values from [Kuz+94].

Parameter Unit Description Value in [Kuz+94]
a day≠1 tumor growth rate 0.18
b cells≠1 inverse of the carrying capacity

of tumor cell population
0.002 · 10≠6

d̃ day≠1 cells≠1 tumor cell elimination rate
caused by e�ector cells

1.101 · 10≠7

‡ cells day≠1 constant source rate of e�ector
cells

0.013 · 106

j̃ day≠1 maximal recruitment rate of ef-
fector cells (stimulated by tu-
mor cells)

1.245 · 10≠1

g̃ cells number of tumor cells at
which the stimulated recruit-
ment rate reaches its half-
maximum (smaller g̃ implies a
faster increase of e�ector cell
stimulation)

2.019 · 107

q̃ day≠1 cells≠1 e�ector cell inactivation rate
caused by tumor cells

3.422 · 10≠10

m̃ day≠1 e�ector cell inactivation rate in-
dependent of tumor cells

0.412 · 10≠1

by setting fl(T, E) = 1

ET > 0,

div
A

fl(T, E) ·
dT

dt
, fl(T, E) ·

dE

dt

B

= ˆ

ˆT

A
a(1 ≠ bT )

E
≠ d

B

+ ˆ

ˆE

A
‡

ET
+ j

g + T
≠ q ≠

m

T

B

= ≠

A
‡

TE2
+ ab

E

B

< 0

and thus, the negative criterion of Bendixson-Dulac shows that the system described
in (4.1) has no periodic orbits.

The equilibria of the model can be found by setting the right-hand-side of the
equations in (4.1) to zero, which can, depending on the parameter values, yield
up to four solutions. For the set of parameter values specified in Table 4.1, the
system described in (4.1) has four equilibria denoted by A, B, C, and D, where A

describes the tumor-free state with T = 0 and E = ‡
m . The equilibrium B denotes

the “dormant tumor” state, which is characterized by a relatively low tumor cell
level, while the tumor cell level in D is relatively high and D is referred to as the
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4 A model by Kuznetsov et al.

Figure 4.1: Stimulated recruitment rate by tumor cells with a saturation level at
j̃ = 0.8 day≠1 and g̃ = 1 · 108 cells, at which the half-maximal value is obtained.

case of “tumor escape”. The equilibria B and D are both locally asymptotically
stable. For the same set of parameter values, all solutions beginning with a high
level of e�ector cells and low level of tumor cells approach the dormant tumor state
B asymptotically.

4.2 Existence of a heteroclinic bifurcation

In the work of [Kuz+94], Kuznetsov et al. showed that the system (4.1) establishes
a heteroclinic bifurcation, where the boundaries of basins of attraction of the stable
equilibria B and D dramatically change. In particular, the stable manifold of the
unstable equilibrium C and the unstable manifold of the equilibrium A coincide.
Before the heteroclinic bifurcation, the system establishes the phenomenon known
as “sneaking through”, which describes the situation where a tumor cell population
seems to have reached an equilibrium, where it remains for some time, and then
begins to proliferate. In particular, a trajectory with the same initial level of tumor
cells but lower amount of e�ector cells results in a better outcome. One biological
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interpretation is that a high amount of e�ector cells causes more tumor cells to be
eliminated in the initial phase. However, while the tumor level is low, the immune
response gradually drops until the tumor cell population is able to proliferate.
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5 An ODE approach on the
dynamics between tumor and
cytotoxic T cells

In the model presented by Kuznetsov et al., the authors considered e�ector cell
populations including cytotoxic T cells, NK cells, macrophages, or any other e�ector
cells involved in the immune surveillance against tumor cells. In the following
chapter, we want to focus on the interaction between antigenic tumor cells and
tumor-specific cytotoxic T cells, which are only produced after an antigenic response
of the naive forms of cytotoxic T cells. We therefore assume the constant, tumor-
independent production rate of cytotoxic T cells ‡ to be zero. Furthermore, as
mentioned before, Assumption (5) used in the model (4.1) is derived from the law
of mass action, which may not always be appropriate in reality. Therefore, in the
following chapters, we consider di�erent functions for the elimination rate term in
dT
dt , including the fractional kill rate term proposed in [dRW05] in 2005. For the rest
of the chapter, let T and L denote the tumor cell and cytotoxic T cell population,
respectively and assume Assumption (1)-(4) from the previous chapter to hold true.

5.1 Model assumptions and formulation

In 2006, Wiedemann et al. showed that an individual cytotoxic T cell is able to
interact with multiple targets and eliminate them simultaneously in [Wie+06]. Fur-
ther, in 2014, Roesch, Hasenclever, and Scholz presented a model to describe the
tumor-immune interaction in large cell lymphoma and considered in [RHS14] the
interaction of e�ector cells and tumor cells to be proportional to the tumor surface,
which is proportional to T

2/3. Therefore, in the following section, we generalize the
elimination rate term used in [Kuz+94] by choosing

g(T, L) = d̃LT
n
, (5.1)
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where n > 0. The resulting system of di�erential equations is given by

dT

d·
= aT (1 ≠ bT ) ≠ d̃LT

n

dL

d·
= ≠q̃LT

n + j̃T
n

g̃n + T n
L ≠ m̃L,

(5.2)

where all parameters are assumed to be positive. Table 5.1 contains the biological
interpretation of the parameters as well as their units.

Table 5.1: Description of parameters in (5.2) and their units.

Parameter Unit Description
a day≠1 tumor growth rate
b cells≠1 inverse of the carrying capacity of tumor cell popu-

lation
d̃ day≠1 cells≠1 tumor cell elimination rate caused by cytotoxic T

cells
j̃ day≠1 maximal recruitment rate of cytotoxic T cells (stim-

ulated by tumor cells)
g̃ cells number of tumor cells at which the stimulated re-

cruitment rate reaches its half-maximum
q̃ day≠1 cells≠1 cytotoxic T cell inactivation rate caused by tumor

cells
m̃ day≠1 cytotoxic T cell inactivation rate independent of tu-

mor cells
n none exponent in interaction terms of tumor and cytotoxic

T cells

Note that the biological interpretation of the parameters j̃ and g̃ is not influenced
by n. For j̃ = 0.8 day≠1, and g̃ = 1 · 108 cells, Figure 5.1 shows the stimulated
recruitment rate per cytotoxic T cell for n = 0.5 and n = 2.

To simplify the model analysis, we re-parametrize the model by considering
x := bT , y := bL, and t := a· . We associate dx

dt and dy
dt with ẋ and ẏ, respectively

and denote d := 1

abn d̃, q := 1

abn q̃, j := 1

a j̃, g := bg̃, and m := 1

am̃ leading to the
following re-parametrized model:

ẋ = x(1 ≠ x) ≠ dx
n
y

ẏ = ≠qx
n
y + jx

n

gn + xn
y ≠ my

(5.3)

We can verify that the parameters and variables in (5.3) are dimensionless.
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(a) n = 0.5 (b) n = 2

Figure 5.1: Stimulated recruitment rate for model (5.2) with a saturation level of
j̃ = 0.8 day≠1, g̃ = 1 · 108 cells, and n œ {0.5, 2}.

5.2 Qualitative analysis

We analyze the qualitative behavior of the system (5.3) in a general setting. We
first observe that the set D := [0, 1] ◊ [0, Œ) µ R2 is positively invariant for the
system for all n > 0, as

x = 0, y Ø 0 : ẋ = 0
x = 1, y Ø 0 : ẋ = ≠dy Æ 0
y = 0, x œ [0, 1] : ẏ = 0

holds true for all n > 0. Further, int(D) is a simply connected region. With
h1(x, y) = x(1 ≠ x) ≠ dx

n
y, h2(x, y) = ≠qx

n
y + jxny

g+xn ≠ my œ C
1(int(D),R) and

fl(x, y) = 1

xy > 0 for (x, y) œ int(D), we have that

div (fl(x, y) · h1(x, y), fl(x, y) · h2(x, y))

= ˆ

ˆx

A
1 ≠ x

y
≠ dx

n≠1

B

+ ˆ

ˆy

A

≠qx
n≠1 + jx

n≠1

gn + xn
≠

m

x

B

= ≠

A
1
y

≠ (n ≠ 1)dx
n≠2

B

< 0

for all (x, y) œ int(D) and n Ø 1. Thus, from the negative criterion of Bendixson-
Dulac, the system described in (5.3) has no closed orbits lying entirely in int(D)
for n Ø 1. In particular the system has no periodic orbits in D for n Ø 1. However,
we will later see that the existence of a periodic orbit is possible for n < 1. The
equilibria are found by determining the intersections of the nullclines ẋ = 0 and
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ẏ = 0 in D. The nullclines are given by

ẋ = 0 : x = 0 or y = 1 ≠ x

dxn≠1
=: f1(x)

ẏ = 0 : y = 0 or f2(x) := ≠qx
n + jx

n

gn + xn
≠ m = 0.

(5.4)

Note that the equilibria E0 = (x̄0, ȳ0) = (0, 0) and E3 = (x̄3, ȳ3) = (1, 0) always
exist. The steady state E3 can be considered as the tumor-escape scenario while
the steady state E0 can be described as the tumor-free equilibrium. Note that for
n < 1, the first equation in (5.3) is not di�erentiable in x = 0. Therefore, it is not
possible to study the stability of this equilibrium E0 by determining the eigenvalues
of the linearized system around E0. However, we note that for y = 0 and x > 0,
ẋ = x(1 ≠ x) is always positive. It thus follows that E0 is unstable regardless of the
parameter values chosen. The curve of the nullcline of x for di�erent values of n

and d is shown in Figure 5.2 and 5.3. We observe that x = 1 is always a root. The
function f1 has another root in x = 0 for n < 1 and intersects the y≠axis only for
n = 1. For n > 1, the function approaches infinity for x æ 0.

(a) d = 1 (b) d = 2

Figure 5.2: Graph of f1 in (5.4) for n œ {0.5, 1, 2}.

If f1 is well-defined on the entire interval (0, 1), which is the case here, then the
non-trivial equilibria are given by (x̄, ȳ), where x̄ œ (0, 1) is a solution of f2(x) = 0
on the interval (0, 1) and ȳ = f1(x̄). The following lemma allows us to determine
the number of solutions of f2(x) = 0 in (0, 1).

Lemma 5.1. Let n, q, j, g, and m be positive, and consider

f2(x) = ≠qx
n + jx

n

g + xn
≠ m. (5.5)

If mg
n

< q and

1. j < qg
n + m + 2Ô

qgnm, then f2 has no roots in (0, 1);
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(a) n < 1 (b) n > 1

Figure 5.3: Graph of f1 in (5.4) for d = 1 and di�erent n values.

2. j = qg
n + m + 2Ô

qgnm, then f2 has one root in (0, 1);

3. qg
n + m + 2Ô

qgnm < j < qg
n + m + q + mg

n = (1 + g
n)(q + m), then f2 has

2 roots in (0, 1);

4. j Ø (1 + g
n)(q + m), then f2 has one root in (0, 1).

If mg
n

Ø q and
1. j Æ (1 + g

n)(q + m), then f2 has no roots in (0, 1);

2. j > (1 + g
n)(q + m), then f2 has one root in (0, 1).

Further, for x œ (x̄1, x̄2), f2(x) > 0 and for x /œ (x̄1, x̄2), we have that f2(x) < 0.
Proof. Let z := x

n. For f2(x) = 0, we have the following chain of equivalences:

≠ qx
n + jx

n

gn + xn
≠ m = 0

… ≠ qx
2n + (≠qg

n
≠ m + j)xn

≠ mg
n = 0

… z
2

≠
≠qg

n
≠ m + j

q
z + mg

n

q
= 0

… z1,2 =
≠qg

n
≠ m + j ±

Ò
(≠qgn ≠ m + j)2 ≠ 4qgnm

2q

Note that z œ (0, 1) i� x œ (0, 1) and with x̄1,2 = z
1/n
1,2 , there are at most two roots

in (0, 1). We now analyze the conditions for which z1,2 œ (0, 1) is satisfied. The
solutions z1,2 are real i�

0 Æ (≠qg
n

≠ m + j)2
≠ 4qg

n
m

= (j2
≠ 2(qg

n + m)j + (qg
n)2 + m

2 + 2qg
n
m) ≠ 4qg

n
m

= j
2

≠ 2(qg
n + m)j + (qg

n)2 + m
2

≠ 2qg
n
m

= j
2

≠ 2(qg
n + m)j + (qg

n
≠ m)2

(5.6)
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is satisfied. For fixed parameters q, g
n, m and variable j, this is a parabola facing

upward. Thus, (5.6) is fulfilled for all 0 < j Æ j1 and j2 Æ j, where

j1,2 = qg
n + m ±

Ò
(qgn + m)2 ≠ (qgn ≠ m)2

= qg
n + m ± 2

Ô
qgnm.

The second equality follows from

(qg
n + m)2

≠ (qg
n

≠ m)2 = (qg
n)2 + 2qg

n
m + m

2
≠ (qg

n)2 + 2qg
n
m ≠ m

2

= 4qg
n
m.

We first have a look at the case where mg
n

< q, and consider the following scenarios:

(a) 0 < j < qg
n + m ≠ 2Ô

qgnm

(b) j = qg
n + m ≠ 2Ô

qgnm

(c) j = qg
n + m + 2Ô

qgnm

(d) qg
n + m + 2Ô

qgnm < j < qg
n + m + q + mg

n = (1 + g
n)(q + m)

(e) j = (1 + g
n)(q + m)

(f) j > (1 + g
n)(q + m)

Recall that Scenario (a)-(f) guarantee that z1 and z2 are real. We will later also
consider the same scenarios for mg

n
Ø q. Note that for mg

n
”= q, we have q +

mg
n

≠ 2Ô
qgnm = (Ôq ≠

Ô
mgn)2

> 0, which implies that qg
n + m + 2Ô

qgnm <

qg
n +m+q +mg

n. Therefore, Scenario (d) is possible. On the other hand, mg
n = q

implies that 2Ô
qgnm = 2q = q + mg

n and thus, Scenario (c) and (e) fall together
and Scenario (d) will never appear. We observe the following for mg

n
< q:

Scenario (a) We have

≠qg
n

≠ m + j

2q
< ≠

2Ô
qgnm

2q
= ≠

Û
mgn

q
< 0

and
Ò

(≠qgn ≠ m + j)2 ≠ 4qgnm < qg
n + m ≠ j. It follows that z1, z2 < 0 and thus,

f2 has no roots in (0, 1).

Scenario (b) We have

z1 = z2 = ≠qg
n

≠ m + j

2q
= ≠

2Ô
qgnm

2q
= ≠

Û
mgn

q
< 0

and thus, f2 has no roots in (0, 1).
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Scenario (c) With

0 < z1 = z2 = ≠qg
n

≠ m + j

2q
= 2Ô

qgnm

2q
=

Û
mgn

q
< 1,

f2 has one root in (0, 1).

Scenario (d) With
Ò

(≠qgn ≠ m + j)2 ≠ 4qgnm < ≠qg
n

≠m+j and ≠qg
n

≠m+
j > 2Ô

qgnm > 0, we have z1, z2 > 0. Further, with ≠qg
n

≠ m + j < q + mg
n, it

follows that
q(≠qg

n
≠ m + j) < q(q + mg

n) = q
2 + qg

n
m

… 4q(≠qg
n

≠ m + j) < 4q
2 + 4qg

n
m

… ≠ 4qg
n
m < 4q

2
≠ 4q(≠qg

n
≠ m + j)

… (≠qg
n

≠ m + j)2
≠ 4qg

n
m < 4q

2
≠ 4q(≠qg

n
≠ m + j) + (≠qg

n
≠ m + j)2

… (≠qg
n

≠ m + j)2
≠ 4qg

n
m < (2q ≠ (≠qg

n
≠ m + j))2

.

Since 2q ≠ (≠qg
n

≠ m + j) > 2q ≠ q ≠ mg
n = q ≠ mg

n
> 0 holds true, we have

Ò
(≠qgn ≠ m + j)2 ≠ 4qmgn < 2q ≠ (≠qg

n
≠ m + j)

… ≠ qg
n

≠ m + j +
Ò

(≠qgn ≠ m + j)2 ≠ 4qgnm < 2q

… z2 =
≠qg

n
≠ m + j +

Ò
(≠qgn ≠ m + j)2 ≠ 4qgnm

2q
< 1.

and particularly, since z1 < z2 holds, z1 < 1 holds true as well. Therefore, z1,2 are
both in (0, 1) and f2 has two roots in (0, 1).

Scenario (e) With
Ò

(≠qgn ≠ m + j)2 ≠ 4qgnm < ≠qg
n

≠m+ j and ≠qg
n

≠m+
j = q + mg

n
> 0, we have z1, z2 > 0. Further, we observe that (≠qg

n
≠ m + j)2

≠

4qg
n
m = (q + mg

n)2
≠ 4qg

n
m = (q ≠ mg

n)2 and since mg
n

< q holds, we have

z1 = ≠qg
n

≠ m + j ≠ q + mg
n

2q
= q + mg

n
≠ q + mg

n

2q
= mg

n

q
< 1

z2 = ≠qg
n

≠ m
n + j + q ≠ mg

n

2q
= q + mg

n + q ≠ mg
n

2q
= 1.

Thus, f2 has one root in (0, 1).

Scenario (f) With
Ò

(≠qgn ≠ m + j)2 ≠ 4qgnm < ≠qg
n

≠ m + j and ≠qg
n

≠ m +
j > q + mg

n
> 0, we have z1, z2 > 0. Further, with ≠(≠qg

n
≠ m + j) < ≠q ≠ mg

n,
we have

≠ 4q(≠qg
n

≠ m + j) < ≠4q
2

≠ 4qg
n
m

… (≠qg
n

≠ m + j)2
≠ 4q(≠qg

n
≠ m + j) + 4q

2
< (≠qg

n
≠ m + j)2

≠ 4qg
n
m

… ((≠qg
n

≠ m + j) ≠ 2q)2
< (≠qg

n
≠ m + j)2

≠ 4qg
n
m.
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With
Ò

(≠qgn ≠ m + j)2 ≠ 4qgnm > |(≠qg
n

≠ m + j) ≠ 2q| Ø (≠qg
n

≠ m + j) ≠ 2q,
it follows that

Ò
(≠qgn ≠ m + j)2 ≠ 4qgnm > (≠qg

n
≠ m + j) ≠ 2q

… ≠

Ò
(≠qgn ≠ m + j)2 ≠ 4qgnm < ≠(≠qg

n
≠ m + j) + 2q

… (≠qg
n

≠ m + j) ≠

Ò
(≠qgn ≠ m + j)2 ≠ 4qgnm < 2q

… z1 =
(≠qg

n
≠ m + j) ≠

Ò
(≠qgn ≠ m + j)2 ≠ 4qgnm

2q
< 1.

On the other hand, with
Ò

(≠qgn ≠ m + j)2 ≠ 4qgnm > |(≠qg
n

≠ m + j) ≠ 2q| Ø

≠(≠qg
n

≠ m + j) + 2q, we have
Ò

(≠qgn ≠ m + j)2 ≠ 4qgnm > ≠(≠qg
n

≠ m + j) + 2q

… (≠qg
n

≠ m + j) +
Ò

(≠qgn ≠ m + j)2 ≠ 4qgnm > 2q

… z2 =
(≠qg

n
≠ m + j) +

Ò
(≠qgn ≠ m + j)2 ≠ 4qgnm

2q
> 1.

Thus, f2 has one root in (0, 1).
We note that the arguments for Scenario (a), (b), and (f) do not depend on the

relation between q and mg
n and can be performed in an analogous way for mg

n
Ø q.

For mg
n = q, we have the following:

Scenario (c) and (e) We have

z1 = z2 = ≠qg
n

≠ m + j

2q
= 2q

2q
= 1

and thus, f2 has no roots in (0, 1).
Lastly, for mg

n
> q, we have the following:

Scenario (c) We have

z1 = z2 = ≠qg
n

≠ m + j

2q
= 2Ô

qgnm

2q
=

Û
mgn

q
> 1.

Thus, f2 has no roots in (0, 1).

Scenario (d) Similar as before, we have

4q(≠qg
n

≠ m + j) < 4q
2 + 4qg

n
m

… (≠qg
n

≠ m + j)2
≠ 4qg

n
m < (≠qg

n
≠ m + j)2

≠ 4q(≠qg
n

≠ m + j) + 4q
2

… (≠qg
n

≠ m + j)2
≠ 4qg

n
m < (2q ≠ (≠qg

n
≠ m + j))2

.
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and since 2Ô
qgnm < ≠qg

n
≠ m + j < q + mg

n and mg
n

> q hold true, we observe
that

2q ≠ (≠qg
n

≠ m + j) < 2q ≠ 2
Ô

qgnm < 2q ≠ 2q = 0,

which leads to
Ò

(≠qgn ≠ m + j)2 ≠ 4qgnm < (≠qg
n

≠ m + j) ≠ 2q

… ≠

Ò
(≠qgn ≠ m + j)2 ≠ 4qgnm > ≠(≠qg

n
≠ m + j) + 2q

… (≠qg
n

≠ m + j) ≠

Ò
(≠qgn ≠ m + j)2 ≠ 4qgnm > 2q

… z1 =
(≠qg

n
≠ m + j) ≠

Ò
(≠qgn ≠ m + j)2 ≠ 4qgnm

2q
> 1.

Since z2 > z1 > 1, f2 has no roots in (0, 1).

Scenario (e) We observe that (≠qg
n

≠m+ j)2
≠4qg

n
m = (q +mg

n)2
≠4qg

n
m =

(mg
n

≠ q)2 and since mg
n

> q holds true, we have

z1 = ≠qg
n

≠ m + j ≠ mg
n + q

2q
= q + mg

n
≠ mg

n + q

2q
= q

q
= 1,

z2 = ≠qg
n

≠ m + j + mg
n

≠ q

2q
= q + mg

n + mg
n

≠ q

2q
= mg

n

q
> 1.

Hence, f2 has no roots in (0, 1).
From the previous analysis, we can have the following cases for the position of

the roots x̄1,2, where x̄1 Æ x̄2:

1. x̄1,2 Æ 0

2. x̄1 œ (0, 1) and x̄2 Ø 1

3. x̄1,2 œ (0, 1)

4. x̄1,2 Ø 1

Furthermore, we note that f2 is continuous in [0, 1], where f2(0) = ≠m < 0. A
change of sign occurs only at x̄1,2 and since x̄1 Æ x̄2, we have that f2(x) > 0 for
x œ (x̄1, x̄2). In particular, for case 1 and 4, f2(x) < 0 for all x œ (0, 1).

We can now formulate the following theorem on the number of equilibria of
system (5.3) in int(D).

Theorem 5.1. Let n, d, q, j, g, and m be positive and consider the system (5.3).
Let f1 be the non-zero component of the x nullcline. If f1 : (0, 1) æ [0, Œ) is
well-defined, then the following holds. If mg

n
< q and

1. j < qg
n + m + 2Ô

qgnm, then system (5.3) has no equilibria in int(D);
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2. j = qg
n + m + 2Ô

qgnm, then system (5.3) has one additional equilibrium in
int(D);

3. qg
n + m + 2Ô

qgnm < j < qg
n + m + q + mg

n = (1 + g
n)(q + m), then system

(5.3) has two additional equilibria in int(D);

4. j Ø (1 + g
n)(q + m), then system (5.3) has one additional equilibrium in

int(D).

If mg
n

Ø q and

1. j Æ (1 + g
n)(q + m), then system (5.3) has no additional equilibria in int(D);

2. j > (1 + g
n)(q + m), then system (5.3) has one additional equilibrium in

int(D).

Proof. From Lemma 5.1, we know the number of roots of f2 in (0, 1) and since f1

in (5.4) is defined on the interval (0, 1), we have

ȳ1,2 = 1 ≠ x̄1,2

dx̄
n≠1

1,2

> 0

if x̄1,2 œ (0, 1), where x̄1,2 are the roots of f2.

We recall that the dimensionless parameters m, g, and q denote the cytotoxic
T cell inactivation rate independent of tumor cells, amount of tumor cells at which
the stimulated recruitment rate is at its half-maximal value, and cytotoxic T cell
inactivation rate due to tumor cells, respectively. Furthermore, j describes the
maximal stimulated recruitment rate of cytotoxic T cells. If the immune system is
able to recruit enough cytotoxic T cells fast enough, i.e. j Ø qg

n + m + 2Ô
qgnm

for mg
n

< q and j > (1 + g
n)(q + m) for mg

n
Ø q, the system (5.3) can establish

a non-trivial equilibrium. However, if the maximal stimulated recruitment rate
of cytotoxic T cells is too small, i.e. j < qg

n + m + 2Ô
qgnm for mg

n
< q and

j Æ (1 + g
n)(q + m) for mg

n
Ø q, the existence of a tumor dormant state will not

be possible.
Moreover, in reality it is rather unlikely to observe parameter combinations such

that equality in Theorem 5.1 holds. Thus, in the following, we only consider the
cases where inequality is satisfied.

5.2.1 Local stability
We denote the non-trivial equilibria as E1,2 = (x̄1,2, ȳ1,2), where x̄1 < x̄2 and ȳ1,2 =
1≠x̄1,2
dx̄n≠1

1,2
. For the linearized system of (5.3), the general Jacobian matrix for x > 0

reads
J(x, y) =

A
1 ≠ 2x ≠ ndx

n≠1
y ≠dx

n

≠nqx
n≠1

y + ng
n jxn≠1

(gn+xn)2 y ≠qx
n + jxn

gn+xn ≠ m

B

.
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For (x, y) = (1, 0) = E3, we have

J(1, 0) =
A

≠1 ≠d

0 ≠q + j
gn+1

≠ m

B

.

The eigenvalues are given by ≠1 and ≠q + j
gn+1

≠ m. Since we have excluded
j = (1 + g

n)(q + m) earlier, the eigenvalues have a non-zero real part. In particular,
E3 is locally asymptotically stable, if

≠q + j

gn + 1 ≠ m < 0

is satisfied, which is equivalent to

j < (q + m)(gn + 1) = qg
n + m + q + mg

n
.

As we have seen previously, this implies the case where there are either no or two
additional equilibria in int(D). If (q + m)(gn + 1) < j holds true, then the system
(5.3) has only one additional equilibrium in int(D) and E3 becomes unstable. For
a non-trivial equilibrium (x̄, ȳ) œ {E1, E2}, we have that

J(x̄, ȳ) =
A

1 ≠ 2x̄ ≠ ndx̄
n≠1

ȳ ≠dx̄
n

≠nqx̄
n≠1

ȳ + n
jgnx̄n≠1

(gn+x̄n)2 ȳ 0

B

=
A

1 ≠ 2x̄ ≠ n(1 ≠ x̄) ≠dz

n
1≠x̄

d

1
≠q + jgn

(gn+z)2

2
0

B

,

where z = x̄
n. The corresponding characteristic equation reads

⁄
2

≠ (1 ≠ 2x̄ ≠ n(1 ≠ x̄)) · ⁄ + nz(1 ≠ x̄)
A

≠q + jg
n

(gn + z)2

B

= 0,

which yields the eigenvalues

⁄1(x̄) = 1 ≠ 2x̄ ≠ n(1 ≠ x̄)
2

≠

Ú
(1 ≠ 2x̄ ≠ n(1 ≠ x̄))2

≠ 4nz(1 ≠ x̄)
1
≠q + jg

(g+z)2

2

2 ,

⁄2(x̄) = 1 ≠ 2x̄ ≠ n(1 ≠ x̄)
2

+

Ú
(1 ≠ 2x̄ ≠ n(1 ≠ x̄))2

≠ 4nz(1 ≠ x̄)
1
≠q + jg

(g+z)2

2

2 .

We now study the stability of the equilibria E1 and E2 in the following theorem.
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Theorem 5.2. Consider the system (5.3) and assume the parameters to be chosen
in such a way that 1 ≠ 2z

1/n
1 ≠ n(1 ≠ z

1/n
1 ) < 0. If E1 œ int(D), then it is locally

asymptotically stable. If E2 œ int(D), then it is unstable.
Proof. We begin with the equilibrium E1 œ int(D). For ⁄1(x̄1), we observe that the
real part is, by assumption, always negative. Further, Re(⁄2(x̄1)) < 0 is fulfilled i�

(1 ≠ 2x̄1 ≠ n(1 ≠ x̄1))2
≠ 4nz1(1 ≠ x̄1)

A

≠q + jg
n

(gn + z1)2

B

< (1 ≠ 2x̄1 ≠ n(1 ≠ x̄1))2

is satisfied. Since 4nz1(1 ≠ x̄1) > 0, this is equivalent to

≠q + jg
n

(gn + z1)2
> 0. (5.7)

Since E1 œ int(D), Theorem 5.1 yields j > qg
n + m + 2Ô

qgnm and hence, we
have C := ≠qg

n
≠ m + j > 0. With the expression for z1 derived in the proof of

Lemma 5.1, we have

(gn + z1)2 =
Q

a
2qg

n + (≠qg
n

≠ m + j) ≠

Ò
(≠qgn ≠ m + j)2 ≠ 4qgnm

2q

R

b
2

=
A

2qg
n + C ≠

Ô
C2 ≠ 4qgnm

2q

B2

and it follows that

≠ q + jg
n

(gn + z1)2
=

≠q

1
2qg

n + C ≠
Ô

C2 ≠ 4qgnm

2
2

+ 4q
2
jg

n

1
2qgn + C ≠

Ô
C2 ≠ 4qgnm

2
2

,

which has the same sign as

≠

3
2qg

n + C ≠

Ò
C2 ≠ 4qgnm

4
2

+ 4qjg
n

= ≠

3
4q

2 (gn)2 + C
2 + C

2
≠ 4qg

n
m + 4qg

n
C ≠ 4qg

n
Ò

C2 ≠ 4qgnm

≠2C

Ò
C2 ≠ 4qgnm

4
+ 4qjg

n
,

since q > 0. We recall that C = ≠qg
n

≠ m + j, which leads to

≠ 4q
2 (gn)2

≠ 2C
2 + 4qg

n
m ≠ 4qg

n
C + 4qg

n
Ò

C2 ≠ 4qgnm + 2C

Ò
C2 ≠ 4qgnm

+ 4qjg
n

≠4qg
n
m + 4qg

n
m

¸ ˚˙ ˝
=0

= 4qg
n(≠qg

n
≠ m + j) ≠ 4qg

n
C ≠ 2C

2 + 8qg
n
m + 4qg

n
Ò

C2 ≠ 4qgnm + 2C

Ò
C2 ≠ 4qgnm

= ≠ 2C
2 + 8qg

n
m + 4qg

n
Ò

C2 ≠ 4qgnm + 2C

Ò
C2 ≠ 4qgnm

= 2
3

≠C
2 + 4qg

n
m + 2qg

n
Ò

C2 ≠ 4qgnm + C

Ò
C2 ≠ 4qgnm

4
.
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We can see that

≠ (C2
≠ 4qg

n
m)

¸ ˚˙ ˝
>0 since j>qgn+m+2

Ô
qgnm

+2qg
n

Ò
C2 ≠ 4qgnm + C

Ò
C2 ≠ 4qgnm

= ≠

3Ò
C2 ≠ 4qgnm

4
2

+ 2qg
n

Ò
C2 ≠ 4qgnm + C

Ò
C2 ≠ 4qgnm

=
Ò

C2 ≠ 4qgnm

Q

cca2qg
n + C ≠

Ò
C2 ≠ 4qgnm

¸ ˚˙ ˝
>C≠C=0

R

ddb > 0

and thus, (5.7) is satisfied, which yields the local asymptotic stability of E1.
Next, we consider the case where E2 is also in int(D). By Theorem 5.1, this is

only the case if mg
n

< q and qg
n + m + 2Ô

qgnm < j < qg
n + m + q + mg

n. In
particular, this implies C > 0.

In the following, we will prove the instability of E2 by showing that

≠q + jg
n

(gn + z2)2
< 0,

which implies Re(⁄2(x̄2)) > 0. Following the same calculations as before, we see
that

≠q + jg
n

(gn + z2)2

has the same sign as

≠ 2C
2 + 8qg

n
m ≠ 4qg

n
Ò

C2 ≠ 4qgnm ≠ 2C

Ò
C2 ≠ 4qgnm

=
Ò

C2 ≠ 4qgnm(≠2C ≠ 4qg
n) + 8qg

n
m ≠ 2C

2
,

which is smaller than zero, as 8qg
n
m ≠ 2C

2
< 0 since C

2
> 4qg

n
m. It follows that

Re(⁄2(x̄2)) > 0 and that E2 is unstable.

Remark 5.1. In order to see when the condition 1 ≠ 2z
1/n

≠ n(1 ≠ z
1/n) < 0 is

fulfilled, consider ln(z) = 1≠2z
1/n

≠n(1≠z
1/n) = 1≠n+(n≠2)z1/n for a fixed n > 0.

Since z ‘æ z
1/n is strictly monotone on (0, 1), it follows that ln is strictly monotone

on (0, 1) as well. For n Ø 1, we note that ln(0) = 1 ≠ n Æ 0 and ln(1) = ≠1 < 0.
Hence, for E1 œ int(D), it follows that ln(z1) < 0 always holds true. However, for
n œ (0, 1), we have that ln(0) = 1 ≠ n > 0 and ln(1) = ≠1 < 0 and thus, using n

as a bifurcation parameter, it is possible to observe a Hopf bifurcation around E1,
which results in a possible existence of a periodic orbit around E1. We will further
study this situation in the next section.

In particular, if E2 œ int(D), the equilibrium E2 is an unstable saddle. With
x̄1 < x̄2, the stable equilibrium E1 œ int(D) corresponds to the dormant state. If
we recall the three phases of cancer immunoediting, we find that the equilibrium
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5 An ODE approach on the dynamics between tumor and cytotoxic T cells

E0 would correspond to the elimination phase, where the tumor cell population
is successfully destructed. The equilibrium phase can be represented by the non-
trivial equilibrium E1, in which the tumor cell population is kept in a dormant
state. Lastly, the equilibrium E3 describes the escape phase, which is characterized
by the progressive growth of tumor cell populations. Following the stability analysis,
we observe that the equilibrium E0 is always unstable, which would mean that the
immune system is never able to destroy tumor cells completely. However, depending
on the parameter values, the x component of the stable equilibrium E1, which
corresponds to the dimensionless tumor cell population, can get very close to zero,
such that the tumor cell population becomes clinically undetectable.

5.3 Analysis of Hopf bifurcation
For the existence of a Hopf bifurcation, the Jacobian matrix of the linearized system
around an equilibrium needs to establish a pair of purely complex eigenvalues.

Recall that the eigenvalues of the Jacobian matrix for the linearized system of
(5.3) around E1 read

⁄1,2(n) = 1 ≠ 2z
1/n
1 ≠ n(1 ≠ z

1/n
1 )

2

±

Ú1
1 ≠ 2z

1/n
1 ≠ n(1 ≠ z

1/n
1 )

22

≠ 4nz1(1 ≠ z
1/n
1 )

1
≠q + jgn

(gn+z1)2

2

2 ,

where

z1 =
≠qg

n
≠ m + j ≠

Ò
(≠qgn ≠ m + j)2 ≠ 4qgnm

2q
,

which is independent of n. Note that Re(⁄1,2(n)) = 1 ≠ 2z
1/n
1 ≠ n(1 ≠ z

1/n
1 ) i�

1
1 ≠ 2z

1/n
1 ≠ n(1 ≠ z

1/n
1 )

22

≠ 4nz1(1 ≠ z
1/n
1 )

A

≠q + jg
n

(gn + z1)2

B

Æ 0. (5.8)

In the proof of Theorem 5.2, we have shown that

≠q + jg
n

(gn + z1)2
> 0

and thus we have,

4nz1(1 ≠ z
1/n
1 )

A

≠q + jg
n

(gn + z1)2

B

> 0.
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It follows that (5.8) is equivalent to

|1 ≠ 2z
1/n
1 ≠ n(1 ≠ z

1/n
1 )| Æ

ı̂ıÙ4nz1(1 ≠ z
1/n
1 )

A

≠q + jgn

(gn + z1)2

B

=: Z(n). (5.9)

Note that for n Ø 1, we have lz1(n) := 1 ≠ 2z
1/n
1 ≠ n(1 ≠ z

1/n
1 ) < 0 and following

the proof of Theorem 5.2, we can see that Re(⁄1,2(n)) < 0 holds true and hence,
for n Ø 1, the system does not exhibit a Hopf bifurcation.

For n œ (0, 1), lz1 is continuous. With limnæ0 lz1(n) = 1 > 0 and lz1(1) = ≠z1 <

0, if follows from the Intermediate value theorem that there exists an n0 œ (0, 1)
such that lz1(n0) = 0. Further, for z1 œ (0, 1) and n œ (0, 1), we have that

l
Õ
z1(n) = ≠

(n ≠ 2)z1/n
1 ln(z1)

n2
+ z

1/n
1 ≠ 1 < ≠

(n ≠ 2)z1/n
1 ln(z1)

n2
< 0. (5.10)

Hence, n0 is the only root of lz1 in (0, 1). Since Z is continuous, there exists a
neighbourhood around n0, where (5.9) is satisfied. Particularly, for such n, the real
part of the eigenvalues of Jn(x̄1, ȳ1) equals

1 ≠ 2z
1/n
1 ≠ n(1 ≠ z

1/n
1 )

2 .

Since l
Õ
z1(n0) < 0, Jn(x̄1, ȳ1) has exactly one pair of purely imaginary complex

eigenvalues at n = n0, where Re(⁄1,2(n)) < 0 for n > n0 and Re(⁄1,2(n)) > 0 for
n < n0. Moreover, we have

d

dn
Re(⁄1,2(n))|n=n0 ”= 0

and thus, the conditions for the Hopf bifurcation theorem are satisfied. However,
it is not possible to find an analytical solution for n0 such that l(n0) = 0 for a
general set of parameter values. Nevertheless, we illustrate this behavior for the
parameter values q = 0.5, j = 1.6, g

n = 1, m = 0.1, and d = 2. Using the “fzero”
function in MATLAB [BB19], we obtain an approximate solution of n0 ¥ 0.9082.
For n œ {1.5, 1.05, 0.8}, Figure 5.4 and 5.5 show the corresponding phase planes,
where E1 is locally asymptotically stable for n > n0 and unstable for n < n0. At
the same time, a locally stable periodic orbit appear around E1.

The existence of a stable periodic orbit may be in contradiction to what is
typically observed in tumor-immune interactions on a large scale. One likely reason,
which is provided by Kareva et al. in [Kar+21], is that the threat of autoimmune
responses can make the cytotoxic T cells very ine�cient in eliminating tumor cells,
which is not accounted for in our model. However, it is possible that there exist
some small-scale oscillations between the elimination and the equilibrium phase,
which might be missed due to its occurrence in the early stage of tumor progression.
As we have seen in the simulation above, the dampening of the oscillation around
the stable equilibrium E1 can be controlled by the parameter n, which emphasizes
the importance of considering a more general interaction term between tumor and
cytotoxic T cell populations.

47



5 An ODE approach on the dynamics between tumor and cytotoxic T cells

(a) n = 1.5 > n0 (b) n = 1.05 > n0

Figure 5.4: Phase plane of the system (5.3), where q = 0.5, j = 1.6, g
n = 1,

m = 0.1, and d = 2. Magenta circle: Stable equilibrium E1. Green circle: Initial
value for the green trajectory.

(a) Initial value outside. (b) Initial value inside.

Figure 5.5: Phase plane of the system (5.3), where q = 0.5, j = 1.6, g
n = 1, m = 0.1,

and d = 2. and n = 0.89 < n0. Magenta circle: Unstable equilibrium E1. Green
circle: Initial value for the green trajectory, which tends to the stable periodic orbit
asymptotically. Left: Initial value outside of the periodic orbit. Right: Initial value
inside the periodic orbit.

5.4 Analysis of the stable manifold of E2

In the following, we assume that the condition in Theorem 5.2 is satisfied, i.e. the
equilibrium E1 is locally asymptotically stable and the equilibrium E2 is an un-
stable saddle. We analyze the behavior of the stable manifold of E2 by numerical
simulations. From Theorem 3.5, we know that in proximity of the unstable equilib-
rium E2, its stable manifold is tangent to the stable eigenspace of the corresponding
linearized system. Thus, close to E2, we can approximate the corresponding stable
manifold as follows:
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1. Compute the Jacobian matrix of the linearized system evaluated in E2 and
the eigenvector v that corresponds to the negative eigenvalue.

2. For the initial values E2±1·10≠10
·

v
ÎvÎ , solve backwards in time to approximate

the stable manifold of E2 using the “ode45” function in MATLAB [BB19].

In addition, we define an event function for the ODE solver to specify the final time
in the interval of integration, at which the dimensionless variable x reaches a value
of 1 · 10≠8. This is especially important when n > 1, where one side of the stable
manifold of E2 asymptotically approaches the unstable manifold of E0 = (0, 0),
which is the y-axis. The corresponding MATLAB scripts are provided in Appendix
A.

Let us consider the parameters q = 0.5, j = 1.07, g
n = 1, and m = 0.1. By using

the “fzero” function in MATLAB [BB19], the root of lz1(n) = 1≠2z
1/n
1 ≠n(1≠z

1/n
1 )

is found to be approximately n0 ¥ 0.728. Thus, for our analysis, we only consider
n Ø 0.75. For d = 4, the phase portrait of the system (5.3) is illustrated in Figure
5.6 and is computed using Mathematica [Wol23].

(a) n = 0.8 (b) n = 1 (c) n = 2

Figure 5.6: Phase plane of the system (5.3), where q = 0.5, j = 1.07, g
n = 1,

m = 0.1, d = 4, and n œ {0.8, 1, 2}. The regions colored in red, blue, green,
and yellow represent the cases ẋ < 0, ẏ < 0, ẋ > 0, ẏ < 0, ẋ < 0, ẏ > 0, and
ẋ > 0, ẏ > 0, respectively.

For n > 1, we can see in Figure 5.3 that f1, which is one of the components
of the nullcline of x, tends towards infinity for x æ 0. Particularly, it is strictly
monotonic decreasing without intersecting the y-axis. This leads to the observation
that the side of the stable manifold of the equilibrium E2 corresponding to x < x̄2

will never intersect the graph of f1 on (0, 1). In particular, there exists a T such
that for t < ≠T , this side of the stable manifold will always stay in the blue domain
in Figure 5.6c, where ẋ > 0 and ẏ < 0. For the set of parameter values chosen
in the beginning of the section and for n = 2, Figure 5.7 shows in red the stable
manifold of the unstable equilibrium E2. For n Æ 1, the nullcline of x does intersect
the y-axis. In Figure 5.6a and 5.6b, we observe that the stable manifold of the
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equilibrium E2 corresponding to x < x̄2 will eventually cross the graph of f1 for
t æ ≠Œ, leading to a transition from the blue domain into the red domain, where
ẋ < 0 and ẏ < 0. Interestingly, for t æ ≠Œ the stable manifold of E2 will enter
the red domain on the left-hand side in Figure 5.6a and 5.6b.

(a) d = 2 (b) d = 4

Figure 5.7: Phase plane of the system (5.3), where q = 0.5, j = 1.07, g
n = 1,

m = 0.1, and n = 2.

(a) d = 2 (b) d = 4

Figure 5.8: Phase plane of the system (5.3), where q = 0.5, j = 1.07, g
n = 1,

m = 0.1, and n = 1.

For the set of parameter values chosen in the beginning of the section, the system
exhibits the “sneaking through” phenomenon discussed in the beginning of Chapter
4. This is illustrated in Figure 5.8 and 5.9. In particular, the green trajectories have
the same initial level of tumor cells as the trajectories in light blue. However, the
initial amount of cytotoxic T cells for the green trajectories is higher. We observe
in Figure 5.8 and 5.9 that while the light blue trajectories asymptotically approach
the stable equilibrium E1, the green trajectories asymptotically tend to the stable
equilibrium E3, which represents the tumor-escape scenario.
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(a) d = 2 (b) d = 4

Figure 5.9: Phase plane of the system (5.3), where q = 0.5, j = 1.07, g
n = 1,

m = 0.1, and n = 0.8.
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6 Model variations

We consider the model from Chapter 5 and once again let T and L denote the tumor
cell and the cytotoxic T cell population, respectively. In the following chapter, we
study the e�ect of other functional types to describe the elimination of tumor cells by
tumor-infiltrating cytotoxic T cells and consider the system of di�erential equations
given by

dT

d·
= aT (1 ≠ bT ) ≠ g(T, L)

dL

d·
= ≠q̃LT

n + j̃T
n

g̃n + T n
L ≠ m̃L,

(6.1)

where g(T, L) describes the elimination of tumor cells by the interaction with cy-
totoxic T cells. We note that the second equation in (6.1) remains the same as in
(5.2) and thus, all other parameters maintain their biological interpretations and
units as given in Table 5.1.

6.1 Model variation including T cell exhaustion
As we have seen in Chapter 2.3, a continuous antigenic stimulation of immune
cells may induce a state called exhaustion. This describes a functional but yet
hyporesponsive state of cytotoxic T cells.

In the following section, we aim to adapt this aspect into our current model
by assuming that in the early stage of tumor growth, we would not expect many
cytotoxic T cells to be present in the TME. In particular, we assume that a large
amount of cytotoxic T cells would be related to a longer exposure of the cytotoxic
T lymphocytes to the tumor cells. Consider the following elimination term

g(T, L) = d̃
L

⁄

s̃⁄ + L⁄
T

n
, (6.2)

where d̃, s̃, n, ⁄ > 0. Table 6.1 contains the biological description of the parameters
in (6.2) and their units.

In the following, we consider n = 1. In our current model, the parameter d̃

describes the maximal tumor cell elimination rate that is induced by the cytotoxic
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Table 6.1: Description of parameters in (6.2) and their units.

Parameter Unit Description
n none exponent in interaction terms of tumor and cytotoxic T cells
d̃ day≠1 maximal tumor cell elimination rate caused by cytotoxic T

cells
s̃ cells number of cytotoxic T cells, at which the tumor cell elimi-

nation rate reaches its half-maximum
⁄ none exponent in tumor cell elimination term induced by cyto-

toxic T cells

T cells. Particularly, if d̃ < a, the tumor cell elimination will always be less e�cient
compared to the growth of tumor cells. Therefore, in the following, we assume
d̃ Ø a to hold.

With x = bT , y = bL, and · = at, we re-parametrize the system and associate dx
dt

and dy
dt with ẋ and ẏ, respectively leading to the dimensionless system of di�erential

equations

ẋ = x(1 ≠ x) ≠ d
y

⁄

s⁄ + y⁄
x

ẏ = ≠qxy + jx

g + x
y ≠ my,

(6.3)

where d = 1

a d̃ and s = bs̃. In a similar way as before, we can show that the
set D = [0, 1] ◊ [0, Œ) µ R2 is positively invariant for the system (6.3) and in
particular, int(D) is a simply connected region. With h1(x, y) = x(1≠x)≠d

y⁄

s⁄+y⁄ x,
h2(x, y) = ≠qxy + jx

g+xy ≠ my, and fl(x, y) = 1

xy > 0 for (x, y) œ int(D), we have

div (fl(x, y) · h1(x, y), fl(x, y) · h2(x, y)) =
ˆ

1
1≠x

y ≠
dy⁄≠1

s⁄+y⁄

2

ˆx
+

ˆ

1
≠q + j

g+x ≠
m
x

2

ˆy

= ≠
1
y

< 0.

It follows from the negative criterion of Bendixson-Dulac that the system (6.3) has
no closed orbits lying entirely in int(D).

Setting the right hand side of the equations in (6.3) to zero and considering f2

from Lemma 5.1 yields the nullclines

ẋ = 0 : x = 0 or y = s

A
(1 ≠ x)

d ≠ (1 ≠ x)

B
1/⁄

=: f1(x)

ẏ = 0 : y = 0 or ≠ qx + jx

g + x
≠ m = f2(x) = 0,

(6.4)
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where the equilibria E0 = (x̄0, ȳ0) = (0, 0) and E3 = (x̄3, ȳ3) = (1, 0) always exist.
As discussed in the previous chapter, the equation f2(x) = 0 yields up to two
solutions x̄1 and x̄2 in (0, 1), which are represented by two vertical lines in the x, y-
plane. The assumption d̃ Ø a implies that d = d̃/a Ø 1 holds true and thus, for
x œ (0, 1), y =

1
s(1≠x)

d≠(1≠x)

2
1/⁄

> 0 is defined on the entire interval (0, 1). Particularly,
Theorem 5.1 holds and if x̄1,2 œ (0, 1), then the non-trivial equilibria in int(D) are
given by E1 = (x̄1, ȳ1) and E2 = (x̄2, ȳ2), where ȳ1 = f1(x̄1) and ȳ2 = f1(x̄2). Figure
6.1 illustrates the graph of f1 for d = 1 and d > 1.

(a) d = 1 (b) d = 1.5

Figure 6.1: Graph of f1 in (6.4) for s = 0.1 and di�erent values of d and ⁄.

In case of d = 1, we observe that the maximal tumor cell elimination rate
induced by cytotoxic T cells is given by the parameter value a, which denotes the
tumor growth rate. Note that, for x æ 0, the system would require y æ Œ in order
to have an elimination rate approximating the growth rate of tumor cells. With

ẋ < 0 … 1 ≠ x ≠ d
y

⁄

s⁄ + y⁄
< 0

… y > f1(x)
ẏ < 0 … f2(x) < 0

… x < x̄1 ‚ x > x̄2,

the region in which x < x̄1 and y < f1(x), extends to infinity along the y-axis for x

towards 0.
From the biological point of view, this implies that in the initial stage of the

tumor development, where the amount of tumor cells is small, cancer cells will grow
regardless of the amount of tumor-specific cytotoxic T cells that is present in the
TME, as the elimination is not e�cient enough to overcome the growth rate of
tumor cells. This behavior is illustrated in the blue domain of the phase portraits
of the system for the parameter values q = 0.5, g = 1, m = 0.1, ⁄ = 1, s = 0.1,
and j œ {1, 1.07, 1.2} in Figure 6.2. For the same set of parameter values, Figure
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6.3 shows the phase portraits of the system for d = 1.5. Particularly, we observe
that f1 intersects the y-axis. The phase portraits are computed using Mathematica
[Wol23].

(a) j = 1 (b) j = 1.07 (c) j = 1.2

Figure 6.2: Phase plane of the system (6.3), where q = 0.5, g = 1, m = 0.1, ⁄ = 1,
s = 0.1, and d = 1. The regions colored in red, blue, green, and yellow represent
the cases ẋ < 0, ẏ < 0, ẋ > 0, ẏ < 0, ẋ < 0, ẏ > 0, and ẋ > 0, ẏ > 0, respectively.

(a) j = 1 (b) j = 1.07 (c) j = 1.2

Figure 6.3: Phase plane of the system (6.3), where q = 0.5, g = 1, m = 0.1, ⁄ = 1,
s = 0.1, and d = 1.5. The regions colored in red, blue, green, and yellow represent
the cases ẋ < 0, ẏ < 0, ẋ > 0, ẏ < 0, ẋ < 0, ẏ > 0, and ẋ > 0, ẏ > 0, respectively.

In the current model, we may also observe the “sneaking through” phenomenon
discussed previously for d > 1, where the non-zero nullcline of x intersects the y-
axis. For the parameter values q = 0.5, j = 1.07, g = 1, m = 0.1, s = 0.1, and
d = 2, Figure 6.4 illustrates this for ⁄ = 0.9 and ⁄ = 2.

For a general n > 0, the re-parametrized model is given by

ẋ = x(1 ≠ x) ≠ d
y

⁄

s⁄ + y⁄
x

n

ẏ = ≠qx
n
y + jx

n

gn + xn
y ≠ my,

(6.5)
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(a) ⁄ = 0.9 (b) ⁄ = 2

Figure 6.4: Phase plane of the system (6.3), where q = 0.5, j = 1.07, g = 1,
m = 0.1, s = 0.1, and d = 2.

where the parameters are defined analogously as before. We observe that the null-
clines of the system (6.3) are given by

ẋ = 0 : x = 0 or y = s

A
(1 ≠ x)

dxn≠1 ≠ (1 ≠ x)

B
1/⁄

=: f1(x)

ẏ = 0 : y = 0 or f2(x) = ≠qx
n + jx

n

gn + xn
≠ m = 0.

(6.6)

In order to apply Theorem 5.1 on the number of equilibria in int(D), f1 has to be
defined on the entire interval (0, 1). For all n > 0, the denominator of f1, which is
given by hn(x) := dx

n≠1
≠ 1 + x, is continuous on the interval (0, 1). In the case of

n > 1, we can extend the interval to [0, 1] and with

h
Õ
n(x) = (n ≠ 1)dx

n≠2 + 1 > 0 ’x œ [0, 1],

hn is strictly monotone on [0, 1]. Further, with hn(0) = ≠1 < 0 and hn(1) = d > 0,
the Intermediate value theorem states that h has a root x

ú in the interval (0, 1).
Thus, f1 is not defined in x

ú for n > 1. On the other hand, for n < 1, we have

hn(x) = d

x1≠n
≠ 1 + x Ø d ≠ 1 + x = h1(x).

With d Ø 1, it follows that h1(x) > 0 for all x œ (0, 1). Thus, hn has no root in
the interval (0, 1) for n Æ 1. It follows that for n Æ 1, f1 is defined on the whole
interval (0, 1), while this is not the case for n > 1. For d = 1 and s = 0.1, Figure
6.5 shows the graph of f1 on the interval (0, 1) for n = 2/3 and n = 2. Particularly,
we observe an asymptote for n = 2, which is illustrated by the grey dashed line in
Figure 6.5b.

In terms of the dynamics of the system, it is possible to observe a situation,
where the tumor cell population approaches an equilibrium while the cytotoxic T
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(a) n = 2/3 (b) n = 2

Figure 6.5: Graph of f1 in (6.6) for d = 1, s = 0.1 and di�erent values of n and ⁄.

cell population tends to infinity. For q = 0.5, j = 1.2, n = 2, g
n = 1, m = 0.1,

⁄ = 1, s = 0.1, and d = 1, Figure 6.6 shows the phase portrait of the system as well
as the long-term behavior of the x and y trajectories with initial values x0 = 0.2
and y0 = 0.1.

(a) (b)

Figure 6.6: Situation for the system (6.5), where x̄1 œ (0, 1), but f1(x̄1) is not
defined. The parameters are set to q = 0.5, j = 1.2, n = 2, g

n = 1, m = 0.1, ⁄ = 1,
s = 0.1, and d = 1. The phase portrait of the system is illustrated in (a) while (b)
shows the trajectories of x and y with initial values x0 = 0.2 and y0 = 0.1.

From the biological perspective, this situation implies that the immune system
would need to produce infinitely many cytotoxic T cells to retain the tumor in a
dormant state. However, in reality, this is not possible due to various factors, such
as space limitation. Thus, the model (6.5) for n > 1 might not always be suitable
to describe the tumor-immune interactions. We move on to examine the e�ect of
the de Pillis-Radunskaya Law [dR14] on our model (6.1).
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6.2 Model variation including the
de Pillis-Radunskaya Law

In 2005, de Pillis, Radunskaya, and Wiseman presented a mathematical model
in [dRW05], which focuses on the role of natural killer and CTL cells in tumor
surveillance. Similar to the model in [Kuz+94], the authors describe the rate of
change of tumor cell population as the di�erence between the growth and death
rate of tumor cells and the cell-cell elimination rate. The cell kill rate for the NK
cells was assumed to have the same form as in the model in [Kuz+94]. On the
other hand, de Pillis, Radunskaya, and Wiseman introduced a new form for the
elimination term of tumor cells by cytotoxic T cells, which takes the form

d̃
(L/T )⁄

s⁄ + (L/T )⁄
T = d̃

L
⁄

s⁄T ⁄ + L⁄
T, (6.7)

where d̃, s, ⁄ > 0. In accordance with the work in [dRW05], we refer to this as the
“fractional cell kill”. By fitting their model to experimental data from [Die+01], de
Pillis, Radunskaya, and Wiseman were able to describe the tumor cell elimination
via cytotoxic T cells more accurate using (6.7). In the following section, we adapt
the fractional cell kill (6.7) into our model by considering

g(T, L) = d̃
(L/T )⁄

s⁄ + (L/T )⁄
T

n = d
L

⁄

s⁄T ⁄ + L⁄
T

n
, (6.8)

where n > 0 and examine the dynamics of the system. Table 6.2 provides an
overview of the biological interpretation and unit of the parameters in (6.8).

Table 6.2: Description of parameters in (6.8) and their units.

Parameter Unit Description
s none ratio of cytotoxic T cells to tumor cells, at which the tumor

cell elimination rate reaches its half-maximum
⁄ none exponent in ratio of cytotoxic T cells to tumor cells, which

represents how the lysis rate depends on the ratio
n none exponent in interaction terms of tumor and cytotoxic T cells
d̃ day≠1 maximal tumor cell elimination rate caused by cytotoxic T

cells

With x = bT , y = bL, and t := a· , we re-parametrize the system and associate
dx
dt and dy

dt with ẋ and ẏ, respectively. This leads to the non-dimensionalized system
of equations

ẋ = x(1 ≠ x) ≠ d
y

⁄

s⁄x⁄ + y⁄
x

n

ẏ = ≠qx
n
y + jx

n

gn + xn
y ≠ my,

(6.9)
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where d = 1

a d̃, q := 1

abn q̃, j := 1

a j̃, g := bg̃, and m := 1

am̃. In a similar way as in
Section 5.2, we can show that the set D = [0, 1]◊[0, Œ) µ R2 is positively invariant.

In the following, we consider n = 1 and assume, similar to Section 6.1, that
d̃ Ø a holds true. Setting the right-hand side of (6.9) to zero and considering f2

from Lemma 5.1 yields the nullclines

ẋ = 0 : x = 0 or y = sx

A
1 ≠ x

d ≠ (1 ≠ x)

B
1/⁄

=: f1(x)

ẏ = 0 : y = 0 or f2(x) = ≠qx + jx

g + x
≠ m = 0,

(6.10)

where similar as before, the equilibria E0 = (x̄0, ȳ0) = (0, 0) and E3 = (x̄0, ȳ0) =
(1, 0) always exist. The equation f2(x) = 0 yields up to two solutions x̄1 and x̄2 in
(0, 1), where x̄1 < x̄2. The assumption d̃ Ø a implies that d = d̃/a Ø 1 holds true
and thus, for x œ (0, 1), we have d ≠ 1 + x > 0 for x œ (0, 1). It follows that f1 is
defined on the entire interval (0, 1) and particularly, we can apply Theorem 5.1 on
the number of equilibria in int(D). For s = 0.5, d œ {1, 1.1}, Figure 6.7 illustrates
the graph of f1 on (0, 1).

(a) d = 1 (b) d = 1.1

Figure 6.7: Graph of f1 in (6.10) for s = 0.5 and di�erent values of d and ⁄.

For d > 1, f1(0) = 0 always holds true, which was not the case in the previous
model (6.3). However, for d = 1, we have

f1(x) = sx

31 ≠ x

x

41/⁄

= s

A
x

⁄(1 ≠ x)
x

B
1/⁄

for x œ (0, 1). If ⁄ = 1, f1(0) is simply s. For ⁄ ”= 1, L’Hôpital’s rule yields

lim
xæ0

x
⁄(1 ≠ x)

x
= lim

xæ0

⁄x
⁄≠1

≠ (⁄ + 1)x⁄

1 .
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For ⁄ < 1, we thus have

lim
xæ0

⁄
x1≠⁄ ≠ (⁄ + 1)x⁄

1 = Œ

and for ⁄ > 1,

lim
xæ0

⁄x
⁄≠1

≠ (⁄ + 1)x⁄

1 = 0

holds true. It follows that if d = 1 and ⁄ Ø 1, f1 intersects the y-axis while if d = 1
and ⁄ < 1, we have limxæ0 f1(x) = Œ. The latter is always the case in the previous
model approach. In an analogous way as before, this situation would mean that
in the initial stage of tumor progression, where the number of tumor cells is low,
cancer cells will grow independent of the available amount of cytotoxic T cells in
the TME due to the ine�cient elimination of cytotoxic T cells. By increasing the
parameter value d, this phenomenon can be avoided.

The phase portrait of the system for the parameter values q = 0.5, g = 1,
m = 0.1, s = 0.5, ⁄ = 1.5, d = 1.1, and j œ {1, 1.07, 1.2} is illustrated in Figure 6.8,
in which we see that f1 intersects the y-axis. Particularly, the blue domain, where
ẋ > 0 and ẏ < 0, does not stretch to infinity along the y-axis. The phase portraits
are computed using Mathematica [Wol23].

(a) j = 1 (b) j = 1.07 (c) j = 1.2

Figure 6.8: Phase plane of the system (6.3), where q = 0.5, g = 1, m = 0.1, ⁄ = 1.5,
s = 0.5, and d = 1.1. The regions colored in red, blue, green, and yellow represent
the cases ẋ < 0, ẏ < 0, ẋ > 0, ẏ < 0, ẋ < 0, ẏ > 0, and ẋ > 0, ẏ > 0, respectively.

In the current model, the system again establishes the “sneaking through” phe-
nomenon for parameter values, where the non-zero nullcline of x intersects the
y-axis. For the parameter values q = 0.5, j = 1.07, g = 1, m = 0.1, s = 0.5, and
d = 1, Figure 6.9 illustrates this for ⁄ = 1.3, d = 1 and ⁄ = 2/3, d = 1.3.
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(a) ⁄ = 1.3, d = 1 (b) ⁄ = 2/3, d = 1.3

Figure 6.9: Phase plane of the system (6.9), where n = 1, q = 0.5, j = 1.07, g = 1,
m = 0.1, and s = 0.5.

For a general n > 0, the nullclines of the system (6.9) are given by

ẋ = 0 : x = 0 or y = sx

A
1 ≠ x

dxn≠1 ≠ (1 ≠ x)

B
1/⁄

=: f1(x)

ẏ = 0 : y = 0 or f2(x) = ≠qx
n + jx

n

gn + xn
≠ m = 0.

(6.11)

The denominator of f1 in (6.11) has the same form as the denominator of f1 in
(6.6). Thus, using the same arguments as before, system (6.9) is able to establish a
phenomenon, in which the immune system would require infinitely many cytotoxic
T cells to control the tumor cells in a dormant state. For n = 2/3 and n = 2, Figure
6.10 illustrates the graph of f1 with d = 1, where we observe that for n = 2, there is
an asymptote (dashed line in grey). Analogously to Section 6.1, we argue that the
model (6.9) for n > 1 might not always be suitable to describe the tumor-immune
interactions. For the parameter values n = 2, q = 0.5, g

n = 1, m = 0.1, ⁄ = 1,
s = 0.5, and d = 1, Figure 6.11 illustrates the possible asymptotic behavior.

The model approaches discussed in the current chapter allow di�erent variations
of the nullcline of x. We argued that for n > 1, it is important to keep the asymp-
totic behavior in mind when using the models to describe the dynamics between
tumor and cytotoxic T cell populations. In order to qualitatively conclude which
of the models best describes the interaction between tumor cells and cytotoxic T
cells, we further need to fit the models to real-world data of human patients, where
the level of tumor and cytotoxic T cells can be measured.

Up to now, we only used systems of ordinary di�erential equations to model the
interaction between tumor and cytotoxic T cells. Particularly, we did not account
for the possible time delay in the stimulation and inactivation of cytotoxic T cells.
In the next chapter, we incorporate this aspect in a model described by a system
of delay di�erential equations.
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(a) n = 2/3 (b) n = 2

Figure 6.10: Graph of f1 in (6.10) for d = 1, s = 0.5, and di�erent values of n and
⁄.

(a) (b)

Figure 6.11: Situation for the system (6.9) with n = 2, where x̄1 œ (0, 1), but f1(x̄1)
is not defined. The parameters are set to q = 0.5, j = 1.2, g

n = 1, m = 0.1, ⁄ = 1,
s = 0.5, and d = 1. The phase portrait of the system is illustrated in (a) while (b)
shows the trajectories of x and y with initial values x0 = 0.2 and y0 = 0.1.
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7 A DDE approach on the
dynamics between tumor and
cytotoxic T cells

In many biological systems, time delay plays an important role. With a time delay
in the model, the system may not only depend on the current state, but also on the
past states. In tumor-immune dynamics, time delays also appear in many aspects,
such as cell di�erentiation and proliferation, activation of the adaptive immune
system, stimulation of e�ector cells, etc. Further, one of the countermeasures by
tumor cells is the release of soluble forms of FasL, which activate the apoptosis of
nearby cytotoxic T cells upon binding with their Fas receptors.

In this chapter, we adapt the model from Chapter 5 for n = 1 by introducing
a discrete-time delay in the stimulation of matured T cell proliferation and in the
deactivation of matured T cells through the interaction with tumor cells. In par-
ticular, we consider both processes to depend on signals released by tumor cells,
where the resulting e�ect, i.e. T cell proliferation and deactivation, occur with a
time lag and depend on the current cytotoxic T cell population size.

7.1 Model assumptions and formulation
Let T and L once again denote the tumor cell and cytotoxic T cell population,
respectively and consider Assumption (1)-(5) from Chapter 4. In addition, we
introduce a discrete-time delay in the inactivation of cytotoxic T cells induced by
the interaction with tumor cells as well as in the stimulation of cytotoxic T cell
proliferation.

The resulting system of delay di�erential equations reads

dT (·)
d·

= aT (·)(1 ≠ bT (·)) ≠ d̃T (·)L(·)

dL(·)
d·

= ≠q̃L(·)T (· ≠ r̃) + j̃T (· ≠ r̃)
g̃ + T (· ≠ r̃)L(·) ≠ mL(·),

(7.1)

for · Ø 0, where r̃ Ø 0 describes the time lag between the signal transmission by
tumor cells and the occurrence of the stimulation and inactivation of cytotoxic T
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cells. All other parameters are assumed to be positive, where their biological inter-
pretation and unit remain the same as in Table 5.1. System (7.1) is an autonomous
system with a constant discrete-time delay. Thus, without loss of generality, we
can assume ·0 = 0. We further assume the initial function „(·) = (T0(·), L0(·))
for · œ [≠r̃, 0] to be continuous and to satisfy „(·) Ø 0 component-wise for all
· œ [≠r̃, 0].

Similar as in Chapter 5, we use the dimensionless variables x = bT , y = bL,
t = a· , and r = ar̃ and parameters d = 1

ab d̃, q = 1

ab q̃, j = 1

a j̃, g = bg̃, and m = 1

am̃.
Associating dx

dt and dy
dt with ẋ and ẏ, respectively yields the system of equations

ẋ(t) = x(t)(1 ≠ x(t)) ≠ dx(t)y(t)

ẏ(t) = y(t)
A

≠qx(t ≠ r) + jx(t ≠ r)
g + x(t ≠ r) ≠ m

B

.
(7.2)

Note that due to biological reasons, we only consider non-negative initial functions
that lie within [0, 1] for x and [0, Œ) for y.

7.2 Qualitative analysis
Since x(t) = 0 and y(t) = 0 imply ẋ(t) = 0 and ẏ(t) = 0, respectively, it follows
from Theorem 3.11 that the corresponding solution of (7.2) is non-negative for all
t > 0 where it is defined.

7.2.1 Boundedness of solutions
In what follows, we consider the following theorem on the boundedness of solutions
of (7.2), which guarantees the continuability of solutions for all positive times.

Theorem 7.1. Solutions of (7.2) are bounded for positive time.

Proof. First, we note that the non-dimensional variable x lies within the interval
[0, 1], if the initial functions are chosen as previously discussed, since ẋ Ø 0 for
x = 0 and ẋ Æ 0 for x = 1. If mg < q and j < qg + m + 2Ô

qgm, or mg Ø q and
j Æ (1 + g)(q + m), it follows from Lemma 5.1 that for all x œ [0, 1], we have

≠qx + jx

g + x
≠ m Æ 0

and thus,

ẏ(t) = y(t)
A

≠qx(t ≠ r) + jx(t ≠ r)
g + x(t ≠ r) ≠ m

B

Æ 0

66



7 A DDE approach on the dynamics between tumor and cytotoxic T cells

holds for all t > 0, which implies the boundedness of y since y is non-negative. In
the case of mg < q and j Ø qg + m + 2Ô

qgm, or mg Ø q and j > (1 + g)(q + m),
Lemma 5.1 states that the equation

≠qx + jx

g + x
≠ m = 0

has at least one solution in (0, 1), denoted by x̄1, where for x < x̄1 we have

≠qx + jx

g + x
≠ m < 0 (7.3)

and for min{x̄2, 1} > x > x̄1,

≠qx + jx

g + x
≠ m > 0.

Note that (7.3) implies that ẏ(t) Æ 0 holds true. Particularly, there exists a x
ú with

x̄1 < x
ú

Æ 1, such that

≠qx
ú + jx

ú

g + xú ≠ m Ø ≠qx + jx

g + x
≠ m

holds true for all x œ [0, 1], which implies

ẏ(t) = y(t)
A

≠qx(t ≠ r) + jx(t ≠ r)
g + x(t ≠ r) ≠ m

B

Æ y(t)
A

≠qx
ú + jx

ú

g + xú ≠ m

B

.

The second equation in (7.2) can be expressed in integral form given by

y(t) = y(t0) exp
A⁄ t

t0

A

≠qx(s ≠ r) + jx(s ≠ r)
g + x(s ≠ r) ≠ m

B

ds

B

and therefore we have

y(t2) Æ y(t1) exp
AA

≠qx
ú + jx

ú

g + xú ≠ m

B

(t2 ≠ t1)
B

for all t2 Ø t1 Ø 0, which is equivalent to

t2 ≠ t1 Ø
1

≠qxú + jxú

g+xú ≠ m
ln

A
y(t2)
y(t1)

B

. (7.4)

We further observe that if y(t) Ø
2≠x̄1

2d for some t Ø 0, it then follows that

ẋ = x(t)(1 ≠ x(t) ≠ dy(t)) Æ x(t)
3

1 ≠ x(t) ≠

3
1 ≠

x̄1

2

44

Æ 1 ≠ x(t) ≠

3
1 ≠

x̄1

2

4
Æ ≠x(t) + x̄1

2 ,

(7.5)
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which has a unique positive root given by x̃ = x̄1/2 < x̄1 < x
ú. Let (7.5) be satisfied

for t Ø t0 Ø 0. We observe that solutions of

u̇(t) = ≠u(t) + x̃ (7.6)

with initial value u(t0) œ [0, 1] have the form

u(t) = (u(t0) ≠ x̃) exp(≠t) + x̃,

which converges to x̃ for t æ Œ. Note that (u(t0) ≠ x̃) exp(≠t) + x̃ Æ (1 ≠

x̃) exp(≠t) + x̃ holds for all t0 Ø 0. Thus, independent of t0, there exists a time
T̂ > 0, for which u(t) < x̄1 for t Ø t0 + T̂ . This implies that x(t) < x̄1 for t Ø t0 + T̂ .

We now assume that y(t) is unbounded and consider the following two possible
cases.

1. There exists a time T > 0, such that for t Ø T the solution y(t) stays above
2≠x̄1

2d . In this case, (7.5) is satisfied for t Ø T . Comparing this with (7.6) states
that for t Ø T + T̂ , we have x(t) < x̄1 and analogously for t Ø T + T̂ + r,
we have x(t ≠ r) < x̄1. It then follows from (7.3) and y(t) > 0 that ẏ(t) < 0,
which contradicts the assumption that y(t) is unbounded.

2. The solution y(t) does not stay above a certain value for all large times.
Particularly, there exist sequences of time points (sn)n and (tn)n with sn, tn æ

Œ, y(sn) <
2≠x̄1

2d , y(tn) >
2≠x̄1

2d , y(tn) æ Œ, ẏ(tn) = 0, and tn≠1 < sn < tn for
n > 1. Next, we choose a sequence of time points (ln)n, such that sn < ln < tn,
y(ln) = 2≠x̄1

2d , and y(t) >
2≠x̄1

2d for ln < t < tn. Since y(tn) gets arbitrarily large,
there exists a ñ such that y(tñ) Ø exp

11
≠qx

ú + jxú

g+xú ≠ m

2
(T̂ + r)

2
·

2≠x̄1
2d .

With y(lñ) = 2≠x̄1
2d it follows from (7.4) that

tñ ≠ lñ Ø
1

≠qxú + jxú

g+xú ≠ m
ln

A
y(tñ)
y(lñ)

B

Ø
1

≠qxú + jxú

g+xú ≠ m
ln

Q

a
exp

11
≠qx

ú + jxú

g+xú ≠ m

2
(T̂ + r)

2
·

2≠x̄1
2d

2≠x̄1
2d

R

b

= T̂ + r.

Particularly, tñ Ø lñ + T̂ + r.
By setting t0 = lñ, we know from the argumentation conducted with (7.5)
and (7.6) that x(t) < x̄1 for lñ + T̂ + r Æ t Æ tñ and analogously, for lñ + T̂ Æ

t ≠ r Æ tñ ≠ r, we have x(t ≠ r) < x̄1. However, by the definition of x̄1, this
implies that

ẏ(tñ) = y(tñ)
A

≠qx(tñ ≠ r) + jx(tñ ≠ r)
g + x(tñ ≠ r) ≠ m

B

< 0,

which contradicts ẏ(tñ) = 0.
Thus, y(t) is bounded.
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7.2.2 Analysis of Hopf bifurcation
For r = 0, system (7.2) was discussed in Chapter 5 by setting n = 1. As time delay
does not a�ect the existence conditions of equilibria, Theorem 5.1 applies for (7.2)
as well. Further, from Section 5.2, we know that the system without delay has no
periodic solutions.

Consider mg < q and j Ø qg + m + 2Ô
qgm. According to Theorem 5.1,

system (7.2) has a non-trivial equilibrium E1 = (x̄1, ȳ1) œ int(D), where D =
[0, 1] ◊ [0, Œ) µ R2 and ȳ1 = (1 ≠ x̄1)/d. In Section 5.2, we have shown that E1

is locally asymptotically stable for r = 0. We set u := x ≠ x̄1 and v := y ≠ ȳ1 and
write “(x) = jx

g+x . The corresponding system, where the equilibrium E1 is shifted
into the origin, is given by

u̇(t) =(u(t) + x̄1)(1 ≠ u(t) ≠ x̄1) ≠ d(u(t) + x̄1)(v(t) + ȳ1)
v̇(t) = ≠ q(u(t ≠ r) + x̄1)(v(t) + ȳ1) + “(u(t ≠ r) + x̄1)(v(t) + ȳ1)

≠ m(v(t) + ȳ1).
(7.7)

With “(u(t ≠ r) + x̄1) = qŒ
i=0

u(t≠r)
i

i! “
i(x̄1) = “(x̄1) + “

Õ(x̄1)u(t ≠ r) + . . . , the
linearized system is given by

u̇(t) = ≠x̄1u(t) ≠ dx̄1v(t)

v̇(t) = ≠qȳ1u(t ≠ r) ≠ qx̄1v(t) + jx̄1

g + x̄1

v(t) + jg

(g + x̄1)2
ȳ1u(t ≠ r) ≠ mv(t)

=
A

≠qx̄1 + jx̄1

g + x̄1

≠ m

B

v(t) + 1 ≠ x̄1

d

A

≠q + jg

(g + x̄1)2

B

u(t ≠ r).

(7.8)

Note that ≠qx̄1 + jx̄1
g+x̄1

≠ m = 0 and recall from the proof of Lemma 5.1 that
≠q + jg

(g+x̄1)2 > 0. For the matrices A and B from Section 3.2.4, we have

A =
A

≠x̄1 ≠dx̄1

0 0

B

, B =
A

0 0
1≠x̄1

d

1
≠q + jg

(g+x̄1)2

2
0

B

.

Furthermore, with — := x̄1(1 ≠ x̄1)
1
≠q + jg

(g+x̄1)2

2
> 0, the characteristic equation

reads

0 = det (⁄I ≠ A ≠ B exp(≠⁄r))

= det
A

⁄ + x̄1 dx̄1

≠
1≠x̄1

d

1
≠q + jg

(g+x̄1)2

2
exp(≠⁄r) ⁄

B

= ⁄
2 + x̄1⁄ + x̄1(1 ≠ x̄1)

A

≠q + jg

(g + x̄1)2

B

exp(≠⁄r)

= ⁄
2 + x̄1⁄ + — exp(≠⁄r). (7.9)

We observe that the graph of h1(⁄) = ⁄
2 + x̄1⁄ does not intersect the graph of

h2(⁄) = ≠— exp(≠⁄r) for ⁄ Ø 0, since h1(0) = 0 and h1(⁄) > 0 for ⁄ > 0 while
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h
Õ
2
(⁄) > 0, h2(0) = ≠— < 0, and lim⁄æŒ h2(⁄) = 0. Therefore, there are no real

solutions of (7.9) satisfying ⁄ Ø 0. Further, the characteristic equation has the form
of (3.10) with p = x̄1, a = b = 0, and q = —. In particular, (H1) and (H2) from
Section 3.2.5 are satisfied.

Let ⁄ = – + iÊ be a solution of (7.9). From Section 3.2.5 we know that if – = 0
and Ê > 0, we have

Ê
2

± = ≠
x̄

2

1

2 ±

Ò
x̄

4
1 + 4—2

2 .

Since ≠x̄
2

1
< 0, we have that (H4) from Section 3.2.5 holds and thus, Ê

2

≠ < 0 and
Ê

2

+
> 0. We calculate

Ê+ =
ı̂ıÙ

≠
x̄

2
1

2 +

Ò
x̄

4
1 + 4—2

2
and

cos(Ê+r) = Ê
2

+

—
> 0, sin(Ê+r) = Ê+x̄1

—
> 0

and set

rn = 1
Ê+

A

arcsin
A

Ê+x̄1

—

B

+ 2nfi

B

for n œ {0, 1, 2, . . . }. Recall from Section 3.2.5 that (7.9) can only have a pair of
purely imaginary solutions ±iÊ+ if r = rn for some n. We consider the inverse of
the increasing branch sin : (≠fi

2
,

fi
2
) æ (≠1, 1), and since cos(Ê+r) = Ê2

+
— > 0 and

sin(Ê+r) = Ê+x̄1
— > 0, we have that 0 < sin(Ê+r) <

fi
2
. Thus, the smallest delay for

which there is a pair of purely imaginary roots ±iÊ+ is

r0 = 1
Ê+

arcsin
A

Ê+x̄1

—

B

.

From Section 3.2.5 it follows that for r œ [0, r0), all roots of (7.9) have negative real
parts and for r > r0, (7.9) has at least one root with positive real part. Thus, for
r > r0, Theorem 3.15 yields that the equilibirum E1 is unstable.

We now check if a Hopf bifurcation occurs at r = r0. To keep the notation from
Section 3.2.6, we consider r = r0 + µ, which implies µ = r ≠ r0. The characteristic
equation (7.9) takes the form

h(⁄, µ) := ⁄
2 + x̄1⁄ + —e

≠⁄(r0+µ) = 0.

In particular, we have h(iÊ+, 0) = 0 and

h⁄(iÊ+, 0) = x̄1 ≠ r0Ê
2

+
+ i(2Ê

2

+
r0x̄1) ”= 0,
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where h⁄ is the partial derivative of h with respect to ⁄. Thus, it follows from the
Implicit function theorem, that there exists an open interval W µ R with 0 œ W

and a function ⁄ : W æ C, ⁄ = ⁄(µ) = –(µ) + iÊ(µ), such that

–(0) = 0, –
Õ(0) = dRe(⁄)

dµ
(0) = dRe(⁄)

dr
(r0) > 0, and Ê(0) = Ê+.

The last inequality follows from the computation in Section 3.2.5. We observe that
this root crosses the imaginary axis at µ = 0 from left to right, i.e. – < 0 for µ < 0,
which is equivalent to r < r0. We have now verified all the conditions for a Hopf
bifurcation.

We further note that for r = 0, system (7.1) has no periodic solutions. Therefore,
we conclude that for r > r0, there exists a periodic solution.

7.3 Numerical simulations
In the following section, we consider the dimensionless parameter values given in
Table 7.1 and study the dynamics of the system (7.2) by varying the parameter j

and the delay r.

Table 7.1: Dimensionless parameter values.

Dimensionless parameter Value
d = d̃/(ab

n) 5
q = q̃/(ab

n) 0.5
g = bg̃ 0.5

m = m̃/a 0.1

For the initial function, we assume a tumor cell population that proliferates
following a logistic growth function with x0 := x(≠r). For simplicity, we assume a
positive constant level of cytotoxic T cells, which do not have a negative e�ect on
the tumor cells. Thus, for ≠r Æ t Æ 0, we consider the initial function of the form

x0(t) = 1
1

x0
exp(≠t) + 1

y0(t) = y0.

(7.10)

With qg+m+2Ô
qgm ¥ 0.666 and (q+m)(g+1) = 0.9, it follows from Theorem 5.1

that if 0.666 < j < 0.9, we have E1, E2 œ int(D) and if j > 0.9, only E1 œ int(D)
holds.

For the initial function in (7.10), solutions of the system (7.2) are solved using
the “dde23” function in MATLAB [BB19].
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7 A DDE approach on the dynamics between tumor and cytotoxic T cells

Existence of two non-trivial equilibria
We first analyze the case, where both equilibria E1 = (x̄1, ȳ1) and E2 = (x̄2, ȳ2) are
in int(D).

We set j = 0.75. Then, the equilibria E1 and E2 are given by (0.155, 0.169) and
(0.645, 0.071), respectively. With — = x̄1(1 ≠ x̄1)

1
≠q + jg

(g+x̄1)2

2
¥ 0.049, it follows

that

Ê+ =
ı̂ıÙ

≠
x̄

2
1

2 +

Ò
x̄

4
1 + 4—2

2 ¥ 0.196

and thus, we have

r0 = 1
Ê+

sin≠1

A
Ê+x̄1

—

B

¥ 3.412.

In case of no delay, the system (7.2) is reduced to the ODE case in (5.3). For
the set of parameter values given in Table 7.1, the corresponding phase plane is
illustrated in Figure 7.1. Let (x0, y0) denote the initial state of the system. We
observe that if x0 is small enough such that x0 is on the left-hand side of the
stable manifold of the equilibrium E2, the tumor cell population will eventually
grow into the “uncontrolled” state regardless of the initial available cytotoxic T cell
population.

For x0 = 1 · 10≠4 and y0 œ {0.2, 0.5}, Figure 7.2 illustrates the corresponding
trajectories. We observe that the tumor cell population size is kept low for some time
after the initialization, while the size of the cytotoxic T cell population decreases
until the remaining tumor cells are able to grow and the cytotoxic T cells are no
longer able to control the growing tumor cell population.

We now study the behavior of the system near the equilibrium E1 when varying
the delay r. We consider an initial state (x0(≠r), y0(≠r)) = (0.15, 0.16). For
r œ {0, 1.5, 3, 4.5}, Figure 7.3 illustrates the corresponding solution curves.

In particular, we observe that for r < r0, the solutions curves correspond to a
dampened oscillation around the locally asymptotically stable equilibrium. However
for a delay that is slightly larger than r0, the system establishes a locally stable
periodic orbit, which is illustrated in Figure 7.3d. Next, we consider the case where
E2 /œ int(D) and E3 = (1, 0) becomes unstable.

Existence of one non-trivial equilibrium
For j = 1, we find E1 = (x̄1, ȳ1) = (0.082, 0.184) and E2 /œ int(D). For r = 0
and the same set of initial values chosen as in Figure 7.2, Figure 7.4 illustrates the
corresponding solution curves of the system (7.2). Further, we calculate — ¥ 0.073
and thus, it follows that Ê+ ¥ 0.264 and r0 ¥ 1.140.
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7 A DDE approach on the dynamics between tumor and cytotoxic T cells

Figure 7.1: Phase plane of the system (7.2), where q = 0.5, j = 0.75, g = 0.5,
m = 0.1, d = 5, and there is no delay, i.e. r = 0.

(a) y0 = 0.2 (b) y0 = 0.5

Figure 7.2: Solution curves of the system (7.2) with r = 0, q = 0.5, j = 0.75,
g = 0.5, m = 0.1, d = 5, x0 = 1 · 10≠4, and y0 œ {0.2, 0.5}.

We study the behavior of the system near the equilibrium E1 when varying
the delay r. We consider an initial state (x0(≠r), y0(≠r)) = (0.1, 0.2). For r œ
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7 A DDE approach on the dynamics between tumor and cytotoxic T cells

(a) r = 0 (b) r = 1.5 < r0

(c) r = 3 < r0 (d) r = 4.5 > r0

Figure 7.3: Solution curves of the system (7.2) with q = 0.5, j = 0.75, g = 0.5,
m = 0.1, d = 5, x0(≠r) = 0.15, and y0 = 0.16.

(a) y0 = 0.2 (b) y0 = 0.5

Figure 7.4: Solution curves of the system (7.2) with r = 0, q = 0.5, j = 1, g = 0.5,
m = 0.1, d = 5, x0 = 1 · 10≠4, and y0 œ {0.2, 0.5}.

{0, 0.5, 1, 1.5}, Figure 7.5 illustrates the corresponding solution curves.
Furthermore, we observe that by further increasing r > r0, the period and the
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7 A DDE approach on the dynamics between tumor and cytotoxic T cells

(a) r = 0 (b) r = 0.5 < r0

(c) r = 1 < r0 (d) r = 1.5 > r0

(e) r = 3 > r0 (f) r = 6 > r0

Figure 7.5: Solution curves of the system (7.2) with q = 0.5, j = 1, g = 0.5,
m = 0.1, d = 5, x0(≠r) = 0.1, and y0 = 0.2.

amplitude of the periodic orbit increases. Particularly, the solution curve for the
dimensionless tumor cell population in Figure 7.5f is nearly zero at t ¥ 50. From
the biological perspective, this would describe the case of an elimination of tumor
cells and the process can be terminated at this point.
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8 Conclusion

In this work we analyzed various mathematical models to describe the dynamics of
the interaction between cancer and e�ector cells. These models are based on the
approach used to describe predator-prey dynamics and include systems of ordinary
di�erential equations and delay di�erential equations. Using the two-population
model introduced by Kuznetsov et al. as a basis, we further examined three model
variations based on systems of di�erential equations, which account for di�erent
aspects in the tumor-immune system. All three variations focused on the tumor-
specific cytotoxic T cells as part of the adaptive immune system, which are usually
not present in absence of antigenic tumor cells. In the analysis of the first model,
we included an exponent in the terms describing the interaction between tumor and
immune cell populations to also allow interactions that are not derived from the law
of mass action. In particular, when the tumor size increases, a linear interaction
might no longer be appropriate due to space limitation such that not all tumor cells
are accessible by newly recruited cytotoxic T cells. The second and third model
used di�erent functional terms to describe the elimination of tumor cells induced by
immune cells. Particularly, the second model took into account the aspect of T cell
exhaustion due to long-term exposure to virus cells, while the third model examined
the e�ect of the de Pillis-Radunskaya Law on the dynamics of our model. Notably,
all three models can have up to four equilibria. Three of those equilibria corre-
spond to the three stages of cancer immunoediting. Interestingly, all three models
exhibit the “sneaking through” e�ect observed both in reality and in the model by
Kuznetsov et al. The e�ect of di�erent functional terms is especially reflected in the
position of the non-trivial equilibria and the “shape” of the nullcline of the tumor
cell population. Besides the mathematical analysis of the models, we also conducted
numerical simulations to examine the theoretical results. However, we further need
to validate these models to make a statement about their performance in describ-
ing the tumor-immune dynamics. Moreover, the restriction to only consider the
adaptive immune system simplifies the complex system dramatically. Indeed, the
extension to a three-population model by accounting for immune cells, such as NK
cells, which are part of the innate system, might lead to further interesting aspects.

Using our first model approach as a basis, we additionally extended the model
to account for time delay e�ects in immune cell di�erentiation, proliferation, and
inactivation due to the interaction with tumor cells. We observed that the delay
model exhibits the existence of a Hopf bifurcation, leading to the existence of pe-
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8 Conclusion

riodic orbits, which were not observed in the model without delay. However, the
presented delay model considered the same constant delay for both the process of
immune cell di�erentiation and proliferation, as well as the process of inactivation
of cytotoxic T cell due to tumor cells, which is a very simplified assumption. We can
further extend the model to consider two discrete-time delays as the time needed
for immune cell di�erentiation and proliferation might be di�erent compared to the
time required until apoptosis signals induced by tumor cells “reach” the immune
cells. Moreover, the assumption of a discrete-time delay can be extended by using
a distributed delay, since the time lag in the processes might also depend on other
factors.

In many applications of mathematical models of tumor-immune interactions, the
e�ect of treatment on the dynamics plays an essential role, especially when trying
to predict the outcome of a patient. Thus, our models can also be further extended
by including di�erent immunotherapy aspects.
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A MATLAB scripts

Script descriptions
manifold_E2.m This script file can be used to plot stable and unstable mani-
folds of the unstable equilibrium E2. It calls the following scripts:

• f2.m: Computes the values of x̄1,2.

• f1.m: Computes the nullcline of x.

• equilibrium.m: Computes the non-trivial equilibria E1 and E2.

• jacobian.m: Computes the Jacobian matrix of the equilibria E1 and E2.

• model_dimensionless: Contains the dimensionless ODE systems.

• outside_domain.m: Event function for ODE solver.

Script files

manifold_E2.m

% analysis of stable manifold of E_2 for ODE model in
chapter 5 and model variations in chapter 6

%% Parameter values
model = 1;
% takes value 1 (ODE model in chapter 6), 2 (model

including T cell exhaustion ), and 3 (model including
de Pillis - Radunskaya Law)

j = 1.07;
n = 0.8;
q = 0.5;
m = 0.1;
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A MATLAB scripts

gn = 1;
d = 4;
s = 0.5;
lambda = 2/3;
par = [model j n q m gn d s lambda ];

equil = manifold (par);

% add trajectories to plot
% uncomment to add trajectories to plot
%{
init_1 = [0.4 , 0.4];
init_2 = [0.4 , 0.3];
tspan = [0 500];

[~, traj_1 ]= ode45 (@(t, traj_1) model_dimensionless (t,
traj_1 , par), tspan , init_1);

[~, traj_2 ]= ode45 (@(t, traj_2) model_dimensionless (t,
traj_2 , par), tspan , init_2);

p7 = plot(traj_1 (: ,1) , traj_1 (: ,2) ,�g�, �LineWidth �, 1, �
DisplayName �,� trajectory with initial values x_0 =
0.4, y_0 = 0.4 �);

p8 = plot(traj_2 (: ,1) , traj_2 (: ,2) ,�Color �, "#00 FFFF", �
LineWidth �, 1, �DisplayName �,� trajectory with initial
values x_0 = 0.4, y_0 = 0.3 �);

p9 = plot(init_1 (1) , init_1 (2) , �bo �, �MarkerFaceColor �,
�g�, HandleVisibility =�off �);

p10 = plot(init_2 (1) , init_2 (2) , �bo �, �MarkerFaceColor �,
"#00 FFFF", HandleVisibility =�off �);

%}

%% Define function to compute and plot the stable
manifold of E_2

function equil = manifold (par)

xbar = f2(par);
equil = equilibrium (xbar , par);

% compute corresponding Jacobian matrix of E_2
J1 = jacobian (equil (1, :), par);
[~, D] = eig(J1);
real1 = real(D(1, 1));
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real2 = real(D(2, 2));

% check if the equilibrium E_1 is locally asymptotically
stable

if real1 < 0 && real2 < 0
disp(�Equilibrium E_1 is locally asymptotically

stable.�)
else

disp(�Equilibrium E_1 is not stable.�)
end

% check if 0 < xbar_1 < 1
if xbar (2) < 1 && xbar (2) > 0

% determine an appropriate time to stop the solution
options = odeset(�Events �, @ outside_domain );

% compute corresponding Jacobian matrix of E_2
J = jacobian (equil (2, :), par);
[V, L] = eig(J);

% find stable eigenvector
[~, ind_s] = min(diag(L));
s_right_0 = equil (2, :) + 1e -10 .* V(:, ind_s)� /

norm(V(:, ind_s));

tspan_s = [500 0];

% check if the initial state is already outside of
the domain

[val , ~] = outside_domain (0, s_right_0 , []);
if val ~= 0

% solve backwards for one side of the stable
manifold

[~, sr] = ode45 (@ model_dimensionless , tspan_s ,
s_right_0 , options , par);

else
sr = s_right_0 ;

end

s_left_0 = equil (2 ,:) - 1e -10 .* V(:, ind_s) �/norm(V
(:, ind_s));
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% check if the initial state is already outside of
the domain

[val , ~] = outside_domain (0, s_left_0 , []);
if val ~= 0

% solve backwards for the other side of the
stable manifold

[~, sl] = ode45 (@ model_dimensionless , tspan_s ,
s_left_0 , options , par);

else
sl = s_left_0 ;

end

% find unstable eigenvector
[~, ind_u] = max(diag(L));
u_right_0 = equil (2, :) + 1e-5 .* V(:, ind_u)� / norm

(V(:, ind_u));

tspan_u = [0 500];

% check if the initial state is already outside of
the domain

[val , ~] = outside_domain (0, u_right_0 , []);
if val ~= 0

% solve forward for one side of the unstable
manifold

[~, ur] = ode45 (@ model_dimensionless , tspan_u ,
u_right_0 , options , par);

else
ur = u_right_0 ;

end

u_left_0 = equil (2, :) - 1e-5 .* V(:, ind_u)� / norm(
V(:, ind_u));

% check if the initial state is already outside of
the domain

[val , ~] = outside_domain (0, u_left_0 , []);
if val ~= 0

% solve forward for the other side of the
unstable manifold

[~, ul] = ode45 (@ model_dimensionless , tspan_u ,
u_left_0 , options , par);

else
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ul = u_left_0 ;
end

% add streamlines
x1 = linspace (0, 1, 10);
x2 = linspace (0, 0.5, 5);

[x,y] = meshgrid (x1 , x2);

u = zeros(size(x));
v = zeros(size(x));

t=0;
for i = 1: numel(x)

Xprime = model_dimensionless (t, [x(i); y(i)], par
);

u(i) = Xprime (1);
v(i) = Xprime (2);

end

% plots
% add nullcline of x
p1 = fplot (@(x) f1(x, par), [0 1],�Linewidth �, 2.5, �

Color �, �#C7D9F0 �, �DisplayName �, �nullcline of x�
);

axis manual
axis ([0 1 0 0.5])
xlabel(�x�)
ylabel(�y�)
hold on
p2 = plot(sr(:, 1), sr(:, 2),�r�, �LineWidth �, 1.5, �

DisplayName �, �stable manifold of E_2 �);
p3 = plot(sl(:, 1), sl(:, 2),�r�, �LineWidth �, 1.5);
p4 = plot(ur(:, 1), ur(:, 2),�b�, �LineWidth �, 1.5, �

DisplayName �, �unstable manifold of E_2 �);
p5 = plot(ul(:, 1), ul(:, 2),�b�, �LineWidth �, 1.5);
l = streamslice (x, y, u, v, "arrows ");
set(l, �Color �, [0.2 0.2 0.2 0.3]);

p6 = plot(equil (: ,1) , equil (: ,2) , �bo�, �
MarkerFaceColor �, �m�);

text(equil (1 ,1) +0.01 , equil (1 ,2) +0.01 , �E_1 �);
text(equil (2 ,1) +0.01 , equil (2 ,2) +0.01 , �E_2 �);
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legend ([p1 p2 p4])
else

disp(�Equilibrium E_2 is not in D.�)
end
end

f2.m

function xbar = f2(par)
model = par (1);
j = par (2);
n = par (3);
q = par (4);
m = par (5);
gn = par (6);
d = par (7);
s = par (8);
lambda = par (9);

z1 = (- q * gn - m + j - sqrt ((- q * gn - m + j)^2 - 4 *
q * gn * m)) / (2 * q);

z2 = (- q * gn - m + j + sqrt ((- q * gn - m + j)^2 - 4 *
q * gn * m)) / (2 * q);

xbar (1) = z1 ^(1/n);
xbar (2) = z2 ^(1/n);
end

f1.m

function y = f1(x, par)
model = par (1);
j = par (2);
n = par (3);
q = par (4);
m = par (5);
gn = par (6);
d = par (7);
s = par (8);
lambda = par (9);
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if model == 1
y = (1 - x) ./ (d .* x .^ (n - 1));

elseif model == 2
y = s .* ((1 - x) ./ (d .* x .^ (n - 1) - 1 + x)) .^

(1 / lambda);
else

y = s .* x .* ((1 - x) ./ (d .* x .^ (n - 1) - 1 + x)
) .^ (1 / lambda);

end
end

equilibrium.m

function equil = equilibrium (xbar , par)
model = par (1);
j = par (2);
n = par (3);
q = par (4);
m = par (5);
gn = par (6);
d = par (7);
s = par (8);
lambda = par (9);

equil (1 ,1) = xbar (1);
equil (2 ,1) = xbar (2);

if model == 1
equil (1 ,2) = (1 - equil (1 ,1)) / (d * equil (1 ,1) ^(n -

1));
equil (2 ,2) = (1 - equil (2 ,1)) / (d * equil (2 ,1) ^(n -

1));
elseif model == 2

if n > 1
disp(�Asymptotic behavior in phase portrait

possible !�)
end
equil (1 ,2) = s * ((1 - equil (1 ,1)) / (d * equil (1 ,1)

^(n -1) - 1 + equil (1 ,1)))^(1 / lambda);
equil (2 ,2) = s * ((1 - equil (2 ,1)) / (d * equil (2 ,1)

^(n -1) - 1 + equil (2 ,1)))^(1 / lambda);
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else
if n > 1

disp(�Asymptotic behavior in phase portrait
possible !�)

end
equil (1 ,2) = s * equil (1 ,1) * ((1 - equil (1 ,1)) / (d

* equil (1 ,1) ^(n -1) - 1 + equil (1 ,1)))^(1 / lambda)
;

equil (2 ,2) = s * equil (2 ,1) * ((1 - equil (2 ,1)) / (d
* equil (2 ,1) ^(n -1) - 1 + equil (2 ,1)))^(1 / lambda)
;

end
end

jacobian.m

function J = jacobian (equil , par)
model = par (1);
j = par (2);
n = par (3);
q = par (4);
m = par (5);
gn = par (6);
d = par (7);
s = par (8);
lambda = par (9);

xbar = equil (1);
ybar = equil (2);

if model == 1
J(1 ,1) = 1 - 2 * xbar - n * d * xbar ^(n - 1) * ybar;
J(1 ,2) = - d * xbar^n;
J(2 ,1) = - n * q * xbar ^(n - 1) * ybar + n * gn * j *

xbar ^(n - 1) * ybar / ((gn + xbar^n)^2);
J(2 ,2) = - q * xbar^n + j * xbar^n / (gn + xbar^n) -

m;
elseif model == 2

J(1 ,1) = 1 - 2 * xbar - n * d * xbar ^(n - 1) * ybar^
lambda / (s^lambda + ybar^lambda);

J(1 ,2) = - d * xbar^n * (( lambda * s^lambda * ybar ^(
lambda - 1)) / (s^lambda + ybar^lambda)^2);
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J(2 ,1) = - n * q * xbar ^(n - 1) * ybar + n * gn * j *
xbar ^(n - 1) * ybar / ((gn + xbar^n)^2);

J(2 ,2) = - q * xbar^n + j * xbar^n / (gn + xbar^n) -
m;

else
J(1 ,1) = 1 - 2 * xbar - d * ybar^lambda * ((n -

lambda) * s^lambda * xbar ^(n - 1 + lambda) + n *
xbar ^(n - 1) * ybar^lambda / (s^lambda * xbar^
lambda + ybar^lambda)^2);

J(1 ,2) = - d * xbar^n * (( lambda * s^lambda * xbar^
lambda * ybar ^( lambda - 1)) / (s^lambda * xbar^
lambda + ybar^lambda)^2);

J(2 ,1) = - n * q * xbar ^(n - 1) * ybar + n * gn * j *
xbar ^(n - 1) * ybar / ((gn + xbar^n)^2);

J(2 ,2) = - q * xbar^n + j * xbar^n / (gn + xbar^n) -
m;

end
end

model_dimensionless.m

function xdot = model_dimensionless (t, x, par)
model = par (1);
j = par (2);
n = par (3);
q = par (4);
m = par (5);
gn = par (6);
d = par (7);
s = par (8);
lambda = par (9);

if model == 1
xdot = [x(1 ,:) * (1 - x(1 ,:)) - d * x(2 ,:) * x(1 ,:)^n

;
-q * x(2 ,:) * x(1 ,:)^n + j * x(1 ,:)^n / (gn + x

(1 ,:)^n) * x(2 ,:) - m * x(2 ,:) ];
elseif model == 2

xdot = [x(1 ,:) * (1 - x(1 ,:)) - d * x(1 ,:)^n * x(2 ,:)
^lambda / (s^lambda + x(2 ,:)^lambda);

-q * x(2 ,:) * x(1 ,:)^n + j * x(1 ,:)^n / (gn + x
(1 ,:)^n) * x(2 ,:) - m * x(2 ,:) ];
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else
xdot = [x(1 ,:) * (1 - x(1 ,:)) - d * x(1 ,:)^n * x(2 ,:)

^lambda / (s^lambda * x(1 ,:)^lambda + x(2 ,:)^
lambda);

-q * x(2 ,:) * x(1 ,:)^n + j * x(1 ,:)^n / (gn + x
(1 ,:)^n) * x(2 ,:) - m * x(2 ,:) ];

end
end

outside_domain.m

function [position , isterminal , direction ] =
outside_domain (t , y, flag)

% check if to stop the ode solver when solution is
outside of the domain = [xmin xmax ymin ymax]

domain = [1e-8 1 0 2];
is_out = min ([y(1) - domain (1) domain (2) -y(1) y(2) -domain

(3) domain (4) -y(2) ]);
position = is_out >= 0;
isterminal = 1;
direction = 0;
end
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