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Abstract

This dissertation focuses on methods which aid in the study of exotic phases of mat-
ter in quantum many-body systems. For this I look specifically at systems with local
disorder that can give rise to the phenomenon of many-body localization as well as two-
dimensional systems with certain local symmetries, which I show can potentially lead
to the emergence of topologically ordered phases. In this work I use a group-theoretical
approach to investigate the topological properties of two-dimensional materials, with a
specific focus on the effects of local SU(3) symmetries in the Kagome lattice and enhance
this theoretical approach by a numerical analysis that utilizes tensor network constructs.
To further investigate the effects of disorder on a quantum many-body system, I derive
analytical solutions to time-evolved local observables in many-body localized systems
with random perturbation, which I subsequently use to design a tensor network frame-
work by which I combine variational and perturbative solutions for quantum many-body
systems to efficiently calculate the time-evolved values of relevant observables.



Zusammenfassung

In dieser Dissertation beschäftige ich mich mit Methoden welche bei der Untersu-
chung von exotischen Phasen von Quanten-Vielteilchensystemen helfen. Dafür befasse
ich mich insbesondere mit Systemen mit lokalen zufälligen Störungen, in welchen das
Phänomen der Vielteilchenlokalisierung auftreten kann, sowie mit zweidimensionalen
Systemen mit bestimmten lokalen Symmetrien, für welche ich zeige, dass diese zum Auf-
treten von topologisch geordneten Phasen führen können. In dieser Arbeit benutze ich
einen gruppentheoretischen Ansatz, um die topologischen Eigenschaften von zweidimen-
sionalen Materialien zu untersuchen, mit speziellem Fokus auf die Auswirkungen von
lokalen SU(3) Symmetrien auf dem Kagome-Gitter. Dieser theoretische Ansatz wur-
de ergänzt durch eine numerische Untersuchung welche auf Tensornetzwerkmethoden
basiert. Um die Effekte von Unordnung auf Quanten-Vielteilchensysteme weiter zu un-
tersuchen, leite ich analytische Lösungen für die Zeitentwicklung lokaler Observablen
von Quanten-Vielteilchensystemen gestört durch lokale zufällige Störungen her, welche
ich anschließend für die Konzeption eines Tensornetzwerk-Systems benutze, in welchem
ich die stör- und variationstheoretische Lösungsansätze für Quanten-Vielteilchensysteme
kombiniere um effizient zeitentwickelte Werte einschlägiger Observablen berechnen zu
können.
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ℂ Set of complex numbers.

𝑖 Imaginary unit 𝑖 ∈ ℂ, such that 𝑖2 = −1, 𝑖3 = −𝑖, and 𝑖4 = 1. Not
to be confused with a counting variable 𝑖 ∈ ℤ.

ℋ Hilbert space.

𝐻 Hamiltonian; also shown as 𝐻̂.

1D One-dimensional.

2D Two-dimensional.

𝜎0 = (1 0
0 1) Two-dimensional identity operator; 𝜎0 = 𝟙2×2.

𝜎𝑥 = (0 1
1 0) Pauli X operator; also written as 𝑋.
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𝜎𝑥 = (1 0
0 −1) Pauli Z operator; also written as 𝑍.

𝛿𝑖𝑗 Kronecker delta function; 𝛿𝑖𝑗 = {1 if 𝑖 = 𝑗;
0 if 𝑖 ≠ 𝑗.

𝜀𝑖𝑗𝑘 Levi–Civita symbol;

𝜀𝑖𝑗𝑘 =
⎧{
⎨{⎩

+1 for (𝑖, 𝑗, 𝑘) ∈ {(1, 2, 3) , (2, 3, 1) , (3, 1, 2)};
−1 for (𝑖, 𝑗, 𝑘) ∈ {(3, 2, 1) , (1, 3, 2) , (2, 1, 3)};
0 for 𝑖 = 𝑗 or 𝑗 = 𝑘 or 𝑘 = 𝑖.

Ivana Kurečić 8 Symmetries and Unconventional Order
in Quantum Many-Body Systems



List of Figures List of Figures

Mathematical shorthand
∑𝑛

𝑗=𝑚 𝐴𝑗 Summation of all terms 𝐴𝑗, where ℤ ∋ 𝑗 ∈ [𝑚, 𝑛];
∑𝑛

𝑗=𝑚 𝐴𝑗 = 𝐴𝑚 + 𝐴𝑚+1 + 𝐴𝑚+2 + … + 𝐴𝑛.

∏𝑛
𝑗=𝑚 𝐴𝑗 Product of all terms 𝐴𝑗, where ℤ ∋ 𝑗 ∈ [𝑚, 𝑛];

∏𝑛
𝑗=𝑚 𝐴𝑗 = 𝐴𝑚 ⋅ 𝐴𝑚+1 ⋅ 𝐴𝑚+2 ⋅ … ⋅ 𝐴𝑛.

𝑥 ⊕ 𝑦 Direct sum of 𝑥 and 𝑦.

⊕𝑗 = 𝑚𝑛𝐴𝑗 Direct summation of all terms 𝐴𝑗, where ℤ ∋ 𝑗 ∈ [𝑚, 𝑛].

𝑥 ⊗ 𝑦 Tensor product of 𝑥 and 𝑦.

⊗𝑗 = 𝑚𝑛𝐴𝑗 Tensor product of all terms 𝐴𝑗, where ℤ ∋ 𝑗 ∈ [𝑚, 𝑛].

tr(𝐴) Trace of 𝑛×𝑛 matrix 𝐴; tr(𝐴) = ∑𝑗 = 1𝑛𝑎𝑗𝑗 for 𝐴 = (𝑎)𝑗𝑘.

𝜌𝐴 = tr𝐵𝜌 Partial trace of 𝜌 with respect to the system 𝐵 (for a system con-
sisting out of two subsystems).

⟨𝑥, 𝑦⟩ Inner product of 𝑥 and 𝑦.

𝑛! Factorial of 𝑛 ∈ ℕ; 𝑛! = ∏𝑛
𝑗=1 𝑗 = 𝑛 ⋅ (𝑛 − 1) ⋅ (𝑛 − 2) ⋅ … ⋅ 1.

𝑛!! Double factorial of 𝑛 ∈ ℕ; 𝑛!! = ∏𝑛
𝑗≥1 = 𝑛 ⋅ (𝑛 − 2) ⋅ (𝑛 − 4) ⋅ ….

𝑥 ∈ 𝑦 𝑥 is an element of 𝑦.

∀𝑥 All 𝑥.

∃𝑥 There exists an 𝑥.

∀𝑥 | 𝐵 𝐵 is true for all 𝑥.

𝐴 ∶ 𝐵 𝐴 is defined by 𝐵.

(𝜉1, 𝜉2) This operation acts on some referred to elements, denoted by 𝜉1 and
𝜉2.

𝑎 ∧ 𝑏 Logical and; both 𝑎 and 𝑏 are valid.

𝑎 ∨ 𝑏 Logical or; 𝑎 or 𝑏 is valid.

𝐴 iff 𝐵 𝐴 holds if and only if 𝐵 does.

[𝐴, 𝐵] Commutator; [𝐴, 𝐵] = 𝐴𝐵 − 𝐵𝐴.

{𝐴, 𝐵} Anticommutator; {𝐴, 𝐵} = 𝐴𝐵 + 𝐵𝐴.

(𝐴𝐵) All unique pairs of sites 𝐴 and 𝐵.

(𝐴𝐵)𝑛 All unique pairs of neighboring sites 𝐴 and 𝐵, commonly also shown
as ⟨𝐴𝐵⟩.

⟨𝐴𝐵⟩ See (𝐴𝐵)𝑛 above.

(𝐴𝐵)𝑑 All unique pairs of non-neighboring sites 𝐴 and 𝐵.
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𝑥∗ Complex conjugate of 𝑎 + 𝑖𝑏 = 𝑥 ∈ ℂ, such that (𝑎 + 𝑖𝑏)∗ = 𝑎 − 𝑖𝑏
for 𝑎, 𝑏 ∈ ℝ.

𝑥 Complex conjugate of 𝑥, also written as 𝑥∗.

a Vector; a = (𝑎1, 𝑎2, 𝑎3, … , 𝑎𝑛) = (𝑎𝑗).

𝐴𝑇 Transpose of matrix 𝐴 = (𝑎𝑗𝑘), such that 𝐴𝑇 = (𝑎𝑘𝑗).

𝐴† Adjoint or Hermitian conjugate of matrix 𝐴, such that 𝐴† = (𝐴𝑇 )∗.

|𝜓⟩ Vector; referred to as a ket in quantum physics.

⟨𝜓| Dual vector equal to the transposition of |𝜓⟩; referred to as a bra
in quantum physics.

⟨𝜓 | 𝜑⟩ Scalar obtained by acting with the bra ⟨𝜓| onto the ket |𝜑⟩; referred
to as a braket in quantum physics.

Initialisms
AKLT model Affleck–Kennedy–Lieb–Tasaki model.

CCSD Coupled-cluster singles doubles.

DMRG Density matrix renormalization group.

iMPS Infinite matrix product state.

irrep Irreducible representation.

LSMA theorem Lieb–Schultz–Mattis–Affleck theorem.

MBL Many-body localization.

MPO Matrix product operator.

MPS Matrix product state.

OTOC Out-of-time-order correlation.

PEPS Projected entangled pair state.

RVB Resonating valence bond.

SDE Stochastic differential equation.

SVD Singular value decomposition.

TFIM Transverse-field Ising model.

TN Tensor network.

TNO Tensor network operator.
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Chapter 1. Introduction and Motivation

My doctoral work focuses on methods to enable the study of exotic phases in quantum
many-body systems. One point of focus is the study of the effects of symmetries on
the properties of quantum many-body systems, as well as the possible emergence of
topologically ordered phases and their characteristics. The project work began with
a group-theoretical approach to the investigation of the topological properties of two-
dimensional materials, with a specific focus on the effects of local SU(3) symmetries in the
Kagome lattice. This was followed by a numerical analysis that utilized tensor network
constructs. Another point of focus in my later work involved analytical derivations of
time-evolved observables for a many-body system with random perturbation. My thesis
attempts to provide a holistic approach to the study of exotic phases in quantum many-
body systems, utilizing an array of different methods from a toolbox of numerical and
analytical methods, some of which I newly developed for this purpose.

The chapter you are currently reading, Chapter 1: Introduction and Motivation,
serves as an introduction in which I introduce the mathematical bones of the problems
I address in the work shown in my dissertation, but also present the physical interpre-
tations of various problems and list the contemporary scientific achievements in fields
relevant to my topics of research. Chapter 2: A Perturbative Solution to a Many-
Body Localization Hamiltonian details my analytical work on the perturbation the-
ory of many-body systems with interesting properties, such as the emergence of many-
body localization. Some of this work was summarized in [1]. By completing arduous
calculations, I discovered the prevalent behavior and values of significant observables in
quantum many-body systems — in an exact fashion. Chapter 3: Creating a Tensor
Bridge for Perturbative Many-Body Localization Solutions shows, in simple
terms, the midpoint between the work presented in the previous two chapters. I use the
tensor network methodology to create parametrized wave functions that act as a bridge
between two exactly calculated perturbative solutions for different phases in a quantum
many-body system, by introducing a minimal number of variational parameters. In ad-
dition, this chapter includes the results of a numerical tensor network algorithm that
divined the behavior of such a system close to the phase transition between the two
phases. With that, I accomplished something traditionally difficult to achieve — a fast
and efficient calculation of the phase properties in a quantum many-body system, driven
by an exact calculation of phase properties; exactly verifiable and immensely productive.
Chapter 4: ℤ3 Topologically Ordered Systems comprises my work on the trans-
lation of the SU(2) model to its equivalent of the SU(3) kind, partly exposed in [2]. In
other words, I investigate (both analytically and numerically) the global phase in which
a Kagome lattice with a local SU(3) symmetry can be found, with one major question
— whether it has topological properties. A concise summary of the presented results is
contained in Chapter 5: Summary of the Results.

Some additional calculations can be found in the Appendix.

With this dissertation I will demonstrate the completion of the following goals:

N Derivation of a stochastic integral representation for interacting quan-
tum many-body systems with disordered terms
I derive a way to directly write down the disorder-averaged propagator of a quan-
tum many-body system with disorder. This allows me to write down certain quan-
tities such as the density of states, spectral form factor and certain correlations
directly in the form of a stochastic integral expression

Ivana Kurečić 12
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N Calculation of a general analytical solution to the time evolution of a
local observable in a perturbed many-body system.
Using perturbation theory, I obtain some expectation values of disordered systems
directly with respect to the perturbed states.

N Construction of a general system of efficient bridging between differ-
ent variational solutions for a many-body system with disorder, using
the tensor network formalism and the already obtained perturbative
solution.
I construct a tensor-network description of a quantum many-body system per-
turbed with disorder. This allows for a unified description of both the normal,
ordered ground state and the one of the system with disorder, with a parameter
to freely interpolate between them.

N Construction of a tensor network state with a local SU(3) symmetry with
topological order.
I present a construction for a tensor network state on the Kagome lattice with
local SU(3) symmetry.

The contents of this first chapter are as follows. Section 1.1: Dissertation
Overview is a short overview of the topics I present in my dissertation, whereas Sec-
tion 1.2: Review of Crucial Topics is a summary of the relevant topics related to
quantum systems, to the extent necessary to read and understand further work of the
dissertation. This chapter also explains the minutiae of the construction of my research
project and includes some relevant references.

1.1 Dissertation Overview
The work I am presenting in this dissertation answers the question of whether it is possi-
ble to use the information on the intrinsic symmetries and structure of a quantum many-
body system to determine its macroscopic properties, in particular when they concern
recently more intriguing topics such as topological order and many-body localization.

The methods used to tackle enticing problems in quantum many-body physics range
from the numerical simulations of systems with an ironically low number of particles, to
the purely analytical handling of exact solutions of systems that can serendipitously be
described by easily manageable Hamiltonians. In this dissertation I present work that
tackles both those fronts and the field between them. By starting from a simple setup
of a defined local symmetry of particles distributed on a lattice, I examine the phase
content of quantum systems by employing practical analyses grounded in group theory
and numerical tensor network algorithms, but also explore the exact analytical solutions
of perturbed quantum many-body systems with clearly defined Hamiltonians. I reach
clear results for a number of relevant observables, which I present in this work.

To connect the solutions of numerical and analytical approaches, I have addressed a
gap in literature and existing mathematical methods and reached results that promise
to act as a vast improvement on the possibilities for analysis of quantum many-body
systems. Here I demonstrate the specific devised solutions that stand on the border
between arduous analytical calculations and tensor networks, notorious for their immense
power of efficient approximation.
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In particular, as part of this dissertation I will present general, analytical solutions
for the wave functions and relevant observables in quantum many-body systems, later
applying them onto specific system descriptions, deriving and discussing their properties.
The work I will show includes applications to systems that exhibit many-body localiza-
tion, as well as symmetry-protected topological order; the derived results are set against
performed numerical analyses that in some places rely on the tensor network arsenal.

1.2 Review of Crucial Topics
The derivation of both analytical and numerical solutions for the general forms Hamil-
tonians of many-particle systems allows for an investigation into particular many-body
systems that can be described by Hamiltonians of the same form. To that end, it is
important to apply the obtained solutions onto example systems, where it can lead to
conclusions and insights that could not otherwise be derived from the general solutions
alone. The derivations shown in my work exemplify the versatility and applicability of
the obtained solutions, expanding the analytical understanding of a number of many-
body systems.

The following subsections demonstrate the mathematical underpinnings and the cur-
rent state of existing literature and scientific research in the fields relevant to the work
presented in this dissertation, as well as some of the implications of the completed work.
It includes an introduction to group theory, quantum mechanics, quantum systems and
approximate methods, topological order, many-body localization, AKLT, RVB models,
and tensor networks.

1.2.1 Group Theory
This short subsection serves as an introduction to the broad topic of group theory and
the terms and concepts necessary to proceed with the remainder of this introductory
chapter. It includes a brief focus on the special unitary (SU) group and its representa-
tions, as well as the mathematical methods used to perform group operations on various
representations and their subsequent interpretation. A few paragraphs are also devoted
to the properties of the SU(2) and SU(3) groups and their representations, which shall
prove its use in the later parts of the dissertation. This subsection also introduces defi-
nitions necessary for the theoretical concepts presented further in the dissertation.

Group theory is the study of groups, their algebraic properties, and applications of
these structures to other problems in science.

Definition 1.2.1. A group is an algebraic structure {𝐺, ∘}, where ∘ is a binary operation
between the elements of set 𝐺 with the following properties:

1. Closure: ∀𝑔1, 𝑔2 ∈ 𝐺 | 𝑔1 ∘ 𝑔2 ∈ 𝐺

2. Associativity: ∀𝑔1, 𝑔2, 𝑔3 ∈ 𝐺 | 𝑔1 ∘ (𝑔2 ∘ 𝑔3) = (𝑔1 ∘ 𝑔2) ∘ 𝑔3

3. Existence of an identity element: ∃𝑒 | ∀𝑔 ∈ 𝐺, 𝑔 ∘ 𝑒 = 𝑒 ∘ 𝑔 = 𝑔

4. Existence of inverse elements: ∀𝑔 ∈ 𝐺, ∃𝑔−1 | 𝑔 ∘ 𝑔−1 = 𝑔−1 ∘ 𝑔 = 𝑒

For simplicity, groups {𝐺, ∘} will be referred to as 𝐺, with the group operation de-
noted as ∘ or (𝜉1, 𝜉2), where 𝜉1 and 𝜉2 denote the group elements involved in the operation
and the brackets signify the operation itself. To consider them in more practical terms,
groups can be studied in terms of their representations in particular vector spaces.
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Definition 1.2.2. A vector space {𝑉 , +} over a field 𝐹 is an additive group that supports
the multiplication of scalars 𝑓 ∈ 𝐹 with vectors v ∈ 𝑉 in the form 𝑓v, such that the
following conditions are valid ∀𝑓1, 𝑓2 ∈ 𝐹, v1, v2 ∈ 𝑉 :

1. Closure: 𝑓1v1 ∈ 𝑉

2. Quasi-associativity: 𝑓1 (𝑓2v1) = (𝑓1𝑓2) v1

3. Existence of an identity element: ∃1 ∈ 𝐹 | 1v1 = v1

4. Distributivity of addition in 𝐹 : (𝑓1 + 𝑓2) v1 = 𝑓1v1 + 𝑓2v1

5. Distributivity of addition in 𝑉 : 𝑓1 (v1 + v2) = 𝑓1v1 + 𝑓1v2

Definition 1.2.3. A linear operator 𝑀 ∶ 𝑉 → 𝑈 , where 𝑉 and 𝑈 are vector spaces over
a field 𝐹 , is an operator for which it holds that 𝑀 (𝛼1v1 + 𝛼2v2) = 𝛼1𝑀v1 + 𝛼2𝑀v2
for all 𝛼1, 𝛼2 ∈ 𝐹 and all v1, v2 ∈ 𝑉 .

Then, a general linear group can be defined as the set of all bijective linear transfor-
mations 𝑉 → 𝑉 , with function composition acting as its group operation. In general, a
group homomorphism is any mapping between two groups, ℎ ∶ {𝐺𝑎, ∘} → {𝐺𝑏, •}, such
that ∀𝑔1, 𝑔2 ∈ 𝐺𝑎 | ℎ (𝑔1 ∘ 𝑔2) = ℎ (𝑔1) • ℎ (𝑔2).
Definition 1.2.4. A representation of a group 𝐺 defined on a vector space 𝑉 over a
field 𝐹 is a group homomorphism ℎ ∶ 𝐺 → Γ, where Γ is the general linear group on 𝑉 .

A visual portrayal of these basic algebraic structures of group theory can be seen in
1.1.

In more commonly used notation, given that the general linear group of the vector
space V is the group of all bijective linear transformations within V, such that the
composition of functions is defined as the group operation, a group 𝐺 defined on a
vector space 𝑉 can be represented by a group homomorphism

𝜌 ∶ G → GL(V), (1.1)

where GL(V) is the general linear group on 𝑉 . For ∀𝑔𝑙 ∈ G, it holds that

𝜌 (𝑔𝑖𝑔𝑗) = 𝜌 (𝑔𝑖) 𝜌 (𝑔𝑗) . (1.2)

Then, the vector space 𝑉 is referred to as the representation space and its dimension is
that of the representation, 𝜌. For each representation, a kernel (ker) can be defined as a
normal (invariant with respect to conjugation by any element of the original group, i.e.,
ker = 𝑔ker𝑔−1 for all 𝑔 ∈ 𝐺) subgroup of the group, for which each element is subjected
to the identity transformation (id):

ker (𝜌) = {𝑔𝑙 ∈ G|𝜌 (𝑔𝑙) = identity} . (1.3)

For each group, the kernel must contain the group’s identity element, but it may contain
others, too. If the kernel is not trivial, the representation of the group is said not to be
faithful.

A linear subspace of the relevant vector space, W ⊂ V, is invariant to the group
operation if ∀𝑔 ∈ G ∧ ∀𝑤 ∈ W|𝜌 (𝑔) 𝑤 ∈ W, effectively restricting the image space of the
group elements. If the representation is then explicitly restricted to the subspace 𝑊 , it
is called a subrepresentation, and the original representation, 𝜌, is reducible. Instead, if
the representation has only trivial subrepresentations, it is referred to as irreducible.

A group for which both the binary group operation and the inverse are analytical
functions is called a Lie group, and the initialism SU denotes the special unitary group.
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g ∈ GF

{V,+} Γ

h

Figure 1.1: Visualization of the relations between important terms in group theory:
scalar field 𝐹 , group 𝐺, vector space {𝑉 , +}, general linear group Γ, and representation
ℎ.

Definition 1.2.5. A special unitary group SU(𝑛) is a Lie group for which it holds that
∀𝑔 ∈ SU(𝑛) can be represented by 𝑛 × 𝑛 unitary matrices with determinant equal to 1.
The group operation of such a group is matrix multiplication.

For a simpler further analysis of SU(𝑛) representations, I will define several important
concepts. An operator is a general term used to denote a function that maps from
elements of a defined space onto elements of another defined space — which may be the
same as the starting one.

Definition 1.2.6. Eigenvectors or eigenstates of a linear operator 𝑀 are non-zero vec-
tors |𝑣⟩ such that 𝑀 |𝑣⟩ = 𝑣 |𝑣⟩, where each eigenvector is associated with 𝑣 ∈ ℂ, referred
to as its corresponding eigenvalue.

Various SU(𝑏) groups have found excellent applications in physics and mathematics,
being able to successfully describe the properties of electric charge of particles or those
of families of quarks. The group SU(1) is trivial, represented by a unit matrix, but the
group SU(2) is already much more interesting. It can be defined as

SU(2) = {(𝛼 −𝛽
𝛽 𝛼 ) ∣ 𝛼, 𝛽 ∈ ℂ, |𝛼|2 + |𝛽|2 = 1} . (1.4)

Definition 1.2.7. A Lie algebra is a vector space 𝑉 defined over a field 𝐹 , with its
binary operation [𝜉1, 𝜉2] ∶ 𝑉 × 𝑉 → 𝑉 referred to as the Lie bracket. Thus defined Lie
algebra satisfies the following axioms ∀𝑣1, 𝑣2, 𝑣3 ∈ 𝑉 , ∀𝑎1, 𝑎2 ∈ 𝐹 :

• Bilinearity: [𝑎1𝑣1 + 𝑎2𝑣2, 𝑣3] = 𝑎1 [𝑣1, 𝑣3] + 𝑏 [𝑣2, 𝑣3];

• Alternativity: [𝑣1, 𝑣1] = 0;

• Jacobi identity: [𝑣1, [𝑣2, 𝑣3]] + [𝑣3, [𝑣1, 𝑣2]] + [𝑣2, [𝑣3, 𝑣1]] = 0;

• Anticommutativity: [𝑣1, 𝑣2] = − [𝑣2, 𝑣1].

The Lie algebra of the SU(2) group can be defined as

𝑠𝑢(2) = {(𝑖𝑎 −𝑧
𝑧 −𝑖𝑎) ∣ 𝑎 ∈ ℝ, 𝑧 ∈ ℂ} , (1.5)

with the commonly used generators:

(𝑐1, 𝑐2, 𝑐3) = ((0 𝑖
𝑖 0) , (0 −1

1 0 ) , (𝑖 0
0 −𝑖)) . (1.6)

Definition 1.2.8. A set of generators of a group is subset of group elements such that
every element of the group can be expressed as a finite number of group operations
between the generators and their inverses.
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For a set of elements of a Lie algebra to act as its generators, the smallest possible
subalgebra of the relevant Lie algebra that contains the elements of the set must be
the vector field 𝑉 . The matrices of the (𝑐1, 𝑐2, 𝑐3) SU(2) generator basis satisfy the
quaternion relations, i.e.,

𝑐1𝑐2 = −𝑐2𝑐1 = 𝑐3, 𝑐2𝑐3 = −𝑐3𝑐2 = 𝑐1, 𝑐3𝑐1 = −𝑐1𝑐3 = 𝑐2, (1.7)

and the commutator equalities:

[𝑐1, 𝑐2] = 2𝑐3, [𝑐2, 𝑐3] = 2𝑐1, [𝑐3, 𝑐1] = 2𝑐2, (1.8)

where [𝑐𝑖, 𝑐𝑗] = 𝑐𝑖𝑐𝑗 − 𝑐𝑗𝑐𝑖.
These generators are closely related to the Pauli matrix basis, which is often used

in particle physics and quantum mechanics to mathematically represent the spin of
fundamental particles:

(𝑋, 𝑌 , 𝑍) = ((0 1
1 0) , (0 −𝑖

𝑖 0 ) , (1 0
0 −1)) . (1.9)

The following expressions hold:

𝑐1 = 𝑖𝜎1, 𝑐2 = −𝑖𝜎2, 𝑐3 = 𝑖𝜎3. (1.10)

The (yet more interesting) SU(3) group has a Lie algebra defined by the generators

𝑇𝑘 = 𝜆𝑘
2 , (1.11)

where 𝜆𝑘 are eight Gell–Mann matrices, analogous to the Pauli matrices of SU(2):

𝜆1 = ⎛⎜
⎝

0 1 0
1 0 0
0 0 0

⎞⎟
⎠

, 𝜆2 = ⎛⎜
⎝

0 −𝑖 0
𝑖 0 0
0 0 0

⎞⎟
⎠

, 𝜆3 = ⎛⎜
⎝

1 0 0
0 −1 0
0 0 0

⎞⎟
⎠

, 𝜆4 = ⎛⎜
⎝

0 0 1
0 0 0
1 0 0

⎞⎟
⎠

,

𝜆5 = ⎛⎜
⎝

0 0 −𝑖
0 0 0
𝑖 0 0

⎞⎟
⎠

, 𝜆6 = ⎛⎜
⎝

0 0 0
0 0 1
0 1 0

⎞⎟
⎠

, 𝜆7 = ⎛⎜
⎝

0 0 0
0 0 −𝑖
0 𝑖 0

⎞⎟
⎠

, 𝜆8 = 1√
3

⎛⎜
⎝

1 0 0
0 1 0
0 0 −2

⎞⎟
⎠

.

(1.12)

To describe the algebra of the eight generators, 𝑇𝑘, the following structure constants,
𝑓𝑖𝑗𝑘, and symmetry coefficients, 𝑑𝑖𝑗𝑘, are defined:

𝑓123 =1,

𝑓147 = 𝑓156 = 𝑓246 = 𝑓345 = −𝑓367 =5
2,

𝑓458 = 𝑓678 =
√

3
2 ,

𝑑118 = 𝑑228 = 𝑑338 = −𝑑888 = 1√
3,

𝑑448 = 𝑑558 = 𝑑668 = 𝑑778 = − 1
2
√

3,

𝑑146 = 𝑑157 = −𝑑247 = 𝑑256 = 𝑑344 = 𝑑355 = −𝑑366 = −𝑑377 =1
2, (1.13)
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where all other (𝑖, 𝑗, 𝑘) combinations for 𝑓𝑖,𝑗,𝑘 and 𝑑𝑖,𝑗,𝑘 are equal to zero. The generators
conform to these commutator and anticommutator ({𝑐𝑖, 𝑐𝑗} = 𝑐𝑖𝑐𝑗 + 𝑐𝑗𝑐𝑖) relations:

[𝑇𝑖, 𝑇𝑗] =𝑖
8

∑
𝑘=1

𝑓𝑖𝑗𝑘𝑇𝑘 (1.14)

{𝑇𝑖, 𝑇𝑗} =1
3𝛿𝑖𝑗I + 2

8
∑
𝑘=1

𝑑𝑖𝑗𝑘𝜆𝑘, (1.15)

where 𝛿𝑖𝑗 is the Kronecker delta function. The Lie algebras of SU(𝑛) groups for 𝑛 > 3
have an even more complicated structure, but several descriptors of these groups or their
representations are universal.

Each SU(𝑛) group can be represented by a trivial representation, for which 𝜌1 (𝑔) =
1G, where 1G is the unit element in the representation of the group 𝐺. The kernel of 𝜌1
is equal to all elements 𝑔 ∈ G. The natural representation of an SU(𝑛) group is also its
lowest-dimensional nontrivial representation, with dimension 𝑛. All higher-dimensional
representations of a special unitary group are necessarily reducible and can be uniquely
decomposed to a finite direct sum of irreducible representations, such that:

𝜌 = 𝜌(1) ⊕ 𝜌(2) ⊕ … ⊕ 𝜌(𝑘). (1.16)

These representations are naturally restricted to their subspaces, Wi, the elements of
which are invariant to the group operation. If two irreducible representations are joined
by a tensor product, the result of this operation can be shown as a sum of irreducible
representations for the group in question, by use of Clebsch–Gordan coefficients that can
be derived explicitly. These versatile sets of coefficients can be obtained recursively for
ever-higher-dimensional irreducible representations — henceforth referred to as irreps
— and also used to accurately obtain the exact direct sum of representations that result
from a tensor product of two irreps. They are often stored in tables and referred to when
necessary.

Definition 1.2.9. For a representation 𝜌, its conjugate 𝜌∗ is obtained such that it holds:
𝜌∗(𝑔) ≔ 𝜌(𝑔−1)𝑇 .

A conjugate representation is another valid representation, as it is true that:

𝜌∗(𝑔1𝑔2) =𝜌((𝑔1𝑔2)−1)𝑇 = 𝜌(𝑔−1
2 𝑔−1

1 )𝑇 = (𝜌(𝑔−1
2 )𝜌(𝑔−1

1 ))𝑇 =
=𝜌(𝑔−1

1 )𝑇 𝜌(𝑔−1
2 )𝑇 = 𝜌(𝑔1)∗𝜌(𝑔2)∗; (1.17)

i.e., there exists an equality with the complex conjugation of the original representation.
Note that a product of a representation and its conjugate leads to a trivial solution.

The higher-dimensional representations of SU(3) are often referred to as 𝐷(𝑝, 𝑞),
where 𝑝 is the minimal number of fundamental representations and 𝑞 the number of
fundamental conjugate representations in the tensor product that can be used to obtain
them. The dimensions of such representations can be calculated as 𝑑(𝑝, 𝑞) = 1

2(𝑝+1)(𝑞+
1)(𝑝+𝑞+2). The direct product of two such irreducible representations can be presented
as

𝐷(𝑝1, 𝑝1) ⊗ 𝐷(𝑝2, 𝑞2) = ∑
𝑃,𝑄

⊕𝜎(𝑃 , 𝑄)𝐷(𝑃 , 𝑄), (1.18)

where 𝜎(𝑃 , 𝑄) are the Clebsch–Gordan coefficients for SU(3).
In line with the visually intuitive properties of tensors, the tensor products of rep-

resentations can also be treated in a visual manner — by use of Young’s tableaux [3].
Aside from being intuitive and visually appealing, this method completely circumvents
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a b

n n+1 n+2 n+3

n-1 n

c

5 4 2 1
2 1

d

3 4 5 6
2 3

e

Figure 1.2: a) A Young tableau that can be used to describe the 80 representation of the
SU(3) symmetry group or, for example, the 315 representation of the SU(4) symmetry
group. b) Visual calculation of the hook length of the cell in the top left of the diagram
— the hook passes through a total of 5 cells, which means that one of the factors in
the denominator of the representation dimension calculation will be 5. c) The algorithm
used to assign values to factors of the numerator in the calculation of the representation
dimension, where 𝑛 is the rank of the symmetry group. d) Cells filled with factors that
correspond to the denominator in the calculation of the representation dimension in
the SU(3) group. e) Cells filled with factors that correspond to the numerator in the
calculation of the representation dimension in the SU(3) group.

the need to calculate Clebsch–Gordan coefficients for special unitary groups of a higher
rank. However, it is marred by the unfortunate loss of any information more detailed
than the dimensionality and internal symmetry of the obtained groups — luckily, that
information proves to be sufficient for all but a few problems. In the Young’s tableaux’
framework, each representation of an SU(𝑛) group can be depicted as a construct of
stacked cells. To illustrate, the representation 80 of SU(3) is shown in Figure 1.2a.
Each cell is assigned a number by summing 1 with the number of squares directly below
and to the right of the original square, forming its hook length, shown for the cell in
the top left of the diagram in Figure 1.2b and, as a result, for all cells of the diagram
in Figure 1.2d. Then, in a copy of the original stacked construct, numbers are assigned
in the manner shown in Figure 1.2c. The top left cell of the table’s copy is assigned
the number 𝑛, the one immediately to its right 𝑛 + 1, the one after that 𝑛 + 2, and the
assigned numbers are iteratively increased until the end of the row. The cell directly
underneath the top left one is assigned the number 𝑛 − 1, the one below it 𝑛 − 2, and so
on. The same rule that applies for the first row applies for all the other rows.

Once both sets of numbers have been found, the product of all the numbers of the
respective sets is found, and the product of the 𝑛-related tableau is divided by the
product of the hook-related tableau. The obtained number is the dimension of the
representation shown by the Young’s tableaux in Figure 1.2, calculated for the SU(3)
symmetry group.

In a standard Young tableau, each subsequent row of the tableau is flush to the left
and contains fewer or the same amount of cells as the row directly above it and each
row contains fewer cells than the rank of the special unitary group which it depicts.
The states corresponding to the representation shown in a single row of a Young tableau
are completely symmetrized, whereas those shown in a single column are completely
anti-symmetrized. (A state |𝜙⟩ is completely symmetric if |𝜙⟩ = Π𝑖𝑗 |𝜙⟩ or completely
anti-symmetric if |𝜙⟩ = −Π𝑖𝑗 |𝜙⟩ for the permutation Π𝑖𝑗 of any two subsystems.)

The direct product of two irreps of a special unitary group can be calculated in the
following manner. One by one, the cells belonging to one of the tableaux are removed
from the original tableau and appended to the other one. If the cell to be appended can
be attached to the Young tableau to form a valid shape in multiple ways, all resultant
tableaux should be included in the tensor product in the form of a direct sum. The

19 Ivana Kurečić



1.2. Review of Crucial Topics Chapter 1. Introduction and Motivation

⊗ = ⊕ = 1⊕

Figure 1.3: Young’s tableaux corresponding to the product of representations of the
SU(2) symmetry group: 2 ⊗ 2 = 1 ⊕ 3.

⊗ = ⊕

Figure 1.4: Young’s tableaux corresponding to the product of representations of SU(3),
3 ⊗ 3 = 3 ⊕ 6.

procedure continues until all cells have been removed from one of the tableaux engaged
in the tensor product, resulting with the product of a trivial representation and a vector
sum of irreps — the result of the posed problem. There is only one caveat to this
procedure: each row should be marked by a unique symbol (e.g., a, b, …) and the cells
that originally belonged to the same symbol must not ever be positioned in such a way
that they are directly below one another.

For example, each fundamental representation of a special unitary group, as it has
the dimension equal to the rank of the group, can be presented by a Young tableau with
merely one cell. For SU(2), if two fundamental representations were to be put through
a tensor product, the result of the calculation may be obtained by a simple calculation,
as shown in Figure 1.3. In the SU(3) case, such a calculation results in the appearance
of the fundamental conjugate representation, 3, shown in Figure 1.4.

The 3 representation has the same dimension as 3, yet its corresponding states
are completely anti-symmetrized. The special feature of the fundamental conjugate
representation in a special unitary group is that its tensor product with the fundamental
representation brings forth the trivial representation, in a direct sum with another. In
the case of SU(3), it follows: 3 ⊗ 3 = 1 ⊕ 8, as shown in Figure 1.5.

The use of Young’s tableaux facilitates the determination of factors for a calculation
that provides a certain representation as its result. A simple to obtain a trivial represen-
tation as one of the results in the direct product of representations that equal the tensor
product of representations is to use the fundamental representation and its conjugate.
Then, the full result can be projected into the trivial representation space.

If a Young tableau of an SU(𝑛) group consists only of columns with exactly 𝑛 − 1
cells each, it is clear that a tensor product of it and a representation that can be shown
by a Young tableau that consists solely of one row, with exactly the number of cells as
the first representation has columns, it is guaranteed that the trivial representation will
form part of the direct sum of representations that results from the calculation. For
example, see Figure 1.6.

1.2.2 Quantum Systems

In this subsection I present a summary of the crucial topics used for the description of
quantum systems and those terms that define them. The information presented here is
standard within the quantum fields of research, but I include it here as a resource for

⊗ = ⊕ = 1⊕

Figure 1.5: Calculation of the direct product of representations in the SU(3) symmetry
group, aided by the use of Young’s tableaux: 3 ⊗ 3 = 1 ⊕ 8.
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⊗ = 1⊕

n− 1

a

⊗

a

= 1⊕ n− 1 ⊕ . . .

Figure 1.6: Direct products of representations that must have the trivial solution as
one of the direct summands in the result. The upper row shows the calculation of
4 ⊗ 4 = 1 ⊕ 15 in the SU(4) symmetry group. The lower row shows the generalization
of this principle for an SU(𝑛) symmetry group, where 𝑎 ∈ ℕ.

readers who may not be familiar with some of its details.

A quantum system [4] is a physical system in which quantum properties are evident,
affect the state and behavior of the system, and can be studied experimentally or theoret-
ically. The external environment is considered only insofar it affects the quantum system
under study, which is for all other purposes considered to be isolated. The state of such
a system — or its quantum state — is a construct that gives a probability distribution
for the outcomes of measurements that can be performed on the system. The physical
quantities of a quantum system that can be measured (in other words, observed), are
called observables. To investigate the theoretical properties of non-relativistic quantum
systems, a plethora of toy models are used to describe their constituents and behavior,
allowing for a derivation of their quantum states and interesting observables. These toy
models assist with the conceptualization of more complicated systems by reducing their
behavior to a fairly small number of well-defined rules.

The term quantum spin system is used to describe a quantum system comprising
a number of particles (or degrees of freedom) that can be positioned on a graph, with
each assigned a finite-dimensional state space (commonly associated with quantum spin).
These systems are a frequent topic of research in the field of quantum many-body physics,
and they may be characterized by their potential to exhibit classically unexpected, emer-
gent macroscopic properties that may not intuitively correspond to the underlying mech-
anisms of the model itself.

The challenges in researching quantum many-body systems [5] stem from their expo-
nentially large Hilbert space dimensions that come into play already when dealing with
a relatively small number of interacting particles.

Definition 1.2.10. The Hilbert space of an isolated system is a complex vector space
with a defined inner product; it is also referred to as its state space.

This large state space often proves difficult to manage in a satisfactory way, leading
to the precise dynamics of such systems always being slightly out of hand for detailed
investigation — both theoretical and experimental. Unlike its classical equivalent, 𝑁 -
body physics, quantum many-body physics does not boast classical toy models, but must
consider the minute quantum effects that may influence the system as a whole greatly
and in a complicated manner, especially when nearing the statistical limit.

Instead of having to address the individual elements of many-body systems, quan-
tum many-body physics is rife with approaches that engage with states and observables
of these systems on a macroscopic level, often approaching the thermodynamic limit,
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in which they comprise an infinite number of subsystems [6] and which may exhibit
intriguing phase transitions, such as those to topologically ordered states. Note that
topological order may also exist at a finite temperature (e.g., see [7]), but its properties
are more pronounced at the thermodynamic limit.

Where quantum states are mathematically described as vectors of a Hilbert space,
observables are linear operators acting on that space. Typically, the eigenvalues of
observables belong to the real set of numbers, ℝ, and assume values of possible mea-
surement results for the corresponding quantities when the system is in a particular
quantum state. Hilbert spaces were named after mathematician David Hilbert, who
generalized Euclidean spaces. Unlike Euclidean spaces, in which mathematical opera-
tions are defined for a positive and finite number of dimensions, Hilbert spaces can be
infinite-dimensional. A Hilbert space, ℋ, is a vector space with a defined structure of
inner product that allows for the measurement of length and angle, for which it is a
complete metric space. As such, a Hilbert space supports the use of functional analysis,
allowing the well-defined use of differential and integral calculus.

A quantum system is fully described by its quantum state and operators that affect
its evolution. A quantum operator is a function that is defined on a space of states
(henceforth referred to as a state space), and each observable can be represented by its
corresponding operator. To ensure observables provide consistent and real eigenvalues,
all operators must be self-adjoint and linear.

The Hilbert space of a quantum spin system Λ can be described using a tensor
product,

ℋ = ⨂
𝑢∈Λ

ℋ𝑢, dim (ℋ𝑢) = 𝒪(1), (1.19)

where ℋ𝑢 refers to the Hilbert spaces of all the individual degrees of freedom in the
system, 𝑢.

These systems are often investigated by utilizing the model in which spin degrees of
freedom are distributed on an integer lattice, and by considering their local Hamiltonians
— i.e., Hamiltonians that are appropriately defined on a spatially limited region and that,
when summed, comprise the full Hamiltonian of the system:

𝐻 = ∑
𝑟<𝑟0

∑
𝑖∈Λ

𝐻ℬ(𝑖,𝑟), (1.20)

where ℬ(𝑖, 𝑟) denotes a ball of radius 𝑟 < 𝑟0 around the point 𝑖 and 𝐻ℬ(𝑖,𝑟) represents the
corresponding local Hamiltonian with support only in this region. Often, these quantum
spin system models are described by local Hamiltonians with effects that decrease rapidly
with increasing distance, allowing for the consideration of interactions of only those
degrees of freedom near one another to still yield viable solutions.

Definition 1.2.11. A probability measure is a real function 𝑓 defined on a set of events
in probability space, which satisfies the following two conditions:

• it returns results in the interval [0, 1], where 1 represents the full space and 0 an
empty set;

• for all countable collections {𝐸𝑗} of pairwise disjoint sets it holds that 𝑓 (∪𝑗∈𝑇 𝐸𝑗) =
∑𝑗∈𝑇 𝑓 (𝐸𝑗),

thus describing the probability space.

Partition functions, thermodynamic quantities that normalize the probability of mi-
croscopic states, can be extremely useful in the calculation of interesting values for the
observables of a quantum system because they contain information on the statistical
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properties of this system at its thermodynamic equilibrium. The Gibbs measure is a
probability measure that stems from the generalization of a canonical ensemble to an
infinite system. In simple terms, it gives the probability of a particular system being in
a certain state.

Whereas the canonical ensemble introduced in statistical mechanics provides a sta-
tistical measure that can be used to describe the possible states of a finite-sized system
in thermal equilibrium with a heat bath of constant temperature, the Gibbs measure
may be applied to infinite systems instead. The probability of a system 𝐴 being in the
state Γ can be determined by the following expression:

𝑃𝐴=Γ = 1
𝑍(𝛽)𝑒−𝛽𝐸(Γ), (1.21)

where 𝛽 ∝ 𝑇 −1 is a free parameter (dependent on temperature), 𝐸(Γ) is the energy of
the corresponding configuration, and 𝑍(𝛽) = tr (exp (−𝛽𝐻)) the partition function, such
that 𝐻 is the Hamiltonian of the system in question.

The temporal evolution of such a system is uniquely described by its Hamiltonian, the
self-adjoint observable used to measure a system’s energy, and the Schrödinger equation.
Various formulations of quantum mechanics are used to describe this evolution, and
here I will name two of the most relevant formulations: the Schrödinger picture and the
Heisenberg picture.

In the Schrödinger picture, as a quantum system evolves in time, its state vectors are
what evolves, while the associated operators remain constant in time. This means that
a state vector at time 𝑡0, |𝜓(𝑡0)⟩, evolves to |𝜓(𝑡)⟩ at time 𝑡. It does so as it is acted on
by the unitary time evolution operator 𝑈(𝑡, 𝑡0), i.e.,

|𝜓(𝑡)⟩ = 𝑈(𝑡, 𝑡0) |𝜓(𝑡0)⟩ . (1.22)

If the system’s Hamiltonian does not change in time, i.e., 𝜕𝑡𝐻̂ = 0, the time evolution
operator has the following form:

𝑈(𝑡, 𝑡0) = 𝑒−𝑖𝐻(𝑡−𝑡0)/ℏ, (1.23)

and it holds that 𝑈(𝑡, 𝑡0) = 𝑈(𝑡, 𝑡1)𝑈(𝑡1, 𝑡0). The exponent in (1.23) can be evaluated
using the Taylor series:

𝑒−𝑖𝐻(𝑡−𝑡0)/ℏ = ∑
𝑗

(−𝑖𝐻 (𝑡 − 𝑡0)
ℏ )

𝑗
⋅ 1

𝑗! , (1.24)

which aids with calculation.
In the Heisenberg picture, however, the state vectors of a quantum system are inde-

pendent of a time evolution, but the operators do depend on time, such that:

𝑑
𝑑𝑡𝑌 (𝑡) = 𝑖

ℏ[𝐻𝑡, 𝑌 (𝑡)] + (𝜕𝑌 (𝑡)
𝜕𝑡 )

𝐻𝑡

, (1.25)

where 𝑌 (𝑡) is an operator or observable in the system and 𝑡 stands for time. That is,
the state vectors of the examined system are handled as time-independent, with all the
time-dependency being transferred to the operators acting in the system, as

𝑌 (𝑡) = 𝑒 𝑖𝐻𝑡
ℏ 𝑌 𝑒 −𝑖𝐻𝑡

ℏ , (1.26)

for simplicity of calculation. This expression holds only if the Hamiltonian itself is also
time-independent. However, if 𝑌 (𝑡) is time-independent, as is often the case, the entire
final summand can be omitted.
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t

M̂ |Ψ (t1)⟩ M̂ |Ψ (t2)⟩

t1 t2 t

M̂ (t1) |Ψ⟩ M̂ (t2) |Ψ⟩

t1 t2

Figure 1.7: Temporal evolution of a quantum state vector |𝜓⟩, acted on by an operator
𝑀̂ . The image on the left depicts this evolution as seen within the Schrödinger picture
of quantum mechanics, whereas the right one depicts it as seen within the Heisenberg
picture.

|Ψ𝑎⟩
𝐻 (𝜆 = 𝑎)

|Ψ𝑏⟩

𝐻 (𝜆 = 𝑏)

𝐻 (𝜆)

Figure 1.8: Visualization of a quantum phase, with an indicated locally continuous path
for the evolution of the system’s Hamiltonian, 𝐻 (𝜆), within that phase, from the wave
function |Ψ𝑎⟩ to |Ψ𝑏⟩. The squiggly line indicates the relevant quantum phase, but
the surrounding square may contain other quantum phases of the system that may be
reached via a quantum phase transition.

These two frameworks — the Schrödinger and the Heisenberg picture — yield equiva-
lent results for the investigation of quantum states and observables and their constituents
are consistently handled, as shown in Figure 1.7.

A quantum phase is a quantum state of matter at the temperature of absolute zero
[8]. Quantum mechanical properties of matter indicate that, even at such a low tem-
perature, quantum fluctuations still occur in a quantum system. This means that the
alteration of various physical parameters of the system may induce transitions between
different phases of matter. While classical phase transitions happen driven by macro-
scopic properties such as temperature, pressure, or density, quantum ones may occur
when triggered by quantum fluctuations that create a relevant change in an order pa-
rameter of the system’s Hamiltonian. Matrix product states, described later, are often
used to classify one-dimensional gapped quantum phases.

A quantum phase transition may happen when a quantum system passes through a
gapless point in its energy spectrum, and two states, |𝜓𝑎⟩ and |𝜓𝑏⟩, are said to be in
the same quantum phase if there exists a continuous family of Hamiltonians, 𝐻(𝜆), for
which both of the states correspond to a ground state and no gap can be found on the
path from one to the other. This means that, if |𝜓𝑎⟩ is the ground state of 𝐻(𝑎) and
|𝜓𝑏⟩ is the ground state of 𝐻(𝑏) for the parametrized Hamiltonian 𝐻(𝜆), and the energy
gap of the system remains open for all 𝜆 ∈ [𝑎, 𝑏], those two states then belong to the
same quantum phase. A visualization of this concept can be seen in Figure 1.8.

Similarly to this definition, if these two quantum states can be converted into one
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another using a local quantum circuit of a depth that is constant in the system size, they
belong to the same quantum phase. A quantum circuit is a quantum computation model
in which operations on quantum phases are performed as quantum gate transformations
on a quantum register, which can be defined on quantum spin systems — for example,
using the Hilbert space ℋ𝑛 = 𝑙2 ({0, 1}𝑛), i.e., a complex vector space of dimension 2𝑛.
Unlike classical gates, all quantum gates act as unitary operators — therefore, they are
reversible in their operation.

Quantum Many-Body Localization

In general, many-body physics studies the collective behavior of systems that consist of a
large number of interacting particles — this is simple in theory1, but the large number of
relevant variables makes this quite a difficult problem in practice. This unfortunate sce-
nario stems from the combination of entanglement features of such many-body systems,
as well as the fact that many-body systems indeed include many constituent particles,
which come with a very high-dimensional vector space for their descriptive variables.
However, with a large number of particles come lots of intriguing phenomena, one of the
most lauded being many-body localization — often referred to just as MBL.

Many-body localization [9, 10, 11, 12] is a fascinating phenomenon that emerges in
quantum many-body systems, first postulated by Anderson in his original paper on the
topic [12], where an interacting many-body quantum system with strong disorder exhibits
starkly different behaviors from what is expected for a typical interacting many-body
quantum system without disorder.

MBL phases may occur in some many-body systems, under specific circumstances
which allow the system to exhibit randomized interactions between particles — but all
transport in the system is halted. This was historically understood as the many-particle
variant of Anderson localization. In a many-body localized phase, Lieb–Robinson bounds
have the velocity of zero [13]. The numerical analysis of many-body localized phases is
difficult to complete successfully, primarily due to the complex interactions between
the constituent particles of the many-body system — these create a heavy load for the
computational algorithms employed to analyze the many-body localized systems. In
truth, it is still intractable to numerically solve a true many-body-localized system, and
most analyses are treated as successful if they complete the study of systems with fewer
than a few dozen particles [14, 15], with some recent developments allowing to study
systems of approximately 50 particles [16].

Thus far, in the research of many-body localization, we have gotten to the stage at
which we can usefully describe some of the behavior of systems that reach a many-body
localization phase, but we do not yet truly understand why they occur. Due to the fact
that many-body localization is a process that is not very well understood, it is also tough
to pick its chief, unique defining characteristic, as it is not entirely clear how it comes to
be. For this reason, and despite the many challenges of numerical analysis when applied
to many-body systems, this is still the most used method of investigating these systems.

Quantum Computing

The widespread inception of the field of quantum computing stems from the exploratory
paper written by Richard Feynman in 1982, Simulating physics with computers [17], in
which he proposed the possibility of constructing quantum computers, which would rely
on the quantum-mechanical properties of nature to perform calculations and simulate
it in its own — quantum — form. Since then, the research in the field of quantum
computing has experienced a steady growth, with a recent boom in the past few years,

1No pun intended.
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which have seen incredible progress with physical realizations of quantum computing
devices. Such devices hold the potential to increase our understanding of the laws of
nature, but they also promise an unpredictable array of applications and a shift in
the global economy. The widespread availability of quantum computers is likely to see
them become what is known as a general technology, as the special properties of these
devices can be applied to problems ranging from quantum chemistry to gravitational
sensing. An important facet of research in quantum information processing are also
quantum communication and quantum cryptographic protocols, which are expected to
become state-of-the-art standards in their own right within the next few decades [18].
To ensure this field of technology experiences truly efficient progress, it is important to
devote research to various systems that exhibit quantum properties — one of such are
quantum many-body systems, which exhibit complex behavior such as topological order
and many-body localization. The quantum information approach to quantum many-
body systems is comprehensibly presented in a relatively recently composed manuscript
[19]. As it stands, it is entirely unclear if future scientific and technological advances will
enable one approach to the construction of quantum devices of the second generation to
prevail over others, or whether all will find an appropriate role in the stemming quantum
computing industry. For this reason, too, it is crucial to develop detailed descriptions
of these systems, so that they may enable engineers and experimental researchers to
develop these technologies to their full potential.

1.2.3 Quantum Mechanics
This subsection shows a short introduction into the mathematical structures used in
quantum mechanics, and is limited to basic definitions, conventions and formulations.

The universally accepted way to denote and discuss quantum states is the bra–ket
(or braket) notation, which uses angled brackets combined with a vertical bar to denote
vectors and linear functionals in linear algebra. Instead of depicting a vector as a variable
topped by an arrow, as ⃗𝜓, a quantum physicist will write it in a ket, as |𝜓⟩. Similarly,
the conjugate transpose of a vector, ⃗𝜉†, is written in a bra, as ⟨𝜉|. Operators are often
shown with ’hats’, as 𝑀̂ , but this notation may be disregarded for brevity. Instead of
⃗𝜉† ⋅ ⃗𝜓, the quantum physicist would write a bra–ket, ⟨𝜉 | 𝜓⟩, present an operator acting on

a quantum state as 𝑀̂ |𝜓⟩, and understand that ⟨𝜓 | 𝜓⟩ = 1 and, naturally, ⟨𝜓|† = |𝜓⟩.
It is assumed that operators and vectors written next to one another engage in a scalar
product. If 𝑀̂ is a Hermitian operator, then 𝑀̂† = 𝑀̂ and ⟨𝜉 ∣ 𝑀̂ ∣ 𝜓⟩ = ⟨𝜓 ∣ 𝑀̂ ∣ 𝜉⟩∗

,
where ∗ denotes the complex conjugation of the whole expression.

All quantum states can be directly superposed to create another valid quantum state,
and all quantum states can be represented as a superposition of one or more quantum
states. Especially for the field of quantum computing, an important term is that of
the qubit, a simple quantum logical state that is used as the basic unit of quantum
information — a two-level quantum system. A pure qubit state can be described as a
superposition of two basis states, |0⟩ and |1⟩, as a wave function |𝜓⟩ = 𝛼 |0⟩ + 𝛽 |1⟩,
where 𝛼 and 𝛽 are complex probability amplitudes, 𝛼, 𝛽 ∈ ℂ, with |𝛼|2 + |𝛽|2.

When pairs or groups of particles cannot be described by independent quantum
states, they are said to be entangled. Quantum entanglement creates a correlation
between the observables associated with the physically separate particles. If two non-
interacting quantum systems, 𝐴 and 𝐵, are associated with the Hilbert spaces ℋ𝐴 and
ℋ𝐵, the Hilbert space of their composite is the tensor product ℋ𝐴𝐵 = ℋ𝐴 ⊗ ℋ𝐵
and each of the wave functions can be written out as |𝜓⟩𝛾 = ∑𝛾 𝑐𝛾 |𝑘⟩𝛾, where |𝑘⟩𝛾
complete a basis. Similarly, if the systems 𝐴 and 𝐵 are in the quantum states |𝜓⟩𝐴 and
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Figure 1.9: Bloch sphere used to represent a quantum state, |𝜓⟩, on a 2-sphere. The
shown angles 𝜑 and 𝜃 define it uniquely.

|𝜓⟩𝐵, respectively, the state of the composite 𝐴𝐵 system is |𝜓⟩𝐴𝐵 = |𝜓⟩𝐴 ⊗ |𝜓⟩𝐵. If
such a state can be represented in this form, the constituent quantum states are called
separable, product states. However, if it is impossible to write the joint state of two
quantum systems as a tensor product of separable states, those states are entangled:

|𝜓⟩𝐴𝐵 = ∑
𝑖,𝑗

𝑐𝑖𝑗 |𝑖⟩𝐴 ⊗ |𝑗⟩𝐵 . (1.27)

This state is separable only if 𝑐𝐴
𝑖 and 𝑐𝐵

𝑗 exist such that 𝑐𝑖𝑗 = 𝑐𝐴
𝑖 𝑐𝐵

𝑗 for each 𝑐𝑖𝑗. In the
case of mixed states, which are viewed as statistical ensembles of pure states and cannot
be described using only one ket, the distinction lies in the properties of their density
matrices, defined as operators of the type:

𝜌 = ∑
𝑖

𝑝𝑖 |𝜓𝑖⟩ ⟨𝜓𝑖| , (1.28)

where the factors 𝑝𝑖 denote the portions of the ensemble that belongs to the respective
state |𝜓𝑖⟩. A density matrix is separable if it can be written as

𝜌𝐴𝐵 = ∑
𝑗

𝑝𝑗𝜌𝐴
𝑗 ⊗ 𝜌𝐵

𝑗 ∶ 𝑝𝑗 ≥ 0, ∑
𝑗

𝑝𝑗 = 1, (1.29)

where 𝜌𝐴
𝑗 and 𝜌𝐵

𝑗 describe the mixed states of the systems 𝐴 and 𝐵, respectively.
The pure state of a qubit can be represented in a geometric fashion, using a modeling

device called the Bloch sphere, which shows qubits as vectors on a unit 2-sphere. The
Bloch sphere, named after the physicist Felix Bloch, is defined as shown in Figure 1.9,
with the north and south pole of the sphere representing the basis vectors of the |0⟩
and |1⟩ state of the qubit, respectively. An interesting feature of this representation is
its versatility — the surface of the sphere is used to represent pure qubit states, but
the innards of the sphere can be used to represent those that are not pure, but mixed.
Naturally, the Bloch sphere can be extended to an 𝑛-dimensional object, which enables
its use for quantum systems with a larger number of energy levels — however, this
thoroughly impedes its visual convenience. In standard practice, this tool is primarily
used for qualitative estimation.

Within an orthonormalized basis of the two kets, |0⟩ and |1⟩, any pure state can be
mathematically described as their superposition, such that:

|𝜓⟩ = 𝑎 |0⟩ + 𝑏 |1⟩ , 𝑎, 𝑏 ∈ ℂ, (1.30)
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with ⟨𝜓 | 𝜓⟩ = |𝑎|2 + |𝑏|2 = 1. Thus, if an appropriate 𝜃 ∈ [0, 𝜋] and 𝜑 ∈ [0, 2𝜋] are
chosen, it can be written as:

|𝜓⟩ = cos (𝜃
2) |0⟩ + 𝑒𝑖𝜑 sin (𝜃

2) |1⟩ = (1.31)

= cos (𝜃
2) |0⟩ + (cos (𝜑) + 𝑖 sin (𝜑)) sin (𝜃

2) |1⟩ . (1.32)

This representation gives a unique result for (𝜃, 𝜑) in all but two cases (when |𝜓⟩ corre-
sponds exactly to one of the basis vectors). Thus, the pure state |𝜓⟩ can be represented
on the Bloch sphere by the vector:

⃗𝜓 = (sin (𝜃) cos (𝜑) , sin (𝜃) sin (𝜑) , cos (𝜃)) . (1.33)

Another quirk of the quantum mechanic’s mathematical toolbox is the Einstein nota-
tion, introduced by Albert Einstein in 1916 [20], after which it quickly gained popularity.
Instead of writing a mathematical expression that requires the multiple use of a partic-
ular variable index under a summation or multiplication symbol, it is simply omitted,
and the results follow. For example:

𝑎1𝜉1 + 𝑎2𝜉2 + 𝑎3𝜉3 + … + 𝑎𝑁𝜉𝑁 =
𝑁

∑
𝑖

𝑎𝑖𝜉𝑖 ≡ 𝑎𝑖𝜉𝑖. (1.34)

Mathematical expressions that are used often can then be written using this simplified
notation which elucidates the meaning of the procedure. The dot product of two vectors
can be represented as 𝑥 ⋅ 𝑦 = 𝑥𝑖𝑦𝑖, whereas the vector product of two vectors can be
shown as 𝑥×𝑦 = 𝜀𝑖

𝑗𝑘𝑥𝑗𝑦𝑘e𝑖, where e𝑖 is the 𝑖-th unit vector of the used coordinate system
and 𝜀𝑖𝑗𝑘 are the Levi–Civita symbols, for which it holds:

𝜀𝑖
𝑗𝑘 = 𝛿𝑖𝑙𝜀𝑙𝑗𝑘, (1.35)

where 𝛿𝑖𝑙 is the generalized Kronecker delta function.
If |Ψ⟩ is the state or wave function of a quantum system and 𝑀̂ the linear operator

corresponding to the observable 𝑀 , its eigenvalues, 𝑚, are obtained as:

𝑀̂ |𝜓⟩ = 𝑚 |𝜓⟩ , (1.36)

where |𝜓⟩ is an eigenfunction of 𝑀̂ . In quantum mechanics, the commutator function
holds a particular value. If operators used as arguments of a commutator indeed com-
mute, i.e., if 𝑋̂ ̂𝑌 = ̂𝑌 𝑋̂, then their commutator is equal to zero: [𝑋̂, ̂𝑌 ] |𝜓⟩ = 0. This
means that their corresponding observables can be measured simultaneously, without
the measurements affecting one another:

[𝑋̂, ̂𝑌 ] |𝜓⟩ = 𝑋̂ ̂𝑌 |𝜓⟩ − ̂𝑌 𝑋̂ |𝜓⟩ = 𝑥 (𝑦 |𝜓⟩) − 𝑦 (𝑥 |𝜓⟩) = 0, (1.37)

where 𝑥 and 𝑦 are eigenvalues of 𝑋̂ and ̂𝑌 , respectively.
The expectation value of a result in quantum mechanics is the average of all possible

outcomes of a measurement, weighed by their probability of outcome; for an operator
𝑀̂ it is defined as:

⟨𝑀̂⟩ = ⟨𝜓 ∣ 𝑀̂ ∣ 𝜓⟩ , (1.38)

where |𝜓⟩ is a normalized state vector, ⟨𝜓 | 𝜓⟩ = 1.
For quantum systems to evolve in a way that preserves the sums of all probabilities,

they must evolve in a unitary fashion.
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Definition 1.2.12. A unitary operator 𝑈 is a bounded linear operator defined on a
Hilbert space ℋ, 𝑈 ∶ ℋ → ℋ, which satisfies 𝑈†𝑈 = 𝑈𝑈† = 𝟙, where 𝟙 is the identity
operator on the space ℋ.

The Hamiltonian of a quantum system, usually denoted by 𝐻̂ or merely 𝐻, is an
operator that corresponds to its total energy. It can be defined as the sum of the potential
and kinetic energy of the system, and its eigenvalues in a finite system correspond to
the possible outcomes of an energy measurement performed on the system. The Hilbert
space associated with a particular quantum system is spanned by the eigenvectors of the
system’s Hamiltonian — in other words, the eigenvectors of the Hamiltonian form an
orthogonal basis of the Hilbert space and the Hamiltonian is well-defined as an operator
in this space.

1.2.4 Approximate Methods — Perturbation Theory and the Varia-
tional Method

In this subsection I will present an introduction to the analytical aspects of standard
perturbation theory as applied to quantum physics, reaching relevant expressions for the
wave functions and energy levels of perturbed quantum systems in orders of magnitude
of the perturbation. In addition, I will present the basic facets of the variational method.

Perturbation theory is a set of methods used to approximate a complicated quantum
system to one that is much more easily solvable, by expanding a power series around a
known exact solution. In most approaches, a simple system is used as the starting point
to which a perturbing Hamiltonian is imposed as a weak disturbance to the system.
Perturbative methods are most efficiently applicable to systems that only experience
a weak disturbance to the quantum system, requesting only small corrections to the
observables measurable in the starting system.

The corrections obtained by the perturbation theory can be specified by the order
of perturbation. For a time-independent system, the first order corrections can be de-
rived by utilizing the time-independent Schrödinger equation and substituting for the
perturbed Hamiltonian:

𝐻0 ∣𝑛(0)⟩ = 𝐸(0)
𝑛 ∣𝑛(0)⟩ , 𝑛 ∈ ℕ, (1.39)

where the subscript 𝑛 denotes the energy excitation level of the system, whereas the
superscript (0) signifies that the values belong to the unperturbed system, the zeroth
order of perturbation. Similarly, the 𝑘-th order of perturbation will be denoted by the
(𝑘) superscript. The full Hamiltonian of the perturbed system can be described as

𝐻 = 𝐻0 + 𝜆𝑉 , (1.40)

where the perturbation 𝑉 is parametrized by a ℝ ∋ 𝜆 ∈ [0, 1]. It follows:

(𝐻0 + 𝜆𝑉 ) |𝑛⟩ = 𝐸𝑛 |𝑛⟩ , (1.41)

which can further be expressed as

(𝐻0 + 𝜆𝑉 ) ∑
𝜄

𝜆𝜄 ∣𝑛(𝜄)⟩ = ∑
𝜅

𝜆𝜅𝐸(𝜅)
𝑛 ∑

𝜄
𝜆𝜄 ∣𝑛(𝜄)⟩ . (1.42)

For 𝜆 ≪ 1, the full energy level and eigenstate of the system may be written in a power
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series expansion, as:

𝐸𝑛 =
∞

∑
𝑘=0

𝜆𝑘𝐸(𝑘)
𝑛 (1.43)

|𝑛⟩ =
∞

∑
𝑘=0

𝜆𝑘 ∣𝑛(0)⟩ . (1.44)

To obtain the full first order of the perturbation expansion, only the zeroth and first
order corrections are used; from

𝐻0 ∣𝑛(0)⟩ + 𝑉 ∣𝑛(0)⟩ = 𝐸(0)
𝑛 |𝑛⟩ + 𝐸𝑛 ∣𝑛(0)⟩ , (1.45)

it follows that
𝐸𝑛 = ⟨𝑛(0) ∣ 𝑉 ∣ 𝑛(0)⟩ , (1.46)

which is equal to the expectation value of the perturbation Hamiltonian, while the system
is in the zeroth order, the unperturbed state. Because all states can be assumed to be
normalized, it is valid that, in the first order of 𝜆,

(⟨𝑛(0)∣ + 𝜆 ⟨𝑛|) (∣𝑛(0)⟩ + 𝜆 |𝑛⟩) = 1 (1.47)
⟨𝑛(0) ∣ 𝑛(0)⟩ + 𝜆 (⟨𝑛(0) ∣ 𝑛⟩ + ⟨𝑛 ∣ 𝑛(0)⟩) + 𝒪 (𝜆2) = 1 (1.48)

⟨𝑛(0) ∣ 𝑛⟩ + ⟨𝑛 ∣ 𝑛(0)⟩ = 0. (1.49)

Thus,
⟨𝑛(0) ∣ 𝑛(1)⟩ = 0, (1.50)

which implies that the state corrections are orthogonal to one another.
Then, the first order correction to the energy ground state can be obtained in the

following manner:

𝑉 ∣𝑛(0)⟩ = (∑
𝑘≠𝑛

∣𝑘(0)⟩ ⟨𝑘(0)∣) 𝑉 ∣𝑛(0)⟩ + (∣𝑛(0)⟩ ⟨𝑛(0)∣) 𝑉 ∣𝑛(0)⟩ = (1.51)

= ∑
𝑘≠𝑛

∣𝑘(0)⟩ ⟨𝑘(0) ∣ 𝑉 ∣ 𝑛(0)⟩ + 𝐸(1)
𝑛 ∣𝑛(0)⟩ , (1.52)

where ∣𝑘(0)⟩ are the orthogonal complement of ∣𝑛(0)⟩. Then, the first order equation is
as follows:

(𝐸(0)
𝑛 − 𝐻0) ∣𝑛(1)⟩ = ∑

𝑘≠𝑛
∣𝑘(0)⟩ ⟨𝑘(0) ∣ 𝑉 ∣ 𝑛(0)⟩ . (1.53)

Also,

∣𝑛(1)⟩ = ∑
𝑘≠𝑛

⟨𝑘(0) ∣ 𝑉 ∣ 𝑛(0)⟩
𝐸(0)

𝑛 − 𝐸(0)
𝑘

∣𝑘(0)⟩ . (1.54)

The higher order corrections can be found in a straightforward fashion, noting that
the normalization conditions imply that the following equation holds:

2 ⟨𝑛(0) ∣ 𝑛(2)⟩ + ⟨𝑛(1) ∣ 𝑛(1)⟩ = 0. (1.55)
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The calculation for the second order is as follows:

𝐸𝑛 (𝜆) =𝐸(0)
𝑛 + 𝜆 ⟨𝑛(0) ∣ 𝑉 ∣ 𝑛(0)⟩ + 𝜆2 ∑

𝑘≠𝑛

| ⟨𝑘(0) ∣ 𝑉 ∣ 𝑛(0)⟩ |2

𝐸(0)
𝑛 − 𝐸(0)

𝑘
+ 𝒪 (𝜆3) (1.56)

|𝑛 (𝜆)⟩ = ∣𝑛(0)⟩ + 𝜆 ∑
𝑘≠𝑛

∣𝑘(0)⟩ 𝑘(0)|𝑉 |𝑛(0)

𝐸(0)
𝑛 − 𝐸(0)

𝑘
+

+ 𝜆2 ∑
𝑘≠𝑛

∑
𝑙≠𝑛

∣𝑘(0)⟩ ⟨𝑘(0) ∣ 𝑉 ∣ 𝑙(0)⟩ ⟨𝑙(0) ∣ 𝑉 ∣ 𝑛(0)⟩
(𝐸(0)

𝑛 − 𝐸(0)
𝑘 ) (𝐸(0)

𝑛 − 𝐸(0)
𝑙 )

−

− 𝜆2 ∑
𝑘≠𝑛

∣𝑘(0)⟩ ⟨𝑛(0) ∣ 𝑉 ∣ 𝑛(0)⟩ ⟨𝑘(0) ∣ 𝑉 ∣ 𝑛(0)⟩
(𝐸(0)

𝑛 − 𝐸(0)
𝑘 )

2 −

− 1
2𝜆2 ∣𝑛(0)⟩ ∑

𝑘≠𝑛

⟨𝑛(0) ∣ 𝑉 ∣ 𝑘(0)⟩ ⟨𝑘(0) ∣ 𝑉 ∣ 𝑛(0)⟩
(𝐸(0)

𝑛 − 𝐸(0)
𝑘 )

2 + 𝒪 (𝜆3) . (1.57)

In a similar vein, the third order energy corrections can be calculated as follows:

𝐸(3)
𝑛 = ∑

𝑘≠𝑛
∑
𝑚≠𝑛

⟨𝑛(0) ∣ 𝑉 ∣ 𝑚(0)⟩ ⟨𝑚(0) ∣ 𝑉 ∣ 𝑘(0)⟩ ⟨𝑘(0) ∣ 𝑉 ∣ 𝑛(0)⟩
(𝐸(0)

𝑛 − 𝐸(0)
𝑚 ) (𝐸(0)

𝑛 − 𝐸(0)
𝑘 )

−

− ⟨𝑛(0) ∣ 𝑉 ∣ 𝑛(0)⟩ ∑
𝑚≠𝑛

| ⟨𝑛(0) ∣ 𝑉 ∣ 𝑚(0)⟩ |2

(𝐸(0)
𝑛 − 𝐸(0)

𝑚 )
2 . (1.58)

If the eigenstate observed in the relevant quantum system is not unique, but is
degenerate instead, then 𝐸(0)

𝑛 − 𝐻0 does not have a well-defined inverse, which inhibits
the use of the derived equations. Typically, these eigenvalues that span the subspace 𝐷
split under the influence of perturbation, making each of them unique. The perturbed
eigenvalues can be used as a basis for the perturbative expansion:

|𝑛⟩ = ∑
𝑘∈𝐷

𝛼𝑛𝑘 ∣𝑘(0)⟩ + 𝜆 ∣𝑛(1)⟩ , (1.59)

which is solved in the first order by restricting the investigation to the subspace 𝐷:

𝑉 ∣𝑘(0)⟩ = 𝜖𝑘 ∣𝑘(0)⟩ + 𝛿, ∀ ∣𝑘(0)⟩ ∈ 𝐷, (1.60)

where 𝛿 is some small value and 𝜖𝑘 are the first order corrections to the degenerate energy
levels. Thus, to solve this problem, the matrix

⟨𝑘(0) ∣ 𝑉 ∣ 𝑙(0)⟩ = 𝑉𝑘𝑙, ∀ ∣𝑘(0)⟩ , ∣𝑙(0)⟩ ∈ 𝐷 (1.61)

must be diagonalized. Higher order corrections can be found analogously, from

(𝐸(0)
𝑛 − 𝐻0) ∣𝑛(1)⟩ = ∑

𝑘∉𝐷
(⟨𝑘(0) ∣ 𝑉 ∣ 𝑛(0)⟩) ∣𝑘(0)⟩ . (1.62)

Then,

∣𝑛(1)⟩ = ∑
𝑘∉𝐷

⟨𝑘(0) ∣ 𝑉 ∣ 𝑛(0)⟩
𝐸(0)

𝑛 − 𝐸(0)
𝑘

∣𝑘(0)⟩ , (1.63)

and its effect on the degenerate states is of the order of 𝒪 (𝜆).
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In conjunction with the perturbative approach, an approach often used in quantum
mechanics to find suitable approximations for the relevant (usually ground-state) wave
functions of complicated quantum systems is the variational method. With the varia-
tional method, one would choose a trial wave function that depends on one or a multitude
of variational parameters, after which the values of these parameters are modified and
searched for such that the expectation value of the corresponding energy of the quantum
system becomes minimized. Thereby obtained energy of the system corresponds to the
upper bound of the true relevant energy level of the system for the corresponding ground
state.

If the Hamiltonian of the system has a discrete spectrum, it holds that

∑
𝜆1,𝜆2∈spectrum(𝐻)

⟨𝜓𝜆1
∣ 𝜓𝜆2

⟩ = 𝛿𝜆1,𝜆2
, (1.64)

where 𝜆𝑖 are the eigenvalues of the system and 𝜓𝜆𝑖
their corresponding eigenfunctions,

with
𝐻̂ |𝜓𝜆⟩ = 𝜆 |𝜓𝜆⟩ . (1.65)

When the lowest energy of the system exists and can be denoted by 𝐸0, the expectation
value of the Hamiltonian can be referred to as follows:

⟨𝜓 | 𝐻 | 𝜓⟩ = ∑
𝜆1,𝜆2∈spectrum(𝐻)

⟨𝜓 ∣ 𝜓𝜆1
⟩ ⟨𝜓𝜆1

∣ 𝐻 ∣ 𝜓𝜆2
⟩ ⟨𝜓𝜆2

∣ 𝜓⟩ = (1.66)

= ∑
𝜆∈spectrum(𝐻)

𝜆| ⟨𝜓𝜆 | 𝜓⟩ |2 ≥ (1.67)

≥ ∑
𝜆∈spectrum(𝐻)

𝐸0| ⟨𝜓𝜆 | 𝜓⟩ |2 = 𝐸0 (1.68)

To normalize this ansatz wave function, it must hold that:

⟨𝜓 (𝛼𝑖) | 𝜓 (𝛼𝑖)⟩ = 1, (1.69)

and the following function must be minimized:

𝜖 (𝛼𝑖) = ⟨𝜓 (𝛼𝑖) | 𝐻𝜓 (𝛼𝑖)⟩ . (1.70)

In general, it can then be defined that:

𝜖 (𝜓) =
⟨𝜓 ∣ 𝐻̂ ∣ 𝜓⟩

⟨𝜓 | 𝜓⟩ . (1.71)

According to the described variational principle, 𝜖 is greater or equal to that of the ground
state, 𝐸0 — equal only when 𝜓 is exactly equal to the ground state wave function of the
quantum system under investigation.

1.2.5 Topological Order
In terms of quantum phases, topologically ordered phases represent specific long-range
quantum entanglement patterns in quantum systems — this subsection provides a concise
description thereof.

The detailed classical description of phase transitions of matter was presented by
Lev Landau’s symmetry-breaking theory [21] in the first half of the twentieth century.
Within this theory — and the later-developed extension Landau worked on with Vitaly
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Figure 1.10: A representation of the eigenvalues of the ground state and first excited
state of a Hamiltonian 𝐻(𝑝) = 𝐻0 + 𝑝𝐻1 which depends on a dimensionless coupling
constant 𝑝, and where 𝐻0 and 𝐻1 commute and are independent of 𝑝. The figure on the
left shows a level crossing, and the figure on the right shows an avoided level crossing.

Lazarevich Ginzburg (named aptly the Ginzburg–Landau theory) — classical phases
of matter can be classified using their physical properties and local order parameters.
Phase transitions are then recognized by the change of the physical symmetries in the
system. Commonly, the parameters that can be used to describe (and thus predict)
these phase transitions depend on temperature, and a transition may occur when the
system is in the minimum of its free energy.

However, the later observation of phases that cannot be described by the use of such a
parameter allowed for a new perspective. Notably, this concerns the fractional quantum
Hall effect [22, 23], in which phases that correspond to certain system filling factors
and are associated with different physical properties cannot be described accurately
using the classical, Ginzburg–Landau theory of symmetry breaking, which would assign
the same classical phase to two distinct phases of matter. The observation of such
phases, which are known to emerge at temperatures nearing absolute zero, eventually
led to their description through the topological quantum field theory (which was also
utilized to describe chiral spin states) and to their dubbing as topologically ordered phases
[24, 25]. Note that topological order is a phenomenon that is still not sufficiently well
understood at temperatures (much) above absolute zero, but its spectral gap above
the degenerate energy of the ground state and its inherent robustness to perturbation
may prove to be a stable conduit for the development of quantum memory devices or
algorithms that incorporate quantum error correction [26]. The non-local observables
which remain robust to perturbation within a topologically ordered system are named
topological invariants.

In general, the term quantum phases is awarded to phases of matter found at the
temperature of absolute zero, which correspond to the (degenerate) ground states of
topologically ordered systems [8]. For a gapped system (i.e., a system with a gap be-
tween the energy of the ground state and that of the first excited state) described by
a parametrized Hamiltonian 𝐻(𝑝), where 𝑝 is a dimensionless parameter that couples
to a conserved quality, it may hold that 𝐻(𝑝) = 𝐻0 + 𝑝𝐻1 and [𝐻0, 𝐻1] = 0, which
would make it possible to diagonalize 𝐻0 and 𝐻1 simultaneously. Then, the eigenvalues
of 𝐻(𝑝) would depend on 𝑝, but its eigenfunctions would not. Within this system, there
can exist a critical value of the parameter, 𝑝𝑐, for which the ground state energy becomes
non-analytic, allowing for an excited state to assume the role of the ground state.

The point of non-analyticity in a finite sized lattice presents a level crossing, whereas
at the infinite lattice limit such a point may represent either a level crossing or an
avoided level crossing (see Figure 1.10, inspired by [8]). Any non-analytic point in
the ground state energy of an infinite lattice system is identified as a quantum phase
transition [8]. In other words, for a quantum phase transition to occur, the spectral gap
above the ground state of a quantum spin system must close. Such phase transitions
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Figure 1.11: Example of a lattice with uniform distance between nearest neighbors, with
three examples of regions of different sizes. The purple triangle-shaped lattice belongs
to 𝒮(2), the pink rectangle-shaped one to 𝒮(3), and the blue circle-shaped one to 𝒮(1).

may happen naturally at the temperature of absolute zero, where quantum effects that
warrant such transitions become predominant. When a system goes through a quantum
phase transition, the nature of the correlations in its ground state usually changes.

Topologically ordered phases in quantum spin systems are a phenomenon most com-
monly described by comparison with the classical Ginzburg–Landau theory of ordered
phases in materials. Whereas the parameters of order that govern the symmetry states
of materials that can be accurately described by the Ginzburg–Landau theory have been
studied in detail and are fairly well understood (such as its polarization, magnetization,
crystal lattice deformation, or the wave function of electron pairs in superconductors
[27]), the theoretical approach to topologically ordered phases is still not sufficiently
conclusive. The concept of topological order is tied to the existence of global variables
which are robust to local perturbations of the system’s Hamiltonian. This ordering is not
yet well understood at temperatures above absolute zero, and it is currently approached
from a number of different angles. In this subsection, the description of topological order
found in the recent works of Sergey Bravyi, Matthew Hastings, and Spyridon Michalakis
[26, 28] will be presented in conjunction with the general notions and implications of
topological order.

We observe a system of quantum particles distributed on the sites of an 𝑁 -dimen-
sional lattice Λ of linear dimension 𝐿, with periodic boundary conditions and its Hilbert
space represented as stated in (1.19). If 𝒮(𝑟) is defined as the set of all blocks 𝐴 ⊆ Λ
with linear size 𝑟, where 𝑟 > 0 (see Figure 1.11), it is valid that 𝒮(𝐿) = Λ, and 𝒮(𝑟) = ∅
for 𝑟 > 𝐿.

Considering a coarse-grained lattice, such that the unperturbed Hamiltonian of the
system, 𝐻0, involves only interactions between particles inside of blocks 𝐴 ∈ 𝒮(2), the
Hamiltonian of the system can be written as

𝐻0 = ∑
𝐴∈𝒮(2)

𝑄𝐴, (1.72)

where 𝑄𝐴 is an interaction with support on 𝐴, and with the following properties:

𝑄2
𝐴 = 𝑄𝐴, 𝑄𝐴𝑄𝐵 = 𝑄𝐵𝑄𝐴, for all 𝐴, 𝐵 ∈ 𝒮(2). (1.73)

On top of that, I require that the ground state of 𝐻0 minimizes the expectation value
of each of the 𝑄𝐴 simultaneously, such a Hamiltonian is called frustration-free. The
commuting property of the Hamiltonian, as stated in (1.73) and the requirement for
frustration-free-ness, imposes a strong restriction on it, and even though this holds as
a requirement for the following definition, it is possible to describe topological order
in more general terms, since the commuting property is neither a requirement, nor a
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defining feature for topological order in general. It is just a convenient class of models,
for which it is easy and instructive to define the meaning of the term topological order.
Defining the Hamiltonian 𝐻0 to have zero ground state energy and a finite spectral gap
between the ground state energy and the energy of the first excited state, the projectors
onto the ground subspace and the excited subspace of 𝐻0 can be defined as 𝑃 and 𝑄,
respectively, as:

𝑃 = ∏
𝐴∈𝒮(2)

(𝐼 − 𝑄𝐴), 𝑄 = 𝐼 − 𝑃 , (1.74)

where 𝐼 is the identity operator. Similarly, the local versions of these operators, for any
block 𝐵 ∈ 𝒮(𝑟 ≥ 2) are:

𝑃𝐵 = ∏
𝐴∈𝒮(2)
𝐴⊆𝐵

(𝐼 − 𝑄𝐴), 𝑄𝐵 = 𝐼 − 𝑃𝐵. (1.75)

To define the existence of topological order, the following two properties described
in detail in [26] (commonly known as TQO-1 and TQO-2) need to hold true, assuming
that there exists an integer 𝐿⋆ ≥ 𝛼𝐿 for some constant 𝛼 > 0 and sufficiently large 𝐿:

1. TQO-1: For any block 𝐴 ∈ 𝒮(𝑟) with 𝑟 ≤ 𝐿⋆,

𝑃𝑂𝐴𝑃 = 𝑐𝑃 , 𝑐 ∈ ℂ, (1.76)

for any operator 𝑂𝐴 acting on 𝐴.

2. TQO-2: For blocks 𝐴 ∈ 𝒮(𝑟) with 𝑟 ≤ 𝐿⋆ and 𝐵 ∈ 𝒮(𝑟 + 2), where 𝐵 is the block
that contains 𝐴 and all nearest neighbors of the sites in 𝐴, define reduced density
matrices 𝜌𝐴 = tr𝐴𝑐(𝑃 ) and 𝜌(𝐵)

𝐴 = tr𝐴𝑐(𝑃𝐵), where 𝐴𝑐 = Λ\𝐴. Then

ker 𝜌𝐴 = ker 𝜌(𝐵)
𝐴 . (1.77)

The integer 𝐿⋆ is chosen to depend on the size of the lattice, 𝐿, in a linear fashion so
that it defines a length scale for local operations in the system. Its dependence on 𝐿
ensures that the stated properties of a system with topological order do not refer only
to strictly local subsystems, but describe global properties of the system instead.

The first condition (TQO-1) is commonly thought of as the chief definition of topo-
logical order, and it states that it is impossible for a local operator to induce a transition
between orthogonal ground states of the system, or to distinguish between two such
states. Consequently, it is colloquially known as the condition of local indistinguisha-
bility of ground states of a topologically ordered system. From the statement of the
condition, it straightforwardly follows that for a system with an orthonormal basis of
ground states {|𝜓𝑖⟩}, the local operator 𝑂𝐴 acts in the following manner:

⟨𝜓𝑖| 𝑂𝐴 ∣𝜓𝑗⟩ = {const. if 𝑖 = 𝑗;
0 if 𝑖 ≠ 𝑗. (1.78)

Therefore, it can be said that any information encoded in the ground state space of a
topologically ordered system is not affected by local perturbations.

The second condition defining the existence of topological order (TQO-2) states that
the projectors 𝑃𝐵 and 𝑃 must act equivalently on the subset 𝐴 ⊂ 𝐵, certifying that the
local ground subspace of the system 𝑃𝐵 will be consistent with its global ground subspace
𝑃 , on subsets which are sufficiently far from the boundary of 𝐵. This consistency may
be violated in cases where the observed region possesses a non-trivial topology, e.g. a
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a b

Figure 1.12: Examples of tensor depictions, shown at an angle. a) Tensor with 𝑛 = 2
virtual (shown horizontally) indices and one physical (shown vertically) index. b) Tensor
with 𝑛 = 4 virtual (shown horizontally) indices and one physical (shown vertically) index.

hole — then, the local ground subspace may include areas with a non-trivial topological
charge inside the hole, whereas this will not be the case for the global ground subspace.

Phase transitions are not exclusive to quantum systems, but also incident to classical
statistical mechanical systems. For example, the Ginzburg–Landau theory provides a
mechanism for describing phase transitions with local order parameters, and it applies
to classical systems just as well as it does to quantum. As a concept, topological order
can also be defined for a classical statistical mechanical system [29].

1.2.6 Some Spin System Models and Tensor Network Methods
The AKLT model [30, 31] was originally developed in order to describe a system of SU(2)-
symmetric particles in a one-dimensional chain. However, further expansions upon this
model have been made, which can now be used to describe particles of any SU(𝑛) group
with 𝑛 ∈ ℕ. In this section, the principle of implementing a tensor network in such a
system will be presented.

To describe the large-scale properties of a lattice system with interacting particles,
each individual element in a lattice may be described by a tensor — a mathematical
object that holds information on both the properties of the element and the manner in
which it interacts with its neighbors. A tensor 𝑇 is defined as a multidimensional array
of values; a 𝑑1 × 𝑑2 × … × 𝑑𝑛-dimensional tensor is an element of ℂ𝑑1 × ℂ𝑑2 × … × ℂ𝑑𝑛 .
Within the past decade, the quantum information community has adopted the use of
tensor networks as the standard method for the description of a multitude of lattice-
based systems. If individual elements of a particle lattice and their interactions can
be described sufficiently accurately by the simple mathematical construct of a tensor
network, its global properties can be obtained in a straightforward (albeit not trivial)
fashion, by merely iterating the calculation of a tensor product of neighboring particles.

When set up in the form of a network of tensors, some systems lend themselves to a
simple analytical calculation of such global values as the ground state energy. But even if
that is not the case, a numerical investigation of their properties can still be conducted.

In lattice analysis, individual tensors are often depicted as blob-like structures with
extending tentacles — the tensor 𝑇 would be shown with 𝑛 tentacles or legs, each de-
picting a specific tensor index, as seen in Figure 1.12. Each of them is drawn extending
toward the neighbor with which the corresponding particle interacts; the touching legs
of such two tensors indicate that they may be contracted along the tensor dimensions
they represent. Evidently, drawing a complex lattice structure as a multidimensional
graph with tensors at its vertices elucidates the problem where its formulaic expression
may be lacking. An example of a one-dimensional and a two-dimensional tensor network
diagram can be seen in Figure 1.13.

Definition 1.2.13. A matrix product state (MPS) is a pure quantum state of a large
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Figure 1.13: Examples of tensor network diagrams — the upper image shows a snippet
of a one-dimensional, and the lower one a two-dimensional tensor network.

Figure 1.14: Sketch of a matrix product state for a one-dimensional tensor network —
the pink squares represent tensors, the lines connecting them their contracted virtual
indices, and the thick vertical purple lines depict their physical indices.

number of particles, described by

|𝜓⟩ = ∑
{𝑠}

Tr [𝐴(𝑠1)
1 𝐴(𝑠2)

2 … 𝐴(𝑠𝑁)
𝑁 ] |𝑠1𝑠2 … 𝑠𝑁⟩ , (1.79)

where the indices 𝑠𝑗 go through all the states of the computational basis, and 𝐴(𝑠𝑗)
𝑗 are

complex square matrices with a rank that corresponds to the local virtual dimension of
the system called bond dimension, 𝐷 (very often it is alternatively denoted as 𝜒).

A visual representation of a matrix product state for a finite-sized system with pe-
riodic boundary conditions can be seen in Figure 1.14. In addition, an MPS can be
defined in a slightly altered way, which is more suitable to describe systems with open
boundary conditions. As shown in Figure 1.16, in this adjusted definition for a system
with open boundary conditions, the boundary tensors accordingly have one index fewer
and lead to |𝜓⟩ = ∑𝑠 𝐴(𝑠1)

1 𝐴(𝑠2)
2 … 𝐴(𝑠𝑛)

𝑛 |𝑠1𝑠2 … 𝑠𝑛⟩. This system can be equivalently
described by acting on the boundary tensors with appropriate vectors, 𝐿⃗ and 𝑅⃗, which
in that way close the loose indices:

|𝜓⟩ = ∑
𝑠

𝐿⃗†𝐴(𝑠1)
1 𝐴(𝑠2)

2 … 𝐴(𝑠𝑛)
𝑛 𝑅⃗ |𝑠1𝑠2 … 𝑠𝑛⟩ . (1.80)

A matrix product operator (MPO) is a tensor network operator (TNO) that can be
described as an MPS in which each tensor has an additional physical index, as depicted in
Figure 1.15. Such an operator can act on an MPS by contracting those added indices with
the dangling physical indices of the MPS — creating an altered MPS in the process. This
newly created MPS then has a higher total bond dimension, as a result (and product)
of the relevant bond dimensions of the MPO and the original state.
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Figure 1.15: Example of a tensor network operator that can be applied to a one-
dimensional tensor network state. It is also referred to as a matrix product operator
(MPO), as it may act on a so-called matrix product state (MPS).

=

Figure 1.16: MPS with open boundary conditions, where boundary tensors that have
one index fewer may be constructed by acting upon the dangling boundary indices with
appropriate vectors, shown in blue.

Definition 1.2.14. A transfer matrix is a linear operator defined on 𝐷2 that aids to
express the coefficients of a wave function defined on one side of a specific index 𝑖 as
those of the wave function defined on the other, as

𝔼𝑖𝛼𝛼′𝛽𝛽′ = ∑
𝑠

𝐴(𝑠)
𝑖𝛼𝛽𝐴(𝑠)†

𝑖𝛼′𝛽′ . (1.81)

Its depiction in a tensor network can be seen in Figure 1.17. Transfer matrices
can then be used to express the norm of the MPS; in the case of an MPS defined
with periodic boundary conditions, its norm is the trace of the product of all transfer
matrices, ⟨Ψ|Ψ⟩ = tr ∏𝑖 𝔼𝑖. This relation is obvious from Figure 1.18. The transfer
matrix eigenvalues with the largest magnitude can be used to approximate the correlation
length of the system, as:

𝜉 = − 1
log ∣𝜆2

𝜆1
∣
, (1.82)

where 𝜆1 and 𝜆2 are, in order, the two eigenvalues with the largest magnitude of the
transfer matrix [32].

This type of representation can be immensely helpful in the calculation of the cor-
relations of local operators and, subsequently, expectation values of the operators in
MPSs. For example, for a local operator Ξ that is located at specific site between two
MPSs, as seen in Figure 1.19, the concept of the transfer matrix can be expanded to aid
in the calculation of its norm using a simple expression. In this example, the so-called
generalized transfer matrix that corresponds to the site which carries the operator Ξ can
be expressed as:

(𝔼Ξ)𝑖𝛼𝛼′𝛽𝛽′ = ∑
𝑠,𝑠′

𝐴(𝑠)
𝑖𝛼𝛽Ξ𝑠′𝑠𝐴(𝑠′)

𝑖𝛼′𝛽′ . (1.83)

. . . . . .

. . . . . .

=

. . . . . .

. . . . . .

E

Figure 1.17: Construction of a transfer matrix; the blue tensors in the two MPSs in the
depiction on the left are represented by a transfer matrix, shown in blue in the depiction
on the right.
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Figure 1.18: Trace of the product of all transfer matrices in an MPS with periodic
boundary conditions, shown here, gives the norm of the MPS itself.

. . . . . .

. . . . . .

Ξ =

. . . . . .

. . . . . .

EΞ

Figure 1.19: A local operator Ξ between two MPSs can be described using a type of
transfer operator, 𝔼Ξ.

It is clear that this generalized expression corresponds to (1.81) for Ξ = 𝟙.
The definition of an MPS (1.79) can also be examined in the thermodynamic limit,

for an infinite chain of particles or subsystems; when restricted to a translationally
invariant state (i.e., an MPS comprising a specific tensor 𝐴 on each site), which restricts
the number of parameters required to specify the state, this thermodynamic limit is
referred to as uniform or infinite MPS.

Definition 1.2.15. An infinite MPS (iMPS) is a pure, translationally invariant many-
particle state of an infinite system of individual particles, which can be defined for
periodic boundary conditions as:

|𝜓(𝐴)⟩ = lim
𝑁→∞

𝑞
∑

{𝑠𝑛}=1
tr (

+𝑁
∏

𝑛=−𝑁
𝐴𝑠𝑛) |{𝑠𝑛}⟩ =

𝑞
∑

{𝑠𝑛}=1
tr (∏

𝑛∈ℤ
𝐴𝑠𝑛) |{𝑠𝑛}⟩ , (1.84)

and for open boundary conditions as:

|𝜓(𝐴)⟩ = lim
𝑁→∞

𝑞
∑
{𝑠𝑛}

𝑣†
𝐿 (

+𝑁
∏

𝑛=−𝑁
𝐴𝑠𝑛) 𝑣𝑅 |{𝑠𝑛}⟩ =

𝑞
∑

{𝑠𝑛}=1
𝑣†

𝐿 (∏
𝑛∈ℤ

𝐴𝑠𝑛) 𝑣𝑅 |{𝑠𝑛}⟩ . (1.85)

Unless otherwise specified, iMPSs are the states applied for the numerical analyses
presented in this work.

For iMPSs to represent physical states, they should be normalized. Since the norm
of an iMPS is equivalent to the contraction of an infinite chain of transfer operators, the
condition that a state is normalized can be expressed as a condition on the spectrum of
the transfer operator. According to its definition, the transfer operator only has positive
eigenvalues, so an iMPS is normalized if the largest eigenvalue of the corresponding
transfer operator is equal to 1. If an iMPS is not normalized and 𝜂 is the largest eigenvalue
of the not normalized transfer operator, then the iMPS can be normalized by rescaling
the tensor entries as

̃𝐴𝑠𝑛 ≔ 1√𝜂𝐴𝑠𝑛 . (1.86)
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Similarly, the transfer operator also allows for the calculation of the expectation
values of local operators, i.e., local observables for an iMPS. The local operator gets
sandwiched between two instances of the iMPS. As it is a local operator, by definition
it has support only on a limited area of physical sites. On the left and the right side of
this area, the MPS tensors are directly connected by their physical legs and (on both
sides) there are infinitely repeated applications of the transfer operator. This means
that those can be replaced with the left and right eigenvectors, corresponding to the
largest eigenvalue of the transfer operator, which is, as stated earlier, the fixed point of
the transfer operator. After the replacement, calculating the expectation value means
contracting a tensor network consisting of a finite number of operators, which can be
done efficiently and is easily addressed numerically (as long as the area of the support
of the local operator is small enough).

Because it has been shown that the dynamics of one-dimensional quantum systems
can be computationally approximated in a way that scales polynomially with the size
of the system [33], this computational tensor network approach is often referred to as
efficient, as many values relevant for quantum systems scale exponentially with their size.
For example, MPS-based variational ground state search algorithms for one-dimensional
systems can be performed with computational costs scaling as 𝐷3 (or scaling as 𝐷5 for
systems with periodic boundary conditions) [34].

Beyond one-dimensional systems, MPSs can be thought of as a special case of the
projected entangled pair states (PEPS) model, in which entangled pair states, |𝜑⟩, are
set up on a lattice, and a linear map 𝒫 is applied to adjacent halves of neighboring pairs:

𝒫 = ∑
𝑖;𝛼,𝛽

𝐴𝑖;𝛼,𝛽 |𝑖⟩ ⟨𝛼𝛽| , (1.87)

where 𝐴𝑖;𝛼,𝛽 corresponds to the MPS tensor. It holds that:

𝒫(1) ⊗ 𝒫(2) |𝜑⟩2,3 = ∑
𝑖1,𝑖2;𝛼1,𝛽1,𝛼2,𝛽2,𝑗

𝐴(1)
𝑖1;𝛼1,𝛽1

𝐴(2)
𝑖2;𝛼2,𝛽2

|𝑖1𝑖2⟩ ⟨𝛼1𝛽1𝛼2𝛽2| (𝟙 ⊗ |𝑗𝑗⟩ ⊗ 𝟙) =

(1.88)

= ∑
𝑖1,𝑖2;𝛼1,𝛽1,𝛽2

𝐴(1)
𝑖1;𝛼1,𝛽1

𝐴(2)
𝑖2;𝛽1,𝛽2

|𝑖1, 𝑖2⟩ ⟨𝛼1𝛽2| . (1.89)

For example, if 𝐴0 = 1 and 𝐴1 = 0, the resultant state is |00 … 0⟩, and if 𝐴0 = (1 0
0 1)

and 𝐴1 = (0 1
0 0), with boundary vectors 𝐿⃗ = (1, 0) and 𝑅⃗ = (0, 1), the resultant state

is the 𝑊 -state, |𝑊⟩ = ∑𝑁
𝑗=1 ∣00 … 01𝑗0 … 0⟩, because 𝐴0𝐴0 = 𝐴0, 𝐴0𝐴1 = 𝐴1, and

𝐴2
1 = 0.

Due to their versatility and buildability, tensor networks have enjoyed tremendous
success in the numerical simulation approximations of problems in low-temperature con-
densed matter systems. Arguably, the most famous of the numerical techniques used
is the density matrix renormalization group, or DMRG. This variational technique is
commonly used in quantum many-body physics to efficiently discover the MPS wave
function of a quantum system that corresponds to its ground state.

The Hilbert space of a quantum system grows exponentially with its size, meaning
that a Majumdar–Ghosh chain of 𝑁 spin-½ particles comes up at a vast 2𝑁 degrees of
freedom. By using DMRG, the effective degrees of freedom can be reduced to a point
where only those relevant to the state in question are kept track of, while the technique’s
accuracy is affected only minimally.
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Singular Value Decomposition

An important method that begs elaboration in the field of tensor network simulations
is singular value decomposition.

Definition 1.2.16. Singular values of 𝑀 ∶ 𝐴 → 𝐵, where 𝐴 and 𝐵 are Hilbert spaces,
are square roots of the non-negative self-adjoint operator 𝑀†𝑀 ∶ 𝐴 → 𝐵.

Definition 1.2.17. Let 𝑀 be an 𝛼 × 𝛽 matrix with entries 𝑚𝑎𝑏 ∈ ℂ. Then, there exists
a factorization of 𝑀 — referred to as the singular value decomposition (SVD) — such
that 𝑀 = 𝑈Σ𝑉 †, where 𝑈 is an 𝑚 × 𝑚 unitary matrix over ℂ, Σ is a diagonal 𝑚 × 𝑛
matrix with non-negative real numbers on its diagonal, and 𝑉 is an 𝑛×𝑛 unitary matrix
over ℂ.

The diagonal values in Σ are then the singular values of 𝑀 , which are traditionally
set in the matrix Σ in descending order. When this convention is respected, Σ is unique
for the starting matrix 𝑀 .

The rank of a matrix is equal to the number of non-zero singular values it has,
which can be easily extracted from its SVD decomposition. In some numerical uses of
tensor networks, a matrix of a high rank can be efficiently approximated by one of a
low rank, which is where the SVD method graciously steps in. A matrix 𝑀 with rank
𝑟 is approximated by the matrix 𝑀 with rank ̃𝑟, such that the norm of the difference
between the two matrices is smaller than some cutoff value. Then,

𝑀 = 𝑈Σ̃𝑉 †, (1.90)

where the Σ̃ matrix contains the same non-zero values as the matrix Σ, up to and
including the 𝑟-th value — the rest are equal to zero.

Numerically, the SVD of a matrix 𝑀 can be obtained by first reducing it to a bidi-
agonal matrix, after which the SVD can be calculated iteratively up to some precision.
Alternatively — and most often in tensor network calculations — the SVD is obtained
using the eigenvalue decomposition. First, the problem is rephrased by converting the

matrix 𝑀 to a matrix 𝑊 , which equals 𝑀𝑀†, 𝑀†𝑀 , or ( 0 𝑀
𝑀† 0 ). Then, this problem

can be address efficiently by the iterative application of the RQ eigenvalue algorithm [35]
to those matrices2. At step number 𝑘 of the RQ algorithm, a decomposition procedure
is performed to obtain 𝑊𝑘 = 𝑄𝑘𝑅𝑘, where 𝑅𝑘 is an upper triangular matrix and 𝑄𝑘 is
an orthogonal one. This procedure boils down to the application of the Gram–Schmidt
process to the issue matrix. Then,

𝑊𝑘+1 = 𝑅𝑘𝑄𝑘 = 𝑄−1
𝑘 𝑄𝑘𝑅𝑘𝑄𝑘 = 𝑄−1

𝑘 𝑊𝑘𝑄𝑘 = 𝑄𝑇
𝑘 𝑊𝑘𝑄𝑘. (1.91)

Therefore, all 𝑊𝑘 have the same eigenvalues. The matrix 𝑅 can be written out using
the LQ decomposition, which bears similarity to the RQ algorithm, except that a lower
triangular matrix 𝐿 is used instead of an upper triangular matrix 𝑅 [36]. Then, 𝑅𝑙+1 =
𝑄𝑙𝐿𝑙, which means that 𝑊𝑘+1 = 𝑄′

𝑘𝐿′
𝑘𝑄𝑘. In the following step, the matrix 𝑊 can be

updated using the value of 𝐿, and the cyclical procedure may continue.
More details on this topic can be found in various introductory and review articles,

e.g., [37].
These decompositions (SVD and QR decomposition) are crucial components in many

tensor network algorithms, often used to simplify the mathematical forms of tensor
2Note that the RQ algorithm is performed in the same manner as the QR algorithm, but the order of

the matrices 𝑅 and 𝑄 is reversed in the solution. This change keeps their shape, but leads to alterations
in their content.
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network states, bringing them to a particular canonical form. For example, for an
MPS, as long as it is in its canonical form, certain quantities (like the entanglement
spectrum) can be directly read off the state, while others (like the correlation length) can
be calculated easily. It also allows for a straightforward truncation of the state, reducing
its bond dimension while keeping the most significant contributions by throwing away
all but the 𝐷new < 𝐷 largest values of the entanglement spectrum. This truncation is
also essential for many algorithms involving MPS. How much a state can be truncated
without steering away from the original state to an unacceptable degree depends on the
original state, or, more precisely, on its entanglement spectrum.

For more details on these canonical forms and algorithms used to bring states into
their canonical forms, see [38].

An Example of a Tensor Network Algorithm

What is important in any numerical simulation is the cutoff point for an iterative algo-
rithm. A typical tensor network algorithm — such as the one used here — may be based
on the following procedure: This is an algorithm which, for a given MPO, approximates
the eigenstate corresponding to the dominant eigenvalue of the MPO, i.e., it also finds
a fixed point of the MPO. This will work as long as the random state with which the
algorithm is initialized has any non-zero overlap with the eigenstate for the dominant
eigenvalue. Otherwise, it will still find a fixed point, which will be the eigenvalue cor-
responding to the eigenstate with the eigenvalue of largest magnitude with which the
initial random state has any overlap.

A common protocol in tensor network algorithms may proceed as follows.
1. Pick a random MPS tensor of the correct physical dimension and of a desired bond

dimension 𝐷.

2. Construct a new MPS by applying the MPO to the original MPS, contracting the
MPS tensor with the MPO tensor.

3. Bring the new MPS to the canonical form. This is a unitary transformation on the
virtual degrees of freedom represented by the operators 𝑈 and 𝑈† in the figure.

4. Truncate the MPS to the originally desired bond dimension 𝐷 by discarding all
but the 𝐷 largest singular values of the SVD in the canonical form.

5. Calculate the overlap (defined as | ⟨𝜓𝑎 | 𝜓𝑏⟩ | for the two states) between the trun-
cated MPS and the MPS before applying the MPO.

6. If the overlap is larger than 1 − 𝜖, where 𝜖 is some desired cutoff value, stop the
algorithm here; otherwise go back to step 2.

7. The MPS now describes the resulting state.
For an illustration, see Figure 1.20.

Some Spin System Models

In the context of spin system models, the most well-known example would likely be the
Heisenberg model, which gives a simple quantum-mechanical model of the phenomenon
of ferromagnetism, criticality and phase transitions. The Ising model can serve as a
simpler and related model to introduce it. The Hamiltonian of a one-dimensional system
of 𝑁 particles that can be described using the Heisenberg model can be written as

𝐻̂ = −𝐽
𝑁

∑
𝑗=1

𝜎𝑗𝜎𝑗+1 − ℎ
𝑁

∑
𝑗=1

𝜎𝑗, (1.92)

Ivana Kurečić 42



Chapter 1. Introduction and Motivation 1.2. Review of Crucial Topics

. . . . . .

1.

. . . . . .

. . . . . .

2.

. . . . . .

. . . . . .

3.

. . . . . .

4.

U† U

Figure 1.20: Illustration of the initial portion of the described tensor network algorithm.

where each particle is denoted by the index 𝑗 (with periodic boundary conditions, 𝜎𝑁+1 =
𝜎1), ℎ denotes the external magnetic field acting on the system, and 𝐽 is its coupling
constant. Here, each particle in such a lattice structure is thought to have a binary spin,
𝜎 = ±1, acting as a magnetic dipole for which 𝜎 = +1 and 𝜎 = −1 correspond to up
and down spins, respectively, and the lowest energy is achieved in a system when nearest
neighbor particles in the lattice possess the same spin. The Heisenberg model expands
on this setup, allowing all spins to take three-dimensional values corresponding to the
Pauli spin-½ matrices, 𝜎𝑥, 𝜎𝑦, and 𝜎𝑧 (described in detail in [39]), and assigning three
values to the coupling constant, 𝐽𝑥, 𝐽𝑦, 𝐽𝑧. Then, the system can be described using a
Hamiltonian of this form:

𝐻̂ = −1
2

𝑁
∑
𝑗=1

(𝐽𝑥𝜎𝑥
𝑗 𝜎𝑥

𝑗+1 + 𝐽𝑦𝜎𝑦
𝑗 𝜎𝑦

𝑗+1 + 𝐽𝑧𝜎𝑧
𝑗 𝜎𝑧

𝑗+1 + ℎ𝜎𝑧
𝑗 ) . (1.93)

The states of the system are described by the tensor product (ℂ2)⊗𝑁 , with the expected
dimension of 2𝑁 .

The Heisenberg model has subsequently been expanded in a variety of other models,
each adapted to a system of a particular nuance. A highlight of these is the Majumdar–
Ghosh model, which doesn’t consider only the nearest neighbor interaction of the par-
ticles in the lattice, but extends the coupling to second-nearest-neighbor particles, too.
It is defined by the Hamiltonian

𝐻̂ = 𝐽
𝑁

∑
𝑗=1

⃗𝑆𝑗 ⋅ ⃗𝑆𝑗+1 + 𝐽
2

𝑁
∑
𝑗=1

⃗𝑆𝑗 ⋅ ⃗𝑆𝑗+2, (1.94)

where the full quantum spin vector of a particle has been gathered as the operator ⃗𝑆𝑗,
with the quantum number 𝑆 = 1

2 . The Majumdar–Ghosh model [40, 41] has been shown
to exhibit two different ground states, both of which comprise only pairs of spins that
form singlets — one is shifted by one spin with respect to the other, as can be seen
in Figure 1.21. This gapped model is the basis of the more celebrated AKLT model, a
quantum spin model named for its authors, Affleck, Kennedy, Lieb, and Tasaki.

The AKLT model describes a one-dimensional lattice with spin-1 particles on its
vertices, in which a valence bond would be formed between each pair of neighboring
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Figure 1.21: Majumdar–Ghosh model. The dots represent particles with spin in the
one-dimensional chain, and the lines denote their full entanglement. The two variants of
entanglement in the chain are created by merely shifting the entanglement pattern by
one spin to the side.

Figure 1.22: AKLT model. The dots represent particles with spin in the one-dimensional
chain, and the lines denote their entanglement in the singlet state — their valence bonds.
The circled spins show the projection operators that form triplet, spin-1 objects.

particles, as is shown in Figure 1.22. Originally, the idea that led to the construction of
the AKLT model [30, 31] was a simple expansion of the Majumdar–Ghosh model — i.e.,
the question of what would happen if more than two spin-½ particles were bound in the
chain. As each of the singlets formed in the original model has a spin of 1, it was unclear
how these neighboring, effective-spin-1 particles could form entangled structures of a
higher spin. Because of the specific nature of these groups, the group representations of
the these symmetries are not trivially arranged. In order to preserve the representation
properties of the particles — i.e., the physical indices of the tensors — the representations
ascribed to their virtual indices must be determined.

Then, for a one-dimensional chain of spin-½ particles, the symmetries imposed on
the virtual indices of the tensors ascribed to these particles cannot be a spin-½ represen-
tation, because in that case the spin-½ properties of the particles couldn’t be realized.
This is because 1

2 ∉ 1
2 ⊗ 1

2 . A translationally-invariant solution would be to impose the
vector sum of the spin-0 and the spin-1 representations as the symmetry of the virtual
indices, seeing as 1

2 ⊗ 1
2 = 0⊕1. For a general case of a one-dimensional chain of particles

with an SU(𝑛) symmetry of a particular representation, it is possible to determine the
minimal number of particles in an entangled set — the minimal length. For example, for
the fundamental representation of the SU(2) group — the 2-dimensional spin-½ repre-
sentation — the minimal length is two, which informs the representational symmetries
on the virtual indices of the tensors assigned to the particles.

As each two adjacent spin-1 virtual particles, two of the relevant spin-½ particles
assume the total spin-0 state, preventing the two spin-1 particles from forming a larger
spin-2 structure. The Hamiltonian that describes the AKLT model setup is the following:

𝐻̂ =
𝑁

∑
𝑗=1

⃗𝑆𝑗 ⋅ ⃗𝑆𝑗+1 + 1
3 ( ⃗𝑆𝑗 ⋅ ⃗𝑆𝑗+1)2 . (1.95)

The simplicity of this model lies in the fact that its ground state can be represented
exactly, in a clear form, as a matrix product state [42, 43, 44].

The AKLT model can be described in the MPS formalism by assigning each particle
a tensor with one physical and two virtual indices, with the symmetries imposed on
the virtual indices of the tensors corresponding to the symmetry group of the particles.
Define |𝜑⟩ = (|01⟩ − |10⟩) as the singlet state and let 𝒫 ∶ ℂ2×2 → ℂ be defined as:

𝒫 = |+⟩ ⟨00| + |0⟩ ⟨01| + ⟨10|√
2

+ |−⟩ ⟨11| , . (1.96)

where kets |+⟩, |0⟩, and |−⟩ denote the standard spin-1 basis states, such that |𝑠 = 1, 𝑠𝑧 = 1⟩,
|𝑠 = 1, 𝑠𝑧 = 0⟩, and |𝑠 = 1, 𝑠𝑧 = −1⟩, respectively, with 𝑠𝑧 showing the eigenstates of
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the 𝑆𝑧 operator. If (𝑆𝑥, 𝑆𝑦, 𝑆𝑧) is the spin vector of the resultant spin-1 particle and
(𝑋𝑖, 𝑌𝑖, 𝑍𝑖) the spin vector of particle 𝑖, it follows:

𝑆𝑍𝒫 = (|11⟩ ⟨11| − |1 − 1⟩ ⟨1 − 1|) (|11⟩ ⟨00| + |10⟩ ⟨01| + ⟨10|√
2

+ |1 − 1⟩ ⟨11|) =
(1.97)

= |11⟩ ⟨00| − |1 − 1⟩ ⟨11| = (1.98)

= 𝒫𝑍1 + 𝑍2
2 (1.99)

𝑆𝑋𝒫 = |10⟩ (⟨11| + ⟨1 − 1|) + (|11⟩ + |1 − 1⟩) ⟨10|√
2

(|11⟩ ⟨00| + |10⟩ ⟨01| + ⟨10|√
2

+ |1 − 1⟩ ⟨11|) = (1.100)

= |10⟩ (⟨00| + ⟨11|)√
2

+ (|11⟩ + |1 − 1⟩) (⟨01| + ⟨10|)√
2

= (1.101)

= 𝒫𝑋1 + 𝑋2
2 (1.102)

𝑆𝑌 𝒫 = 𝒫𝑌1 + 𝑌2
2 . (1.103)

The motivator for the AKLT research paper [30, 31] was Haldane’s prediction [45, 46]
that, in the case of an integer-spin model, one-dimensional isotropic antiferromagnets
would have an energy gap above the ground state and exponentially decaying correla-
tions, a behavior that was experimentally observed for some systems at that time.

In recent years, PEPS have been established as a tool to study spin liquid wave
functions[47]. In particular, they might be used to provide a unified description of the
RVB model and the quantum dimer wave function, allowing for an interpolation to be
constructed between these two models, potentially identifying the topological phase.
PEPS transfer operator techniques also allow for the absence of a conventional order to
be certified by the spin degrees of freedom in the system.

The RVB model [48] was first proposed by P. W. Anderson and G. Baskaran in 1987
to serve as a theoretical model for the emergence of high-temperature superconductivity.
According to their theory, electrons in copper oxide lattices interact and form valence
bonds with one another, but when the lattice is doped, the constituent electrons can form
mobile Cooper pairs that support superconductivity. These systems can be described
by the Hamiltonian of the repulsive Hubbard model:

𝐻 = −𝑡 ∑
𝑖,𝑗

𝑐†
𝑖𝜎𝑐𝑗𝜎 + h.c. + 𝑈 ∑

𝑖
𝑛𝑖↑𝑛𝑖↓, (1.104)

where h.c. stands for the Hermitian conjugate of the previously listed summand. Such a
Hamiltonian can have a non-degenerate ground state when its spins are disordered. The
RVB state can, very simply, be denoted as

|RVB⟩ = ∑
𝐶

|𝐶⟩ , (1.105)

where 𝐶 is a full lattice covering of the lattice that consists of nearest-neighbor dimers.
The system of two spin-½ particles, which each have two basis states, ↑ and ↓, has

four basis states: ↑↑, ↑↓, ↓↑, and ↓↓. In other words,

|𝑠, 𝑚⟩ = |𝑠1, 𝑚1⟩ |𝑠2, 𝑚2⟩ = |𝑠1, 𝑚1⟩ ⊗ |𝑠2, 𝑚2⟩ , (1.106)
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ψ = + + . . .

Figure 1.23: Depiction of a resonating valence bond state, where each thick lines show
entangled pairs, 1√

2 (|01⟩ − |10⟩). The blue lines show the entanglement changes between
the two shown summands.

where the spins of the particles and their projections onto the 𝑧-axis are denoted by 𝑠𝑖
and 𝑚𝑖, respectively. This expression can be simplified by the use of Clebsch–Gordan
coefficients, 𝐶:

|𝑠, 𝑚⟩ = ∑
𝑚1+𝑚2

𝐶𝑠1𝑠2𝑠
𝑚1𝑚2𝑚 |𝑠1𝑚1⟩ |𝑠2𝑚2⟩ . (1.107)

In the case of spin-½ particles, 𝑠1 = 𝑠2 = 1
2 , and three of the four resultant states have

a total spin angular momentum of 1, forming a triplet, whereas the remaining state has
a spin angular momentum of 0. The triplet states are symmetric:

|1, 1⟩ =↑↑, (1.108)

|1, 0⟩ = (↑↓ + ↓↑) ⋅ 1√
2

, (1.109)

|1, −1⟩ =↓↓, (1.110)

whereas the singlet state is antisymmetric:

|0, 0⟩ = (↑↓ − ↓↑) ⋅ 1√
2

. (1.111)

The complete result of the calculation is a superposition of these states.

If the valence bond coverings of the RVB model do not produce a perfect set of
dimers, or if some of them break apart, free spins may appear in the lattice. Spin liquids
also support a form of exotic excitation named a spinon, carrying no charge but a nonzero
spin at temperatures close to absolute zero. These excitations can be fractional in nature.
The attempts at experimental realization of spin liquids are currently at the cutting edge
of solid state physics — the most famous example of a material that behaves as a spin
liquid is herbertsmithite [49], a mineral with a Kagome lattice, first discovered by the
mineralogist Herbert Smith. Competing experiments mark herbertsmithite as being a
gapless 𝑈(1) Dirac spin liquid and a ℤ2 spin liquid, which may make it an interesting
material for research.

Quantum spin liquids are a promising avenue for the creation of topological quantum
computers and quantum memories. By using quasiparticles with fractional excitations
named anyons and braiding their world lines, it may be possible to form quantum logical
gates resistant to decoherence, as the topological nature of the system preserves some of
the mathematical operations performed by the braiding. Anyons are quasiparticles found
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only in two-dimensional systems, named for their exchange statistics. Unlike bosons and
fermions, whose quantum state functions upon an exchange of indistinguishable particles
adopt a + or a − sign, respectively, when two indistinguishable anyons are exchanged,
the wave function of the system can gain a phase other than 𝜋 or 2𝜋 — it could be of
any real angle. I.e.,

|𝜓1𝜓2⟩ = 𝑒𝑖𝜃 |𝜓2𝜓1⟩ , (1.112)

where 𝜃 ∈ ℝ.
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Chapter 2. A Perturbative Solution to a …

One particularly interesting kind of order for a quantum many-body system is that of
many-body localization (MBL). Systems which exhibit MBL have some form of disorder
in their Hamiltonian. Typically, this makes it much harder to study their properties
than, for example, for a translationally invariant system, where one might be able to
exploit that symmetry to characterize its solutions. While methods to study such systems
certainly do exist, it would nonetheless be desirable to have more methods available in
the toolbox. That is why I devote this chapter to finding new methods of studying such
disordered systems analytically.

The contents of this chapter are divided into two parts. Starting in Section 2.1: An-
alytical Solutions for Local Observables in Perturbed Many-Body Systems,
I will first provide an introduction to standard perturbation theory as it is used in
quantum physics, and follow it with my derivations of general analytical solutions for
time-evolved local observables in a disordered quantum many-body system. The second
part of the chapter is Section 2.2: Stochastic Derivation of Disorder Averages,
which provides an in-depth derivation of a stochastic solution for the expectation val-
ues of observables in disordered quantum many-body systems, as well as examples of
application to a number of different systems that fall under this moniker. In further
subsections, the derived general solutions will be applied to more challenging setups,
where they will be conduit to more interesting conclusions about the effects of specific
sets of attributes a quantum many-body system may have.

Parts of the work presented in this chapter have been published as part of [1].

This chapter contains a first result in the application of a perturbative approach to
a many-body quantum system [50]. The system is a one-dimensional chain of particles,
with periodic boundary conditions. It is described by a Hamiltonian with both an
interaction (𝐻0) and a disorder (𝐻1) part:

𝐻 = 𝐻0 + 𝐻1 ≡ ∑
𝑗

𝜎𝑧
𝑗 𝜎𝑧

𝑗+1 + (∑
𝑗

ℎ𝑗𝜎𝑥
𝑗 + 𝐽𝑗𝜎𝑥

𝑗 𝜎𝑥
𝑗+1) , (2.1)

where ℎ𝑗, 𝐽𝑗 ≪ 1 are random variables from two different Gaussian distributions, with a
mean of 0. These variables vary the strength of the disorder acting on the system, and
are defined as small enough to warrant the use of a perturbative approach. Using the
method presented in [51], a lower bound can be set on the ground state energy of such
a system.

The first step of this approach is to obtain the exact expression for the expectation
value for an operator in such a system:

𝑀(𝑡) = 𝔼ℎ,𝐽 (𝑒−𝑖𝑡(𝐻0+𝜀𝐻1(ℎ,𝐽))𝑀𝑒𝑖𝑡(𝐻0+𝜀𝐻1(ℎ,𝐽))) . (2.2)

This can be done by applying the Dyson series to the expression in (2.2). The result of
this application is the perturbative expansion in the variables representing the disorder,
ℎ𝑗 and 𝐽𝑗. A more general result can be reached by use of the Choi–Jamiołkowski
isomorphism.

This analytical approach to a many-body Hamiltonian provides a prime opportunity
to examine the locality properties of the summands in the perturbative expansion. It
is possible to reach conclusions on the topic of the boundaries of the expectation values
for the locality of the different summands. Therefore, the next step in this approach
is to tackle the problem of the exact calculation of the expectation value for a strictly
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local operator — say, 𝜎𝑗. Following this, it would prove to be useful to compare the
obtained general results to the well-known derivations for many-body Hamiltonians for
which analytic solutions exist in the field of condensed matter physics.

Ultimately, the goal of this approach is to be able to express and calculate the values
of variables that describe a system that may exhibit the effects of many-body localization
(MBL) [52, 53, 50, 54, 55] in a concise way. Then, these calculations may be compared
to the numerical or experimentally measured values.

2.1 Analytical Solutions for Local Observables in Perturbed
Many-Body Systems

In this section I will present a method that builds upon the well-known mathematical
framework of analytical perturbation theory and enhances it, leading to a general per-
turbative solution to the time evolution of a local operator in a many-body system. To
accomplish this goal, I will utilize a diagrammatic framework not completely unlike that
used for tensor networks, which allows for a more intuitive understanding of my deriva-
tions and the obtained solutions. To achieve these goals, I will conduct perturbative
calculations on many-body Hamiltonians that are acted on by a random Gaussian dis-
order, using the Dyson series and the Choi–Jamiołkowski isomorphism. The completed
analytical calculations include the expectation values for time-evolved local operators for
both short (𝑡 ≈ 0) and long (𝑡 → ∞) temporal evolutions, but also some of the crucial
partition functions.

2.1.1 Perturbative Calculations
The calculations I will present in this subsection will be performed on a system that can
be described using the Hamiltonian of a general form of 𝐻 = 𝐻0 +𝜆𝑉 , where 𝐻0 is some
basic Hamiltonian, 𝑉 represents a perturbative potential acting on the system, whereas
0 < 𝜆 ≪ 1, such that ‖𝜆𝑉 ‖/‖𝐻0‖ ≪ 1. Results obtained for more specific Hamiltonian
forms will be used to better illustrate the results of the applied methods, but these can
be extended in a straightforward manner.

In a system in which part of the Hamiltonian corresponds to a minute perturbation,
𝜆𝑉 , I can construct an accurate wave function to describe it as:

|𝜓⟩ =
∞

∑
𝜅=0

𝜆𝜅 |𝜓𝜅⟩ , (2.3)

with the corresponding ground state energy being equal to:

𝐸 =
∞

∑
𝜏=0

𝜆𝜏𝐸𝜏 . (2.4)

In the zeroth order, the Schrödinger equation gives (𝐻0 − 𝐸0) |𝜓0⟩ = 0, and in the first
order the corresponding equation equals:

(𝐻0 − 𝐸0) |𝜓1⟩ = (𝐸1 − 𝑉 ) |𝜓0⟩ , (2.5)

with the solution of:

𝐸1 = ⟨𝜓0 | 𝑉 | 𝜓0⟩ ; (2.6)

|𝜓1⟩ = − 𝟙 − 𝑃0
𝐻0 − 𝐸0

𝑉 |𝜓0⟩ , (2.7)
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where 𝐸𝑘 and |𝜓𝑘⟩ respectively correspond to the energy and wave function of the system
when it is regarded in the 𝑘-th order of perturbation. The second order calculation leads
to:

(𝐻0 − 𝐸0) |𝜓2⟩ = (𝐸1 − 𝑉 ) |𝜓1⟩ + 𝐸2 |𝜓0⟩ , (2.8)

with
𝐸2 = ⟨𝜓0 | 𝑉 | 𝜓1⟩ . (2.9)

The second-order wave function can then be calculated as:

|𝜓2⟩ = − ( 𝟙 − 𝑃0
𝐻0 − 𝐸0

)
2

𝑉 𝑃0𝑉 |𝜓0⟩ + 𝟙 − 𝑃0
𝐻0 − 𝐸0

𝑉 𝟙 − 𝑃0
𝐻0 − 𝐸0

𝑉 |𝜓0⟩ . (2.10)

Normalizing this expression leads to:

|𝜓2⟩ = − [( 𝟙 − 𝑃0
𝐻0 − 𝐸0

)
2

𝑉 𝑃0𝑉 + ( 𝟙 − 𝑃0
𝐻0 − 𝐸0

𝑉 )
2

− 1
2𝑃0𝑉 ( 𝟙 − 𝑃0

𝐻0 − 𝐸0
)

2
𝑉 ] |𝜓0⟩ .

(2.11)
To adjust these equations to the problem at hand, I will introduce several mathematical
concepts and methods throughout the remainder of this subsection.

Dyson Series Expansion
To perform a Dyson series expansion, which can be used to perturbatively expand a
time-evolution operator [56], I take an operator

𝑊(𝑠) ≡ 𝑒−𝑠𝐴𝑒𝑠(𝐴+𝜀𝐵), (2.12)

where 𝐴 and 𝐵 are local operators in this system, 𝑠 ∈ ℂ, and 𝜀 ≪ 1 is a small
parameter, and define

𝐵(𝑠) ≡ 𝑒−𝑠𝐴𝐵𝑒𝑠𝐴. (2.13)

Then, it holds that

d𝑊(𝑠)
d𝑠 = −𝐴𝑒−𝑠𝐴𝑒𝑠(𝐴+𝜀𝐵) + 𝑒−𝑠𝐴(𝐴 + 𝜀𝐵)𝑒𝑠(𝐴+𝜀𝐵) = {[𝐴.𝑒−𝑠𝐴] = 0} = (2.14)

= 𝜀𝑒−𝑠𝐴𝐵𝑒𝑠(𝐴+𝜀𝐵) = 𝜀𝑒−𝑠𝐴𝐵𝑒𝑠𝐴𝑒−𝑠𝐴𝑒𝑠(𝐴+𝜀𝐵) = {𝐵(𝑠) ≡ 𝑒−𝑠𝐴𝐵𝑒𝑠𝐴} =
(2.15)

= 𝜀𝐵(𝑠)𝑊(𝑠). (2.16)

It follows that

∫
𝑝

0

d𝑊(𝑠)
d𝑠 d𝑠 = 𝜀 ∫

𝑝

0
𝐵(𝑠)𝑊(𝑠)d𝑠 = 𝑊(𝑝) − 𝑊(0) (2.17)

𝑊0(𝑝) = 𝑊(0) + 𝜀 ∫
𝑝

0
𝐵(𝑠)𝑊(𝑠)d𝑠, (2.18)

and by performing the integration of ∫𝑝
0

d𝑊(𝑠)
d𝑠 , I can obtain 𝑊(𝑠).

∫
𝑝

0

d𝑊(𝑠)
d𝑠 d𝑠 =𝜀 ∫

𝑝

0
𝐵(𝑠)𝑊(𝑠)d𝑠 = (2.19)

=𝑊(𝑝) − 𝑊(0) (2.20)
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This gives the solution of:

𝑊0(𝑝) = 𝑊(0) + 𝜀 ∫
𝑝

0
𝐵(𝑠)𝑊(𝑠)d𝑠 (2.21)

in the zeroth order. By inputting the obtained expression into the integral within
it, I can obtain further orders of iteration for this solution. As an example, the first
iteration gives:

𝑊1(𝑝) = 𝑊(0) + 𝜀 ∫
𝑝

0
𝐵(𝑠) (𝑊(0) + 𝜀 ∫

𝑠

0
𝐵(𝑠1)𝑊(𝑠1)d𝑠1) d𝑠 = (2.22)

= 𝑊(0) + 𝜀 ∫
𝑝

0
𝐵(𝑠)𝑊(0)d𝑠 + 𝜀2 ∫

𝑝

0
𝐵(𝑠) ∫

𝑠

0
𝐵(𝑠1)𝑊(𝑠1)d𝑠1d𝑠, (2.23)

whereas the second one gives:

𝑊2(𝑝) = 𝑊(0) + 𝜀 ∫
𝑝

0
𝐵(𝑠)𝑊(0)d𝑠 + 𝜀2 ∫

𝑝

0
𝐵(𝑠) ∫

𝑠

0
𝐵(𝑠1)

(𝑊(0) + 𝜀 ∫
𝑠1

0
𝐵(𝑠2)𝑊(0)d𝑠2 + 𝜀2 ∫

𝑠1

0
𝐵(𝑠2) ∫

𝑠2

0
𝐵(𝑠3)𝑊(𝑠3)d𝑠3d𝑠2) d𝑠1d𝑠 =

(2.24)

= 𝑊(0) + 𝜀 ∫
𝑝

0
𝐵(𝑠)𝑊(0)d𝑠 + 𝜀2 ∫

𝑝

0
𝐵(𝑠) ∫

𝑠

0
𝐵(𝑠1)𝑊(0)d𝑠1d𝑠+

+ 𝜀3 ∫
𝑝

0
𝐵(𝑠) ∫

𝑠

0
𝐵(𝑠1) ∫

𝑠1

0
𝐵(𝑠2)𝑊(0)d𝑠2d𝑠1d𝑠+

+ 𝜀4 ∫
𝑝

0
𝐵(𝑠) ∫

𝑠

0
𝐵(𝑠1) ∫

𝑠1

0
𝐵(𝑠2) ∫

𝑠2

0
𝐵(𝑠3)𝑊(𝑠3)d𝑠3d𝑠2d𝑠1d𝑠. (2.25)

At the 𝑛-th iteration of inputting the definition of 𝑊(𝑝) into (2.21), a solution emerges
that contains factors up to the 2𝑛-th order in 𝜀:

𝑊𝑛(𝑝) = 𝑊(0)+
2𝑛−2
∑
𝑘=0

𝜀𝑘+1 ∫
𝑝

0
d𝑠1 ∫

𝑠1

0
d𝑠2 … ∫

𝑠𝑘

0
d𝑠𝑘+1𝐵(𝑠1) … 𝐵(𝑠𝑘+1)𝑊(0)

+𝜀2𝑛 ∫
𝑝

0
d𝑠1 ∫

𝑠1

0
d𝑠2 … ∫

𝑠2𝑛−1

0
d𝑠2𝑛𝐵(𝑠1) … 𝐵(𝑠2𝑛)𝑊(𝑠2𝑛). (2.26)

Notably, when 𝑛 → ∞, the final summand in the expression above can be discarded.
Finally, to obtain the expression for 𝑒𝑝(𝐴+𝜀𝐵), the following is valid:

𝑒𝑝(𝐴+𝜀𝐵) = 𝑒𝑝𝐴𝑊(𝑝). (2.27)

Let the examined system be defined by a Hamiltonian of the type

𝐻 = 𝐻0 + 𝐻𝜈(ℎ, 𝐽), (2.28)

where 𝐻𝜈(ℎ, 𝐽) is a small perturbation that depends on parameters −1 ≫ ℎ, 𝐽 ≪ 1,
which take random values in a Gaussian distribution of the form 𝑁(0, 𝜂2

ℎ,𝐽), as shown
in Figure 2.1 and defined by:

𝑁(𝑥, 𝜂2) = 𝑒− 𝑥2
2𝜂2

𝜂
√

2𝜋 . (2.29)

Specifically, let
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Figure 2.1: Gaussian (normal) distribution (2.29) with various values of variance, 𝜂2.

𝐻0 = ∑
𝑗

𝜎𝑧
𝑗 𝜎𝑧

𝑗+1, 𝐻𝜈(ℎ, 𝐽) = ∑
𝑗

(ℎ𝑗𝜎𝑥
𝑗 + 𝐽𝑗𝜎𝑥

𝑗 𝜎𝑥
𝑗+1) . (2.30)

In the Heisenberg picture, the time evolution of an operator 𝑀 is determined as 𝑀(𝑡) =
𝑒−𝑖𝑡𝐻𝑀𝑒𝑖𝑡𝐻, so it follows that

𝑀(𝑡) = 𝔼ℎ,𝐽 (𝑒−𝑖𝑡(𝐻0+𝜀𝐻𝜈(ℎ,𝐽))𝑀𝑒𝑖𝑡(𝐻0+𝜀𝐻𝜈(ℎ,𝐽))) , (2.31)

where 𝔼ℎ,𝐽 marks the expectation value with respect to the variables ℎ and 𝐽 . From
(2.26), 𝑊(−𝑖𝑡) = 𝑒𝑖𝑡𝐻0𝑒−𝑖𝑡(𝐻0+𝜀𝐻𝜈), so I can define:

𝜉(±𝑖𝑡) ≡ 𝑒±𝑖𝑡(𝐻0+𝜀𝐻𝜈) = 𝑒±𝑖𝑡𝐻0𝑊(±𝑖𝑡). (2.32)

When 𝑛 → ∞, it holds that 𝜉𝑛(𝑝) → 𝜉(𝑝), such that:

𝜉(±𝑖𝑡) =𝑒±𝑖𝑡𝐻0(𝑊(0)+

+
∞

∑
𝑘=0

𝜀𝑘+1 ∫
±𝑖𝑡

0
d𝑠1 ∫

𝑠1

0
d𝑠2 … ∫

𝑠𝑘

0
d𝑠𝑘+1𝐻𝜈(𝑠1) … 𝐻𝜈(𝑠𝑘+1)𝑊(0)). (2.33)

From the definition of 𝐵(𝑠) in (2.13), I can define:

𝐻𝜈(𝑠𝑘) ≡ 𝑒−𝑠𝑘𝐻0𝐻𝜈𝑒𝑠𝑘𝐻0 ., (2.34)

which gives:

𝑀(𝑡) = lim
𝑛→∞

𝔼ℎ,𝐽(𝑒−𝑖𝑡𝐻0(𝑊(0)+

+
2𝑛−2
∑
𝑘=0

𝜀𝑘+1 ∫
−𝑖𝑡

0
d𝑠1 ∫

𝑠1

0
d𝑠2 … ∫

𝑠𝑘

0
d𝑠𝑘+1𝐻𝜈(𝑠1) … 𝐻𝜈(𝑠𝑘+1)𝑊(0))⋅

𝑀𝑒𝑖𝑡𝐻0(𝑊(0) +
2𝑛−2
∑
𝑘=0

𝜀𝑘+1 ∫
𝑖𝑡

0
d𝑠1 ∫

𝑠1

0
d𝑠2 … ∫

𝑠𝑘

0
d𝑠𝑘+1𝐻𝜈(𝑠1) … 𝐻𝜈(𝑠𝑘+1)𝑊(0))).

(2.35)

For 𝑥 ∈ {ℎ, 𝐽}, it is clear that

𝔼𝑥(𝑥𝜁) = {0, if 𝜁 is odd;
𝜂𝜁

𝑥(𝜁 − 1)!!, if 𝜁 is even,
(2.36)
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Figure 2.2: Expectation values for 𝑥𝜁, where 𝑥 is a random variable from the Gaussian
distribution 𝑁 (0, 𝜂2), where 𝜁 ∈ ℕ and 𝜂 = {0.2, 0.1}. The figure includes an inset of
the higher values of 𝜁, in the logarithmic scale.

as can be seen in Figure 2.2, so 𝔼ℎ,𝐽(ℎ𝛼𝐽𝛽) = 𝔼ℎ(ℎ𝛼)𝔼𝐽(𝐽𝛽) ≠ 0 only if both 𝛼 and 𝛽
are even. Thus, all odd orders of 𝑀(𝑡) are equal to zero. In the zeroth order, 𝑀(𝑡)0 =
𝑒−𝑖𝑡𝐻0𝑀𝑒𝑖𝑡𝐻0 , and in the higher even orders it follows from (2.35).

In the spirit of the tensor network framework, I can represent my solutions dia-
grammatically to make them easier to grasp intuitively. As such, I can define a visual
representation for a local operator acting in the system, 𝑀 :

𝑀 ∼ 𝑀 . (2.37)

This operator evolves in time in the Heisenberg picture as:

𝑀𝑡 = 𝑇 𝑀 𝑇 † , (2.38)

where
𝑇 ∼ 𝑒−𝑖𝑡𝐻, (2.39)

𝑡 represents time, and 𝑖 is the imaginary unit. The disorder-averaged expectation value
of this time-evolved operator can then be expressed as:

𝔼𝜀 ( 𝑀 ) = 𝜓 𝑇 𝑀 𝑇 † 𝜓 , (2.40)

where 𝜀 is the disorder variable. By using the Dyson series expansion, an operator
𝑊(±𝑖𝑡) = 𝑒∓𝑖𝑡𝐴𝑒±𝑖𝑡(𝐴+𝜀𝐵), where 𝐴 and 𝐵 are local operators, 𝑡 ∈ ℂ, and |𝜀| ≪ 1, can
be written as a nested series in 𝜀:

𝑊𝑛(𝑝) = 𝑊(0) + 𝜀 ∫
𝑝

0
𝐵(𝑠)𝑊𝑛−1(𝑠)d𝑠. (2.41)

If the temporal evolution operator 𝑇0 ∼ 𝑒−𝑖𝑡𝐻0 is defined by

𝑇0 𝑊𝑛 ≡ 𝜉𝑛 (2.42)

up to the order 𝑛 in 𝜀, then the temporal evolution of the operator 𝑀 up to the
order 𝜉 can be depicted as:

𝑀𝑡 = 𝜉†
𝑛 𝑊 𝑇 † . (2.43)
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If the tensor 𝑠𝑘 is defined to represent 𝑒−𝑠𝑘𝐻0𝐻𝜈𝑒𝑠𝑘𝐻0 , then 𝜉 can be written
in the 𝑛-th order of 𝜀, as follows:

𝜉 = 𝑇0 (𝟙 +
2𝑛−2
∑
𝑘=0

𝜀𝑘+1 ∫
𝑖𝑡

0
d𝑠1 ∫

𝑠1

0
d𝑠2 … ∫

𝑠𝑘

0
d𝑠𝑘+1 𝑠1 𝑠2 … 𝑠𝑘+1 +

+ 𝜀2𝑛 ∫
𝑖𝑡

0
d𝑠1 ∫

𝑠1

0
d𝑠2 … ∫

𝑠2𝑛−1

0
d𝑠2𝑛 𝑠1 𝑠2 … 𝑠2𝑛 𝑒−𝑠2𝑛 𝐻0𝑒𝑠2𝑛 𝐻),

(2.44)

where the final summand may be disregarded for small 𝜀. The expectation value of a local
observable 𝑀(𝑡) within the system described by the Hamiltonian originally presented in
(2.28) can then be calculated as:

𝑀(𝑡) = 𝔼ℎ,𝐸 ( 𝜉 M 𝜉† ) . (2.45)

Note that, as shown in (2.36), because the elected Gaussian distributions of the random
variables ℎ and 𝐽 are symmetric around zero, the results in all odd orders in 𝜀 vanish;
for even orders in 𝜁, it holds that 𝔼𝑥(𝑥𝜁) = 𝜂𝜁

𝑘(𝜁 − 1)!!.

Choi–Jamiołkowski Isomorphism
In the Choi–Jamiołkowski isomorphism, an operator 𝑀 that can be written out in
some basis as 𝑀 = ∑𝑗,𝑘 𝑀𝑗,𝑘 |𝑗⟩ ⟨𝑘| can also be represented in a so-called state form,
such that

𝑀 = ∑
𝑗,𝑘

𝑀𝑗,𝑘 |𝑗⟩ ⊗ |𝑘⟩ . (2.46)

In this mapping, the procedure of acting on the operator 𝑀 from the left by an
operator 𝐴 may be written as 𝐿𝐴(|𝑀⟩) ≡ |𝐴𝑀⟩ ≡ 𝐴 ⊗ 𝕀 |𝑀⟩, while acting on it from
the right with the operator 𝐴 may be written as 𝑅𝐴(|𝑀⟩) ≡ |𝑀𝐴⟩ ≡ 𝕀 ⊗ 𝐴𝑇 |𝑀⟩. It
holds that

(𝐿𝐴 − 𝑅𝐴) |𝑀⟩ = |[𝐴, 𝑀]⟩ . (2.47)

Defining
Ξ𝐴 ≡ 𝐴 ⊗ 𝕀 − 𝕀 ⊗ 𝐴†, (2.48)

it follows that
∣𝑒−𝑖𝑡𝐻𝑀𝑒𝑖𝑡𝐻⟩ = 𝑒−𝑖𝑡Ξ𝐻 |𝑀⟩ . (2.49)

When this isomorphism is applied to the system and problem at this isomorphism
is applied to the system and problem at hand, it can be tackled in a much simpler
fashion. Then, it follows that

𝑒−𝑖𝑡(Ξ𝐻0+𝜀Ξ(𝐻𝜈)) |𝑀⟩ = 𝑒−𝑖𝑡Ξ𝐻0𝑊 (−𝑖𝑡) |𝑀⟩ = (2.50)

= |𝑀0 (𝑡)⟩ + 𝜀 ∫
−𝑖𝑡

0
(∣𝑒−𝑖𝑡𝐻0 [𝑒−𝑠𝐻0𝐻𝜈𝑒𝑠𝐻0 , 𝑀] 𝑒𝑖𝑡𝐻0⟩) d𝑠 + (𝜀2 ∫

−𝑖𝑡

0
…) |𝑀⟩ .

(2.51)

For a strictly local operator 𝑀 , the zeroth order of the series is a local object. The
Hamiltonian part in the calculated commutator in the first order in 𝜀 is a 2-local object,
which makes the commutator 3-local, and the whole contribution in the first order a
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3-local object. For the second order, the calculation leads to the following result:

𝜀2 ∫
−𝑖𝑡

0
𝑒−𝑖𝑡Ξ𝐻0𝑒−𝑠Ξ𝐻0Ξ𝐻𝜈𝑒𝑠Ξ𝐻0 ∫

𝑠

0
𝑒−𝑠1Ξ𝐻0Ξ𝐻𝜈𝑒𝑠1Ξ𝐻0d𝑠1d𝑠 |𝑀⟩ =

= 𝑒2 ∫
−𝑖𝑡

0
∫

𝑠

0
∣𝑒−𝑖𝑡𝐻0 [𝐻𝜈(𝑠), [𝐻𝜈 (𝑠1) , 𝑀]] 𝑒𝑖𝑡𝐻0⟩ d𝑠1d𝑠. (2.52)

Because the first commutator is 3-local, the whole expression is 5-local. This formulation
also allows for the general solution to be constructed in the (𝑘 + 1)-th order, dubbed
Ο𝑘+1:

𝑂𝑘+1 = 𝑒−𝑖𝑡Ξ𝐻0𝜀𝑘+1 ∫
−𝑖𝑡

0
d𝑠1 ∫

𝑠1

0
d𝑠2 … ∫

𝑠𝑘

0
d𝑠𝑘+1Ξ𝐻𝜈(𝑠1)Ξ𝐻𝜈(𝑠2) … Ξ𝐻𝜈(𝑠𝑘+1) |𝑀⟩ =

(2.53)

=𝜀𝑘+1 ∫
−𝑖𝑡

0
∫

𝑠1

0
… ∫

𝑠𝑘

0
∣𝑒−𝑖𝑡𝐻0 [𝐻𝜈(𝑠1), [𝐻𝜈(𝑠2), … [𝐻𝜈(𝑠𝑘+1), 𝑀]]] 𝑒𝑖𝑡𝐻0⟩ d𝑠1d𝑠2 … d𝑠𝑘+1.

(2.54)

In the (𝑘 + 1)-th order, the correction is (1 + (𝑘 + 1) ⋅ 2) = (2𝑘 + 3)-local. In other
words, in the 𝑘-th order it is (2𝑘 + 1)-local. This result holds for a system where 𝐻0 is
a sum of strictly local operators. For a system where 𝐻0 is a sum of 2-local operators,
the 𝑘-th order correction is (6𝑘 + 3)-local.

In the Choi–Jamiołkowski isomorphism [57, 58, 59], instead of being treated as a
tensor vulgaris of solid state physics and defined as 𝑀 = ∑𝑗𝑘 𝑀𝑗𝑘 |𝑗⟩ ⟨𝑘|, an operator

𝑀 may be considered as ∑𝑗𝑘 𝑀𝑗𝑘 |𝑗⟩ ⊗ |𝑘⟩, or
𝑀

in the newly constructed
visual representation. All further calculations on thus represented constructs may then
proceed as is usual for the original mathematical definitions of the forms themselves.

This mapping allows for a number of interesting manipulations, as can be shown
in the case of commutators. The product of an operator 𝑀 and an appropriately

defined operator 𝐴 that acts on it from the left, i.e.,

𝐿𝐴 (|𝑀⟩) ≡ |𝐴𝑀⟩ ≡ 𝐴 ⊗ 𝟙 |𝑀⟩ , (2.55)

can be depicted as:

𝐿𝐴
⎛⎜
⎝

𝑀 ⎞⎟
⎠

≡
𝐴 𝑀

. (2.56)

Similarly, if this operator is acted on by an appropriate operator 𝐴 from the right,

𝑅𝐴 (|𝑀⟩) ≡ |𝑀𝐴⟩ ≡ 𝟙 ⊗ 𝐴𝑇 |𝑀⟩ , (2.57)

which can be shown as:

𝑅𝐴
⎛⎜
⎝

𝑀 ⎞⎟
⎠

≡
𝑀 𝐴

=
𝐴𝑇

𝑀
. (2.58)

It holds that (𝐿𝐴 − 𝑅𝐴) |𝑀⟩ = |[𝐴, 𝑀]⟩, or

(𝐿𝐴 − 𝑅𝐴) ⎛⎜
⎝

𝑀 ⎞⎟
⎠

= ⎛⎜
⎝

𝐴
−

𝐴𝑇
⎞⎟
⎠

𝑀
. (2.59)
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Thus, if I define that

Ξ ( 𝐴 ) ≡
𝐴

−
𝐴†

(2.60)

and recognize that it holds that 𝑒−𝑖𝑡𝐻𝑀𝑒𝑖𝑡𝐻 can be simplified using

𝑒−𝑖𝑡Ξ𝐻 ∼ Ξ (2.61)

in the Choi–Jamiołkowski mapping, it holds that:

𝑇 𝑀 𝑇 †
= Ξ

𝑀
. (2.62)

From 𝑒−𝑖𝑡(Ξ𝐻0+𝜀Ξ𝐻𝜈) |𝑀⟩ = 𝑒−𝑖𝑡Ξ𝐻0𝑊0(−𝑖𝑡) |𝑀⟩, it follows that the summands of the
expansion in the 𝑘-th order can be calculated using this expression:

𝜉𝑘 =𝜀𝑘 ⋅ ∫
−𝑖𝑡

0
∫

𝑠1

0
∫

𝑠2

0
… ∫

𝑠𝑘−1

0

𝑇0

𝑇 †
0

𝑠1 𝑠2 … 𝑠𝑘
𝑀

d𝑠1d𝑠2 … d𝑠𝑘.

(2.63)

I hope that this short excursion into the creation of diagrammatic notation has
provided sufficient illustration of its use, not only for tensor network problems, but also
for the efficient management of quite complicated equations in a readable manner. This
approach is not shown further than its presentation here, but it may be explored in
future applications.

Integrating 𝐻𝜈 (𝑠𝑘)
A useful expression to calculate in this problem is the integral of 𝐻𝜈(𝑠𝑘) in the setup
of the derived expansion.

Under the assumption that Ξ𝐻0 is invertible, the following is valid:

∫
𝑥

0
𝐻𝜈(𝑠𝑘)d𝑠𝑘 = ∫

𝑥

0
𝑒−𝑠𝑘𝐻0𝐻𝜈𝑒𝑠𝑘𝐻0d𝑠𝑘 = (2.64)

= ∫
𝑥

0
𝑒−𝑠𝑘Ξ𝐻0 |𝐻𝜈⟩ d𝑠𝑘 = (2.65)

= [(−Ξ𝐻0)−1𝑒−𝑠𝑘Ξ𝐻0]𝑥
0 |𝐻𝜈⟩ d𝑠𝑘 = (2.66)

= ((−Ξ𝐻0)−1𝑒−𝑥Ξ𝐻0 − (−Ξ𝐻0)−1) |𝐻𝜈⟩ d𝑠𝑘 = (2.67)
=(−Ξ𝐻0)−1(𝑒−𝑥Ξ𝐻0 − 𝕀) |𝐻𝜈⟩ d𝑠𝑘 = (2.68)

= ((−𝐻0) ⊗ 𝕀 − 𝕀 ⊗ (−𝐻0)†)−1 (𝑒−𝑥(𝐻0⊗𝕀−𝕀⊗𝐻†
0) − 𝕀) |𝐻𝜈⟩ d𝑠𝑘, (2.69)

which is an expression that can be solved in a straightforward manner. To proceed, the
expression to be calculated first must be of the form:

∫
𝑥

0
𝑒−𝑠𝑘Ξ(∑𝑗 𝜎𝑧

𝑗 𝜎𝑧
𝑗+1)d𝑠𝑘 |𝐻𝜈⟩ . (2.70)
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Then,

∫
𝑥

0
𝑒−𝑠𝑘𝐻0𝐻𝜈𝑒𝑠𝑘𝐻0d𝑠𝑘 = ∫

𝑥

0
𝑒−𝑠𝑘𝐻0

𝑁
∑
𝑗=1

(ℎ𝑗𝜎𝑥
𝑗 + 𝐽𝑗𝜎𝑥

𝑗 𝜎𝑥
𝑗+1) 𝑒𝑠𝑘𝐻0d𝑠𝑘 = (2.71)

=
𝑁

∑
𝑗=1

ℎ𝑗 ∫
𝑥

0
𝑒−𝑠𝑘𝐻0𝜎𝑥

𝑗 𝑒𝑠𝑘𝐻0d𝑠 +
𝑁

∑
𝑗=1

𝐽𝑗 ∫
𝑥

0
𝑒−𝑠𝑘𝐻0𝜎𝑥

𝑗 𝜎𝑥
𝑗+1𝑒𝑠𝑘𝐻0d𝑠𝑘 ≡ (2.72)

≡Α + Β. (2.73)

Note that the operators 𝜎𝑧
𝑗 all commute, which gives:

𝑒−𝑠𝑘𝐻0 = 𝑒−𝑠𝑘 ∑𝑁
𝑗=1 𝜎𝑧

𝑗 𝜎𝑧
𝑗+1 =

𝑁
∏
𝑗=1

𝑒−𝑠𝑘𝜎𝑧
𝑗 𝜎𝑧

𝑗+1 , (2.74)

and the following relation holds:

[𝜎𝑧
𝑗 𝜎𝑧

𝑗+1, 𝜎𝑥
𝑙 ] = 0, for 𝑗 ≠ 𝑙 ≠ 𝑗 + 1. (2.75)

Then, it follows for 𝐴:

𝐴 =
𝑁

∑
𝑗=1

ℎ𝑗 ∫
𝑥

0
𝑒−𝑠𝑘𝐻0𝜎𝑥

𝑗 𝑒𝑠𝑘𝐻0d𝑠𝑘 = (2.76)

=
𝑁

∑
𝑗=1

ℎ𝑗𝜎𝑥
𝑗 ∫

𝑥

0
𝑒2𝑠𝑘𝜎𝑧

𝑗−1𝜎𝑧
𝑗 𝑒2𝑠𝑘𝜎𝑧

𝑗 𝜎𝑧
𝑗+1d𝑠𝑘. (2.77)

The calculation for 𝐵 is analogous1.

𝐵 =
𝑁

∑
𝑗=1

𝐽𝑗 ∫
𝑥

0
𝑒−𝑠𝑘𝐻0𝜎𝑥

𝑗 𝜎𝑥
𝑗+1𝑒𝑠𝑘𝐻0d𝑠𝑘 = (2.78)

=
𝑁

∑
𝑗=1

𝐽𝑗𝜎𝑥
𝑗 𝜎𝑥

𝑗+1 ∫
𝑥

0
𝑒2𝑠𝑘𝜎𝑧

𝑗−1𝜎𝑧
𝑗 𝑒2𝑠𝑘𝜎𝑧

𝑗+1𝜎𝑧
𝑗+2d𝑠𝑘 (2.79)

The matrices in the exponents are not invertible, but they are diagonal. Thus, Α and Β
can be integrated as follows.

Α =
𝑁

∑
𝑗=1

ℎ𝑗𝜎𝑥
𝑗 ∫

𝑥

0
𝑒2𝑠𝑘𝜎𝑧

𝑗−1𝜎𝑧
𝑗 𝑒2𝑠𝑘𝜎𝑧

𝑗 𝜎𝑧
𝑗+1d𝑠𝑘 = (2.80)

=
𝑁

∑
𝑗=1

ℎ𝑗𝜎𝑥
𝑗 ∫

𝑥

0
𝑒2𝑠𝑘(𝜎𝑧

𝑗−1𝜎𝑧
𝑗 +𝜎𝑧

𝑗 𝜎𝑧
𝑗+1)d𝑠𝑘 = (2.81)

=
𝑁

∑
𝑗=1

ℎ𝑗𝜎𝑥
𝑗 ∫

𝑥

0
𝑒2𝑠𝑘 diag(2,0,−2,0,0,−2,0,2)d𝑠𝑘 (2.82)

𝐵 =
𝑁

∑
𝑗=1

𝐽𝑗𝜎𝑥
𝑗 𝜎𝑥

𝑗+1 ∫
𝑥

0
𝑒2𝑠𝑘𝜎𝑧

𝑗−1𝜎𝑧
𝑗 𝑒2𝑠𝑘𝜎𝑧

𝑗+1𝜎𝑧
𝑗+2d𝑠𝑘 = (2.83)

=
𝑁

∑
𝑗=1

𝐽𝑗𝜎𝑥
𝑗 𝜎𝑥

𝑗+1 ∫
𝑥

0
𝑒2𝑠𝑘(𝜎𝑧

𝑗−1𝜎𝑧
𝑗 +𝜎𝑧

𝑗+1𝜎𝑧
𝑗+2)d𝑠𝑘 = (2.84)

=
𝑁

∑
𝑗=1

𝐽𝑗𝜎𝑥
𝑗 𝜎𝑥

𝑗+1 ∫
𝑥

0
𝑒2𝑠𝑘 diag(2,0,0,2,0,−2,−2,0,0,−2,−2,0,2,0,0,2)d𝑠𝑘 (2.85)

1See details in the Appendix here.
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This expression can be evaluated for the individual elements of the diagonal matrices:

∫
𝑥

0
𝑒0d𝑠𝑘 = ∫

𝑥

0
𝕀d𝑠𝑘 = (2.86)

= [𝑠𝑘]𝑥0 = 𝑥 (2.87)

∫
𝑥

0
𝑒4𝑠𝑘d𝑠𝑘 = [𝑒4𝑠𝑘

4 ]
𝑥

0
= (2.88)

=𝑒4𝑥 − 1
4 (2.89)

∫
𝑥

0
𝑒−4𝑠𝑘d𝑠𝑘 = [−𝑒−4𝑥

4 ]
𝑥

0
= (2.90)

=−𝑒−4𝑥 + 1
4 (2.91)

The full integral then gives:

∫
𝑥

0
𝑒−𝑠𝑘𝐻0𝐻𝜈𝑒𝑠𝑘𝐻0d𝑠𝑘 = 𝐴 + 𝐵 = (2.92)

=
𝑁

∑
𝑗=1

ℎ𝑗𝜎𝑥
𝑗 ∫

𝑥

0
𝑒2𝑠𝑘 diag(2,0,−2,0,0,−2,0,2)d𝑠𝑘+

+
𝑁

∑
𝑗=1

𝐽𝑗𝜎𝑥
𝑗 𝜎𝑥

𝑗+1 ∫
𝑥

0
𝑒2𝑠𝑘 diag(2,0,0,2,0,−2,−2,0,0,−2,−2,0,2,0,0,2)d𝑠𝑘 = (2.93)

=
𝑁

∑
𝑗=1

ℎ𝑗𝜎𝑥
𝑗 diag(𝑒4𝑥 − 1

4 , 𝕀, −𝑒−4𝑥 + 1
4 , 𝕀, 𝕀, −𝑒−4𝑖𝑥 + 1

4 , 𝕀, 𝑒4𝑥 − 1
4 )+

+
𝑁

∑
𝑗=1

𝐽𝑗𝜎𝑥
𝑗 𝜎𝑥

𝑗+1 diag(𝑒4𝑥 − 1
4 , 𝕀, 𝕀, 𝑒4𝑥 − 1

4 , 𝕀, −𝑒−4𝑥 + 1
4 , −𝑒−4𝑥 + 1

4 , 𝕀,

𝕀, −𝑒−4𝑥 + 1
4 , −𝑒−4𝑥 + 1

4 , 𝕀, 𝑒4𝑥 − 1
4 , 𝕀, 𝕀, 𝑒4𝑥 − 1

4 ) (2.94)

From (2.33), the lowest order contributions in 𝜀 can be calculated in a straightforward
manner:

𝜖𝑘+1 ∫
−𝑖𝑡

0
∫

𝑠1

0
… ∫

𝑠𝑘

0
|𝑒−𝑖𝑡𝐻0 [𝐻𝜈(𝑠1), [𝐻𝜈(𝑠2), … [𝐻𝜈(𝑠𝑘+1, 𝑀] … ]]𝑒𝑖𝑡𝐻0⟩d𝑠1d𝑠2 … d𝑠𝑘+1 =

(2.95)

= 𝜖𝑘+1 ∫
−𝑖𝑡

0
∫

𝑠1

0
… ∫

𝑠𝑘−1

0
|𝑒−𝑖𝑡𝐻0 [𝐻𝜈(𝑠1), [𝐻𝜈(𝑠2), …

[∫
𝑠𝑘

0
𝐻𝜈(𝑠𝑘+1)d𝑠𝑘+1, 𝑀] … ]]𝑒𝑖𝑡𝐻0⟩d𝑠1d𝑠2 … d𝑠𝑘. (2.96)

As the basic integral has been evaluated, it is possible to use the result to subsequently
evaluate the main derived expression for the time-evolved expectation value. However,
the result in (2.94) doesn’t seem to be practical for further analytical calculations. It
would also be possible to write out the solution as a linear combination of projectors in
the 𝜎𝑗𝜎𝑗+1 vector space.
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Application to a System with a Strictly Local Operator
This subsection covers the exact calculation with a strictly local operator 𝑀 . The
examples I have chosen to present are fairly simple and quite demonstrative, but the
performed methods can be applied in the same manner to a more complex set of
locally-acting operators in a many-body system. In the following I will calculate and
describe the temporal evolution of local operators in perturbed a many-body system
within several orders of perturbation and demonstrate the effects minute properties
of the system’s Hamiltonian may have on the derived values.

In the first case, I choose 𝑀 = 𝜎𝑧
𝑗 , or

𝑀 = 𝕀 ⊗ 𝕀 ⊗ … ⊗ 𝜎𝑧
𝑗 ⊗ … ⊗ 𝕀 ⊗ 𝕀 = 𝜎𝑧

𝑗 . (2.97)

In a second variant, let

𝐹 = 𝕀 ⊗ 𝕀 ⊗ … ⊗ 𝜎𝑥
𝑗 ⊗ … ⊗ 𝕀 ⊗ 𝕀 = 𝜎𝑥

𝑗 . (2.98)

The system’s Hamiltonian is of the form

𝐻 = ∑
𝑘

𝜎𝑧
𝑘𝜎𝑧

𝑘+1 + ℎ𝑘𝜎𝑥
𝑘 , (2.99)

where the variables ℎ𝑘 take values in a Gaussian distribution stated in (2.29). The
expression to be calculated is the following:

𝑀(𝑡) = 𝔼ℎ (𝑒−𝑖𝑡(𝐻0+𝜀𝐻𝜈(ℎ))𝑀𝑒𝑖𝑡(𝐻0+𝜀𝐻𝜈(ℎ))) , (2.100)

which is easier when broken down into contributions in order of correction.
Henceforth the corrections in the order 𝑘 of 𝜀 are going to be denoted with Ω𝑘, such

that
𝑀(𝑡) = ∑

𝑘
Ω𝑘(𝜀𝑘). (2.101)

For the zeroth order for the operator 𝑀(𝑡), the time-evolved expectation value can be
calculated as:

Ω0;𝑀 =𝔼ℎ (𝑀0(𝑡)) = 𝔼ℎ (𝑒−𝑖𝑡𝐻0𝑀𝑒𝑖𝑡𝐻0) = (2.102)
=𝔼ℎ (𝑒−𝑖𝑡 ∑𝑘 𝜎𝑧

𝑘𝜎𝑧
𝑘+1 (𝕀 ⊗ 𝕀 ⊗ … ⊗ 𝜎𝑧

𝑗 ⊗ … ⊗ 𝕀 ⊗ 𝕀) 𝑒𝑖𝑡 ∑𝑙 𝜎𝑧
𝑙 𝜎𝑧

𝑙+1) = (2.103)
=𝔼ℎ (𝕀 ⊗ 𝕀 ⊗ … ⊗ 𝜎𝑧

𝑗 ⊗ … ⊗ 𝕀 ⊗ 𝕀) = (2.104)
=𝜎𝑧

𝑗 , (2.105)

and that for 𝐹(𝑡) as:

Ω0;𝐹 =𝔼ℎ (𝐹0(𝑡)) = 𝔼ℎ (𝑒−𝑖𝑡𝐻0𝑀𝑒𝑖𝑡𝐻0) = (2.106)
=𝔼ℎ (𝑒−𝑖𝑡 ∑𝑘 𝜎𝑧

𝑘𝜎𝑧
𝑘+1 (𝕀 ⊗ 𝕀 ⊗ … ⊗ 𝜎𝑥

𝑗 ⊗ … ⊗ 𝕀 ⊗ 𝕀) 𝑒𝑖𝑡 ∑𝑙 𝜎𝑧
𝑙 𝜎𝑧

𝑙+1) = (2.107)
=𝔼ℎ (𝕀 ⊗ 𝕀 ⊗ … ⊗ 𝜎𝑥

𝑗 ⊗ … ⊗ 𝕀 ⊗ 𝕀) = (2.108)
=𝜎𝑥

𝑗 . (2.109)

The first orders for the time-evolved expectations for 𝑀(𝑡) and 𝐹(𝑡) can be evaluated
in detail2 and give

Ω1;𝑀 = Ω1;𝐹 = 0, (2.110)
2The normalization calculation is included in the Appendix here.
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which corresponds to the expected value from the derived general form of the perturba-
tive solution.

The second-order calculations are more involved. The derivation for the operator
𝑀(𝑡) leads3 to the following expression:

Ω2;𝑀 = 𝔼ℎ (𝜀2 ∫
−𝑖𝑡

0
∫

𝑠

0
𝑒−𝑖𝑡𝐻0 [𝐻𝜈(𝑠), [𝐻𝜈(𝑠1), 𝑀]] 𝑒𝑖𝑡𝐻0d𝑠1d𝑠) = (2.111)

=𝔼ℎ(𝜀2 ∫
−𝑖𝑡

0
∫

𝑠

0
𝑒−𝑖𝑡 ∑𝑎 𝜎𝑧

𝑎𝜎𝑧
𝑎+12ℎ𝑗 ∑

𝑘
ℎ𝑘𝜎𝑥

𝑘𝜎𝑥
𝑗 𝜎𝑧

𝑗 ⋅

(𝑒2𝑠(−1)𝛿(𝑗,𝑘−1)(−1)𝛿(𝑗,𝑘)𝜎𝑧
𝑘−1𝜎𝑧

𝑘𝑒2𝑠(−1)𝛿(𝑗,𝑘)(−1)𝛿(𝑗,𝑘+1)𝜎𝑧
𝑘𝜎𝑧

𝑘+1𝑒2𝑠1𝜎𝑧
𝑗−1𝜎𝑧

𝑗 𝑒2𝑠1𝜎𝑧
𝑗 𝜎𝑧

𝑗+1−

− (−1)𝛿(𝑗,𝑘)𝑒2𝑠1(−1)𝛿(𝑗−1,𝑘)(−1)𝛿(𝑗,𝑘)𝜎𝑧
𝑗−1𝜎𝑧

𝑗 𝑒2𝑠1(−1)𝛿(𝑗,𝑘)(−1)𝛿(𝑗+1,𝑘)𝜎𝑧
𝑗 𝜎𝑧

𝑗+1𝑒2𝑠𝜎𝑧
𝑘−1𝜎𝑧

𝑘𝑒2𝑠𝜎𝑧
𝑘𝜎𝑧

𝑘+1)⋅

𝑒𝑖𝑡 ∑𝑏 𝜎𝑧
𝑏𝜎𝑧

𝑏+1d𝑠1d𝑠) ≡ (2.112)

≡𝔼ℎ(𝜀2 ∫
−𝑖𝑡

0
∫

𝑠

0
𝑒−𝑖𝑡 ∑𝑎 𝜎𝑧

𝑎𝜎𝑧
𝑎+12ℎ𝑗 ∑

𝑘
ℎ𝑘𝜎𝑥

𝑘𝜎𝑥
𝑗 𝜎𝑧

𝑗 Θ(𝑗, 𝑘)𝑒𝑖𝑡 ∑𝑏 𝜎𝑧
𝑏𝜎𝑧

𝑏+1d𝑠1d𝑠) (2.113)

Next, it is important to calculate the defined 𝜃(𝑗, 𝑘) ≡ 𝜃:

Θ𝑗=𝑘 =𝑒−2𝑠𝜎𝑧
𝑗−1𝜎𝑧

𝑗 𝑒−2𝑠𝜎𝑧
𝑗 𝜎𝑧

𝑗+1𝑒2𝑠1𝜎𝑧
𝑗−1𝜎𝑧

𝑗 𝑒2𝑠1𝜎𝑧
𝑗 𝜎𝑧

𝑗+1 + 𝑒−2𝑠1𝜎𝑧
𝑗−1𝜎𝑧

𝑗 𝑒−2𝑠1𝜎𝑧
𝑗 𝜎𝑧

𝑗+1𝑒2𝑠𝜎𝑧
𝑗−1𝜎𝑧

𝑗 𝑒2𝑠𝜎𝑧
𝑗 𝜎𝑧

𝑗+1 =
(2.114)

=2 cosh (2 ⋅ (𝑠1(𝜎𝑧
𝑗−1𝜎𝑧

𝑗 + 𝜎𝑧
𝑗 𝜎𝑧

𝑗+1) − 𝑠(𝜎𝑧
𝑗−1𝜎𝑧

𝑗 + 𝜎𝑧
𝑗 𝜎𝑧

𝑗+1))) (2.115)

Θ𝑗=𝑘−1 =𝑒−2𝑠𝜎𝑧
𝑗 𝜎𝑧

𝑗+1𝑒2𝑠𝜎𝑧
𝑗+1𝜎𝑧

𝑗+2𝑒2𝑠1𝜎𝑧
𝑗−1𝜎𝑧

𝑗 𝑒2𝑠1𝜎𝑧
𝑗 𝜎𝑧

𝑗+1 − 𝑒2𝑠1𝜎𝑧
𝑗−1𝜎𝑧

𝑗 𝑒−2𝑠1𝜎𝑧
𝑗 𝜎𝑧

𝑗+1𝑒2𝑠𝜎𝑧
𝑗 𝜎𝑧

𝑗+1𝑒2𝑠𝜎𝑧
𝑗+1𝜎𝑧

𝑗+2 =
(2.116)

=𝑒2𝑠𝜎𝑧
𝑗+1𝜎𝑧

𝑗+2𝑒2𝑠1𝜎𝑧
𝑗−1𝜎𝑧

𝑗 (𝑒−2𝑠𝜎𝑧
𝑗 𝜎𝑧

𝑗+1𝑒2𝑠1𝜎𝑧
𝑗 𝜎𝑧

𝑗+1 − 𝑒−2𝑠1𝜎𝑧
𝑗 𝜎𝑧

𝑗+1𝑒2𝑠𝜎𝑧
𝑗 𝜎𝑧

𝑗+1) = (2.117)
=𝑒2𝑠1𝜎𝑧

𝑗−1𝜎𝑧
𝑗 𝑒2𝑠𝜎𝑧

𝑗+1𝜎𝑧
𝑗+2 ⋅ (−2 sinh (2(𝑠 − 𝑠1)𝜎𝑧

𝑗 𝜎𝑧
𝑗+1)) (2.118)

Θ𝑗=𝑘+1 =𝑒2𝑠𝜎𝑧
𝑗−2𝜎𝑧

𝑗−1𝑒−2𝑠𝜎𝑧
𝑗−1𝜎𝑧

𝑗 𝑒2𝑠1𝜎𝑧
𝑗−1𝜎𝑧

𝑗 𝑒2𝑠1𝜎𝑧
𝑗 𝜎𝑧

𝑗+1 − 𝑒−2𝑠1𝜎𝑧
𝑗−1𝜎𝑧

𝑗 𝑒2𝑠1𝜎𝑧
𝑗 𝜎𝑧

𝑗+1𝑒2𝑠𝜎𝑧
𝑗−2𝜎𝑧

𝑗−1𝑒2𝑠𝜎𝑧
𝑗−1𝜎𝑧

𝑗 =
(2.119)

=𝑒2𝑠𝜎𝑧
𝑗−2𝜎𝑧

𝑗−1𝑒2𝑠1𝜎𝑧
𝑗 𝜎𝑧

𝑗+1 (𝑒−2𝑠𝜎𝑧
𝑗−1𝜎𝑧

𝑗 𝑒2𝑠1𝜎𝑧
𝑗−1𝜎𝑧

𝑗 − 𝑒−2𝑠1𝜎𝑧
𝑗−1𝜎𝑧

𝑗 𝑒2𝑠𝜎𝑧
𝑗−1𝜎𝑧

𝑗 ) = (2.120)
=𝑒2𝑠𝜎𝑧

𝑗−2𝜎𝑧
𝑗−1𝑒2𝑠1𝜎𝑧

𝑗 𝜎𝑧
𝑗+1 ⋅ (−2 sinh (2(𝑠 − 𝑠1)𝜎𝑧

𝑗−1𝜎𝑧
𝑗 )) (2.121)

Θ(𝑗 ≠ {𝑘 − 1, 𝑘, 𝑘 + 1}) = 𝑒2𝑠𝜎𝑧
𝑘−1𝜎𝑧

𝑘𝑒2𝑠𝜎𝑧
𝑘𝜎𝑧

𝑘+1𝑒2𝑠1𝜎𝑧
𝑗−1𝜎𝑧

𝑗 𝑒2𝑠1𝜎𝑧
𝑗 𝜎𝑧

𝑗+1−
− 𝑒2𝑠1𝜎𝑧

𝑗−1𝜎𝑧
𝑗 𝑒2𝑠1𝜎𝑧

𝑗 𝜎𝑧
𝑗+1𝑒2𝑠𝜎𝑧

𝑘−1𝜎𝑧
𝑘𝑒2𝑠𝜎𝑧

𝑘𝜎𝑧
𝑘+1 = 0

(2.122)

For all other relations between 𝑗 and 𝑘, the value of 𝜃(𝑗, 𝑘) is equal to zero. With that
in mind, and by considering that 𝔼ℎ(ℎ𝑎ℎ𝑏≠𝑎) = 𝔼ℎ(ℎ𝑎) ⋅ 𝔼ℎ(ℎ𝑏) = 0, the expression for

3Details of the normalization calculation are included in the Appendix here.
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Ω2;𝑀 becomes simpler:

Ω2;𝑀 = 𝔼ℎ(𝜀2 ∫
−𝑖𝑡

0
∫

𝑠

0
𝑒−𝑖𝑡 ∑𝑎 𝜎𝑧

𝑎𝜎𝑧
𝑎+12ℎ𝑗⋅

(ℎ𝑗−1𝜎𝑥
𝑗−1𝜎𝑥

𝑗 𝜎𝑧
𝑗 Θ(𝑘 = 𝑗 − 1) + ℎ𝑗𝜎𝑥

𝑗 𝜎𝑥
𝑗 𝜎𝑧

𝑗 Θ(𝑘 = 𝑗) + ℎ𝑗+1𝜎𝑥
𝑗+1𝜎𝑥

𝑗 𝜎𝑧
𝑗 Θ(𝑘 = 𝑗 + 1))⋅

𝑒𝑖𝑡 ∑𝑏 𝜎𝑧
𝑏𝜎𝑧

𝑏+1d𝑠1d𝑠) = (2.123)

=2𝜀2𝜂2
ℎ𝜎𝑧

𝑗 ∫
−𝑖𝑡

0
∫

𝑠

0
2 cosh (2(𝑠 − 𝑠1)(𝜎𝑧

𝑗−1𝜎𝑧
𝑗 + 𝜎𝑧

𝑗 𝜎𝑧
𝑗+1)) d𝑠1d𝑠 (2.124)

The integrals of this type have already been evaluated and have the following form:

𝛼𝑗(𝑥; 𝜅) ≡ ∫
𝑥

0
𝑒𝜅𝑠𝑘(𝜎𝑧

𝑗−1𝜎𝑧
𝑗 +𝜎𝑧

𝑗 𝜎𝑧
𝑗+1)d𝑠𝑘 = (2.125)

= ∫
𝑥

0
𝑒𝜅𝑠𝑘 diag(2,0,−2,0,0,−2,0,2){(𝑗−1),𝑗,(𝑗+1)}d𝑠𝑘 = (2.126)

= diag(𝑒2𝜅𝑥 − 1
2𝜅 , 𝕀, −𝑒−2𝜅𝑥 + 1

2𝜅 , 𝕀, 𝕀, −𝑒−2𝜅𝑥 + 1
2𝜅 , 𝕀, 𝑒2𝜅𝑥 − 1

2𝜅 ){(𝑗−1),𝑗,(𝑗+1)}

(2.127)

𝛽𝑗(𝑥; 𝜅) ≡ ∫
𝑥

0
𝑒2𝑠𝑘𝜎𝑧

𝑗−1𝜎𝑧
𝑗 𝑒2𝑠𝑘𝜎𝑧

𝑗+1𝜎𝑧
𝑗+2d𝑠𝑘 = (2.128)

= ∫
𝑥

0
𝑒𝜅𝑠𝑘 diag(2,0,0,2,0,−2,−2,0,0,−2,−2,0,2,0,0,2){(𝑗−1),𝑗,(𝑗+1),(𝑗+2)}d𝑠𝑘 = (2.129)

= diag(𝑒2𝜅𝑥 − 1
2𝜅 , 𝕀, 𝕀, 𝑒2𝜅𝑥 − 1

2𝜅 , 𝕀, −𝑒−2𝜅𝑖𝑥 + 1
2𝜅 , −𝑒−2𝜅𝑥 + 1

2𝜅 , 𝕀, 𝕀,
−𝑒−2𝜅𝑥 + 1

2𝜅 , −𝑒−2𝜅𝑥 + 1
2𝜅 , 𝕀, 𝑒2𝜅𝑥 − 1

2𝜅 , 𝕀, 𝕀, 𝑒2𝜅𝑥 − 1
2𝜅 ){(𝑗−1),𝑗,(𝑗+1),(𝑗+2)} (2.130)

By using those expressions, Ω2;𝑀 can be rewritten as:

Ω2;𝑀 = 2𝜀2𝜂2
ℎ(𝜎𝑥

𝑗 )2𝜎𝑧
𝑗 ∫

−𝑖𝑡

0
∫

𝑠

0
(𝑒−2𝑠(𝜎𝑧

𝑗−1𝜎𝑧
𝑗 +𝜎𝑧

𝑗 𝜎𝑧
𝑗+1)𝑒2𝑠1(𝜎𝑧

𝑗−1𝜎𝑧
𝑗 +𝜎𝑧

𝑗 𝜎𝑧
𝑗+1)+

+ 𝑒2𝑠(𝜎𝑧
𝑗−1𝜎𝑧

𝑗 +𝜎𝑧
𝑗 𝜎𝑧

𝑗+1)𝑒−2𝑠1(𝜎𝑧
𝑗−1𝜎𝑧

𝑗 +𝜎𝑧
𝑗 𝜎𝑧

𝑗+1))d𝑠1d𝑠 = (2.131)

=2𝜀2𝜂2
ℎ(𝜎𝑥

𝑗 )2𝜎𝑧
𝑗 (∫

−𝑖𝑡

0
∫

𝑠

0
𝑒−2𝑠(𝜎𝑧

𝑗−1𝜎𝑧
𝑗 +𝜎𝑧

𝑗 𝜎𝑧
𝑗+1)𝑒2𝑠1(𝜎𝑧

𝑗−1𝜎𝑧
𝑗 +𝜎𝑧

𝑗 𝜎𝑧
𝑗+1)d𝑠1d𝑠+

+ ∫
−𝑖𝑡

0
∫

𝑠

0
𝑒2𝑠(𝜎𝑧

𝑗−1𝜎𝑧
𝑗 +𝜎𝑧

𝑗 𝜎𝑧
𝑗+1)𝑒−2𝑠1(𝜎𝑧

𝑗−1𝜎𝑧
𝑗 +𝜎𝑧

𝑗 𝜎𝑧
𝑗+1)d𝑠1d𝑠) = (2.132)

=2𝜀2𝜂2
ℎ(𝜎𝑥

𝑗 )2𝜎𝑧
𝑗 (∫

−𝑖𝑡

0
𝑒−2𝑠(𝜎𝑧

𝑗−1𝜎𝑧
𝑗 +𝜎𝑧

𝑗 𝜎𝑧
𝑗+1)𝛼𝑗(𝑠; 2)d𝑠+

+ ∫
−𝑖𝑡

0
𝑒2𝑠(𝜎𝑧

𝑗−1𝜎𝑧
𝑗 +𝜎𝑧

𝑗 𝜎𝑧
𝑗+1)𝛼𝑗(𝑠; −2)d𝑠) = (2.133)

=2𝜀2𝜂2
ℎ𝜎𝑧

𝑗 (∫
−𝑖𝑡

0
𝑒−2𝑠(𝜎𝑧

𝑗−1𝜎𝑧
𝑗 +𝜎𝑧

𝑗 𝜎𝑧
𝑗+1)𝛼𝑗(𝑠; 2)d𝑠 + ∫

−𝑖𝑡

0
𝑒2𝑠(𝜎𝑧

𝑗−1𝜎𝑧
𝑗 +𝜎𝑧

𝑗 𝜎𝑧
𝑗+1)𝛼𝑗(𝑠; −2)d𝑠)

(2.134)

To evaluate this expression, it would be useful to find a way to write 𝛼𝑗(𝑥; 𝜅) in the
Pauli basis. These matrices are diagonal, so they can be written in the {𝜎0, 𝜎𝑧} basis,
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as follows.

𝛼𝑗(𝑥; 𝜅) = diag(𝑒2𝜅𝑥 − 1
2𝜅 , 𝕀, −𝑒−2𝜅𝑥 + 1

2𝜅 , 𝕀, 𝕀, −𝑒−2𝜅𝑥 + 1
2𝜅 , 𝕀, 𝑒2𝜅𝑥 − 1

2𝜅 ){(𝑗−1),𝑗,(𝑗+1)} =

(2.135)

=
8

∑
𝜄=1

𝜉𝜄(𝑥; 𝜅) ⋅ (𝜎𝜏1
(𝑗−1)𝜎

𝜏2
𝑗 𝜎𝜏3

(𝑗+1))𝜎𝜏1,2,3 ={𝜎0,𝜎𝑧}
= (2.136)

=
8

∑
𝜄=1

1
8 Tr (𝜉𝜄(𝑥; 𝜅) ⋅ (𝜎𝜏1

(𝑗−1)𝜎
𝜏2
𝑗 𝜎𝜏3

(𝑗+1))𝜎𝜏1,2,3 ={𝜎0,𝜎𝑧}
) = (2.137)

=1
8 ⋅ (4 + 𝑒2𝜅𝑥 − 𝑒−2𝜅𝑥

𝜅 ) (𝜎0
(𝑗−1)𝜎0

𝑗 𝜎0
(𝑗+1)) + 1

8 ⋅ (−2 + 𝑒−2𝜅𝑥 + 𝑒2𝜅𝑥

𝜅 ) (𝜎0
(𝑗−1)𝜎𝑧

𝑗 𝜎𝑧
(𝑗+1)) +

+ 1
8 ⋅ (−4 + 𝑒2𝜅𝑥 − 𝑒−2𝜅𝑥

𝜅 ) (𝜎𝑧
(𝑗−1)𝜎0

𝑗 𝜎𝑧
(𝑗+1)) + 1

8 ⋅ (−2 + 𝑒−2𝜅𝑥 + 𝑒2𝜅𝑥

𝜅 ) (𝜎𝑧
(𝑗−1)𝜎𝑧

𝑗 𝜎0
(𝑗+1)) =

(2.138)

=1
8 ⋅ (4 + 2 sinh(2𝜅𝑥)

𝜅 ) (𝜎0
(𝑗−1)𝜎0

𝑗 𝜎0
(𝑗+1)) + 1

8 ⋅ (−2
𝜅 + 2 cosh(2𝜅𝑥)

𝜅 ) (𝜎0
(𝑗−1)𝜎𝑧

𝑗 𝜎𝑧
(𝑗+1)) +

+ 1
8 ⋅ (−4 + 2 sinh(2𝜅𝑥)

𝜅 ) (𝜎𝑧
(𝑗−1)𝜎0

𝑗 𝜎𝑧
(𝑗+1)) + 1

8 ⋅ (−2
𝜅 + 2 cosh(2𝜅𝑥)

𝜅 ) (𝜎𝑧
(𝑗−1)𝜎𝑧

𝑗 𝜎0
(𝑗+1))

(2.139)

This gives the following result for 𝛼𝑗(𝑥; 2) and 𝛼𝑗(𝑥; −2):

𝛼𝑗(𝑥; 2) = 1
8 ⋅ (4 + 2 sinh(4𝑥)

2 ) (𝜎0
(𝑗−1)𝜎0

𝑗 𝜎0
(𝑗+1)) + 1

8 ⋅ (−2
2 + 2 cosh(4𝑥)

2 ) (𝜎0
(𝑗−1)𝜎𝑧

𝑗 𝜎𝑧
(𝑗+1)) +

+ 1
8 ⋅ (−4 + 2 sinh(4𝑥)

2 ) (𝜎𝑧
(𝑗−1)𝜎0

𝑗 𝜎𝑧
(𝑗+1)) + 1

8 ⋅ (−2
2 + 2 cosh(4𝑥)

2 ) (𝜎𝑧
(𝑗−1)𝜎𝑧

𝑗 𝜎0
(𝑗+1)) =

(2.140)

=1
8 ⋅ (4 + sinh(4𝑥)) (𝜎0

(𝑗−1)𝜎0
𝑗 𝜎0

(𝑗+1)) + 1
8 ⋅ (−1 + cosh(4𝑥)) (𝜎0

(𝑗−1)𝜎𝑧
𝑗 𝜎𝑧

(𝑗+1)) +

+ 1
8 ⋅ (−4 + sinh(4𝑥)) (𝜎𝑧

(𝑗−1)𝜎0
𝑗 𝜎𝑧

(𝑗+1)) + 1
8 ⋅ (−1 + cosh(4𝑥)) (𝜎𝑧

(𝑗−1)𝜎𝑧
𝑗 𝜎0

(𝑗+1))
(2.141)

𝛼𝑗(𝑥; −2) = 1
8 ⋅ (4 + −2 sinh(−4𝑥)

2 ) (𝜎0
(𝑗−1)𝜎0

𝑗 𝜎0
(𝑗+1)) + 1

8 ⋅ (2
2 + −2 cosh(−4𝑥)

2 ) (𝜎0
(𝑗−1)𝜎𝑧

𝑗 𝜎𝑧
(𝑗+1)) +

+ 1
8 ⋅ (−4 + −2 sinh(−4𝑥)

2 ) (𝜎𝑧
(𝑗−1)𝜎0

𝑗 𝜎𝑧
(𝑗+1)) + 1

8 ⋅ (2
2 + −2 cosh(−4𝑥)

2 ) (𝜎𝑧
(𝑗−1)𝜎𝑧

𝑗 𝜎0
(𝑗+1)) =

(2.142)

=1
8 ⋅ (4 + sinh(4𝑥)) (𝜎0

(𝑗−1)𝜎0
𝑗 𝜎0

(𝑗+1)) + 1
8 ⋅ (1 − cosh(4𝑥)) (𝜎0

(𝑗−1)𝜎𝑧
𝑗 𝜎𝑧

(𝑗+1)) +

+ 1
8 ⋅ (−4 + sinh(4𝑥)) (𝜎𝑧

(𝑗−1)𝜎0
𝑗 𝜎𝑧

(𝑗+1)) + 1
8 ⋅ (1 − cosh(4𝑥)) (𝜎𝑧

(𝑗−1)𝜎𝑧
𝑗 𝜎0

(𝑗+1)) (2.143)

These expressions allow for a direct way of evaluating the integral for Ω2;𝑀 . However,
what can be immediately seen is that the object Ω2;𝑀 is 3-local, affecting only the subset
of {𝑗 − 1, 𝑗, 𝑗 + 1} particles.

On a simple example, where 𝐻0 = 0 and 𝐻𝜈(𝑠) = ∑𝑘 ℎ𝑘𝜎𝑥
𝑘 , it is not difficult to
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evaluate this object analytically4, giving

Ω2;𝑀 =𝔼ℎ (−2𝜀2ℎ2
𝑗𝜎𝑧

𝑗 𝑡2) = (2.144)
= − 2𝑡2𝜂2

ℎ𝜎𝑧
𝑗 . (2.145)

The second-order calculation5 for the operator 𝐹 gives the following:

Ω2;𝐹 =𝔼ℎ (𝜀2 ∫
−𝑖𝑡

0
∫

𝑠

0
𝑒−𝑖𝑡𝐻0 [𝐻𝜈(𝑠), [𝐻𝜈(𝑠1), 𝐹 ]] 𝑒𝑖𝑡𝐻0d𝑠1d𝑠) ≡ (2.146)

≡𝔼ℎ(𝜀2 ∫
−𝑖𝑡

0
∫

𝑠

0
𝑒−𝑖𝑡 ∑𝑎 𝜎𝑧

𝑎𝜎𝑧
𝑎+1 ∑

𝑘
(Σ1 + Σ2 + Σ3)𝑒𝑖𝑡 ∑𝑏 𝜎𝑧

𝑏𝜎𝑧
𝑏+1d𝑠1d𝑠) (2.147)

By explicitly calculating the values of the summands Σ1, Σ2, and Σ3, it is shown that
the expression Ω2;𝐹 is 5-local:

Ω2;𝐹;𝑘≠{𝑗−2,𝑗−1,𝑗,𝑗+1,𝑗+2} = 0. (2.148)

The derivation of Ω2;𝐹 is then finalized by considering that 𝔼ℎ(ℎ𝑎ℎ𝑏≠𝑎) = 0:

Ω2;𝐹 = 𝔼ℎ(𝜀2 ∫
−𝑖𝑡

0
∫

𝑠

0
𝑒−𝑖𝑡 ∑𝑎 𝜎𝑧

𝑎𝜎𝑧
𝑎+1 ∑

𝑘
(Σ1 + Σ2 + Σ3)𝑒𝑖𝑡 ∑𝑏 𝜎𝑧

𝑏𝜎𝑧
𝑏+1d𝑠1d𝑠) =

(2.149)

=𝜂2
ℎ𝜀2 ∫

−𝑖𝑡

0
∫

𝑠

0
𝑒−𝑖𝑡 ∑𝑎 𝜎𝑧

𝑎𝜎𝑧
𝑎+1 ∑

𝑘
(Σ1;𝑘=𝑗−1

ℎ2
𝑗−1

+ Σ2;𝑘=𝑗
ℎ2

𝑗
+ Σ3;𝑘=𝑗+1

ℎ2
𝑗+1

)𝑒𝑖𝑡 ∑𝑏 𝜎𝑧
𝑏𝜎𝑧

𝑏+1d𝑠1d𝑠 =

(2.150)
=𝜂2

ℎ𝜀2𝜎𝑥
𝑗 𝑒2𝑖𝑡(𝜎𝑧

𝑗−1𝜎𝑧
𝑗 +𝜎𝑧

𝑗 𝜎𝑧
𝑗+1)⋅

⋅ ∫
−𝑖𝑡

0
(𝑒2𝑠𝜎𝑧

𝑗−1𝜎𝑧
𝑗 ⋅ ∫

𝑠

0
(−2 sinh(2𝑠1𝜎𝑧

𝑗−1𝜎𝑧
𝑗 )) (−2 sinh(2(𝑠 − 𝑠1)𝜎𝑧

𝑗−2𝜎𝑧
𝑗−1)) +

+ 2𝑒2𝑠𝜎𝑧
𝑗−1𝜎𝑧

𝑗 𝑒2𝑠𝜎𝑧
𝑗 𝜎𝑧

𝑗+1 ⋅ ∫
𝑠

0
(−2 ⋅ sinh(2𝑠1(𝜎𝑧

𝑗−1𝜎𝑧
𝑗 + 𝜎𝑧

𝑗 𝜎𝑧
𝑗+1))) +

+ 𝑒2𝑠𝜎𝑧
𝑗 𝜎𝑧

𝑗+1 ⋅ ∫
𝑠

0
(−2 sinh(2𝑠1𝜎𝑧

𝑗 𝜎𝑧
𝑗+1)) (−2 sinh(2(𝑠 − 𝑠1)𝜎𝑧

𝑗+1𝜎𝑧
𝑗+2)))d𝑠1d𝑠 (2.151)

Further, because of the symmetry properties of the chosen Gaussian, with 𝔼ℎ (ℎ𝑗) =
0, it holds that:

Ω3 = Ω5 = Ω7 = … = 0, (2.152)
so only the even contributors to Ω must be considered.

As an example for the involvedness of the calculation of higher-order perturbative
terms, I will summarize the calculation6 for Ω4;𝑀 .

Ω4;𝑀 = 𝔼ℎ(𝜀4 ∫
−𝑖𝑡

0
∫

𝑠1

0
∫

𝑠2

0
∫

𝑠3

0
∣𝑒−𝑖𝑡𝐻0 [𝐻𝜈(𝑠1), [𝐻𝜈(𝑠2), [𝐻𝜈(𝑠3), [𝐻𝜈(𝑠4), 𝑀]]]] 𝑒𝑖𝑡𝐻0⟩

⋅ d𝑠1d𝑠2d𝑠3d𝑠4) ≡ (2.153)

≡ 𝔼ℎ(𝜀4 ∫
−𝑖𝑡

0
∫

𝑠1

0
𝑒−𝑖𝑡𝐻0 [𝐻𝜈(𝑠1), [𝐻𝜈(𝑠2), 𝜁2(𝑠2, 𝑠3)]] 𝑒𝑖𝑡𝐻0d𝑠1d𝑠2) (2.154)

4The calculation is included explicitly in the Appendix here.
5Details of the normalization calculation are included in the Appendix here.
6The full calculation is included in the Appendix here.
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This expression was simplified using

𝜁2(𝑠2, 𝑠3) = ∫
𝑠2

0
∫

𝑠3

0
[𝐻𝜈(𝑠3), [𝐻𝜈(𝑠4), 𝑀]] d𝑠3d𝑠4. (2.155)

From (2.112) it can be seen that

Ω2 = 𝔼ℎ (𝜀2𝑒−𝑖𝑡𝐻0𝜁2(−𝑖𝑡, 𝑠)𝑒𝑖𝑡𝐻0) , (2.156)

so

𝜁2(−𝑖𝑡, 𝑠) = ∫
−𝑖𝑡

0
∫

𝑠

0
2ℎ𝑗(ℎ𝑗−1𝜎𝑥

𝑗−1𝜎𝑥
𝑗 𝜎𝑧

𝑗 Θ(𝑘 = 𝑗 − 1) + ℎ𝑗𝜎𝑥
𝑗 𝜎𝑥

𝑗 𝜎𝑧
𝑗 Θ(𝑘 = 𝑗)+

+ ℎ𝑗+1𝜎𝑥
𝑗+1𝜎𝑥

𝑗 𝜎𝑧
𝑗 Θ(𝑘 = 𝑗 + 1))d𝑠1d𝑠. (2.157)

After an extensive calculation, the final expression obtained for Ω4;𝑀 can be specified
as follows.

Ω4;𝑀 = ∫
−𝑖𝑡

0
∫

𝑠1

0
∫

𝑠2

0
∫

𝑠3

0
(2𝜂4

ℎ𝜎𝑧
𝑗 (−2 sinh(2(𝑠3 − 𝑠4)𝜎𝑧

𝑗−1𝜎𝑧
𝑗 ))⋅

(−2 sinh (2 (𝑠1(𝜎𝑧
𝑗−1𝜎𝑧

𝑗 + 𝜎𝑧
𝑗 𝜎𝑧

𝑗+1) + 𝑠2(𝜎𝑧
𝑗−2𝜎𝑧

𝑗−1 − 𝜎𝑧
𝑗−1𝜎𝑧

𝑗 ) − 𝑠3𝜎𝑧
𝑗−2𝜎𝑧

𝑗−1 − 𝑠4(𝜎𝑧
𝑗 𝜎𝑧

𝑗+1))) −

− 2 sinh (2 (𝑠1(𝜎𝑧
𝑗−1𝜎𝑧

𝑗 + 𝜎𝑧
𝑗 𝜎𝑧

𝑗+1) − 𝑠2(𝜎𝑧
𝑗−2𝜎𝑧

𝑗−1 + 𝜎𝑧
𝑗−1𝜎𝑧

𝑗 ) + 𝑠3𝜎𝑧
𝑗−2𝜎𝑧

𝑗−1 − 𝑠4(𝜎𝑧
𝑗 𝜎𝑧

𝑗+1))) −
− 2 sinh (2 (𝑠1(𝜎𝑧

𝑗−2𝜎𝑧
𝑗−1 + 𝜎𝑧

𝑗−1𝜎𝑧
𝑗 ) − 𝑠2(𝜎𝑧

𝑗−1𝜎𝑧
𝑗 − 𝜎𝑧

𝑗 𝜎𝑧
𝑗+1) − 𝑠3𝜎𝑧

𝑗−2𝜎𝑧
𝑗−1 − 𝑠4(𝜎𝑧

𝑗 𝜎𝑧
𝑗+1))) +

+ 2 sinh (2 (𝑠1(𝜎𝑧
𝑗−2𝜎𝑧

𝑗−1 + 𝜎𝑧
𝑗−1𝜎𝑧

𝑗 ) − 𝑠2(𝜎𝑧
𝑗−1𝜎𝑧

𝑗 + 𝜎𝑧
𝑗 𝜎𝑧

𝑗+1) − 𝑠3𝜎𝑧
𝑗−2𝜎𝑧

𝑗−1 + 𝑠4(𝜎𝑧
𝑗 𝜎𝑧

𝑗+1))))+

+ 2𝜂4
ℎ𝜎𝑧

𝑗 (−2 sinh(2(𝑠3 − 𝑠4)𝜎𝑧
𝑗+1𝜎𝑧

𝑗 ))⋅

(−2 sinh (2 (𝑠1(𝜎𝑧
𝑗+1𝜎𝑧

𝑗 + 𝜎𝑧
𝑗 𝜎𝑧

𝑗−1) + 𝑠2(𝜎𝑧
𝑗+2𝜎𝑧

𝑗+1 − 𝜎𝑧
𝑗+1𝜎𝑧

𝑗 ) − 𝑠3𝜎𝑧
𝑗+2𝜎𝑧

𝑗+1 − 𝑠4(𝜎𝑧
𝑗 𝜎𝑧

𝑗−1))) −

− 2 sinh (2 (𝑠1(𝜎𝑧
𝑗+1𝜎𝑧

𝑗 + 𝜎𝑧
𝑗 𝜎𝑧

𝑗−1) − 𝑠2(𝜎𝑧
𝑗+2𝜎𝑧

𝑗+1 + 𝜎𝑧
𝑗+1𝜎𝑧

𝑗 ) + 𝑠3𝜎𝑧
𝑗+2𝜎𝑧

𝑗+1 − 𝑠4(𝜎𝑧
𝑗 𝜎𝑧

𝑗−1))) −
− 2 sinh (2 (𝑠1(𝜎𝑧

𝑗+2𝜎𝑧
𝑗+1 + 𝜎𝑧

𝑗+1𝜎𝑧
𝑗 ) − 𝑠2(𝜎𝑧

𝑗+1𝜎𝑧
𝑗 − 𝜎𝑧

𝑗 𝜎𝑧
𝑗−1) − 𝑠3𝜎𝑧

𝑗+2𝜎𝑧
𝑗+1 − 𝑠4𝜎𝑧

𝑗 𝜎𝑧
𝑗−1)) +

+ 2 sinh (2 (𝑠1(𝜎𝑧
𝑗+2𝜎𝑧

𝑗+1 + 𝜎𝑧
𝑗+1𝜎𝑧

𝑗 ) − 𝑠2(𝜎𝑧
𝑗+1𝜎𝑧

𝑗 + 𝜎𝑧
𝑗 𝜎𝑧

𝑗−1) − 𝑠3𝜎𝑧
𝑗+2𝜎𝑧

𝑗+1 + 𝑠4𝜎𝑧
𝑗 𝜎𝑧

𝑗−1)))+

+ 𝜂4
ℎ ⋅ 8𝜎𝑧

𝑗 (2 sinh (2(𝑠1 − 𝑠2)(𝜎𝑧
𝑗−1𝜎𝑧

𝑗 + 𝜎𝑧
𝑗 𝜎𝑧

𝑗+1)) ⋅ cosh (2(𝑠4 − 𝑠3)(𝜎𝑧
𝑗−1𝜎𝑧

𝑗 + 𝜎𝑧
𝑗 𝜎𝑧

𝑗+1)) +

+ (𝑒−2(𝑠1−𝑠2)(𝜎𝑧
𝑗−2𝜎𝑧

𝑗−1+𝜎𝑧
𝑗−1𝜎𝑧

𝑗 ) + 𝑒−2(𝑠1−𝑠2)(𝜎𝑧
𝑗 𝜎𝑧

𝑗+1+𝜎𝑧
𝑗+1𝜎𝑧

𝑗+2)) ⋅
sinh (2𝑠4(𝜎𝑧

𝑗−1𝜎𝑧
𝑗 + 𝜎𝑧

𝑗 𝜎𝑧
𝑗+1)) sinh (2𝑠3(𝜎𝑧

𝑗−1𝜎𝑧
𝑗 + 𝜎𝑧

𝑗 𝜎𝑧
𝑗+1)) −

− (𝑒2(𝑠1−𝑠2)(𝜎𝑧
𝑗−2𝜎𝑧

𝑗−1+𝜎𝑧
𝑗−1𝜎𝑧

𝑗 ) + 𝑒2(𝑠1−𝑠2)(𝜎𝑧
𝑗 𝜎𝑧

𝑗+1+𝜎𝑧
𝑗+1𝜎𝑧

𝑗+2)) ⋅

sinh (2𝑠4(𝜎𝑧
𝑗−1𝜎𝑧

𝑗 − 𝜎𝑧
𝑗 𝜎𝑧

𝑗+1)) sinh (2𝑠3(𝜎𝑧
𝑗−1𝜎𝑧

𝑗 − 𝜎𝑧
𝑗 𝜎𝑧

𝑗+1))))d𝑠4d𝑠3d𝑠2d𝑠1 (2.158)

Correlation Propagation
To investigate the temporal (and spatial) propagation of information — in other
words, the effects — of a local operator acting in a perturbed many-body system, it
is useful to also examine the correlation function between two such local operators.
In the following I will present the calculation of the correlation function between two
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local operators and determine how information spreads in such a system.
Unlike for some previously derived solutions that rely on a perturbative approach

to treat disorder in a system (e.g., [60]), the solution presented here is analytical
and exact. This means that, where the perturbative approach is able to describe the
system accurately on small time scales (𝑡 ≪ 1), the approach presented here has, in
principle, no such restrictions. From this derivation I will be able to make a statement
about the speed of the spread of correlations.

The correlation function of two local operators acting on the same system, 𝜎𝛼
𝑗 and

𝜎𝛽
𝑘 , where 𝑗 ≠ 𝑘 and 𝛼, 𝛽 ∈ {𝑥, 𝑦, 𝑧, 0}, can be expressed as:

𝐶𝜎𝛼
𝑗 ,𝜎𝛽

𝑘
(𝑡) = ⟨Ω| 𝜎𝛼

𝑗 (𝑡)𝜎𝛽
𝑘(𝑡) |Ω⟩ − ⟨Ω| 𝜎𝛼

𝑗 (𝑡) |Ω⟩ ⟨Ω| 𝜎𝛽
𝑘(𝑡) |Ω⟩ . (2.159)

Clearly, the expectation of the correlation function up to some order of perturbation
𝑜(ℎ, 𝐽), 𝐶𝑜(ℎ,𝐽)

𝜎𝛼
𝑗 ,𝜎𝛽

𝑘
, will be equal to zero for a large enough distance between the particles

𝑗 and 𝑘, 𝑑(𝑗, 𝑘). For a Hamiltonian of the form

𝐻 = ∑
𝑗

𝜎𝑧
𝑗 𝜎𝑧

𝑗+1 + ℎ𝑗𝜎𝑥
𝑗 + 𝐽𝑗𝜎𝑥

𝑗 𝜎𝑥
𝑗+1, (2.160)

and up to 𝑜-th order, 𝑀(𝑡) is (2𝑜 + 3)-local, i.e.,

𝔼ℎ,𝐽 (𝐶𝑜(ℎ,𝐽)
𝜎𝛼

𝑗 ,𝜎𝛽
𝑘

(𝑑(𝑗, 𝑘) ≥ 2(𝑜 + 1))) = 0. (2.161)

Because 𝑗 and 𝑘 are fixed, the non-zero terms of this disorder-averaged expectation value
can be bounded:

𝒪(𝑀(𝑡; 𝑜(ℎ, 𝐽))) = 𝒪(|𝑀| +
𝑜

∑
𝑘=0

𝑜(ℎ, 𝐽)𝑘) ≤ (2.162)

≤ |𝑀|⋅ (1 +
𝑜

∑
𝑘=0

𝒪 (𝜂𝑘+1
𝐽 𝑘!! +

𝑘
∑
𝜁=1

𝜂𝜁
ℎ(𝜁 − 1)!!𝜂𝑘+1−𝜁

𝐽 (𝑘 − 𝜁)!! + 𝜂𝑘+1
ℎ 𝑘!!) ⋅ |𝑡|𝑘+1

(𝑘 + 1)!) .

(2.163)

Then, it is evident that:

𝔼ℎ,𝐽 (𝐶𝜎𝛼
𝑗 ,𝜎𝛽

𝑘
) ≤ ‖𝑀‖2 ⋅

∞
∑

𝑝+𝑟>𝑑(𝑗,𝑘)
𝒪 ( 1

𝑝!!) ⋅ 𝒪 ( 1
𝑟!!) ⋅ |𝑡|𝑝+𝑟. (2.164)

For some natural number 𝑁 > 𝑑(𝑗,𝑘)
2 , the right side of this inequality can be written

as ‖𝑀‖2 ⋅ 𝒪 ( 1
(𝑁!!)2 ) ⋅ |𝑡|2𝑁 . Thus, from |𝑡|2𝑁 ⪅ (𝑁!!)2, it follows that propagation of

negligible non-zero correlation terms is bounded by:

𝑡 ⪅ √𝑑(𝑗, 𝑘)
2 , (2.165)

as seen in Figure 2.3.

Partition Functions
I will derive the partition function for a system describable by the following, simple
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𝑡

𝑑(𝑗, 𝑘)

Figure 2.3: Large-time bound for the correlation function in a system described by the
many-body Hamiltonian (2.160). On the abscissa the distance 𝑑(𝑗, 𝑘) is shown and on
the ordinate the time 𝑡 is shown.

Hamiltonian:

𝐻 =𝐻0 + 𝐻𝜈

𝐻0 =
𝑛

∑
𝑗=1

𝜎𝑧
𝑗

𝐻𝜈 =
𝑛

∑
𝑗=1

ℎ𝑗𝜎𝑥
𝑗 𝜎𝑥

𝑗+1

(2.166)

The final part of this segment will demonstrate precisely that application.
For this system, the Gibbs measure can be written as:

𝑃 = 𝔼ℎ ( 𝑒−𝛽(𝐻0+𝐻𝜈)

tr(𝑒−𝛽(𝐻0+𝐻𝜈))) ≈ 𝔼ℎ ( 𝑒−𝛽𝐻0 + Δ1 + Δ2
tr (𝑒−𝛽𝐻0 + Δ1 + Δ2)) , (2.167)

where 𝛽 = 1
𝑘𝐵𝑇 is the thermodynamic parameter.

In this setup, I define 𝑍0 as:

𝑍0 = tr (𝑒−𝛽𝐻0) = tr (
𝑛

∏
𝑗=1

𝑒−𝛽𝜎𝑧
𝑗 ) = (2.168)

= tr (𝑒−𝛽𝜎𝑧
𝑗 )𝑛 , (2.169)
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where 𝑗 in the above equation is any 𝑗 ∈ {1, … , 𝑛}. I also evaluate the denominator:

𝑍 ≡ tr (𝑒−𝛽(𝐻0+𝐻𝜈)) = tr (𝑒−𝛽𝐻0
∞

∑
𝑗=0

(−𝛽𝐻𝜈)𝑗

𝑗! ) = (2.170)

= tr (𝑒−𝛽𝐻0 (1 − 𝛽𝐻𝜈 + 𝛽2𝐻2
𝜈

2! − 𝛽3𝐻3
𝜈

3! + …)) = (2.171)

=𝑍0 +
∞

∑
𝑗=1

tr ((−𝛽)𝑗𝑒−𝛽𝐻0𝐻𝑗
𝜈

𝑗! ) . (2.172)

Following a straightforward calculation7, it is clear that

𝑃 =𝔼ℎ ( 𝑒−𝛽(𝐻0+𝐻𝜈)

tr(𝑒−𝛽(𝐻0+𝐻𝜈))) = (2.173)

=𝔼ℎ(𝑍−1
0

∞
∑
𝑙=0

(−𝛽)𝑙

𝑙! 𝑒−𝛽𝐻0𝐻 𝑙
𝜈+

+ 𝑍−1
0

∞
∑
𝑙=0

(−𝛽)𝑙

𝑙! 𝑒−𝛽𝐻0𝐻 𝑙
𝜈

∞
∑
𝑘=0

(−1)𝑘𝑍−𝑘
0 (

∞
∑
𝑗=1

(−𝛽)𝑗

𝑗! tr (𝑒−𝛽𝐻0𝐻𝑗
𝜈))

𝑘

). (2.174)

In addition, a general form for the Gibbs measure can be calculated, up to the second
order:

𝑃 =𝔼ℎ(𝑍−1
0 (𝑒−𝛽𝐻0 − 𝛽𝑒−𝛽𝐻0𝐻𝜈 + 𝛽2

2 𝑒−𝛽𝐻0𝐻2
𝜈 ) +

+ 𝑍−1
0 (Δ(𝑙 = 0; 𝑘 = 0) + Δ(𝑙 = 0; 𝑘 = 1; 𝑗 = 1, 2) + Δ(𝑙 = 0; 𝑘 = 2; 𝑗 = 1)+

+ Δ(𝑙 = 1; 𝑘 = 0) + Δ(𝑙 = 1; 𝑘 = 1; 𝑗 = 1) + Δ(𝑙 = 2; 𝑘 = 0))) = (2.175)

=𝑒−𝛽𝐻0

𝑍0
(2 + 𝛽2𝜂2

ℎ (
𝑁

∑
𝑗=1

𝜎𝑥
𝑗 𝜎𝑥

𝑗+1)
2

+ 𝛽
𝑍0

𝔼ℎ (tr (𝑒−𝛽𝐻0𝐻𝜈)) −

− 𝛽2

2𝑍0
𝔼ℎ (tr (𝑒−𝛽𝐻0𝐻2

𝜈 )) + 𝛽2

𝑍2
0

𝔼ℎ ((tr (𝑒−𝛽𝐻0𝐻𝜈))2) − 𝛽2

𝑍0
𝔼ℎ (𝐻𝜈 tr (𝑒−𝛽𝐻0𝐻𝜈)))

(2.176)

Any further attempts to evaluate this expression require direct dealings with the system’s
Hamiltonian.

In the following, I will calculate the specific values for the relevant traces8. First, I
will derive an expression for the simple case of tr (𝑒−𝛽𝐻0), where 𝑀 is the vector chosen
to write the exponential function in the Pauli matrix basis.

tr (𝑒−𝛽𝐻0) = tr (
𝑛

∏
𝑗=1

𝑒−𝛽𝜎𝑧
𝑗 ) = (2.177)

= tr (
𝑛

∏
𝑗=1

3
∑
𝛼=0

𝑀𝛼𝜎𝛼
𝑗 ) = (2.178)

=
3

∑
𝛼1,𝛼2,…,𝛼𝑛=0

𝑀𝛼1
𝑀𝛼2

… 𝑀𝛼𝑛
tr (𝜎𝛼1

1 ) tr (𝜎𝛼2
2 ) … tr (𝜎𝛼𝑛𝑛 ) (2.179)

7The calculation is included explicitly in the Appendix here.
8The full calculations are included in the Appendix here.
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The vector 𝑀 can be constructed if the matrix exponential is written as a sum of Pauli
matrices. In other words,

𝑒𝑖𝑏 ⃗𝑐⋅𝜎⃗ = cos(𝑏)𝕀 + 𝑖 sin(𝑏) ⃗𝑐 ⋅ 𝜎⃗, (2.180)

where 𝜎⃗ is the Pauli vector. In the case of 𝑒−𝛽𝜎𝑧
𝑗 , 𝑏 → 𝑖𝛽 and ⃗𝑐 ⋅ 𝜎⃗ → 𝜎𝑧

𝑗 , so

𝑒−𝛽𝜎𝑧
𝑗 = cos(𝑖𝛽)𝕀 + 𝑖 sin(𝑖𝛽)𝜎𝑧

𝑗 = (2.181)
= cosh(𝛽)𝕀 − sinh(𝛽)𝜎𝑧

𝑗 . (2.182)

Evidently, the only non-zero parameters in the vector 𝑀 are:

𝑀0 = cosh(𝛽) (2.183)
𝑀3 = − sinh(𝛽). (2.184)

The traces of the corresponding matrices are

tr (𝕀𝑗) =2 (2.185)
tr (𝜎𝑧

𝑗 ) =0. (2.186)

Then, the product in (2.179) is different than zero only in the case when 𝛼1 = 𝛼2 = … =
𝛼𝑛 = 0. It follows that

tr (𝑒−𝛽𝐻0) = (cosh (𝛽))𝑛 ⋅ 2𝑛 = (2.187)
= (2 cosh (𝛽))𝑛 (2.188)

Then, for tr (𝑒−𝛽𝐻0𝐻𝑗
𝜈), it follows:

tr (𝑒−𝛽𝐻0𝐻𝑗
𝜈) = tr (

𝑛
∏
𝑗=1

𝑒−𝛽𝜎𝑧
𝑗 ⋅

𝑛
∑
𝑘=1

(ℎ𝑘𝜎𝑥
𝑘𝜎𝑥

𝑘+1)𝑗) = (2.189)

= tr (
𝑛

∏
𝑗=1

(𝑀0𝕀𝑗 + 𝑀3𝜎𝑧
𝑗 ) ⋅

𝑛
∑
𝑘=1

ℎ𝑗
𝑘 (𝜎𝑥

𝑘𝜎𝑥
𝑘+1)𝑗) = (2.190)

=
3

∑
𝛼1,…,𝛼𝑛=0

𝑛
∑
𝑘=1

𝑀𝛼1
𝑀𝛼2

… 𝑀𝛼𝑛
⋅

⋅ ℎ𝑗
𝑘 ⋅ … ⋅ tr (𝜎𝛼𝑘−1

𝑘−1 ) ⋅ tr (𝜎𝛼𝑘
𝑘 ⋅ (𝜎𝑥

𝑘)𝑗) ⋅ tr (𝜎𝛼𝑘+1
𝑘+1 ⋅ (𝜎𝑥

𝑘+1)𝑗) ⋅ tr (𝜎𝛼𝑘+2
𝑘+2 ) ⋅ … (2.191)

The arguments of the traces give:

𝕀 ⋅ (𝜎𝑥
𝑘)𝑗 = (𝜎𝑥

𝑘)𝑗 (2.192)
𝜎𝑧

𝑘 ⋅ 𝜎𝑥
𝑘 =𝑖𝜎𝑦

𝑘 (2.193)

𝜎𝑧
𝑘 ⋅ (𝜎𝑥

𝑘)2 =𝜎𝑧
𝑘 ⋅ 𝕀 = 𝜎𝑧

𝑘 (2.194)

𝜎𝑧
𝑘 ⋅ (𝜎𝑥

𝑘)3 =𝜎𝑧
𝑘 ⋅ 𝜎𝑥

𝑘 = 𝑖𝜎𝑦
𝑘 (2.195)

and

𝜎0
𝑘 ⋅ (𝜎𝑥

𝑘)2𝑗 =𝕀 (2.196)

𝜎0
𝑘 ⋅ (𝜎𝑥

𝑘)2𝑗−1 =𝜎𝑥
𝑘 (2.197)

𝜎𝑧
𝑘 ⋅ (𝜎𝑥

𝑘)2𝑗 =𝜎𝑧
𝑘 (2.198)

𝜎𝑧
𝑘 ⋅ (𝜎𝑥

𝑘)2𝑗−1 =𝑖𝜎𝑦
𝑘, (2.199)
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which leads to:
tr (𝑒−𝛽𝐻0𝐻0

𝜈 ) = (2 cosh (𝛽))𝑛 (2.200)

and, as an example,

𝑀𝛼1
𝑀𝛼2

… 𝑀𝛼𝑛
⋅ (

𝑛
∑
𝑘=1

ℎ𝑗
𝑘) ⋅ (𝑖 tr(𝜎𝑦

1) ⋅ 𝑖 tr(𝜎𝑦
2) ⋅ tr(𝜎𝛼3

3 ) ⋅ … tr(𝜎𝛼𝑛𝑛 )+

+ tr(𝜎𝛼1
1 ) ⋅ 𝑖 tr(𝜎𝑦

2) ⋅ 𝑖 tr(𝜎𝑦
3) ⋅ tr(𝜎𝛼4

4 ) ⋅ … ⋅ tr(𝜎𝛼𝑛𝑛 ) + … +
+ tr(𝜎𝛼1

1 ) ⋅ … ⋅ 𝑖 tr(𝜎𝑦
𝑛−1) ⋅ 𝑖 tr(𝜎𝑦

𝑛) + 𝑖 tr(𝜎𝑦
1) ⋅ tr(𝜎𝛼2

2 ) ⋅ … tr(𝜎𝛼𝑛−1
𝑛−1 ) ⋅ 𝑖 tr(𝜎𝑦

𝑛)) =
(2.201)

=𝑀𝛼1
𝑀𝛼2

… 𝑀𝛼𝑛
⋅ (−

𝑛
∑
𝑘=1

ℎ𝑗
𝑘) ⋅ (tr(𝜎𝑦

1) ⋅ tr(𝜎𝑦
2) ⋅ tr(𝜎𝛼3

3 ) ⋅ … tr(𝜎𝛼𝑛𝑛 )+

+ tr(𝜎𝛼1
1 ) ⋅ tr(𝜎𝑦

2) ⋅ tr(𝜎𝑦
3) ⋅ tr(𝜎𝛼4

4 ) ⋅ … ⋅ tr(𝜎𝛼𝑛𝑛 ) + … +
+ tr(𝜎𝛼1

1 ) ⋅ … ⋅ tr(𝜎𝑦
𝑛−1) ⋅ tr(𝜎𝑦

𝑛) + tr(𝜎𝑦
1) ⋅ tr(𝜎𝛼2

2 ) ⋅ … tr(𝜎𝛼𝑛−1
𝑛−1 ) ⋅ tr(𝜎𝑦

𝑛)) = (2.202)

=0 (2.203)

Thus, for 𝑗 = 2 it can be written:

tr (𝑒−𝛽𝐻0𝐻2
𝜈 ) = 𝑀0𝑀0 … 𝑀0 ⋅ (ℎ2

1 ⋅ tr(𝕀1) ⋅ tr(𝕀2) ⋅ tr(𝕀3) ⋅ … tr(𝕀𝑛)+
+ ℎ2

2 ⋅ tr(𝕀1) ⋅ tr(𝕀2) ⋅ tr(𝕀3) ⋅ tr(𝕀4) ⋅ … ⋅ tr(𝕀𝑛) + … +
+ ℎ2

𝑛−1 ⋅ tr(𝕀1) ⋅ … ⋅ tr(𝕀𝑛−1) ⋅ tr(𝕀𝑛) + ℎ2
𝑛 ⋅ tr(𝕀1) ⋅ tr(𝕀2) ⋅ … tr(𝕀𝑛−1) ⋅ tr(𝕀𝑛)) =

(2.204)

=𝑀𝑛
0 ⋅ 2𝑛 ⋅

𝑛
∑
𝑙=1

ℎ2
𝑙 = (2.205)

= (2 cosh(𝛽))𝑛 ⋅
𝑛

∑
𝑙=1

ℎ2
𝑙 , (2.206)

so for all 𝑗 ∈ ℕ it holds that:

tr (𝑒−𝛽𝐻0) = (2 cosh(𝛽))𝑛 (2.207)

tr (𝑒−𝛽𝐻0𝐻2𝑗
𝜈 ) = (2 cosh(𝛽))𝑛 ⋅

𝑛
∑
𝑙=1

ℎ2𝑗
𝑙 (2.208)

tr (𝑒−𝛽𝐻0𝐻2𝑗−1
𝜈 ) =0. (2.209)

Thus, the expression for the Gibbs measure from (2.176) can be completed9:

𝑃 =𝑒−𝛽𝐻0

𝑍0
(2 + 𝛽2𝜂2

ℎ

𝑁
∑
𝑗=1

𝜎𝑥
𝑗 𝜎𝑥

𝑗+1 + 𝛽
𝑍0

𝔼ℎ (tr (𝑒−𝛽𝐻0𝐻𝜈)) − 𝛽2

2𝑍0
𝔼ℎ (tr (𝑒−𝛽𝐻0𝐻2

𝜈 )) +

+ 𝛽2

𝑍2
0

𝔼ℎ ((tr (𝑒−𝛽𝐻0𝐻𝜈))2) − 𝛽2

𝑍0
𝔼ℎ (𝐻𝜈 tr (𝑒−𝛽𝐻0𝐻𝜈))) (2.210)

=𝑒−𝛽𝐻0

𝑍0
(2 + 𝛽2𝜂2

ℎ (
𝑛

∑
𝑗=1

𝜎𝑥
𝑗 𝜎𝑥

𝑗+1 − 𝑛
2𝑍0

⋅ (2 cosh(𝛽))𝑛)). (2.211)

9See details in the Appendix here.
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The expectation values of other observables can now be calculated fairly easily. For
example, for 𝔼 (𝑍) it follows in a straightforward manner that:

𝔼ℎ (𝑍) =𝔼ℎ (𝑍0) + 𝔼ℎ (
∞

∑
𝑗=1

tr ((−𝛽)𝑗𝑒−𝛽𝐻0𝐻𝑗
𝜈

𝑗! )) = (2.212)

= tr (𝑒−𝛽𝜎𝑧
𝑗 )𝑛 +

∞
∑
𝑗=1

(−𝛽)2𝑗

(2𝑗)! 𝔼ℎ ((2 cosh (𝛽))𝑛 ⋅
𝑛

∑
𝑙=1

ℎ2𝑗
𝑙 ) = (2.213)

= (2 cosh(𝛽))𝑛 + (2 cosh (𝛽))𝑛 ⋅ 𝑛 ⋅ (cosh (𝛽𝜂ℎ) − 1) . (2.214)

However, in the case in which 𝐻0 and 𝐻𝜈 do not commute, it is pertinent to use the Lie
product formula to derive the correct expressions:

𝑒𝑋+𝑌 = lim
𝜏→∞

(𝑒 𝑋
𝜏 𝑒 𝑌

𝜏 )𝜏
(2.215)

𝑒𝐻0+𝐻𝜈 = lim
𝜏→∞

(𝑒 𝐻0
𝜏 𝑒 𝐻𝜈

𝜏 )
𝜏

. (2.216)

However, as this general case is much more complicated to resolve and not intrinsically
pertinent to this demonstration, it will not be included here.

Further, for a slightly more complicated version of the full Hamiltonian, for which it
holds that:

𝐻 =𝐻0 + 𝐻𝜈 (2.217)

𝐻0 =
𝑁

∑
𝑗=1

𝜎𝑧
𝑗 𝜎𝑧

𝑗+1 (2.218)

𝐻𝜈 =
𝑁

∑
𝑗=1

ℎ𝑗𝜎𝑧
𝑗 , (2.219)

a similar calculation can be completed to obtain the Gibbs measure:

𝑃 =𝑒−𝛽𝐻0

𝑍0
(2 + 𝛽2 (𝐻𝜈)2 + 𝛽

𝑍0
𝔼ℎ (tr (𝑒−𝛽𝐻0𝐻𝜈)) − 𝛽2

2𝑍0
𝔼ℎ (tr (𝑒−𝛽𝐻0𝐻2

𝜈 )) +

+ 𝛽2

𝑍2
0

𝔼ℎ ((tr (𝑒−𝛽𝐻0𝐻𝜈))2) − 𝛽2

𝑍0
𝔼ℎ (𝐻𝜈 tr (𝑒−𝛽𝐻0𝐻𝜈))). (2.220)

First, I will consider the case in which 𝑗 = 0.

tr (𝑒−𝛽𝐻0) = tr (
𝑛

∏
𝑗=1

𝑒−𝛽𝜎𝑧
𝑗 𝜎𝑧

𝑗+1) = (2.221)

= tr (
𝑛

∏
𝑗=1

3
∑
𝛾=0

3
∑
𝛿=0

𝑁𝛾𝛿𝜎𝛾
𝑗 𝜎𝛿

𝑗+1) (2.222)

By using the already-derived expression (2.180), it is easy to assign correct values to
𝑁𝛾𝛿. Thus, from

𝑒−𝛽𝜎𝑧
𝑗 𝜎𝑧

𝑗+1 = cosh(𝛽)𝕀 − sinh(𝛽)𝜎𝑧
𝑗 𝜎𝑧

𝑗+1 (2.223)

it follows that all 𝑁𝛾𝛿 are equal to zero, unless (𝛾, 𝛿) = {(0, 0), (𝑧, 𝑧)}. In those cases,

𝑁00 = cosh(𝛽) (2.224)
𝑁𝑧𝑧 = − sinh(𝛽). (2.225)
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Thus, the calculation can proceed as shown below.

tr (
𝑛

∏
𝑗=1

𝑒−𝛽𝜎𝑧
𝑗 𝜎𝑧

𝑗+1) = tr(𝑁00𝜎0
1 ⊗ 𝜎0

2 ⋅ 𝑁00𝜎0
2 ⊗ 𝜎0

3 ⋅ … ⋅ 𝑁00𝜎0
𝑛 ⊗ 𝜎0

1+

+ 𝑁00𝜎0
1 ⊗ 𝜎0

2 ⋅ 𝑁00𝜎0
2 ⊗ 𝜎0

3 ⋅ … ⋅ 𝑁0𝑥𝜎0
𝑛 ⊗ 𝜎𝑥

1 + … +
+ 𝑁00𝜎0

1 ⊗ 𝜎0
2 ⋅ 𝑁00𝜎0

2 ⊗ 𝜎0
3 ⋅ … ⋅ 𝑁𝑧𝑧𝜎𝑧

𝑛 ⊗ 𝜎𝑧
1 + … +

+ 𝑁𝑧𝑧𝜎𝑧
1 ⊗ 𝜎𝑧

2 ⋅ 𝑁𝑧𝑧𝜎𝑧
2 ⊗ 𝜎𝑧

3 ⋅ … ⋅ 𝑁𝑧𝑧𝜎𝑧
𝑛 ⊗ 𝜎𝑧

1) = (2.226)

=
3

∑
𝛾1,…,𝛾𝑛=0
𝛿1,…,𝛿𝑛=0

tr (𝑁𝛾1𝛿1
𝑁𝛾2𝛿2

… 𝑁𝛾𝑛𝛿𝑛
(𝜎𝛾1

1 ⊗ 𝜎𝛿1
2 ) ⋅ (𝜎𝛾2

2 ⊗ 𝜎𝛿2
3 ) ⋅ … ⋅ (𝜎𝛾𝑛𝑛 ⊗ 𝜎𝛿𝑛

1 )) =

(2.227)

=
3

∑
𝛾1,…,𝛾𝑛=0
𝛿1,…,𝛿𝑛=0

𝑁𝛾1𝛿1
𝑁𝛾2𝛿2

… 𝑁𝛾𝑛𝛿𝑛
tr (𝜎𝛾1

1 𝜎𝛿𝑛
1 ⊗ 𝜎𝛿1

2 𝜎𝛾2
2 ⊗ 𝜎𝛿2

3 𝜎𝛾3
3 ⊗ … ⊗ 𝜎𝛿𝑛−1𝑛 𝜎𝛾𝑛𝑛 ) =

(2.228)
= ∑

𝛼1,…,𝛼𝑛={0,𝑧}
𝑁𝛼1𝛼1

𝑁𝛼2𝛼2
… 𝑁𝛼𝑛𝛼𝑛

tr (𝜎𝛼𝑛
1 𝜎𝛼1

1 ⊗ 𝜎𝛼1
2 𝜎𝛼2

2 ⊗ 𝜎𝛼2
3 𝜎𝛼3

3 ⊗ … ⊗ 𝜎𝛼𝑛−1𝜎𝛼𝑛𝑛 ) =

(2.229)
=𝑁00𝑁00 … 𝑁00𝑁𝑧𝑧 tr (𝜎𝑧

1𝜎0
1 ⊗ 𝜎0

2𝜎0
2 ⊗ 𝜎0

3𝜎0
3 ⊗ … ⊗ 𝜎0

𝑛𝜎𝑧
𝑛) +

+ 𝑁00𝑁00 … 𝑁00𝑁𝑧𝑧𝑁00 tr (𝜎0
1𝜎0

1 ⊗ 𝜎0
2𝜎0

2 ⊗ 𝜎0
3𝜎0

3 ⊗ … ⊗ 𝜎0
𝑛−1𝜎𝑧

𝑛−1 ⊗ 𝜎0
𝑛𝜎0

𝑛) +
+ 𝑁00𝑁00 … 𝑁00𝑁𝑧𝑧𝑁𝑧𝑧 tr (𝜎𝑧

1𝜎0
1 ⊗ 𝜎0

2𝜎0
2 ⊗ 𝜎0

3𝜎0
3 ⊗ … ⊗ 𝜎𝑧

𝑛−1𝜎𝑧
𝑛−1 ⊗ 𝜎0

𝑛𝜎𝑧
𝑛) (2.230)

The traces of the combinations appearing in the expression are:

tr (𝜎0
𝑗 𝜎𝑧

𝑗 ) =0, (2.231)

tr (𝜎0
𝑗 𝜎0

𝑗 ) = tr (𝜎𝑧
𝑗 𝜎𝑧

𝑗 ) = 2. (2.232)

This means that the only two cases in which these summands do not equal zero are those
where all the 𝛼𝑗 are equal:

tr (
𝑛

∏
𝑗=1

𝑒−𝛽𝜎𝑧
𝑗 𝜎𝑧

𝑗+1) =

=𝑁𝑛
00 tr (𝜎0

1𝜎0
1 ⊗ 𝜎0

2𝜎0
2 ⊗ … ⊗ 𝜎0

𝑛𝜎0
𝑛) + 𝑁𝑛

𝑧𝑧 tr (𝜎𝑧
1𝜎𝑧

1 ⊗ 𝜎𝑧
2𝜎𝑧

2 ⊗ … ⊗ 𝜎𝑧
𝑛𝜎𝑧

𝑛) = (2.233)
=𝑁𝑛

00 ⋅ 2𝑛 + 𝑁𝑛
𝑧𝑧 ⋅ 2𝑛 = (2.234)

=2𝑛 ⋅ ((cosh(𝛽))𝑛 + (− sinh(𝛽))𝑛) . (2.235)
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Including this expression in the derivation gives the following.

tr (𝑒−𝛽𝐻0𝐻𝜈) = tr (
𝑛

∏
𝑗=1

𝑒−𝛽𝜎𝑧
𝑗 𝜎𝑧

𝑗+1 ⋅
𝑛

∑
𝑘=1

ℎ𝑘𝜎𝑧
𝑘) = (2.236)

= tr((𝑁00𝕀1,2 + 𝑁𝑧𝑧𝜎𝑧
1 ⊗ 𝜎𝑧

2) ⋅ (𝑁00𝕀2,3 + 𝑁𝑧𝑧𝜎𝑧
2 ⊗ 𝜎𝑧

3) ⋅ … ⋅ (𝑁00𝕀𝑛−1,𝑛 + 𝑁𝑧𝑧𝜎𝑧
𝑛−1 ⊗ 𝜎𝑧

𝑛) ⋅

⋅ (𝑁00𝕀𝑛,1 + 𝑁𝑧𝑧𝜎𝑧
𝑛 ⊗ 𝜎𝑧

1) ⋅ (ℎ1𝜎𝑧
1 + ℎ2𝜎𝑧

2 + … + ℎ𝑛−1𝜎𝑧
𝑛−1 + ℎ𝑛𝜎𝑧

𝑛)) = (2.237)

= tr( ∑
𝛼1,…,𝛼𝑛={0,𝑧}

(𝑁𝛼1
𝑁𝛼2

… 𝑁𝛼𝑛
(𝜎𝛼1

1 ⊗ 𝜎𝛼1
2 ) ⋅ (𝜎𝛼2

2 ⊗ 𝜎𝛼2
3 ) ⋅ … ⋅

⋅ (𝜎𝛼𝑛−1
𝑛−1 ⊗ 𝜎𝛼𝑛−1𝑛 ) ⋅ (𝜎𝛼𝑛𝑛 ⊗ 𝜎𝛼𝑛

1 )) ⋅ (ℎ1𝜎𝑧
1 + ℎ2𝜎𝑧

2 + … + ℎ𝑛−1𝜎𝑧
𝑛−1 + ℎ𝑛𝜎𝑧

𝑛)) =
(2.238)

= ∑
𝛼1,…,𝛼𝑛={0,𝑧}

𝑛
∑
𝑗=1

tr(𝑁𝛼1
𝑁𝛼2

… 𝑁𝛼𝑛
ℎ𝑗⋅

⋅ (𝜎𝛼1
1 ⊗ 𝜎𝛼1

2 ) ⋅ (𝜎𝛼2
2 ⊗ 𝜎𝛼2

3 ) ⋅ … ⋅ (𝜎𝛼𝑛−1
𝑛−1 ⊗ 𝜎𝛼𝑛−1𝑛 ) ⋅ (𝜎𝛼𝑛𝑛 ⊗ 𝜎𝛼𝑛

1 ) ⋅ 𝜎𝑧
𝑗 ) = (2.239)

= ∑
𝛼1,…,𝛼𝑛={0,𝑧}

𝑛
∑
𝑗=1

tr(𝑁𝛼1
𝑁𝛼2

… 𝑁𝛼𝑛
ℎ𝑗⋅

⋅ (𝜎𝛼𝑛
1 𝜎𝛼1

1 ⊗ 𝜎𝛼1
2 𝜎𝛼2

2 ⊗ 𝜎𝛼2
3 𝜎𝛼3

3 ⊗ … ⊗ 𝜎𝛼𝑛−2
𝑛−1 𝜎𝛼𝑛−1

𝑛−1 ⊗ 𝜎𝛼𝑛−1𝑛 𝜎𝛼𝑛𝑛 ) ⋅ 𝜎𝑧
𝑗 ). (2.240)

The only case in which this trace is not equal to zero is when all 𝛼’s are equal, because
the 𝜎𝑧

𝑗 only affects one of the products — in all cases there will be at least one part of
the trace product that is going to be equal to tr (𝜎𝑧) = 0. Thus, for 𝑗 = 0 it follows that:

tr (𝑒−𝛽𝐻0𝐻𝜈) = 0. (2.241)
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I will now present the calculation for the second order, with 𝑗 = 2.

tr (𝑒−𝛽𝐻0𝐻2
𝜈 ) = tr( ∑

𝛼1,…,𝛼𝑛={0,𝑧}
𝑁𝛼1

𝑁𝛼2
… 𝑁𝛼𝑛

(𝜎𝛼𝑛
1 𝜎𝛼1

1 ⊗ 𝜎𝛼1
2 𝜎𝛼2

2 ⊗ 𝜎𝛼2
3 𝜎𝛼3

3 ⊗ … ⊗

⊗ 𝜎𝛼𝑛−2
𝑛−1 𝜎𝛼𝑛−1

𝑛−1 ⊗ 𝜎𝛼𝑛−1𝑛 𝜎𝛼𝑛𝑛 ) ⋅ (
𝑛

∑
𝑗=1

ℎ𝑗𝜎𝑧
𝑗 )

2

) = (2.242)

= ∑
𝛼1,…,𝛼𝑛={0,𝑧}

tr(𝑁𝛼1
𝑁𝛼2

… 𝑁𝛼𝑛
(𝜎𝛼𝑛

1 𝜎𝛼1
1 ⊗ 𝜎𝛼1

2 𝜎𝛼2
2 ⊗ 𝜎𝛼2

3 𝜎𝛼3
3 ⊗ … ⊗ 𝜎𝛼𝑛−2

𝑛−1 𝜎𝛼𝑛−1
𝑛−1 ⊗ 𝜎𝛼𝑛−1𝑛 𝜎𝛼𝑛𝑛 ) ⋅

⋅ (ℎ1𝜎𝑧
1 + ℎ2𝜎𝑧

2 + … + ℎ𝑛𝜎𝑧
𝑛) ⋅ (ℎ1𝜎𝑧

1 + ℎ2𝜎𝑧
2 + … + ℎ𝑛𝜎𝑧

𝑛)) = (2.243)

= ∑
𝛼1,…,𝛼𝑛={0,𝑧}

𝑁𝛼1
𝑁𝛼2

… 𝑁𝛼𝑛
⋅

⋅ tr ((𝜎𝛼𝑛
1 𝜎𝛼1

1 ⊗ 𝜎𝛼1
2 𝜎𝛼2

2 ⊗ 𝜎𝛼2
3 𝜎𝛼3

3 ⊗ … ⊗ 𝜎𝛼𝑛−2
𝑛−1 𝜎𝛼𝑛−1

𝑛−1 ⊗ 𝜎𝛼𝑛−1𝑛 𝜎𝛼𝑛𝑛 ) ⋅
𝑛

∑
𝑗,𝑘=1

ℎ𝑗ℎ𝑘𝜎𝑧
𝑗 𝜎𝑧

𝑘) =

(2.244)

=
𝑛

∑
𝑗,𝑘=1

∑
𝛼1,…,𝛼𝑛={0,𝑧}

𝑁𝛼1
𝑁𝛼2

… 𝑁𝛼𝑛
⋅

⋅ tr ((𝜎𝛼𝑛
1 𝜎𝛼1

1 ⊗ 𝜎𝛼1
2 𝜎𝛼2

2 ⊗ 𝜎𝛼2
3 𝜎𝛼3

3 ⊗ … ⊗ 𝜎𝛼𝑛−2
𝑛−1 𝜎𝛼𝑛−1

𝑛−1 ⊗ 𝜎𝛼𝑛−1𝑛 𝜎𝛼𝑛𝑛 ) ⋅ ℎ𝑗ℎ𝑘𝜎𝑧
𝑗 𝜎𝑧

𝑘) =
(2.245)

=
𝑛

∑
𝑗=1

∑
𝛼1,…,𝛼𝑛={0,𝑧}

𝑁𝛼1
𝑁𝛼2

… 𝑁𝛼𝑛
⋅

⋅ tr((𝜎𝛼𝑛
1 𝜎𝛼1

1 ⊗ 𝜎𝛼1
2 𝜎𝛼2

2 ⊗ 𝜎𝛼2
3 𝜎𝛼3

3 ⊗ … ⊗ 𝜎𝛼𝑛−2
𝑛−1 𝜎𝛼𝑛−1

𝑛−1 ⊗ 𝜎𝛼𝑛−1𝑛 𝜎𝛼𝑛𝑛 ) ⋅

⋅ (ℎ2
𝑗 𝕀𝑗 + ℎ𝑗ℎ𝑗+1𝜎𝑧

𝑗 ⊗ 𝜎𝑧
𝑗+1 + … + ℎ𝑗ℎ𝑗−1𝜎𝑧

𝑗 ⊗ 𝜎𝑧
𝑗−1)) (2.246)

Each of the combinations from the brackets gives a non-zero trace just for two specific
combinations of 𝛼’s, which means that the expression can be rewritten as follows.

tr (𝑒−𝛽𝐻0𝐻2
𝜈 ) =

𝑛
∑
𝑗=1

(ℎ2
𝑗 (𝑁𝑛

00 ⋅ 2𝑛 + 𝑁𝑛
𝑧𝑧 ⋅ 2𝑛) + ℎ𝑗ℎ𝑗+1 ⋅ 2𝑛 ⋅ (𝑁𝑛−1

00 𝑁𝑧𝑧 + 𝑁00𝑁𝑛−1
𝑧𝑧 ) +

+ 2𝑛ℎ𝑗ℎ𝑗+2 (𝑁𝑛−2
00 𝑁2

𝑧𝑧 + 𝑁2
00𝑁𝑛−2

𝑧𝑧 ) + … + 2𝑛ℎ𝑗ℎ𝑗−1 (𝑁𝑛−1
00 𝑁𝑧𝑧 + 𝑁00𝑁𝑛−1

𝑧𝑧 )) =
(2.247)

=2𝑛𝑛 ⋅ (ℎ2
𝑗 (𝑁𝑛

00 + 𝑁𝑛
𝑧𝑧) + ℎ𝑗ℎ𝑗+1 ⋅ (𝑁𝑛−1

00 𝑁𝑧𝑧 + 𝑁00𝑁𝑛−1
𝑧𝑧 ) +

+ ℎ𝑗ℎ𝑗+2 (𝑁𝑛−2
00 𝑁2

𝑧𝑧 + 𝑁2
00𝑁𝑛−2

𝑧𝑧 ) + … + ℎ𝑗ℎ𝑗−1 (𝑁𝑛−1
00 𝑁𝑧𝑧 + 𝑁00𝑁𝑛−1

𝑧𝑧 )) (2.248)

In conclusion, for 𝑗 = 2, the needed contribution equals:

𝔼ℎ (tr (𝑒−𝛽𝐻0𝐻2
𝜈 )) =2𝑛𝑛𝜂2

ℎ ⋅ ((cosh(𝛽))𝑛 + (− sinh(𝛽))𝑛) . (2.249)

It is now evident that the higher orders can also be obtained in a straightforward pro-
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cedure. For illustration, I will include the calculation of the contribution for 𝑗 = 4.

tr (𝑒−𝛽𝐻0𝐻4
𝜈 ) =

𝑛
∑
𝑗=1

𝑛
∑
𝑘=1

∑
𝛼1,…,𝛼𝑛={0,𝑧}

𝑁𝛼1
𝑁𝛼2

… 𝑁𝛼𝑛
⋅

tr ((𝜎𝛼𝑛
1 𝜎𝛼1

1 ⊗ 𝜎𝛼1
2 𝜎𝛼2

2 ⊗ 𝜎𝛼2
3 𝜎𝛼3

3 ⊗ … ⊗ 𝜎𝛼𝑛−2
𝑛−1 𝜎𝛼𝑛−1

𝑛−1 ⊗ 𝜎𝛼𝑛−1𝑛 𝜎𝛼𝑛𝑛 ) ⋅
⋅ (ℎ2

𝑗 𝕀𝑗 + ℎ𝑗ℎ𝑗+1𝜎𝑧
𝑗 ⊗ 𝜎𝑧

𝑗+1 + … + ℎ𝑗ℎ𝑗−1𝜎𝑧
𝑗 ⊗ 𝜎𝑧

𝑗−1) ⋅
⋅ (ℎ2

𝑘𝕀𝑘 + ℎ𝑘ℎ𝑘+1𝜎𝑧
𝑘 ⊗ 𝜎𝑧

𝑘+1 + … + ℎ𝑘ℎ𝑘−1𝜎𝑧
𝑘 ⊗ 𝜎𝑧

𝑘−1)) (2.250)

Naturally, the calculation flows as the one for the lower orders.

𝔼ℎ (𝑒−𝛽𝐻0𝐻4
𝜈 ) = 𝔼ℎ(

𝑛
∑
𝑗=1

∑
𝛼1,…,𝛼𝑛={0,𝑧}

𝑁𝛼1
𝑁𝛼2

… 𝑁𝛼𝑛
⋅

⋅ tr ((𝜎𝛼𝑛
1 𝜎𝛼1

1 ⊗ 𝜎𝛼1
2 𝜎𝛼2

2 ⊗ 𝜎𝛼2
3 𝜎𝛼3

3 ⊗ … ⊗ 𝜎𝛼𝑛−2
𝑛−1 𝜎𝛼𝑛−1

𝑛−1 ⊗ 𝜎𝛼𝑛−1𝑛 𝜎𝛼𝑛𝑛 ) ⋅
⋅ ((ℎ4

𝑗 𝕀 + ℎ2
𝑗ℎ2

𝑗+1𝕀 + … + ℎ2
𝑗ℎ2

𝑗−1𝕀)) + (ℎ2
𝑗ℎ2

𝑗+1𝕀 + ℎ2
𝑗ℎ2

𝑗+1𝕀) +

+ (ℎ2
𝑗ℎ2

𝑗+2𝕀 + ℎ2
𝑗ℎ2

𝑗+2𝕀) + … + (ℎ2
𝑗ℎ2

𝑗−1𝕀 + ℎ2
𝑗ℎ2

𝑗−1𝕀))) = (2.251)

=𝔼ℎ(
𝑛

∑
𝑗=1

∑
𝛼1,…,𝛼𝑛={0,𝑧}

𝑁𝛼1
𝑁𝛼2

… 𝑁𝛼𝑛
(((ℎ4

𝑗 𝕀 + ℎ2
𝑗ℎ2

𝑗+1𝕀 + … + ℎ2
𝑗ℎ2

𝑗−1𝕀)) +

+ (ℎ2
𝑗ℎ2

𝑗+1𝕀 + ℎ2
𝑗ℎ2

𝑗+1𝕀) + (ℎ2
𝑗ℎ2

𝑗+2𝕀 + ℎ2
𝑗ℎ2

𝑗+2𝕀) + … + (ℎ2
𝑗ℎ2

𝑗−1𝕀 + ℎ2
𝑗ℎ2

𝑗−1𝕀))⋅

⋅ tr ((𝜎𝛼𝑛
1 𝜎𝛼1

1 ⊗ 𝜎𝛼1
2 𝜎𝛼2

2 ⊗ 𝜎𝛼2
3 𝜎𝛼3

3 ⊗ … ⊗ 𝜎𝛼𝑛−2
𝑛−1 𝜎𝛼𝑛−1

𝑛−1 ⊗ 𝜎𝛼𝑛−1𝑛 𝜎𝛼𝑛𝑛 ))) = (2.252)

=𝔼ℎ(
𝑛

∑
𝑗=1

(((ℎ4
𝑗 𝕀 + ℎ2

𝑗ℎ2
𝑗+1𝕀 + … + ℎ2

𝑗ℎ2
𝑗−1𝕀)) + (ℎ2

𝑗ℎ2
𝑗+1𝕀 + ℎ2

𝑗ℎ2
𝑗+1𝕀) +

+ (ℎ2
𝑗ℎ2

𝑗+2𝕀 + ℎ2
𝑗ℎ2

𝑗+2𝕀) + … + (ℎ2
𝑗ℎ2

𝑗−1𝕀 + ℎ2
𝑗ℎ2

𝑗−1𝕀)) ⋅ 2𝑛 ⋅ (𝑁𝑛
00 + 𝑁𝑛

𝑧𝑧)) = (2.253)

=
𝑛

∑
𝑗=1

2𝑛 ⋅ (𝑁𝑛
00 + 𝑁𝑛

𝑧𝑧) ⋅ ((𝜂4
ℎ ⋅ 3!! + 𝜂4

ℎ + 𝜂4
ℎ + … + 𝜂4

ℎ) + 2𝜂4
ℎ + … 2𝜂4

ℎ) = (2.254)

=
𝑛

∑
𝑗=1

2𝑛 ⋅ (𝑁𝑛
00 + 𝑁𝑛

𝑧𝑧) ⋅ (𝜂4
ℎ ⋅ 3!! + (𝑛 − 1)𝜂4

ℎ + (𝑛 − 1)2𝜂4
ℎ) = (2.255)

=
𝑛

∑
𝑗=1

2𝑛 ⋅ (𝑁𝑛
00 + 𝑁𝑛

𝑧𝑧) ⋅ (3𝜂4
ℎ + 3(𝑛 − 1)𝜂4

ℎ) = (2.256)

=2𝑛 ⋅ 3𝑛𝜂4
ℎ (𝑁𝑛

00 + 𝑁𝑛
𝑧𝑧) (2.257)
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What I have obtained for the Gibbs measure in this case is then:

𝑃 = 𝑒−𝛽𝐻0

𝑍0
(2 + 𝛽2 (𝐻𝜈)2 + 𝛽

𝑍0
𝔼ℎ (tr (𝑒−𝛽𝐻0𝐻𝜈)) − 𝛽2

2𝑍0
𝔼ℎ (tr (𝑒−𝛽𝐻0𝐻2

𝜈 )) +

+ 𝛽2

𝑍2
0

𝔼ℎ ((tr (𝑒−𝛽𝐻0𝐻𝜈))2) − 𝛽2

𝑍0
𝔼ℎ (𝐻𝜈 tr (𝑒−𝛽𝐻0𝐻𝜈))) = (2.258)

=𝑒−𝛽𝐻0

𝑍0
(2 + 𝛽2 (

𝑛
∑
𝑗=1

ℎ𝑗𝜎𝑧
𝑗 )

2

− 𝛽2

2𝑍0
𝔼ℎ (tr (𝑒−𝛽𝐻0𝐻2

𝜈 ))) = (2.259)

=𝑒−𝛽𝐻0

𝑍0
(2 + 𝛽2

𝑛
∑

𝑗,𝑘=1
ℎ𝑗ℎ𝑘𝜎𝑧

𝑗 𝜎𝑧
𝑘 − 𝛽2

2𝑍0
⋅ 𝑛𝜂2

ℎ ⋅ (𝑁𝑛
00 ⋅ 2𝑛 + 𝑁𝑛

𝑧𝑧 ⋅ 2𝑛)) = (2.260)

=𝑒−𝛽𝐻0

𝑍0
(2 + 𝛽2

𝑛
∑

𝑗,𝑘=1
ℎ𝑗ℎ𝑘𝜎𝑧

𝑗 𝜎𝑧
𝑘 − 𝛽2 ⋅ 2𝑛𝑛𝜂2

ℎ
2𝑍0

⋅ (cosh(𝛽)𝑛 + (− sinh(𝛽))𝑛)) = (2.261)

=2𝑒−𝛽𝐻0

𝑍0
+ 𝑒−𝛽𝐻0𝛽

𝑍0

𝑛
∑

𝑗,𝑘=1
ℎ𝑗ℎ𝑘𝜎𝑧

𝑗 𝜎𝑧
𝑘 − 𝑒−𝛽𝐻0𝛽2 ⋅ 2𝑛𝑛𝜂2

ℎ
2𝑍2

0
⋅ (cosh(𝛽)𝑛 + (− sinh(𝛽))𝑛)

(2.262)

As an illustrative example, I can also obtain 𝔼 (𝑍):

𝔼ℎ (𝑍) =𝔼ℎ (𝑍0 +
∞

∑
𝑗=1

tr ((−𝛽)𝑗𝑒−𝛽𝐻0𝐻𝑗
𝜈

𝑗! )) = (2.263)

=𝔼ℎ (𝑍0) + 𝔼ℎ (
∞

∑
𝑗=1

tr ((−𝛽)𝑗𝑒−𝛽𝐻0𝐻𝑗
𝜈

𝑗! )) = (2.264)

= tr (𝑒−𝛽𝐻0) +
∞

∑
𝑗=1

(−𝛽)𝑗

𝑗! 𝔼ℎ (tr (𝑒−𝛽𝐻0𝐻𝑗
𝜈)) = (2.265)

= tr (𝑒−𝛽𝐻0) + 𝔼ℎ (tr (𝑒−𝛽𝐻0)) − 𝛽𝔼ℎ (tr (𝑒−𝛽𝐻0𝐻𝜈)) +

+ 𝛽2

2! 𝔼ℎ (tr (𝑒−𝛽𝐻0𝐻2
𝜈 )) − 𝛽3

3! 𝔼ℎ (tr (𝑒−𝛽𝐻0𝐻3
𝜈 )) + … = (2.266)

=2𝑛 ⋅ (𝑁𝑛
00 + 𝑁𝑛

𝑧𝑧) + 2𝑛 ⋅ (𝑁𝑛
00 + 𝑁𝑛

𝑧𝑧) + 𝛽2

2! ⋅ 2𝑛𝑛𝜂2
ℎ ⋅ (𝑁𝑛

00 + 𝑁𝑛
𝑧𝑧) +

+ 𝛽4

4! ⋅ 2𝑛 ⋅ 3𝑛𝜂4
ℎ (𝑁𝑛

00 + 𝑁𝑛
𝑧𝑧) + … (2.267)

2.2 Stochastic Derivation of Disorder Averages

To supplement and improve on the derived solutions, I will provide calculations to de-
scribe the dynamics of interacting quantum many-body systems in the presence of dis-
order. The following derivations give an Itô stochastic integral [61] representation for a
number of disorder-averaged quantities, which can then reliably be approximated ana-
lytically, but also combined with existing analysis methods in the tensor network frame-
work, giving a strong new insight into the characteristics and behavior of many-body
systems that are often too difficult to accurately analyze by only numerical methods.
The integral expansion gives a series of approximations, the first of which already in-
cludes all diffusive corrections and is (manifestly) completely positive. The addition of
fluctuations leads to a convergent series of systematic corrections.
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2.2.1 Derivation of a Stochastic Integral Representation
To calculate a general expression for disorder averages of dynamical processes in disor-
dered many-body systems, consider a generalized Hamiltonian for a system of 𝑚 parti-
cles, of the type

𝐻(x) = 𝐻0 +
𝑚

∑
𝑗=1

𝑥𝑗𝐷𝑗, (2.268)

where 𝐻0 is a fixed Hamiltonian (typically a kinetic energy term), 𝐷𝑗 represent disor-
dered terms (e.g., a local magnetic field or potential energy terms), and 𝑥𝑗 are random
variables drawn from the Gaussian distribution with the probability density function

𝑔𝛾(𝑥) ≡ 𝑒− 𝑥2
2𝛾2

√
2𝜋𝛾 ,

where 𝛾 is its standard deviation.
To start with, as a prototype, we consider a system with only a single disorder term

𝐻(𝑥) = 𝐴 + 𝑥𝐵, (2.269)

where 𝐴 and 𝐵 are 𝑛 × 𝑛 matrices and 𝑥 ∈ ℝ is a parameter chosen randomly from the
Gaussian distribution with the variance of 𝛾2. In further calculations, it will prove to
be useful to derive an expression for the disorder-averaged propagator,

𝑆𝛾(𝑡) = 𝑒𝑖𝑡𝐴𝑒− 𝛾2𝑡2
2 𝐵2 . (2.270)

First, I will write the propagator 𝑒𝑖𝑡𝐻 as (𝑒 𝑖𝑡
𝑛 𝐻)𝑛

, such that

𝑆𝛾(𝑡) = ∫ 𝑔𝛾(𝑥) (𝑒 𝑖𝑡
𝑛 (𝐴+𝑥𝐵))𝑛

d𝑥. (2.271)

Then, by substituting 𝑥 by a vector of 𝑛 independent variables, 𝑥1, 𝑥2, … , 𝑥𝑛, it follows
that

𝑆𝛾(𝑡) = 1
𝛾

√
2𝜋 ∫ 𝑒− ‖𝑥‖2

2𝑛𝛾2 𝜹 (𝑓(x))
𝑛

∏
𝑗=1

𝑒 𝑖𝑡
𝑛 (𝐴+𝑥𝑗𝐵)dx, (2.272)

where the equality of all 𝑥𝑗 has been ensured using 𝜹 (𝑓(x)) = ∏𝑛−1
𝑗=1 𝛿 (𝑥𝑗+1 − 𝑥𝑗). By

using the delta function identity

𝛿(𝑥) = 1
2𝜋 ∫

∞

−∞
𝑒𝑖𝑘𝑥d𝑘, (2.273)

the preceding expression can be integrated over 𝑥𝑗 by introducing two auxiliary variables
𝑘0 = 𝑘𝑛 = 0:

𝑆𝛾(𝑡) = 1√
2𝜋𝛾 ∫ 𝑒− ‖𝑥‖2

2𝑛𝛾2
𝑛−1
∏
𝑟=1

( 1
2𝜋𝑒𝑖𝑘𝑟(𝑥𝑟+1−𝑥𝑟)d𝑘𝑟) (

𝑛
∏
𝑗=1

𝑒 𝑖𝑡
𝑛 (𝐴+𝑥𝑗𝐵)) dx = (2.274)

= 1
(2𝜋)𝑛−1

1√
2𝜋𝛾 ∫ 𝑒− ‖𝑥‖2

2𝑛𝛾2 (
𝑛

∏
𝑟=1

𝑒𝑖𝑥𝑟(𝑘𝑟−1−𝑘𝑟)) (
𝑛

∏
𝑗=1

𝑒 𝑖𝑡
𝑛 (𝐴+𝑥𝑗𝐵)) d𝑘1 … d𝑘𝑛−1dx.

(2.275)

To integrate this expression, it would be prudent to complete the square in the exponents
of exp (− 𝑥2

𝑗
2𝑛𝛾2 ) and exp (𝑖𝑥𝑗(𝑘𝑟−1 − 𝑘𝑟)), by using the formula:

−𝛼𝑥2 + 𝛽𝑥 = − (√𝛼𝑥 − 𝛽
2√𝛼)

2
+ 𝛽2

4𝛼, (2.276)
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for
𝛼 = 1

2𝑛𝛾2 and 𝛽 = 𝑖 (𝑘𝑟−1 − 𝑘𝑟) . (2.277)

It follows that

𝑒− 𝑥2
𝑗

2𝑛𝛾2 𝑒𝑖𝑥𝑗(𝑘𝑟−1−𝑘𝑟) = 𝑒−( 1√
2𝑛𝛾 𝑥𝑗−𝑖√ 𝑛

2 𝛾(𝑘𝑟−1−𝑘𝑟))
2

𝑒− 𝑛𝛾2
2 (𝑘𝑟−1−𝑘𝑟)2 , (2.278)

so if
𝜅𝑗 ≡ 𝑛 (𝑘𝑗−1 − 𝑘𝑗) (2.279)

and

𝐹𝑗 (𝑘𝑟−1 − 𝑘𝑟) = ∫
∞

−∞
𝑒−( 1√

2𝑛𝛾 𝑥𝑗−𝑖√ 𝑛
2 𝛾(𝑘𝑟−1−𝑘𝑟))

2

𝑒 𝑖𝑡
𝑛 (𝐴+𝑥𝑗𝐵)d𝑥𝑗 = (2.280)

= ∫
∞

−∞
𝑒− 1

2𝑛𝛾2 (𝑥𝑗−𝑖𝛾2𝜅𝑗)2

𝑒 𝑖𝑡
𝑛 (𝐴+𝑥𝑗𝐵)d𝑥𝑗 = (2.281)

= ∫
∞

−∞
𝑒− 1

2𝑛𝛾2 (𝑥𝑗−𝑖𝛾2𝜅𝑗)2

(𝟙 + 𝑖𝑡
𝑛 (𝐴 + 𝑥𝑗𝐵) − 𝑡2

2𝑛2 (𝐴 + 𝑥𝑗𝐵)2 + …) d𝑥𝑗, (2.282)

the integral (2.275) can be written as:

𝑆𝛾(𝑡) = 1
(2𝜋)𝑛−1

1√
2𝜋𝛾 ∫ 𝑒− 𝑛𝛾2

2 ∑𝑛
𝑗=1(𝑘𝑗−1−𝑘𝑗) (

𝑛
∏
𝑗=1

𝐹𝑗 (𝑘𝑗−1 − 𝑘𝑗)
2) d𝑘1 … d𝑘𝑛−1dx.

(2.283)
To evaluate the integral, it is first necessary to solve (2.282), which I will now do up
to the second order in 𝑥𝑗 within the integral. The integration that includes the zeroth
order term of the infinite sum (𝟙) equals:

ℐ𝑛𝑡0 = ∫
∞

−∞
𝑒− 1

2𝑛𝛾2 (𝑥𝑗−𝑖𝛾2𝜅𝑗)2

d𝑥𝑗 = (2.284)

= ∫
∞

−∞
𝑒− 1

2𝑛𝛾2 𝑥2
𝑗 d𝑥𝑗 = (2.285)

=
√

2𝜋𝑛𝛾. (2.286)

Further calculations require the integration of terms that include 𝑥𝑗 and 𝑥2
𝑗 . The former

equals

ℐ𝑛𝑡𝑥𝑗
= ∫

∞

−∞
𝑒− 1

2𝑛𝛾2 (𝑥𝑗−𝑖𝛾2𝜅𝑗)2

𝑥𝑗d𝑥𝑗 = (2.287)

= ∫
∞

−∞
𝑒− 1

2𝑛𝛾2 𝑥2
𝑗 (𝑥𝑗 + 𝑖𝛾2𝜅𝑗) d𝑥𝑗 = (2.288)

=𝑖𝛾2𝜅𝑗
√

2𝜋𝑛𝛾, (2.289)

and the latter equals:

ℐ𝑛𝑡𝑥2
𝑗

= ∫
∞

−∞
𝑒− 1

2𝑛𝛾2 (𝑥𝑗−𝑖𝛾2𝜅𝑗)2

𝑥2
𝑗d𝑥𝑗 = (2.290)

= ∫
∞

−∞
𝑒− 1

2𝑛𝛾2 𝑥2
𝑗 (𝑥𝑗 + 𝑖𝛾2𝜅𝑗)

2 d𝑥𝑗 = (2.291)

= ∫
∞

−∞
𝑒− 1

2𝑛𝛾2 𝑥2
𝑗 𝑥2

𝑗d𝑥𝑗 − 𝛾4𝜅2
𝑗
√

2𝜋𝑛𝛾 = (2.292)

= (𝑛𝛾2 − 𝛾4𝜅2
𝑗)

√
2𝜋𝑛𝛾. (2.293)
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Thus, the integral in (2.282) can be evaluated as:

𝐹𝑗 (𝑘𝑟−1 − 𝑘𝑟) =
√

2𝜋𝑛𝛾(𝟙 + 𝑖𝑡
𝑛 (𝐴 + 𝑖𝛾2𝜅𝑗𝐵) −

− 𝑡2

2𝑛2 (𝐴2 + {𝐴, 𝐵}𝑖𝛾2𝜅𝑗 + 𝐵2 (𝑛𝛾2 − 𝛾4𝜅2
𝑗)) + 𝒪 (𝑘3)) = (2.294)

=
√

2𝜋𝑛𝛾(𝟙 + 𝑖𝑡
𝑛 (𝐴 + 𝑖𝛾2𝑛 (𝑘𝑗−1 − 𝑘𝑗) 𝐵) − (2.295)

− 𝑡2

2𝑛2 ({𝐴, 𝐵}𝑖𝛾2𝑛 (𝑘𝑗−1 − 𝑘𝑗) + 𝐵2 (𝑛𝛾2 − 𝛾4𝑛2 (𝑘𝑗−1 − 𝑘𝑗)
2)) + 𝒪 (𝑘3)).

(2.296)

For convenience, I will define

𝐹𝑗 (𝑘𝑗−1 − 𝑘𝑗) ≡ 𝐹𝑗 (𝑘𝑗−1 − 𝑘𝑗)√
2𝜋𝑛𝛾 , (2.297)

which leaves (2.283) as

𝑆𝛾(𝑡) = 1
(2𝜋)𝑛−1

√2𝜋𝑛𝛾2
√

2𝜋𝛾 ∫ 𝑒− 𝑛𝛾2
2 ∑𝑛

𝑗=1(𝑘𝑗−1−𝑘𝑗)2
(

𝑛
∏
𝑗=1

𝐹𝑗 (𝑘𝑗−1 − 𝑘𝑗)) d𝑘1 … d𝑘𝑛−1dx.

(2.298)
At this stage, it is possible to normalize the probability measure to 1. For easier calcu-
lation, I use the vector k = (𝑘1, … , 𝑘𝑛) and introduce

M ≡
⎛⎜⎜⎜⎜⎜⎜
⎝

2 −1 0 0 ⋯ 0
−1 2 −1 0 ⋯ 0
0 −1 2 −1 0
⋮ ⋱ ⋮
0 ⋯ 0 −1 2

⎞⎟⎟⎟⎟⎟⎟
⎠

= 2𝕀 − 𝑃𝑛−1, (2.299)

where M is an (𝑛 − 1) × (𝑛 − 1) matrix due to the properties of k and 𝑃𝑛−1 is the
adjacency matrix of the path graph. Its elements that indicate whether pairs of vertices
of this graph are adjacent or not — they equal 1 if there exists a relevant edge, and 0 if
there is none — i.e., 𝑝𝑖𝑗 = 𝛿𝑖,𝑗+1 + 𝛿𝑖,𝑗−1. This implies that

𝑒− 𝑛𝛾2
2 ∑𝑛

𝑗=1(𝑘𝑗−1−𝑘𝑗)2 = 𝑒− 𝑛𝛾2
2 k𝑇 Mk. (2.300)

The eigenvalues of M can be obtained as

𝜆𝑗 = 2 − 2 cos (𝜋𝑗
𝑛 ) , 𝑗 = 1, 2, … , 𝑛 − 1 (2.301)

and their corresponding (unnormalized) eigenvectors equal

v𝑗 = (1
2 sin (𝜋𝑗

𝑛 ) , 1
2 sin (2𝜋𝑗

𝑛 ) , … , 1
2 sin ((𝑛 − 1)𝜋𝑗

𝑛 )) . (2.302)

From det M = 2𝜋𝑛 (𝑛𝛾2)𝑛−1, it follows that

∫ 𝑒− 𝑛𝛾2
2 k𝑇 Mk d𝑘1 … d𝑘𝑛−1 = √ (2𝜋)𝑛−1

𝑛(𝑛𝛾2)𝑛−1 , (2.303)

which gives the probability measure of

d𝜇 ≡ √𝑛(𝑛𝛾2)𝑛−1

(2𝜋)𝑛−1 𝑒− 𝑛𝛾2
2 k𝑇 Mk d𝑘1 … d𝑘𝑛−1. (2.304)
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Figure 2.4: One thousand steps of a two-dimensional Wiener process with drift 𝜇 = 0
and volatility 𝜎 = 1 (left), and a two-dimensional Brownian bridge process with one
thousand steps, with volatility 𝜎 = 1 (right). The starts of these processes are marked
in blue, and their paths are then gradated toward magenta.

As a quick consistency check, look at the edge cases where either 𝐵 = 0 or 𝐴 = 0.
For the case of 𝐵 = 0 it follows that 𝐹 ≈ 𝑒𝑖 𝑡

𝑛 𝐴 and 𝑆𝛾(𝑡) = 𝑒𝑖𝑡𝐴, as one would expect.
For the case of 𝐴 = 0, by inserting (2.304) into (2.283), it follows:

𝑆𝛾(𝑡) = ∫ (
𝑛

∏
𝑗=1

𝐹𝑗 (𝑘𝑗−1 − 𝑘𝑗)) d𝜇 = ∫
𝑛

∏
𝑗=1

(𝑒−𝑡𝛾2(𝑘𝑗−1−𝑘𝑗)𝐵− 𝑡2
2𝑛 𝛾2𝐵2) 𝑑𝜇. (2.305)

Because the sum in this exponential function collapses to zero, what remains is:

𝑆𝛾(𝑡) = 𝑒− 𝛾2𝑡2
2 𝐵2 , (2.306)

which is, again, expected for 𝐴 = 0.

Brownian Bridge
To further analyze this expression, I can think of its constituents in terms of a Brow-
nian bridge — a stochastic process in continuous time, with the property that its
probability distribution equals the conditional probability distribution of a Wiener
process. A Wiener process is merely a mathematical model usually used to describe
the random motion of particles suspended in a fluid.

Definition 2.2.1. A Wiener process 𝑊𝑡 satisfies the following four properties:

1. 𝑊0 = 0.

2. ∀𝑢 ≥ 0, 𝑡 > 0 the increments 𝑊𝑡+𝑢 −𝑊𝑡 are independent of all values 𝑊𝑠 where
𝑠 ≤ 𝑡.

3. 𝑊𝑡 is continuous.

4. For 𝑡 ≥ 𝑠 ≥ 0, 𝑊𝑡 −𝑊𝑠 is distributed according to a Gaussian distribution with
a mean of zero and a variance of 𝑡 − 𝑠.

Figure 2.4 shows examples of a two-dimensional Wiener process and a two-dimensional
Brownian bridge process.

To reach a useful approximation of 𝑊𝑡, I will first discretize the interval [0, 𝑡] as:

[0, 𝑡] = [0, 𝑡
𝑛) ∪ [ 𝑡

𝑛 , 2𝑡
𝑛 ) ∪ ⋯ ∪ [ (𝑛−1)𝑡

𝑛 , 𝑡] (2.307)
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and define:
Δ𝑤𝑗 ≡ 𝑊 𝑗𝑡

𝑛
− 𝑊 (𝑗−1)𝑡

𝑛
, (2.308)

which must be distributed according to the Gaussian distribution with the following
probability distribution function:

𝑝𝑡,𝑛(𝑥) ≡ √ 𝑛
2𝜋𝑡𝑒− 𝑛

𝑡
𝑥2
2 . (2.309)

Because
𝑊𝑡 =

𝑛
∑
𝑗=1

Δ𝑤𝑗, (2.310)

the probability distribution function can be written as:

√ 𝑛𝑛

(2𝜋𝑡)𝑛 𝑒− 𝑛
𝑡 ∑𝑛

𝑗=1
(Δ𝑤𝑗)2

2 . (2.311)

If I define

𝑤𝑗 ≡
𝑗

∑
𝑘=1

Δ𝑤𝑘, (2.312)

I can write the Jacobian for the change of variables from Δ𝑤𝑗 to 𝑤𝑗 as:

[J]𝑗𝑘 ≡ 𝜕𝑤𝑗
𝜕Δ𝑤𝑘

= {1, 𝑘 ≤ 𝑗;
0, otherwise,

(2.313)

which means that J is a lower-triangular matrix with ones in all non-zero entries:

J ≡
⎛⎜⎜⎜⎜
⎝

1 0 0 ⋯ 0
1 1 0 ⋯ 0
⋮ ⋮ ⋱ ⋮
1 1 1 ⋯ 1

⎞⎟⎟⎟⎟
⎠

. (2.314)

The inverse matrix of this Jacobian, D ≡ J−1, equals

D ≡ J−1 ≡
⎛⎜⎜⎜⎜⎜⎜
⎝

1 0 0 ⋯ 0
−1 1 0 ⋯ 0
0 −1 1 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ −1 1

⎞⎟⎟⎟⎟⎟⎟
⎠

(2.315)

and the matrix D𝑇 D has the following form:

D𝑇 D =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

2 −1 0 ⋯ 0
−1 2 −1 ⋯ 0
0 −1 2 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 2 −1
0 0 ⋯ −1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (2.316)

Then, the probability density function for 𝑤𝑗 can then be expressed as:

√ 𝑛𝑛

(2𝜋𝑡)𝑛 𝑒− 𝑛
𝑡

w𝑇 D𝑇 Dw
2 . (2.317)
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According to Donsker’s theorem [62], also referred to as the functional central limit
theorem, the continuum limit of this expression tends to 𝑊𝑡 in its distribution. However,
the path measure for the variables 𝑘𝑗 exhibits a crucial difference from this case. To
illustrate it, I will discretize the Brownian bridge

𝐵𝑡 = 𝑊𝑡 − 𝑡𝑊𝑡=1 (2.318)

using the variables 𝑏𝑗, which set 𝐵1 = 0:

𝑏𝑗 ≡ 𝑤𝑗 − 𝑗
𝑛𝑤𝑛, 𝑗 = 0, 1, … , 𝑛. (2.319)

It is important to note here that the increments of 𝐵𝑡 are not independent. These
variables can also be represented using Δ𝑤𝑗 as:

𝑏𝑗 =
𝑗

∑
𝑘=1

Δ𝑤𝑘 − 𝑗
𝑛

𝑛
∑
𝑘=1

Δ𝑤𝑘, 𝑗 = 0, 1, … , 𝑛, (2.320)

or by using a Jacobian:

[Γ−1]𝑗𝑘 ≡ 𝜕𝑏𝑗
𝜕Δ𝑤𝑘

= {1 − 𝑗
𝑛 , 𝑘 ≤ 𝑗;

− 𝑗
𝑛 , otherwise.

(2.321)

In a more instructive form, the Jacobian can be written as:

Γ−1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 − 1
𝑛 − 1

𝑛 − 1
𝑛 ⋯ − 1

𝑛
1 − 2

𝑛 1 − 2
𝑛 − 2

𝑛 ⋯ − 2
𝑛

1 − 3
𝑛 1 − 3

𝑛 1 − 3
𝑛 ⋯ − 3

𝑛
⋮ ⋮ ⋱ ⋮
1
𝑛

1
𝑛

1
𝑛 ⋯ −1 + 1

𝑛
0 0 0 ⋯ 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, (2.322)

which is the partial left inverse of the 𝑛 × 𝑛 matrix:

Γ ≡

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 0 0 ⋯ 0
−1 1 0 0 ⋯ 0
0 −1 1 0 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮
0 ⋯ 0 −1 1 0
0 ⋯ 0 0 −1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (2.323)

Because the matrix M can be determined using the (𝑛 − 1) × (𝑛 − 1) submatrix of Γ𝑇 Γ,
its inverse is then given by the corresponding (𝑛 − 1) × (𝑛 − 1) submatrix of Γ−1(Γ−1)𝑇 :

[M−1]𝑗,𝑘 = min {𝑗 (1 − 𝑘
𝑛) , 𝑘 (1 − 𝑗

𝑛)} . (2.324)

Thus, the relevant probability distribution moments can be calculated using the gener-
ating function:

ℓ√𝑛(𝑛𝛾2)𝑛−1

(2𝜋)𝑛−1 ∫ 𝑒− 𝑛𝛾2
2 k𝑇 Mk𝑒ℓℓℓ𝑇 k 𝑑𝑘1 ⋯ 𝑑𝑘𝑛−1 = 𝑒

1
2𝑛𝛾2 ℓℓℓ𝑇 M−1ℓℓℓ. (2.325)

For 𝑗 ≤ 𝑗′, it holds for these moments that:

⟨𝑘𝑗𝑘𝑗′⟩ = 𝜕
𝜕ℓ𝑗

𝜕
𝜕ℓ𝑘

𝑒
1

2𝑛𝛾2 ℓℓℓ𝑇 M−1ℓℓℓ∣
ℓℓℓ=0

= 1
𝑛𝛾2 [M−1]𝑗,𝑗′ = 1

𝛾2
𝑗
𝑛 (1 − 𝑗′

𝑛 ) . (2.326)
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Now, from the expression for 𝑆𝛾(𝑡),

𝑆𝛾(𝑡) = √𝑛(𝑛𝛾2)𝑛−1

(2𝜋)𝑛−1 ∫ 𝑒− 𝑛𝛾2
2 k𝑇 Mk (

𝑛
∏
𝑗=1

𝐹𝑗(𝑘𝑗−1 − 𝑘𝑗)) 𝑑𝑘1 ⋯ 𝑑𝑘𝑛−1, (2.327)

it is possible to obtain a coupled set of stochastic differential equations (SDE). If I define
𝑙𝑗 ≡ 𝛾𝑘𝑗, it follows that:

𝑆𝛾(𝑡) = √ 𝑛𝑛

(2𝜋)𝑛−1 ∫ 𝑒− 𝑛
2 l𝑇 Ml (

𝑛
∏
𝑗=1

𝐹𝑗 ( 1
𝛾 (𝑙𝑗−1 − 𝑙𝑗))) 𝑑𝑙1 ⋯ 𝑑𝑙𝑛−1, (2.328)

and by substituting for 𝐹𝑗, the starting expression can be written as:

𝑆𝛾(𝑡) =√ 𝑛𝑛

(2𝜋)𝑛−1 ∫ 𝑒− 𝑛
2 l𝑇 Ml⋅

⋅
𝑛

∏
𝑗=1

(𝕀 + 𝑖𝑡
𝑛 𝐴 + 𝑡𝛾(Δ𝑙𝑗)𝐵 − 𝑡2

2𝑛2 (𝑛𝛾2 − 𝑛2𝛾2(Δ𝑙𝑗)2)𝐵2) 𝑑𝑙1 ⋯ 𝑑𝑙𝑛−1, (2.329)

where
Δ𝑙𝑗 = 𝑙𝑗 − 𝑙𝑗−1. (2.330)

As shown above, it is possible to identify this variable with a discretization of the stan-
dard Brownian bridge.

If I define

𝑋𝑘 ≡
𝑘

∏
𝑗=1

(𝕀 + 𝑖𝑡
𝑛 𝐴 + 𝑡𝛾(Δ𝑙𝑗)𝐵 − 𝑡2

2𝑛2 (𝑛𝛾2 − 𝑛2𝛾2(Δ𝑙𝑗)2)𝐵2) , (2.331)

it holds that:

𝑋𝑘+1 = (𝕀 + 𝑖𝑡
𝑛 𝐴 + 𝑡𝛾(Δ𝑙𝑘)𝐵 − 𝑡2

2𝑛2 (𝑛𝛾2 − 𝑛2𝛾2(Δ𝑙𝑘)2)𝐵2) 𝑋𝑘, (2.332)

which makes the difference between 𝑋𝑘+1 − 𝑋𝑘 equal the following:

Δ𝑋𝑘 ≡ 𝑋𝑘+1 − 𝑋𝑘 = (𝑖𝑡
𝑛 𝐴 + 𝑡𝛾(Δ𝑙𝑘)𝐵 − 𝑡2

2𝑛2 (𝑛𝛾2 − 𝑛2𝛾2(Δ𝑙𝑘)2)𝐵2) 𝑋𝑘. (2.333)

Note that, in this distribution, it holds that:

(Δ𝑙𝑘)2 = 1
𝑛 − 1

𝑛2 , (2.334)

where the second term is negligible in the limit. By defining

𝑑𝑧𝑠=𝑘/𝑛 ≡ Δ𝑙𝑘
𝑡
𝑛, 𝑋𝑠=𝑘/𝑛 ≡ Δ𝑋𝑘, (2.335)

the increment Δ𝑋𝑘 can be more compactly written as an infinitesimal component in the
limit of 𝑛 → ∞, which builds a system of stochastic differential equations:

𝑑𝑋𝑠 = 𝑖𝑡𝐴𝑋𝑠 𝑑𝑠 + 𝑡𝛾𝐵𝑋𝑠 𝑑𝑧𝑠,
𝑑𝑧𝑠 = − 𝑧𝑠

1 − 𝑠 𝑑𝑠 + 𝑑𝑊𝑠. (2.336)
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This allows me to take the continuum limit:

𝑆(𝑡) = ∫ 𝒯𝑒∫1
0 𝐾 𝑑𝑠+𝛾𝑡 ∫1

0 𝐵 𝑑𝑧 𝑑𝜇, (2.337)

where 𝒯 is the time-ordering operation,

𝐾 = 𝑖𝑡𝐴 − 𝛾2𝑡2

2 𝐵2, (2.338)

and the increment 𝑑𝑧 obeys the stochastic differential equation:

𝑑𝑧 = − 𝑧
1 − 𝑠 𝑑𝑠 + 𝑑𝑊. (2.339)

It is important to note that (2.337) is an equality — this formula is not an approximation.
In this way we have obtained a representation of the operator 𝑆 via the operator SDE:

𝑑𝑆 = 𝑖𝑡𝐴𝑆 𝑑𝑠 + 𝛾𝑡𝐵𝑆 𝑑𝑧. (2.340)

This representation may be subjected to a variety of solution and approximation tech-
niques, from direct sampling, moment expansions, and the Dyson series. These will all
be the subject of future studies.

By following the derivation described above we can immediately write down the
stochastic integral representation for Hamiltonians 𝐻 of the form (2.268):

𝑆(𝑡) = ∫ 𝒯𝑒∫1
0 𝐾 𝑑𝑠+𝛾𝑡 ∑𝑚

𝑗=1 ∫1
0 𝐷𝑗 𝑑𝑧𝑗 𝑑𝜇(𝑧), (2.341)

where
𝐾 = 𝑖𝑡𝐻0 − 𝛾2𝑡2

2
𝑚

∑
𝑗=1

𝐷2
𝑗 , (2.342)

with
𝑑𝑧𝑗 = − 𝑧𝑗

1 − 𝑠 𝑑𝑠 + 𝑑𝑊𝑗, (2.343)

and 𝑊𝑗 are 𝑚 independent Brownian motions.
An alternative derivation of this representation can be found using the Lie–Trotter

formula, 𝑒𝐴+𝐵 ≈ 𝑒𝐴𝑒𝐵 + 𝑂(‖[𝐴, 𝐵]‖2), and an operator Hubbard–Stratonovich transfor-
mation.

2.2.2 Stochastic Dyson Series Expansion
In this subsection I will show the expansion of the derived integral representation in
powers of the disorder parameter 𝛾, by utilizing the indispensable Dyson series expan-
sion, the first term of which already explicitly includes the disorder corrections. It also
describes a completely positive evolution with diffusive behavior. The terms of higher
orders stand for the quantum fluctuation corrections around the created diffusion values.
If the propagator were to be approached directly using the Dyson series expansion, its
disorder average would subsequently not exhibit tidy behavior for large values of 𝑡 —
however, that is not the case for the following procedure.

In the simplified case, where the system is described using the Hamiltonian 𝐻 =
𝐴 + 𝑥𝐵, the integral (2.337) can be expanded in powers of the exponentiated stochastic
term, 𝛾𝑡 ∫1

0 𝐵 d𝑧. To use the Dyson series expansion, I define:

𝐵(𝑠) ≡ 𝑒𝑠𝐾𝐵𝑒−𝑠𝐾, (2.344)
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which allows me to write:

𝑒−𝐾𝑆(𝑡) = ∫ 𝒯𝑒𝛾𝑡 ∫1
0 𝐵(𝑠) 𝑑𝑧 d𝜇(𝑧) = (2.345)

=𝔼[𝕀 + 𝛾𝑡 ∫
1

0
𝐵(𝑠) d𝑧 + 𝛾2𝑡2

2 ∫
1

0
∫

1

0
𝒯[𝐵(𝑠1)𝐵(𝑠2)] 𝑑𝑧1𝑑𝑧2 + ⋯ ] (2.346)

From the covariance of the Brownian bridge,

𝔼[𝑧(𝑠)𝑧(𝑡)] = min{𝑠(1 − 𝑡), 𝑡(1 − 𝑠)} = 𝐶𝑠𝑡, (2.347)

it follows that:
𝔼[𝑑𝑧(𝑠)𝑑𝑧(𝑡)] = (𝛿(𝑠 − 𝑡) − 1)d𝑠d, 𝑡 (2.348)

which gives:

𝑒−𝐾𝑆(𝑡) = 𝕀 − 𝛾2𝑡2 ∫
1

0
𝑑𝑠1 ∫

𝑠1

0
𝑑𝑠2 𝐵(𝑠2)𝐵(𝑠1) + 𝛾2𝑡2

2 ∫
1

0
𝐵(𝑠)2 d𝑠 + 𝒪 (𝛾3) . (2.349)

This results may now serve as a starting point for the calculation of higher-order terms,
using the classical Wick’s theorem:

𝔼[𝑧(𝑠1)𝑧(𝑠2)𝑧(𝑠3)𝑧(𝑠4)] = 𝐶𝑠1𝑠2
𝐶𝑠3𝑠4

+ 𝐶𝑠1𝑠3
𝐶𝑠2𝑠4

+ 𝐶𝑠1𝑠4
𝐶𝑠2𝑠3

. (2.350)

From the expansion (2.349) it is evident that the 𝒪 (1) term, 𝑆1(𝑡) = 𝑒𝑖𝑡𝐴− 𝛾2𝑡2
2 𝐵2 , as

already mentioned before, explicitly incorporates the effects of disorder in the form of
diffusive corrections, 𝑒− 𝛾2𝑡2

2 𝐵2 . In that vein, the disorder-averaged density operator can
be written as:

𝜌(𝑡) ≈ 𝑒ℒ[𝜌(0)], (2.351)

where
ℒ(𝑋) ≡ 𝑖𝑡[𝐴, 𝑋] − 𝛾2𝑡2

2 {𝐵, 𝑋} + 𝛾2𝑡2𝐵𝑋𝐵 (2.352)

is a generator of the Lindblad form. This implies that the observed evolution 𝑒ℒ is
completely positive — in other words, physical.

All subsequent fluctuation corrections are exponentially suppressed, as the diffusive
solution incorporates an exponential suppression in 𝑡. In addition, and in contrast with
some field-theoretic approaches [63, 64], the resulting series in 𝒪 (𝛾) appears to be con-
vergent.

2.2.3 Density of States for the Anderson Model
To show the utility of this form for the disorder-averaged propagator, in this subsection
I will use it to calculate the density of states for the Anderson model.

By employing the derived stochastic integral representation for the Anderson model,
it holds that

𝑋(𝑡) ≡ 1
𝑛𝔼[tr(𝑒𝑖𝑡𝐻(x))] (2.353)

and
𝑋(𝑡) = 1

𝑛 ∫ tr (𝒯𝑒∫1
0 𝑖𝑡𝑇 − 𝛾2𝑡2

2 𝕀 𝑑𝑠+𝛾𝑡 ∑𝑛
𝑗=1 ∫1

0 𝐷𝑗 𝑑𝑧𝑗) d𝜇(𝑧), (2.354)

the Fourier transform of which directly gives the density of states. As already shown in
this section, this representation of 𝑋(𝑡) can also be written in terms of a Dyson series
in powers of 𝛾:

𝑋(𝑡) = 𝑋0(𝑡) + 𝑋1(𝑡) + 𝑋2(𝑡) + … , (2.355)
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where
𝑋0(𝑡) = 1

𝑁 tr(𝑒𝐾), (2.356)

and
𝐾 ≡ 𝑖𝑡𝑇 − 𝛾2𝑡2

2 𝕀. (2.357)

It holds that
𝑋1(𝑡) = 0, (2.358)

but the term 𝑋2(𝑡) is already a complicated expression. To make calculation easier, I
can express using two terms:

𝑋2(𝑡) =𝛾2𝑡2

2
1
𝑛

𝑛
∑
𝑗=1

∫
1

0
tr (𝑒(1−𝑠)𝐾𝐷𝑗𝑒𝑠𝐾) 𝑑𝑠−

− 𝛾2𝑡2 1
𝑛

𝑛
∑
𝑗=1

∫
1

0
d𝑠1 ∫

𝑠1

0
d𝑠2 tr (𝑒(1−𝑠1)𝐾𝐷𝑗𝑒(𝑠1−𝑠2)𝐾𝐷𝑗𝑒𝑠2𝐾) , (2.359)

where I choose:

(i) ≡ 𝛾2𝑡2

2
1
𝑛

𝑛
∑
𝑗=1

∫
1

0
tr (𝑒(1−𝑠)𝐾𝐷𝑗𝑒𝑠𝐾) d𝑠 = 𝛾2𝑡2

2 𝑋0(𝑡) (2.360)

and

(ii) ≡𝛾2𝑡2 1
𝑛

𝑛
∑
𝑗=1

∫
1

0
d𝑠1 ∫

𝑠1

0
d𝑠2 tr (𝑒(1−𝑠1)𝐾𝐷𝑗𝑒(𝑠1−𝑠2)𝐾𝐷𝑗𝑒𝑠2𝐾) = (2.361)

=𝛾2𝑡2 1
𝑛

𝑛
∑
𝑗=1

∫
1

0
𝑑𝑠1 ∫

𝑠1

0
𝑑𝑠2 ⟨𝑗|𝑒(1−𝑠1+𝑠2)𝐾|𝑗⟩⟨𝑗|𝑒(𝑠1−𝑠2)𝐾|𝑗⟩, (2.362)

so that:
𝑋2(𝑡) = (i) − (ii). (2.363)

To solve this integral, 𝐾 should be diagonalized. The eigenvectors of this matrix can be
shown to correspond to the following:

|𝑊𝑙⟩ ≡ 1√𝑛
𝑛

∑
𝑘=1

𝑒 2𝜋𝑖
𝑛 𝑘𝑙|𝑘⟩, (2.364)

and its eigenvalues equal:

𝜔𝑙 = 𝑖 (2 − 2 cos (2𝜋
𝑛 𝑙)) 𝑡 − 𝛾2𝑡2

2 . (2.365)

In this setup, it holds that
⟨𝑗|𝑊𝑙⟩ = 1√𝑛𝑒 2𝜋𝑖

𝑛 𝑘𝑙 (2.366)

and
⟨𝑗|𝑊𝑙⟩⟨𝑊𝑙|𝑗⟩ = 1

𝑛. (2.367)

Then, (2.362) gives:

(ii) = 𝛾2𝑡2 1
𝑛2

𝑛
∑

𝑘1,𝑘2=1
∫

1

0
𝑑𝑠1 ∫

𝑠1

0
𝑑𝑠2 𝑒(1−𝑠1+𝑠2)𝜔𝑘1 𝑒(𝑠1−𝑠2)𝜔𝑘2 = (2.368)

=𝛾2𝑡2𝑒2𝑖𝑡− 𝛾2𝑡2
2

1
𝑛2

𝑛
∑

𝑘1,𝑘2=1
∫

1

0
𝑑𝑠1 ∫

𝑠1

0
𝑑𝑠2 𝑒2𝑖𝑡(1−𝑠1+𝑠2) cos( 2𝜋

𝑛 𝑘1)𝑒2𝑖𝑡(𝑠1−𝑠2) cos( 2𝜋
𝑛 𝑘2). (2.369)
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After the introduction of the variables

𝑧1 ≡ 2𝜋
𝑛 𝑘1, 𝑧2 ≡ 2𝜋

𝑛 𝑘2, (2.370)

where
𝑑𝑧2 = 𝑑𝑧1 ≈ 2𝜋

𝑛 ; 1
𝑛

𝑛
∑
𝑘1=1

≈ 1
2𝜋 ∫

2𝜋

0
𝑑𝑧1, (2.371)

the limit of 𝑛 → ∞ gives:

(ii) = 𝛾2𝑡2𝑒2𝑖𝑡− 𝛾2𝑡2
2 ⋅

⋅ ∫
1

0
𝑑𝑠1 ∫

𝑠1

0
𝑑𝑠2 { 1

2𝜋 ∫
2𝜋

0
𝑒2𝑖𝑡(1−𝑠1+𝑠2) cos(𝑧1) 𝑑𝑧1 × 1

2𝜋 ∫
2𝜋

0
𝑒2𝑖𝑡(𝑠1−𝑠2) cos(𝑧2) 𝑑𝑧2} .

(2.372)

These integrals correspond to the Bessel functions of the first kind:

(ii) = 𝛾2𝑡2𝑒2𝑖𝑡− 𝛾2𝑡2
2 ∫

1

0
𝑑𝑠1 ∫

𝑠1

0
𝑑𝑠2 𝐽0(2𝑡(1 − 𝑠1 + 𝑠2))𝐽0(2𝑡(𝑠1 − 𝑠2)). (2.373)

Because 𝐽0(𝑥) can be represented as:

𝐽0(𝑥) = ∑
𝑙=0

(−1)𝑙

22𝑙(𝑙!)2 𝑥2𝑙, (2.374)

the integration of this double integral finally gives:

∫
1

0
𝑑𝑠1 ∫

𝑠1

0
𝑑𝑠2 𝐽0(2𝑡(1 − 𝑠1 + 𝑠2))𝐽0(2𝑡(𝑠1 − 𝑠2)) = sin(2𝑡)

4𝑡 , (2.375)

so (2.362) resolves to:
(ii) = 𝛾2𝑡𝑒2𝑖𝑡− 𝛾2𝑡2

2
sin(2𝑡)

4 , (2.376)

which gives an analytical solution for 𝑋2(𝑡). In a similar (yet much simpler) fashion, the
calculation of 𝑋0(𝑡) gives:

𝑋0(𝑡) = 1
𝑛𝑒2𝑖𝑡− 𝛾2𝑡2

2

𝑛
∑
𝑘=1

𝑒2𝑖𝑡 cos( 2𝜋
𝑛 𝑘) = (2.377)

=𝑒2𝑖𝑡− 𝛾2𝑡2
2 𝐽0(2𝑡). (2.378)

In conclusion, up to second order in 𝛾, 𝑋(𝑡) can be written as:

𝑋(𝑡) = (1 + 𝛾2𝑡2

2 ) 𝑒2𝑖𝑡− 𝛾2𝑡2
2 𝐽0(2𝑡) − 𝛾2𝑡

4 𝑒2𝑖𝑡− 𝛾2𝑡2
2 sin(2𝑡). (2.379)

The density of states is then derived by a Fourier transform of 𝑋(𝑡):

𝑋(𝑘) = (1 + ( 𝑖
2𝜋)

2 𝛾2

2
𝑑2

𝑑𝑘2 )
√

2𝜋𝛾2𝑒− 𝜋2𝛾2𝑘2
2 × rect(𝑘

2 − 1
2𝜋)

√1 − 𝜋2(𝑘 − 1
𝜋)2

−

− ( 𝑖
2𝜋

𝑑
𝑑𝑘) 𝛾2

8𝑖
√

2𝜋𝛾2𝑒− 𝜋2𝛾2𝑘2
2 × (𝛿(𝑘 − 2

𝜋) − 𝛿(𝑘)). (2.380)

As can be inferred from Figure 2.5, which shows the calculated function 𝑋(𝑡) set
against a numerical solution, the diffusion correction for this tight-binding Anderson
model gives a simple convolution of the density of states, with a Gaussian of width 𝛾,
and the calculated second-order corrections already include the effects of level repulsion
in this solution.
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Figure 2.5: The quantity 𝑋(𝑡) ≡ 1
𝑁 𝔼[tr(𝑒𝑖𝑡𝐻)] for the Anderson model on 30 sites (the

𝑥 axis is time in units where ℏ = 1). (It turns out that the results for 30 sites are
already indistinguishable from the 𝑁 → ∞ limit.) Shown pink is the result of numerical
sampling with 100 samples. Shown purple (dashed) is 𝑋(𝑡) = 𝑋0(𝑡) + 𝑋2(𝑡), the second
order result calculated via the stochastic Dyson series Eq. (2.379).

2.2.4 Spectral Form Factors and Out-of-Time-Order Correlation Func-
tion

In this subsection I demonstrate the application of the derived framework to approximate
the 𝑘 = 1 spectral form factor and OTOCs for the Anderson model.

From the completed derivations, it is clear that the spectral form factor can be
calculated from the expression for 𝑆(2)(𝑡), which is the average propagator for two copies
of the Hamiltonian: 𝐻(2) = 𝐻1 ⊗ 𝕀2 − 𝕀1 ⊗ 𝐻2. In this setup, the OTOCs equal:

tr (𝐴 ⊗ 𝐵 ⊗ 𝐶 ⊗ 𝐷𝑆(4)(𝑡)swap1234) , (2.381)

where 𝑆(4)(𝑡) is then the average propagator for four copies of the Hamiltonian:

𝐻(4) = 𝐻1 ⊗ 𝕀234 − 𝕀1 ⊗ 𝐻2 ⊗ 𝕀34 + 𝕀12 ⊗ 𝐻3 ⊗ 𝕀4 − 𝕀123 ⊗ 𝐻4, (2.382)

and the corresponding swap1234 is the unitary permutation that cycles through all four
copies. The integral representations can then be used to calculate both 𝑆(2)(𝑡) and 𝑆(4)(𝑡)
as:

𝑆(2𝑘)(𝑡) = 𝑒𝑖𝑡(𝐻0)(2𝑘)− 𝛾2𝑡2
2 ∑𝑁

𝑗=1(𝐷𝑗)2
(2𝑘) . (2.383)

If the initial local perturbation equals 𝐴 = 𝐶 = |1⟩⟨1|, and the observation site corre-
sponds to 𝐵 = 𝐷 = |ℓ⟩⟨ℓ|, the OTOCs give:

⟨0ℓ0ℓ|𝑆(4)(𝑡)|ℓ0ℓ0⟩, (2.384)

as can also be seen in Figure 2.6.
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Figure 2.6: The spectral form factor 1
𝑁2 𝔼[| tr(𝑒𝑖𝑡𝐻)|2] for the Anderson model on 30

sites (the 𝑥 axis is time in units where ℏ = 1). Again, the results for 30 sites are
indistinguishable from the 𝑁 → ∞ limit. Shown purple is the result of numerical
sampling with 100 samples. Shown pink (dotted) is the zeroth order diffusion-corrected
term from the stochastic Dyson series. Shown for comparison, in blue (dashed), is the
zeroth order result from ordinary time-dependent perturbation theory. Note that the
zeroth-order stochastic Dyson series result already incorporates the dephasing decay
resulting from the disorder average.

2.2.5 Derivation Aided by Visual Representation
Calculating the full expressions for the stochastic integral representation of disordered
quantum many-body systems could be made simpler by using graphic representations,
in the tradition of Feynman diagrams. This section demonstrates the creation and usage
of these nifty tools, but stops short of completing the full derivation and halts at the
setup of the solution, as the full calculation stays beyond the scope of this dissertation.

From looking at 𝑆(𝑡), which is equal to the following:

𝑆(𝑡) ≈ ∫
𝑛

∏
𝑗=1

𝑒 𝑖𝑡
𝑛 𝐴−𝑡𝛾2(𝑘𝑗−1𝑘𝑗)𝐵− 𝑡2

2𝑛 𝛾2𝐵2d𝜇 + 𝒪 ( 1√𝑛) , (2.385)

I can define
𝒰 ≡ 𝑀𝑛 ⋅ 𝑀𝑛−1 ⋅ 𝑀𝑛−2 ⋅ … ⋅ 𝑀1, (2.386)

where 𝑀𝑗 are linear 2 × 2 matrices:

𝑀𝑗 ≡ 𝑒 𝑖𝑡
𝑛 𝐴−𝑡𝛾2(𝑘𝑗−1−𝑘𝑗)𝐵− 𝑡2

2𝑛 𝛾2𝐵2 . (2.387)

Then, I can write:
𝑆(𝑡) = 𝔼𝑘𝑠

(𝒰) + 𝒪 ( 1√𝑛) , (2.388)

which can then be illustrated using graphical methods.

Take a simple example, where 𝐴 = (0 1
1 0) and 𝐵 = (1 0

0 −1), 𝑡 is fixed as 𝑡 = 1,

𝑛 ∈ ℕ is an arbitrarily large integer, and 𝛾 ≪ 1 is fixed. The expression for 𝑀𝑗 can be
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expanded for 𝛾2 ≪ 1, up to 𝒪 (𝛾2):

𝑀𝑗 =𝑒 𝑖𝑡
𝑛 𝐴𝑒−𝑡𝛾2(𝑘𝑗−1−𝑘𝑗)𝐵𝑒− 𝑡2

2𝑛 𝛾2𝐵2 = (2.389)

=𝑒 𝑖𝑡
𝑛 𝐴 (𝟙 − 𝑡𝛾2 (𝑘𝑗−1 − 𝑘𝑗) 𝐵 + 1

2! (𝑡𝛾2 (𝑘𝑗−1𝑘𝑗) 𝐵)2 + …) ⋅

⋅ (𝟙 − 𝑡2

2𝑛𝛾2𝐵2 + 1
2! ( 𝑡2

2𝑛𝛾2𝐵2)
2

+ …) . (2.390)

Because of the dependency of 𝑘 on 𝛾, all the relevant summands taken from the first
series will be at most of the 𝑛-th order in 𝛾, since:

𝒪 (𝑘𝑗−1 − 𝑘𝑗) ∼ 𝒪 ( 1
𝛾√𝑛) . (2.391)

It follows that:

𝑀𝑗 = 𝑒 𝑖𝑡
𝑛 𝐴(𝟙 − 𝑡𝛾2 (𝑘𝑗−1 − 𝑘𝑗) 𝐵 + 1

2 (𝑡𝛾2 (𝑘𝑗−1 − 𝑘𝑗) 𝐵)2 −

− 1
6 (𝑡𝛾2 (𝑘𝑗−1 − 𝑘𝑗) 𝐵)3 − 𝑡2

2𝑛𝛾2𝐵2 + 𝒪 (𝛾4)) = (2.392)

=𝑒 𝑖𝑡
𝑛 𝐴(𝟙 − 𝑡𝛾2 (𝑘𝑗−1 − 𝑘𝑗) 𝐵 + 1

2 (𝑡𝛾2 (𝑘𝑗−1 − 𝑘𝑗) 𝐵)2 − 𝑡2

2𝑛𝛾2𝐵2 + 𝒪 (𝛾3)) (2.393)

Diagrammatic Representation
The end goal of this procedure is the ability to diagrammatically represent products
of operators. First, I construct a setup in which I use the following instead of 𝒰 up
to the second order in 𝛾:

𝒱 = 𝑒 𝒦𝑡
𝑛

𝑛
∏
𝑗=1

(𝟙 + 𝒜𝑗𝑥𝑗 + 𝒜2
𝑗

2 𝑥2
𝑗) , (2.394)

where

𝒜𝑗 = − 𝑡𝛾2𝐵, (2.395)
𝑥𝑗 =𝑘𝑗−1 − 𝑘𝑗, (2.396)

𝒦 =𝑖𝑡𝐴 − 𝑡2𝛾2

2 𝐵2. (2.397)

The expansion may then be represented diagrammatically as follows, if 𝑡𝑗 ≡ 𝑡
𝑛 ⋅ 𝑗 and

𝑡 = 1.

≡ 𝑒𝒦 (2.398)

𝑗 ≡ 𝑒( 1
𝑛 −𝑡𝑗)𝒦𝐴𝑗𝑥𝑗𝑒𝑡𝑗𝒦 (2.399)

𝑗 ≡ 𝑒( 1
𝑛 −𝑡𝑗)𝒦 𝐴2

𝑗
2 𝑥2

𝑗𝑒𝑡𝑗𝒦 (2.400)
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𝒱 = +
𝑛

∑
𝑗=1

( 𝑗 + 𝑗 ) +

+ ∑
1≤𝑗1<𝑗2≤𝑛

( 𝑗1 𝑗2
+ 𝑗1 𝑗2

+ 𝑗1 𝑗2
+ 𝑗1 𝑗2

) +

+ ∑
1≤𝑗1<𝑗2<𝑗3≤𝑛

( 𝑗1 𝑗2 𝑗3
+ 𝑗1 𝑗2 𝑗3

+ 𝑗1 𝑗2 𝑗3
+ 𝑗1 𝑗2 𝑗3

+

+ 𝑗1 𝑗2 𝑗3
+ 𝑗1 𝑗2 𝑗3

+ 𝑗1 𝑗2 𝑗3
+ 𝑗1 𝑗2 𝑗3

)+

+ ∑
1≤𝑗1<𝑗2<𝑗3<𝑗4≤𝑛

( 𝑗1 𝑗2 𝑗3 𝑗4
+ …) + … = (2.401)

=
𝑛

∑
𝜎=0

𝑛
∑

𝑗𝜎>𝑗𝜎−1>…>𝑗1=1
( { 𝑗1

, 𝑗1
} { 𝑗2

, 𝑗2
} … { 𝑗𝜎

, 𝑗𝜎
}) =

(2.402)

=
𝑛

∑
𝜎=0

𝑛
∑

𝑗𝜎>𝑗𝜎−1>…>𝑗1=1
∑

𝜉𝜐∈{ 𝑗𝜐
, 𝑗𝜐

}
(𝜉1𝜉2 … 𝜉𝜎) (2.403)

In the above expression, the curly brackets in (2.402) denote the 𝑛-ary Cartesian power
of the set { 𝑗𝜐

, 𝑗𝜐
}. The lack of a cross or a dot on the line for a particular

𝑗𝑘>𝜎 assumes that it is filled by a , even for 𝜎 = 0. Now consider 𝔼 (𝑥𝑗) = 0 and
𝔼 (𝑠𝑗) = 𝑠𝑗 for 𝑠𝑗 ≡ 𝑥2

𝑗 . Then,

𝔼 (𝑥𝑗𝑥𝑘) ≡𝜆 (2.404)
𝔼 (𝑥𝑗𝑠𝑘) =0 (2.405)

𝔼 (𝑥𝑗1
𝑥𝑗2

𝑥𝑗3
𝑥𝑗4

) =? (2.406)

To divine the last expression, remember that 𝑥𝑗 = 𝑘𝑗−1 − 𝑘𝑗 and consider the following
calculations.

This diagrammatic rule can be used to see whether there is any ’doubling up’ of the
variables in the product:

𝑗1 𝑗2 𝑗3 𝑗4
→ 𝑗1 𝑗2 𝑗3 𝑗4

𝑙 𝑚
+ 𝑗1 𝑗2 𝑗3 𝑗4

𝑚
𝑙

+ 𝑗1 𝑗2 𝑗3 𝑗4

𝑙 𝑚

(2.407)

To achieve
√√√
⎷

𝑛 (𝑛𝛾2)𝑛−1

(2𝜋)𝑛−1 ∫ 𝔼 (𝑥𝑗1
𝑥𝑗2

𝑥𝑗3
𝑥𝑗4

) 𝑒− 𝑛𝛾2
2 𝑘𝑇 𝑀𝑘d𝑘1 … d𝑘𝑛−1, (2.408)

with

𝔼 (𝑥𝑗1
𝑥𝑗2

𝑥𝑗3
𝑥𝑗4

) ≡ 𝔼 [(𝑘𝑗1−1 − 𝑘𝑗1
) (𝑘𝑗2−1 − 𝑘𝑗2

) (𝑘𝑗3−1 − 𝑘𝑗3
) (𝑘𝑗4−1 − 𝑘𝑗4

)] ,
(2.409)
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use the generating function and complete the square in the integral.

ℤ [𝑙1, … , 𝑙𝑛−1] =
√√√
⎷

𝑛 (𝑛𝛾2)𝑛−1

(2𝜋)𝑛−1 ∫ 𝑒− 𝑛𝛾2
2 𝑘𝑇 𝑀𝑘+∑𝑛−1

𝑗=1 𝑙𝑗𝑘𝑗d𝑘1 … d𝑘𝑛 ∼ (2.410)

∼𝑒
1

2𝑛𝛾2 𝑙𝑇 𝑀−1𝑙 (2.411)

Then, the following can be calculated.

𝔼 (𝑥𝑗1
𝑥𝑗2

𝑥𝑗3
𝑥𝑗4

) = 𝜕
𝜕𝑙1

𝜕
𝜕𝑙2

𝜕
𝜕𝑙3

𝜕
𝜕𝑙4

𝑒− 1
2𝑛𝛾2 𝑙𝑇 𝑀−1𝑙 = (2.412)

= 𝜕
𝜕𝑙1

𝜕
𝜕𝑙2

𝜕
𝜕𝑙3

( 𝜕
𝜕𝑙4

−1
2𝑛𝛾2 𝑙𝑇 𝑀−1𝑙) 𝑒− 1

2𝑛𝛾2 𝑙𝑇 𝑀−1𝑙 = (2.413)

= 𝜕
𝜕𝑙1

𝜕
𝜕𝑙2

𝜕
𝜕𝑙3

( 𝜕
𝜕𝑙4

−1
2𝑛𝛾2 ∑

𝑎,𝑏
𝑙𝑎 [𝑀−1]𝑎𝑏 𝑙𝑏) 𝑒− 1

2𝑛𝛾2 𝑙𝑇 𝑀−1𝑙 = (2.414)

= 𝜕
𝜕𝑙1

𝜕
𝜕𝑙2

𝜕
𝜕𝑙3

−1
2𝑛𝛾2 ∑

𝑎,𝑏
([𝑀−1]𝑗4𝑏 𝑙𝑏 + [𝑀−1]𝑎𝑗4

𝑙4) 𝑒− 1
2𝑛𝛾2 𝑙𝑇 𝑀−1𝑙 = (2.415)

= 𝜕
𝜕𝑙1

𝜕
𝜕𝑙2

𝜕
𝜕𝑙3

−1
2𝑛𝛾2 ∑

𝑎
2 [𝑀−1]𝑗4𝑎 𝑙𝑎𝑒− 1

2𝑛𝛾2 𝑙𝑇 𝑀−1𝑙 = (2.416)

= 𝜕3

𝜕𝑙1𝜕𝑙2𝜕𝑙3
−1

2𝑛𝛾2 2 [𝑀−1𝑙]𝑗4
𝑒− 1

2𝑛𝛾2 𝑙𝑇 𝑀−1𝑙 = (2.417)

= 𝜕2

𝜕𝑙1𝜕𝑙2
( −1

𝑛𝛾2 [𝑀−1]𝑗4𝑗3
+ −1

𝑛𝛾2 [𝑀−1]𝑗4
𝑙 −1
𝑛𝛾2 [𝑀−1]𝑗3

𝑙) 𝑒− 1
2𝑛𝛾2 𝑙𝑇 𝑀−1𝑙 = (2.418)

=const. ⋅ −1
(2𝑛𝛾2) [𝑀−1]𝑗1𝑗2

[𝑀−1]𝑗3𝑗4
𝑒− 1

2𝑛𝛾2 𝑙𝑇 𝑀−1𝑙 ∼ const. (2.419)

The actual calculation that should be done is the one that corresponds to the Anderson
model:

∫ d𝜇
𝑛

∏
𝑗=1

𝑒 𝑖𝑡
𝑛 𝐻0−𝑡𝛾2(𝑘𝛼

𝑗−1−𝑘𝛼
𝑗 )𝐷𝛼− 𝑡2

2𝑛 𝛾2𝟙 = ∫ d𝜇𝒰. (2.420)

With 𝒦 ≡ 𝑖𝑡𝐻0 − 𝑡2𝛾2𝟙, it is:

∫ d𝜇𝒰 = ∫ d𝜇
𝑛

∏
𝑗=1

𝑒𝒦−𝑡𝛾2(𝑘𝛼
𝑗−1−𝑘𝛼

𝑗 )𝐷𝛼 . (2.421)

Therefore, to calculate through the orders of 𝛾, if 𝑑𝑗 = 𝑗/𝑛, these designations can
be used:

≡ 𝑒𝒦 (2.422)

𝑗
𝛼 ≡ 𝑒𝒦𝑑𝑗 (−𝑡𝛾2 (𝑘𝛼

𝑗−1 − 𝑘𝛼
𝑗 ) 𝐷𝛼) 𝑒𝒦(1−𝑑𝑗) (2.423)

𝑗
𝛼 ≡ 𝑒𝒦𝑑𝑗 ⎛⎜

⎝
𝑡2𝛾4 (𝑘𝛼

𝑗−1 − 𝑘𝛼
𝑗 )2

2 𝐷2
𝛼⎞⎟

⎠
𝑒𝒦(1−𝑑𝑗). (2.424)

Here,

𝒜𝛼 ≡ − 𝑡𝛾2 (𝑘𝛼
𝑗−1 − 𝑘𝛼

𝑗 ) 𝐷𝛼 (2.425)

ℬ𝛼 ≡𝑡2𝛾4 (𝑘𝛼
𝑗−1 − 𝑘𝛼

𝑗 )2

2 𝐷2
𝛼 = 1

2𝒜2
𝛼, (2.426)
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so

= 𝑒𝒦 (2.427)

𝑗
𝛼 = 𝑒𝒦𝑑𝑗𝒜𝛼𝑒𝒦(1−𝑑𝑗) (2.428)

𝑗
𝛼 = 𝑒𝒦𝑑𝑗ℬ𝛼𝑒𝒦(1−𝑑𝑗). (2.429)

Then, up to the fourth order in 𝛾, 𝒰 can be expressed as follows. Note that, in the
following equation, certain summands can be neglected because their expectation value
comes out as zero:

𝔼 (𝒰) = 𝔼( +
𝑛

∑
𝑗=1

( 𝑗
𝛼 + 𝑗

𝛼 )+

+ ∑
1≤𝑗1<𝑗2≤𝑛

( 𝑗1

𝛼
𝑗2

𝛼 + 𝑗1

𝛼
𝑗2

𝛼 + 𝑗1

𝛼
𝑗2

𝛼
+ 𝑗1

𝛼
𝑗2

𝛼 )+

+ ∑
1≤𝑗1<𝑗2<𝑗3≤𝑛

( 𝑗1

𝛼
𝑗2

𝛼
𝑗3

𝛼 + 𝑗1

𝛼
𝑗2

𝛼
𝑗3

𝛼 + 𝑗1

𝛼
𝑗2

𝛼
𝑗3

𝛼 + 𝑗1

𝛼
𝑗2

𝛼
𝑗3

𝛼 + 𝑗1

𝛼
𝑗2

𝛼
𝑗3

𝛼 +

+ 𝑗1

𝛼
𝑗2

𝛼
𝑗3

𝛼 + 𝑗1

𝛼
𝑗2

𝛼
𝑗3

𝛼 + 𝑗1

𝛼
𝑗2

𝛼
𝑗3

𝛼
) + ∑

1≤𝑗1<𝑗2<𝑗3<𝑗4≤𝑛 𝑗1

𝛼
𝑗2

𝛼
𝑗3

𝛼
𝑗4

𝛼 ) =

(2.430)

=𝔼( +
𝑛

∑
𝑗=1 𝑗

𝛼 + ∑
1≤𝑗1<𝑗2≤𝑛

( 𝑗1

𝛼
𝑗2

𝛼 + 𝑗1

𝛼
𝑗2

𝛼
)+

+ ∑
1≤𝑗1<𝑗2<𝑗3≤𝑛

( 𝑗1

𝛼
𝑗2

𝛼
𝑗3

𝛼 + 𝑗1

𝛼
𝑗2

𝛼
𝑗3

𝛼 + 𝑗1

𝛼
𝑗2

𝛼
𝑗3

𝛼 + 𝑗1

𝛼
𝑗2

𝛼
𝑗3

𝛼 +

+ 𝑗1

𝛼
𝑗2

𝛼
𝑗3

𝛼
) + ∑

1≤𝑗1<𝑗2<𝑗3<𝑗4≤𝑛 𝑗1

𝛼
𝑗2

𝛼
𝑗3

𝛼
𝑗4

𝛼 )
𝛼

= (2.431)

=𝔼(𝑒𝜅 + ∫
1

0
𝑒(1−𝑠1)𝜅 ( 𝐵

d𝑠1
) 𝑒𝑠1𝜅d𝑠1 + ∑

𝛼1,𝛼2

∫
1

0
d𝑠1 ∫

𝑠1

0
d𝑠2𝑒(1−𝑠1)𝜅 (

𝐴𝛼1

d𝑠1
) 𝑒(1+𝑠1−𝑠2)𝜅 (

𝐴𝛼2

d𝑠2
) 𝑒𝑠2𝜅+

+ ∫
1

0
d𝑠1 ∫

𝑠1

0
d𝑠2𝑒(1−𝑠1)𝜅 ( 𝐵

d𝑠1
) 𝑒(1+𝑠1−𝑠2)𝜅 ( 𝐵

d𝑠2
) 𝑒𝑠2𝜅+

+ ∑
𝛼1𝛼2𝛼3𝛼4

∫
1

0
d𝑠1 ∫

𝑠1

0
d𝑠2 ∫

𝑠2

0
d𝑠3 ∫

𝑠3

0
d𝑠4𝑒(1−𝑠1)𝜅⋅

⋅ (
𝐴𝛼1

d𝑠1
) 𝑒(1+𝑠1−𝑠2)𝜅 (

𝐴𝛼2

d𝑠2
) 𝑒(1+𝑠2−𝑠3)𝜅 (

𝐴𝛼3

d𝑠3
) 𝑒(1+𝑠3−𝑠4)𝜅 (

𝐴𝛼4

d𝑠4
) 𝑒𝑠4𝜅 + …)

𝛼
(2.432)

To calculate the full expectation value, (⟨(𝑘𝛼
𝑗−1−𝑘𝛼

𝑗 )2⟩ = ⟨(𝑘𝛼
𝑗−1)2⟩+⟨(𝑘𝛼

𝑗 )2⟩−2⟨𝑘𝛼
𝑗−1𝑘𝛼

𝑗 ⟩),
as defined in (2.326), certain snippets must be resolved. For example:

𝔼 ((𝑘𝛼
𝑗−1 − 𝑘𝛼

𝑗 )2) ≈ 1
𝛾2 ( 1

𝑛 − 1
𝑛2 ) ≈ 1

𝑛𝛾2 = 1
𝛾2 d𝑠 (2.433)

and
𝔼 ((𝑘𝛼

𝑗−1 − 𝑘𝛼
𝑗 ) (𝑘𝛽

𝑘−1 − 𝑘𝛽
𝑘)) = 𝛿𝛼𝛽 (− 1

𝑛2𝛾2 ) = − 1
𝛾2 𝛿𝛼𝛽 (d𝑠)2 . (2.434)
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This leads to:

tr (𝒰) = tr (𝑒𝒦) + tr (𝑒𝒦 𝑛
2𝛾2 ( 1

𝑛 − 1
𝑛2 ) 𝑡2𝛾4) −

− 𝑡2𝛾2 ∑
𝛼

∫
1

0
d𝑠1 ∫

𝑠1

0
tr (𝑒(1−𝑠1)𝒦𝐷𝛼𝑒(1+𝑠1−𝑠2)𝒦𝐷𝛼𝑒𝑠2𝒦) = (2.435)

= tr (𝑒𝒦) + 𝑡2𝛾2

2 tr (𝑒𝒦) − 𝑡2𝛾2 ∑
𝛼

∫
1

0
d𝑠1 ∫

𝑠1

0
tr (𝑒(1−𝑠1)𝒦𝐷𝛼𝑒(1+𝑠1−𝑠2)𝒦𝐷𝛼𝑒𝑠2𝒦)

(2.436)

The higher order terms then lead to a more involved computation. However, for each
setup, the expectation values can be calculated given this consideration:

𝔼 ( 𝛼1 𝛼2 𝛼3 𝛼4
) =

= 𝑡4𝛾8 (− 1
𝛾2 )

2
∑

𝛼1𝛼2𝛼3𝛼4

(𝛿𝛼1𝛼2𝛿𝛼3𝛼4 + 𝛿𝛼1𝛼3𝛿𝛼2𝛼4 + 𝛿𝛼1𝛼4𝛿𝛼2𝛼3) 𝑒(1−𝑠1)𝒦𝐷𝛼1
… =

(2.437)

= 𝑡4𝛾4 ∑
𝛼𝛽

∫ ∫ ∫ ∫ tr (𝑒(1−𝑠1)𝒦𝐷𝛼𝑒(1+𝑠1−𝑠2)𝒦𝐷𝛼𝑒(1+𝑠2−𝑠3)𝒦𝐷𝛽𝑒 …) (2.438)

The calculation can then be concluded from the following equality.

⟨𝛼| 𝑒𝜔𝒦 |𝛽⟩ = ∑
𝑙

⟨𝛼| 𝑒𝜔(𝑖𝑡𝜆𝑙− 𝑡2𝛾2
2 ) |𝜔(𝑙)⟩ ⟨𝜔(𝑙) | 𝛽⟩ (2.439)

As the continuation of this line of investigation steers away from the main purpose of
this work, further calculation will not be presented here.

2.2.6 Summary of the Results for Disordered Systems
In this section I demonstrated the derivation of an exact representation for the disorder-
averaged propagator of a quantum system by using stochastic calculus, after reaching
some analytical solutions for local observables in perturbed many-body systems. The
derivation was performed by solving a stochastic integral over a time-ordered operator
expression that included a Lindblad generator and a temporally random external field
— with a Brownian bridge in place of the path measure. By expanding this stochas-
tic expression into a stochastic Dyson series, I obtained a power series in the disorder
parameter, which includes the diffusive disorder effects in term 𝒪 (1). The higher-order
terms then explicitly include the fluctuations around the diffusive solution.

By further using the derived representation, I showed the calculation of the density
of states, the spectral form factor, and OTOCs for the tight-binding Anderson model.
Further work may see these results used to investigate higher-order corrections, exploring
moments, and researching many-body localized models — perhaps using the tensor
network framework.
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As was the case in the previous chapter, this one is about methods for the study of
disordered quantum many-body systems. However, in this chapter, the focus is going to
be put on tensor-network approaches. I dedicate tensor-network-based approaches their
own chapter, as they are a huge topic in and on itself. In the following chapter the focus
is toward finding solutions that are analytically exact albeit still sometimes intractable
to evaluate; as a complementary view, in this chapter I will try to find approaches
that are more practical for getting yielding concrete results, even if those results are but
rough approximations. Taken together, the two chapters will hopefully provide a holistic
approach to this problem area.

Perturbation theory has been proven as reliable in the investigation of the robust part
of topological phases, but its application fails to deliver accurate results when approach-
ing a phase transition. Different quantum phases naturally require differing perturbative
approximations, which makes the description of critical properties of such phases quite
difficult to obtain using perturbation theory. However, unlike perturbation theory, the
variational approach can still be used at those critical points. If the perturbative ex-
pansions that represent ground states of certain quantum phases can be described in
the tensor network formalism, the perturbative coefficients could be lifted to variational
parameters, after which tensor network methods can be used to variationally optimize
the mathematical description of the system [65]. Thus, separate quantum phases can be
merged in a unique mathematical description by bridging their corresponding perturba-
tive expansions by using the tensor network formalism.

Conveniently, the formalism of tensor network relies on the sequential application of
ever more operators onto an existing state — allowing for the potential replication of a
perturbative expansion order-by-order. Thus, if a quantum state can be represented as
a tensor network state, this job is already half done. As mentioned, the computational
complexity of a tensor network state is highly reliant on the bond dimension of the
network, which increases linearly in the size of the network, i.e., the number of clusters
of local operators used. Note that this number tends to scale exponentially in the order
of perturbation in perturbative expansions. This approach can be demonstrated on the
ferromagnetic transverse-field Ising model.

It is important to note that the disorder-perturbed model comes with some challenges
in terms of the numerical evaluation of its tensor-network description. With that in
mind, this chapter will include an approach to addressing those challenges as well as
some results that by no means present a comprehensive analysis benchmarked against
other results, but a step toward further investigation.

My results will separately concern the ferromagnetic state and the polarized state,
deriving the relevant exponentiated forms of the wave functions in the first and second
orders of perturbation, but also their corresponding density operators. Through the
success of these derivations, I will have the tools to calculate expressions for a number
of observables important for quantum many-body systems.

This chapter consists of several sections. In Section 3.1: Exponentiated Wave
Functions, I will show the application of perturbation theory for the ordinary transverse-
field Ising model around either of the two phases, using an exponentiated form of the
perturbation. After that, I will introduce a modified system in Section 3.2: Varying
Perturbative Parameters in Exponentiated Wave Functions, in which the per-
turbation contains disorder, in the form of random-variable parameters. I will show how
this will affect the calculation of the perturbed states and calculate some expectation
values with respect to them. Based on the results of the previous chapters, I will then
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define a tensor network state which allows to build a bridge from one phase to the other.
This is done for the normal model in Section 3.3: Bridging between Variational
Solutions using Tensor Networks, and I will show how it is to be adapted for the
disorder-perturbed model in Section 3.4: Combining Tensor Bridging with the
Derived Perturbative Solution. Finally, in this section I will also attempt to study
properties of the disordered model by evaluating the tensor-network description of its
ground state numerically.

In 2017, Laurens Vanderstraeten et al. published a work showing that perturbative
expansions for quantum many-body systems can be addressed in terms of tensor net-
works [65] and constructing the first steps of a natural framework for the interpolation of
perturbative expansions across separate quantum phase transitions. In their study, ten-
sor networks are parametrized by a small number of parameters, but they still provide
exceptionally accurate variational results.

As the construction of my method is based on the tensor network construction shown
in this paper, I will summarize the relevant content and central definitions here.

3.1 Exponentiated Wave Functions
There exists a quaint method of writing out the wave function of a quantum system in
an exponentiated form, which makes it easier to manage in various calculations — not
only analytical ones, but also when it comes to the numerical analyses of large systems.
Suitable exponentiated expansions of linear perturbative expressions can simplify some
calculations and lead to accurate perturbative results in the lowest orders. Specifically,
here I will show how the exponentiation of wave functions can be used in certain circum-
stances to reach reliable results in the study of disordered quantum many-body systems.
In fact, the obtained results are better than expected for the standard form of pertur-
bative wave functions, already providing strictly positive contributions of higher-order
terms within lower-order expressions derived for a small disorder.

In this section I will investigate the system described by the Hamiltonian:

𝐻 = − ∑
⟨𝑖,𝑗⟩

𝑍𝑖𝑍𝑗 − ∑
𝑘

𝑋𝑘 = 𝐻1 + 𝐻2, (3.1)

𝐻1 ≡ − ∑
⟨𝑖,𝑗⟩

𝑍𝑖𝑍𝑗, 𝐻2 ≡ − ∑
𝑘

𝑋𝑘, (3.2)

and examine the two phases in which either the first summand group or the second
summand group contributes to the Hamiltonian only in the form of disorder, i.e., the
‖𝐻1‖/‖𝐻2‖ ≪ 1 and the ‖𝐻2‖/‖𝐻1‖ ≪ 1 phases. The results presented here will prove
to be immensely useful in the derivation of so-called bridging between the perturbative
solutions for these two phases — ferromagnetic and polarized (paramagnetic, which I
am calling polarized here, since the ground state of 𝐻2 is polarized in the +𝑋 direction).

In this sense, perturbative solutions for these two chief phases can be expressed in the
framework of tensor networks, which allows for the derivation of an interpolation between
these solutions, even separated by a critical point of a quantum phase transition. This
construction is conducive to the creation of tensor network states that are defined by
just a handful of parameters, but that do still provide a reliable setup for the calculation
of the variational energies of the system. Interestingly, the parameters of the tensor
network states constructed using this method are not abstract and unrelated to an
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intuitive understanding of the characteristics of the investigated system — instead, they
correspond (to some measure) to the elements of derived perturbative solutions for this
system, giving an unexpected immediate understanding of their properties, general role,
and behavior.

My results in this section will separately concern the ferromagnetic state and the
polarized state, deriving the relevant exponentiated forms of the wave functions in the
first and second orders of perturbation.

3.1.1 Exponentiation of the Ferromagnetic State

In the ferromagnetic state, 𝐻1 is the chief Hamiltonian that affects the base state of the
system, whereas 𝐻2 is treated as perturbation onto it, i.e. ‖𝐻2‖/‖𝐻1‖ ≪ 1.

To illustrate the following results better, I will choose

|𝜑0⟩ = |+𝑍⟩ = ⊗𝑗 ∣+𝑍𝑗⟩ , (3.3)

where ∣+𝑍𝑗⟩ = (1
0)

𝑗
, as the exemplary ground state of the non-perturbed system with

𝐻0 = 𝐻1. The projector to this state is then defined as 𝑃0 = |𝜑0⟩ ⟨𝜑0| = |+𝑍⟩ ⟨+𝑍|
and the projection operator (𝟙 − 𝑃0) projects onto all states orthogonal to the ground
state of 𝐻0. Here I will define the perturbation as 𝐻2 and present results for both
one-dimensional and two-dimensional systems on an orthogonal and equidistant square
lattice with periodic boundary conditions and a total of 𝑁 particles.

Two-Dimensional System

The calculation of the correction to the wave function in the first order of perturbation
gives:

|𝜑Δ1⟩ = − (𝟙 − 𝑃0)
𝐻0 − 𝐸0

𝐻2 |𝜑0⟩ =

= ∑
𝑖

1
𝐻0 − 𝐸0

(𝑋𝑖 |𝜑0⟩ − |𝜑0⟩ ⟨𝜑0| 𝑋𝑖 |𝜑0⟩) , (3.4)

where 𝐸0 is the relevant ground-state energy for the ferromagnetic phase.

It is clear that |𝜑0⟩ ⟨𝜑0| 𝑋𝑖 |𝜑0⟩ = 0 because ⟨𝜑0| 𝑋𝑖 |𝜑0⟩ = 0, so the energy difference
between the states |𝜑0⟩ and 𝑋𝑖 |𝜑0⟩ must be calculated. In a two-dimensional system,
this difference is 4 ⋅ 2 = 8, as there are four nearest neighbor couplings in the base part
of the Hamiltonian for each of the lattice sites. It follows that:

|𝜑1⟩ = ∑
𝑖

1
8𝑋𝑖 |𝜑0⟩ (3.5)

In the second order, the calculation grows slightly more complex. What follows is the
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calculation of the correction in the second order:

|Δ𝜑2⟩ = − ( 𝟙 − 𝑃0
𝐻0 − 𝐸0

)
2

𝐻2𝑃0𝐻2 |𝜑0⟩ + 𝟙 − 𝑃0
𝐻0 − 𝐸0

𝐻2
𝟙 − 𝑃0

𝐻0 − 𝐸0
𝐻2 |𝜑0⟩ = (3.6)

= − 𝟙 − 𝑃0
𝐻0 − 𝐸0

𝐻2 ∑
𝑖

𝑋𝑖
8 |𝜑0⟩ = (3.7)

= 𝟙 − 𝑃0
𝐻0 − 𝐸0

∑
𝑗

𝑋𝑗 ∑
𝑖

𝑋𝑖
8 |𝜑0⟩ = (3.8)

= ∑
𝑖≠𝑗

𝟙 − 𝑃0
𝐻0 − 𝐸0

𝑋𝑖𝑋𝑗 ⋅ 1
8 |𝜑0⟩ − 𝟙 − 𝑃0

𝐻0 − 𝐸0

𝑋2
𝑖

8 |𝜑0⟩ = (3.9)

= ∑
𝑖≠𝑗

1
𝐻0 − 𝐸0

⋅ (𝑋𝑖𝑋𝑗
8 |𝜑0⟩ − |𝜑0⟩ ⟨𝜑0| 𝑋𝑖𝑋𝑗 |𝜑0⟩) = (3.10)

= ∑
𝑖≠𝑗

1
𝐻0 − 𝐸0

⋅ 𝑋𝑖𝑋𝑗
8 |𝜑0⟩ . (3.11)

The energy difference depends on whether the positions 𝑖 and 𝑗 are neighboring or not.
If they are not nearest neighbors, the fraction acts on the newly created state with 1

16
(or 1

8 if each pair of indices is counted only once), whereas if they are neighboring, it
acts on the state with 1

12 (or 1
6 if each pair is counted only once), because applying 𝑍𝑖𝑍𝑗

onto 𝑋𝑖𝑋𝑗 |𝜑0⟩ gives the result of (−1) ⋅ (−1) = 1. Thus, the full correction to the wave
function in the second order equals:

|𝜑Δ2⟩ = ∑
(𝑖𝑗)𝑑

𝑋𝑖𝑋𝑗
64 |𝜑0⟩ + ∑

(𝑖𝑗)𝑛

𝑋𝑖𝑋𝑗
48 |𝜑0⟩ , (3.12)

where the indices (𝑖𝑗)𝑑 and (𝑖𝑗)𝑛 indicate that the respective pairs of sites with distant
(𝑑) and neighboring (𝑛) indices were counted only once in the sums.

To make these results mathematically more convenient, these expressions can be
represented in an exponentiated form. I will use the expression in (3.5) to treat the state
up to the first order of perturbation as part of an exponential expansion by including the
perturbation parameter 𝜆 as the magnitude ratio of the perturbative summand and the
basic Hamiltonian, so that the wave function up to the first order of correction equals:

|𝜑1⟩ = (𝟙 + 𝜆 ⋅ 1
8 ∑

𝑖
𝑋𝑖) |𝜑0⟩ . (3.13)

It holds that

𝑒𝜆⋅ 1
8 ∑𝑖 𝑋𝑖 =𝟙 + 𝜆 ⋅ 1

8 ∑
𝑖

𝑋𝑖 + 𝜆2

2 ⋅ ( 1
64 ∑

𝑖𝑗
𝑋𝑖𝑋𝑗) + 𝒪 (𝜆3) = (3.14)

=𝟙 + 𝜆 ⋅ 1
8 ∑

𝑖
𝑋𝑖 + 𝜆2 ⋅ ⎛⎜

⎝
𝑁

128 + 1
64 ∑

(𝑖𝑗)
𝑋𝑖𝑋𝑗⎞⎟

⎠
+ 𝒪 (𝜆3) , (3.15)

where the index (𝑖𝑗) indicates pairs of spins where 𝑖 ≠ 𝑗 and each of the pairs is counted
only once, which shows that, in the first order in 𝜆, the exponential function (3.14)
has the same form as the wave function prefactor in (3.13). Thus, it can be used
interchangeably for up to the first order of perturbation.

In the second order of perturbation, the wave function has been calculated as:

|𝜑2⟩ = ⎛⎜
⎝

𝟙 + 𝜆 ⋅ 1
8 ∑

𝑖
𝑋𝑖 + 𝜆2 ∑

(𝑖𝑗)𝑑

𝑋𝑖𝑋𝑗
64 + 𝜆2 ∑

(𝑖𝑗)𝑛

𝑋𝑖𝑋𝑗
48

⎞⎟
⎠

|𝜑0⟩ , (3.16)
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and the easiest way to construct a sum of up to the 𝑘-th order is to use a 𝑘-th order
expression in 𝜆, marked as 𝜈, in an exponential function that creates a product with the
already derived expression (3.14) that is valid up to the first order of perturbation:

𝑒𝜆2𝜈𝑒𝜆⋅ 1
8 ∑𝑖 𝑋𝑖 = (𝟙 + 𝜆2𝜈) ⋅ (𝟙 + 𝜆 ⋅ 1

8 ∑
𝑖

𝑋𝑖 + 𝜆2

2 ⋅ ( 1
64 ∑

𝑖𝑗
𝑋𝑖𝑋𝑗)) + 𝒪(𝜆3) =

(3.17)

=𝟙 + 𝜆2𝜈 + 𝜆 ⋅ 1
8 ∑

𝑖
𝑋𝑖 + 𝜆2

2 ⋅ ⎛⎜
⎝

𝑁
64 + 1

32 ∑
(𝑖𝑗)

𝑋𝑖𝑋𝑗⎞⎟
⎠

+ 𝒪(𝜆3) = (3.18)

=𝟙 + 𝜆2𝜈 + 𝜆1
8 ∑

𝑖
𝑋𝑖 + 𝜆2 𝑁

128 + 𝜆2 1
64 ∑

(𝑖𝑗)𝑑

𝑋𝑖𝑋𝑗 + 𝜆2 1
64 ∑

(𝑖𝑗)𝑛

𝑋𝑖𝑋𝑗 + 𝒪(𝜆3). (3.19)

From this and (3.13), it follows that:

𝜆2𝜈 + 𝜆2 ⋅ 𝑁
128+𝜆2 ⋅ 1

64 ∑
(𝑖𝑗)𝑛

𝑋𝑖𝑋𝑗 = 𝜆2 ⋅ 1
48 ∑

(𝑖𝑗)𝑛

𝑋𝑖𝑋𝑗 (3.20)

𝜆2𝜈 =𝜆2 ⋅ 1
192 ∑

(𝑖𝑗)𝑛

𝑋𝑖𝑋𝑗 − 𝜆2 ⋅ 𝑁
128. (3.21)

Thus,
𝜈 = 1

192 ∑
(𝑖𝑗)𝑛

𝑋𝑖𝑋𝑗 − 𝑁
128, (3.22)

and the wave function that corresponds to the calculated wave function up to the second
order of perturbation can be written as:

|𝜓2⟩ ≡ exp ⎛⎜
⎝

𝜆2

192 ∑
(𝑖𝑗)𝑛

𝑋𝑖𝑋𝑗 − 𝜆2𝑁
128

⎞⎟
⎠

exp (𝜆2

8 ∑
𝑖

𝑋𝑖) |𝜑0⟩ . (3.23)

However, if the second order wave function is to be normalized, (3.13) contains an
additional summand:

1
2𝑃0𝐻2 ( 𝟙 − 𝑃0

𝐻0 − 𝐸0
)

2
𝐻2 |𝜑0⟩ = − 1

2𝑃0𝐻2 ( 𝟙 − 𝑃0
𝐻0 − 𝐸0

) 1
8 ∑

𝑖
𝑋𝑖 |𝜑0⟩ = (3.24)

= 1
128 ⋅ 𝑃0 ⋅ (∑

𝑖
𝑋2

𝑖 + ∑
𝑖≠𝑗

𝑋𝑖𝑋𝑗) |𝜑0⟩ = (3.25)

= 𝑁
128 |𝜑0⟩ , (3.26)

which allows for the wave function to be used in a cleaner form:

|𝜓2𝑛⟩ ≡ exp ⎛⎜
⎝

𝜆2

192 ∑
(𝑖𝑗)𝑛

𝑋𝑖𝑋𝑗⎞⎟
⎠

exp (𝜆2

8 ∑
𝑖

𝑋𝑖) |𝜑0⟩ . (3.27)

One-Dimensional System
For the correction in the first order of perturbation, the only difference of the one-
dimensional from the two-dimensional system is that in the energy difference operator,
which gives 2 ⋅ 2 = 4, i.e.,

|𝜑Δ1⟩ = 1
4 ∑

𝑖
𝑋𝑖 |𝜑0⟩ . (3.28)

Similarly, the only difference for the second order correction to the wave function
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regards the energy operator; so,

|𝜑Δ2⟩ = ∑
(𝑖𝑗)𝑑

𝑋𝑖𝑋𝑗
32 |𝜑0⟩ + ∑

(𝑖𝑗)𝑛

𝑋𝑖𝑋𝑗
16 |𝜑0⟩ . (3.29)

Thus, in the first order, the system is in the state:

|𝜑1⟩ = (𝟙 + 𝜆 ⋅ 1
4 ∑

𝑖
𝑋𝑖) |𝜑0⟩ , (3.30)

and

𝑒𝜆⋅ 1
4 ∑𝑖 𝑋𝑖 = 𝟙 + 𝜆 ⋅ 1

4 ∑
𝑖

𝑋𝑖 + 𝜆2 ⋅ ⎛⎜
⎝

𝑁
32 + 1

16 ∑
(𝑖𝑗)

𝑋𝑖𝑋𝑗⎞⎟
⎠

+ 𝒪 (𝜆3) , (3.31)

which clearly corresponds to the wave function calculated up to the first order of per-
turbation.

In the second order of perturbation, the wave function can be written as:

|𝜑2⟩ = ⎛⎜
⎝

𝟙 + 𝜆 ⋅ 1
4 ∑

𝑖
𝑋𝑖 + 𝜆2 ⋅ ∑

(𝑖𝑗)𝑑

𝑋𝑖𝑋𝑗
32 |𝜑0⟩ + 𝜆2 ⋅ ∑

(𝑖𝑗)𝑛

𝑋𝑖𝑋𝑗
16

⎞⎟
⎠

|𝜑0⟩ , (3.32)

so to construct a product of exponential functions that corresponds to it, I will calculate
the following:

𝑒𝜆2𝜈𝑒 𝜆
4 ∑𝑖 𝑋𝑖 |𝜑0⟩ = ((𝟙 + 𝜆2𝜈) (𝟙 + 𝜆1

4 ∑
𝑖

𝑋𝑖 + 𝜆2

2 ( 1
16 ∑

𝑖𝑗
𝑋𝑖𝑋𝑗)) + 𝒪(𝜆3)) |𝜑0⟩ =

(3.33)

= ⎛⎜
⎝

𝟙 + 𝜆1
4 ∑

𝑖
𝑋𝑖 + 𝜆2𝑁

32 + 𝜆2

16 ∑
(𝑖𝑗)𝑑

𝑋𝑖𝑋𝑗 + 𝜆2

16 ∑
(𝑖𝑗)𝑑

𝑋𝑖𝑋𝑗 + 𝜆2𝜈 + 𝒪(𝜆3)⎞⎟
⎠

|𝜑0⟩ .

(3.34)

For this expression to be valid, it must hold that

𝜆2𝑁
32 + 𝜆2𝜈 = 𝜆2

16 ⋅ ∑
(𝑖𝑗)𝑑

𝑋𝑖𝑋𝑗, (3.35)

or
𝜈 = 1

16 ⋅ ∑
(𝑖𝑗)𝑑

𝑋𝑖𝑋𝑗 − 𝑁
32. (3.36)

If the wave function calculated up the second order of perturbation is then normalized,
the corresponding exponentiated wave function can be constructed more cleanly.

1
2𝑃0𝐻2 ( 𝟙 − 𝑃0

𝐻0 − 𝐸0
)

2
𝐻2 |𝜑0⟩ =1

8𝑃0
1
4 ∑

𝑖𝑗
𝑋𝑖𝑋𝑗 |𝜑0⟩ = (3.37)

= 𝑁
32 (3.38)

It follows that the normalized wave function up to the second order in 𝜆 can be written
as:

|𝜓2𝑛⟩ ≡ exp ⎛⎜
⎝

1
16 ∑

(𝑖𝑗)𝑑

𝑋𝑖𝑋𝑗⎞⎟
⎠

exp (𝜆
4 ∑

𝑖
𝑋𝑖) |𝜑0⟩ . (3.39)
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3.1.2 Exponentiation of the Polarized State

In the polarized state, 𝐻2 acts as the chief Hamiltonian to describe the system, while
𝐻1 can be treated as perturbation onto it. In a non-perturbed system, a polarized state
is characterized by all of its spins having the same orientation.

The ground state of the non-perturbed system with 𝐻 = 𝐻2 can be chosen as

|𝜑0⟩ = |+𝑋⟩ = ⊗𝑗 ∣+𝑋𝑗⟩ , (3.40)

where ∣+𝑋𝑗⟩ = 1√
2 (1

1)
𝑗

= 1√
2 (∣+𝑍𝑗⟩ + ∣−𝑍𝑗⟩). The projector onto this state is defined

as 𝑃0 = |𝜑0⟩ ⟨𝜑0| = |+𝑋⟩ ⟨+𝑋| and the operator (𝟙 − 𝑃0) projects onto all states
orthogonal to the ground state of 𝐻0. In the remainder of this subsection I will present
results for both a one-dimensional and a two-dimensional systems on an orthogonal and
equidistant lattice with periodic boundary conditions and a total of 𝑁 particles.

Two-dimensional System

The calculation of the correction in the first order of perturbation can be completed
as follows:

|𝜑Δ1⟩ = 𝟙 − 𝑃0
𝐻0 − 𝐸0

∑
⟨𝑖𝑗⟩

𝑍𝑖𝑍𝑗 |𝜑0⟩ = (3.41)

= ∑
⟨𝑖𝑗⟩

1
𝐻0 − 𝐸0

(𝑍𝑖𝑍𝑗 |𝜑0⟩ − |𝜑0⟩ ⟨𝜑0| 𝑍𝑖𝑍𝑗 |𝜑0⟩) = (3.42)

= ∑
⟨𝑖𝑗⟩

1
𝐻0 − 𝐸0

𝑍𝑖𝑍𝑗 |𝜑0⟩ , (3.43)

where the second summand equals zero because 𝑖 ≠ 𝑗.

The energy difference encoded in the fraction equals 2 ⋅ 2, which gives the correction
in the first order:

|𝜑Δ1⟩ = ∑
⟨𝑖𝑗⟩

𝑍𝑖𝑍𝑗
4 |𝜑0⟩ . (3.44)

In the second order, the correction calculation gives:

|𝜑Δ2⟩ = 𝟙 − 𝑃0
𝐻0 − 𝐸0

∑
⟨𝑘𝑙⟩

𝑍𝑘𝑍𝑙 ∑
⟨𝑖𝑗⟩

𝑍𝑖𝑍𝑗
4 |𝜑0⟩ . (3.45)

If (𝑘, 𝑙) ∈ {(𝑖, 𝑗), (𝑗, 𝑖)}, the total of that summand is equal to zero, as the product of the
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Figure 3.1: An example of the definition of indices in a two-dimensional square lattice
used in this work. Note that all combinations of indices are addressed to with a unique
label, but only once.

Pauli operators gives 𝟙. Then,

|𝜑Δ2⟩ = ∑
⟨𝑘𝑙⟩≠⟨𝑖𝑗⟩

𝟙 − 𝑃0
𝐻0 − 𝐸0

𝑍𝑘𝑍𝑙
𝑍𝑖𝑍𝑗

4 |𝜑0⟩ = (3.46)

= ∑
⟨𝑘𝑙⟩≠⟨𝑖𝑗⟩

1
𝐻0 − 𝐸0

⋅ 1
4 (𝑍𝑘𝑍𝑙𝑍𝑖𝑍𝑗 |𝜑0⟩ − |𝜑0⟩ ⟨𝜑0| 𝑍𝑘𝑍𝑙𝑍𝑖𝑍𝑗 |𝜑0⟩) = (3.47)

= ∑
⟨𝑘𝑙⟩≠⟨𝑖𝑗⟩

1
𝐻0 − 𝐸0

⋅ 1
4𝑍𝑘𝑍𝑙𝑍𝑖𝑍𝑗 |𝜑0⟩ = (3.48)

= ∑
(⟨𝑘𝑙⟩≠⟨𝑖𝑗⟩)𝑑

1
4 ⋅ 4 ⋅ 2 ⋅ 1

2
𝑍𝑘𝑍𝑙𝑍𝑖𝑍𝑗 |𝜑0⟩ + ∑

(𝑖𝑗𝑘)𝑐

1
4 ⋅ 2 ⋅ 2 ⋅ 1

2
𝑍𝑖𝑍2

𝑗 𝑍𝑘 |𝜑0⟩ = (3.49)

= ∑
(⟨𝑘𝑙⟩≠⟨𝑖𝑗⟩)𝑑

1
16𝑍𝑘𝑍𝑙𝑍𝑖𝑍𝑗 |𝜑0⟩ + ∑

(𝑖𝑗𝑘)𝑐

1
8𝑍𝑖𝑍𝑘 |𝜑0⟩ , (3.50)

where the indices (⟨𝑘𝑙⟩ ≠ ⟨𝑖𝑗⟩)𝑑 and (𝑖𝑗𝑘)𝑐 denote the non-overlapping and clustering
combinations of indices, respectively. An example of the thus defined index combinations
can be seen in Figure 3.1. All combinations have been counted only once and the central
index of the clustered index combination is the nearest neighbor of both the other ones.

If 𝜆 now denotes the magnitude ratio of the perturbative and the main part of the
Hamiltonian, up to the first order of perturbation the wave function of the system equals:

|𝜑1⟩ = ⎛⎜
⎝

𝟙 + 𝜆 ∑
⟨𝑖𝑗⟩

𝑍𝑖𝑍𝑗
4

⎞⎟
⎠

|𝜑0⟩ . (3.51)

By mimicking the procedure already completed for the ferromagnetic case in Subsection
3.1.1, I can simplify the following expression:

𝑒 𝜆
4 ⋅∑⟨𝑖𝑗⟩ 𝑍𝑖𝑍𝑗 = 𝟙 + 𝜆 ⋅ ∑

⟨𝑖𝑗⟩

𝑍𝑖𝑍𝑗
4 + 𝜆2

2 ⋅ ⎛⎜
⎝

1
16 ∑

⟨𝑖𝑗⟩
𝑍𝑖𝑍𝑗 ∑

⟨𝑘𝑙⟩
𝑍𝑘𝑍𝑙⎞⎟

⎠
+ 𝒪(𝜆3) = (3.52)

=𝟙 + 𝜆 ∑
⟨𝑖𝑗⟩

𝑍𝑖𝑍𝑗
4 + 𝜆2

32
⎛⎜
⎝

∑
⟨𝑖𝑗⟩

𝟙 + 2 ∑
(𝑖𝑗𝑘)𝑐

𝑍𝑖𝑍2
𝑗 𝑍𝑘 + 2 ∑

(⟨𝑖𝑗⟩,⟨𝑘𝑙⟩)𝑑

𝑍𝑖𝑍𝑗𝑍𝑘𝑍𝑙
⎞⎟
⎠

+ 𝒪(𝜆3) =

(3.53)

=𝟙 + 𝜆 ∑
⟨𝑖𝑗⟩

𝑍𝑖𝑍𝑗
4 + 𝜆2

32𝑁 + 𝜆2

16 ∑
(𝑖𝑗𝑘)𝑐

𝑍𝑖𝑍𝑘 + 𝜆2

16 ∑
(⟨𝑖𝑗⟩,⟨𝑘𝑙⟩)𝑑

𝑍𝑖𝑍𝑗𝑍𝑘𝑍𝑙 + 𝒪(𝜆3). (3.54)
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Up to the first order of perturbation, this expression corresponds to the calculated per-
turbative expression.

In the second order, the (non-normalized) wave function:

|𝜓2⟩ = ⎛⎜
⎝

𝟙 + 𝜆 ∑
⟨𝑖𝑗⟩

𝑍𝑖𝑍𝑗
4 + 𝜆2 ⋅ ∑

(⟨𝑘𝑙⟩≠⟨𝑖𝑗⟩)𝑑

1
16𝑍𝑘𝑍𝑙𝑍𝑖𝑍𝑗 + 𝜆2 ⋅ ∑

(𝑖𝑗𝑘)𝑐

1
8𝑍𝑖𝑍𝑘

⎞⎟
⎠

|𝜑0⟩ (3.55)

can be expressed as a product of exponential functions, in a procedure similar to that
in the ferromagnetic case in the second order. The calculation of the ansatz follows.

𝑒𝜆2𝜈𝑒𝜆 ∑⟨𝑖𝑗⟩
𝑍𝑖𝑍𝑗

4 = (𝟙 + 𝜆2𝜈) ⎛⎜
⎝

𝟙 + 𝜆 ∑
⟨𝑖𝑗⟩

𝑍𝑖𝑍𝑗
4 + 𝜆2

2
⎛⎜
⎝

1
16 ∑

⟨𝑖𝑗⟩
𝑍𝑖𝑍𝑗 ∑

⟨𝑘𝑙⟩
𝑍𝑘𝑍𝑙⎞⎟

⎠
⎞⎟
⎠

+ 𝒪(𝜆3) =

(3.56)

=𝟙 + 𝜆 ∑
⟨𝑖𝑗⟩

𝑍𝑖𝑍𝑗
4 + 𝜆2

32
⎛⎜
⎝

∑
⟨𝑖𝑗⟩

𝟙 + 2 ∑
(𝑖𝑗𝑘)𝑐

𝑍𝑖𝑍2
𝑗 𝑍𝑘 + ∑

(⟨𝑖𝑗⟩,2⟨𝑘𝑙⟩)𝑑

𝑍𝑖𝑍𝑗𝑍𝑘𝑍𝑙
⎞⎟
⎠

+ 𝜆2𝜈 + 𝒪(𝜆3) =

(3.57)

=𝟙 + 𝜆 ∑
⟨𝑖𝑗⟩

𝑍𝑖𝑍𝑗
4 + 𝜆2 𝑁

32 + 𝜆2

16 ∑
(𝑖𝑗𝑘)𝑐

𝑍𝑖𝑍𝑘 + 𝜆2

16 ∑
(⟨𝑖𝑗⟩,⟨𝑘𝑙⟩)𝑑

𝑍𝑖𝑍𝑗𝑍𝑘𝑍𝑙 + 𝜆2𝜈 + 𝒪(𝜆3)

(3.58)

Therefore,

𝜆2 ⋅ 𝑁
32 + 𝜆2

16 ∑
(𝑖𝑗𝑘)𝑐

𝑍𝑖𝑍𝑘 + 𝜆2𝜈 = 𝜆2 ⋅ ∑
(𝑖𝑗𝑘)𝑐

1
8𝑍𝑖𝑍𝑘, (3.59)

and from this,

𝜈 = ∑
(𝑖𝑗𝑘)𝑐

1
16𝑍𝑖𝑍𝑘 − 𝑁

32. (3.60)

Again, similarly to the ferromagnetic case, I can calculate the normalization for the
derived wave function of the system up to the second order of perturbation:

1
2𝑃0𝐻1 ( 𝟙 − 𝑃0

𝐻0 − 𝐸0
)

2
𝐻1 |𝜑0⟩ = 𝑁

32 |𝜑0⟩ . (3.61)

Thus, it holds that the following expression can be used to determine the wave function
up to the second order in 𝜆:

|𝜓2⟩ ≡ exp ⎛⎜
⎝

𝜆2 ∑
(𝑖𝑗𝑘)𝑐

1
16𝑍𝑖𝑍𝑘

⎞⎟
⎠

exp ⎛⎜
⎝

𝜆 ∑
⟨𝑖𝑗⟩

𝑍𝑖𝑍𝑗
4

⎞⎟
⎠

|𝜑0⟩ . (3.62)

One-dimensional System
The only difference from the two-dimensional system in the case of the first order
correction for the wave function in a one-dimensional system may exist in the energy
difference operator. However, in this case it gives the same result:

|𝜑Δ1⟩ = ∑
⟨𝑖𝑗⟩

𝑍𝑖𝑍𝑗
4 |𝜑0⟩ . (3.63)
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In the second order, the calculation is, again, as follows:

|𝜑Δ2⟩ = ∑
(⟨𝑘𝑙⟩≠⟨𝑖𝑗⟩)𝑑

1
4 ⋅ 4 ⋅ 2 ⋅ 1

2
𝑍𝑘𝑍𝑙𝑍𝑖𝑍𝑗 |𝜑0⟩ + ∑

(𝑖𝑗𝑘)𝑐

1
4 ⋅ 2 ⋅ 2 ⋅ 1

2
𝑍𝑖𝑍2

𝑗 𝑍𝑘 |𝜑0⟩ = (3.64)

= ∑
(⟨𝑘𝑙⟩≠⟨𝑖𝑗⟩)𝑑

1
16𝑍𝑘𝑍𝑙𝑍𝑖𝑍𝑗 |𝜑0⟩ + ∑

(𝑖𝑗𝑘)𝑐

1
8𝑍𝑖𝑍𝑘 |𝜑0⟩ , (3.65)

i.e., the result is equal to the one obtained for the two-dimensional system.
As shown previously, the expression in (3.44) can be used to treat the state up

to its order as part of an exponential expansion. If 𝜆 denotes the magnitude ratio of
the perturbative summand and the basic Hamiltonian, the wave function of the one-
dimensional system up to the first order of perturbation equals:

|𝜑1⟩ = ⎛⎜
⎝

𝟙 + 𝜆 ∑
⟨𝑖𝑗⟩

𝑍𝑖𝑍𝑗
4

⎞⎟
⎠

|𝜑0⟩ . (3.66)

The test exponential function that would correspond to this result is the following:

𝑒𝜆⋅∑⟨𝑖𝑗⟩
𝑍𝑖𝑍𝑗

4 = 𝟙 + 𝜆 ⋅ ∑
⟨𝑖𝑗⟩

𝑍𝑖𝑍𝑗
4 + 𝜆2

2 ⋅ ⎛⎜
⎝

1
16 ∑

⟨𝑖𝑗⟩
𝑍𝑖𝑍𝑗 ∑

⟨𝑘𝑙⟩
𝑍𝑘𝑍𝑙⎞⎟

⎠
+ 𝒪(𝜆3) = (3.67)

=𝟙 + 𝜆 ⋅ ∑
⟨𝑖𝑗⟩

𝑍𝑖𝑍𝑗
4 + 𝜆2

32 ⋅ 𝑁 + 𝜆2

16 ⋅ ∑
(𝑖𝑗𝑘)𝑐

𝑍𝑖𝑍𝑘 + 𝜆2

16 ⋅ ∑
(⟨𝑖𝑗⟩,⟨𝑘𝑙⟩)𝑑

𝑍𝑖𝑍𝑗𝑍𝑘𝑍𝑙 + 𝒪(𝜆3). (3.68)

Evidently, in the first order of 𝜆, the exponentiated form of the perturbation can be used
as a mathematically more convenient form of delivery of (3.66).

In the second order, the non-normalized wave function has been calculated as:

|𝜑2⟩ = ⎛⎜
⎝

𝟙 + 𝜆 ∑
⟨𝑖𝑗⟩

𝑍𝑖𝑍𝑗
4 + 𝜆2 ⋅ ∑

(⟨𝑘𝑙⟩≠⟨𝑖𝑗⟩)𝑑

1
16𝑍𝑘𝑍𝑙𝑍𝑖𝑍𝑗 + 𝜆2 ⋅ ∑

(𝑖𝑗𝑘)𝑐

1
8𝑍𝑖𝑍𝑘

⎞⎟
⎠

|𝜑0⟩ , (3.69)

which can also be expressed as a product of exponential functions. I will now calculate
the ansatz.

𝑒𝜆2𝜈𝑒𝜆 ∑⟨𝑖𝑗⟩
𝑍𝑖𝑍𝑗

4 = ⎛⎜
⎝

(𝟙 + 𝜆2𝜈) ⎛⎜
⎝

𝟙 + 𝜆 ⋅ ∑
⟨𝑖𝑗⟩

𝑍𝑖𝑍𝑗
4 + 𝜆2

2 ⋅ ⎛⎜
⎝

1
16 ∑

⟨𝑖𝑗⟩
𝑍𝑖𝑍𝑗 ∑

⟨𝑘𝑙⟩
𝑍𝑘𝑍𝑙⎞⎟

⎠
⎞⎟
⎠

+ 𝒪(𝜆3)⎞⎟
⎠

|𝜑0⟩ =

(3.70)

= ⎛⎜
⎝

𝟙 + 𝜆 ⋅ ∑
⟨𝑖𝑗⟩

𝑍𝑖𝑍𝑗
4 + 𝜆2

32 ⋅ ⎛⎜
⎝

∑
⟨𝑖𝑗⟩

𝟙 + 2 ∑
(𝑖𝑗𝑘)𝑐

𝑍𝑖𝑍2
𝑗 𝑍𝑘 + ∑

(⟨𝑖𝑗⟩,2⟨𝑘𝑙⟩)𝑑

𝑍𝑖𝑍𝑗𝑍𝑘𝑍𝑙
⎞⎟
⎠

+ 𝜆2𝜈 + 𝒪(𝜆3)⎞⎟
⎠

|𝜑0⟩ =

(3.71)

= ⎛⎜
⎝

𝟙 + 𝜆 ⋅ ∑
⟨𝑖𝑗⟩

𝑍𝑖𝑍𝑗
4 + 𝜆2 ⋅ 𝑁

32 + 𝜆2

16 ∑
(𝑖𝑗𝑘)𝑐

𝑍𝑖𝑍𝑘 + 𝜆2

16 ∑
(⟨𝑖𝑗⟩,⟨𝑘𝑙⟩)𝑑

𝑍𝑖𝑍𝑗𝑍𝑘𝑍𝑙 + 𝜆2𝜈 + 𝒪(𝜆3)⎞⎟
⎠

|𝜑0⟩

(3.72)

Therefore, it must hold that

𝜆2 ⋅ 𝑁
32 + 𝜆2

16 ∑
(𝑖𝑗𝑘)𝑐

𝑍𝑖𝑍𝑘 + 𝜆2𝜈 = 𝜆2 ⋅ ∑
(𝑖𝑗𝑘)𝑐

1
8𝑍𝑖𝑍𝑘, (3.73)
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which means that
𝜈 = ∑

(𝑖𝑗𝑘)𝑐

1
16𝑍𝑖𝑍𝑘 − 𝑁

32. (3.74)

To normalize the perturbative addition for the second order calculation, I need to con-
sider the summand:

1
2𝑃0𝐻1 ( 𝟙 − 𝑃0

𝐻0 − 𝐸0
)

2
𝐻1 |𝜑0⟩ = 1

32𝑃0 ∑
⟨𝑘𝑙⟩

𝑍𝑘𝑍𝑙 ∑
⟨𝑖𝑗⟩

𝑍𝑖𝑍𝑗 |𝜑0⟩ = (3.75)

= 1
32𝑃0 ∑

⟨𝑖𝑗⟩
𝑍2

𝑖 𝑍2
𝑗 |𝜑0⟩ = (3.76)

= 𝑁
32 |𝜑0⟩ . (3.77)

This means that the following expression can be used to determine the wave function
up to the second order in 𝜆:

|𝜓2⟩ ≡ exp ⎛⎜
⎝

𝜆2 ∑
(𝑖𝑗𝑘)𝑐

1
16𝑍𝑖𝑍𝑘

⎞⎟
⎠

exp ⎛⎜
⎝

𝜆 ∑
⟨𝑖𝑗⟩

𝑍𝑖𝑍𝑗
4

⎞⎟
⎠

|𝜑0⟩ . (3.78)

3.2 Varying Perturbative Parameters in Exponentiated Wave
Functions

After deriving the exponentiated forms of the wave functions calculated through per-
turbative expansion for both the ferromagnetic and polarized phase of the many-body
Hamiltonian (3.2), I will proceed to calculate the density operator in the relevant or-
ders of magnitude of the disorder parameter. By doing so, I will open up a pathway
to a straightforward calculation of other interesting observables for this system. In this
section I will only present the more interesting two-dimensional case.

3.2.1 Calculation for a Ferromagnetic State
In the following calculations I will use the same setup as in Subsection 3.1.1 and derive
the relevant expressions for a two-dimensional system. However, the perturbation pa-
rameters will not be constant, but will instead vary for each site of the lattice, chosen
from a Gaussian distribution centered around zero. In other words, in this subsection,
the full Hamiltonian will have the form 𝐻 = 𝐻0 + 𝑉 , where 𝐻0 = − ∑⟨𝑗𝑘⟩ 𝑍𝑗𝑍𝑘 and
𝑉 = − ∑𝑗 𝑣𝑗𝑋𝑗, with parameters 𝑣𝑗 ∈ ℝ, for which it holds that ‖𝑣𝑗‖ ≪ 1.

In the first order of perturbation, the correction to the wave function of the system
equals:

|𝜑Δ1⟩ = ∑
𝑗

𝑣𝑗
1
8𝑋𝑗 |𝜑0⟩ (3.79)

and the exponentiated form of the full wave function can be written as:

𝑒∑𝑗 𝑣𝑗
1
8 𝑋𝑗 = 𝟙 + ∑

𝑗
𝑣𝑗

1
8𝑋𝑗 + 1

2 ⋅ (∑
𝑗

𝑣2
𝑗

1
64 + ∑

𝑗≠𝑘
𝑣𝑗𝑣𝑘

1
64𝑋𝑗𝑋𝑘) + 𝒪 ((𝑣𝑗)3) . (3.80)

In the second order of perturbation, the correction to the wave function equals:

|𝜑Δ2⟩ = ∑
(𝑗𝑘)𝑑

𝑣𝑗𝑣𝑘
𝑋𝑗𝑋𝑘

64 |𝜑0⟩ + ∑
(𝑗𝑘)𝑛

𝑣𝑗𝑣𝑘
𝑋𝑗𝑋𝑘

48 |𝜑0⟩ , (3.81)
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where the indices (𝑖𝑗)𝑑 and (𝑖𝑗)𝑛 indicate that the respective pairs of distant (𝑑) and
neighboring (𝑛) indices were counted only once in the sums.

Then, the exponentiated wave function for the full system can be derived using a
procedure similar to that of Section 3.1, by setting up its structure as follows.

𝑒𝜈 ∑𝑘 ∑𝑙 𝑣𝑘𝑣𝑙𝑒∑𝑗 𝑣𝑗
1
8 𝑋𝑗 = (𝟙 + 𝜈 ∑

𝑘,𝑙
𝑣𝑘𝑣𝑙) (𝟙 + ∑

𝑗
𝑣𝑗

1
8𝑋𝑗 + 1

128 ∑
𝑚,𝑛

𝑣𝑚𝑣𝑛𝑋𝑚𝑋𝑛) + 𝒪(𝑣3
𝑗 ) =

(3.82)

=𝟙 + 𝜈 ∑
𝑘,𝑙

𝑣𝑘𝑣𝑙 + ∑
𝑗

𝑣𝑗
1
8𝑋𝑗 + 1

128 ∑
𝑚,𝑛

𝑣𝑚𝑣𝑛𝑋𝑚𝑋𝑛 + 𝒪(𝑣3
𝑗 ) = (3.83)

=𝟙 + 1
8 ∑

𝑗
𝑣𝑗𝑋𝑗 + 𝜈 ∑

𝑗,𝑘
𝑣𝑗𝑣𝑘 + 𝑁

128 ∑
𝑗

𝑣2
𝑗 + (3.84)

+ 1
64 ∑

(𝑗𝑘)𝑛

𝑣𝑗𝑣𝑘𝑋𝑗𝑋𝑘 + 1
64 ∑

(𝑗𝑘)𝑑

𝑣𝑗𝑣𝑘𝑋𝑗𝑋𝑘 + 𝒪(𝑣3
𝑗 ) (3.85)

From the equivalence requirement for the perturbatively calculated second order wave
function, it holds that:

𝜈 ∑
𝑗,𝑘

𝑣𝑗𝑣𝑘 + ∑
𝑗

𝑣2
𝑗

128+ ∑
(𝑗𝑘)𝑛

𝑣𝑗𝑣𝑘
64 𝑋𝑗𝑋𝑘 + ∑

(𝑗𝑘)𝑑

𝑣𝑗𝑣𝑘
64 𝑋𝑗𝑋𝑘 = ∑

(𝑗𝑘)𝑛

𝑣𝑗𝑣𝑘
48 𝑋𝑗𝑋𝑘 + ∑

(𝑗𝑘)𝑑

𝑣𝑗𝑣𝑘
64 𝑋𝑗𝑋𝑘,

(3.86)

𝜈 ∑
𝑗,𝑘

𝑣𝑗𝑣𝑘 = − 1
128 ∑

𝑗
𝑣2

𝑗 + 1
192 ∑

(𝑗𝑘)𝑛

𝑣𝑗𝑣𝑘𝑋𝑗𝑋𝑘. (3.87)

If the form of the exponential function to be added in the second order is chosen as
𝑒∑𝑗 𝜈𝑗𝑗𝑣2

𝑗 +∑(𝑗𝑘)𝑛 𝜈𝑗𝑘𝑣𝑗𝑣𝑘+∑(𝑗𝑘)𝑑
𝜈𝑗𝑘𝑣𝑗𝑣𝑘 , the equality takes the following form:

∑
𝑗

𝜈𝑗𝑗𝑣2
𝑗 + ∑

(𝑗𝑘)𝑛

𝜈𝑗𝑘𝑣𝑗𝑣𝑘 + ∑
(𝑗𝑘)𝑑

𝜈𝑗𝑘𝑣𝑗𝑣𝑘 = 1
192 ∑

(𝑗𝑘)𝑛

𝑣𝑗𝑣𝑘𝑋𝑗𝑋𝑘 − 1
128 ∑

𝑗
𝑣2

𝑗 , (3.88)

which gives:

𝜈𝑗𝑘 =
⎧{
⎨{⎩

− 1
128 if 𝑗 = 𝑘;

1
192𝑋𝑗𝑋𝑘 if 𝑗, 𝑘 are nearest neighbors;
0 otherwise.

(3.89)

However, if the wave function in the second order of perturbation is normalized using

1
2𝑃0𝑉 ( 𝟙 − 𝑃0

𝐻0 − 𝑃0
)

2
𝑉 |𝜑0⟩ = − 1

2𝑃0𝑉 ( 𝟙 − 𝑃0
𝐻0 − 𝐸0

) ∑
𝑗

𝑣𝑗
1
8𝑋𝑗 |𝜑0⟩ = (3.90)

= 1
128𝑃0 (∑

𝑘
𝑣2

𝑘 + ∑
𝑗≠𝑘

𝑣𝑘𝑋𝑘𝑣𝑗𝑋𝑗) |𝜑0⟩ = (3.91)

= 1
128 ∑

𝑗
𝑣2

𝑗 |𝜑0⟩ , (3.92)
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it holds that:

𝑒∑(𝑗𝑘)𝑛 𝜈𝑗𝑘𝑣𝑗𝑣𝑘𝑒∑𝑗 𝑣𝑗
1
8 𝑋𝑗 = ⎛⎜

⎝
𝟙 + ∑

(𝑗𝑘)𝑛

𝜈𝑗𝑘𝑣𝑗𝑣𝑘⎞⎟
⎠

⋅

⋅ (𝟙 + ∑
𝑗

𝑣𝑗
1
8𝑋𝑗 + 1

128 ∑
𝑗,𝑘

𝑣𝑗𝑣𝑘𝑋𝑗𝑋𝑘) + 𝒪(𝑣3
𝑗 ) = (3.93)

=𝟙 + ∑
𝑗

𝑣𝑗
1
8𝑋𝑗 + 1

64 ∑
(𝑗𝑘)𝑛

𝑣𝑗𝑣𝑘𝑋𝑗𝑋𝑘 + 1
64 ∑

(𝑗𝑘)𝑑

𝑣𝑗𝑣𝑘𝑋𝑗𝑋𝑘 + 1
192 ∑

(𝑗𝑘)𝑛

𝑣𝑗𝑣𝑘𝑋𝑗𝑋𝑘 + 𝒪(𝑣3
𝑗 ) =

(3.94)

=𝟙 + ∑
𝑗

𝑣𝑗
1
8𝑋𝑗 + 1

48 ∑
(𝑗𝑘)𝑛

𝑣𝑗𝑣𝑘𝑋𝑗𝑋𝑘 + 1
64 ∑

(𝑗𝑘)𝑑

𝑣𝑗𝑣𝑘𝑋𝑗𝑋𝑘 + 𝒪(𝑣3
𝑗 ). (3.95)

Thus, the correct exponentiated wave function valid up to the second order is:

|𝜓2⟩ = 𝑒∑(𝑗𝑘)𝑛
1

192 𝑣𝑗𝑣𝑘𝑋𝑗𝑋𝑘𝑒∑𝑗 𝑣𝑗
1
8 𝑋𝑗 |𝜑0⟩ . (3.96)

The expectation value for the density operator of this wave function can be calculated
as:

𝜌 = 𝔼𝑣 [|𝜑(𝑣)⟩ ⟨𝜑(𝑣)|] , (3.97)

where |𝜑(𝑣)⟩ is normalized. The main part of the Hamiltonian alone would support a
wave function of the form |𝜑0⟩ = {|+𝑍⟩ , |−𝑍⟩}; for these calculations, as an example, I
will use the form |𝜑0⟩ = 1√

2 (|+𝑍⟩ + |−𝑍⟩), which is normalized. The density operator
is, then:

𝜌0 = |𝜑0⟩ ⟨𝜑0| = (3.98)

=1
2 (⊗𝑗 |+𝑍⟩𝑗 ⟨+𝑍|𝑗 + ⊗𝑗 |+𝑍⟩𝑗 ⟨−𝑍|𝑗 + ⊗𝑗 |−𝑍⟩𝑗 ⟨+𝑍|𝑗 + ⊗𝑗 |−𝑍⟩𝑗 ⟨−𝑍|𝑗) . (3.99)

In the first order of perturbation, the wave function |𝜑1⟩ = 𝑒∑𝑗 𝑣𝑗
1
8 𝑋𝑗 |𝜑0⟩ can be
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normalized using 𝑁 = ∏𝑗 cosh (1
4𝑣𝑗)1:

|𝜑1𝑛⟩ = 1√
𝑁

|𝜑1⟩ = (3.100)

= ∏
𝑗

𝑒 1
8 𝑣𝑗𝑋𝑗

(cosh (1
4𝑣𝑗))

1
2

|𝜑0⟩ = (3.101)

= ∏
𝑗

cosh (1
8𝑣𝑗) + sinh (1

8𝑣𝑗) 𝑋𝑗

((cosh (1
8𝑣𝑗))2 + (sinh (1

8𝑣𝑗))2)
1
2

|𝜑0⟩ = (3.102)

= 1√
2

⎛⎜⎜⎜
⎝

⊗𝑗
cosh (1

8𝑣𝑗) ∣+𝑍𝑗⟩ + sinh (1
8𝑣𝑗) ∣−𝑍𝑗⟩

(cosh (1
8𝑣𝑗)

2 + (sinh (1
8𝑣𝑗))2)

1
2

+ ⊗𝑗
cosh (1

8𝑣𝑗) ∣−𝑍𝑗⟩ + sinh (1
8𝑣𝑗) ∣+𝑍𝑗⟩

(cosh (1
8𝑣𝑗)

2 + (sinh (1
8𝑣𝑗))2)

1
2

⎞⎟⎟⎟
⎠

=

(3.103)

= (2 ∏
𝑗

(cosh2 (1
8𝑣𝑗) + sinh2 (1

8𝑣𝑗)))
− 1

2

⋅

⋅ (⊗𝑗 (cosh (1
8𝑣𝑗) ∣+𝑍𝑗⟩ + sinh (1

8𝑣𝑗) ∣−𝑍𝑗⟩) +

+ ⊗𝑗 (cosh (1
8𝑣𝑗) ∣−𝑍𝑗⟩ + sinh (1

8𝑣𝑗) ∣+𝑍𝑗⟩)). (3.104)

Further, to calculate the corresponding density operator, I will first define 𝜁+ and 𝜁−.

𝜁+ ≡𝔼𝑣 [cosh2 (1
8𝑣𝑗)] = (3.105)

= ∫ 1
𝜎

√
2𝜋d𝑣𝑗𝑒− 1

2𝜎2 𝑣2
𝑗

1
cosh2 (1

8𝑣𝑗) + sinh2 (1
8𝑣𝑗)

cosh2 (1
8𝑣𝑗) = (3.106)

= ∫ 1
𝜎

√
2𝜋d𝑣𝑗𝑒− 1

2𝜎2 𝑣2
𝑗

cosh2 (1
8𝑣𝑗)

cosh2 (1
8𝑣𝑗) + sinh2 (1

8𝑣𝑗)
= (3.107)

= ∫ 1
𝜎

√
2𝜋d𝑣𝑗𝑒− 1

2𝜎2 𝑣2
𝑗
cosh (1

4𝑣𝑗) + 1
2 cosh (1

4𝑣𝑗)
= (3.108)

= ∫ 1
𝜎

√
2𝜋d𝑣𝑗𝑒− 1

2𝜎2 𝑣2
𝑗 (1

2 + 1
2 cosh (1

4𝑣𝑗)
) (3.109)

𝜁− ≡𝔼𝑣 [sinh2 (1
8𝑣𝑗)] = (3.110)

= ∫ 1
𝜎

√
2𝜋d𝑣𝑗𝑒− 1

2𝜎2 𝑣2
𝑗

1
cosh2 (1

8𝑣𝑗) + sinh2 (1
8𝑣𝑗)

sinh2 (1
8𝑣𝑗) = (3.111)

= ∫ 1
𝜎

√
2𝜋d𝑣𝑗𝑒− 1

2𝜎2 𝑣2
𝑗

sinh2 (1
8𝑣𝑗)

cosh2 (1
8𝑣𝑗) + sinh2 (1

8𝑣𝑗)
= (3.112)

= ∫ 1
𝜎

√
2𝜋d𝑣𝑗𝑒− 1

2𝜎2 𝑣2
𝑗
sinh (1

4𝑣𝑗) − 1
2 cosh (1

4𝑣𝑗)
= (3.113)

= ∫ 1
𝜎

√
2𝜋d𝑣𝑗𝑒− 1

2𝜎2 𝑣2
𝑗 (−1

2 + 1
2 cosh (1

4𝑣𝑗)
) (3.114)

1The normalization calculation is included in the Appendix here.
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Then, the density operator can be calculated as follows:

𝜌 = 𝔼𝑣 [|𝜑1𝑛⟩ ⟨𝜑1𝑛|] = (3.115)

= 𝔼𝑣[1
2 ∏

𝑗

1
cosh2 (1

8𝑣𝑗) + sinh2 (1
8𝑣𝑗)

⋅

⋅ (⊗𝑗 (cosh (1
8𝑣𝑗) ∣+𝑍𝑗⟩ + sinh (1

8𝑣𝑗) ∣−𝑍𝑗⟩) + ⊗𝑗 (cosh (1
8𝑣𝑗) ∣−𝑍𝑗⟩ + sinh (1

8𝑣𝑗) ∣+𝑍𝑗⟩))⋅

⋅ (⊗𝑗 (cosh (1
8𝑣𝑗) ⟨+𝑍𝑗∣ + sinh (1

8𝑣𝑗) ⟨−𝑍𝑗∣) + ⊗𝑗 (cosh (1
8𝑣𝑗) ⟨−𝑍𝑗∣ + sinh (1

8𝑣𝑗) ⟨+𝑍𝑗∣))] =

(3.116)

= 1
2(⊗𝑗 (𝜁+ ∣+𝑍𝑗⟩ ⟨−𝑍𝑗∣ + 𝜁− ∣−𝑍𝑗⟩ ⟨−𝑍𝑗∣) + ⊗𝑗 (𝜁+ ∣+𝑍𝑗⟩ ⟨−𝑍𝑗∣ + 𝜁− ∣−𝑍𝑗⟩ ⟨+𝑍𝑗∣) +

+ ⊗𝑗 (𝜁+ ∣−𝑍𝑗⟩ ⟨+𝑍𝑗∣ + 𝜁− ∣+𝑍𝑗⟩ ⟨−𝑍𝑗∣) + ⊗𝑗 (𝜁+ ∣−𝑍𝑗⟩ ⟨−𝑍𝑗∣ + 𝜁− ∣+𝑍𝑗⟩ ⟨+𝑍𝑗∣)),

(3.117)
with the mixed terms that contain both sinh and cosh having been integrated to zero.

In the second order of perturbation, the exponentiated wave function is of the form
|𝜑2⟩ = 𝑒∑(𝑗𝑘)𝑛

1
192 𝑣𝑗𝑣𝑘𝑋𝑗𝑋𝑘𝑒∑𝑗 𝑣𝑗

1
8 𝑋𝑗 |𝜑0⟩. It can be normalized using the following:

𝑁 = ⟨𝜑2 | 𝜑2⟩ = (3.118)

= ⟨+𝑍0| 𝑒∑(𝑗𝑘)𝑛
1

192 𝑣𝑗𝑣𝑘𝑋𝑗𝑋𝑘𝑒∑𝑗 𝑣𝑗
1
8 𝑋𝑗𝑒∑(𝑙𝑚)𝑛

1
192 𝑣𝑙𝑣𝑚𝑋𝑙𝑋𝑚𝑒∑𝑙 𝑣𝑙

1
8 𝑋𝑙 |+𝑍0⟩ = (3.119)

= ⟨+𝑍0| ∏
(𝑗𝑘)𝑛

𝑒 1
192 𝑣𝑗𝑣𝑘𝑋𝑗𝑋𝑘 ∏

𝑗
𝑒

𝑣𝑗
8 𝑋𝑗 ∏

(𝑙𝑚)𝑛

𝑒 1
192 𝑣𝑙𝑣𝑚𝑋𝑙𝑋𝑚 ∏

𝑙
𝑒 𝑣𝑙

8 𝑋𝑙 |+𝑍0⟩ = (3.120)

= ⟨+𝑍0| ∏
𝑗

(cosh (𝑣𝑗
8 ) 𝟙 + sinh (𝑣𝑗

8 ) 𝑋𝑗) ∏
(𝑗𝑘)𝑛

(cosh ( 1
192𝑣𝑗𝑣𝑘) 𝟙 + sinh ( 1

192𝑣𝑗𝑣𝑘) 𝑋𝑗𝑋𝑘)⋅

⋅ ∏
(𝑙𝑚)𝑛

(cosh ( 1
192𝑣𝑙𝑣𝑚) 𝟙 + sinh ( 1

192𝑣𝑙𝑣𝑚) 𝑋𝑙𝑋𝑚) ∏
𝑙

(cosh (𝑣𝑙
8 ) 𝟙 + sinh (𝑣𝑙

8 ) 𝑋𝑙) |+𝑍0⟩ =

(3.121)

= ⟨+𝑍0| ∏
𝑗

(cosh (𝑣𝑗
8 ) 𝟙 + sinh (𝑣𝑗

8 ) 𝑋𝑗) ∏
(𝑗𝑘)𝑛

(cosh (𝑣𝑗𝑣𝑘
192 ) 𝟙 + sinh (𝑣𝑗𝑣𝑘

192 ) 𝑋𝑗𝑋𝑘)⋅

⋅ ∏
(𝑙𝑚)𝑛

(cosh (𝑣𝑙𝑣𝑚
192 ) 𝟙 + sinh (𝑣𝑙𝑣𝑚

192 ) 𝑋𝑙𝑋𝑚) ∏
𝑙

(cosh (𝑣𝑙
8 ) 𝟙 + sinh (𝑣𝑙

8 ) 𝑋𝑙) |+𝑍0⟩ =

(3.122)

= ⟨+𝑍0| (∏
𝑗

(cosh (𝑣𝑗
8 ) 𝟙 + sinh (𝑣𝑗

8 ) 𝑋𝑗))
2
( ∏

(𝑗𝑘)𝑛

(cosh (𝑣𝑗𝑣𝑘
192 ) 𝟙 + sinh (𝑣𝑗𝑣𝑘

192 ) 𝑋𝑗𝑋𝑘))
2

|+𝑍0⟩

(3.123)
The first product gives:

(∏
𝑗

(cosh (𝑣𝑗
8 ) 𝟙 + sinh (𝑣𝑗

8 ) 𝑋𝑗))
2

=

= ∏
𝑗

(cosh2 (𝑣𝑗
8 ) 𝟙 + sinh2 (𝑣𝑗

8 ) 𝑋2
𝑗 + 2 cosh (𝑣𝑗

8 ) sinh (𝑣𝑗
8 ) 𝑋𝑗) = (3.124)

= ∏
𝑗

(𝟙 + 2 sinh (𝑣𝑗
8 ) 𝟙 + sinh (𝑣𝑗

4 ) 𝑋𝑗) (3.125)

Ivana Kurečić 110



Chapter 3. Creating a Tensor Bridge for … 3.2. Varying Perturbative Parameters in …

The second product gives:

( ∏
(𝑗𝑘)𝑛

(cosh (𝑣𝑗𝑣𝑘
192 ) 𝟙 + sinh (𝑣𝑗𝑣𝑘

192 ) 𝑋𝑗𝑋𝑘))
2

=

= ∏
(𝑗𝑘)𝑛

(cosh2 (𝑣𝑗𝑣𝑘
192 ) 𝟙 + sinh2 (𝑣𝑗𝑣𝑘

192 ) 𝟙 + 2 cosh (𝑣𝑗𝑣𝑘
192 ) sinh (𝑣𝑗𝑣𝑘

192 ) 𝑋𝑗𝑋𝑘) =

(3.126)

= ∏
(𝑗𝑘)𝑛

(𝟙 + 2 sinh2 (𝑣𝑗𝑣𝑘
192 ) 𝟙 + sinh (𝑣𝑗𝑣𝑘

96 ) 𝑋𝑗𝑋𝑘) (3.127)

Obviously, the final sum in the first product leads to nothing on its own, so it can be
disregarded except in combination with the second product. The only combination that
works for the final part of the second product on its own is the ’full circle’, which gives:

∏
(𝑗𝑘)𝑛;𝑎𝑙𝑙

sinh (𝑣𝑗𝑣𝑘
96 ) = sinh𝑁 (𝑣𝑗𝑣𝑘

96 ) (3.128)

The aforementioned product of the sums within the two products that contain non-
identity operators and results in a non-zero expectation value has to contain an even
number of 𝑋𝑗 operators for every 𝑗. This means that the 𝑋𝑗 operators from the relevant
part of the first product delimit a ’boundary’ for the possible sequence of 𝑋𝑗𝑋𝑘 factors
from the second product, which refers to a set of {𝑗, 𝑘} that may but are not necessarily
neighboring. Where 𝑠 is a subset of the full set of links between nearest-neighbor lattice
points and 𝑆 is the set of all 𝑠, the boundary 𝜕𝑠 will define the set of lattice points that
are considered exactly an odd number of times. The complement of 𝑠 will be marked as
̄𝑠.

Thus, the sought after result can be written as follows.

𝑁 = ⟨+𝑍| ∏
𝑗

(𝟙 + 2 sinh (𝑣𝑗
8 ) 𝟙 + sinh (𝑣𝑗

4 ) 𝑋𝑗)⋅

⋅ ∏
(𝑗𝑘)𝑛

(𝟙 + 2 sinh2 (𝑣𝑗𝑣𝑘
192 ) 𝟙 + sinh (𝑣𝑗𝑣𝑘

96 ) 𝑋𝑗𝑋𝑘) |+𝑍⟩ = (3.129)

= ⟨+𝑍| 𝟙 ∑
𝑠∈𝑆

∏
(𝑗𝑘)𝑛∉𝑠

(1 + 2 sinh2 (𝑣𝑗𝑣𝑘
192 )) ∏

(𝑗𝑘)𝑛∈𝑠
sinh (𝑣𝑗𝑣𝑘

96 ) 𝑋𝑗𝑋𝑘⋅

⋅ ∏
𝑗∉𝜕𝑠

(1 + 2 sinh (𝑣𝑗
8 )) ∏

𝑗∈𝜕𝑠
sinh (𝑣𝑗

4 ) 𝑋𝑗 |+𝑍⟩ = (3.130)

= ∑
𝑠∈𝑆

∏
(𝑗𝑘)𝑛∈𝑠

(1 + 2 sinh2 (𝑣𝑗𝑣𝑘
192 )) ∏

(𝑗𝑘)𝑛∈𝑠
sinh (𝑣𝑗𝑣𝑘

96 ) ∏
𝑗∉𝜕𝑠

(1 + 2 sinh (𝑣𝑗
8 )) ∏

𝑗∈𝜕𝑠
sinh (𝑣𝑗

4 )

(3.131)

In the second order of perturbation, the exponentiated wave function is of the form
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|𝜑2⟩ = 𝑒∑(𝑗𝑘)𝑛
1

192 𝑣𝑗𝑣𝑘𝑋𝑗𝑋𝑘𝑒∑𝑗 𝑣𝑗
1
8 𝑋𝑗 |𝜑0⟩. It can be normalized using the following:

𝑁 = ⟨𝜑2 | 𝜑2⟩ = (3.132)

= ⟨+𝑍0| 𝑒∑(𝑗𝑘)𝑛
1

192 𝑣𝑗𝑣𝑘𝑋𝑗𝑋𝑘𝑒∑𝑗 𝑣𝑗
1
8 𝑋𝑗𝑒∑(𝑙𝑚)𝑛

1
192 𝑣𝑙𝑣𝑚𝑋𝑙𝑋𝑚𝑒∑𝑙 𝑣𝑙

1
8 𝑋𝑙 |+𝑍0⟩ = (3.133)

= ⟨+𝑍0| ∏
(𝑗𝑘)𝑛

𝑒 1
192 𝑣𝑗𝑣𝑘𝑋𝑗𝑋𝑘 ∏

𝑗
𝑒

𝑣𝑗
8 𝑋𝑗 ∏

(𝑙𝑚)𝑛

𝑒 1
192 𝑣𝑙𝑣𝑚𝑋𝑙𝑋𝑚 ∏

𝑙
𝑒 𝑣𝑙

8 𝑋𝑙 |+𝑍0⟩ = (3.134)

= ⟨+𝑍0| ∏
𝑗

(cosh (𝑣𝑗
8 ) 𝟙 + sinh (𝑣𝑗

8 ) 𝑋𝑗) ∏
(𝑗𝑘)𝑛

(cosh ( 1
192𝑣𝑗𝑣𝑘) 𝟙 + sinh ( 1

192𝑣𝑗𝑣𝑘) 𝑋𝑗𝑋𝑘)⋅

⋅ ∏
(𝑙𝑚)𝑛

(cosh ( 1
192𝑣𝑙𝑣𝑚) 𝟙 + sinh ( 1

192𝑣𝑙𝑣𝑚) 𝑋𝑙𝑋𝑚) ∏
𝑙

(cosh (𝑣𝑙
8 ) 𝟙 + sinh (𝑣𝑙

8 ) 𝑋𝑙) |+𝑍0⟩ =

(3.135)

= ⟨+𝑍0| ∏
𝑗

(cosh (𝑣𝑗
8 ) 𝟙 + sinh (𝑣𝑗

8 ) 𝑋𝑗) ∏
(𝑗𝑘)𝑛

(cosh (𝑣𝑗𝑣𝑘
192 ) 𝟙 + sinh (𝑣𝑗𝑣𝑘

192 ) 𝑋𝑗𝑋𝑘)⋅

⋅ ∏
(𝑙𝑚)𝑛

(cosh (𝑣𝑙𝑣𝑚
192 ) 𝟙 + sinh (𝑣𝑙𝑣𝑚

192 ) 𝑋𝑙𝑋𝑚) ∏
𝑙

(cosh (𝑣𝑙
8 ) 𝟙 + sinh (𝑣𝑙

8 ) 𝑋𝑙) |+𝑍0⟩ =

(3.136)

= ⟨+𝑍0| (∏
𝑗

(cosh (𝑣𝑗
8 ) 𝟙 + sinh (𝑣𝑗

8 ) 𝑋𝑗))
2
( ∏

(𝑗𝑘)𝑛

(cosh (𝑣𝑗𝑣𝑘
192 ) 𝟙 + sinh (𝑣𝑗𝑣𝑘

192 ) 𝑋𝑗𝑋𝑘))
2

|+𝑍0⟩

(3.137)

The first product gives

(∏
𝑗

(cosh (𝑣𝑗
8 ) 𝟙 + sinh (𝑣𝑗

8 ) 𝑋𝑗))
2

=

= ∏
𝑗

(cosh2 (𝑣𝑗
8 ) 𝟙 + sinh2 (𝑣𝑗

8 ) 𝑋2
𝑗 + 2 cosh (𝑣𝑗

8 ) sinh (𝑣𝑗
8 ) 𝑋𝑗) = (3.138)

= ∏
𝑗

(𝟙 + 2 sinh (𝑣𝑗
8 ) 𝟙 + sinh (𝑣𝑗

4 ) 𝑋𝑗) (3.139)

The second product gives

( ∏
(𝑗𝑘)𝑛

(cosh (𝑣𝑗𝑣𝑘
192 ) 𝟙 + sinh (𝑣𝑗𝑣𝑘

192 ) 𝑋𝑗𝑋𝑘))
2

=

= ∏
(𝑗𝑘)𝑛

(cosh2 (𝑣𝑗𝑣𝑘
192 ) 𝟙 + sinh2 (𝑣𝑗𝑣𝑘

192 ) 𝟙 + 2 cosh (𝑣𝑗𝑣𝑘
192 ) sinh (𝑣𝑗𝑣𝑘

192 ) 𝑋𝑗𝑋𝑘) =

(3.140)

= ∏
(𝑗𝑘)𝑛

(𝟙 + 2 sinh2 (𝑣𝑗𝑣𝑘
192 ) 𝟙 + sinh (𝑣𝑗𝑣𝑘

96 ) 𝑋𝑗𝑋𝑘) (3.141)

Obviously, the final sum in the first product leads to nothing on its own, so it can be
disregarded except in combination with the second product. The only combination that
works for the final part of the second product on its own is the ’full circle’, which gives

∏
(𝑗𝑘)𝑛;𝑎𝑙𝑙

sinh (𝑣𝑗𝑣𝑘
96 ) = sinh𝑁 (𝑣𝑗𝑣𝑘

96 ) (3.142)

The aforementioned product of the sums within the two products that contain non-
identity operators and results in a non-zero expectation value has to contain an even
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number of 𝑋𝑗 operators for every 𝑗. This means that the 𝑋𝑗 operators from the relevant
part of the first product delimit a ’boundary’ for the possible sequence of 𝑋𝑗𝑋𝑘 factors
from the second product, which refers to a set of {𝑗, 𝑘} that may but are not necessarily
neighboring. Where 𝑠 is a subset of the full set of links between nearest-neighbor lattice
points and 𝑆 is the set of all 𝑠, the boundary 𝜕𝑠 will define the set of lattice points that
are considered exactly an odd number of times. The complement of 𝑠 will be marked as
̄𝑠.

Thus, the sought after result can be written as follows.

𝑁 = ⟨+𝑍| ∏
𝑗

(𝟙 + 2 sinh (𝑣𝑗
8 ) 𝟙 + sinh (𝑣𝑗

4 ) 𝑋𝑗)⋅

⋅ ∏
(𝑗𝑘)𝑛

(𝟙 + 2 sinh2 (𝑣𝑗𝑣𝑘
192 ) 𝟙 + sinh (𝑣𝑗𝑣𝑘

96 ) 𝑋𝑗𝑋𝑘) |+𝑍⟩ = (3.143)

= ⟨+𝑍| 𝟙 ∑
𝑠∈𝑆

∏
(𝑗𝑘)𝑛∉𝑠

(1 + 2 sinh2 (𝑣𝑗𝑣𝑘
192 )) ∏

(𝑗𝑘)𝑛∈𝑠
sinh (𝑣𝑗𝑣𝑘

96 ) 𝑋𝑗𝑋𝑘⋅

⋅ ∏
𝑗∉𝜕𝑠

(1 + 2 sinh (𝑣𝑗
8 )) ∏

𝑗∈𝜕𝑠
sinh (𝑣𝑗

4 ) 𝑋𝑗 |+𝑍⟩ = (3.144)

= ∑
𝑠∈𝑆

∏
(𝑗𝑘)𝑛∈𝑠

(1 + 2 sinh2 (𝑣𝑗𝑣𝑘
192 )) ∏

(𝑗𝑘)𝑛∈𝑠
sinh (𝑣𝑗𝑣𝑘

96 ) ∏
𝑗∉𝜕𝑠

(1 + 2 sinh (𝑣𝑗
8 )) ∏

𝑗∈𝜕𝑠
sinh (𝑣𝑗

4 )

(3.145)

The calculation of the density operator can be performed in the following fashion.

𝜌2 = 𝔼𝑣 [ 1
𝑁 𝑒∑(𝑗𝑘)𝑛

1
192 𝑣𝑗𝑣𝑘𝑋𝑗𝑋𝑘𝑒∑𝑗 𝑣𝑗

1
8 𝑋𝑗 |𝜑0⟩ ⟨𝜑0| 𝑒∑(𝑗𝑘)𝑛

1
192 𝑣𝑗𝑣𝑘𝑋𝑗𝑋𝑘𝑒∑𝑗 𝑣𝑗

1
8 𝑋𝑗] =

(3.146)

= 1
(𝜎

√
2𝜋)𝑛 ∫ 𝑒− 1

2𝜎2 𝑣2
1𝑒− 1

2𝜎2 𝑣2
2 … 𝑒− 1

2𝜎2 𝑣2
𝑛

𝑁 d𝑣1d𝑣2 … d𝑣𝑛⋅

⋅ ∏
(𝑗𝑘)𝑛

𝑒 1
192 𝑣𝑗𝑣𝑘𝑋𝑗𝑋𝑘 ∏

𝑗
𝑒 1

8 𝑣𝑗𝑋𝑗 |+𝑍⟩ ⟨+𝑍| ∏
𝑚

𝑒 1
8 𝑣𝑚𝑋𝑚 ∏

(𝑙𝑚)𝑛

𝑒 1
192 𝑣𝑙𝑣𝑚𝑋𝑙𝑋𝑚 = (3.147)

= 1
(𝜎

√
2𝜋)𝑛 ∫ 𝑒− 1

2𝜎2 𝑣2
1𝑒− 1

2𝜎2 𝑣2
2 … 𝑒− 1

2𝜎2 𝑣2
𝑛

𝑁 d𝑣1d𝑣2 … d𝑣𝑛 (3.148)

∏
(𝑗𝑘)𝑛

(cosh (𝑣𝑗𝑣𝑘
192 ) 𝟙 + sinh (𝑣𝑗𝑣𝑘

192 ) 𝑋𝑗𝑋𝑘) ∏
𝑗

(cosh (𝑣𝑗
8 ) 𝟙 + sinh (𝑣𝑗

8 ) 𝑋𝑗) |+𝑍⟩

⟨+𝑍| ∏
𝑚

(cosh (𝑣𝑚
8 ) 𝟙 + sinh (𝑣𝑚

8 ) 𝑋𝑚) ∏
(𝑙𝑚)𝑛

(cosh (𝑣𝑙𝑣𝑚
192 ) 𝟙 + sinh (𝑣𝑙𝑣𝑚

192 ) 𝑋𝑙𝑋𝑚) =

(3.149)
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= 1
(𝜎

√
2𝜋)𝑛 ∫ 𝑒− 1

2𝜎2 𝑣2
1𝑒− 1

2𝜎2 𝑣2
2 … 𝑒− 1

2𝜎2 𝑣2
𝑛

𝑁 d𝑣1d𝑣2 … d𝑣𝑛⋅

⋅ ∏
(𝑗𝑘)𝑛

(cosh (𝑣𝑗𝑣𝑘
192 ) 𝟙 + sinh (𝑣𝑗𝑣𝑘

192 ) 𝑋𝑗𝑋𝑘) ⊗𝑗 (cosh (𝑣𝑗
8 ) + sinh (𝑣𝑗

8 ) 𝑋𝑗) ∣+𝑍𝑗⟩

⊗𝑚 ⟨+𝑍𝑚| (cosh (𝑣𝑚
8 ) + sinh (𝑣𝑚

8 ) 𝑋𝑚) ∏
(𝑙𝑚)𝑛

(cosh (𝑣𝑙𝑣𝑚
192 ) 𝟙 + sinh (𝑣𝑙𝑣𝑚

192 ) 𝑋𝑙𝑋𝑚) =

(3.150)

= 1
(𝜎

√
2𝜋)𝑛 ∫ 𝑒− 1

2𝜎2 𝑣2
1𝑒− 1

2𝜎2 𝑣2
2 … 𝑒− 1

2𝜎2 𝑣2
𝑛

𝑁 d𝑣1d𝑣2 … d𝑣𝑛⋅

⋅ ∏
(𝑗𝑘)𝑛

(cosh (𝑣𝑗𝑣𝑘
192 ) 𝟙 + sinh (𝑣𝑗𝑣𝑘

192 ) 𝑋𝑗𝑋𝑘) ⊗𝑗 (cosh (𝑣𝑗
8 ) ∣+𝑍𝑗⟩ + sinh (𝑣𝑗

8 ) ∣−𝑍𝑗⟩)⋅

⋅ ⊗𝑚(⟨+𝑍𝑚| cosh (𝑣𝑚
8 ) + ⟨−𝑍𝑚| sinh (𝑣𝑚

8 )) ∏
(𝑙𝑚)𝑛

(cosh (𝑣𝑙𝑣𝑚
192 ) 𝟙 + sinh (𝑣𝑙𝑣𝑚

192 ) 𝑋𝑙𝑋𝑚)

(3.151)

A more detailed evaluation of the form of the density operator can be performed in
conjunction with the calculation of, e.g., the expectation value of a specific local operator
defined in this system, and is not included in this work.

Using the density operator, it is now possible to calculate expectation values for some
interesting observables. As a quick demonstrative example, for the wave function of the
system equal to |+𝑍⟩ (and in the zeroth order of perturbation), it is straightforward to
show that:

⟨𝑍𝑗⟩ = ∫ d𝑝 (𝑣) Tr (𝑍𝑗𝜌) = (3.152)

= 1
(𝜎

√
2𝜋)𝑛 ∫

𝑣1

… ∫
𝑣𝑛

d𝑣1 … d𝑣𝑛𝑒− 1
2𝜎2 𝑣2

1 … 𝑒− 1
2𝜎2 𝑣𝑛 Tr(𝑍𝑗 |𝜑0⟩ ⟨𝜑0|) = (3.153)

=1. (3.154)

Similarly, for |−𝑍⟩ it is ⟨𝑍𝑗⟩ = −1. On the other hand, for ⟨𝑋𝑗⟩ in |+𝑍⟩, it holds that
⟨𝑋𝑗⟩ = 0.

In the first order for |+𝑍⟩, |𝜑1𝑛⟩ = ⊗𝑗
cosh( 1

8 𝑣𝑗)∣+𝑍𝑗⟩+sinh( 1
8 𝑣𝑗)∣−𝑍𝑗⟩

(cosh( 1
8 𝑣𝑗)2+(sinh( 1

8 𝑣𝑗))2)
1
2

, so these expectation
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values give the following results.

⟨𝑍𝑗⟩ = ∫ d𝑝(𝑣) Tr (𝑍𝑗𝜌) = (3.155)

= 1
(𝜎

√
2𝜋)𝑛 ∏

𝑙
∫

𝑣𝑙

d𝑣𝑙𝑒− 1
2𝜎2 𝑣2

𝑙 ∑
𝑘

⟨𝜉𝑘| 𝑍𝑗 ⊗𝑙 (∫
𝑣

d𝑣𝑒− 1
2𝜎2 𝑣2

𝜎
√

2𝜋
cosh2 (𝑣

8)
cosh (𝑣

8) |+𝑍𝑙⟩ ⟨+𝑍𝑙| +

+ ∫
𝑣

d𝑣𝑒− 1
2𝜎2 𝑣2

𝜎
√

2𝜋
sinh2 (𝑣

8)
cosh (𝑣

8) |−𝑍𝑙⟩ ⟨−𝑍𝑙|) |𝜉𝑘⟩ ≡ (3.156)

≡ 1
(𝜎

√
2𝜋)𝑛 ∏

𝑙
∫

𝑣𝑙

d𝑣𝑙𝑒− 1
2𝜎2 𝑣2

𝑙 ∑
𝑘

⟨𝜉𝑘| 𝑍𝑗 ⊗𝑙 (𝛼 |+𝑍𝑙⟩ ⟨+𝑍𝑙| + 𝛽 |−𝑍𝑙⟩ ⟨−𝑍𝑙|) |𝜉𝑘⟩ =

(3.157)

= 1
(𝜎

√
2𝜋)𝑛 ∏

𝑙
∫

𝑣𝑙

d𝑣𝑙𝑒− 1
2𝜎2 𝑣2

𝑙 ⋅

⋅ ∑
𝑘

(⟨𝜉𝑘| 𝑍𝑗 ⊗𝑙 𝛼 |+𝑍𝑙⟩ ⟨+𝑍𝑙 | 𝜉𝑘⟩ + ⟨𝜉𝑘| 𝑍𝑗 ⊗𝑙 𝛽 |−𝑍𝑙⟩ ⟨−𝑍𝑙 | 𝜉𝑘⟩) = (3.158)

= 1
(𝜎

√
2𝜋)𝑛 ∏

𝑙
∫

𝑣𝑙

d𝑣𝑙𝑒− 1
2𝜎2 𝑣2

𝑙 (⟨+𝑍| 𝑍𝑗 ⊗𝑙 𝛼 |+𝑍𝑙⟩ + ⟨−𝑍| 𝑍𝑗 ⊗𝑙 𝛽 |−𝑍𝑙⟩) = (3.159)

= 1
(𝜎

√
2𝜋)𝑛 ∏

𝑙
∫

𝑣𝑙

d𝑣𝑙𝑒− 1
2𝜎2 𝑣2

𝑙 (𝛼 − 𝛽) = (3.160)

= 1
(𝜎

√
2𝜋)𝑛 ∏

𝑙
∫

𝑣𝑙

d𝑣𝑙𝑒− 1
2𝜎2 𝑣2

𝑙 ∏
𝑚

∫
𝑣𝑚

d𝑣𝑚
𝑒− 1

2𝜎 𝑣2
𝑚

𝜎
√

2𝜋
1

cosh (𝑣𝑚
4 ) = (3.161)

= 1
(𝜎

√
2𝜋)2𝑛 ∏

𝑙
∫

𝑣𝑙

d𝑣𝑙𝑒− 1
2𝜎2 𝑣2

𝑙 ∏
𝑚

∫
𝑣𝑚

d𝑣𝑚
𝑒− 1

2𝜎 𝑣2
𝑚

cosh (𝑣𝑚
4 ) , (3.162)

where

𝛼 ≡ ∫ d𝑣𝑒− 1
2𝜎2 𝑣2

𝜎
√

2𝜋
cosh2 (𝑣

8)
cosh (𝑣

8) , 𝛽 ≡ ∫ d𝑣𝑒− 1
2𝜎2 𝑣2

𝜎
√

2𝜋
sinh2 (𝑣

8)
cosh (𝑣

8) . (3.163)

In the first order, it remains that ⟨𝑋𝑗⟩ = 0.

3.2.2 Calculation for a Polarized State
In the ferromagnetic phase, the Hamiltonian of the system is structured as 𝐻 = 𝐻0 +𝑉 ,
where 𝐻0 = − ∑𝑗 𝑣𝑗𝑋𝑗 and 𝑉 = − ∑⟨𝑗𝑘⟩ 𝑍𝑗𝑍𝑘, with the parameter 𝑣𝑗 ∈ ℝ sampled from
a Gaussian distribution centered around zero and ‖𝑉 ‖ ≪ ‖𝐻0‖. The ground state of the
system is

|𝜑0⟩ = ⊗𝑗 ∣sgn (𝑣𝑗)𝑋𝑗⟩ , (3.164)

as the eigenstate for each site depends on the sign of the corresponding parameter in the
Hamiltonian.

To derive the exponentiated wave function in the first order of perturbation, I first
need to calculate several energy equalities:

𝐻0 |𝜑0⟩ = (− ∑
𝑗

𝑣𝑗𝑋𝑗) ⊗𝑘 |sgn(𝑣𝑘)𝑋𝑘⟩ = (3.165)

= (− ∑
𝑗

sgn(𝑣𝑗)𝑣𝑗) |𝜑0⟩ = 𝐸0 |𝜑0⟩ (3.166)
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and

𝐻0𝑍𝑗𝑍𝑘 |𝜑0⟩ = (− ∑
𝑗

𝑣𝑗𝑋𝑗) 𝑍𝑘𝑍𝑙 ⊗𝑚 |sgn(𝑣𝑚)𝑋𝑚⟩ = (3.167)

= ∑
𝑗

(−𝑣𝑗𝑋𝑗𝑍𝑘𝑍𝑙 ⊗𝑚 |sgn(𝑣𝑚)𝑋𝑚⟩) = (3.168)

= ⎛⎜
⎝

− ∑
𝑗≠{𝑘,𝑙}

sgn(𝑣𝑗)𝑣𝑗 + sgn(𝑣𝑘)𝑣𝑘 + sgn(𝑣𝑙)𝑣𝑙⎞⎟
⎠

𝑍𝑘𝑍𝑙 |𝜑0⟩ . (3.169)

Thus, the difference in energies needed to complete the perturbative calculation is
2 sgn(𝑣𝑘)𝑣𝑘 + 2 sgn(𝑣𝑙)𝑣𝑙. It follows that:

|𝜑1⟩ = − 𝟙 − 𝑃0
𝐻0 − 𝐸0

𝑉 |𝜑0⟩ = (3.170)

= 𝟙 − 𝑃0
𝐻0 − 𝐸0

∑
⟨𝑖𝑗⟩

𝑍𝑖𝑍𝑗 |𝜑0⟩ = (3.171)

= ∑
⟨𝑗𝑘⟩

𝑍𝑗𝑍𝑘
(2 sgn(𝑣𝑗)𝑣𝑗 + 2 sgn(𝑣𝑘)𝑣𝑘) |𝜑0⟩ , (3.172)

and I can check if the exponentiated form of the system’s wave function up to the first
order corresponds to the following:

𝑒∑⟨𝑗𝑘⟩
𝑍𝑗𝑍𝑘

(2 sgn(𝑣𝑗)𝑣𝑗+2 sgn(𝑣𝑘)𝑣𝑘) = 𝟙 + ∑
⟨𝑗𝑘⟩

1
(2 sgn(𝑣𝑗)𝑣𝑗 + 2 sgn(𝑣𝑘)𝑣𝑘)𝑍𝑗𝑍𝑘+

+ 1
2 ∑

⟨𝑗𝑘⟩
∑
⟨𝑚𝑛⟩

1
(2 sgn(𝑣𝑗)𝑣𝑗 + 2 sgn(𝑣𝑘)𝑣𝑘) (2 sgn(𝑣𝑚)𝑣𝑚 + 2 sgn(𝑣𝑛)𝑣𝑛)𝑍𝑗𝑍𝑘𝑍𝑚𝑍𝑛 + 𝒪(𝑣3

𝑗 ) =

(3.173)

=𝟙 + ∑
⟨𝑗𝑘⟩

1
(2 sgn(𝑣𝑗)𝑣𝑗 + 2 sgn(𝑣𝑘)𝑣𝑘)𝑍𝑗𝑍𝑘+

+ ∑
⟨𝑗𝑘⟩

1
2

1
(2 sgn(𝑣𝑗)𝑣𝑗 + 2 sgn(𝑣𝑘)𝑣𝑘)2 +

+ 1
2 ∑

(𝑗𝑘𝑙)𝑐

2
(2 sgn(𝑣𝑗)𝑣𝑗 + 2 sgn(𝑣𝑘)𝑣𝑘) (2 sgn(𝑣𝑘)𝑣𝑘 + 2 sgn(𝑣𝑙)𝑣𝑙)

𝑍𝑗𝑍𝑙+

+ 1
2 ∑

(⟨𝑗𝑘⟩,⟨𝑚𝑛⟩)𝑑

2
(2 sgn(𝑣𝑗)𝑣𝑗 + 2 sgn(𝑣𝑘)𝑣𝑘) (2 sgn(𝑣𝑚)𝑣𝑚 + 2 sgn(𝑣𝑛)𝑣𝑛)𝑍𝑗𝑍𝑘𝑍𝑚𝑍𝑛 + 𝒪(𝑣3

𝑗 ) =

(3.174)

=𝟙 + ∑
⟨𝑗𝑘⟩

1
2 (sgn(𝑣𝑗)𝑣𝑗 + sgn(𝑣𝑘)𝑣𝑘)𝑍𝑗𝑍𝑘+

+ ∑
⟨𝑗𝑘⟩

1
8 (sgn(𝑣𝑗)𝑣𝑗 + sgn(𝑣𝑘)𝑣𝑘)2 +

+ ∑
(𝑗𝑘𝑙)𝑐

1
4 (sgn(𝑣𝑗)𝑣𝑗 + sgn(𝑣𝑘)𝑣𝑘) (sgn(𝑣𝑘)𝑣𝑘 + sgn(𝑣𝑙)𝑣𝑙)

𝑍𝑗𝑍𝑙+

+ ∑
(⟨𝑗𝑘⟩,⟨𝑚𝑛⟩)𝑑

1
4 (sgn(𝑣𝑗)𝑣𝑗 + sgn(𝑣𝑘)𝑣𝑘) (sgn(𝑣𝑚)𝑣𝑚 + sgn(𝑣𝑛)𝑣𝑛)𝑍𝑗𝑍𝑘𝑍𝑚𝑍𝑛 + 𝒪(𝑣3

𝑗 ),

(3.175)
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where the indices (⟨𝑗𝑘⟩, ⟨𝑚𝑛⟩)𝑑 and (𝑗𝑘𝑙)𝑐 denote the non-overlapping and clustering
combinations of indices, respectively; all combinations have been counted only once.

In the second order of perturbation, the correction to the base wave function of the
system can be calculated as follows:

|𝜑Δ2⟩ = − ( 𝟙 − 𝑃0
𝐻0 − 𝐸0

)
2

𝑉 𝑃0𝑉 |𝜑0⟩ + 𝟙 − 𝑃0
𝐻0 − 𝐸0

𝑉 𝟙 − 𝑃0
𝐻0 − 𝐸0

𝑉 |𝜑0⟩ = (3.176)

= 𝟙 − 𝑃0
𝐻0 − 𝐸0

∑
⟨𝑚𝑛⟩

𝑍𝑚𝑍𝑛 ∑
⟨𝑗𝑘⟩

𝑍𝑗𝑍𝑘
2 (sgn(𝑣𝑗)𝑣𝑗 + sgn(𝑣𝑘)𝑣𝑘) |𝜑0⟩ . (3.177)

If ⟨𝑚𝑛⟩ = ⟨𝑗𝑘⟩, the total of that summand equals zero, as the Pauli operators give 𝟙.
This implies the following.

|𝜑Δ2⟩ = ∑
⟨𝑗𝑘⟩≠⟨𝑚𝑛⟩

𝟙
𝐻0 − 𝐸0

1
2 (sgn(𝑣𝑗)𝑣𝑗 + sgn(𝑣𝑘)𝑣𝑘)𝑍𝑚𝑍𝑛𝑍𝑗𝑍𝑘 |𝜑0⟩ = (3.178)

= ∑
(⟨𝑗𝑘⟩≠⟨𝑚𝑛⟩)𝑑

𝟙
2 (sgn(𝑣𝑚)𝑣𝑚 + sgn(𝑣𝑛)𝑣𝑛)

2
2 (sgn(𝑣𝑗)𝑣𝑗 + sgn(𝑣𝑘)𝑣𝑘)𝑍𝑚𝑍𝑛𝑍𝑗𝑍𝑘 |𝜑0⟩ +

+ ∑
(𝑗𝑘𝑙)𝑐

1
2 (sgn(𝑣𝑗)𝑣𝑗 + sgn(𝑣𝑙)𝑣𝑙)

𝟙
2 (sgn(𝑣𝑗)𝑣𝑗 + sgn(𝑣𝑘)𝑣𝑘)𝑍𝑗𝑍𝑙 |𝜑0⟩ + (3.179)

+ ∑
(𝑗𝑘𝑙)𝑐

1
2 (sgn(𝑣𝑗)𝑣𝑗 + sgn(𝑣𝑙)𝑣𝑙)

𝟙
2 (sgn(𝑣𝑘)𝑣𝑘 + sgn(𝑣𝑙)𝑣𝑙)

𝑍𝑗𝑍𝑙 |𝜑0⟩ = (3.180)

= ∑
(⟨𝑗𝑘⟩≠⟨𝑚𝑛⟩)𝑑

𝟙
2 (sgn(𝑣𝑚)𝑣𝑚 + sgn(𝑣𝑛)𝑣𝑛)

1
2 (sgn(𝑣𝑗)𝑣𝑗 + sgn(𝑣𝑘)𝑣𝑘)𝑍𝑚𝑍𝑛𝑍𝑗𝑍𝑘 |𝜑0⟩ +

+ ∑
(𝑗𝑘𝑙)𝑐

𝟙 ⋅ (sgn(𝑣𝑗)𝑣𝑗 + 2 sgn(𝑣𝑘)𝑣𝑘 + sgn(𝑣𝑙)𝑣𝑙)
4 (sgn(𝑣𝑗)𝑣𝑗 + sgn(𝑣𝑙)𝑣𝑙) (sgn(𝑣𝑗)𝑣𝑗 + sgn(𝑣𝑘)𝑣𝑘) (sgn(𝑣𝑘)𝑣𝑘 + sgn(𝑣𝑙)𝑣𝑙)

𝑍𝑗𝑍𝑙 |𝜑0⟩

(3.181)

The expressions in (3.179) and (3.180) cannot be fully unified as they are not symmetric.
If I use the following definition:

𝜄𝑗𝑘 ≡ 1
(2 sgn(𝑣𝑗)𝑣𝑗 + 2 sgn(𝑣𝑘)𝑣𝑘), (3.182)

the full second order wave function is:

|𝜑2⟩ = (𝟙+ ∑
⟨𝑗𝑘⟩

𝑍𝑗𝑍𝑘𝜄𝑗𝑘 + ∑
⟨𝑗𝑘⟩≠⟨𝑚𝑛⟩

𝜄𝑗𝑘𝜄𝑚𝑛𝑍𝑗𝑍𝑘𝑍𝑚𝑍𝑛+ (3.183)

+ ∑
(𝑗𝑘𝑙)𝑐

2𝜄𝑗𝑘𝜄𝑘𝑙𝜄𝑗𝑙 ⋅ (sgn(𝑣𝑗)𝑣𝑗 + 2 sgn(𝑣𝑘)𝑣𝑘 + sgn(𝑣𝑙)𝑣𝑙)𝑍𝑗𝑍𝑙) |𝜑0⟩ (3.184)
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If I calculate the trial exponentiated wave function, I can obtain the following:

𝑒∑(𝑗𝑘𝑙)𝑐 𝜈𝜄𝑗𝑘𝜄𝑘𝑙𝑒∑⟨𝑗𝑘⟩ 𝑍𝑗𝑍𝑘𝜄𝑗𝑘 = ⎛⎜
⎝

𝟙 + 𝜈 ∑
(𝑗𝑘𝑙)

𝜄𝑗𝑘𝜄𝑘𝑙⎞⎟
⎠

⋅

⋅ ⎛⎜
⎝

𝟙 + ∑
⟨𝑗𝑘⟩

𝑍𝑗𝑍𝑘𝜄𝑗𝑘 + 1
2 ∑

⟨𝑗𝑘⟩
∑
⟨𝑚𝑛⟩

𝑍𝑗𝑍𝑘𝑍𝑚𝑍𝑛𝜄𝑗𝑘𝜄𝑚𝑛⎞⎟
⎠

+ 𝒪(𝜄3) = (3.185)

=𝟙 + 𝜈 ∑
(𝑗𝑘𝑙)𝑐

𝜄𝑗𝑘𝜄𝑘𝑙 + ∑
⟨𝑗𝑘⟩

𝑍𝑗𝑍𝑘𝜄𝑗𝑘 + 1
2 ∑

⟨𝑗𝑘⟩
𝜄2
𝑗𝑘 + ∑

⟨𝑗𝑘⟩≠⟨𝑚𝑛⟩
𝑍𝑗𝑍𝑘𝑍𝑚𝑍𝑛𝜄𝑗𝑘𝜄𝑚𝑛+

+ ∑
(𝑗𝑘𝑙)𝑐

𝜄𝑗𝑘𝜄𝑘𝑙𝑍𝑗𝑍𝑙 + 𝒪(𝜄3). (3.186)

For 𝜈, this gives:

𝜈 ∑
(𝑗𝑘𝑙)𝑐

𝜄𝑗𝑘𝜄𝑘𝑙 = ∑
(𝑗𝑘𝑙)𝑐

2𝜄𝑗𝑘𝜄𝑘𝑙 (𝜄𝑗𝑙 ⋅ (sgn(𝑣𝑗)𝑣𝑗 + 2 sgn(𝑣𝑘)𝑣𝑘 + sgn(𝑣𝑙)𝑣𝑙) − 1) 𝑍𝑗𝑍𝑙−
1
2 ∑

⟨𝑗𝑘⟩
𝜄2
𝑗𝑘.

(3.187)
If the derived wave function |𝜑2⟩ is normalized using

1
2𝑃0𝑉 ( 𝟙 − 𝑃0

𝐻0 − 𝐸0
)

2
𝑉 |𝜑0⟩ =1

2𝑃0 ∑
⟨𝑚𝑛⟩

∑
⟨𝑗𝑘⟩

𝜄2
𝑗𝑘𝑍𝑗𝑍𝑘𝑍𝑚𝑍𝑛 = (3.188)

=1
2 ∑

⟨𝑗𝑘⟩
𝜄2
𝑗𝑘, (3.189)

it holds that:

𝜈 ∑
(𝑗𝑘𝑙)𝑐

𝜄𝑗𝑘𝜄𝑘𝑙 = ∑
(𝑗𝑘𝑙)𝑐

2𝜄𝑗𝑘𝜄𝑘𝑙 (𝜄𝑗𝑙 ⋅ (sgn(𝑣𝑗)𝑣𝑗 + 2 sgn(𝑣𝑘)𝑣𝑘 + sgn(𝑣𝑙)𝑣𝑙) − 1) 𝑍𝑗𝑍𝑙. (3.190)

This means that the parameter 𝜈 must depend on the components of this exponent, i.e.,

𝜈𝑗𝑘𝑙 = 2 (𝜄𝑗𝑙 ⋅ (sgn(𝑣𝑗)𝑣𝑗 + 2 sgn(𝑣𝑘)𝑣𝑘 + sgn(𝑣𝑙)𝑣𝑙) − 1) 𝑍𝑗𝑍𝑙. (3.191)

The full exponentiated wave function valid up to the second order of perturbation then
has the following form:

𝑒∑(𝑗𝑘𝑙)𝑐 𝜈𝑗𝑘𝑙𝜄𝑗𝑘𝜄𝑘𝑙𝑒∑⟨𝑗𝑘⟩ 𝑍𝑗𝑍𝑘𝜄𝑗𝑘 =
=𝑒∑(𝑗𝑘𝑙)𝑐 2(𝜄𝑗𝑙⋅(sgn(𝑣𝑗)𝑣𝑗+2 sgn(𝑣𝑘)𝑣𝑘+sgn(𝑣𝑙)𝑣𝑙)−1)𝑍𝑗𝑍𝑙𝜄𝑗𝑘𝜄𝑘𝑙𝑒∑⟨𝑗𝑘⟩ 𝑍𝑗𝑍𝑘𝜄𝑗𝑘 . (3.192)

To calculate the density operator for this system in higher orders of perturbation,
I will first approach that for the zeroth order. The wave function in question, |𝜑0⟩ =
⊗𝑗 ∣sgn(𝑣𝑗)𝑋𝑗⟩, is normalized, and leads to the density operator:

𝜌0 = ⊗𝑗 ∣sgn(𝑣𝑗)𝑋𝑗⟩ ⊗𝑘 ⟨sgn(𝑣𝑘)𝑋𝑘| = (3.193)

= ⊗𝑗
1
2 (𝟙 + sgn(𝑣𝑗)𝑋𝑗) . (3.194)

In the first order, however, the calculation already becomes more complicated. To
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normalize |𝜑1⟩ = 𝑒∑⟨𝑗𝑘⟩ 𝜄𝑗𝑘𝑍𝑗𝑍𝑘 |𝜑0⟩, the first step is to find its norm.

𝑁 = ⟨𝜑1 | 𝜑1⟩ = (3.195)
= ⟨𝜑0| 𝑒∑⟨𝑗𝑘⟩ 𝜄𝑗𝑘𝑍𝑗𝑍𝑘𝑒∑⟨𝑗𝑘⟩ 𝜄𝑗𝑘𝑍𝑗𝑍𝑘 |𝜑0⟩ = (3.196)

= ⟨𝜑0| ∏
⟨𝑗𝑘⟩

𝑒
1

sgn(𝑣𝑗)𝑣𝑗+sgn(𝑣𝑘)𝑣𝑘
𝑍𝑗𝑍𝑘 |𝜑0⟩ = (3.197)

= ∏
⟨𝑗𝑘⟩

(⊗𝑙 ⟨sgn(𝑣𝑙)𝑋𝑙|) (𝟙 + 2𝜄𝑗𝑘𝑍𝑗𝑍𝑘 + 1
2 (2𝜄𝑗𝑘𝑍𝑗𝑍𝑘)2 + 1

3! (2𝜄𝑗𝑘𝑍𝑗𝑍𝑘)3 + …) ⋅

⋅ (⊗𝑚 |sgn(𝑣𝑚)𝑋𝑚⟩) = (3.198)

= ∏
⟨𝑗𝑘⟩

cosh (2𝜄𝑗𝑘) = ∏
⟨𝑗𝑘⟩

cosh ( 1
sgn(𝑣𝑗)𝑣𝑗 + sgn(𝑣𝑘)𝑣𝑘

) (3.199)

The normalized state can then be calculated. The calculation is laborious and does not
help further elucidate the topic, so it has been omitted from this work.

3.3 Bridging between Variational Solutions using Tensor
Networks

In this section I will show how the calculated exponentiated wave functions can be used
to bridge between two variational solutions for the two robust phases of the system
described in (3.2). Because of the perturbative structure of the system, these equalities
can be used to construct tensors, which allows for an investigation of this system using
the tensor network framework. In addition, I will compare the achieved results with a
standard, perturbative numerical analysis of this system.

Take the transverse-field Ising model (TFIM) defined on a square lattice:

𝐻𝑇 𝐹𝐼𝑀 = −𝜆𝐴 ∑
𝑖

𝑋𝑖 − 𝜆𝐵 ∑
⟨𝑖𝑗⟩

𝑍𝑖𝑍𝑗, (3.200)

where 𝑋𝑖 and 𝑍𝑖 are 𝑋 and 𝑍 Pauli operators, respectively, acting on the site 𝑖. This
model has a phase transition between a polarized phase and a symmetry-broken phase,
and the ground state of 𝐻𝐵 = −𝜆𝐴 ∑⟨𝑖𝑗⟩ 𝑍𝑖𝑍𝑗 is doubly degenerate. The method I will
describe and build upon in this section is presented by Vanderstraeten et al., in their
article titled Bridging Perturbative Expansions with Tensor Networks [65]. The authors
choose to address the problem of interpolating between the two known ground states at
either ends, |𝜓𝐴⟩ = |+𝑋⟩ at 𝜆𝐵 = 0 and |𝜓𝐵⟩ = |±𝑍⟩ at 𝜆𝐴 = 0 by building a tensor
network state based on the perturbative expansion around each of those two points.

The perturbative expansion for each of the constituents of the Hamiltonian can be
described in an exponential form. The one corresponding to the ferromagnetic state,
where 𝜆𝐴 is suppressed, is calculated for the chief Hamiltonian 𝐻𝐵 and from the state
|𝜓𝐵⟩. In the first order, 𝐸𝐵 = ⟨𝜓𝐵 | 𝑋𝑖 | 𝜓𝐵⟩ and the system’s wave function can be
written as:

|𝜓⟩ = (𝟙 + 𝜆𝐴
8𝜆𝐵

∑
𝑖

𝑋𝑖) |𝜓𝐵⟩ , (3.201)
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which I have shown in Section 3.1. This equation can then be exponentiated, leading to:

|𝜑⟩ = exp ( 𝜆𝐴
8𝜆𝐵

∑
𝑖

𝑋𝑖) |𝜓𝐵⟩ = (3.202)

= ⎛⎜
⎝

𝟙 + 𝜆𝐴
8𝜆𝐵

∑
𝑖

𝑋𝑖 + 𝜆2
𝐴

64𝜆2
𝐵

∑
(𝑖𝑗)

𝑋𝑖𝑋𝑗 + 𝒪(𝜆3
𝐴)⎞⎟

⎠
|𝜓𝐵⟩ , (3.203)

where ∑(𝑖𝑗) denotes the sum over all pairs of sites for which 𝑖 ≠ 𝑗. This expression
doesn’t only reproduce the first order of perturbation, but it also contains a summand
from the next higher order. In the second order, the perturbative wave function has the
following form:

|𝜓⟩ = ⎛⎜
⎝

𝟙 + 𝜆𝐴
8𝜆𝐵

∑
𝑖

𝑋𝑖 + 𝜆2
𝐴

64𝜆2
𝐵

∑
(𝑖𝑗)𝑑

𝑋𝑖𝑋𝑗 + 𝜆2
𝐴

48𝜆2
𝐵

∑
(𝑖𝑗)𝑛

𝑋𝑖𝑋𝑗⎞⎟
⎠

|𝜓𝐵⟩ , (3.204)

where ∑(𝑖𝑗)𝑛
denotes a sum over all nearest neighbor pairs of sites, whereas ∑(𝑖𝑗)𝑑

denotes a sum over all non-neighboring (i.e., distant) ones. The exponentiated version
of this state equals:

|𝜑⟩ = exp ⎛⎜
⎝

𝜆2
𝐴

192𝜆2
𝐵

∑
(𝑖𝑗)𝑛

𝑋𝑖𝑋𝑗⎞⎟
⎠

exp ( 𝜆𝐴
8𝜆𝐵

∑
𝑖

𝑋𝑖) |𝜓𝐵⟩ , (3.205)

where the second order of the perturbative wave function is replicated, but the result
also contains summands of higher orders. In a one-dimensional system, the use of this
exponentiation technique results in the following wave function:

|𝜑⟩ = exp ⎛⎜
⎝

𝜆2
𝐴

16𝜆2
𝐵

∑
(𝑖𝑗)𝑑

𝑋𝑖𝑋𝑗⎞⎟
⎠

exp ( 𝜆𝐴
4𝜆𝐵

∑
𝑖

𝑋𝑖) |𝜓𝐵⟩ . (3.206)

In the case where 𝜆𝐵 = 0 and the chief Hamiltonian is 𝐻𝐴, the first order of pertur-
bation brings forth this ground state wave function:

|𝜓⟩ = ⎛⎜
⎝

𝟙 + 𝜆𝐵
4𝜆𝐴

∑
⟨𝑖𝑗⟩

𝑍𝑖𝑍𝑗⎞⎟
⎠

|𝜓𝐴⟩ , (3.207)

which upon exponentiation becomes:

|𝜑⟩ = exp ⎛⎜
⎝

∑
⟨𝑖𝑗⟩

𝜆𝐵
4𝜆𝐴

𝑍𝑖𝑍𝑗⎞⎟
⎠

|𝜓𝐴⟩ ∼ (3.208)

∼ ⎛⎜
⎝

𝟙 + 𝜆𝐵
4𝜆𝐴

∑
⟨𝑖𝑗⟩

𝑍𝑖𝑍𝑗 + 𝜆2
𝐵

16𝜆2
𝐴

∑
(𝑖𝑗𝑘)𝑠

𝑍𝑖𝑍2
𝑗 𝑍𝑙 + 𝜆2

𝐵
16𝜆2

𝐴
∑

(⟨𝑖𝑗⟩,⟨𝑘𝑙⟩)𝑑

𝑍𝑖𝑍𝑗𝑍𝑘𝑍𝑙 + 𝒪 (𝜆3
𝐵)⎞⎟

⎠
|𝜓𝐴⟩ ,

(3.209)

where (⟨𝑖𝑗⟩, ⟨𝑘𝑙⟩)𝑑 are pairs of nearest-neighbor pairs that do not possess overlapping
indices and (𝑖𝑗𝑘)𝑠 represents three-site clusters of indices, where 𝑗 is the index of the
central site of the cluster. In a similar vein, the second order wave function is:

|𝜓⟩ = ⎛⎜
⎝

𝟙 + 𝜆𝐵
4𝜆𝐴

∑
⟨𝑖𝑗⟩

𝑍𝑖𝑍𝑗 + 𝜆2
𝐵

16𝜆2
𝐴

∑
(⟨𝑖𝑗⟩,⟨𝑘𝑙⟩)𝑑

𝑍𝑖𝑍𝑗𝑍𝑘𝑍𝑙 + 𝜆2
𝐵

8𝜆2
𝐴

∑
(𝑖𝑗𝑘)𝑠

𝑍𝑖𝑍2
𝑗 𝑍𝑘

⎞⎟
⎠

|𝜓𝐴⟩ .

(3.210)
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Its exponentiated form is the following:

|𝜑⟩ = exp ⎛⎜
⎝

𝜆2
𝐵

16𝜆2
𝐴

∑
(𝑖𝑗𝑘)𝑠

𝑍𝑖𝑍2
𝑗 𝑍𝑘

⎞⎟
⎠

exp ⎛⎜
⎝

𝜆𝐵
4𝜆𝐴

∑
⟨𝑖𝑗⟩

𝑍𝑖𝑍𝑗⎞⎟
⎠

|𝜓𝐴⟩ , (3.211)

which clearly shows the advantages of the exponentiated forms of the wave functions
obtained by perturbation theory calculations. In a one-dimensional system, the resultant
exponentiated wave function maintains the same form.

Construction of a Tensor Network Depiction
For the construction of tensor network equivalents for these perturbative calculations,
it is crucial to clearly define the use of tensor network operators in the construction
of physical wave functions. The elementary building block of this system is a tensor
operator with four virtual indices (labeled with 𝑎, 𝑏, 𝑐, and 𝑑) and two physical ones
to represent action on one of the spins in the system (shown in bold):

𝑐 𝑎

𝑏

𝑑

. (3.212)

The bond dimension of this tensor network operator is the dimension of its virtual legs,
𝐷, and its virtual indices can be contracted with the virtual indices of its neighboring
tensors of the lattice that corresponds to the full system, giving rise to a network that
can describe it.

The ’zeroth’ dimension of the bond dimension of the virtual indices can be assigned
so that it equals the perturbative sum, 𝟙 + 𝛽𝑄. Then, the tensor network operator
(TNO) can be expanded in the powers of 𝛽:

𝑂(𝑇 ) = 𝟙 + 𝛽 ∑
𝑖

𝑄𝑖 + 𝛽2 ∑
𝑖≠𝑗

𝑄𝑖𝑄𝑗 + 𝒪(𝛽3). (3.213)

Two-site clusters of 𝑄𝑖 can be constructed if a new definition is made, such that the
non-zero tensor coefficients are given by

0 1

0

0

≡ 𝛾1𝑄, 0 0

1

0

≡ 𝛾1𝑄,

1 0

0

0

≡ 𝛾1𝑄, 0 0

0

1

≡ 𝛾1𝑄.

(3.214)
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Then, from a single tensor being assigned the expression 𝟙 + 𝛾1𝑄𝑖𝑄𝑗, where 𝑖 and 𝑗
denote neighboring tensor sites, it follows that

𝑂(𝑇 ) = 𝟙 + 𝛾1 ∑
⟨𝑖𝑗⟩

𝑄𝑖𝑄𝑗 + 𝛾2
1 ∑

(⟨𝑖𝑗⟩,⟨𝑘𝑙⟩)𝑑

𝑄𝑖𝑄𝑗𝑄𝑘𝑄𝑙 + 𝒪(𝛾3
1). (3.215)

Three-site (and larger) clusters can be defined in a similar manner, and if more levels in
the virtual indices are opened, the clusters of different operators can also be included in
the TNO build. The index (𝑖𝑗𝑘)𝑙 here denotes all three-site clusters found on a line, and
(𝑖𝑗𝑘)𝑐 those that comprise a corner. One tensor cluster can be assigned an expression
that encompasses the contracting tensor combinations that can create three-site clusters:

𝟙 + 𝛾1𝛾2𝛾1𝑄𝑖𝑄𝑗𝑄𝑘 + 𝛾1𝛾3𝛾1𝑄𝜄𝑄𝜃𝑄𝜅, (3.216)

where sites 𝑖, 𝑗, and 𝑘 form a grouping in a line, and sites 𝜄, 𝜃, and 𝜅 form a grouping
with a corner. Then, the tensor can be expanded as:

𝑂(𝑇 ) = 𝟙 + 𝛾2
1𝛾2 ∑

⟨𝑖𝑗𝑘⟩𝑙

𝑄𝑖𝑄𝑗𝑄𝑘 + 𝛾2
1𝛾3 ∑

⟨𝜄𝜃𝜅⟩𝑐

𝑄𝜄𝑄𝜃𝑄𝜅, (3.217)

where three neighboring sites that form a line are denoted by ⟨𝑖𝑗𝑘⟩𝑙 and three neighboring
sites that form a corner by ⟨𝜄𝜃𝜅⟩𝑐. A line here is defined as depicted in Figure 3.1 for
the cluster (𝑚𝑛𝑜) and a corner cluster corresponds to the depictions of (𝑠𝑘𝑙) and (𝑝𝑟𝑞)
within the same figure.

For example, the perturbative expansion of the TFIM can be built using TNOs in
the following manner. Let 𝐷 = 3 and define the single and two-site TNO as above.
Then, around the ferromagnetic state of the model, the TNO is expanded as follows:

𝑂(𝑇 ) = 𝟙 + 𝛽 ∑
𝑖

𝑋𝑖 + 𝛽2 ∑
(𝑖𝑗)

𝑋𝑖𝑋𝑗 + 𝛾2
1 ∑

(𝑖𝑗)𝑛

𝑋𝑖𝑋𝑗 + 𝒪(𝛽3) + 𝛾4
1 . (3.218)

If the parameters are chosen so that this result corresponds to the perturbative solution,

𝛽 = 𝜆0
8𝜆1

, 𝛾1 = √ 𝜆2
0

192𝜆2
1
. (3.219)

Higher orders of the perturbative expansion can be represented by the use of other 𝛾
parameters that create larger clusters of 𝑋 operators.

Around the polarized state, the ’second’ level in the bond dimension of the virtual
indices is used to assign the 𝛿𝜄 parameter TNOs. Then, it holds that

𝑂(𝑇 ) =𝟙 + 𝛿2
1 ∑

(𝑖𝑗)𝑛

𝑍𝑖𝑍𝑗 + 𝛿4
1 ∑

(⟨𝑖𝑗⟩,⟨𝑘𝑙⟩)𝑑

𝑍𝑖𝑍𝑗𝑍𝑘𝑍𝑙 + 𝛿2
1𝛿2 ∑

(𝑖𝑗𝑘)𝑐

𝑍𝑖𝑍𝑘 + 𝛿2
1𝛿3 ∑

(𝑖𝑗𝑘)𝑙

𝑍𝑖𝑍𝑘+

+ 𝒪(𝛿6
1) + 𝒪 (𝛿2

1𝛿2
2 + 𝛿2

1𝛿2
3) . (3.220)

The perturbative wave function can thus be recreated if the parameter values are chosen
as:

𝛿1 = √ 𝜆1
4𝜆0

, 𝛿2 = 𝛿3 = 𝜆1
2𝜆0

. (3.221)

Note that the mean-field result is obtained by using only 𝛼 as the parameter, the
first order by keeping {𝛼, 𝛽, 𝛿1}, and the second by keeping {𝛼, 𝛽, 𝛿1, 𝛾1, 𝛿2 = 𝛿3}.
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When the TFIM defined on a square lattice is described by a tensor network in its
orders of perturbation, by using tensors with 𝐷 = 2, the perturbative wave function can
be reproduced. Because of the extensivity of the network formulation, the TNO also
creates a summand with disconnected pairs of 𝑍𝑖𝑍𝑗 clusters in the second order. The
first and second order tensor networks can both be described for 𝐷 = 2, but if they are
to be implemented together, 𝐷 = 3 can be chosen. Then, the ansatz wave function can
be created by using five variational parameters: (𝛽0, 𝛽1) for the first order, (𝛾0, 𝛾1) for
the second order, and 𝛼 for the |𝜓𝛼⟩ reference state.

Then, the energy of the system can be computationally minimized and the optimal
values for the used parameters can be obtained as a function of 𝜆𝐴/𝜆𝐵. In [65], the
authors report that in the first order, a critical transition is found at 𝜆𝐴/𝜆𝐵 ≈ 3.35,
and in the second order at 𝜆𝐴/𝜆𝐵 = 3.1, which is fairly close to the purely perturbative
result (using Monte Carlo simulations), at 𝜆𝐴/𝜆𝐵 = 3.04438(2).

If a particular phase of a quantum many-body system can be accurately analytically
described by a perturbative expansion, the employment of this bridging method would
vastly aid the numerical investigation of the phase transition between the starting phase
and its neighboring one — given that a wave function can be found that can act as a
parametrized problem setter, resulting in one of the phases in one of its extremes, and
the other in the other one. Thus, by considering a system for which I have already found
an analytical solution for two phases born of varying the impact of a parameter, and
creating a tensor network bridge for the wave functions that describe them, I am in the
position to efficiently variationally calculate the exact behavior of the system close to
the transition point — but also efficiently find the transition point by using a virtual
parameter.

To analyze the applicability of the exponentiation to different types of systems, I
examined a system with the following Hamiltonian:

𝐻 = 𝐻𝑇 𝐹𝐼𝑀 + 𝜈𝑍𝑗, (3.222)

where 𝜈 are variables of a Gaussian distribution with a mean at 0, starting with a mere
one-dimensional chain of particles.

3.3.1 Perturbation Theory Applied to Single Impurity Models

Using exponentiated perturbation theory, an efficient ansatz for many-body localized
systems can be constructed. Notably, a single impurity model can be solved in an
analytical fashion, producing intuitively solid results.

Let the examined Hamiltonian be of the form 𝐻 = 𝐻0+𝐻1, where 𝐻0 = − ∑𝑁
𝑗=1 𝑥𝑗𝑋𝑗

and 𝐻1 = − ∑⟨𝑗,𝑘⟩ 𝑍𝑗𝑍𝑘. In this system, the variables 𝑥𝑗 are randomly chosen from a
Gaussian distribution. The wave function associated with this system can be calculated
perturbatively, as:

|Ω⟩ = |Ω1⟩ − 𝟙 − 𝑃1
𝐻1 − 𝐸1

𝑉 |Ω1⟩ + … , (3.223)

where |Ω1⟩ is the wave function of the 𝐻1 Hamiltonian. Assume that the state of the
system can be described as |Ω⟩ = 𝑒𝜅 ∑𝑗 𝑥𝑗𝑋𝑗 |Ω1⟩ in the first order of perturbation. Then,

123 Ivana Kurečić



3.3. Bridging between Variational … Chapter 3. Creating a Tensor Bridge for …

it follows that:

𝜌 = 𝔼𝑥 (|Ω⟩ ⟨Ω|) = (3.224)

= 1
(𝛾

√
2𝜋)𝑁 ∫

𝑁
∏
𝑗=1

𝑒= 𝑥2
𝑗

2𝛾2 𝑒𝜅 ∑𝑁
𝑗=1 𝑥𝑗𝑋𝑗 |Ω1⟩ ⟨Ω1| 𝑒𝜅 ∑𝑁

𝑘=1 𝑥𝑘𝑋𝑘d𝑥1d𝑥2 … d𝑥𝑁 ∼ (3.225)

∼ 1
(𝛾

√
2𝜋)𝑁 ∫ 𝑒− ‖𝑥‖2

2𝛾2 (𝑒𝜅 ∑𝑁
𝑗=1 𝑥𝑗𝑋𝑗) ⊗ (𝑒𝜅 ∑𝑁

𝑘=1 𝑥𝑘𝑋𝑘)
𝑇

|Ω1⟩ |Ω1⟩ d𝑥1d𝑥2 … d𝑥𝑁 =

(3.226)

= 1
(𝛾

√
2𝜋)𝑁 ∫ 𝑒− ‖𝑥‖2

2𝛾2 (𝑒𝜅 ∑𝑁
𝑗=1 𝑥𝑗(𝑋𝑗⊗𝟙+𝟙⊗𝑋𝑗)) |Ω1⟩ |Ω1⟩ d𝑥1d𝑥2 … d𝑥𝑁 , (3.227)

by using the Choi–Jamiołkowski isomorphism. The integral of this type can be resolved
to a simpler form using the operator Hubbard–Stratonovich transformation.

∫ 𝑒− 𝑥2
2𝛾2 +𝜆𝑥d𝑥 !=𝑆𝑒𝜆2 𝛾2

2 (3.228)

− 𝑥2

2𝛾2 + 𝜆𝑥 = − ( 𝑥√
2𝛾

+ 𝛼)
2

+ const. (3.229)

𝜆𝑥 = − 𝛼2 − 2𝛼𝑥√
2𝛾

+ const. (3.230)

𝛼 = − 𝜆√
2

𝛾 (3.231)

I.e., const. = 𝜆2√
2𝛾2. In this case, the linear correction in the exponential function to be

integrated is an operator: 𝑥𝜇 (𝑋𝑗 ⊗ 𝟙 + 𝟙 ⊗ 𝑋𝑗) ≡ 𝑥𝜆. Thus,

∫ 𝑒− 𝑥2
2𝛾2 + 𝑥𝜆 =

√
2𝜋𝛾𝑒 𝛾2

2 𝜇2(𝑋𝑗⊗𝟙+𝟙⊗𝑋𝑗)2
. (3.232)

Then, the exponential function can be written as:

𝑒𝛾2𝜇2 ∑𝑁
𝑗=1 𝑋𝑗⊗𝑋𝑗 = (𝟙 + 𝛾2𝜇2

𝑁
∑
𝑗=1

𝑋𝑗 ⊗ 𝑋𝑗 + …) . (3.233)

Thus,

|𝜌⟩ = |↑↑ … ↑⟩ |↑↑ … ↑⟩ + 𝛾2𝜇2 ∣↑↑ … ↑↓𝑗↑ … ↑⟩ ∣↑↑ … ↑↓𝑗↑ … ↑⟩ + … . (3.234)

The case in which ‖𝐻0‖ ≪ ‖𝐻1‖ can be addressed using the same method, albeit
through a more complicated calculation.

3.3.2 Tensor Construction
In this section I will demonstrate how the derived exponentiated wave functions can
be used to build tensors — and then tensor networks — which allow for a speedy and
reliable framework to analyze a many-body system, both analytically and numerically.

The derived wave function that unifies both the variational solutions for a two-phase
quantum many-body system can be represented using tensor networks, as a low-depth
quantum circuit, which then provides reliable means for an effective calculation of the
expectation values for both these phases. From the linked-cluster theorem [66], it can
be deduced that, in the tensor network formalism, the increasing orders of perturbative

Ivana Kurečić 124



Chapter 3. Creating a Tensor Bridge for … 3.3. Bridging between Variational …

solutions can be represented using clusters of local operators of increasing size. The
constituent building blocks of these clusters are local operators that act on physical
spins, such that 𝑇𝑎,𝑏,𝑐,𝑑 corresponds to the visual representation:

𝑐 𝑎

𝑏

𝑑

, (3.235)

and the non-named tensor legs stand for the action of tensor onto a physical spin. As
an example, say that I define:

0 0

0

0

≡ 𝟙 + 𝛼𝑄, (3.236)

where 𝛼 ≪ 1, so that there exists a tensor network operator that can be expanded in
powers of 𝛼:

𝑀(𝑇 ) = 𝟙 + 𝛼 ∑
𝑗

𝑄𝑖 + 𝛼2 ∑
𝑗≠𝑘

𝑄𝑗𝑄𝑘 + 𝒪 (𝛼3) , (3.237)

where 𝑄𝑗 are the clusters of local operators of the tensor representation. The next step
in the cluster construction is the definition of tensors that would allow operations with
products of two 𝑄𝑗-s:

1 0

0

0

≡ 𝛾1𝑄, 0 0

0

1

≡ 𝛾1𝑄

0 1

0

0

≡ 𝛾1𝑄, 0 0

1

0

≡ 𝛾1𝑄.

(3.238)

Obviously, these four tensor forms correspond to one another under rotation. It is then
evident that the corresponding tensor network operator expansion has the following
form:

𝑀(𝑇 ) = 𝟙 + 𝛾1 ∑
⟨𝑗𝑘⟩

𝑄𝑗𝑄𝑘 + 𝛾2
1 ∑

(⟨𝑗𝑘⟩,⟨𝑚𝑙⟩)𝑑

𝑄𝑗𝑄𝑘𝑄𝑙𝑄𝑚 + 𝒪 (𝛾3
1) , (3.239)

where ⟨𝑗𝑘⟩ stand for nearest-neighbor pairs of sites and (⟨𝑗𝑘⟩, ⟨𝑙𝑚⟩)𝑑 denote such pairs
that do not have common elements. Then, to go to further relevant orders of the tensor
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network operators, it is necessary to construct tensor clusters that connect three sites.
Then, by defining rotationally equivalent:

1 0

0

1

≡ 𝛾2𝑄̃, 1 1

0

0

≡ 𝛾3𝑄̃, (3.240)

where these ’middle’ cluster tensors correspond to a different operator, 𝑄̃, it is possible
to construct the following expansion for the tensor network operator:

𝑀(𝑇 ) = 𝟙 + 𝛾2
1𝛾2 ∑

(𝑗𝑘𝑙)𝑙

𝑄𝑗 ̃𝑄𝑘𝑄𝑙 + 𝛾2
1𝛾3 ∑

(𝑗𝑘𝑙)𝑐

𝑄𝑗 ̃𝑄𝑘𝑄𝑙 + 𝒪 (𝛾2
1𝛾2

2) + 𝒪 (𝛾2
1𝛾2

3) , (3.241)

where (𝑗𝑘𝑙)𝑙 show linear three-site clusters, and (𝑗𝑘𝑙)𝑐 those that are connected with a
bend, or corner. In a similar manner it is possible to create ever-larger clusters that
correspond to higher orders of magnitude for the relevant tensor network operator.

In a system described by the transverse-field Ising model on a square lattice, the
construction of these operators proceeds as follows. The usable wave function associated
to this state is one that interpolates between the wave functions describing the ground
state for each of the relevant phases — |+𝑋⟩ for 𝜆1 = 0 and |+𝑍⟩ for 𝜆0 = 0, as one of
the symmetry-broken ground states,

|𝜓𝛼⟩ = ∏
𝑗

(𝟙 + 𝛼𝑍𝑗) |+𝑋⟩ . (3.242)

The wave function that corresponds to the perturbative solutions in this system can
then be represented using a PEPS system with a bond dimension of three:

𝑐 𝑎

𝑏

𝑑

, (3.243)

where each virtual leg of the tensor (indicated by the indices 𝑎, 𝑏, 𝑐, and 𝑑) can assume
values in {0, 1, 2}. Then, the tensor clusters have to be constructed such that they
correspond to the tensor network operator of the form:

𝑀(𝑇 ) = 𝟙 + 𝛽 ∑
𝑗

𝑋𝑗 + 𝛽2 ∑
(𝑗𝑘)

𝑋𝑗𝑋𝑘 + 𝛾2
1 ∑

(𝑗𝑘)𝑛

𝑋𝑗𝑋𝑘 + 𝒪 (𝛽3) + 𝒪 (𝛾4
1) , (3.244)

where (𝑗𝑘) denote a pair of indices for which 𝑗 ≠ 𝑘.
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Thus, I can define the necessary tensors that are equivalent under rotation as follows:

0 0

0

0

≡𝟙 + 𝛽𝑋

1 0

0

0

≡ 𝛾1𝑋, 1 0

0

1

≡𝛾2𝑋, 1 1

0

0

≡ 𝛾3𝑋

1 0

1

1

≡ 𝛾4𝑋, 1 1

1

1

≡ 𝛾5𝑋

2 0

0

0

≡ 𝛿1𝑍, 2 0

0

2

≡𝛿2𝟙, 2 2

0

0

≡ 𝛿3𝟙

2 2

0

2

≡ 𝛿4𝑍, 2 2

2

2

≡ 𝛿5𝟙

(3.245)

The parameters 𝛽, 𝛾1, 𝛾2, 𝛾3, 𝛾4, 𝛾5, 𝛿1, 𝛿2, 𝛿3, 𝛿4, 𝛿5 then define this tensor network oper-
ator.

In the ferromagnetic state, |𝜓1⟩, the two-site operator clusters correspond to the
usage of the tensor that contains the 𝛾1 parameter, such that the first two tensors in the
above definition already determine:

𝑀(𝑇 ) = 𝟙 + 𝛽 ∑
𝑗

𝑋𝑗 + 𝛽2 ∑
(𝑗𝑘)

𝑋𝑗𝑋𝑘 + 𝛾2
1 ∑

(𝑗𝑘)𝑛

𝑋𝑗𝑋𝑘 + 𝒪 (𝛽3) + 𝒪 (𝛾4
1) . (3.246)

This expression, of course, holds if:

𝛽 = 𝜆0
8𝜆1

, 𝛾1 = √ 𝜆2
0

192𝜆2
1
, (3.247)

and the higher orders can be constructed in a straightforward manner from the tensors
corresponding to higher order variables 𝛾𝜉. Around the ferromagnetic state, however, it
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is necessary to also include three-site clusters to obtain the following expression:
𝑀(𝑇 ) =𝟙 + 𝛿2

1 ∑
(𝑗𝑘)𝑛

𝑍𝑗𝑍𝑘 + 𝛿4
1 ∑

(⟨𝑗𝑘⟩,⟨𝑙𝑚⟩)𝑑

𝑍𝑗𝑍𝑘𝑍𝑙𝑍𝑚+

+ 𝛿2
1𝛿2 ∑

(𝑗𝑘𝑙)𝑐

𝑍𝑗𝑍𝑙 + 𝛿2
1𝛿3 ∑

(𝑗𝑘𝑙)𝑙

𝑍𝑗𝑍𝑙 + 𝒪 (𝛿6
1) + 𝒪 (𝛿2

1𝛿2
2 + 𝛿2

1𝛿2
3) , (3.248)

where (𝑗𝑘𝑙)𝑐 and (𝑗𝑘𝑙)𝑙 are corner and line clusters, respectively. This equation can then
be reproduced using the appropriate predefined tensors, with the following parameter
values:

𝛿1 = √ 𝜆1
4𝜆0

, 𝛿2 = 𝛿3 = 𝜆1
2𝜆0

. (3.249)

In contrast, the mean-field result for this system can be obtained by only holding onto
the parameter 𝛼 and setting all others to zero.

So, in the transverse-field Ising model, the constructed wave function that bridges
between the polarized and the symmetry-broken phase, |𝜓𝛼⟩, already gives the critical
point of 𝜆0

𝜆1
≡ 4 for the used 𝛼 in the zeroth order, which is close to the numerically

obtained solution For the tensor cluster, I define the following:

1 0

0

0

≡ √ 𝜆1
4𝜆0

𝑍

1 0

0

1

≡ 𝜆1
2𝜆0

𝟙, 1 1

0

0

≡ 𝜆1
2𝜆0

𝟙,

(3.250)

which allows me to construct clusters which correspond to the first-order and second-
order perturbative expansions of the used wave function. This PEPS network then has
a bond dimension of two. Then, these tensor network clusters can be implemented
in a single tensor network, with a bond dimension of three. This allows for the used
perturbative coefficients to be used as variational parameters, where (𝛽0, 𝛽1) correspond
to the first-order solution, and (𝛾0, 𝛾1) show that of the second order:

0 0

0

0

≡ 𝟙 + 𝛽0𝑋, 2 0

0

0

≡ 𝛽1𝑍

1 0

0

0

≡ 𝛾0𝑋, 2 0

0

2

≡𝛾1𝟙, 2 2

0

0

≡ 𝛾1𝟙

(3.251)

By using the tensor network constructed here, the authors [65] obtain a critical transition
for 𝜆0

𝜆1
= 3.35 for the first order solution, and 𝜆0

𝜆1
= 3.1 for the second-order solution.
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3.4 Combining Tensor Bridging with the Derived Pertur-
bative Solution

To now combine the tensor network bridging tactic with the derived perturbative solu-
tions for many-body systems, the procedure shall be as follows:

1. Construct the tensors to be used for the tensor network clusters up to the 𝑘-th
order.

2. Simplify the analytical integral forms for the perturbative calculations in each
identifiable phase of the many-body system.

3. Build an appropriately formulated joint wave function.

4. Numerically explore the system using variational tensor network methods and the
built joint wave function.

From the perturbation calculation for the disordered system it can be seen that,
to the lowest order, the tensor coefficients have to change in comparison to the tensor
coefficients described above, as follows. The 𝛽 coefficient is now dependent on the random
value which corresponds to the site of the tensor:

𝛽𝑗 = 𝑣𝑗𝜆0
8𝜆1

, (3.252)

and the same thing occurs to 𝛾1:

𝛾1;𝑗 = 𝑣𝑗𝜆0√
192𝜆1

. (3.253)

The evaluation is more complicated for the 𝛿 coefficient, where the rotational sym-
metry of the tensor described in (3.245) gets broken. The multiplicative factor for
the ∑(𝑗𝑘)𝑛

𝑍𝑗𝑍𝑘 term of the tensor network operator can be read off from (3.172) as
𝜆1

𝜆0(|𝑣𝑗|+|𝑣𝑘|) , which doesn’t factorize as a hypothetical 𝑣1;𝑗𝑣1;𝑘. Instead, the following 𝛿1
parameter can be defined for the part of the tensor at site 𝑖, making the connection with
the tensor at site 𝑗 and vice-versa:

𝛿1;𝑗𝑘 = √ 𝜆1
𝜆0(|𝑣𝑗| + |𝑣𝑘|) . (3.254)

In other words, each of the different rotations of the 𝛿1-contributions for each site has a
different coefficient that depends on the sites which surround the tensor.

3.4.1 Numerical Evaluations via the Tensor Network
With the tensor parameters defined as above, the TNO tensors now depend on random
values. To sample properties of the TNO correctly, tensor network operators (or states)
may be added to one another, giving the resultant tensor network operator (or state)
again. However, building the expectation value of an individual tensor in that way is,
in general, difficult. Even though it is possible to add tensor networks to one another,
this will, without any further assumptions, come at the high cost of increasing the bond
dimension, although it may be feasible for single discrete random variables that come
with a handful of possible values. In general, when dealing with probability distributions
of tensor network states, they could be encoded into a quantum states on some ancillary
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systems. Then, it would be possible to calculate properties of the system by, for example,
obtaining the expectation values of local operators.

Unfortunately, for the system of interest here, this would require an additional
continuous-variable degree of freedom to be added to each site, which again puts this
approach outside of the realm of things that can analyzed numerically. As before, this
may be more feasible with a system that is based on discrete random variables, which
may even be amenable to numerical study.

One simulation approach that can be performed rather easily with this type of system
is to calculate an effective MPS representation of the environment when contracting a
PEPS expectation value (for more details of the method itself see Section 4.3). In
a straightforward approach, the transfer operator would be applied as an MPO to the
MPS environment tensor until a sufficient convergence is reached. However, as mentioned
above, the tensors that describe this system contain random variables, and the same will
be true for the transfer operators. This means that, in general, one cannot hope for the
MPS environment tensor to ever converge.

Instead, the MPO can simply be applied a larger number of times, so the input be-
comes sufficiently independent from the resulting MPS — then the resulting distribution
can be used for sampling.

In contrast to some more accurate methods of sampling, this method comes with the
benefit of a more feasible implementation of the necessary calculations in practice.

By performing the evaluation described above, I obtained the results shown in Fig-
ures 3.2 to 3.5. The results are obtained by implementing the algorithm in MATLAB
and running it on a regular home computer.

This was done at the point 𝜆0
𝜆1

= 10, i.e., a point far into the polarized phase in the
normal TFIM. More points in the phase space were not considered, since the point of
these numerics was to investigate the viability of the results in the first place. For the
random parameters, the 𝑣𝑖 were taken to be normally distributed random variables, with
a standard deviation 𝜎. By varying the parameter 𝜎, multiple scenarios from strong to
weak influences of randomness were studied. For each point, the MPO was applied for
50 iterations, after which the correlation length was sampled over 50 further iterations.
In the figures, each of the shown points is the mean of the correlation length over those
50 iterations, with the standard deviation as error bars.

It can be seen that the correlation length drops off drastically for larger 𝜎, which
makes sense intuitively, as a more strongly disordered system will exhibit fewer spatial
correlations.

Since the algorithm I’ve used here is based on uniform MPS, it is only really applicable
to translationally invariant states. To address this, for one of the spatial dimensions I
had sampled an intermediate distribution instead of trying to find a fixed point. For the
other spatial dimension, I looked at blocking groups of sites together, so that the MPS
needs to only be translationally invariant with respect to the translation of a group of
sites. The dependence on the block size can be seen in Figure 3.5.

Again, it can be seen that the correlation length drops off for larger block sizes,
which, the larger the block size, should be closer to the true value. A more detailed
analysis of the scaling behavior has not been performed yet.
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Figure 3.2: Correlation length for the disorder-perturbed TFIM model around the po-
larized state, as obtained by the applied tensor network algorithm. Shown are example
results for different bond dimensions for a block size of a single site (i.e. no blocking).
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Figure 3.3: Correlation length for the disorder-perturbed TFIM model around the po-
larized state, as obtained by the applied tensor network algorithm. Shown are example
results for different bond dimensions for a block size of two sites.
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Figure 3.4: Correlation length for the disorder-perturbed TFIM model around the po-
larized state, as obtained by the applied tensor network algorithm. Shown are example
results for different bond dimensions for a block size of three sites.
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Figure 3.5: Correlation length for the disorder-perturbed TFIM model around the po-
larized state, as obtained by the tensor network algorithm. Shown are example results
for different bond dimensions for block sizes of 1, 2 and 3 sites, respectively.
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In addition to MBL, another intriguing type of order for quantum many-body systems
is that of topological order. In order to better understand the emergence of topological
order, I will show how this global topological order of a certain class can be constructed
on the basis of local symmetries. For this construction, tensor-network methods will
again play a central role, as they make the calculation of certain system properties
tractable, allowing to verify their topological nature.

This chapter shows my work on the applications of group theoretic approaches to the
tensor network formalism. I have investigated the properties and behavior of a system
describable by the two-dimensional Kagome lattice created with a local SU(3) symme-
try. I generalized the characteristics of the constituents of this lattice, investigating the
emergent global properties of the system both analytically and numerically. The first
few sections of the chapter provide an introduction into the mathematical foundations
of group theory and the tensor network formalism, after which I present my findings and
conclusions.

The contents of this chapter are as follows. In Section 4.1: Entangled Structures
in Locally-SU(𝑛)-Symmetric Systems on the Kagome Lattice I will provide an
overview of prior work on the emergence of topological order from local symmetries,
to provide the context for my results. I will introduce the setup for the model in Sec-
tion 4.2: Construction of an SU(3)-Symmetric System on the Kagome Lattice,
where I will elaborate on the lattice structure and how the local SU(3) group structure is
represented on it and show how the model maps to a string-net model. In Section 4.3:
Numerical Evaluation of the Tensor Network I will present the results of the nu-
merical study of the system using tensor-network methods and I will give an explanation
of the algorithm used for that. This section will also present the results for the properties
of the system, showing that it exhibits topological order.

Parts of the work I present in this chapter have been published as part of [2].

4.1 Entangled Structures in Locally-SU(𝑛)-Symmetric Sys-
tems on the Kagome Lattice

In this chapter I will present work on the entanglement structures in locally SU(𝑛)-
symmetric systems that has already been accomplished by other authors and expand on
their conclusions with my own work. The study I will focus on is that which expands on
the resonating valence bond state interpretation of the locally SU(2)-symmetric system
on a Kagome lattice, and instead investigates it under the condition of SU(3) symmetry.
Group structures of higher dimensionality will also be briefly considered, in addition to a
string-net interpretation of the derived structures. Further, the correlation length of the
investigated system will be divined, and its ground state wave function will be prepared
to be inspected for topological properties using the (both analytical and numerical)
tensor network methodology.

Particles that exhibit an SU(𝑛) symmetry form specific classes of entangled structures
based on the properties of their representations. I will demonstrate this on the example of
the 2 representation of the SU(2) symmetry group, which corresponds to its fundamental,
two-dimensional representation. For a system that consists of a one-dimensional chain
of spin-1

2 particles, the entangled state with the lowest energy is the one with pair-wise
entanglement. In the case of a one-dimensional chain of particles of the fundamental
representation of the SU(3) group, 3, the entangled state with the lowest energy, is
the one in which the formed entangled structures contain exactly three particles each.
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Figure 4.1: A Kagome lattice section; each intersection contains precisely one particle,
denoted by purple points, and the pattern of straight pink lines defines its symmetry.

However, the particles may form structures with pair-wise entanglement because of the
symmetry properties of the 8 representation of the SU(3) group — the conjugate of this
representation is equivalent to itself, 8 = 8. A step-by-step introduction to the influence
of the particles’ symmetry group to the entangled structures they form, see [67].

In recent years, the Kagome lattice, as depicted in Figure 4.1, had taken center stage
for the discussions of the possible existence of the emergence of topological order [68, 26]
at its ground state. Previous work suggests that a resonating valence bond (RVB) state
of a lattice with a local SU(2) symmetry may present a topologically ordered state [47].
In an RVB state, all neighboring particles, located on the lattice vertices, interact with
one another and form valence bonds. As shown in [69, 70, 47], a bijective function can be
constructed between a single RVB state in a system with a local SU(2) symmetry and a
unique distribution of closed loops on its dual lattice, the honeycomb. According to the
theory of string-net condensation by M. A. Levin and X.-G. Wen [71] (and other works,
e.g., [72]), such a loop structure corresponds to a ℤ2 topologically ordered system.

This work expands on the conclusions reached for the SU(2)-symmetric system [73]
and explores a similar equivalency for a system with a local SU(3) symmetry. However,
instead of to the states of individual particles, the focus is given to the representation
groups that describe the states of various elements in the system. To elucidate the effects
of a local symmetry of a system of interacting particles to its global properties, I use the
formalism of tensor networks. This versatile tool allows for a straightforward approach
to the examination of the characteristics of an interconnected system.

4.2 Construction of an SU(3)-Symmetric System on the
Kagome Lattice

By using the expressions derived in the previous section of this chapter, the locally
SU(3)-symmetric system of particles on a Kagome lattice can be fully analyzed for its
properties. This section describes the exact actions taken to proceed with this analysis
and presents the conclusive results of the full investigation.

The examined system is a Kagome lattice where a point-like particle which exhibits
an SU(3) local fundamental symmetry is set at each of its vertices, as can be seen in
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Figure 4.2: Model constructed from SU(3) trimers around each of the triangles on the
Kagome lattice, forming a singlet state with the representation 1 ⊕ 3 ⊕ 3 shown by blue
lines. The circles (purple) are projectors from the virtual degrees of freedom (blue lines)
to the physical ones, parametrized by 𝛼, 𝛽.

Figure 4.1. Details of the phase structure of one-dimensional chains with an SU(3)
structure can be found in [74].

4.2.1 Definition of the Model
An SU(3) spin liquid wave function with ℤ(3) topological order can be constructed on
the Kagome lattice, as I will show in this subsection. I will construct a PEPS wave
function with the following properties:

1. On each site of the lattice, there is an SU(3) symmetry with the fundamental
representation. Such a function is invariant under translation and rotation of the
lattice, transforming as |𝜓⟩ → ∣𝜓⟩ under reflection.

2. The model is a spin liquid with an absence of a conventional long-range order.

3. The function describes a topologically ordered system and its anyons correspond
to the ℤ(3) quantum double model. This effect stems from the conservation of the
SU(3) color charge.

4. The obtained function will be the ground state of a local Hamiltonian. Both the
Hamiltonian and the function can be smoothly connected to a fixed point model
with ℤ3 topological order.

5. The model will have trivial charge in each unit cell of the lattice, corresponding to
an unbiased mapping to the topological model.

To keep the setup comparable to the one used to explore the properties of the Kagome
lattice with a local SU(2) symmetry, the particles are chosen to exhibit an SU(3) sym-
metry corresponding to the 3 representation — analogously to the 2-dimensional repre-
sentation of spin-½ in the SU(2) case. The tensors used to stand in for the particles,
𝑃 , are constructed such that each has one physical index — that carrying the 3 repre-
sentation symmetry — and two virtual indices with an SU(3) symmetry. The virtual
index-legs connect them to the two neighboring triangle motifs of the lattice, as seen in
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Figure 4.3: Tensor network model applied to the Kagome lattice, showing the 𝜖 and 𝑃
tensors.

Figure 4.3. Another set of tensors, 𝜖, is distributed on the vertices of the dual lattice,
in the centers of the triangle motifs. These tensors consist of three virtual indices which
are subsequently contracted with the corresponding virtual indices of the 𝑃 tensors that
pertain to the triangle.

The constraints put on the virtual indices of the 𝑃 and 𝜀 tensors are twofold:

1. Representations that correspond to the symmetry properties of the two virtual
indices of 𝑃 need to allow for the initially defined 3 representation symmetry to
be achieved.

2. Representations that correspond to the symmetry properties of the three virtual
indices of 𝜖 need to allow for the tensors to exhibit a trivial symmetry.

The first condition restricts the representations assigned to the virtual indices of 𝑃 to
the combinations of {(1, 3), (3, 3)}, where 1 is the trivial representation, and 3 conjugate
to 3. This is valid because 1⊗3 = 3 and 3⊗3 = 3⊕6. The second condition imposed on
the network describes the interaction of the particles on the vertices of a triangle motif.
In order for 𝜖 to exhibit a trivial symmetry, the vector product of the representations
that correspond to the symmetries imposed on its virtual indices must offer the trivial
representation as a result. Therefore, the possible combinations of these representations
are {(1, 1, 1), (3, 3, 3), (3, 3, 3), (1, 3, 3)}, since 1⊗1⊗1 = 1, 3⊗3⊗3 = 1⊕8⊕8⊕10,
3 ⊗ 3 ⊗ 3 = 1 ⊕ 8 ⊕ 8 ⊕ 10, and 1 ⊗ 3 ⊗ 3 = 1 ⊕ 8.

The model is constructed as in Figure 4.2, where trimers |𝜏⟩ that meet in each of the
vertices of the honeycomb lattice and form triangle motifs in the corresponding Kagome
lattice. These trimers are in a singlet state, with the representation ℋ = 𝟙 ⊕ 3 ⊕ 3.
The map 𝒫 is then applied to the connecting edges of the weight lines of neighboring
triangles, selecting only the physical degrees of freedom from the representations of the
two triangle motifs. The trimers are built of three ’virtual’ SU(3) particles, such that
|𝜏⟩ ∈ ℋ⊗3

𝑣 , thus, its state space is ℂ1 ⊕ ℂ3 ⊕ ℂ3. In line with that, the state space
contains a total of nine singlets, three of them in the 𝟙 ⊗ 𝟙 ⊗ 𝟙, 3 ⊗ 3 ⊗ 3, and 3 ⊗ 3 ⊗ 3
spaces, and six of them in the spatial permutations of the 𝟙 ⊗ 3 ⊗ 3 state space. The
singlet |𝜏⟩ is defined as the equal-weight superposition of all the singlets. The six states
of 𝟙 ⊗ 3 ⊗ 3 and the 𝟙 ⊗ 𝟙 ⊗ 𝟙 state are combined with the amplitudes ±1 to form a fully
symmetric state, |𝑆⟩. The remaining two states, formed exclusively by the fundamental
and the fundamental conjugate representation, are combined with the amplitude +1,
forming a fully antisymmetric state, |𝐴⟩. Then, |𝜏⟩ = |𝑆⟩ + 𝑖 |𝐴⟩, and the state has
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chiral symmetry, transforming trivially under translation and rotation, and as |𝜏⟩ → | ̄𝜏⟩
under reflection.

4.2.2 Mapping the Kagome SU(3) Model to the ℤ3 Honeycomb Lattice
String-Net Model

There exists a way to map a state on the Kagome lattice with a local SU(3) symmetry
in the 3 representation a honeycomb lattice string-net with ℤ3 topological order

Accounting for these constraints on the tensor network, the representations pertain-
ing to the symmetry properties of the virtual indices may be distributed. For each 𝑃
that represents a particle on a Kagome vertex, three distinct setups are observed. In
the case where the virtual indices of the tensor respectively exhibit a trivial and a 3
representation, a directed line is drawn through the vertex. The direction of the arrow
is chosen to point toward where the virtual index with the trivial representation extends.
If both virtual indices correspond to the 3 representation, no line is drawn. When the
lines are extended to the midpoints of the triangle motifs and connected there, the con-
structed network becomes a honeycomb lattice string-net model with a ℤ3 topological
order. For each vertex of the honeycomb lattice, let the number of arrows entering the
vertex be denoted as 𝜈𝑖𝑛 and the number of arrows exiting the vertex as 𝜈𝑜𝑢𝑡. Then, the
following is valid:

𝜈𝑖𝑛 − 𝜈𝑜𝑢𝑡 = 0 (mod 3). (4.1)

A visualization of what such a string-net configuration may look like can be seen in
Figure 4.4.

Here I show a primer to the topic of string-nets and discusses how the obtained results
for the locally SU(3)-symmetric system can be expanded — and even generalized — for
a system that exhibits a local SU(𝑛) symmetry, by using this mathematical structure
deeply investigated by Michael A. Levin and Xiao–Gang Wen [71].

As already explained in Section 1.2.5, topological order is a special phase of matter
appearing in zero-temperature conditions, and quite interesting for quantum information
research and the design of quantum error correction algorithms.

It is characterized by a robust ground state degeneracy and a long-range pattern
of quantum entanglement — states with different patterns cannot be changed into one
another without the system going through a phase transition.

In contrast to the axiomatic definition of topological order presented in the introduc-
tion, the focus here is on a particular class of microscopical models exhibiting topological
order.

It has been shown that a large class of (2 + 1)-dimensional topologically ordered
phases is formed through the process of string-net condensation. A string-net liquid is a
type of system proposed by Michael A. Levin and Xiao–Gang Wen [71] — it involves a
graph-like structure of directed or undirected interconnected strings with certain gauge
properties. For example, the toric code, a two-dimensional spin-½ lattice stretched on
the surface of a torus, can be faithfully described by a string-net model. The ground
state of the standard toric code corresponds to an equal-weight superposition of closed
string states of the ℤ2 gauge group, otherwise known as the ℤ2 spin liquid.

A quantum spin liquid is a state that may exist in a system of interacting quantum
spins; unlike ordered states such as the ferromagnetic spin state, a quantum spin liquid is
disordered, even to low temperatures. For example, when triangular lattices such as the
Kagome lattice are formed by spin-½ particles, their respective spins become frustrated,
unable to uniquely choose and maintain a lowest-energy state of the whole system, as
can be seen for a simple triangle motif in Figure 4.5. However, if valence bond states
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Figure 4.4: Example of a string-net. Shown is an example configuration of a string-net
following the rules for the ℤ3 model described in section 4.2.2, where the strings must
obey a Gaussian law (𝑚𝑜𝑑 3).

?

Figure 4.5: Triangular motif with vertices that contain particles with binary spins,
exhibiting a frustrated state, in which the lower spin cannot fall into a unique lowest-
energy ground state with respect to the upper two spins.

are implemented in the system, in which spin pairs interact antiferromagnetically and
form singlets, the systems as a whole maintains a spin of 0. The spin pairs here are
maximally entangled, and if all particles of the lattice belong to a pair, the state of the
quantum system is referred to as a valence bond solid. Unlike a spin liquid, a valence
bond solid does not exhibit a case of unbroken lattice symmetry, and due to the pair-wise
entanglement, its entanglement pattern is not of the long-range type.

The toric code is a topological quantum error correction code defined on a two-
dimensional lattice of spins; its periodic boundary conditions give its lattice the shape
of a torus, as in Figure 4.7. Most commonly, this lattice is of the square type and
one spin-½ particle is positioned on each of its edges. On the edges around each of
the vertices and plaquettes of the lattice, vertex and plaquette stabilizer operators are
defined, respectively. A vertex stabilizer operator for the vertex 𝑣, 𝐴𝑣, and a plaquette
stabilizer operator for the plaquette 𝑝, 𝐵𝑝, are defined as:

𝐴𝑣 = ∏
𝑖∈𝑣

𝜎𝑥
𝑖 , 𝐵𝑝 = ∏

𝑖∈𝑝
𝜎𝑧

𝑖 , (4.2)

where 𝜎𝜉
𝑖 are Pauli operators acting on spins 𝑖 that belong to the corresponding vertex

or plaquette. The space on which all stabilizers act in a trivial manner, such that
𝐴𝑣 |𝜓⟩ = |𝜓⟩ , ∀𝑣, 𝐵𝑝 |𝜓⟩ = |𝜓⟩ , ∀𝑝, is named the stabilizer space. In the toric code,
the stabilizer space is four-dimensional and able to store two qubits of information.
Famously, such a code can be used for fault-tolerant quantum computation, as well as
for the creation of quantum memories [75, 76].

Those states which do not belong to the stabilizer space may be mathematically
described as containing quasiparticles. When a Pauli operator acts on a spin located at
an edge of the lattice, depending on the type of operator, the two adjacent vertices or
plaquettes spawn a quasiparticle excitation named anyon, as demonstrated in [77]. If
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Figure 4.6: Stabilizer operators of the standard toric code. Pauli-𝑋 and Pauli-𝑍 opera-
tors acting on spins set on particular edges of the toric code lattice are indicated by red
𝑋 and blue 𝑍, respectively. a) Vertex operator; b) plaquette operator.

Figure 4.7: Two-dimensional torus, with genus 2.

the same type of Pauli operator then acts on an edge adjacent to the initially chosen
one, the corresponding vertices or plaquettes adjacent to it either spring an anyon or lose
the originally spawned anyon — it is annihilated. By acting on adjacent edges with the
same type of Pauli operator in such a manner, the pair of created anyons can be moved
further away from one another and the imaginary string between them can be stretched
long. This string corresponds to the connected edges on which Pauli operators acted to
create and move the anyons on the lattice.

Interestingly, if the anyons are moved around on the surface of the torus until they are
adjacent to each other again, and the edge between them is acted on by the corresponding
Pauli operator, they will both be annihilated by it and the created string will be closed. If
these anyons were created on the two-dimensional surface of a sphere and an imaginary
string were pulled from one to the other, this string could then always be uniformly
deformed until it reaches a point — and vanishes. The same is true for a two-dimensional
toroidal surface, but only in some cases. If this string is stretched around the non-trivial
topology of the torus in one of two specific ways, as shown in Figure 4.8, and the string
closed, it would not be possible to uniformly deform it into a point. Instead, the best
that could be done is to stretch it taut around the torus. As the toric code can be acted
on by two independent Pauli operators — one creating anyons on the vertices and the
other on the plaquettes — these strings can be created by 2 ⋅ 2 = 4 types of strings, two
Pauli-𝑋 and two Pauli-𝑍 types.

This property is specific to topologically nontrivial surfaces and is intimately related
to the genus of the surface on which the toric code is defined.

The Hamiltonian of a system with a ℤ2 gauge can be expressed as:

𝐻ℤ2
= −𝑈 ∑

𝑖
𝜎𝑥

𝑖 + 𝑡 ∑
𝑝

∏
p−edge

𝜎𝑧
𝑗 , (4.3)

and its Hilbert space is defined by states |Φ⟩ that satisfy:

∏
I−edge

𝜎𝑥
𝑖 |Φ⟩ = |Φ⟩ (4.4)
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Figure 4.8: Nontrivial string operators of the standard toric code, shown on a square
lattice set on a two-dimensional torus with genus 2. The operators created by the
repeated use of the Pauli-𝑋 and Pauli-𝑍 site operators are shown in pink and blue,
respectively.

for all sites I of the lattice. To avoid the very dual thinking related to the created strings,
they can be thought of as belonging to a string network or a string-net.

A particular string-net is commonly defined by three types of information: the types
of strings in the network, the branching rules of the strings, and the orientation of the
strings. Different string types can be simply labeled by a numeral index, 𝑖. The rules
of branching define the types of strings that can all meet in one point. This in turn
depends on the orientation the strings have: two separate directions or lacking one.

The RVB state on the Kagome lattice has been shown to have a bijective relation
with the ℤ2 topologically ordered honeycomb system [69] — all full dimer coverings
correspond to a particular set of strings in the honeycomb string-net in which all strings
are directionless and branch so that each vertex contains either 0 or 2 connecting strings,
i.e., it is either empty or a string passed through it. Thus, the full RVB state corresponds
to the sum of all such string-net coverings on the honeycomb lattice. As has already been
shown, such a construction is equivalent to the ground state of the toric code, confirming
the ℤ2 topological order of the constructed system. In a Kagome lattice which contains
SU(3) particles in each of its vertices, the resultant string-net is different.

Because the only representations used are the trivial, the fundamental, and the fun-
damental conjugate, each vertex of the resultant honeycomb string-net has either zero
or three strings reaching it, and all the strings adopt an orientation — necessary to
distinguish between the fundamental and the fundamental conjugate. However, unlike
the complicated bijection developed for the RVB model, the SU(3) string-net can be
reached in a straightforward manner.

String-nets can be naturally defined in the context of gauge theories and all decon-
fined gauge theories can be described as string-net condensates — with electric flux lines
acting as strings. For example, the Hamiltonian of the ℤ2 lattice gauge theory defined
on the honeycomb lattice can be written as:

𝐻ℤ2
= −𝑈 ∑

𝑖
𝜎𝑥

𝑖 + 𝑡 ∑
𝑝

∏
edges of 𝑝

𝜎𝑧
𝑗 , (4.5)

where the links, plaquettes, and sites of the lattice are marked by 𝑖, 𝑝, and 𝐼 , respectively.
The Hilbert space of this system is formed by quantum states that satisfy:

∏
legs of 𝐼

𝜎𝑥
𝑖 |Φ⟩ = |Φ⟩ (4.6)

for every site 𝐼 . It has been proven that the ℤ2 lattice gauge theory is dual to the
Ising model in (2 + 1) dimensions, which can be seen by the following setup. If links
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with 𝜎𝑥 = −1 are thought of as being occupied by a string and those with 𝜎𝑥 = +1 as
being unoccupied. Then, only closed strings are allowed in this Hilbert space — the ℤ2
gauge theory can be described as a closed string theory. In this dual picture the electric
part of the Hamiltonian, −𝑈 ∑𝑖 𝜎𝑥

𝑖 , acts as string tension, whereas the magnetic part,
𝑡 ∑𝑝 ∏ edges of 𝑝 𝜎𝑧

𝑗 , acts as the string kinetic energy. The confining phase corresponds to
a large electric energy, i.e., 𝑈 ≫ 𝑡, and the deconfined phase to a large magnetic energy.
The ground state of the system is a superposition of numerous large string configurations
— the deconfined phase is a quantum liquid with large strings, a string condensate.

4.2.3 Interpolation between the Kagome SU(3) Model and the Model
with Locally Orthogonal States

The described tensor network model for a state with a local SU(3) symmetry does not
uniquely describe it. It is not immediately clear if this ambiguity affects the result of
the mapping — is it bijective and reversible? This issue can be examined by means of
a numerical interpolation between its description pertaining to the representation and
that pertaining to the exact state of the system.

The precise issue with the mapping pertains to its bijectivity — is the mapping
reversible if the only information that is kept is the one on the representations, and not
on the exact states of the Kagome system? For this purpose, the problem is investigated
numerically, by interpolation between the mapping that contains the full information
on the exact state that may be constructed from the representations assigned to the
virtual indices of the tensors in the network, and the mapping that only considers the
representations.

If the virtual indices of 𝑃 have the 3 representation symmetry, a possible combination
of specific states from these representations could be expressed as |𝑢⟩ |𝑢⟩, which is a state
in the 6 representation, but it has no projection in the 3 representation of the SU(3)
group. Another example is a combination of states of the type |𝑢⟩ |𝑑⟩, which may be
thought of as a linear combination of both a state in the 6 representation (the state

1√
2(|𝑑⟩ |𝑢⟩ + |𝑢⟩ |𝑑⟩)) and a state in the 3 representation (the state 1√

2(|𝑑⟩ |𝑢⟩ − |𝑢⟩ |𝑑⟩)).
In both cases, a loss of information is evident in the representation-based mapping
scheme.

To combat this loss, two parameters are introduced to be used as the amplitudes of
projectors that map the state of full information into that with a possible partial infor-
mation loss. The first of these, 𝛼, varies the proportion of inclusion for the information
on the exact states described by the 3⊗3 representations of the virtual indices of 𝑃 . The
full information is carried through by 𝛼 = 1, and 𝛼 = 0 loses it completely, keeping only
the information on the representations themselves. Analogously, the parameter 𝛽 varies
the kept amount of information on the states that overlap with the 6 representation, as
exemplified above.

The setup used to describe this interpolation requires the state of each of the virtual
indices to be defined. The virtual indices used in the model may exhibit the trivial
symmetry (1), the symmetry properties of the fundamental group (3) or of its conjugate
(3). The vector sum of these spaces gives a seven-dimensional basis: {𝟙, 𝑢, 𝑑, 𝑠, 𝑢, 𝑑, 𝑠},
where 𝑢, 𝑑, and 𝑠 are the shorthand for the up, down, and strange state, commonly
used to describe the eponymous quarks, describable by the SU(3) symmetry group. The
listed constraints are applied to these conditions and each 𝑃 is fitted with a projector
parametrized by the variables 𝛼 and 𝛽, as described above.

The projectors 𝒫𝛼,𝛽 are used with the parameters (𝛼, 𝛽) ∈ [0, 1] described earlier,
to allow for an investigation of the interpolation properties of the two relevant models.
The map 𝒫⟂ ≡ 𝒫(1,1) projects the two adjacent triangle sites, ℋ⊗2

𝑣 = (𝟙 ⊕ 3 ⊕ 3)⊗2,
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onto the union of the following three types of spaces: ℋ𝜔 = 𝟙 ⊗ 3, ℋ𝜔 = 3 ⊗ 𝟙, and
ℋ1 = 3⊗3. In this setup, the order of the representations in the tensor product implies
the directionality of the strings to be constructed.

The interpolation in 𝛼 is obtained by adiabatically projecting out the 6 component
of ℋ1, as follows:

𝒫(𝛼,1)
⎡⎢
⎣

𝟙ℋ𝜔
⊕ 𝟙ℋ𝜔

⊕ ⎛⎜
⎝

𝛼𝟙ℋ1
+ (1 − 𝛼) ∏

ℋ3
1

⎞⎟
⎠

⎤⎥
⎦

𝒫⟂. (4.7)

In this expression, ℋ3
1 and ℋ6

1 correspond to the spaces of the 3 and 6 representations,
respectively.

When 𝛼 = 0, then 𝒫333 = 𝒫(0,1), so ℋ333 = ℋ𝜔 ⊕ℋ𝜔 ⊕ℋ3
1 ≈≅ 3⊗ℂ3. The first of

the tensor components transforms as 3, whereas the second one labels the representation
under consideration, transforming trivially under SU(3). Now, ℂ3 can be projected out
adiabatically:

𝒫0,𝛽 = [𝟙3 ⊗ (𝛽𝟙ℂ3 + (1 − 𝛽) |𝑒⟩ ⟨𝑒|ℂ3)] 𝒫(0,1). (4.8)
Then, the label is projected onto the equal weight superposition of the three components,
|𝑒⟩. For (𝛼, 𝛽) = (0, 0), the superposition can be factored out. Then, each site is
associated with an SU(3)-invariant wave function with the fundamental representation.

4.3 Numerical Evaluation of the Tensor Network
In this section I show the details of the tensor network algorithms used in the numerical
investigations presented in this chapter.

4.3.1 Locally SU(3)-Symmetric Kagome Lattice
In this section I am using iMPS to approximate properties of a PEPS, namely by rewrit-
ing the PEPS transfer operator in terms of an MPO, and then performing an approxima-
tion for its fixed point. This method enables access to properties such as the correlation
length of the investigated state.

Building upon the short elaboration of this method, which has already been presented
in Section 3.4, here I will explain the reasoning behind this approach in greater detail.
The algorithm which I am using here is described in [78], and the details of the MPO
fixed point calculation can be found in [79], under the designation of imaginary-time
evolution.

Effective Environments for the PEPS Expectation Value Calculation
The standard procedure used to calculate the expectation value of some observable
that is localized to a single site (or, equivalently, a number of sites) is to sandwich
this operator between two copies of the PEPS and connecting the free legs of each
corresponding site of both of the PEPS copies with the physical legs of the observable
— one with the ingoing and one with the outgoing legs. Because of the locality of
the operator, the free leg of the PEPS is connected directly to the corresponding one
of its copy at almost all sites. These direct physical index connections can now be
contracted, resulting in a two-dimensional tensor network lattice that on each site
other than the one(s) of the observable has a single tensor connected to its neighbors
with indices that are the doubled virtual indices of the original PEPS. The network
for this lattice can then be contracted, so that only the site with the observable and its
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direct neighbors remain, and the remainder of the network can be referred to as the
environment. Given the environment tensor, the calculation of the expectation value
of the observable is a relatively simple task, as there remains only a small number of
tensors to be contracted.

However, the calculation of the environment tensor based on the PEPS tensors
should be performed in a computationally feasible way. The naïve approach of con-
tracting the tensor network over the two-dimensional lattice would lead to the bond
dimension growing exponentially. Instead, the techniques use for one-dimensional
tensor networks (MPS) can be repurposed for use in two dimensions.

Assuming the reduced tensors make a square lattice (a flat two-dimensional lattice
can always be turned into a square lattice by grouping its tensors), we can split it
into two halves. For each of the halves, starting from the two outside edges away
from the seam, each row of reduced tensors can be contracted one at a time. This
operation is mathematically identical to repeatedly acting on an MPS with an MPO
that consists of the transfer operators of the original PEPS.

In the MPS picture, applying lots of MPOs to a state is computationally feasible as
long as the growth in bond dimension is suppressed by truncating the resultant state.
This can be done by transforming the state tensors into their canonical form using
singular value decompositions and then discarding all but the 𝐷 (bond dimension)
largest singular values.

Following this procedure to the lattice seam leads to environment tensors that are
not exact, but which constitute an effective environment.

On top of being able to calculate expectation values of local observables using this
effective environment, by the virtue of how expectation values are calculated using the
two environment MPS, some properties like the correlation length directly correspond
to their counterparts for the MPS and can be obtained directly using this procedure.

This approach also works in the infinite case, where uniform MPS can be used to
calculate effective environments for iPEPS. In that case it would be necessary to calculate
the fixed point of the (also uniform) MPO to find the effective environment, as that is
the only component that survives an infinite number of repeated applications of the
operator.

It is then straightforward to numerically approximate the fixed point of an MPO,
using the algorithm described at the end of Section 1.2.6.

Application to the SU(3)-Symmetric Kagome Lattice
In order to perform these calculations for the tensors representing an RVB state of
SU(3)-symmetrical particles on the Kagome lattice, the first step is to block together
neighboring tensors in pairs. By performing this grouping, we look at the unit cell
of the honeycomb lattice (see Figure 4.9). With this, the resulting PEPS has the
structure of a square lattice. This is necessary to obtain transfer operators for the
PEPS, which can be written as an uniform MPO. It would be possible to write
a transfer operator as an MPO even without grouping the tensors, but this MPO
would not be uniform, which is necessary for the simple version of the algorithm used
here, which considers uniform MPS and stores only a single tensor to describe the
state.

Now the correlation length of the model can be studied at different points of the
parameter space spanned by the two parameters 𝛼 and 𝛽. In addition, the bond dimen-
sion can be chosen freely, which means that the change in the correlation length of the
resulting MPS can be investigated with respect to an increasing bond dimension.
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Figure 4.9: Structure of the tensor network, with the unit cell of the honeycomb lattice
demarcated by a purple dashed line.

As described before, the parameters 𝛼 and 𝛽 are not varied freely, but only along a
path where first 𝛼 is varied between 0 and 1 while 𝛽 = 0, and then 𝛽 is varied between
0 and 1, while 𝛼 = 1.

The algorithm described above can now be applied for each point on this path,
starting with a random MPS of a certain bond dimension 𝐷 to act as a starting state.
This can then be repeated for different bond dimensions. Higher bond dimensions will
give more accurate results, but will require more resources and be slower to calculate.
Therefore, the scaling of the correlation length with increasing bond dimension will
be used to aid in the extrapolation of the results. These calculations are shown in
Figure 4.10.

The correlation length 𝜉 is not shown directly in this figure; instead, it shows the
ratio in magnitude 𝜆 between the largest and the subleading eigenvalue of the transfer
operator. I.e., 𝜆 = ∣𝜆1

𝜆2
∣ where 𝜆𝑖 are the eigenvalues of the transfer operator sorted by

descending magnitude. These can be directly converted into one another, since 𝜆 =
exp(−1

𝜉 ).
The results for different bond dimensions are obtained by implementing the algorithm

in MATLAB and running it on a regular home computer. Because of the computational
capabilities available, the simulated bond dimensions are small, to keep the runtime
manageable. However, from the spread of the results it can already be seen that useful
results for this parameter region can already be obtained with low bond dimensions. For
more detailed results calculated with much higher bond dimensions, see Section 4.3.2
and Figure 4.13.

The results of the simulations for the whole parameter range of the interpolation can
be seen in Figure 4.11 and Figure 4.12.

There was a range of parameters for which the algorithm did not converge to a result
with a sufficiently low cut-off error 𝜖. (Sufficiently low in this case means essentially
indistinguishable from zero within the numerical precision of the simulation, which in
this situation roughly corresponds to 𝜖 ≈ 1 × 10−15.) For clarity, these points have
been marked in subfigures 4.11a and 4.12a. The most likely explanation of this behavior
is that the low bond dimension used for the calculation is insufficient to represent the
fixed point of the transfer operator. This conclusion is bolstered by the results from
Figure 4.13, which were obtained for a system with a much higher bond dimension.
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Figure 4.10: Ratio 𝜆 of the magnitude of the subleading eigenvalues of the transfer
operator along the path of the interpolation for 𝛼, comparing results for different bond
dimensions. As can be seen from the spread of the results, in this region, relatively good
results can already be achieved with small bond dimensions.
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(a) Interpolation for 𝛽 from 0 to 1, with 𝛼 = 0.
Results for bond dimension 𝐷 = 20.
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(b) Interpolation for 𝛼 from 0 to 1, with 𝛽 = 1.
Results for bond dimension 𝐷 = 25.

Figure 4.11: Difference 𝜆 of the magnitude of the subleading eigenvalues of the transfer
operator along the path of the interpolation. The interpolations for 𝛼 and 𝛽 can be
continuously connected, and therefore the plots are intentionally placed side-by-side.
The individual points marked in orange in (a) are points where the cut-off error did
not converge to zero, i.e. the bond dimension was insufficient to represent the state
accurately.
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(a) Interpolation for 𝛽 from 0 to 1, with 𝛼 = 0.
Results for bond dimension 𝐷 = 20.
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(b) Interpolation for 𝛼 from 0 to 1, with 𝛽 = 1.
Results for bond dimension 𝐷 = 25.

Figure 4.12: Correlation length along the path of the interpolation. The interpolations
for 𝛼 and 𝛽 can be continuously connected, and therefore the plots are intentionally
placed side-by-side. The individual points marked in orange in (a) are points where
the cut-off error did not converge to zero, i.e. the bond dimension was insufficient to
represent the state accurately.

When only the well-converging points (marked in blue) are considered, the results in
Figure 4.11 do reproduce the lowest non-zero values from Figure 4.13.

4.3.2 Numerical Analysis including Virtual Symmetries
This section summarizes the work I have accomplished in collaboration with Laurens
Vanderstraeten and Norbert Schuch [2], and includes the succinct results on the spectrum
and wave function of a locally SU(3)-symmetric system of particles on the Kagome
lattice, derived numerically by the use of tensor network algorithms. In addition, it
shows an interpretation and elaboration of these results, finishing off with a conclusion
on the topological properties of this system.

Like in the previous section, the behavior of the wave function along the interpolation
was studied numerically, by use of iMPS with a tunable bond dimension, 𝜒, which helped
approximate the fixed point of the PEPS transfer operator. By exploiting the virtual
symmetry of the state, it is possible to introduce dressed [80] iMPS transfer operators,
𝜆𝑔,𝜂. This method then provides the correlation lengths for general anyonic correlations,
𝜉𝑔,𝜂, by using the subleading eigenvalues of each dressed iMPS transfer operator, 𝜆𝑔,𝜂.
The anyon fluxes are labeled by their group elements, 𝑔, and the anyon charges by
their corresponding irreps, 𝜂. Flux-type excitations are different from charges; they are
modeled by strings of symmetry actions, whereas the charges are modeled by strings
of irrep actions on the virtual level. The former are also named visons, whereas the
latter are named spinons. Their composites have parafermionic 𝑒±2𝜋𝑖/3 statistics. As
Figure 4.13 shows, during the first half of the interpolation, (1, 1) → (0, 1), only vison
excitations acquire a finite correlation length. This follows from the fact that the effective
amplitude of singlets with 3 representations is reduced when 6 is projected out (because
3 ⊗ 3 = 3 ⊕ 6). For the most part, these correlations can be suppressed by considering a
modified model (named the 3-enhanced model), in which 𝒫(𝛼,1) contains an additional
factor in front of its (1 − 𝛼) term, ensuring the total weight of the ℋ1 subspace is fixed.

Throughout the second part of the interpolation, i.e. 𝛽 = 1, 0 ≤ 𝛼 < 1, the vison
length does not grow, but ultimately decreases, while the length scale toward the SU(3)
point is dominated by one of the parafermions. At that point, the extrapolation of
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Figure 4.13: Plot from [2]. Further results on the correlation length (𝜉) and 𝜆, extending
the results from figure 4.11 by differentiating them by excitation type and to higher bond
dimension. The calculations here were done with much larger bond dimensions, up to
500. However it can be seen, that the well-converged values from 4.11 reproduce the
smallest non-zero values from this plot to a large degree. The inset shows the scaling of
𝜉 at 𝛼 = 𝛽 = 0.

1/𝜒 shows that 𝜉 ≈ 1.77. This extrapolation also shows that the correlation length for
𝜒 → ∞ is finite. Because no divergence can be found in any correlation, the system
proves to be gapped and in the same phase as the ℤ3 quantum double model, with no
condensed anyons. The convergence analysis in Figure 4.13 confirms this conclusion.

The presented PEPS model is a topological spin liquid that exhibits a ℤ3 topological
order.
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Chapter 5

Summary of the Results

In this work I have used a medley of analytical and numerical methods to analyze prop-
erties of many-body quantum systems with certain symmetries and those with disorder.
Here I will concisely review the central results from each of the previous chapters, put
them into context and consider potential future approaches.

In the scope of my dissertation, I had announced to complete the following goals.

N Derivation of a stochastic integral representation for interacting quan-
tum many-body systems with disordered terms
I have developed a novel way to express the disorder-averaged propagator of a
quantum many-body system with disorder by use of stochastic integral calculus
methods.

N Calculation of a general analytical solution to the time evolution of a
local observable in a perturbed many-body system.
I have calculated the expectation values of certain local observables for a partic-
ular quantum many-body systems using perturbation theory with a disordered
perturbation term up to the second order.

N Construction of a general system of efficient bridging between different
variational solutions for a many-body system with disorder, using tensor
network formalism and the already obtained perturbative solution.
I have applied the mechanism of tensor bridging to a system perturbed by means
of random local interactions, and then demonstrated the evaluation of properties
of the resulting state numerically.

N Construction of a tensor network state with local SU(3) symmetry with
topological order.
I have constructed a tensor network state built to be invariant under local SU(3)
symmetry, which I have shown to exhibit ℤ3 topological order and the properties
of whose phase I have studied.

In Chapter 2, I looked at methods for studying interacting quantum many-body sys-
tems with disorder, using multiple approaches based on perturbation theory. The most
successful of these approaches was the stochastic integral representation of the disorder-
averaged propagator, a method that allows for the study the dynamical properties of
systems with disorder by employing the mechanism of stochastic integral calculus. I
have shown how this method can predict dynamical properties for the one-dimensional
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Anderson model. Further, I also presented a diagrammatic approach for calculating
the disorder-averaged propagator for a specified system. The methods presented in this
chapter might prove useful in studying many-body localized systems, an exotic type of
order for quantum many-body systems.

With Chapter 3, I continued the theme of quantum many-body systems with dis-
order and perturbation theory from the first chapter by focusing on a particular two-
dimensional system. In this chapter I was able to generalize the tensor-bridging approach
from Vanderstraeten et. al. to a system with disorder. By giving a tensor network de-
scription of the system using PEPS, I was able to numerically calculate some interesting
properties. The work presented in this chapter could be helpful in giving an approach
for studying other quantum many-body systems which are disordered.

Chapter 4 connects the themes of exotic order and tensor network methods. Herein
I show the use SU(3) symmetries in the construction of a spin liquid wave function
with ℤ3 topological order via tensor networks, corresponding to the ℤ3 quantum double
model. I also show how properties of the model can be obtained numerically along an
interpolation between the spin liquid and the topologically ordered fixed point. These
results are yet another step towards potentially understanding the behavior of quantum
many-body systems with local SU(𝑛) symmetry in general.

All in all, I have presented an analysis for the study of symmetries and unusual
types of order in interacting quantum many-body systems using an array of analytical
and numerical tools, and shown how characteristics of topologically ordered phases can
be connected to fundamental symmetries.

In conclusion, in the scope of this work I have presented new methods for the study of
quantum many-body systems, especially those exhibiting exotic phases of matter, and
thus complemented and advanced upon the previously acknowledged state-of-the-art
approach to the analytical investigation of quantum many-body systems. The methods
and solutions I have constructed can be applied to a large variety of problems that
involve many-particle systems in realistic environments, with perturbation. Thus, my
completed dissertation presents an advancement in the scientific research of quantum
many-body systems.
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Appendix A

Additional Calculations

This appendix chapter includes additional calculations that elaborate on the crucial
steps and conclusions presented in the main part of the dissertation. Each calculation is
connected to its relevant mention via hyperlink.

Perturbative Solution to a Many-body Localization Hamiltonian

Integrating 𝐻𝜈(𝑠𝑘)
As described in (2.73), the calculation for 𝐴 follows.

𝐴 =
𝑁

∑
𝑗=1

ℎ𝑗 ∫
𝑥

0
𝑒−𝑠𝑘𝐻0𝜎𝑥

𝑗 𝑒𝑠𝑘𝐻0d𝑠𝑘 = (A.1)

=
𝑁

∑
𝑗=1

ℎ𝑗 ∫
𝑥

0
𝑒−𝑠𝑘 ∑𝑁

𝑙=1 𝜎𝑧
𝑙 𝜎𝑧

𝑙+1𝜎𝑥
𝑗 𝑒𝑠𝑘 ∑𝑁

𝑚=1 𝜎𝑧
𝑚𝜎𝑧

𝑚+1d𝑠𝑘 = (A.2)

=
𝑁

∑
𝑗=1

ℎ𝑗 ∫
𝑥

0

𝑁
∏
𝑙=1

𝑒−𝑠𝑘𝜎𝑧
𝑙 𝜎𝑧

𝑙+1𝜎𝑥
𝑗

𝑁
∏
𝑚=1

𝑒𝑠𝑘𝜎𝑧
𝑚𝜎𝑧

𝑚+1d𝑠𝑘 = (A.3)

=
𝑁

∑
𝑗=1

ℎ𝑗 ∫
𝑥

0
𝑒−𝑠𝑘𝜎𝑧

𝑗−1𝜎𝑧
𝑗 𝑒−𝑠𝑘𝜎𝑧

𝑗 𝜎𝑧
𝑗+1𝜎𝑥

𝑗

𝑁
∏
𝑙=1

𝑙≠{𝑗−1,𝑗}

𝑒−𝑠𝑘𝜎𝑧
𝑙 𝜎𝑧

𝑙+1
𝑁

∏
𝑚=1

𝑒𝑠𝑘𝜎𝑧
𝑚𝜎𝑧

𝑚+1d𝑠𝑘 = (A.4)

=
𝑁

∑
𝑗=1

ℎ𝑗 ∫
𝑥

0
𝑒−𝑠𝑘𝜎𝑧

𝑗−1𝜎𝑧
𝑗 𝑒−𝑠𝑘𝜎𝑧

𝑗 𝜎𝑧
𝑗+1𝜎𝑥

𝑗 𝑒𝑠𝑘𝜎𝑧
𝑗+1𝜎𝑧

𝑗 𝑒𝑠𝑘𝜎𝑧
𝑗 𝜎𝑧

𝑗+1d𝑠𝑘 = (A.5)

=
𝑁

∑
𝑗=1

ℎ𝑗 ∫
𝑥

0
𝜎𝑥

𝑗 𝑒𝑠𝑘𝜎𝑧
𝑗−1𝜎𝑧

𝑗 𝑒𝑠𝑘𝜎𝑧
𝑗 𝜎𝑧

𝑗+1𝑒𝑠𝑘𝜎𝑧
𝑗+1𝜎𝑧

𝑗 𝑒𝑠𝑘𝜎𝑧
𝑗 𝜎𝑧

𝑗+1d𝑠𝑘 = (A.6)

=
𝑁

∑
𝑗=1

ℎ𝑗𝜎𝑥
𝑗 ∫

𝑥

0
𝑒2𝑠𝑘𝜎𝑧

𝑗−1𝜎𝑧
𝑗 𝑒2𝑠𝑘𝜎𝑧

𝑗 𝜎𝑧
𝑗+1d𝑠𝑘 (A.7)

And the calculation for 𝐵 is analogous.

𝐵 =
𝑁

∑
𝑗=1

𝐽𝑗 ∫
𝑥

0
𝑒−𝑠𝑘𝐻0𝜎𝑥

𝑗 𝜎𝑥
𝑗+1𝑒𝑠𝑘𝐻0d𝑠𝑘 = (A.8)

=
𝑁

∑
𝑗=1

𝐽𝑗 ∫
𝑥

0
𝑒−𝑠𝑘 ∑𝑁

𝑙=1 𝜎𝑧
𝑙 𝜎𝑧

𝑙+1𝜎𝑥
𝑗 𝜎𝑥

𝑗+1𝑒𝑠𝑘 ∑𝑁
𝑚=1 𝜎𝑧

𝑚𝜎𝑧
𝑚+1d𝑠𝑘 = (A.9)
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=
𝑁

∑
𝑗=1

𝐽𝑗 ∫
𝑥

0

𝑁
∏
𝑙=1

𝑒−𝑠𝑘𝜎𝑧
𝑙 𝜎𝑧

𝑙+1𝜎𝑥
𝑗 𝜎𝑥

𝑗+1

𝑁
∏
𝑚=1

𝑒𝑠𝑘𝜎𝑧
𝑚𝜎𝑧

𝑚+1d𝑠𝑘 = (A.10)

=
𝑁

∑
𝑗=1

𝐽𝑗 ∫
𝑥

0
𝑒−𝑠𝑘𝜎𝑧

𝑗−1𝜎𝑧
𝑗 𝑒−𝑠𝑘𝜎𝑧

𝑗 𝜎𝑧
𝑗+1𝑒−𝑠𝑘𝜎𝑧

𝑗+1𝜎𝑧
𝑗+2𝜎𝑥

𝑗 𝜎𝑥
𝑗+1

𝑁
∏
𝑙=1

𝑙≠{𝑗−1,𝑗,𝑗+1}

𝑒−𝑠𝑘𝜎𝑧
𝑙 𝜎𝑧

𝑙+1
𝑁

∏
𝑚=1

𝑒𝑠𝑘𝜎𝑧
𝑚𝜎𝑧

𝑚+1d𝑠𝑘 = (A.11)

=
𝑁

∑
𝑗=1

𝐽𝑗 ∫
𝑥

0
𝑒−𝑠𝑘𝜎𝑧

𝑗−1𝜎𝑧
𝑗 𝑒−𝑠𝑘𝜎𝑧

𝑗 𝜎𝑧
𝑗+1𝜎𝑥

𝑗 𝜎𝑥
𝑗+1𝑒𝑠𝑘𝜎𝑧

𝑗+1𝜎𝑧
𝑗+2

𝑁
∏
𝑙=1

𝑙≠{𝑗−1,𝑗,𝑗+1}

𝑒−𝑠𝑘𝜎𝑧
𝑙 𝜎𝑧

𝑙+1
𝑁

∏
𝑚=1

𝑒𝑠𝑘𝜎𝑧
𝑚𝜎𝑧

𝑚+1d𝑠𝑘 = (A.12)

=
𝑁

∑
𝑗=1

𝐽𝑗 ∫
𝑥

0
𝑒−𝑠𝑘𝜎𝑧

𝑗−1𝜎𝑧
𝑗 𝜎𝑥

𝑗 𝜎𝑥
𝑗+1𝑒−𝑠𝑘𝜎𝑧

𝑗 𝜎𝑧
𝑗+1𝑒𝑠𝑘𝜎𝑧

𝑗+1𝜎𝑧
𝑗+2

𝑁
∏
𝑙=1

𝑙≠{𝑗−1,𝑗,𝑗+1}

𝑒−𝑠𝑘𝜎𝑧
𝑙 𝜎𝑧

𝑙+1
𝑁

∏
𝑚=1

𝑒𝑠𝑘𝜎𝑧
𝑚𝜎𝑧

𝑚+1d𝑠𝑘 = (A.13)

=
𝑁

∑
𝑗=1

𝐽𝑗 ∫
𝑥

0
𝜎𝑥

𝑗 𝜎𝑥
𝑗+1𝑒𝑠𝑘𝜎𝑧

𝑗−1𝜎𝑧
𝑗 𝑒−𝑠𝑘𝜎𝑧

𝑗 𝜎𝑧
𝑗+1𝑒𝑠𝑘𝜎𝑧

𝑗+1𝜎𝑧
𝑗+2

𝑁
∏
𝑙=1

𝑙≠{𝑗−1,𝑗,𝑗+1}

𝑒−𝑠𝑘𝜎𝑧
𝑙 𝜎𝑧

𝑙+1
𝑁

∏
𝑚=1

𝑒𝑠𝑘𝜎𝑧
𝑚𝜎𝑧

𝑚+1d𝑠𝑘 = (A.14)

=
𝑁

∑
𝑗=1

𝐽𝑗𝜎𝑥
𝑗 𝜎𝑥

𝑗+1 ∫
𝑥

0
𝑒2𝑠𝑘𝜎𝑧

𝑗−1𝜎𝑧
𝑗 𝑒2𝑠𝑘𝜎𝑧

𝑗+1𝜎𝑧
𝑗+2d𝑠𝑘 (A.15)

This result is used here.

First orders for the time-evolved expectations for 𝑀(𝑡) and 𝐹(𝑡):

Ω1;𝑀 = 𝔼ℎ (𝜀 ∫
−𝑖𝑡

0
(𝑒−𝑖𝑡𝐻0 [𝑒−𝑠𝐻0 ∑

𝑘
ℎ𝑘𝜎𝑥

𝑘𝑒𝑠𝐻0 , 𝑀] 𝑒𝑖𝑡𝐻0) d𝑠) = (A.16)

=𝔼ℎ(𝜀 ∫
−𝑖𝑡

0
(𝑒−𝑖𝑡 ∑𝑎 𝜎𝑧

𝑎𝜎𝑧
𝑎+1 ⋅

[𝑒−𝑠 ∑𝑙 𝜎𝑧
𝑙 𝜎𝑧

𝑙+1 ∑
𝑘

ℎ𝑘𝜎𝑥
𝑘𝑒𝑠 ∑𝑚 𝜎𝑧

𝑚𝜎𝑧
𝑚+1 , (𝕀 ⊗ 𝕀 ⊗ … ⊗ 𝜎𝑧

𝑗 ⊗ … ⊗ 𝕀 ⊗ 𝕀)] 𝑒𝑖𝑡 ∑𝑏 𝜎𝑧
𝑏𝜎𝑧

𝑏+1)d𝑠) = (A.17)

=𝔼ℎ(𝜀 ∫
−𝑖𝑡

0
(𝑒−𝑖𝑡 ∑𝑎 𝜎𝑧

𝑎𝜎𝑧
𝑎+1 ⋅

[∑
𝑘

∏
𝑙

𝑒−𝑠𝜎𝑧
𝑙 𝜎𝑧

𝑙+1ℎ𝑘𝜎𝑥
𝑘 ∏

𝑚
𝑒𝑠𝜎𝑧

𝑚𝜎𝑧
𝑚+1 , (𝕀 ⊗ 𝕀 ⊗ … ⊗ 𝜎𝑧

𝑗 ⊗ … ⊗ 𝕀 ⊗ 𝕀)] 𝑒𝑖𝑡 ∑𝑏 𝜎𝑧
𝑏𝜎𝑧

𝑏+1)d𝑠) = (A.18)

=𝔼ℎ(𝜀 ∫
−𝑖𝑡

0
(𝑒−𝑖𝑡 ∑𝑎 𝜎𝑧

𝑎𝜎𝑧
𝑎+1 ⋅ [∑

𝑘
ℎ𝑘𝜎𝑥

𝑘 ∏
𝑙<𝑘

𝑒−𝑠𝜎𝑧
𝑙 𝜎𝑧

𝑙+1𝑒𝑠𝜎𝑧
𝑘−1𝜎𝑧

𝑘𝑒𝑠𝜎𝑧
𝑘𝜎𝑧

𝑘+1 ⋅

∏
𝑙′>𝑘+1

𝑒−𝑠𝜎𝑧
𝑙′ 𝜎𝑧

𝑙′+1 ∏
𝑚

𝑒𝑠𝜎𝑧
𝑚𝜎𝑧

𝑚+1 , (𝕀 ⊗ 𝕀 ⊗ … ⊗ 𝜎𝑧
𝑗 ⊗ … ⊗ 𝕀 ⊗ 𝕀)]𝑒𝑖𝑡 ∑𝑏 𝜎𝑧

𝑏𝜎𝑧
𝑏+1)d𝑠) = (A.19)

=𝔼ℎ(𝜀 ∫
−𝑖𝑡

0
(𝑒−𝑖𝑡 ∑𝑎 𝜎𝑧

𝑎𝜎𝑧
𝑎+1 ⋅

∑
𝑘

[ℎ𝑘𝜎𝑥
𝑘𝑒2𝑠𝜎𝑧

𝑘−1𝜎𝑧
𝑘𝑒2𝑠𝜎𝑧

𝑘𝜎𝑧
𝑘+1 , (𝕀 ⊗ 𝕀 ⊗ … ⊗ 𝜎𝑧

𝑗 ⊗ … ⊗ 𝕀 ⊗ 𝕀)] 𝑒𝑖𝑡 ∑𝑏 𝜎𝑧
𝑏𝜎𝑧

𝑏+1)d𝑠) = (A.20)

=𝔼ℎ(𝜀 ∫
−𝑖𝑡

0
(𝑒−𝑖𝑡 ∑𝑎 𝜎𝑧

𝑎𝜎𝑧
𝑎+1 ⋅ ∑

𝑘
(ℎ𝑘𝜎𝑥

𝑘𝑒2𝑠𝜎𝑧
𝑘−1𝜎𝑧

𝑘𝑒2𝑠𝜎𝑧
𝑘𝜎𝑧

𝑘+1 (𝕀 ⊗ 𝕀 ⊗ … ⊗ 𝜎𝑧
𝑗 ⊗ … ⊗ 𝕀 ⊗ 𝕀) −
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− (𝕀 ⊗ 𝕀 ⊗ … ⊗ 𝜎𝑧
𝑗 ⊗ … ⊗ 𝕀 ⊗ 𝕀) ℎ𝑘𝜎𝑥

𝑘𝑒2𝑠𝜎𝑧
𝑘−1𝜎𝑧

𝑘𝑒2𝑠𝜎𝑧
𝑘𝜎𝑧

𝑘+1)𝑒𝑖𝑡 ∑𝑏 𝜎𝑧
𝑏𝜎𝑧

𝑏+1)d𝑠) = (A.21)

=𝔼ℎ(𝜀 ∫
−𝑖𝑡

0
(𝑒−𝑖𝑡 ∑𝑎 𝜎𝑧

𝑎𝜎𝑧
𝑎+1 ⋅ ∑

𝑘
(ℎ𝑘𝜎𝑥

𝑘 (𝕀 ⊗ 𝕀 ⊗ … ⊗ 𝜎𝑧
𝑗 ⊗ … ⊗ 𝕀 ⊗ 𝕀) 𝑒2𝑠𝜎𝑧

𝑘−1𝜎𝑧
𝑘𝑒2𝑠𝜎𝑧

𝑘𝜎𝑧
𝑘+1−

− ℎ𝑘𝜎𝑥
𝑘 (𝕀 ⊗ 𝕀 ⊗ … ⊗ (−1)𝛿𝑗,𝑘𝜎𝑧

𝑗 ⊗ … ⊗ 𝕀 ⊗ 𝕀) 𝑒2𝑠𝜎𝑧
𝑘−1𝜎𝑧

𝑘𝑒2𝑠𝜎𝑧
𝑘𝜎𝑧

𝑘+1)𝑒𝑖𝑡 ∑𝑏 𝜎𝑧
𝑏𝜎𝑧

𝑏+1)d𝑠) = (A.22)

=𝔼ℎ(𝜀 ∫
−𝑖𝑡

0
(𝑒−𝑖𝑡 ∑𝑎 𝜎𝑧

𝑎𝜎𝑧
𝑎+12ℎ𝑗𝜎𝑥

𝑗 𝜎𝑧
𝑗 𝑒2𝑠𝜎𝑧

𝑗−1𝜎𝑧
𝑗 𝑒2𝑠𝜎𝑧

𝑗 𝜎𝑧
𝑗+1𝑒𝑖𝑡 ∑𝑏 𝜎𝑧

𝑏𝜎𝑧
𝑏+1)d𝑠) = (A.23)

=𝔼ℎ (ℎ𝑗 ⋅ const.) = (A.24)
=0 (A.25)

Ω1;𝐹 = 𝔼ℎ (𝜀 ∫
−𝑖𝑡

0
(𝑒−𝑖𝑡𝐻0 [𝑒−𝑠𝐻0 ∑

𝑘
ℎ𝑘𝜎𝑥

𝑘𝑒𝑠𝐻0 , 𝑀] 𝑒𝑖𝑡𝐻0) d𝑠) = (A.26)

=𝔼ℎ(𝜀 ∫
−𝑖𝑡

0
(𝑒−𝑖𝑡 ∑𝑎 𝜎𝑧

𝑎𝜎𝑧
𝑎+1 ⋅

[𝑒−𝑠 ∑𝑙 𝜎𝑧
𝑙 𝜎𝑧

𝑙+1 ∑
𝑘

ℎ𝑘𝜎𝑥
𝑘𝑒𝑠 ∑𝑚 𝜎𝑧

𝑚𝜎𝑧
𝑚+1 , (𝕀 ⊗ 𝕀 ⊗ … ⊗ 𝜎𝑥

𝑗 ⊗ … ⊗ 𝕀 ⊗ 𝕀)] 𝑒𝑖𝑡 ∑𝑏 𝜎𝑧
𝑏𝜎𝑧

𝑏+1)d𝑠) = (A.27)

=𝔼ℎ(𝜀 ∫
−𝑖𝑡

0
(𝑒−𝑖𝑡 ∑𝑎 𝜎𝑧

𝑎𝜎𝑧
𝑎+1 ⋅

[∑
𝑘

∏
𝑙

𝑒−𝑠𝜎𝑧
𝑙 𝜎𝑧

𝑙+1ℎ𝑘𝜎𝑥
𝑘 ∏

𝑚
𝑒𝑠𝜎𝑧

𝑚𝜎𝑧
𝑚+1 , (𝕀 ⊗ 𝕀 ⊗ … ⊗ 𝜎𝑥

𝑗 ⊗ … ⊗ 𝕀 ⊗ 𝕀)] 𝑒𝑖𝑡 ∑𝑏 𝜎𝑧
𝑏𝜎𝑧

𝑏+1)d𝑠) = (A.28)

=𝔼ℎ(𝜀 ∫
−𝑖𝑡

0
(𝑒−𝑖𝑡 ∑𝑎 𝜎𝑧

𝑎𝜎𝑧
𝑎+1 ⋅ [∑

𝑘
ℎ𝑘𝜎𝑥

𝑘 ∏
𝑙<𝑘

𝑒−𝑠𝜎𝑧
𝑙 𝜎𝑧

𝑙+1𝑒𝑠𝜎𝑧
𝑘−1𝜎𝑧

𝑘𝑒𝑠𝜎𝑧
𝑘𝜎𝑧

𝑘+1 ⋅

∏
𝑙′>𝑘+1

𝑒−𝑠𝜎𝑧
𝑙′ 𝜎𝑧

𝑙′+1 ∏
𝑚

𝑒𝑠𝜎𝑧
𝑚𝜎𝑧

𝑚+1 , (𝕀 ⊗ 𝕀 ⊗ … ⊗ 𝜎𝑥
𝑗 ⊗ … ⊗ 𝕀 ⊗ 𝕀)]𝑒𝑖𝑡 ∑𝑏 𝜎𝑧

𝑏𝜎𝑧
𝑏+1)d𝑠) = (A.29)

=𝔼ℎ(𝜀 ∫
−𝑖𝑡

0
(𝑒−𝑖𝑡 ∑𝑎 𝜎𝑧

𝑎𝜎𝑧
𝑎+1 ⋅

∑
𝑘

[ℎ𝑘𝜎𝑥
𝑘𝑒2𝑠𝜎𝑧

𝑘−1𝜎𝑧
𝑘𝑒2𝑠𝜎𝑧

𝑘𝜎𝑧
𝑘+1 , (𝕀 ⊗ 𝕀 ⊗ … ⊗ 𝜎𝑥

𝑗 ⊗ … ⊗ 𝕀 ⊗ 𝕀)] 𝑒𝑖𝑡 ∑𝑏 𝜎𝑧
𝑏𝜎𝑧

𝑏+1)d𝑠) = (A.30)

=𝔼ℎ(𝜀 ∫
−𝑖𝑡

0
(𝑒−𝑖𝑡 ∑𝑎 𝜎𝑧

𝑎𝜎𝑧
𝑎+1 ⋅ ∑

𝑘
(ℎ𝑘𝜎𝑥

𝑘𝑒2𝑠𝜎𝑧
𝑘−1𝜎𝑧

𝑘𝑒2𝑠𝜎𝑧
𝑘𝜎𝑧

𝑘+1 (𝕀 ⊗ 𝕀 ⊗ … ⊗ 𝜎𝑥
𝑗 ⊗ … ⊗ 𝕀 ⊗ 𝕀) −

− (𝕀 ⊗ 𝕀 ⊗ … ⊗ 𝜎𝑥
𝑗 ⊗ … ⊗ 𝕀 ⊗ 𝕀) ℎ𝑘𝜎𝑥

𝑘𝑒2𝑠𝜎𝑧
𝑘−1𝜎𝑧

𝑘𝑒2𝑠𝜎𝑧
𝑘𝜎𝑧

𝑘+1)𝑒𝑖𝑡 ∑𝑏 𝜎𝑧
𝑏𝜎𝑧

𝑏+1)d𝑠) = (A.31)

=𝔼ℎ(𝜀 ∫
−𝑖𝑡

0
(𝑒−𝑖𝑡 ∑𝑎 𝜎𝑧

𝑎𝜎𝑧
𝑎+1 ⋅

∑
𝑘

(ℎ𝑘𝜎𝑥
𝑘 (𝕀 ⊗ 𝕀 ⊗ … ⊗ 𝜎𝑥

𝑗 ⊗ … ⊗ 𝕀 ⊗ 𝕀) 𝑒(−1)𝛿(𝑘,𝑗+1)+𝛿(𝑘,𝑗)2𝑠𝜎𝑧
𝑘−1𝜎𝑧

𝑘𝑒(−1)𝛿(𝑘,𝑗)+𝛿(𝑘,𝑗−1)2𝑠𝜎𝑧
𝑘𝜎𝑧

𝑘+1−

− ℎ𝑘𝜎𝑥
𝑘 (𝕀 ⊗ 𝕀 ⊗ … ⊗ 𝜎𝑥

𝑗 ⊗ … ⊗ 𝕀 ⊗ 𝕀) 𝑒2𝑠𝜎𝑧
𝑘−1𝜎𝑧

𝑘𝑒2𝑠𝜎𝑧
𝑘𝜎𝑧

𝑘+1)𝑒𝑖𝑡 ∑𝑏 𝜎𝑧
𝑏𝜎𝑧

𝑏+1)d𝑠) = (A.32)
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=𝔼ℎ(𝜀 ∫
−𝑖𝑡

0
(𝑒−𝑖𝑡 ∑𝑎 𝜎𝑧

𝑎𝜎𝑧
𝑎+1(ℎ𝑗−1𝜎𝑥

𝑗−1𝜎𝑥
𝑗 (𝑒2𝑠𝜎𝑧

𝑗−2𝜎𝑧
𝑗−1𝑒−2𝑠𝜎𝑧

𝑗−1𝜎𝑧
𝑗 − 𝑒2𝑠𝜎𝑧

𝑗−2𝜎𝑧
𝑗−1𝑒2𝑠𝜎𝑧

𝑗−1𝜎𝑧
𝑗 ) +

+ ℎ𝑗𝜎𝑥
𝑗 𝜎𝑥

𝑗 (𝑒−2𝑠𝜎𝑧
𝑗−1𝜎𝑧

𝑗 𝑒−2𝑠𝜎𝑧
𝑗 𝜎𝑧

𝑗+1 − 𝑒2𝑠𝜎𝑧
𝑗−1𝜎𝑧

𝑗 𝑒2𝑠𝜎𝑧
𝑗 𝜎𝑧

𝑗+1) +

+ ℎ𝑗+1𝜎𝑥
𝑗+1𝜎𝑥

𝑗 (𝑒−2𝑠𝜎𝑧
𝑗 𝜎𝑧

𝑗+1𝑒2𝑠𝜎𝑧
𝑗+1𝜎𝑧

𝑗+2 − 𝑒2𝑠𝜎𝑧
𝑗 𝜎𝑧

𝑗+1𝑒2𝑠𝜎𝑧
𝑗+1𝜎𝑧

𝑗+2))𝑒𝑖𝑡 ∑𝑏 𝜎𝑧
𝑏𝜎𝑧

𝑏+1)d𝑠) = (A.33)

=𝔼ℎ(𝜀 ∫
−𝑖𝑡

0
(𝑒−𝑖𝑡 ∑𝑎 𝜎𝑧

𝑎𝜎𝑧
𝑎+1(ℎ𝑗−1𝜎𝑥

𝑗−1𝜎𝑥
𝑗 𝑒2𝑠𝜎𝑧

𝑗−2𝜎𝑧
𝑗−1 (𝑒−2𝑠𝜎𝑧

𝑗−1𝜎𝑧
𝑗 − 𝑒2𝑠𝜎𝑧

𝑗−1𝜎𝑧
𝑗 ) +

+ ℎ𝑗(𝜎𝑥
𝑗 )2 (𝑒−2𝑠𝜎𝑧

𝑗−1𝜎𝑧
𝑗 𝑒−2𝑠𝜎𝑧

𝑗 𝜎𝑧
𝑗+1 − 𝑒2𝑠𝜎𝑧

𝑗−1𝜎𝑧
𝑗 𝑒2𝑠𝜎𝑧

𝑗 𝜎𝑧
𝑗+1) +

+ ℎ𝑗+1𝜎𝑥
𝑗+1𝜎𝑥

𝑗 𝑒2𝑠𝜎𝑧
𝑗+1𝜎𝑧

𝑗+2 (𝑒−2𝑠𝜎𝑧
𝑗 𝜎𝑧

𝑗+1 − 𝑒2𝑠𝜎𝑧
𝑗 𝜎𝑧

𝑗+1))𝑒𝑖𝑡 ∑𝑏 𝜎𝑧
𝑏𝜎𝑧

𝑏+1)d𝑠) = (A.34)

=𝔼ℎ(𝜀 ∫
−𝑖𝑡

0
(𝑒−𝑖𝑡 ∑𝑎 𝜎𝑧

𝑎𝜎𝑧
𝑎+1(ℎ𝑗−1𝜎𝑥

𝑗−1𝜎𝑥
𝑗 𝑒2𝑠𝜎𝑧

𝑗−2𝜎𝑧
𝑗−1 ⋅ (−2 sinh(2𝑠𝜎𝑧

𝑗−1𝜎𝑧
𝑗 )) +

ℎ𝑗(𝜎𝑥
𝑗 )2 ⋅ (−2 sinh(2𝑠(𝜎𝑧

𝑗−1𝜎𝑧
𝑗 + 𝜎𝑧

𝑗 𝜎𝑧
𝑗+1))) +

+ ℎ𝑗+1𝜎𝑥
𝑗+1𝜎𝑥

𝑗 𝑒2𝑠𝜎𝑧
𝑗+1𝜎𝑧

𝑗+2 ⋅ (−2 sinh(2𝑠𝜎𝑧
𝑗 𝜎𝑧

𝑗+1)))𝑒𝑖𝑡 ∑𝑏 𝜎𝑧
𝑏𝜎𝑧

𝑏+1)d𝑠) = (A.35)

=𝔼ℎ ⎛⎜
⎝

∑
𝑘∈{𝑗−1,𝑗,𝑗+1}

ℎ𝑘 ⋅ const.⎞⎟
⎠

= (A.36)

=0, (A.37)

This result is used here.

Second order for the time-evolved expectation of 𝑀(𝑡):

Ω2;𝑀 = 𝔼ℎ (𝜀2 ∫
−𝑖𝑡

0
∫

𝑠

0
𝑒−𝑖𝑡𝐻0 [𝐻𝜈(𝑠), [𝐻𝜈(𝑠1), 𝑀]] 𝑒𝑖𝑡𝐻0d𝑠1d𝑠) = (A.38)

=𝔼ℎ (𝜀2 ∫
−𝑖𝑡

0
∫

𝑠

0
𝑒−𝑖𝑡 ∑𝑎 𝜎𝑧

𝑎𝜎𝑧
𝑎+1 [𝐻𝜈(𝑠), 2ℎ𝑗𝜎𝑥

𝑗 𝜎𝑧
𝑗 𝑒2𝑠1𝜎𝑧

𝑗−1𝜎𝑧
𝑗 𝑒2𝑠1𝜎𝑧

𝑗 𝜎𝑧
𝑗+1] 𝑒𝑖𝑡 ∑𝑏 𝜎𝑧

𝑏𝜎𝑧
𝑏+1d𝑠1d𝑠) = (A.39)

=𝔼ℎ(𝜀2 ∫
−𝑖𝑡

0
∫

𝑠

0
𝑒−𝑖𝑡 ∑𝑎 𝜎𝑧

𝑎𝜎𝑧
𝑎+1 ⋅

[𝑒−𝑠 ∑𝑙 𝜎𝑧
𝑙 𝜎𝑧

𝑙+1 ∑
𝑘

ℎ𝑘𝜎𝑥
𝑘𝑒𝑠 ∑𝑚 𝜎𝑧

𝑚𝜎𝑧
𝑚+1 , 2ℎ𝑗𝜎𝑥

𝑗 𝜎𝑧
𝑗 𝑒2𝑠1𝜎𝑧

𝑗−1𝜎𝑧
𝑗 𝑒2𝑠1𝜎𝑧

𝑗 𝜎𝑧
𝑗+1] 𝑒𝑖𝑡 ∑𝑏 𝜎𝑧

𝑏𝜎𝑧
𝑏+1d𝑠1d𝑠) = (A.40)

=𝔼ℎ(𝜀2 ∫
−𝑖𝑡

0
∫

𝑠

0
𝑒−𝑖𝑡 ∑𝑎 𝜎𝑧

𝑎𝜎𝑧
𝑎+1 ⋅

∑
𝑘

[ℎ𝑘𝜎𝑥
𝑘𝑒2𝑠𝜎𝑧

𝑘−1𝜎𝑧
𝑘𝑒2𝑠𝜎𝑧

𝑘𝜎𝑧
𝑘+1 , 2ℎ𝑗𝜎𝑥

𝑗 𝜎𝑧
𝑗 𝑒2𝑠1𝜎𝑧

𝑗−1𝜎𝑧
𝑗 𝑒2𝑠1𝜎𝑧

𝑗 𝜎𝑧
𝑗+1] 𝑒𝑖𝑡 ∑𝑏 𝜎𝑧

𝑏𝜎𝑧
𝑏+1d𝑠1d𝑠) = (A.41)

=𝔼ℎ(𝜀2 ∫
−𝑖𝑡

0
∫

𝑠

0
𝑒−𝑖𝑡 ∑𝑎 𝜎𝑧

𝑎𝜎𝑧
𝑎+1 ⋅ ∑

𝑘
(ℎ𝑘𝜎𝑥

𝑘𝑒2𝑠𝜎𝑧
𝑘−1𝜎𝑧

𝑘𝑒2𝑠𝜎𝑧
𝑘𝜎𝑧

𝑘+12ℎ𝑗𝜎𝑥
𝑗 𝜎𝑧

𝑗 𝑒2𝑠1𝜎𝑧
𝑗−1𝜎𝑧

𝑗 𝑒2𝑠1𝜎𝑧
𝑗 𝜎𝑧

𝑗+1−

− 2ℎ𝑗𝜎𝑥
𝑗 𝜎𝑧

𝑗 𝑒2𝑠1𝜎𝑧
𝑗−1𝜎𝑧

𝑗 𝑒2𝑠1𝜎𝑧
𝑗 𝜎𝑧

𝑗+1ℎ𝑘𝜎𝑥
𝑘𝑒2𝑠𝜎𝑧

𝑘−1𝜎𝑧
𝑘𝑒2𝑠𝜎𝑧

𝑘𝜎𝑧
𝑘+1)𝑒𝑖𝑡 ∑𝑏 𝜎𝑧

𝑏𝜎𝑧
𝑏+1d𝑠1d𝑠) = (A.42)
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=𝔼ℎ(𝜀2 ∫
−𝑖𝑡

0
∫

𝑠

0
𝑒−𝑖𝑡 ∑𝑎 𝜎𝑧

𝑎𝜎𝑧
𝑎+12ℎ𝑗⋅

∑
𝑘

ℎ𝑘(𝜎𝑥
𝑘𝑒2𝑠𝜎𝑧

𝑘−1𝜎𝑧
𝑘𝜎𝑥

𝑗 𝑒2𝑠(−1)𝛿(𝑗,𝑘)(−1)𝛿(𝑗,𝑘+1)𝜎𝑧
𝑘𝜎𝑧

𝑘+1𝜎𝑧
𝑗 𝑒2𝑠1𝜎𝑧

𝑗−1𝜎𝑧
𝑗 𝑒2𝑠1𝜎𝑧

𝑗 𝜎𝑧
𝑗+1−

− 𝜎𝑥
𝑗 𝜎𝑧

𝑗 𝑒2𝑠1𝜎𝑧
𝑗−1𝜎𝑧

𝑗 𝑒2𝑠1𝜎𝑧
𝑗 𝜎𝑧

𝑗+1𝜎𝑥
𝑘𝑒2𝑠𝜎𝑧

𝑘−1𝜎𝑧
𝑘𝑒2𝑠𝜎𝑧

𝑘𝜎𝑧
𝑘+1)𝑒𝑖𝑡 ∑𝑏 𝜎𝑧

𝑏𝜎𝑧
𝑏+1d𝑠1d𝑠) = (A.43)

=𝔼ℎ(𝜀2 ∫
−𝑖𝑡

0
∫

𝑠

0
𝑒−𝑖𝑡 ∑𝑎 𝜎𝑧

𝑎𝜎𝑧
𝑎+12ℎ𝑗⋅

∑
𝑘

ℎ𝑘(𝜎𝑥
𝑘𝜎𝑥

𝑗 𝜎𝑧
𝑗 𝑒2𝑠(−1)𝛿(𝑗,𝑘−1)(−1)𝛿(𝑗,𝑘)𝜎𝑧

𝑘−1𝜎𝑧
𝑘𝑒2𝑠(−1)𝛿(𝑗,𝑘)(−1)𝛿(𝑗,𝑘+1)𝜎𝑧

𝑘𝜎𝑧
𝑘+1𝑒2𝑠1𝜎𝑧

𝑗−1𝜎𝑧
𝑗 𝑒2𝑠1𝜎𝑧

𝑗 𝜎𝑧
𝑗+1−

− 𝜎𝑥
𝑗 𝜎𝑧

𝑗 𝜎𝑥
𝑘𝑒2𝑠1(−1)𝛿(𝑗−1,𝑘)(−1)𝛿(𝑗,𝑘)𝜎𝑧

𝑗−1𝜎𝑧
𝑗 𝑒2𝑠1(−1)𝛿(𝑗,𝑘)(−1)𝛿(𝑗+1,𝑘)𝜎𝑧

𝑗 𝜎𝑧
𝑗+1𝑒2𝑠𝜎𝑧

𝑘−1𝜎𝑧
𝑘𝑒2𝑠𝜎𝑧

𝑘𝜎𝑧
𝑘+1)⋅

𝑒𝑖𝑡 ∑𝑏 𝜎𝑧
𝑏𝜎𝑧

𝑏+1d𝑠1d𝑠) = (A.44)

=𝔼ℎ(𝜀2 ∫
−𝑖𝑡

0
∫

𝑠

0
𝑒−𝑖𝑡 ∑𝑎 𝜎𝑧

𝑎𝜎𝑧
𝑎+12ℎ𝑗⋅

∑
𝑘

ℎ𝑘(𝜎𝑥
𝑘𝜎𝑥

𝑗 𝜎𝑧
𝑗 𝑒2𝑠(−1)𝛿(𝑗,𝑘−1)(−1)𝛿(𝑗,𝑘)𝜎𝑧

𝑘−1𝜎𝑧
𝑘𝑒2𝑠(−1)𝛿(𝑗,𝑘)(−1)𝛿(𝑗,𝑘+1)𝜎𝑧

𝑘𝜎𝑧
𝑘+1𝑒2𝑠1𝜎𝑧

𝑗−1𝜎𝑧
𝑗 𝑒2𝑠1𝜎𝑧

𝑗 𝜎𝑧
𝑗+1−

− (−1)𝛿(𝑗,𝑘)𝜎𝑥
𝑘𝜎𝑥

𝑗 𝜎𝑧
𝑗 𝑒2𝑠1(−1)𝛿(𝑗−1,𝑘)(−1)𝛿(𝑗,𝑘)𝜎𝑧

𝑗−1𝜎𝑧
𝑗 𝑒2𝑠1(−1)𝛿(𝑗,𝑘)(−1)𝛿(𝑗+1,𝑘)𝜎𝑧

𝑗 𝜎𝑧
𝑗+1𝑒2𝑠𝜎𝑧

𝑘−1𝜎𝑧
𝑘𝑒2𝑠𝜎𝑧

𝑘𝜎𝑧
𝑘+1)⋅

𝑒𝑖𝑡 ∑𝑏 𝜎𝑧
𝑏𝜎𝑧

𝑏+1d𝑠1d𝑠) = (A.45)

=𝔼ℎ(𝜀2 ∫
−𝑖𝑡

0
∫

𝑠

0
𝑒−𝑖𝑡 ∑𝑎 𝜎𝑧

𝑎𝜎𝑧
𝑎+12ℎ𝑗⋅

∑
𝑘

ℎ𝑘𝜎𝑥
𝑘𝜎𝑥

𝑗 𝜎𝑧
𝑗 (𝑒2𝑠(−1)𝛿(𝑗,𝑘−1)(−1)𝛿(𝑗,𝑘)𝜎𝑧

𝑘−1𝜎𝑧
𝑘𝑒2𝑠(−1)𝛿(𝑗,𝑘)(−1)𝛿(𝑗,𝑘+1)𝜎𝑧

𝑘𝜎𝑧
𝑘+1𝑒2𝑠1𝜎𝑧

𝑗−1𝜎𝑧
𝑗 𝑒2𝑠1𝜎𝑧

𝑗 𝜎𝑧
𝑗+1−

− (−1)𝛿(𝑗,𝑘)𝑒2𝑠1(−1)𝛿(𝑗−1,𝑘)(−1)𝛿(𝑗,𝑘)𝜎𝑧
𝑗−1𝜎𝑧

𝑗 𝑒2𝑠1(−1)𝛿(𝑗,𝑘)(−1)𝛿(𝑗+1,𝑘)𝜎𝑧
𝑗 𝜎𝑧

𝑗+1𝑒2𝑠𝜎𝑧
𝑘−1𝜎𝑧

𝑘𝑒2𝑠𝜎𝑧
𝑘𝜎𝑧

𝑘+1)⋅

𝑒𝑖𝑡 ∑𝑏 𝜎𝑧
𝑏𝜎𝑧

𝑏+1d𝑠1d𝑠) ≡ (A.46)

≡𝔼ℎ(𝜀2 ∫
−𝑖𝑡

0
∫

𝑠

0
𝑒−𝑖𝑡 ∑𝑎 𝜎𝑧

𝑎𝜎𝑧
𝑎+12ℎ𝑗 ∑

𝑘
ℎ𝑘𝜎𝑥

𝑘𝜎𝑥
𝑗 𝜎𝑧

𝑗 Θ(𝑗, 𝑘)𝑒𝑖𝑡 ∑𝑏 𝜎𝑧
𝑏𝜎𝑧

𝑏+1d𝑠1d𝑠) (A.47)

The expression can be further simplified, using the defined functions Θ.

Ω2;𝑀 = 𝔼ℎ(𝜀2 ∫
−𝑖𝑡

0
∫

𝑠

0
𝑒−𝑖𝑡 ∑𝑎 𝜎𝑧

𝑎𝜎𝑧
𝑎+12ℎ𝑗⋅

(ℎ𝑗−1𝜎𝑥
𝑗−1𝜎𝑥

𝑗 𝜎𝑧
𝑗 Θ(𝑘 = 𝑗 − 1) + ℎ𝑗𝜎𝑥

𝑗 𝜎𝑥
𝑗 𝜎𝑧

𝑗 Θ(𝑘 = 𝑗) + ℎ𝑗+1𝜎𝑥
𝑗+1𝜎𝑥

𝑗 𝜎𝑧
𝑗 Θ(𝑘 = 𝑗 + 1))⋅

𝑒𝑖𝑡 ∑𝑏 𝜎𝑧
𝑏𝜎𝑧

𝑏+1d𝑠1d𝑠) = (A.48)

=𝔼ℎ(𝜀2 ∫
−𝑖𝑡

0
∫

𝑠

0
𝑒−𝑖𝑡 ∑𝑎 𝜎𝑧

𝑎𝜎𝑧
𝑎+12ℎ𝑗ℎ𝑗𝜎𝑥

𝑗 𝜎𝑥
𝑗 𝜎𝑧

𝑗 Θ(𝑘 = 𝑗)𝑒𝑖𝑡 ∑𝑏 𝜎𝑧
𝑏𝜎𝑧

𝑏+1d𝑠1d𝑠) = (A.49)
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=𝔼ℎ(𝜀2 ∫
−𝑖𝑡

0
∫

𝑠

0
𝑒−𝑖𝑡 ∑𝑎 𝜎𝑧

𝑎𝜎𝑧
𝑎+12ℎ2

𝑗(𝜎𝑥
𝑗 )2𝜎𝑧

𝑗 ⋅

(𝑒−2𝑠𝜎𝑧
𝑗−1𝜎𝑧

𝑗 𝑒−2𝑠𝜎𝑧
𝑗 𝜎𝑧

𝑗+1𝑒2𝑠1𝜎𝑧
𝑗−1𝜎𝑧

𝑗 𝑒2𝑠1𝜎𝑧
𝑗 𝜎𝑧

𝑗+1 + 𝑒−2𝑠1𝜎𝑧
𝑗−1𝜎𝑧

𝑗 𝑒−2𝑠1𝜎𝑧
𝑗 𝜎𝑧

𝑗+1𝑒2𝑠𝜎𝑧
𝑗−1𝜎𝑧

𝑗 𝑒2𝑠𝜎𝑧
𝑗 𝜎𝑧

𝑗+1) ⋅

𝑒𝑖𝑡 ∑𝑏 𝜎𝑧
𝑏𝜎𝑧

𝑏+1d𝑠1d𝑠) = (A.50)

=2𝜀2𝜂2
ℎ ∫

−𝑖𝑡

0
∫

𝑠

0
𝑒−𝑖𝑡 ∑𝑎 𝜎𝑧

𝑎𝜎𝑧
𝑎+1(𝜎𝑥

𝑗 )2𝜎𝑧
𝑗 ⋅

(𝑒−2𝑠(𝜎𝑧
𝑗−1𝜎𝑧

𝑗 +𝜎𝑧
𝑗 𝜎𝑧

𝑗+1)𝑒2𝑠1(𝜎𝑧
𝑗−1𝜎𝑧

𝑗 +𝜎𝑧
𝑗 𝜎𝑧

𝑗+1) + 𝑒2𝑠(𝜎𝑧
𝑗−1𝜎𝑧

𝑗 +𝜎𝑧
𝑗 𝜎𝑧

𝑗+1)𝑒−2𝑠1(𝜎𝑧
𝑗−1𝜎𝑧

𝑗 +𝜎𝑧
𝑗 𝜎𝑧

𝑗+1)) ⋅
𝑒𝑖𝑡 ∑𝑏 𝜎𝑧

𝑏𝜎𝑧
𝑏+1d𝑠1d𝑠 = (A.51)

=2𝜀2𝜂2
ℎ ∫

−𝑖𝑡

0
∫

𝑠

0
∏

𝑎
𝑒−𝑖𝑡𝜎𝑧

𝑎𝜎𝑧
𝑎+1(𝜎𝑥

𝑗 )2𝜎𝑧
𝑗 ⋅

(𝑒−2𝑠(𝜎𝑧
𝑗−1𝜎𝑧

𝑗 +𝜎𝑧
𝑗 𝜎𝑧

𝑗+1)𝑒2𝑠1(𝜎𝑧
𝑗−1𝜎𝑧

𝑗 +𝜎𝑧
𝑗 𝜎𝑧

𝑗+1) + 𝑒2𝑠(𝜎𝑧
𝑗−1𝜎𝑧

𝑗 +𝜎𝑧
𝑗 𝜎𝑧

𝑗+1)𝑒−2𝑠1(𝜎𝑧
𝑗−1𝜎𝑧

𝑗 +𝜎𝑧
𝑗 𝜎𝑧

𝑗+1)) ⋅
𝑒𝑖𝑡 ∑𝑏 𝜎𝑧

𝑏𝜎𝑧
𝑏+1d𝑠1d𝑠 = (A.52)

=2𝜀2𝜂2
ℎ(𝜎𝑥

𝑗 )2𝜎𝑧
𝑗 ∫

−𝑖𝑡

0
∫

𝑠

0
(𝑒−2𝑠(𝜎𝑧

𝑗−1𝜎𝑧
𝑗 +𝜎𝑧

𝑗 𝜎𝑧
𝑗+1)𝑒2𝑠1(𝜎𝑧

𝑗−1𝜎𝑧
𝑗 +𝜎𝑧

𝑗 𝜎𝑧
𝑗+1)+

+ 𝑒2𝑠(𝜎𝑧
𝑗−1𝜎𝑧

𝑗 +𝜎𝑧
𝑗 𝜎𝑧

𝑗+1)𝑒−2𝑠1(𝜎𝑧
𝑗−1𝜎𝑧

𝑗 +𝜎𝑧
𝑗 𝜎𝑧

𝑗+1))d𝑠1d𝑠 = (A.53)

=2𝜀2𝜂2
ℎ𝜎𝑧

𝑗 ∫
−𝑖𝑡

0
∫

𝑠

0
2 cosh (2(𝑠 − 𝑠1)(𝜎𝑧

𝑗−1𝜎𝑧
𝑗 + 𝜎𝑧

𝑗 𝜎𝑧
𝑗+1)) d𝑠1d𝑠 (A.54)

This result is used here.

Example calculation of Ω2;𝑀 :

Ω2;𝑀 = 𝔼ℎ (𝜀2 ∫
−𝑖𝑡

0
∫

𝑠

0
𝑒−𝑖𝑡𝐻0 [𝐻𝜈(𝑠), [𝐻𝜈(𝑠1), 𝑀]] 𝑒𝑖𝑡𝐻0d𝑠1d𝑠) = (A.55)

=𝔼ℎ (𝜀2 ∫
−𝑖𝑡

0
∫

𝑠

0
[∑

𝑙
ℎ𝑙𝜎𝑥

𝑙 , [∑
𝑘

ℎ𝑘𝜎𝑥
𝑘 , 𝜎𝑧

𝑗 ]] d𝑠1d𝑠) = (A.56)

=𝔼ℎ (𝜀2 ∫
−𝑖𝑡

0
∫

𝑠

0
[∑

𝑙
ℎ𝑙𝜎𝑥

𝑙 , (∑
𝑘

ℎ𝑘𝜎𝑥
𝑘𝜎𝑧

𝑗 − 𝜎𝑧
𝑗 ∑

𝑘1

ℎ𝑘1
𝜎𝑥

𝑘)] d𝑠1d𝑠) = (A.57)

=𝔼ℎ (𝜀2 ∫
−𝑖𝑡

0
∫

𝑠

0
[∑

𝑙
ℎ𝑙𝜎𝑥

𝑙 , (∑
𝑘

(−1)𝛿(𝑘,𝑗)ℎ𝑘𝜎𝑧
𝑗 𝜎𝑥

𝑘 − 𝜎𝑧
𝑗 ∑

𝑘1

ℎ𝑘1
𝜎𝑥

𝑘)] d𝑠1d𝑠) = (A.58)

=𝔼ℎ (𝜀2 ∫
−𝑖𝑡

0
∫

𝑠

0
[∑

𝑙
ℎ𝑙𝜎𝑥

𝑙 , 𝜎𝑧
𝑗 (−2ℎ𝑗𝜎𝑥

𝑗 )] d𝑠1d𝑠) = (A.59)

=𝔼ℎ (𝜀2 ∫
−𝑖𝑡

0
∫

𝑠

0
(−2 ∑

𝑙
ℎ𝑙𝜎𝑥

𝑙 ⋅ 𝜎𝑧
𝑗 ℎ𝑗𝜎𝑥

𝑗 + 2𝜎𝑧
𝑗 ℎ𝑗𝜎𝑥

𝑗 ⋅ ∑
𝑙1

ℎ𝑙1
𝜎𝑥

𝑙1
) d𝑠1d𝑠) = (A.60)

=𝔼ℎ (𝜀2 ∫
−𝑖𝑡

0
∫

𝑠

0
(−2 ∑

𝑙
(−1)𝛿(𝑗,𝑙)ℎ𝑙𝜎𝑧

𝑗 𝜎𝑥
𝑙 ⋅ ℎ𝑗𝜎𝑥

𝑗 + 2𝜎𝑧
𝑗 ℎ𝑗𝜎𝑥

𝑗 ⋅ ∑
𝑙1

ℎ𝑙1
𝜎𝑥

𝑙1
) d𝑠1d𝑠) = (A.61)

=𝔼ℎ (−2𝜀2ℎ𝑗𝜎𝑧
𝑗 𝜎𝑥

𝑗 ∫
−𝑖𝑡

0
∫

𝑠

0
(∑

𝑙
(−1)𝛿(𝑗,𝑙)ℎ𝑙𝜎𝑥

𝑙 − ∑
𝑙1

ℎ𝑙1
𝜎𝑥

𝑙1
) d𝑠1d𝑠) = (A.62)

=𝔼ℎ (−2𝜀2ℎ𝑗𝜎𝑧
𝑗 𝜎𝑥

𝑗 ∫
−𝑖𝑡

0
∫

𝑠

0
(−2ℎ𝑗𝜎𝑥

𝑗 ) d𝑠1d𝑠) = (A.63)
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=𝔼ℎ (4𝜀2ℎ2
𝑗𝜎𝑧

𝑗 ∫
−𝑖𝑡

0
∫

𝑠

0
d𝑠1d𝑠) = (A.64)

=𝔼ℎ (4𝜀2ℎ2
𝑗𝜎𝑧

𝑗 ∫
−𝑖𝑡

0
𝑠d𝑠) = (A.65)

=𝔼ℎ (4𝜀2ℎ2
𝑗𝜎𝑧

𝑗 [𝑠2

2 ]
−𝑖𝑡

0
) = (A.66)

=𝔼ℎ (4𝜀2ℎ2
𝑗𝜎𝑧

𝑗
−𝑡2

2 ) = (A.67)

=𝔼ℎ (−2𝜀2ℎ2
𝑗𝜎𝑧

𝑗 𝑡2) = (A.68)
= − 2𝑡2𝜂2

ℎ𝜎𝑧
𝑗 (A.69)

This result is used here.

Fourth order for the time-evolved expectation of 𝑀(𝑡):

Ω2;𝐹 = 𝔼ℎ (𝜀2 ∫
−𝑖𝑡

0
∫

𝑠

0
𝑒−𝑖𝑡𝐻0 [𝐻𝜈(𝑠), [𝐻𝜈(𝑠1), 𝐹 ]] 𝑒𝑖𝑡𝐻0d𝑠1d𝑠) = (A.70)

=𝔼ℎ(𝜀2 ∫
−𝑖𝑡

0
∫

𝑠

0
𝑒−𝑖𝑡 ∑𝑎 𝜎𝑧

𝑎𝜎𝑧
𝑎+1[𝐻𝜈(𝑠), (ℎ𝑗−1𝜎𝑥

𝑗−1𝜎𝑥
𝑗 𝑒2𝑠1𝜎𝑧

𝑗−2𝜎𝑧
𝑗−1 ⋅ (−2 sinh(2𝑠1𝜎𝑧

𝑗−1𝜎𝑧
𝑗 )) +

+ ℎ𝑗(𝜎𝑥
𝑗 )2 ⋅ (−2 sinh(2𝑠1(𝜎𝑧

𝑗−1𝜎𝑧
𝑗 + 𝜎𝑧

𝑗 𝜎𝑧
𝑗+1))) +

+ ℎ𝑗+1𝜎𝑥
𝑗+1𝜎𝑥

𝑗 𝑒2𝑠1𝜎𝑧
𝑗+1𝜎𝑧

𝑗+2 ⋅ (−2 sinh(2𝑠1𝜎𝑧
𝑗 𝜎𝑧

𝑗+1)))] ⋅ 𝑒𝑖𝑡 ∑𝑏 𝜎𝑧
𝑏𝜎𝑧

𝑏+1d𝑠1d𝑠) = (A.71)

=𝔼ℎ(𝜀2 ∫
−𝑖𝑡

0
∫

𝑠

0
𝑒−𝑖𝑡 ∑𝑎 𝜎𝑧

𝑎𝜎𝑧
𝑎+1[𝑒−𝑠 ∑𝑙 𝜎𝑧

𝑙 𝜎𝑧
𝑙+1 ∑

𝑘
ℎ𝑘𝜎𝑥

𝑘𝑒𝑠 ∑𝑚 𝜎𝑧
𝑚𝜎𝑧

𝑚+1 ,

(ℎ𝑗−1𝜎𝑥
𝑗−1𝜎𝑥

𝑗 𝑒2𝑠1𝜎𝑧
𝑗−2𝜎𝑧

𝑗−1 ⋅ (−2 sinh(2𝑠1𝜎𝑧
𝑗−1𝜎𝑧

𝑗 )) + ℎ𝑗(𝜎𝑥
𝑗 )2 ⋅ (−2 sinh(2𝑠1(𝜎𝑧

𝑗−1𝜎𝑧
𝑗 + 𝜎𝑧

𝑗 𝜎𝑧
𝑗+1))) +

+ ℎ𝑗+1𝜎𝑥
𝑗+1𝜎𝑥

𝑗 𝑒2𝑠1𝜎𝑧
𝑗+1𝜎𝑧

𝑗+2 ⋅ (−2 sinh(2𝑠1𝜎𝑧
𝑗 𝜎𝑧

𝑗+1)))]𝑒𝑖𝑡 ∑𝑏 𝜎𝑧
𝑏𝜎𝑧

𝑏+1d𝑠1d𝑠) = (A.72)

=𝔼ℎ(𝜀2 ∫
−𝑖𝑡

0
∫

𝑠

0
𝑒−𝑖𝑡 ∑𝑎 𝜎𝑧

𝑎𝜎𝑧
𝑎+1 ⋅ ∑

𝑘
[ℎ𝑘𝜎𝑥

𝑘𝑒2𝑠𝜎𝑧
𝑘−1𝜎𝑧

𝑘𝑒2𝑠𝜎𝑧
𝑘𝜎𝑧

𝑘+1 ,

(ℎ𝑗−1𝜎𝑥
𝑗−1𝜎𝑥

𝑗 𝑒2𝑠1𝜎𝑧
𝑗−2𝜎𝑧

𝑗−1 ⋅ (−2𝑖 sin(2𝑠1𝜎𝑧
𝑗−1𝜎𝑧

𝑗 )) + ℎ𝑗(𝜎𝑥
𝑗 )2 ⋅ (−2 sinh(2𝑠1(𝜎𝑧

𝑗−1𝜎𝑧
𝑗 + 𝜎𝑧

𝑗 𝜎𝑧
𝑗+1))) +

+ ℎ𝑗+1𝜎𝑥
𝑗+1𝜎𝑥

𝑗 𝑒2𝑠1𝜎𝑧
𝑗+1𝜎𝑧

𝑗+2 ⋅ (−2 sinh(2𝑠1𝜎𝑧
𝑗 𝜎𝑧

𝑗+1)))]𝑒𝑖𝑡 ∑𝑏 𝜎𝑧
𝑏𝜎𝑧

𝑏+1d𝑠1d𝑠) = (A.73)

=𝔼ℎ(𝜀2 ∫
−𝑖𝑡

0
∫

𝑠

0
𝑒−𝑖𝑡 ∑𝑎 𝜎𝑧

𝑎𝜎𝑧
𝑎+1 ∑

𝑘
(Σ1 + Σ2 + Σ3)𝑒𝑖𝑡 ∑𝑏 𝜎𝑧

𝑏𝜎𝑧
𝑏+1d𝑠1d𝑠) (A.74)

The commutator for the first summand gives:

Σ1 ≡ ℎ𝑘𝜎𝑥
𝑘𝑒2𝑠𝜎𝑧

𝑘−1𝜎𝑧
𝑘𝑒2𝑠𝜎𝑧

𝑘𝜎𝑧
𝑘+1ℎ𝑗−1𝜎𝑥

𝑗−1𝜎𝑥
𝑗 𝑒2𝑠1𝜎𝑧

𝑗−2𝜎𝑧
𝑗−1 ⋅ (−2 sinh(2𝑠1𝜎𝑧

𝑗−1𝜎𝑧
𝑗 )) −

− ℎ𝑗−1𝜎𝑥
𝑗−1𝜎𝑥

𝑗 𝑒2𝑠1𝜎𝑧
𝑗−2𝜎𝑧

𝑗−1 ⋅ (−2 sinh(2𝑠1𝜎𝑧
𝑗−1𝜎𝑧

𝑗 )) ⋅ ℎ𝑘𝜎𝑥
𝑘𝑒2𝑠𝜎𝑧

𝑘−1𝜎𝑧
𝑘𝑒2𝑠𝜎𝑧

𝑘𝜎𝑧
𝑘+1 = (A.75)

=ℎ𝑘ℎ𝑗−1𝜎𝑥
𝑘𝜎𝑥

𝑗−1𝑒(−1)𝛿(𝑘,𝑗−1)+𝛿(𝑘,𝑗)2𝑠𝜎𝑧
𝑘−1𝜎𝑧

𝑘𝑒(−1)𝛿(𝑘,𝑗−2)+𝛿(𝑘,𝑗−1)2𝑠𝜎𝑧
𝑘𝜎𝑧

𝑘+1𝜎𝑥
𝑗 𝑒2𝑠1𝜎𝑧

𝑗−2𝜎𝑧
𝑗−1 ⋅ (−2 sinh(2𝑠1𝜎𝑧

𝑗−1𝜎𝑧
𝑗 )) −

− ℎ𝑘ℎ𝑗−1𝜎𝑥
𝑗−1𝜎𝑥

𝑗 𝑒2𝑠1𝜎𝑧
𝑗−2𝜎𝑧

𝑗−1𝜎𝑥
𝑘 ⋅ (−2 sinh((−1)𝛿(𝑘,𝑗−1)+𝛿(𝑘,𝑗)2𝑠1𝜎𝑧

𝑗−1𝜎𝑧
𝑗 )) ⋅ 𝑒2𝑠𝜎𝑧

𝑘−1𝜎𝑧
𝑘𝑒2𝑠𝜎𝑧

𝑘𝜎𝑧
𝑘+1 = (A.76)

=ℎ𝑘ℎ𝑗−1𝜎𝑥
𝑘𝜎𝑥

𝑗−1𝜎𝑥
𝑗 𝑒(−1)𝛿(𝑘,𝑗−1)+2𝛿(𝑘,𝑗)+𝛿(𝑘,𝑗+1)2𝑠𝜎𝑧

𝑘−1𝜎𝑧
𝑘𝑒(−1)𝛿(𝑘,𝑗−2)+2𝛿(𝑘,𝑗−1)+𝛿(𝑘,𝑗)2𝑠𝜎𝑧

𝑘𝜎𝑧
𝑘+1𝑒2𝑠1𝜎𝑧

𝑗−2𝜎𝑧
𝑗−1 ⋅ (−2 sinh(2𝑠1𝜎𝑧

𝑗−1𝜎𝑧
𝑗 )) −
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− ℎ𝑘ℎ𝑗−1𝜎𝑥
𝑗−1𝜎𝑥

𝑗 𝜎𝑥
𝑘𝑒(−1)𝛿(𝑘,𝑗−2)+𝛿(𝑘,𝑗−1)2𝑠1𝜎𝑧

𝑗−2𝜎𝑧
𝑗−1 ⋅ (−2 sinh((−1)𝛿(𝑘,𝑗−1)+𝛿(𝑘,𝑗)2𝑠1𝜎𝑧

𝑗−1𝜎𝑧
𝑗 )) ⋅ 𝑒2𝑠𝜎𝑧

𝑘−1𝜎𝑧
𝑘𝑒2𝑠𝜎𝑧

𝑘𝜎𝑧
𝑘+1 =

(A.77)
=ℎ𝑘ℎ𝑗−1𝜎𝑥

𝑘𝜎𝑥
𝑗−1𝜎𝑥

𝑗 𝑒(−1)𝛿(𝑘,𝑗−1)+𝛿(𝑘,𝑗+1)2𝑠𝜎𝑧
𝑘−1𝜎𝑧

𝑘𝑒(−1)𝛿(𝑘,𝑗−2)+𝛿(𝑘,𝑗)2𝑠𝜎𝑧
𝑘𝜎𝑧

𝑘+1𝑒2𝑠1𝜎𝑧
𝑗−2𝜎𝑧

𝑗−1 ⋅ (−2 sinh(2𝑠1𝜎𝑧
𝑗−1𝜎𝑧

𝑗 )) −
− ℎ𝑘ℎ𝑗−1𝜎𝑥

𝑘𝜎𝑥
𝑗−1𝜎𝑥

𝑗 ⋅ 𝑒2𝑠𝜎𝑧
𝑘−1𝜎𝑧

𝑘𝑒2𝑠𝜎𝑧
𝑘𝜎𝑧

𝑘+1 ⋅ 𝑒(−1)𝛿(𝑘,𝑗−2)+𝛿(𝑘,𝑗−1)2𝑠1𝜎𝑧
𝑗−2𝜎𝑧

𝑗−1 ⋅ (−2 sinh((−1)𝛿(𝑘,𝑗−1)+𝛿(𝑘,𝑗)2𝑠1𝜎𝑧
𝑗−1𝜎𝑧

𝑗 )) =
(A.78)

=ℎ𝑘ℎ𝑗−1𝜎𝑥
𝑘𝜎𝑥

𝑗−1𝜎𝑥
𝑗 (𝑒(−1)𝛿(𝑘,𝑗−1)+𝛿(𝑘,𝑗+1)2𝑠𝜎𝑧

𝑘−1𝜎𝑧
𝑘𝑒(−1)𝛿(𝑘,𝑗−2)+𝛿(𝑘,𝑗)2𝑠𝜎𝑧

𝑘𝜎𝑧
𝑘+1𝑒2𝑠1𝜎𝑧

𝑗−2𝜎𝑧
𝑗−1 ⋅ (−2 sinh(2𝑠1𝜎𝑧

𝑗−1𝜎𝑧
𝑗 )) −

− (−1)𝛿(𝑘,𝑗−1)+𝛿(𝑘,𝑗)𝑒2𝑠𝜎𝑧
𝑘−1𝜎𝑧

𝑘𝑒2𝑠𝜎𝑧
𝑘𝜎𝑧

𝑘+1 ⋅ 𝑒(−1)𝛿(𝑘,𝑗−2)+𝛿(𝑘,𝑗−1)2𝑠1𝜎𝑧
𝑗−2𝜎𝑧

𝑗−1 ⋅ (−2 sinh(2𝑠1𝜎𝑧
𝑗−1𝜎𝑧

𝑗 ))), (A.79)

and it holds that Σ1;𝑘≠{𝑗−2,𝑗−1,𝑗,𝑗+1} = 0. For the second summand, it holds that:

Σ2 ≡ ℎ𝑘𝜎𝑥
𝑘𝑒2𝑠𝜎𝑧

𝑘−1𝜎𝑧
𝑘𝑒2𝑠𝜎𝑧

𝑘𝜎𝑧
𝑘+1 ⋅ ℎ𝑗(𝜎𝑥

𝑗 )2 ⋅ (−2 sinh(2𝑠1(𝜎𝑧
𝑗−1𝜎𝑧

𝑗 + 𝜎𝑧
𝑗 𝜎𝑧

𝑗+1))) −
− ℎ𝑗(𝜎𝑥

𝑗 )2 ⋅ (−2 sinh(2𝑠1(𝜎𝑧
𝑗−1𝜎𝑧

𝑗 + 𝜎𝑧
𝑗 𝜎𝑧

𝑗+1))) ⋅ ℎ𝑘𝜎𝑥
𝑘𝑒2𝑠𝜎𝑧

𝑘−1𝜎𝑧
𝑘𝑒2𝑠𝜎𝑧

𝑘𝜎𝑧
𝑘+1 = (A.80)

=ℎ𝑘ℎ𝑗𝜎𝑥
𝑘𝑒2𝑠𝜎𝑧

𝑘−1𝜎𝑧
𝑘𝑒2𝑠𝜎𝑧

𝑘𝜎𝑧
𝑘+1 ⋅ (−2 sinh(2𝑠1(𝜎𝑧

𝑗−1𝜎𝑧
𝑗 + 𝜎𝑧

𝑗 𝜎𝑧
𝑗+1))) −

− ℎ𝑘ℎ𝑗 ⋅ (−2 sinh(2𝑠1(𝜎𝑧
𝑗−1𝜎𝑧

𝑗 + 𝜎𝑧
𝑗 𝜎𝑧

𝑗+1))) ⋅ 𝜎𝑥
𝑘𝑒2𝑠𝜎𝑧

𝑘−1𝜎𝑧
𝑘𝑒2𝑠𝜎𝑧

𝑘𝜎𝑧
𝑘+1 (A.81)

The commutators of the trigonometric functions of 𝜎𝑥
𝑘 can be further simplified as:

sinh(𝜉𝜎𝑧
𝑎𝜎𝑧

𝑏) ⋅ 𝜎𝑥
𝑘 = 𝜎𝑥

𝑘 ⋅ sinh((−1)𝛿(𝑘,𝑎)+𝛿(𝑘,𝑏)𝜉𝜎𝑧
𝑎𝜎𝑧

𝑏) = (A.82)
=(−1)𝛿(𝑘,𝑎)+𝛿(𝑘,𝑏)𝜎𝑥

𝑘 ⋅ sinh(𝜉𝜎𝑧
𝑎𝜎𝑧

𝑏) cosh(𝜉𝜎𝑧
𝑎𝜎𝑧

𝑏) ⋅ 𝜎𝑥
𝑘 = 𝜎𝑥

𝑘 ⋅ cosh((−1)𝛿(𝑘,𝑎)+𝛿(𝑘,𝑏)𝜉𝜎𝑧
𝑎𝜎𝑧

𝑏) = (A.83)
=𝜎𝑥

𝑘 ⋅ cosh(𝜉𝜎𝑧
𝑎𝜎𝑧

𝑏) sinh(𝜉(𝜎𝑧
𝑎𝜎𝑧

𝑏 ± 𝜎𝑧
𝑐𝜎𝑧

𝑑)) ⋅ 𝜎𝑥
𝑘 = (A.84)

= (sinh(𝜉(𝜎𝑧
𝑎𝜎𝑧

𝑏)) cosh(𝜉(𝜎𝑧
𝑐𝜎𝑧

𝑑)) ± cosh(𝜉(𝜎𝑧
𝑎𝜎𝑧

𝑏)) sinh(𝜉(𝜎𝑧
𝑐𝜎𝑧

𝑑))) ⋅ 𝜎𝑥
𝑘 = (A.85)

= sinh(𝜉(𝜎𝑧
𝑎𝜎𝑧

𝑏))𝜎𝑥
𝑘 cosh((−1)𝛿(𝑘,𝑐)+𝛿(𝑘,𝑑)𝜉(𝜎𝑧

𝑐𝜎𝑧
𝑑))±

± cosh(𝜉(𝜎𝑧
𝑎𝜎𝑧

𝑏))𝜎𝑥
𝑘 sinh((−1)𝛿(𝑘,𝑐)+𝛿(𝑘,𝑑)𝜉(𝜎𝑧

𝑐𝜎𝑧
𝑑)) = (A.86)

=𝜎𝑥
𝑘(sinh((−1)𝛿(𝑘,𝑎)+𝛿(𝑘,𝑏)𝜉(𝜎𝑧

𝑎𝜎𝑧
𝑏)) cosh((−1)𝛿(𝑘,𝑐)+𝛿(𝑘,𝑑)𝜉(𝜎𝑧

𝑐𝜎𝑧
𝑑))±

± cosh((−1)𝛿(𝑘,𝑎)+𝛿(𝑘,𝑏)𝜉(𝜎𝑧
𝑎𝜎𝑧

𝑏)) sinh((−1)𝛿(𝑘,𝑐)+𝛿(𝑘,𝑑)𝜉(𝜎𝑧
𝑐𝜎𝑧

𝑑))) = (A.87)

=𝜎𝑥
𝑘((−1)𝛿(𝑘,𝑎)+𝛿(𝑘,𝑏) sinh(𝜉(𝜎𝑧

𝑎𝜎𝑧
𝑏)) cosh(𝜉(𝜎𝑧

𝑐𝜎𝑧
𝑑))±

± (−1)𝛿(𝑘,𝑐)+𝛿(𝑘,𝑑) cosh(𝜉(𝜎𝑧
𝑎𝜎𝑧

𝑏)) sinh(𝜉(𝜎𝑧
𝑐𝜎𝑧

𝑑))) = (A.88)

=(−1)𝛿(𝑘,𝑎)+𝛿(𝑘,𝑏)𝜎𝑥
𝑘(sinh(𝜉(𝜎𝑧

𝑎𝜎𝑧
𝑏)) cosh(𝜉(𝜎𝑧

𝑐𝜎𝑧
𝑑))±

± (−1)𝛿(𝑘,𝑎)+𝛿(𝑘,𝑏)+𝛿(𝑘,𝑐)+𝛿(𝑘,𝑑) cosh(𝜉(𝜎𝑧
𝑎𝜎𝑧

𝑏)) sinh(𝜉(𝜎𝑧
𝑐𝜎𝑧

𝑑))) = (A.89)

=(−1)𝛿(𝑘,𝑎)+𝛿(𝑘,𝑏)𝜎𝑥
𝑘 sinh(𝜉(𝜎𝑧

𝑎𝜎𝑧
𝑏±

± (−1)𝛿(𝑘,𝑎)+𝛿(𝑘,𝑏)+𝛿(𝑘,𝑐)+𝛿(𝑘,𝑑)𝜎𝑧
𝑐𝜎𝑧

𝑑)) cosh(𝜉(𝜎𝑧
𝑎𝜎𝑧

𝑏 ± 𝜎𝑧
𝑐𝜎𝑧

𝑑)) ⋅ 𝜎𝑥
𝑘 = (A.90)

= (cosh(𝜉(𝜎𝑧
𝑎𝜎𝑧

𝑏)) cosh(𝜉(𝜎𝑧
𝑐𝜎𝑧

𝑑)) ± sinh(𝜉(𝜎𝑧
𝑎𝜎𝑧

𝑏)) sinh(𝜉(𝜎𝑧
𝑐𝜎𝑧

𝑑))) ⋅ 𝜎𝑥
𝑘 = (A.91)

=𝜎𝑥
𝑘(cosh(𝜉(𝜎𝑧

𝑎𝜎𝑧
𝑏)) cosh(𝜉(𝜎𝑧

𝑐𝜎𝑧
𝑑))±

± (−1)𝛿(𝑘,𝑎)+𝛿(𝑘,𝑏)+𝛿(𝑘,𝑐)+𝛿(𝑘,𝑑) sinh(𝜉(𝜎𝑧
𝑎𝜎𝑧

𝑏)) sinh(𝜉(𝜎𝑧
𝑐𝜎𝑧

𝑑))) = (A.92)

=𝜎𝑥
𝑘 ⋅ cosh(𝜉(𝜎𝑧

𝑎𝜎𝑧
𝑏 ± (−1)𝛿(𝑘,𝑎)+𝛿(𝑘,𝑏)+𝛿(𝑘,𝑐)+𝛿(𝑘,𝑑)𝜎𝑧

𝑐𝜎𝑧
𝑑)) (A.93)

Then, Σ2 gives:

Σ2 = ℎ𝑘ℎ𝑗𝜎𝑥
𝑘𝑒2𝑠𝜎𝑧

𝑘−1𝜎𝑧
𝑘𝑒2𝑠𝜎𝑧

𝑘𝜎𝑧
𝑘+1 ⋅ (−2 sinh(2𝑠1(𝜎𝑧

𝑗−1𝜎𝑧
𝑗 + 𝜎𝑧

𝑗 𝜎𝑧
𝑗+1))) −

Ivana Kurečić 160



Appendix A. Additional Calculations

− ℎ𝑘ℎ𝑗 ⋅ (−2 sinh(2𝑠1(𝜎𝑧
𝑗−1𝜎𝑧

𝑗 + 𝜎𝑧
𝑗 𝜎𝑧

𝑗+1))) ⋅ 𝜎𝑥
𝑘𝑒2𝑠𝜎𝑧

𝑘−1𝜎𝑧
𝑘𝑒2𝑠𝜎𝑧

𝑘𝜎𝑧
𝑘+1 = (A.94)

=ℎ𝑘ℎ𝑗𝜎𝑥
𝑘𝑒2𝑠𝜎𝑧

𝑘−1𝜎𝑧
𝑘𝑒2𝑠𝜎𝑧

𝑘𝜎𝑧
𝑘+1 ⋅ (−2 sinh(2𝑠1(𝜎𝑧

𝑗−1𝜎𝑧
𝑗 + 𝜎𝑧

𝑗 𝜎𝑧
𝑗+1))) −

− ℎ𝑘ℎ𝑗𝜎𝑥
𝑘 ⋅ (−2 ⋅ (−1)𝛿(𝑘,𝑗−1)+𝛿(𝑘,𝑗) sinh(2𝑠1(𝜎𝑧

𝑗−1𝜎𝑧
𝑗 + (−1)𝛿(𝑘,𝑗−1)+2𝛿(𝑘,𝑗)+𝛿(𝑘,𝑗+1)𝜎𝑧

𝑗 𝜎𝑧
𝑗+1))) ⋅

𝑒2𝑠𝜎𝑧
𝑘−1𝜎𝑧

𝑘𝑒2𝑠𝜎𝑧
𝑘𝜎𝑧

𝑘+1 = (A.95)
=ℎ𝑘ℎ𝑗𝜎𝑥

𝑘𝑒2𝑠𝜎𝑧
𝑘−1𝜎𝑧

𝑘𝑒2𝑠𝜎𝑧
𝑘𝜎𝑧

𝑘+1 ⋅ (−2 sinh(2𝑠1(𝜎𝑧
𝑗−1𝜎𝑧

𝑗 + 𝜎𝑧
𝑗 𝜎𝑧

𝑗+1))) −
− ℎ𝑘ℎ𝑗𝜎𝑥

𝑘 ⋅ 𝑒2𝑠𝜎𝑧
𝑘−1𝜎𝑧

𝑘𝑒2𝑠𝜎𝑧
𝑘𝜎𝑧

𝑘+1 ⋅
(−2 ⋅ (−1)𝛿(𝑘,𝑗−1)+𝛿(𝑘,𝑗) sinh(2𝑠1(𝜎𝑧

𝑗−1𝜎𝑧
𝑗 + (−1)𝛿(𝑘,𝑗−1)+𝛿(𝑘,𝑗+1)𝜎𝑧

𝑗 𝜎𝑧
𝑗+1))) = (A.96)

=ℎ𝑘ℎ𝑗𝜎𝑥
𝑘𝑒2𝑠𝜎𝑧

𝑘−1𝜎𝑧
𝑘𝑒2𝑠𝜎𝑧

𝑘𝜎𝑧
𝑘+1 ⋅ (−2) ⋅

(sinh(2𝑠1(𝜎𝑧
𝑗−1𝜎𝑧

𝑗 + 𝜎𝑧
𝑗 𝜎𝑧

𝑗+1)) − (−1)𝛿(𝑘,𝑗−1)+𝛿(𝑘,𝑗) sinh(2𝑠1(𝜎𝑧
𝑗−1𝜎𝑧

𝑗 + (−1)𝛿(𝑘,𝑗−1)+𝛿(𝑘,𝑗+1)𝜎𝑧
𝑗 𝜎𝑧

𝑗+1))) (A.97)

and it holds that
Σ2;𝑘≠{𝑗−1,𝑗,𝑗+1} = 0. (A.98)

Finally, the commutator with the third summand can be simplified to:

Σ3 = ℎ𝑘𝜎𝑥
𝑘𝑒2𝑠𝜎𝑧

𝑘−1𝜎𝑧
𝑘𝑒2𝑠𝜎𝑧

𝑘𝜎𝑧
𝑘+1 ⋅ ℎ𝑗+1𝜎𝑥

𝑗+1𝜎𝑥
𝑗 𝑒2𝑠1𝜎𝑧

𝑗+1𝜎𝑧
𝑗+2 ⋅ (−2 sinh(2𝑠1𝜎𝑧

𝑗 𝜎𝑧
𝑗+1)) −

− ℎ𝑗+1𝜎𝑥
𝑗+1𝜎𝑥

𝑗 𝑒2𝑠1𝜎𝑧
𝑗+1𝜎𝑧

𝑗+2 ⋅ (−2 sinh(2𝑠1𝜎𝑧
𝑗 𝜎𝑧

𝑗+1)) ⋅ ℎ𝑘𝜎𝑥
𝑘𝑒2𝑠𝜎𝑧

𝑘−1𝜎𝑧
𝑘𝑒2𝑠𝜎𝑧

𝑘𝜎𝑧
𝑘+1 = (A.99)

=ℎ𝑘ℎ𝑗+1𝜎𝑥
𝑘𝜎𝑥

𝑗+1𝜎𝑥
𝑗 𝑒(−1)𝛿(𝑘,𝑗)+𝛿(𝑘,𝑗+2)2𝑠𝜎𝑧

𝑘−1𝜎𝑧
𝑘𝑒(−1)𝛿(𝑘,𝑗−1)+𝛿(𝑘,𝑗+1)2𝑠𝜎𝑧

𝑘𝜎𝑧
𝑘+1 ⋅ 𝑒2𝑠1𝜎𝑧

𝑗+1𝜎𝑧
𝑗+2 ⋅ (−2 sinh(2𝑠1𝜎𝑧

𝑗 𝜎𝑧
𝑗+1)) −

− ℎ𝑘ℎ𝑗+1𝜎𝑥
𝑗+1𝜎𝑥

𝑗 𝑒2𝑠1𝜎𝑧
𝑗+1𝜎𝑧

𝑗+2 ⋅ 𝜎𝑥
𝑘 (−(−1)𝛿(𝑘,𝑗)+𝛿(𝑘,𝑗+1)2 sinh(2𝑠1𝜎𝑧

𝑗 𝜎𝑧
𝑗+1)) ⋅ 𝑒2𝑠𝜎𝑧

𝑘−1𝜎𝑧
𝑘𝑒2𝑠𝜎𝑧

𝑘𝜎𝑧
𝑘+1 = (A.100)

=ℎ𝑘ℎ𝑗+1𝜎𝑥
𝑘𝜎𝑥

𝑗+1𝜎𝑥
𝑗 𝑒(−1)𝛿(𝑘,𝑗)+𝛿(𝑘,𝑗+2)2𝑠𝜎𝑧

𝑘−1𝜎𝑧
𝑘𝑒(−1)𝛿(𝑘,𝑗−1)+𝛿(𝑘,𝑗+1)2𝑠𝜎𝑧

𝑘𝜎𝑧
𝑘+1 ⋅ 𝑒2𝑠1𝜎𝑧

𝑗+1𝜎𝑧
𝑗+2 ⋅

(−2 sinh(2𝑠1𝜎𝑧
𝑗 𝜎𝑧

𝑗+1)) − (A.101)

− ℎ𝑘ℎ𝑗+1𝜎𝑥
𝑘𝜎𝑥

𝑗+1𝜎𝑥
𝑗 𝑒(−1)𝛿(𝑘,𝑗+1)+𝛿(𝑘,𝑗+2)2𝑠1𝜎𝑧

𝑗+1𝜎𝑧
𝑗+2 ⋅ (−(−1)𝛿(𝑘,𝑗)+𝛿(𝑘,𝑗+1)2 sinh(2𝑠1𝜎𝑧

𝑗 𝜎𝑧
𝑗+1)) ⋅

𝑒2𝑠𝜎𝑧
𝑘−1𝜎𝑧

𝑘𝑒2𝑠𝜎𝑧
𝑘𝜎𝑧

𝑘+1 = (A.102)

=ℎ𝑘ℎ𝑗+1𝜎𝑥
𝑘𝜎𝑥

𝑗+1𝜎𝑥
𝑗 (𝑒(−1)𝛿(𝑘,𝑗)+𝛿(𝑘,𝑗+2)2𝑠𝜎𝑧

𝑘−1𝜎𝑧
𝑘𝑒(−1)𝛿(𝑘,𝑗−1)+𝛿(𝑘,𝑗+1)2𝑠𝜎𝑧

𝑘𝜎𝑧
𝑘+1 ⋅ 𝑒2𝑠1𝜎𝑧

𝑗+1𝜎𝑧
𝑗+2 ⋅ (−2 sinh(2𝑠1𝜎𝑧

𝑗 𝜎𝑧
𝑗+1)) −

− (−1)𝛿(𝑘,𝑗)+𝛿(𝑘,𝑗+1)𝑒2𝑠𝜎𝑧
𝑘−1𝜎𝑧

𝑘𝑒2𝑠𝜎𝑧
𝑘𝜎𝑧

𝑘+1𝑒(−1)𝛿(𝑘,𝑗+1)+𝛿(𝑘,𝑗+2)2𝑠1𝜎𝑧
𝑗+1𝜎𝑧

𝑗+2 ⋅ (−2 sinh(2𝑠1𝜎𝑧
𝑗 𝜎𝑧

𝑗+1))), (A.103)

with
Σ3;𝑘≠{𝑗−1,𝑗,𝑗+1,𝑗+2} = 0 (A.104)

The derivation of Ω2;𝐹 is then finalized by considering that 𝔼ℎ(ℎ𝑎ℎ𝑏≠𝑎) = 0

Ω2;𝐹 = 𝔼ℎ(𝜀2 ∫
−𝑖𝑡

0
∫

𝑠

0
𝑒−𝑖𝑡 ∑𝑎 𝜎𝑧

𝑎𝜎𝑧
𝑎+1 ∑

𝑘
(Σ1 + Σ2 + Σ3)𝑒𝑖𝑡 ∑𝑏 𝜎𝑧

𝑏𝜎𝑧
𝑏+1d𝑠1d𝑠) = (A.105)

=𝜂2
ℎ𝜀2 ∫

−𝑖𝑡

0
∫

𝑠

0
𝑒−𝑖𝑡 ∑𝑎 𝜎𝑧

𝑎𝜎𝑧
𝑎+1 ∑

𝑘
(Σ1;𝑘=𝑗−1

ℎ2
𝑗−1

+ Σ2;𝑘=𝑗
ℎ2

𝑗
+ Σ3;𝑘=𝑗+1

ℎ2
𝑗+1

)𝑒𝑖𝑡 ∑𝑏 𝜎𝑧
𝑏𝜎𝑧

𝑏+1d𝑠1d𝑠 (A.106)

=𝜂2
ℎ𝜀2 ∫

−𝑖𝑡

0
∫

𝑠

0
𝑒−𝑖𝑡 ∑𝑎 𝜎𝑧

𝑎𝜎𝑧
𝑎+1(𝜎𝑥

𝑗−1𝜎𝑥
𝑗−1𝜎𝑥

𝑗 ⋅

(𝑒−2𝑠𝜎𝑧
𝑗−2𝜎𝑧

𝑗−1𝑒2𝑠𝜎𝑧
𝑗−1𝜎𝑧

𝑗 𝑒2𝑠1𝜎𝑧
𝑗−2𝜎𝑧

𝑗−1 ⋅ (−2 sinh(2𝑠1𝜎𝑧
𝑗−1𝜎𝑧

𝑗 )) +

+ 𝑒2𝑠𝜎𝑧
𝑗−2𝜎𝑧

𝑗−1𝑒2𝑠𝜎𝑧
𝑗−1𝜎𝑧

𝑗 ⋅ 𝑒−2𝑠1𝜎𝑧
𝑗−2𝜎𝑧

𝑗−1 ⋅ (−2 sinh(2𝑠1𝜎𝑧
𝑗−1𝜎𝑧

𝑗 )))+

+ 𝜎𝑥
𝑗 𝑒2𝑠𝜎𝑧

𝑗−1𝜎𝑧
𝑗 𝑒2𝑠𝜎𝑧

𝑗 𝜎𝑧
𝑗+1 ⋅ (−2) ⋅ (sinh(2𝑠1(𝜎𝑧

𝑗−1𝜎𝑧
𝑗 + 𝜎𝑧

𝑗 𝜎𝑧
𝑗+1)) + sinh(2𝑠1(𝜎𝑧

𝑗−1𝜎𝑧
𝑗 + 𝜎𝑧

𝑗 𝜎𝑧
𝑗+1))) +

+ 𝜎𝑥
𝑗+1𝜎𝑥

𝑗+1𝜎𝑥
𝑗 (𝑒2𝑠𝜎𝑧

𝑗 𝜎𝑧
𝑗+1𝑒−2𝑠𝜎𝑧

𝑗+1𝜎𝑧
𝑗+2 ⋅ 𝑒2𝑠1𝜎𝑧

𝑗+1𝜎𝑧
𝑗+2 ⋅ (−2 sinh(2𝑠1𝜎𝑧

𝑗 𝜎𝑧
𝑗+1)) +
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+ 𝑒2𝑠𝜎𝑧
𝑗 𝜎𝑧

𝑗+1𝑒2𝑠𝜎𝑧
𝑗+1𝜎𝑧

𝑗+2𝑒−2𝑠1𝜎𝑧
𝑗+1𝜎𝑧

𝑗+2 ⋅ (−2 sinh(2𝑠1𝜎𝑧
𝑗 𝜎𝑧

𝑗+1))))𝑒𝑖𝑡 ∑𝑏 𝜎𝑧
𝑏𝜎𝑧

𝑏+1d𝑠1d𝑠 = (A.107)

=𝜂2
ℎ𝜀2 ∫

−𝑖𝑡

0
∫

𝑠

0
𝑒−𝑖𝑡 ∑𝑎 𝜎𝑧

𝑎𝜎𝑧
𝑎+1(𝜎𝑥

𝑗 𝑒2𝑠𝜎𝑧
𝑗−1𝜎𝑧

𝑗 ⋅ (−2 sinh(2𝑠1𝜎𝑧
𝑗−1𝜎𝑧

𝑗 )) ⋅

(𝑒−2𝑠𝜎𝑧
𝑗−2𝜎𝑧

𝑗−1𝑒2𝑠1𝜎𝑧
𝑗−2𝜎𝑧

𝑗−1 + 𝑒2𝑠𝜎𝑧
𝑗−2𝜎𝑧

𝑗−1𝑒−2𝑠1𝜎𝑧
𝑗−2𝜎𝑧

𝑗−1)+

+ 2𝜎𝑥
𝑗 𝑒2𝑠𝜎𝑧

𝑗−1𝜎𝑧
𝑗 𝑒2𝑠𝜎𝑧

𝑗 𝜎𝑧
𝑗+1 ⋅ (−2 ⋅ sinh(2𝑠1(𝜎𝑧

𝑗−1𝜎𝑧
𝑗 + 𝜎𝑧

𝑗 𝜎𝑧
𝑗+1))) +

+ 𝜎𝑥
𝑗 𝑒2𝑠𝜎𝑧

𝑗 𝜎𝑧
𝑗+1 ⋅ (−2 sinh(2𝑠1𝜎𝑧

𝑗 𝜎𝑧
𝑗+1)) (𝑒−2𝑠𝜎𝑧

𝑗+1𝜎𝑧
𝑗+2 ⋅ 𝑒2𝑠1𝜎𝑧

𝑗+1𝜎𝑧
𝑗+2 + 𝑒2𝑠𝜎𝑧

𝑗+1𝜎𝑧
𝑗+2𝑒−2𝑠1𝜎𝑧

𝑗+1𝜎𝑧
𝑗+2))⋅

𝑒𝑖𝑡 ∑𝑏 𝜎𝑧
𝑏𝜎𝑧

𝑏+1d𝑠1d𝑠 = (A.108)

=𝜂2
ℎ𝜀2 ∫

−𝑖𝑡

0
∫

𝑠

0
∏

𝑎
𝑒−𝑖𝑡𝜎𝑧

𝑎𝜎𝑧
𝑎+1(𝜎𝑥

𝑗 𝑒2𝑠𝜎𝑧
𝑗−1𝜎𝑧

𝑗 ⋅ (−2 sinh(2𝑠1𝜎𝑧
𝑗−1𝜎𝑧

𝑗 )) ⋅

(𝑒−2(𝑠−𝑠1)𝜎𝑧
𝑗−2𝜎𝑧

𝑗−1 + 𝑒2(𝑠−𝑠1)𝜎𝑧
𝑗−2𝜎𝑧

𝑗−1)+

+ 2𝜎𝑥
𝑗 𝑒2𝑠𝜎𝑧

𝑗−1𝜎𝑧
𝑗 𝑒2𝑠𝜎𝑧

𝑗 𝜎𝑧
𝑗+1 ⋅ (−2 ⋅ sinh(2𝑠1(𝜎𝑧

𝑗−1𝜎𝑧
𝑗 + 𝜎𝑧

𝑗 𝜎𝑧
𝑗+1))) +

+ 𝜎𝑥
𝑗 𝑒2𝑠𝜎𝑧

𝑗 𝜎𝑧
𝑗+1 ⋅ (−2 sinh(2𝑠1𝜎𝑧

𝑗 𝜎𝑧
𝑗+1)) (𝑒−2(𝑠−𝑠1)𝜎𝑧

𝑗+1𝜎𝑧
𝑗+2 + 𝑒2(𝑠−𝑠1)𝜎𝑧

𝑗+1𝜎𝑧
𝑗+2)) ∏

𝑏
𝑒𝑖𝑡𝜎𝑧

𝑏𝜎𝑧
𝑏+1d𝑠1d𝑠 = (A.109)

=𝜂2
ℎ𝜀2 ∫

−𝑖𝑡

0
∫

𝑠

0
∏

𝑎
𝑒−𝑖𝑡𝜎𝑧

𝑎𝜎𝑧
𝑎+1(𝜎𝑥

𝑗 𝑒2𝑠𝜎𝑧
𝑗−1𝜎𝑧

𝑗 ⋅ (−2 sinh(2𝑠1𝜎𝑧
𝑗−1𝜎𝑧

𝑗 )) (−2 sinh(2(𝑠 − 𝑠1)𝜎𝑧
𝑗−2𝜎𝑧

𝑗−1)) +

+ 2𝜎𝑥
𝑗 𝑒2𝑠𝜎𝑧

𝑗−1𝜎𝑧
𝑗 𝑒2𝑠𝜎𝑧

𝑗 𝜎𝑧
𝑗+1 ⋅ (−2 ⋅ sinh(2𝑠1(𝜎𝑧

𝑗−1𝜎𝑧
𝑗 + 𝜎𝑧

𝑗 𝜎𝑧
𝑗+1))) +

+ 𝜎𝑥
𝑗 𝑒2𝑠𝜎𝑧

𝑗 𝜎𝑧
𝑗+1 ⋅ (−2 sinh(2𝑠1𝜎𝑧

𝑗 𝜎𝑧
𝑗+1)) (−2 sinh(2(𝑠 − 𝑠1)𝜎𝑧

𝑗+1𝜎𝑧
𝑗+2))) ∏

𝑏
𝑒𝑖𝑡𝜎𝑧

𝑏𝜎𝑧
𝑏+1d𝑠1d𝑠 = (A.110)

=𝜂2
ℎ𝜀2𝜎𝑥

𝑗 𝑒2𝑖𝑡(𝜎𝑧
𝑗−1𝜎𝑧

𝑗 +𝜎𝑧
𝑗 𝜎𝑧

𝑗+1) ∫
−𝑖𝑡

0
(𝑒2𝑠𝜎𝑧

𝑗−1𝜎𝑧
𝑗 ⋅ ∫

𝑠

0
(−2 sinh(2𝑠1𝜎𝑧

𝑗−1𝜎𝑧
𝑗 )) (−2 sinh(2(𝑠 − 𝑠1)𝜎𝑧

𝑗−2𝜎𝑧
𝑗−1)) +

+ 2𝑒2𝑠𝜎𝑧
𝑗−1𝜎𝑧

𝑗 𝑒2𝑠𝜎𝑧
𝑗 𝜎𝑧

𝑗+1 ⋅ ∫
𝑠

0
(−2 ⋅ sinh(2𝑠1(𝜎𝑧

𝑗−1𝜎𝑧
𝑗 + 𝜎𝑧

𝑗 𝜎𝑧
𝑗+1))) +

+ 𝑒2𝑠𝜎𝑧
𝑗 𝜎𝑧

𝑗+1 ⋅ ∫
𝑠

0
(−2 sinh(2𝑠1𝜎𝑧

𝑗 𝜎𝑧
𝑗+1)) (−2 sinh(2(𝑠 − 𝑠1)𝜎𝑧

𝑗+1𝜎𝑧
𝑗+2)))d𝑠1d𝑠 (A.111)

This result is used here.

As an example for the calculation of a higher order perturbative term, I will present the full calculation for
Ω4;𝑀 .

Ω4;𝑀 = 𝔼ℎ(𝜀4 ∫
−𝑖𝑡

0
∫

𝑠1

0
∫

𝑠2

0
∫

𝑠3

0

∣𝑒−𝑖𝑡𝐻0 [𝐻𝜈(𝑠1), [𝐻𝜈(𝑠2), [𝐻𝜈(𝑠3), [𝐻𝜈(𝑠4), 𝑀]]]] 𝑒𝑖𝑡𝐻0⟩ d𝑠1d𝑠2d𝑠3d𝑠4) = (A.112)

=𝔼ℎ(𝜀4 ∫
−𝑖𝑡

0
∫

𝑠1

0
∫

𝑠2

0
𝑒−𝑖𝑡𝐻0 ⋅
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[𝐻𝜈(𝑠1), [𝐻𝜈(𝑠2), [𝐻𝜈(𝑠3), [∫
𝑠3

0
𝐻𝜈(𝑠4), 𝑀]]]] 𝑒𝑖𝑡𝐻0d𝑠1d𝑠2d𝑠3d𝑠4) = (A.113)

=𝔼ℎ(𝜀4 ∫
−𝑖𝑡

0
∫

𝑠1

0
∫

𝑠2

0
𝑒−𝑖𝑡𝐻0 ⋅

[𝐻𝜈(𝑠1), [𝐻𝜈(𝑠2), [𝐻𝜈(𝑠3), ∫
𝑠3

0
𝐻𝜈(𝑠4)𝑀 − 𝑀 ∫

𝑠3

0
𝐻𝜈(𝑠4)]]] 𝑒𝑖𝑡𝐻0d𝑠1d𝑠2d𝑠3d𝑠4) = (A.114)

=𝔼ℎ(𝜀4 ∫
−𝑖𝑡

0
∫

𝑠1

0
∫

𝑠2

0
𝑒−𝑖𝑡𝐻0[𝐻𝜈(𝑠1), [𝐻𝜈(𝑠2), (𝐻𝜈(𝑠3)⋅

(∫
𝑠3

0
𝐻𝜈(𝑠4)𝑀 − 𝑀 ∫

𝑠3

0
𝐻𝜈(𝑠4)) − (∫

𝑠3

0
𝐻𝜈(𝑠4)𝑀 − 𝑀 ∫

𝑠3

0
𝐻𝜈(𝑠4)) 𝐻𝜈(𝑠3))]]⋅

𝑒𝑖𝑡𝐻0d𝑠1d𝑠2d𝑠3d𝑠4) = (A.115)

=𝔼ℎ(𝜀4 ∫
−𝑖𝑡

0
∫

𝑠1

0
𝑒−𝑖𝑡𝐻0[𝐻𝜈(𝑠1), [𝐻𝜈(𝑠2),

∫
𝑠2

0
∫

𝑠3

0
(𝐻𝜈(𝑠3) (𝐻𝜈(𝑠4)𝑀 − 𝑀𝐻𝜈(𝑠4)) − (𝐻𝜈(𝑠4)𝑀 − 𝑀𝐻𝜈(𝑠4)) 𝐻𝜈(𝑠3))]]⋅

𝑒𝑖𝑡𝐻0d𝑠1d𝑠2d𝑠3d𝑠4) = (A.116)

=𝔼ℎ(𝜀4 ∫
−𝑖𝑡

0
∫

𝑠1

0
𝑒−𝑖𝑡𝐻0 ⋅

[𝐻𝜈(𝑠1), [𝐻𝜈(𝑠2), ∫
𝑠2

0
∫

𝑠3

0
[𝐻𝜈(𝑠3), [𝐻𝜈(𝑠4), 𝑀]] d𝑠3d𝑠4]] 𝑒𝑖𝑡𝐻0d𝑠1d𝑠2) ≡ (A.117)

≡𝔼ℎ (𝜀4 ∫
−𝑖𝑡

0
∫

𝑠1

0
𝑒−𝑖𝑡𝐻0 [𝐻𝜈(𝑠1), [𝐻𝜈(𝑠2), 𝜁2(𝑠2, 𝑠3)]] 𝑒𝑖𝑡𝐻0d𝑠1d𝑠2) , (A.118)

where
𝜁2(𝑠2, 𝑠3) = ∫

𝑠2

0
∫

𝑠3

0
[𝐻𝜈(𝑠3), [𝐻𝜈(𝑠4), 𝑀]] d𝑠3d𝑠4 (A.119)

From (2.112) it can be seen that
Ω2 = 𝔼ℎ (𝜀2𝑒−𝑖𝑡𝐻0𝜁2(−𝑖𝑡, 𝑠)𝑒𝑖𝑡𝐻0) , (A.120)

so

𝜁2(−𝑖𝑡, 𝑠) = ∫
−𝑖𝑡

0
∫

𝑠

0
2ℎ𝑗(ℎ𝑗−1𝜎𝑥

𝑗−1𝜎𝑥
𝑗 𝜎𝑧

𝑗 Θ(𝑘 = 𝑗 − 1)+

+ ℎ𝑗𝜎𝑥
𝑗 𝜎𝑥

𝑗 𝜎𝑧
𝑗 Θ(𝑘 = 𝑗) + ℎ𝑗+1𝜎𝑥

𝑗+1𝜎𝑥
𝑗 𝜎𝑧

𝑗 Θ(𝑘 = 𝑗 + 1))d𝑠1d𝑠. (A.121)

Back to the calculation.

Ω4;𝑀 = 𝔼ℎ(𝜀4 ∫
−𝑖𝑡

0
∫

𝑠1

0
𝑒−𝑖𝑡𝐻0[𝐻𝜈(𝑠1), [𝐻𝜈(𝑠2), ∫

𝑠2

0
∫

𝑠3

0
2ℎ𝑗⋅

(ℎ𝑗−1𝜎𝑥
𝑗−1𝜎𝑥

𝑗 𝜎𝑧
𝑗 Θ𝑘=𝑗−1(𝑠3, 𝑠4) + ℎ𝑗𝜎𝑥

𝑗 𝜎𝑥
𝑗 𝜎𝑧

𝑗 Θ𝑘=𝑗(𝑠3, 𝑠4) + ℎ𝑗+1𝜎𝑥
𝑗+1𝜎𝑥

𝑗 𝜎𝑧
𝑗 Θ𝑘=𝑗+1(𝑠3, 𝑠4))d𝑠4d𝑠3]]⋅
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𝑒𝑖𝑡𝐻0d𝑠1d𝑠2) = (A.122)

=𝔼ℎ(𝜀4 ∫
−𝑖𝑡

0
∫

𝑠1

0
𝑒−𝑖𝑡𝐻0[𝐻𝜈(𝑠1), [𝑒−𝑠2 ∑𝑙 𝜎𝑧

𝑙 𝜎𝑧
𝑙+1 ∑

𝑘
ℎ𝑘𝜎𝑥

𝑘𝑒𝑠2 ∑𝑚 𝜎𝑧
𝑚𝜎𝑧

𝑚+1 ,

∫
𝑠2

0
∫

𝑠3

0
2ℎ𝑗(ℎ𝑗−1𝜎𝑥

𝑗−1𝜎𝑥
𝑗 𝜎𝑧

𝑗 Θ𝑘=𝑗−1(𝑠3, 𝑠4) + ℎ𝑗𝜎𝑥
𝑗 𝜎𝑥

𝑗 𝜎𝑧
𝑗 Θ𝑘=𝑗(𝑠3, 𝑠4) + ℎ𝑗+1𝜎𝑥

𝑗+1𝜎𝑥
𝑗 𝜎𝑧

𝑗 Θ𝑘=𝑗+1(𝑠3, 𝑠4))⋅

d𝑠4d𝑠3]]𝑒𝑖𝑡𝐻0d𝑠1d𝑠2) = (A.123)

=𝔼ℎ(𝜀4 ∫
−𝑖𝑡

0
∫

𝑠1

0
𝑒−𝑖𝑡𝐻0[𝐻𝜈(𝑠1), [∑

𝑘
ℎ𝑘𝜎𝑥

𝑘 ∏
𝑙

𝑒−(−1)𝛿(𝑘,𝑙)+𝛿(𝑘,𝑙+1)𝑠2𝑙𝜎𝑧
𝑙 𝜎𝑧

𝑙+1 ∏
𝑚

𝑒𝑠2𝜎𝑧
𝑚𝜎𝑧

𝑚+1 ,

∫
𝑠2

0
∫

𝑠3

0
2ℎ𝑗(ℎ𝑗−1𝜎𝑥

𝑗−1𝜎𝑥
𝑗 𝜎𝑧

𝑗 Θ𝑘=𝑗−1(𝑠3, 𝑠4) + ℎ𝑗𝜎𝑥
𝑗 𝜎𝑥

𝑗 𝜎𝑧
𝑗 Θ𝑘=𝑗(𝑠3, 𝑠4) + ℎ𝑗+1𝜎𝑥

𝑗+1𝜎𝑥
𝑗 𝜎𝑧

𝑗 Θ𝑘=𝑗+1(𝑠3, 𝑠4))⋅

d𝑠4d𝑠3]]𝑒𝑖𝑡𝐻0d𝑠1d𝑠2) = (A.124)

=𝔼ℎ(𝜀4 ∫
−𝑖𝑡

0
∫

𝑠1

0
𝑒−𝑖𝑡𝐻0[𝐻𝜈(𝑠1), [∑

𝑘
ℎ𝑘𝜎𝑥

𝑘𝑒2𝑠2𝜎𝑧
𝑘−1𝜎𝑧

𝑘𝑒2𝑠2𝜎𝑧
𝑘𝜎𝑧

𝑘+1 ,

∫
𝑠2

0
∫

𝑠3

0
2ℎ𝑗(ℎ𝑗−1𝜎𝑥

𝑗−1𝜎𝑥
𝑗 𝜎𝑧

𝑗 Θ𝑘=𝑗−1(𝑠3, 𝑠4) + ℎ𝑗𝜎𝑥
𝑗 𝜎𝑥

𝑗 𝜎𝑧
𝑗 Θ𝑘=𝑗(𝑠3, 𝑠4) + ℎ𝑗+1𝜎𝑥

𝑗+1𝜎𝑥
𝑗 𝜎𝑧

𝑗 Θ𝑘=𝑗+1(𝑠3, 𝑠4))⋅

d𝑠4d𝑠3]]𝑒𝑖𝑡𝐻0d𝑠1d𝑠2) = (A.125)

=𝔼ℎ(𝜀4 ∫
−𝑖𝑡

0
∫

𝑠1

0
∏

𝑎
𝑒−𝑖𝑡𝜎𝑧

𝑎𝜎𝑧
𝑎+1[∑

𝑐
ℎ𝑐𝜎𝑥

𝑐 𝑒2𝑠1𝜎𝑧
𝑐−1𝜎𝑐

𝑘𝑒2𝑠1𝜎𝑧
𝑐𝜎𝑧

𝑐+1 , [∑
𝑘

ℎ𝑘𝜎𝑥
𝑘𝑒2𝑠2𝜎𝑧

𝑘−1𝜎𝑧
𝑘𝑒2𝑠2𝜎𝑧

𝑘𝜎𝑧
𝑘+1 ,

∫
𝑠2

0
∫

𝑠3

0
2ℎ𝑗(ℎ𝑗−1𝜎𝑥

𝑗−1𝜎𝑥
𝑗 𝜎𝑧

𝑗 Θ𝑘=𝑗−1(𝑠3, 𝑠4) + ℎ𝑗𝜎𝑥
𝑗 𝜎𝑥

𝑗 𝜎𝑧
𝑗 Θ𝑘=𝑗(𝑠3, 𝑠4) + ℎ𝑗+1𝜎𝑥

𝑗+1𝜎𝑥
𝑗 𝜎𝑧

𝑗 Θ𝑘=𝑗+1(𝑠3, 𝑠4))⋅

d𝑠4d𝑠3]] ∏
𝑏

𝑒𝑖𝑡𝜎𝑧
𝑏𝜎𝑧

𝑏+1d𝑠1d𝑠2) = (A.126)

=𝔼ℎ(𝜀4 ∫
−𝑖𝑡

0
∫

𝑠1

0
∏

𝑎
𝑒−𝑖𝑡𝜎𝑧

𝑎𝜎𝑧
𝑎+1[∑

𝑐
ℎ𝑐𝜎𝑥

𝑐 𝑒2𝑠1𝜎𝑧
𝑐−1𝜎𝑐

𝑘𝑒2𝑠1𝜎𝑧
𝑐𝜎𝑧

𝑐+1 , [∑
𝑘

ℎ𝑘𝜎𝑥
𝑘𝑒2𝑠2𝜎𝑧

𝑘−1𝜎𝑧
𝑘𝑒2𝑠2𝜎𝑧

𝑘𝜎𝑧
𝑘+1 ,

∫
𝑠2

0
∫

𝑠3

0
2ℎ𝑗(ℎ𝑗−1𝜎𝑥

𝑗−1𝜎𝑥
𝑗 𝜎𝑧

𝑗 Θ𝑘=𝑗−1(𝑠3, 𝑠4) + ℎ𝑗𝜎𝑥
𝑗 𝜎𝑥

𝑗 𝜎𝑧
𝑗 Θ𝑘=𝑗(𝑠3, 𝑠4) + ℎ𝑗+1𝜎𝑥

𝑗+1𝜎𝑥
𝑗 𝜎𝑧

𝑗 Θ𝑘=𝑗+1(𝑠3, 𝑠4))⋅

d𝑠4d𝑠3]] ∏
𝑏

𝑒𝑖𝑡𝜎𝑧
𝑏𝜎𝑧

𝑏+1d𝑠1d𝑠2) = (A.127)

The first summand in the first commutator in detail:

Π1 = ∑
𝑘

ℎ𝑘𝜎𝑥
𝑘𝑒2𝑠2𝜎𝑧

𝑘−1𝜎𝑧
𝑘𝑒2𝑠2𝜎𝑧

𝑘𝜎𝑧
𝑘+1 ⋅ 2ℎ𝑗ℎ𝑗−1𝜎𝑥

𝑗−1𝜎𝑥
𝑗 𝜎𝑧

𝑗 Θ𝑘=𝑗−1(𝑠3, 𝑠4)−

− ∑
𝑙

ℎ𝑙2ℎ𝑗ℎ𝑗−1𝜎𝑥
𝑗−1𝜎𝑥

𝑗 𝜎𝑧
𝑗 Θ𝑙=𝑗−1(𝑠3, 𝑠4) ⋅ 𝜎𝑥

𝑙 𝑒2𝑠2𝜎𝑧
𝑙−1𝜎𝑧

𝑙 𝑒2𝑠2𝜎𝑧
𝑙 𝜎𝑧

𝑙+1 = (A.128)

=2ℎ𝑗ℎ𝑗−1(∑
𝑘

ℎ𝑘𝜎𝑥
𝑘𝑒2𝑠2𝜎𝑧

𝑘−1𝜎𝑧
𝑘𝑒2𝑠2𝜎𝑧

𝑘𝜎𝑧
𝑘+1 ⋅ 𝜎𝑥

𝑗−1𝜎𝑥
𝑗 𝜎𝑧

𝑗 Θ𝑘=𝑗−1(𝑠3, 𝑠4)−

− ∑
𝑙

ℎ𝑙𝜎𝑥
𝑗−1𝜎𝑥

𝑗 𝜎𝑧
𝑗 Θ𝑙=𝑗−1(𝑠3, 𝑠4) ⋅ 𝜎𝑥

𝑙 𝑒2𝑠2𝜎𝑧
𝑙−1𝜎𝑧

𝑙 𝑒2𝑠2𝜎𝑧
𝑙 𝜎𝑧

𝑙+1) = (A.129)
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=2ℎ𝑗ℎ𝑗−1(∑
𝑘

ℎ𝑘𝜎𝑥
𝑘𝜎𝑥

𝑗−1𝑒(−1)𝛿(𝑘,𝑗)+𝛿(𝑘,𝑗−1)2𝑠2𝜎𝑧
𝑘−1𝜎𝑧

𝑘𝑒(−1)𝛿(𝑘,𝑗−1)+𝛿(𝑘,𝑗−2)2𝑠2𝜎𝑧
𝑘𝜎𝑧

𝑘+1𝜎𝑥
𝑗 𝜎𝑧

𝑗 Θ𝑘=𝑗−1(𝑠3, 𝑠4)−

− ∑
𝑙

ℎ𝑙𝜎𝑥
𝑗−1𝜎𝑥

𝑗 𝜎𝑧
𝑗 Θ𝑙=𝑗−1(𝑠3, 𝑠4) ⋅ 𝜎𝑥

𝑙 𝑒2𝑠2𝜎𝑧
𝑙−1𝜎𝑧

𝑙 𝑒2𝑠2𝜎𝑧
𝑙 𝜎𝑧

𝑙+1) = (A.130)

=2ℎ𝑗ℎ𝑗−1(∑
𝑘

ℎ𝑘𝜎𝑥
𝑘𝜎𝑥

𝑗−1𝜎𝑥
𝑗 𝜎𝑧

𝑗 𝑒(−1)𝛿(𝑘,𝑗+1)+2𝛿(𝑘,𝑗)+𝛿(𝑘,𝑗−1)2𝑠2𝜎𝑧
𝑘−1𝜎𝑧

𝑘𝑒(−1)𝛿(𝑘,𝑗)+2𝛿(𝑘,𝑗−1)+𝛿(𝑘,𝑗−2)2𝑠2𝜎𝑧
𝑘𝜎𝑧

𝑘+1Θ𝑘=𝑗−1(𝑠3, 𝑠4)−

− ∑
𝑙

ℎ𝑙𝜎𝑥
𝑗−1𝜎𝑥

𝑗 𝜎𝑧
𝑗 Θ𝑙=𝑗−1(𝑠3, 𝑠4) ⋅ 𝜎𝑥

𝑙 𝑒2𝑠2𝜎𝑧
𝑙−1𝜎𝑧

𝑙 𝑒2𝑠2𝜎𝑧
𝑙 𝜎𝑧

𝑙+1) = (A.131)

=2ℎ𝑗ℎ𝑗−1 ∑
𝑙

(ℎ𝑙𝜎𝑥
𝑙 𝜎𝑥

𝑗−1𝜎𝑥
𝑗 𝜎𝑧

𝑗 𝑒(−1)𝛿(𝑙,𝑗+1)+𝛿(𝑙,𝑗−1)2𝑠2𝜎𝑧
𝑙−1𝜎𝑧

𝑙 𝑒(−1)𝛿(𝑙,𝑗)+𝛿(𝑙,𝑗−2)2𝑠2𝜎𝑧
𝑙 𝜎𝑧

𝑙+1Θ𝑘=𝑗−1(𝑠3, 𝑠4)−

− ℎ𝑙𝜎𝑥
𝑗−1𝜎𝑥

𝑗 𝜎𝑧
𝑗 Θ𝑙=𝑗−1(𝑠3, 𝑠4) ⋅ 𝜎𝑥

𝑙 𝑒2𝑠2𝜎𝑧
𝑙−1𝜎𝑧

𝑙 𝑒2𝑠2𝜎𝑧
𝑙 𝜎𝑧

𝑙+1) = (A.132)

=2𝜎𝑥
𝑗−1𝜎𝑥

𝑗 𝜎𝑧
𝑗 ℎ𝑗ℎ𝑗−1 ∑

𝑙
ℎ𝑙((−1)𝛿(𝑙,𝑗)𝜎𝑥

𝑙 𝑒(−1)𝛿(𝑙,𝑗+1)+𝛿(𝑙,𝑗−1)2𝑠2𝜎𝑧
𝑙−1𝜎𝑧

𝑙 𝑒(−1)𝛿(𝑙,𝑗)+𝛿(𝑙,𝑗−2)2𝑠2𝜎𝑧
𝑙 𝜎𝑧

𝑙+1Θ𝑘=𝑗−1(𝑠3, 𝑠4)−

− Θ𝑙=𝑗−1(𝑠3, 𝑠4) ⋅ 𝜎𝑥
𝑙 𝑒2𝑠2𝜎𝑧

𝑙−1𝜎𝑧
𝑙 𝑒2𝑠2𝜎𝑧

𝑙 𝜎𝑧
𝑙+1) (A.133)

The second summand in (A.133) depends on the relation between 𝑙 and 𝑗. For the cases where 𝑙 ≠ {𝑗 − 1, 𝑗, 𝑗 +
1, 𝑗 + 2} the following is true.

Π1;𝑙≠{𝑗−1,𝑗,𝑗+1,𝑗+2} =2ℎ𝑗ℎ𝑗−1(∑
𝑘

ℎ𝑘𝜎𝑥
𝑘𝜎𝑥

𝑗−1𝜎𝑥
𝑗 𝜎𝑧

𝑗 𝑒(−1)𝛿(𝑘,𝑗+1)+𝛿(𝑘,𝑗−1)2𝑠2𝜎𝑧
𝑘−1𝜎𝑧

𝑘𝑒(−1)𝛿(𝑘,𝑗)+𝛿(𝑘,𝑗−2)2𝑠2𝜎𝑧
𝑘𝜎𝑧

𝑘+1Θ𝑘=𝑗−1(𝑠3, 𝑠4)−

− ∑
𝑙≠{𝑗−1,𝑗,𝑗+1,𝑗+2}

ℎ𝑙𝜎𝑥
𝑙 𝜎𝑥

𝑗−1𝜎𝑥
𝑗 𝜎𝑧

𝑗 ⋅ 𝑒2𝑠2𝜎𝑧
𝑙−1𝜎𝑧

𝑙 𝑒2𝑠2𝜎𝑧
𝑙 𝜎𝑧

𝑙+1Θ𝑙=𝑗−1(𝑠3, 𝑠4)) (A.134)

Furthermore,
Π1;𝑙≠{𝑗−2,𝑗−1,𝑗,𝑗+1,𝑗+2} = 0, (A.135)

and the summands for the other values of 𝑙 are non-zero, i.e.

Π1;𝑙={𝑗−2,𝑗−1,𝑗,𝑗+1,𝑗+2} ≠ 0. (A.136)

The commutator for the third summand in (A.127) is as follows.

Π3 = ∑
𝑘

ℎ𝑘𝜎𝑥
𝑘𝑒2𝑠2𝜎𝑧

𝑘−1𝜎𝑧
𝑘𝑒2𝑠2𝜎𝑧

𝑘𝜎𝑧
𝑘+1 ⋅ ℎ𝑗+1𝜎𝑥

𝑗+1𝜎𝑥
𝑗 𝜎𝑧

𝑗 Θ𝑘=𝑗+1(𝑠3, 𝑠4)−

− ∑
𝑙

ℎ𝑙ℎ𝑗+1𝜎𝑥
𝑗+1𝜎𝑥

𝑗 𝜎𝑧
𝑗 Θ𝑙=𝑗+1(𝑠3, 𝑠4) ⋅ 𝜎𝑥

𝑙 𝑒2𝑠2𝜎𝑧
𝑙−1𝜎𝑧

𝑙 𝑒2𝑠2𝜎𝑧
𝑙 𝜎𝑧

𝑙+1 (A.137)

It might make sense to examine the commutation relations between Θ𝜉 and 𝜎𝑥
𝑙 . Beginning with Θ𝑘=𝑗−1 ≡ Θ𝑗−1.

Θ𝑗−1 ⋅ 𝜎𝑥
𝑙 = 𝑒2𝑠𝜎𝑧

𝑗−2𝜎𝑧
𝑗−1𝑒2𝑠1𝜎𝑧

𝑗 𝜎𝑧
𝑗+1 ⋅ (−2 sinh (2(𝑠 − 𝑠1)𝜎𝑧

𝑗−1𝜎𝑧
𝑗 )) ⋅ 𝜎𝑥

𝑙 = (A.138)
=(−1)𝛿(𝑙,𝑗−1)+𝛿(𝑙,𝑗)𝑒2𝑠𝜎𝑧

𝑗−2𝜎𝑧
𝑗−1𝑒2𝑠1𝜎𝑧

𝑗 𝜎𝑧
𝑗+1 ⋅ 𝜎𝑥

𝑙 (−2 sinh (2(𝑠 − 𝑠1)𝜎𝑧
𝑗−1𝜎𝑧

𝑗 )) = (A.139)

=(−1)𝛿(𝑙,𝑗−1)+𝛿(𝑙,𝑗)𝜎𝑥
𝑙 𝑒(−1)𝛿(𝑙,𝑗−2)+𝛿(𝑗−1)2𝑠𝜎𝑧

𝑗−2𝜎𝑧
𝑗−1𝑒(−1)𝛿(𝑙,𝑗)+𝛿(𝑙,𝑗+1)2𝑠1𝜎𝑧

𝑗 𝜎𝑧
𝑗+1 ⋅ (−2 sinh (2(𝑠 − 𝑠1)𝜎𝑧

𝑗−1𝜎𝑧
𝑗 )) = (A.140)

=𝜎𝑥
𝑙 (−1)𝛿(𝑙,𝑗−1)+𝛿(𝑙,𝑗)𝑒(−1)𝛿(𝑙,𝑗−2)+𝛿(𝑗−1)2𝑠𝜎𝑧

𝑗−2𝜎𝑧
𝑗−1𝑒(−1)𝛿(𝑙,𝑗)+𝛿(𝑙,𝑗+1)2𝑠1𝜎𝑧

𝑗 𝜎𝑧
𝑗+1 ⋅ Θ𝑗−1 ⋅ 𝑒−2𝑠𝜎𝑧

𝑗−2𝜎𝑧
𝑗−1𝑒−2𝑠1𝜎𝑧

𝑗 𝜎𝑧
𝑗+1 = (A.141)
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=𝜎𝑥
𝑙 ⋅ Θ𝑗−1 ⋅ (−1)𝛿(𝑙,𝑗−1)+𝛿(𝑙,𝑗)𝑒((−1)𝛿(𝑙,𝑗−2)+𝛿(𝑗−1)−1)⋅2𝑠𝜎𝑧

𝑗−2𝜎𝑧
𝑗−1𝑒((−1)𝛿(𝑙,𝑗)+𝛿(𝑙,𝑗+1)−1)2𝑠1𝜎𝑧

𝑗 𝜎𝑧
𝑗+1 (A.142)

[Θ𝑗−1, 𝜎𝑥
𝑙≠{𝑗−2,𝑗−1,𝑗,𝑗+1}] = 0 (A.143)

Θ𝑗+1 ⋅ 𝜎𝑥
𝑙 = 𝑒2𝑠1𝜎𝑧

𝑗−1𝜎𝑧
𝑗 𝑒2𝑠𝜎𝑧

𝑗+1𝜎𝑧
𝑗+2 ⋅ (−2 sinh (2(𝑠 − 𝑠1)𝜎𝑧

𝑗 𝜎𝑧
𝑗+1)) ⋅ 𝜎𝑥

𝑙 = (A.144)

=(−1)𝛿(𝑙,𝑗)+𝛿(𝑙,𝑗+1)𝜎𝑥
𝑙 𝑒(−1)𝛿(𝑙,𝑗−1)+𝛿(𝑙,𝑗)2𝑠1𝜎𝑧

𝑗−1𝜎𝑧
𝑗 𝑒(−1)𝛿(𝑙,𝑗+1)+𝛿(𝑙,𝑗+2)2𝑠𝜎𝑧

𝑗+1𝜎𝑧
𝑗+2 ⋅ (−2 sinh (2(𝑠 − 𝑠1)𝜎𝑧

𝑗 𝜎𝑧
𝑗+1)) = (A.145)

=𝜎𝑥
𝑙 (−1)𝛿(𝑙,𝑗)+𝛿(𝑙,𝑗+1)𝑒(−1)𝛿(𝑙,𝑗−1)+𝛿(𝑙,𝑗)2𝑠1𝜎𝑧

𝑗−1𝜎𝑧
𝑗 𝑒(−1)𝛿(𝑙,𝑗+1)+𝛿(𝑙,𝑗+2)2𝑠𝜎𝑧

𝑗+1𝜎𝑧
𝑗+2 ⋅ Θ𝑗+1 ⋅ 𝑒−2𝑠1𝜎𝑧

𝑗−1𝜎𝑧
𝑗 𝑒−2𝑠𝜎𝑧

𝑗+1𝜎𝑧
𝑗+2 = (A.146)

=𝜎𝑥
𝑙 ⋅ Θ𝑗+1(−1)𝛿(𝑙,𝑗)+𝛿(𝑙,𝑗+1)𝑒((−1)𝛿(𝑙,𝑗+1)+𝛿(𝑙,𝑗+2)−1)⋅2𝑠𝜎𝑧

𝑗+1𝜎𝑧
𝑗+2𝑒((−1)𝛿(𝑙,𝑗−1)+𝛿(𝑙,𝑗)−1)⋅2𝑠1𝜎𝑧

𝑗−1𝜎𝑧
𝑗 (A.147)

[Θ𝑗+1, 𝜎𝑥
𝑙≠{𝑗−1,𝑗,𝑗+1,𝑗+2}] = 0 (A.148)

Θ𝑗 ⋅ 𝜎𝑥
𝑙 = 2 cosh (2 ⋅ (𝑠1(𝜎𝑧

𝑗−1𝜎𝑧
𝑗 + 𝜎𝑧

𝑗 𝜎𝑧
𝑗+1) − 𝑠(𝜎𝑧

𝑗−1𝜎𝑧
𝑗 + 𝜎𝑧

𝑗 𝜎𝑧
𝑗+1))) ⋅ 𝜎𝑥

𝑙 = (A.149)
=𝜎𝑥

𝑙 ⋅ 2 cosh (2 ⋅ (𝑠1(𝜎𝑧
𝑗−1𝜎𝑧

𝑗 + 𝜎𝑧
𝑗 𝜎𝑧

𝑗+1) − (−1)𝛿(𝑙,𝑗−1)+𝛿(𝑙,𝑗+1)𝑠(𝜎𝑧
𝑗−1𝜎𝑧

𝑗 + 𝜎𝑧
𝑗 𝜎𝑧

𝑗+1))) (A.150)
[Θ𝑗 ⋅ 𝜎𝑥

𝑙≠{𝑗−1,𝑗+1}] = 0 (A.151)

Back to the first summand, Π1.

Π1 = 2𝜎𝑥
𝑗−1𝜎𝑥

𝑗 𝜎𝑧
𝑗 ℎ𝑗ℎ𝑗−1⋅

∑
𝑙

ℎ𝑙((−1)𝛿(𝑙,𝑗)𝜎𝑥
𝑙 𝑒(−1)𝛿(𝑙,𝑗+1)+𝛿(𝑙,𝑗−1)2𝑠2𝜎𝑧

𝑙−1𝜎𝑧
𝑙 𝑒(−1)𝛿(𝑙,𝑗)+𝛿(𝑙,𝑗−2)2𝑠2𝜎𝑧

𝑙 𝜎𝑧
𝑙+1Θ𝑘=𝑗−1(𝑠3, 𝑠4)−

− Θ𝑙=𝑗−1(𝑠3, 𝑠4) ⋅ 𝜎𝑥
𝑙 𝑒2𝑠2𝜎𝑧

𝑙−1𝜎𝑧
𝑙 𝑒2𝑠2𝜎𝑧

𝑙 𝜎𝑧
𝑙+1) = (A.152)

=2𝜎𝑥
𝑗−1𝜎𝑥

𝑗 𝜎𝑧
𝑗 ℎ𝑗ℎ𝑗−1 ∑

𝑙
ℎ𝑙((−1)𝛿(𝑙,𝑗)𝜎𝑥

𝑙 𝑒(−1)𝛿(𝑙,𝑗+1)+𝛿(𝑙,𝑗−1)2𝑠2𝜎𝑧
𝑙−1𝜎𝑧

𝑙 𝑒(−1)𝛿(𝑙,𝑗)+𝛿(𝑙,𝑗−2)2𝑠2𝜎𝑧
𝑙 𝜎𝑧

𝑙+1Θ𝑘=𝑗−1(𝑠3, 𝑠4)−

− 𝜎𝑥
𝑙 ⋅ Θ𝑗−1 ⋅ (−1)𝛿(𝑙,𝑗−1)+𝛿(𝑙,𝑗)𝑒((−1)𝛿(𝑙,𝑗−2)+𝛿(𝑗−1)−1)⋅2𝑠3𝜎𝑧

𝑗−2𝜎𝑧
𝑗−1𝑒((−1)𝛿(𝑙,𝑗)+𝛿(𝑙,𝑗+1)−1)2𝑠4𝜎𝑧

𝑗 𝜎𝑧
𝑗+1𝑒2𝑠2𝜎𝑧

𝑙−1𝜎𝑧
𝑙 𝑒2𝑠2𝜎𝑧

𝑙 𝜎𝑧
𝑙+1) =
(A.153)

=2𝜎𝑥
𝑗−1𝜎𝑥

𝑗 𝜎𝑧
𝑗 ℎ𝑗ℎ𝑗−1 ∑

𝑙
(−1)𝛿(𝑙,𝑗)ℎ𝑙𝜎𝑥

𝑙 (𝑒(−1)𝛿(𝑙,𝑗+1)+𝛿(𝑙,𝑗−1)2𝑠2𝜎𝑧
𝑙−1𝜎𝑧

𝑙 𝑒(−1)𝛿(𝑙,𝑗)+𝛿(𝑙,𝑗−2)2𝑠2𝜎𝑧
𝑙 𝜎𝑧

𝑙+1−

− (−1)𝛿(𝑙,𝑗−1)𝑒((−1)𝛿(𝑙,𝑗−2)+𝛿(𝑗−1)−1)⋅2𝑠3𝜎𝑧
𝑗−2𝜎𝑧

𝑗−1𝑒((−1)𝛿(𝑙,𝑗)+𝛿(𝑙,𝑗+1)−1)2𝑠4𝜎𝑧
𝑗 𝜎𝑧

𝑗+1𝑒2𝑠2𝜎𝑧
𝑙−1𝜎𝑧

𝑙 𝑒2𝑠2𝜎𝑧
𝑙 𝜎𝑧

𝑙+1) ⋅ Θ𝑗−1(𝑠3, 𝑠4)
(A.154)

Because Π1 contains ℎ𝑗ℎ𝑗−1 as a prefactor, the only cases in which it will give a result different than zero when
looking at the full expectation value is when 𝑙 = {𝑗 − 1, 𝑗}, given 𝑗 ≠ 𝑗 − 1. I call this value Ρ1.

Ρ1 = 2𝜎𝑥
𝑗−1𝜎𝑥

𝑗 𝜎𝑧
𝑗 ℎ𝑗ℎ𝑗−1(ℎ𝑗−1𝜎𝑥

𝑗−1(𝑒−2𝑠2𝜎𝑧
𝑗−2𝜎𝑧

𝑗−1𝑒2𝑠2𝜎𝑧
𝑗−1𝜎𝑧

𝑗 + 𝑒−4𝑠3𝜎𝑧
𝑗−2𝜎𝑧

𝑗−1𝑒2𝑠2𝜎𝑧
𝑗−2𝜎𝑧

𝑗−1𝑒2𝑠2𝜎𝑧
𝑗−1𝜎𝑧

𝑗 )−

− ℎ𝑗𝜎𝑥
𝑗 (𝑒2𝑠2𝜎𝑧

𝑗−1𝜎𝑧
𝑗 𝑒−2𝑠2𝜎𝑧

𝑗 𝜎𝑧
𝑗+1 − 𝑒−4𝑠4𝜎𝑧

𝑗 𝜎𝑧
𝑗+1𝑒2𝑠2𝜎𝑧

𝑗−1𝜎𝑧
𝑗 𝑒2𝑠2𝜎𝑧

𝑗 𝜎𝑧
𝑗+1)) ⋅ Θ𝑗−1(𝑠3, 𝑠4) (A.155)

I’ll try calculating the outer commutator of Ρ1.

𝜌1 = ∑
𝑐

(ℎ𝑐𝜎𝑥
𝑐 𝑒2𝑠1𝜎𝑧

𝑐−1𝜎𝑐
𝑘𝑒2𝑠1𝜎𝑧

𝑐𝜎𝑧
𝑐+1 ⋅ 2𝜎𝑥

𝑗−1𝜎𝑥
𝑗 𝜎𝑧

𝑗 ℎ𝑗ℎ𝑗−1⋅

(ℎ𝑗−1𝜎𝑥
𝑗−1(𝑒−2𝑠2𝜎𝑧

𝑗−2𝜎𝑧
𝑗−1𝑒2𝑠2𝜎𝑧

𝑗−1𝜎𝑧
𝑗 + 𝑒−4𝑠3𝜎𝑧

𝑗−2𝜎𝑧
𝑗−1𝑒2𝑠2𝜎𝑧

𝑗−2𝜎𝑧
𝑗−1𝑒2𝑠2𝜎𝑧

𝑗−1𝜎𝑧
𝑗 )−

− ℎ𝑗𝜎𝑥
𝑗 (𝑒2𝑠2𝜎𝑧

𝑗−1𝜎𝑧
𝑗 𝑒−2𝑠2𝜎𝑧

𝑗 𝜎𝑧
𝑗+1 − 𝑒−4𝑠4𝜎𝑧

𝑗 𝜎𝑧
𝑗+1𝑒2𝑠2𝜎𝑧

𝑗−1𝜎𝑧
𝑗 𝑒2𝑠2𝜎𝑧

𝑗 𝜎𝑧
𝑗+1)) ⋅ Θ𝑗−1(𝑠3, 𝑠4)−

− 2𝜎𝑥
𝑗−1𝜎𝑥

𝑗 𝜎𝑧
𝑗 ℎ𝑗ℎ𝑗−1(ℎ𝑗−1𝜎𝑥

𝑗−1(𝑒−2𝑠2𝜎𝑧
𝑗−2𝜎𝑧

𝑗−1𝑒2𝑠2𝜎𝑧
𝑗−1𝜎𝑧

𝑗 + 𝑒−4𝑠3𝜎𝑧
𝑗−2𝜎𝑧

𝑗−1𝑒2𝑠2𝜎𝑧
𝑗−2𝜎𝑧

𝑗−1𝑒2𝑠2𝜎𝑧
𝑗−1𝜎𝑧

𝑗 )−

− ℎ𝑗𝜎𝑥
𝑗 (𝑒2𝑠2𝜎𝑧

𝑗−1𝜎𝑧
𝑗 𝑒−2𝑠2𝜎𝑧

𝑗 𝜎𝑧
𝑗+1 − 𝑒−4𝑠4𝜎𝑧

𝑗 𝜎𝑧
𝑗+1𝑒2𝑠2𝜎𝑧

𝑗−1𝜎𝑧
𝑗 𝑒2𝑠2𝜎𝑧

𝑗 𝜎𝑧
𝑗+1)) ⋅ Θ𝑗−1(𝑠3, 𝑠4) ⋅ ℎ𝑐𝜎𝑥

𝑐 𝑒2𝑠1𝜎𝑧
𝑐−1𝜎𝑐

𝑘𝑒2𝑠1𝜎𝑧
𝑐𝜎𝑧

𝑐+1) =
(A.156)
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=2ℎ𝑗ℎ𝑗−1 ∑
𝑐

ℎ𝑐(𝜎𝑥
𝑐 𝑒2𝑠1𝜎𝑧

𝑐−1𝜎𝑐
𝑘𝑒2𝑠1𝜎𝑧

𝑐𝜎𝑧
𝑐+1 ⋅ 𝜎𝑥

𝑗−1𝜎𝑥
𝑗 𝜎𝑧

𝑗 ⋅

(ℎ𝑗−1𝜎𝑥
𝑗−1(𝑒−2𝑠2𝜎𝑧

𝑗−2𝜎𝑧
𝑗−1𝑒2𝑠2𝜎𝑧

𝑗−1𝜎𝑧
𝑗 + 𝑒−4𝑠3𝜎𝑧

𝑗−2𝜎𝑧
𝑗−1𝑒2𝑠2𝜎𝑧

𝑗−2𝜎𝑧
𝑗−1𝑒2𝑠2𝜎𝑧

𝑗−1𝜎𝑧
𝑗 )−

− ℎ𝑗𝜎𝑥
𝑗 (𝑒2𝑠2𝜎𝑧

𝑗−1𝜎𝑧
𝑗 𝑒−2𝑠2𝜎𝑧

𝑗 𝜎𝑧
𝑗+1 − 𝑒−4𝑠4𝜎𝑧

𝑗 𝜎𝑧
𝑗+1𝑒2𝑠2𝜎𝑧

𝑗−1𝜎𝑧
𝑗 𝑒2𝑠2𝜎𝑧

𝑗 𝜎𝑧
𝑗+1)) ⋅ Θ𝑗−1(𝑠3, 𝑠4)−

− 𝜎𝑥
𝑗−1𝜎𝑥

𝑗 𝜎𝑧
𝑗 (ℎ𝑗−1𝜎𝑥

𝑗−1(𝑒−2𝑠2𝜎𝑧
𝑗−2𝜎𝑧

𝑗−1𝑒2𝑠2𝜎𝑧
𝑗−1𝜎𝑧

𝑗 + 𝑒−4𝑠3𝜎𝑧
𝑗−2𝜎𝑧

𝑗−1𝑒2𝑠2𝜎𝑧
𝑗−2𝜎𝑧

𝑗−1𝑒2𝑠2𝜎𝑧
𝑗−1𝜎𝑧

𝑗 )−

− ℎ𝑗𝜎𝑥
𝑗 (𝑒2𝑠2𝜎𝑧

𝑗−1𝜎𝑧
𝑗 𝑒−2𝑠2𝜎𝑧

𝑗 𝜎𝑧
𝑗+1 − 𝑒−4𝑠4𝜎𝑧

𝑗 𝜎𝑧
𝑗+1𝑒2𝑠2𝜎𝑧

𝑗−1𝜎𝑧
𝑗 𝑒2𝑠2𝜎𝑧

𝑗 𝜎𝑧
𝑗+1)) ⋅ Θ𝑗−1(𝑠3, 𝑠4) ⋅ 𝜎𝑥

𝑐 𝑒2𝑠1𝜎𝑧
𝑐−1𝜎𝑐

𝑘𝑒2𝑠1𝜎𝑧
𝑐𝜎𝑧

𝑐+1)
(A.157)

𝔼ℎ(𝜌1) = 2𝜂4
ℎ ⋅ (𝛿(𝑐, 𝑗) ⋅ 𝜎𝑥

𝑐 𝑒2𝑠1𝜎𝑧
𝑐−1𝜎𝑐

𝑘𝑒2𝑠1𝜎𝑧
𝑐𝜎𝑧

𝑐+1 ⋅

𝜎𝑥
𝑗−1𝜎𝑥

𝑗 𝜎𝑧
𝑗 𝜎𝑥

𝑗−1(𝑒−2𝑠2𝜎𝑧
𝑗−2𝜎𝑧

𝑗−1𝑒2𝑠2𝜎𝑧
𝑗−1𝜎𝑧

𝑗 + 𝑒−4𝑠3𝜎𝑧
𝑗−2𝜎𝑧

𝑗−1𝑒2𝑠2𝜎𝑧
𝑗−2𝜎𝑧

𝑗−1𝑒2𝑠2𝜎𝑧
𝑗−1𝜎𝑧

𝑗 ) ⋅ Θ𝑗−1(𝑠3, 𝑠4)−
− 𝛿(𝑐, 𝑗 − 1) ⋅ 𝜎𝑥

𝑐 𝑒2𝑠1𝜎𝑧
𝑐−1𝜎𝑐

𝑘𝑒2𝑠1𝜎𝑧
𝑐𝜎𝑧

𝑐+1 ⋅
𝜎𝑥

𝑗−1𝜎𝑥
𝑗 𝜎𝑧

𝑗 ⋅ 𝜎𝑥
𝑗 (𝑒2𝑠2𝜎𝑧

𝑗−1𝜎𝑧
𝑗 𝑒−2𝑠2𝜎𝑧

𝑗 𝜎𝑧
𝑗+1 − 𝑒−4𝑠4𝜎𝑧

𝑗 𝜎𝑧
𝑗+1𝑒2𝑠2𝜎𝑧

𝑗−1𝜎𝑧
𝑗 𝑒2𝑠2𝜎𝑧

𝑗 𝜎𝑧
𝑗+1) ⋅ Θ𝑗−1(𝑠3, 𝑠4)−

− 𝛿(𝑗, 𝑐) ⋅ 𝜎𝑥
𝑗−1𝜎𝑥

𝑗 𝜎𝑧
𝑗 𝜎𝑥

𝑗−1(𝑒−2𝑠2𝜎𝑧
𝑗−2𝜎𝑧

𝑗−1𝑒2𝑠2𝜎𝑧
𝑗−1𝜎𝑧

𝑗 + 𝑒−4𝑠3𝜎𝑧
𝑗−2𝜎𝑧

𝑗−1𝑒2𝑠2𝜎𝑧
𝑗−2𝜎𝑧

𝑗−1𝑒2𝑠2𝜎𝑧
𝑗−1𝜎𝑧

𝑗 )⋅
Θ𝑗−1(𝑠3, 𝑠4) ⋅ 𝜎𝑥

𝑐 𝑒2𝑠1𝜎𝑧
𝑐−1𝜎𝑐

𝑘𝑒2𝑠1𝜎𝑧
𝑐𝜎𝑧

𝑐+1+
+ 𝛿(𝑐, 𝑗 − 1) ⋅ 𝜎𝑥

𝑗−1𝜎𝑥
𝑗 𝜎𝑧

𝑗 𝜎𝑥
𝑗 (𝑒2𝑠2𝜎𝑧

𝑗−1𝜎𝑧
𝑗 𝑒−2𝑠2𝜎𝑧

𝑗 𝜎𝑧
𝑗+1 − 𝑒−4𝑠4𝜎𝑧

𝑗 𝜎𝑧
𝑗+1𝑒2𝑠2𝜎𝑧

𝑗−1𝜎𝑧
𝑗 𝑒2𝑠2𝜎𝑧

𝑗 𝜎𝑧
𝑗+1)⋅

Θ𝑗−1(𝑠3, 𝑠4) ⋅ 𝜎𝑥
𝑐 𝑒2𝑠1𝜎𝑧

𝑐−1𝜎𝑐
𝑘𝑒2𝑠1𝜎𝑧

𝑐𝜎𝑧
𝑐+1) = (A.158)

=2𝜂4
ℎ ⋅ (𝜎𝑥

𝑗 𝑒2𝑠1𝜎𝑧
𝑗−1𝜎𝑧

𝑗 𝑒2𝑠1𝜎𝑧
𝑗 𝜎𝑧

𝑗+1 ⋅

𝜎𝑥
𝑗−1𝜎𝑥

𝑗 𝜎𝑧
𝑗 𝜎𝑥

𝑗−1(𝑒−2𝑠2𝜎𝑧
𝑗−2𝜎𝑧

𝑗−1𝑒2𝑠2𝜎𝑧
𝑗−1𝜎𝑧

𝑗 + 𝑒−4𝑠3𝜎𝑧
𝑗−2𝜎𝑧

𝑗−1𝑒2𝑠2𝜎𝑧
𝑗−2𝜎𝑧

𝑗−1𝑒2𝑠2𝜎𝑧
𝑗−1𝜎𝑧

𝑗 ) ⋅ Θ𝑗−1(𝑠3, 𝑠4)−
− 𝜎𝑥

𝑗−1𝑒2𝑠1𝜎𝑧
𝑗−2𝜎𝑧

𝑗−1𝑒2𝑠1𝜎𝑧
𝑗−1𝜎𝑧

𝑗

⋅ 𝜎𝑥
𝑗−1𝜎𝑥

𝑗 𝜎𝑧
𝑗 𝜎𝑥

𝑗 ⋅ (𝑒2𝑠2𝜎𝑧
𝑗−1𝜎𝑧

𝑗 𝑒−2𝑠2𝜎𝑧
𝑗 𝜎𝑧

𝑗+1 − 𝑒−4𝑠4𝜎𝑧
𝑗 𝜎𝑧

𝑗+1𝑒2𝑠2𝜎𝑧
𝑗−1𝜎𝑧

𝑗 𝑒2𝑠2𝜎𝑧
𝑗 𝜎𝑧

𝑗+1) ⋅ Θ𝑗−1(𝑠3, 𝑠4)−

− 𝜎𝑥
𝑗−1𝜎𝑥

𝑗 𝜎𝑧
𝑗 𝜎𝑥

𝑗−1(𝑒−2𝑠2𝜎𝑧
𝑗−2𝜎𝑧

𝑗−1𝑒2𝑠2𝜎𝑧
𝑗−1𝜎𝑧

𝑗 + 𝑒−4𝑠3𝜎𝑧
𝑗−2𝜎𝑧

𝑗−1𝑒2𝑠2𝜎𝑧
𝑗−2𝜎𝑧

𝑗−1𝑒2𝑠2𝜎𝑧
𝑗−1𝜎𝑧

𝑗 )
⋅ Θ𝑗−1(𝑠3, 𝑠4) ⋅ 𝜎𝑥

𝑗 𝑒2𝑠1𝜎𝑧
𝑗−1𝜎𝑧

𝑗 𝑒2𝑠1𝜎𝑧
𝑗 𝜎𝑧

𝑗+1+
+ 𝜎𝑥

𝑗−1𝜎𝑥
𝑗 𝜎𝑧

𝑗 𝜎𝑥
𝑗 (𝑒2𝑠2𝜎𝑧

𝑗−1𝜎𝑧
𝑗 𝑒−2𝑠2𝜎𝑧

𝑗 𝜎𝑧
𝑗+1 − 𝑒−4𝑠4𝜎𝑧

𝑗 𝜎𝑧
𝑗+1𝑒2𝑠2𝜎𝑧

𝑗−1𝜎𝑧
𝑗 𝑒2𝑠2𝜎𝑧

𝑗 𝜎𝑧
𝑗+1)⋅

Θ𝑗−1(𝑠3, 𝑠4) ⋅ 𝜎𝑥
𝑗−1𝑒2𝑠1𝜎𝑧

𝑗−2𝜎𝑧
𝑗−1𝑒2𝑠1𝜎𝑧

𝑗−1𝜎𝑧
𝑗 ) = (A.159)

=2𝜂4
ℎ ⋅ (𝑒−2𝑠1𝜎𝑧

𝑗−1𝜎𝑧
𝑗 𝑒−2𝑠1𝜎𝑧

𝑗 𝜎𝑧
𝑗+1 ⋅ 𝜎𝑧

𝑗

(𝑒−2𝑠2𝜎𝑧
𝑗−2𝜎𝑧

𝑗−1𝑒2𝑠2𝜎𝑧
𝑗−1𝜎𝑧

𝑗 + 𝑒−4𝑠3𝜎𝑧
𝑗−2𝜎𝑧

𝑗−1𝑒2𝑠2𝜎𝑧
𝑗−2𝜎𝑧

𝑗−1𝑒2𝑠2𝜎𝑧
𝑗−1𝜎𝑧

𝑗 ) ⋅ Θ𝑗−1(𝑠3, 𝑠4)−

+ 𝑒−2𝑠1𝜎𝑧
𝑗−2𝜎𝑧

𝑗−1𝑒−2𝑠1𝜎𝑧
𝑗−1𝜎𝑧

𝑗 ⋅ 𝜎𝑧
𝑗 ⋅ (𝑒2𝑠2𝜎𝑧

𝑗−1𝜎𝑧
𝑗 𝑒−2𝑠2𝜎𝑧

𝑗 𝜎𝑧
𝑗+1 − 𝑒−4𝑠4𝜎𝑧

𝑗 𝜎𝑧
𝑗+1𝑒2𝑠2𝜎𝑧

𝑗−1𝜎𝑧
𝑗 𝑒2𝑠2𝜎𝑧

𝑗 𝜎𝑧
𝑗+1) ⋅ Θ𝑗−1(𝑠3, 𝑠4)−

− 𝜎𝑥
𝑗 𝜎𝑧

𝑗 (𝑒−2𝑠2𝜎𝑧
𝑗−2𝜎𝑧

𝑗−1𝑒2𝑠2𝜎𝑧
𝑗−1𝜎𝑧

𝑗 + 𝑒−4𝑠3𝜎𝑧
𝑗−2𝜎𝑧

𝑗−1𝑒2𝑠2𝜎𝑧
𝑗−2𝜎𝑧

𝑗−1𝑒2𝑠2𝜎𝑧
𝑗−1𝜎𝑧

𝑗 )𝜎𝑥
𝑗 ⋅

Θ𝑗−1(𝑠3, 𝑠4) ⋅ (−𝑒−4𝑠4𝜎𝑧
𝑗 𝜎𝑧

𝑗+1)𝑒2𝑠1𝜎𝑧
𝑗−1𝜎𝑧

𝑗 𝑒2𝑠1𝜎𝑧
𝑗 𝜎𝑧

𝑗+1+
− 𝜎𝑥

𝑗−1𝜎𝑧
𝑗 (𝑒2𝑠2𝜎𝑧

𝑗−1𝜎𝑧
𝑗 𝑒−2𝑠2𝜎𝑧

𝑗 𝜎𝑧
𝑗+1 − 𝑒−4𝑠4𝜎𝑧

𝑗 𝜎𝑧
𝑗+1𝑒2𝑠2𝜎𝑧

𝑗−1𝜎𝑧
𝑗 𝑒2𝑠2𝜎𝑧

𝑗 𝜎𝑧
𝑗+1)𝜎𝑥

𝑗−1⋅
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Appendix A. Additional Calculations

Θ𝑗−1(𝑠3, 𝑠4) ⋅ (−𝑒−4𝑠3𝜎𝑧
𝑗−2𝜎𝑧

𝑗−1)𝑒2𝑠1𝜎𝑧
𝑗−2𝜎𝑧

𝑗−1𝑒2𝑠1𝜎𝑧
𝑗−1𝜎𝑧

𝑗 ) = (A.160)

=2𝜂4
ℎ𝜎𝑧

𝑗 ⋅ (𝑒−2𝑠1(𝜎𝑧
𝑗−1𝜎𝑧

𝑗 +𝜎𝑧
𝑗 𝜎𝑧

𝑗+1) ⋅ (𝑒−2𝑠2(𝜎𝑧
𝑗−2𝜎𝑧

𝑗−1−𝜎𝑧
𝑗−1𝜎𝑧

𝑗 ) + 𝑒−4𝑠3𝜎𝑧
𝑗−2𝜎𝑧

𝑗−1𝑒2𝑠2(𝜎𝑧
𝑗−2𝜎𝑧

𝑗−1+𝜎𝑧
𝑗−1𝜎𝑧

𝑗 ))+

+ 𝑒−2𝑠1(𝜎𝑧
𝑗−2𝜎𝑧

𝑗−1+𝜎𝑧
𝑗−1𝜎𝑧

𝑗 ) ⋅ (𝑒2𝑠2(𝜎𝑧
𝑗−1𝜎𝑧

𝑗 −𝜎𝑧
𝑗 𝜎𝑧

𝑗+1) − 𝑒−4𝑠4𝜎𝑧
𝑗 𝜎𝑧

𝑗+1𝑒2𝑠2(𝜎𝑧
𝑗−1𝜎𝑧

𝑗 +𝜎𝑧
𝑗 𝜎𝑧

𝑗+1))−

− 𝜎𝑥
𝑗 (𝑒−2𝑠2(𝜎𝑧

𝑗−2𝜎𝑧
𝑗−1−𝜎𝑧

𝑗−1𝜎𝑧
𝑗 ) + 𝑒−4𝑠3𝜎𝑧

𝑗−2𝜎𝑧
𝑗−1𝑒2𝑠2(𝜎𝑧

𝑗−2𝜎𝑧
𝑗−1+𝜎𝑧

𝑗−1𝜎𝑧
𝑗 ))𝜎𝑥

𝑗 ⋅ 𝑒−4𝑠4𝜎𝑧
𝑗 𝜎𝑧

𝑗+1𝑒2𝑠1(𝜎𝑧
𝑗−1𝜎𝑧

𝑗 +𝜎𝑧
𝑗 𝜎𝑧

𝑗+1)+

+ 𝜎𝑥
𝑗−1(𝑒2𝑠2(𝜎𝑧

𝑗−1𝜎𝑧
𝑗 −𝜎𝑧

𝑗 𝜎𝑧
𝑗+1) − 𝑒−4𝑠4𝜎𝑧

𝑗 𝜎𝑧
𝑗+1𝑒2𝑠2(𝜎𝑧

𝑗−1𝜎𝑧
𝑗 +𝜎𝑧

𝑗 𝜎𝑧
𝑗+1))⋅

𝜎𝑥
𝑗−1 ⋅ 𝑒−4𝑠3𝜎𝑧

𝑗−2𝜎𝑧
𝑗−1𝑒2𝑠1(𝜎𝑧

𝑗−2𝜎𝑧
𝑗−1+𝜎𝑧

𝑗−1𝜎𝑧
𝑗 )) ⋅ Θ𝑗−1(𝑠3, 𝑠4) = (A.161)

=2𝜂4
ℎ𝜎𝑧

𝑗 (−2 sinh (2(𝑠3 − 𝑠4)𝜎𝑧
𝑗−1𝜎𝑧

𝑗 )) ⋅ (𝑒−2𝑠1(𝜎𝑧
𝑗−1𝜎𝑧

𝑗 +𝜎𝑧
𝑗 𝜎𝑧

𝑗+1)⋅

(𝑒−2𝑠2(𝜎𝑧
𝑗−2𝜎𝑧

𝑗−1−𝜎𝑧
𝑗−1𝜎𝑧

𝑗 )𝑒2𝑠3𝜎𝑧
𝑗−2𝜎𝑧

𝑗−1 + 𝑒−2𝑠3𝜎𝑧
𝑗−2𝜎𝑧

𝑗−1𝑒2𝑠2(𝜎𝑧
𝑗−2𝜎𝑧

𝑗−1+𝜎𝑧
𝑗−1𝜎𝑧

𝑗 ))𝑒2𝑠4𝜎𝑧
𝑗 𝜎𝑧

𝑗+1+

+ 𝑒−2𝑠1(𝜎𝑧
𝑗−2𝜎𝑧

𝑗−1+𝜎𝑧
𝑗−1𝜎𝑧

𝑗 ) ⋅ (𝑒2𝑠2(𝜎𝑧
𝑗−1𝜎𝑧

𝑗 −𝜎𝑧
𝑗 𝜎𝑧

𝑗+1)𝑒2𝑠4𝜎𝑧
𝑗 𝜎𝑧

𝑗+1 − 𝑒−2𝑠4𝜎𝑧
𝑗 𝜎𝑧

𝑗+1𝑒2𝑠2(𝜎𝑧
𝑗−1𝜎𝑧

𝑗 +𝜎𝑧
𝑗 𝜎𝑧

𝑗+1))𝑒2𝑠3𝜎𝑧
𝑗−2𝜎𝑧

𝑗−1−

− 𝜎𝑥
𝑗 (𝑒−2𝑠2(𝜎𝑧

𝑗−2𝜎𝑧
𝑗−1−𝜎𝑧

𝑗−1𝜎𝑧
𝑗 )𝑒2𝑠3𝜎𝑧

𝑗−2𝜎𝑧
𝑗−1 + 𝑒−2𝑠3𝜎𝑧

𝑗−2𝜎𝑧
𝑗−1𝑒2𝑠2(𝜎𝑧

𝑗−2𝜎𝑧
𝑗−1+𝜎𝑧

𝑗−1𝜎𝑧
𝑗 ))𝜎𝑥

𝑗 ⋅ 𝑒−2𝑠4𝜎𝑧
𝑗 𝜎𝑧

𝑗+1𝑒2𝑠1(𝜎𝑧
𝑗−1𝜎𝑧

𝑗 +𝜎𝑧
𝑗 𝜎𝑧

𝑗+1)+

+ 𝜎𝑥
𝑗−1(𝑒2𝑠2(𝜎𝑧

𝑗−1𝜎𝑧
𝑗 −𝜎𝑧

𝑗 𝜎𝑧
𝑗+1)𝑒2𝑠4𝜎𝑧

𝑗 𝜎𝑧
𝑗+1 − 𝑒−2𝑠4𝜎𝑧

𝑗 𝜎𝑧
𝑗+1𝑒2𝑠2(𝜎𝑧

𝑗−1𝜎𝑧
𝑗 +𝜎𝑧

𝑗 𝜎𝑧
𝑗+1))𝜎𝑥

𝑗−1 ⋅ 𝑒−2𝑠3𝜎𝑧
𝑗−2𝜎𝑧

𝑗−1𝑒2𝑠1(𝜎𝑧
𝑗−2𝜎𝑧

𝑗−1+𝜎𝑧
𝑗−1𝜎𝑧

𝑗 )) =

(A.162)

=2𝜂4
ℎ𝜎𝑧

𝑗 (−2 sinh (2(𝑠3 − 𝑠4)𝜎𝑧
𝑗−1𝜎𝑧

𝑗 )) ⋅ (𝑒−2𝑠1(𝜎𝑧
𝑗−1𝜎𝑧

𝑗 +𝜎𝑧
𝑗 𝜎𝑧

𝑗+1)⋅

(𝑒−2𝑠2(𝜎𝑧
𝑗−2𝜎𝑧

𝑗−1−𝜎𝑧
𝑗−1𝜎𝑧

𝑗 )𝑒2𝑠3𝜎𝑧
𝑗−2𝜎𝑧

𝑗−1 + 𝑒−2𝑠3𝜎𝑧
𝑗−2𝜎𝑧

𝑗−1𝑒2𝑠2(𝜎𝑧
𝑗−2𝜎𝑧

𝑗−1+𝜎𝑧
𝑗−1𝜎𝑧

𝑗 ))𝑒2𝑠4𝜎𝑧
𝑗 𝜎𝑧

𝑗+1+

+ 𝑒−2𝑠1(𝜎𝑧
𝑗−2𝜎𝑧

𝑗−1+𝜎𝑧
𝑗−1𝜎𝑧

𝑗 ) ⋅ (𝑒2𝑠2(𝜎𝑧
𝑗−1𝜎𝑧

𝑗 −𝜎𝑧
𝑗 𝜎𝑧

𝑗+1)𝑒2𝑠4𝜎𝑧
𝑗 𝜎𝑧

𝑗+1 − 𝑒−2𝑠4𝜎𝑧
𝑗 𝜎𝑧

𝑗+1𝑒2𝑠2(𝜎𝑧
𝑗−1𝜎𝑧

𝑗 +𝜎𝑧
𝑗 𝜎𝑧

𝑗+1))𝑒2𝑠3𝜎𝑧
𝑗−2𝜎𝑧

𝑗−1−

− (𝑒−2𝑠2(𝜎𝑧
𝑗−2𝜎𝑧

𝑗−1+𝜎𝑧
𝑗−1𝜎𝑧

𝑗 )𝑒2𝑠3𝜎𝑧
𝑗−2𝜎𝑧

𝑗−1𝜎𝑥
𝑗 + 𝑒−2𝑠3𝜎𝑧

𝑗−2𝜎𝑧
𝑗−1𝑒2𝑠2(𝜎𝑧

𝑗−2𝜎𝑧
𝑗−1−𝜎𝑧

𝑗−1𝜎𝑧
𝑗 )𝜎𝑥

𝑗 )𝜎𝑥
𝑗 ⋅ 𝑒−2𝑠4𝜎𝑧

𝑗 𝜎𝑧
𝑗+1𝑒2𝑠1(𝜎𝑧

𝑗−1𝜎𝑧
𝑗 +𝜎𝑧

𝑗 𝜎𝑧
𝑗+1)+

+ (𝑒−2𝑠2(𝜎𝑧
𝑗−1𝜎𝑧

𝑗 +𝜎𝑧
𝑗 𝜎𝑧

𝑗+1)𝑒2𝑠4𝜎𝑧
𝑗 𝜎𝑧

𝑗+1𝜎𝑥
𝑗−1 − 𝑒−2𝑠4𝜎𝑧

𝑗 𝜎𝑧
𝑗+1𝑒2𝑠2(−𝜎𝑧

𝑗−1𝜎𝑧
𝑗 +𝜎𝑧

𝑗 𝜎𝑧
𝑗+1)𝜎𝑥

𝑗−1)𝜎𝑥
𝑗−1⋅

⋅ 𝑒−2𝑠3𝜎𝑧
𝑗−2𝜎𝑧

𝑗−1𝑒2𝑠1(𝜎𝑧
𝑗−2𝜎𝑧

𝑗−1+𝜎𝑧
𝑗−1𝜎𝑧

𝑗 )) = (A.163)

=2𝜂4
ℎ𝜎𝑧

𝑗 (−2 sinh (2(𝑠3 − 𝑠4)𝜎𝑧
𝑗−1𝜎𝑧

𝑗 )) ⋅ (𝑒−2𝑠1(𝜎𝑧
𝑗−1𝜎𝑧

𝑗 +𝜎𝑧
𝑗 𝜎𝑧

𝑗+1)⋅

(𝑒−2𝑠2(𝜎𝑧
𝑗−2𝜎𝑧

𝑗−1−𝜎𝑧
𝑗−1𝜎𝑧

𝑗 )𝑒2𝑠3𝜎𝑧
𝑗−2𝜎𝑧

𝑗−1 + 𝑒−2𝑠3𝜎𝑧
𝑗−2𝜎𝑧

𝑗−1𝑒2𝑠2(𝜎𝑧
𝑗−2𝜎𝑧

𝑗−1+𝜎𝑧
𝑗−1𝜎𝑧

𝑗 ))𝑒2𝑠4𝜎𝑧
𝑗 𝜎𝑧

𝑗+1+

+ 𝑒−2𝑠1(𝜎𝑧
𝑗−2𝜎𝑧

𝑗−1+𝜎𝑧
𝑗−1𝜎𝑧

𝑗 ) ⋅ (𝑒2𝑠2(𝜎𝑧
𝑗−1𝜎𝑧

𝑗 −𝜎𝑧
𝑗 𝜎𝑧

𝑗+1)𝑒2𝑠4𝜎𝑧
𝑗 𝜎𝑧

𝑗+1 − 𝑒−2𝑠4𝜎𝑧
𝑗 𝜎𝑧

𝑗+1𝑒2𝑠2(𝜎𝑧
𝑗−1𝜎𝑧

𝑗 +𝜎𝑧
𝑗 𝜎𝑧

𝑗+1))𝑒2𝑠3𝜎𝑧
𝑗−2𝜎𝑧

𝑗−1−

− (𝑒−2𝑠2(𝜎𝑧
𝑗−2𝜎𝑧

𝑗−1+𝜎𝑧
𝑗−1𝜎𝑧

𝑗 )𝑒2𝑠3𝜎𝑧
𝑗−2𝜎𝑧

𝑗−1 + 𝑒−2𝑠3𝜎𝑧
𝑗−2𝜎𝑧

𝑗−1𝑒2𝑠2(𝜎𝑧
𝑗−2𝜎𝑧

𝑗−1−𝜎𝑧
𝑗−1𝜎𝑧

𝑗 )) ⋅ 𝑒−2𝑠4𝜎𝑧
𝑗 𝜎𝑧

𝑗+1𝑒2𝑠1(𝜎𝑧
𝑗−1𝜎𝑧

𝑗 +𝜎𝑧
𝑗 𝜎𝑧

𝑗+1)+

+ (𝑒−2𝑠2(𝜎𝑧
𝑗−1𝜎𝑧

𝑗 +𝜎𝑧
𝑗 𝜎𝑧

𝑗+1)𝑒2𝑠4𝜎𝑧
𝑗 𝜎𝑧

𝑗+1 − 𝑒−2𝑠4𝜎𝑧
𝑗 𝜎𝑧

𝑗+1𝑒2𝑠2(−𝜎𝑧
𝑗−1𝜎𝑧

𝑗 +𝜎𝑧
𝑗 𝜎𝑧

𝑗+1)) ⋅ 𝑒−2𝑠3𝜎𝑧
𝑗−2𝜎𝑧

𝑗−1𝑒2𝑠1(𝜎𝑧
𝑗−2𝜎𝑧

𝑗−1+𝜎𝑧
𝑗−1𝜎𝑧

𝑗 )) =

(A.164)
=2𝜂4

ℎ𝜎𝑧
𝑗 (−2 sinh (2(𝑠3 − 𝑠4)𝜎𝑧

𝑗−1𝜎𝑧
𝑗 )) ⋅
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⋅ (𝑒−2𝑠1(𝜎𝑧
𝑗−1𝜎𝑧

𝑗 +𝜎𝑧
𝑗 𝜎𝑧

𝑗+1) ⋅ (𝑒−2𝑠2(𝜎𝑧
𝑗−2𝜎𝑧

𝑗−1−𝜎𝑧
𝑗−1𝜎𝑧

𝑗 )𝑒2𝑠3𝜎𝑧
𝑗−2𝜎𝑧

𝑗−1 + 𝑒2𝑠2(𝜎𝑧
𝑗−2𝜎𝑧

𝑗−1+𝜎𝑧
𝑗−1𝜎𝑧

𝑗 )𝑒−2𝑠3𝜎𝑧
𝑗−2𝜎𝑧

𝑗−1)𝑒2𝑠4𝜎𝑧
𝑗 𝜎𝑧

𝑗+1+

+ 𝑒−2𝑠1(𝜎𝑧
𝑗−2𝜎𝑧

𝑗−1+𝜎𝑧
𝑗−1𝜎𝑧

𝑗 ) ⋅ (𝑒2𝑠2(𝜎𝑧
𝑗−1𝜎𝑧

𝑗 −𝜎𝑧
𝑗 𝜎𝑧

𝑗+1)𝑒2𝑠4𝜎𝑧
𝑗 𝜎𝑧

𝑗+1 − 𝑒−2𝑠4𝜎𝑧
𝑗 𝜎𝑧

𝑗+1𝑒2𝑠2(𝜎𝑧
𝑗−1𝜎𝑧

𝑗 +𝜎𝑧
𝑗 𝜎𝑧

𝑗+1))𝑒2𝑠3𝜎𝑧
𝑗−2𝜎𝑧

𝑗−1−

− 𝑒2𝑠1(𝜎𝑧
𝑗−1𝜎𝑧

𝑗 +𝜎𝑧
𝑗 𝜎𝑧

𝑗+1)(𝑒−2𝑠2(𝜎𝑧
𝑗−2𝜎𝑧

𝑗−1+𝜎𝑧
𝑗−1𝜎𝑧

𝑗 )𝑒2𝑠3𝜎𝑧
𝑗−2𝜎𝑧

𝑗−1 + 𝑒2𝑠2(𝜎𝑧
𝑗−2𝜎𝑧

𝑗−1−𝜎𝑧
𝑗−1𝜎𝑧

𝑗 )𝑒−2𝑠3𝜎𝑧
𝑗−2𝜎𝑧

𝑗−1) ⋅ 𝑒−2𝑠4𝜎𝑧
𝑗 𝜎𝑧

𝑗+1+

+ (𝑒−2𝑠2(𝜎𝑧
𝑗−1𝜎𝑧

𝑗 +𝜎𝑧
𝑗 𝜎𝑧

𝑗+1)𝑒2𝑠4𝜎𝑧
𝑗 𝜎𝑧

𝑗+1 − 𝑒−2𝑠4𝜎𝑧
𝑗 𝜎𝑧

𝑗+1𝑒−2𝑠2(𝜎𝑧
𝑗−1𝜎𝑧

𝑗 −𝜎𝑧
𝑗 𝜎𝑧

𝑗+1)) ⋅ 𝑒−2𝑠3𝜎𝑧
𝑗−2𝜎𝑧

𝑗−1𝑒2𝑠1(𝜎𝑧
𝑗−2𝜎𝑧

𝑗−1+𝜎𝑧
𝑗−1𝜎𝑧

𝑗 )) =

(A.165)
=2𝜂4

ℎ𝜎𝑧
𝑗 (−2 sinh(2(𝑠3 − 𝑠4)𝜎𝑧

𝑗−1𝜎𝑧
𝑗 ))⋅

⋅ (−2 sinh (2 (𝑠1(𝜎𝑧
𝑗−1𝜎𝑧

𝑗 + 𝜎𝑧
𝑗 𝜎𝑧

𝑗+1) + 𝑠2(𝜎𝑧
𝑗−2𝜎𝑧

𝑗−1 − 𝜎𝑧
𝑗−1𝜎𝑧

𝑗 ) − 𝑠3𝜎𝑧
𝑗−2𝜎𝑧

𝑗−1 − 𝑠4(𝜎𝑧
𝑗 𝜎𝑧

𝑗+1))) −

− 2 sinh (2 (𝑠1(𝜎𝑧
𝑗−1𝜎𝑧

𝑗 + 𝜎𝑧
𝑗 𝜎𝑧

𝑗+1) − 𝑠2(𝜎𝑧
𝑗−2𝜎𝑧

𝑗−1 + 𝜎𝑧
𝑗−1𝜎𝑧

𝑗 ) + 𝑠3𝜎𝑧
𝑗−2𝜎𝑧

𝑗−1 − 𝑠4(𝜎𝑧
𝑗 𝜎𝑧

𝑗+1))) −
− 2 sinh (2 (𝑠1(𝜎𝑧

𝑗−2𝜎𝑧
𝑗−1 + 𝜎𝑧

𝑗−1𝜎𝑧
𝑗 ) − 𝑠2(𝜎𝑧

𝑗−1𝜎𝑧
𝑗 − 𝜎𝑧

𝑗 𝜎𝑧
𝑗+1) − 𝑠3𝜎𝑧

𝑗−2𝜎𝑧
𝑗−1 − 𝑠4(𝜎𝑧

𝑗 𝜎𝑧
𝑗+1))) +

+ 2 sinh (2 (𝑠1(𝜎𝑧
𝑗−2𝜎𝑧

𝑗−1 + 𝜎𝑧
𝑗−1𝜎𝑧

𝑗 ) − 𝑠2(𝜎𝑧
𝑗−1𝜎𝑧

𝑗 + 𝜎𝑧
𝑗 𝜎𝑧

𝑗+1) − 𝑠3𝜎𝑧
𝑗−2𝜎𝑧

𝑗−1 + 𝑠4(𝜎𝑧
𝑗 𝜎𝑧

𝑗+1)))) = (A.166)

=2𝜂4
ℎ𝜎𝑧

𝑗 (−2 sinh(2(𝑠3 − 𝑠4)𝜎𝑧
𝑗−1𝜎𝑧

𝑗 ))⋅

⋅ (−4 sinh (2 (𝑠1(𝜎𝑧
𝑗−1𝜎𝑧

𝑗 + 𝜎𝑧
𝑗 𝜎𝑧

𝑗+1) − 𝑠2𝜎𝑧
𝑗−1𝜎𝑧

𝑗 − 𝑠4𝜎𝑧
𝑗 𝜎𝑧

𝑗+1)) cosh (2 (𝑠2𝜎𝑧
𝑗−2𝜎𝑧

𝑗−1 − 𝑠3𝜎𝑧
𝑗−2𝜎𝑧

𝑗−1)) +

+ 4 cosh (2 (𝑠1(𝜎𝑧
𝑗−2𝜎𝑧

𝑗−1 + 𝜎𝑧
𝑗−1𝜎𝑧

𝑗 ) − 𝑠2𝜎𝑧
𝑗−1𝜎𝑧

𝑗 − 𝑠3𝜎𝑧
𝑗−2𝜎𝑧

𝑗−1)) sinh (2 (−𝑠2𝜎𝑧
𝑗 𝜎𝑧

𝑗+1 + 𝑠4𝜎𝑧
𝑗 𝜎𝑧

𝑗+1))) = (A.167)

=2𝜂4
ℎ𝜎𝑧

𝑗 (−2 sinh(2(𝑠3 − 𝑠4)𝜎𝑧
𝑗−1𝜎𝑧

𝑗 ))⋅

⋅ (−4 sinh (2 ((𝑠1 − 𝑠2)𝜎𝑧
𝑗−1𝜎𝑧

𝑗 + (𝑠1 − 𝑠4)𝜎𝑧
𝑗 𝜎𝑧

𝑗+1)) cosh (2 (𝑠2 − 𝑠3) 𝜎𝑧
𝑗−2𝜎𝑧

𝑗−1) −

− 4 cosh (2 ((𝑠1 − 𝑠3)𝜎𝑧
𝑗−2𝜎𝑧

𝑗−1 + (𝑠1 − 𝑠2)𝜎𝑧
𝑗−1𝜎𝑧

𝑗 )) sinh (2 (𝑠2 − 𝑠4) 𝜎𝑧
𝑗 𝜎𝑧

𝑗+1)) (A.168)

𝔼ℎ(𝜌1) = 2𝜂4
ℎ𝜎𝑧

𝑗 (−2 sinh(2(𝑠3 − 𝑠4)𝜎𝑧
𝑗−1𝜎𝑧

𝑗 )) ⋅ (−4(sinh(2(𝑠1 − 𝑠2)𝜎𝑧
𝑗−1𝜎𝑧

𝑗 ) cosh(2(𝑠1 − 𝑠4)𝜎𝑧
𝑗 𝜎𝑧

𝑗+1)+

+ cosh(2(𝑠1 − 𝑠2)𝜎𝑧
𝑗−1𝜎𝑧

𝑗 ) sinh(2(𝑠1 − 𝑠4)𝜎𝑧
𝑗 𝜎𝑧

𝑗+1)) cosh (2 (𝑠2 − 𝑠3) 𝜎𝑧
𝑗−2𝜎𝑧

𝑗−1) −

− 4(cosh(2(𝑠1 − 𝑠3)𝜎𝑧
𝑗−2𝜎𝑧

𝑗−1) cosh(2(𝑠1 − 𝑠2)𝜎𝑧
𝑗−1𝜎𝑧

𝑗 )

+ sinh(2(𝑠1 − 𝑠3)𝜎𝑧
𝑗−2𝜎𝑧

𝑗−1) sinh(2(𝑠1 − 𝑠2)𝜎𝑧
𝑗−1𝜎𝑧

𝑗 )) sinh (2 (𝑠2 − 𝑠4) 𝜎𝑧
𝑗 𝜎𝑧

𝑗+1)) = (A.169)

=16𝜂4
ℎ𝜎𝑧

𝑗 (sinh(2(𝑠3 − 𝑠4)𝜎𝑧
𝑗−1𝜎𝑧

𝑗 ))⋅

(sinh(2(𝑠1 − 𝑠2)𝜎𝑧
𝑗−1𝜎𝑧

𝑗 ) cosh(2(𝑠1 − 𝑠4)𝜎𝑧
𝑗 𝜎𝑧

𝑗+1) cosh (2 (𝑠2 − 𝑠3) 𝜎𝑧
𝑗−2𝜎𝑧

𝑗−1) +

+ cosh(2(𝑠1 − 𝑠2)𝜎𝑧
𝑗−1𝜎𝑧

𝑗 ) sinh(2(𝑠1 − 𝑠4)𝜎𝑧
𝑗 𝜎𝑧

𝑗+1) cosh (2 (𝑠2 − 𝑠3) 𝜎𝑧
𝑗−2𝜎𝑧

𝑗−1) −
− cosh(2(𝑠1 − 𝑠3)𝜎𝑧

𝑗−2𝜎𝑧
𝑗−1) cosh(2(𝑠1 − 𝑠2)𝜎𝑧

𝑗−1𝜎𝑧
𝑗 ) sinh (2 (𝑠2 − 𝑠4) 𝜎𝑧

𝑗 𝜎𝑧
𝑗+1) +

+ sinh(2(𝑠1 − 𝑠3)𝜎𝑧
𝑗−2𝜎𝑧

𝑗−1) sinh(2(𝑠1 − 𝑠2)𝜎𝑧
𝑗−1𝜎𝑧

𝑗 ) sinh (2 (𝑠2 − 𝑠4) 𝜎𝑧
𝑗 𝜎𝑧

𝑗+1)) = (A.170)
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=16𝜂4
ℎ𝜎𝑧

𝑗 (sinh(2(𝑠3 − 𝑠4)𝜎𝑧
𝑗−1𝜎𝑧

𝑗 )) ⋅ (

cosh (2 (𝑠2 − 𝑠3) 𝜎𝑧
𝑗−2𝜎𝑧

𝑗−1) sinh(2(𝑠1 − 𝑠2)𝜎𝑧
𝑗−1𝜎𝑧

𝑗 ) cosh(2(𝑠1 − 𝑠4)𝜎𝑧
𝑗 𝜎𝑧

𝑗+1)+
+ cosh (2 (𝑠2 − 𝑠3) 𝜎𝑧

𝑗−2𝜎𝑧
𝑗−1) cosh(2(𝑠1 − 𝑠2)𝜎𝑧

𝑗−1𝜎𝑧
𝑗 ) sinh(2(𝑠1 − 𝑠4)𝜎𝑧

𝑗 𝜎𝑧
𝑗+1)−

− cosh(2(𝑠1 − 𝑠3)𝜎𝑧
𝑗−2𝜎𝑧

𝑗−1) cosh(2(𝑠1 − 𝑠2)𝜎𝑧
𝑗−1𝜎𝑧

𝑗 ) sinh (2 (𝑠2 − 𝑠4) 𝜎𝑧
𝑗 𝜎𝑧

𝑗+1) +

+ sinh(2(𝑠1 − 𝑠3)𝜎𝑧
𝑗−2𝜎𝑧

𝑗−1) sinh(2(𝑠1 − 𝑠2)𝜎𝑧
𝑗−1𝜎𝑧

𝑗 ) sinh (2 (𝑠2 − 𝑠4) 𝜎𝑧
𝑗 𝜎𝑧

𝑗+1)) (A.171)

Π3 = ∑
𝑘

ℎ𝑘𝜎𝑥
𝑘𝑒2𝑠2𝜎𝑧

𝑘−1𝜎𝑧
𝑘𝑒2𝑠2𝜎𝑧

𝑘𝜎𝑧
𝑘+1 ⋅ ℎ𝑗+1𝜎𝑥

𝑗+1𝜎𝑥
𝑗 𝜎𝑧

𝑗 Θ𝑘=𝑗+1(𝑠3, 𝑠4)−

− ∑
𝑙

ℎ𝑙ℎ𝑗+1𝜎𝑥
𝑗+1𝜎𝑥

𝑗 𝜎𝑧
𝑗 Θ𝑙=𝑗+1(𝑠3, 𝑠4) ⋅ 𝜎𝑥

𝑙 𝑒2𝑠2𝜎𝑧
𝑙−1𝜎𝑧

𝑙 𝑒2𝑠2𝜎𝑧
𝑙 𝜎𝑧

𝑙+1 = (A.172)

= ∑
𝑘

ℎ𝑘(𝜎𝑥
𝑘𝑒2𝑠2𝜎𝑧

𝑘−1𝜎𝑧
𝑘𝑒2𝑠2𝜎𝑧

𝑘𝜎𝑧
𝑘+1 ⋅ ℎ𝑗+1𝜎𝑥

𝑗+1𝜎𝑥
𝑗 𝜎𝑧

𝑗 Θ𝑘=𝑗+1(𝑠3, 𝑠4)−

− ℎ𝑗+1𝜎𝑥
𝑗+1𝜎𝑥

𝑗 𝜎𝑧
𝑗 𝜎𝑥

𝑘 ⋅ Θ𝑗+1(−1)𝛿(𝑘,𝑗)+𝛿(𝑘,𝑗+1)𝑒((−1)𝛿(𝑘,𝑗−1)+𝛿(𝑘,𝑗)−1)⋅2𝑠1𝜎𝑧
𝑗−1𝜎𝑧

𝑗 ⋅

𝑒((−1)𝛿(𝑘,𝑗+1)+𝛿(𝑘,𝑗+2)−1)⋅2𝑠𝜎𝑧
𝑗+1𝜎𝑧

𝑗+2𝑒2𝑠2𝜎𝑧
𝑘−1𝜎𝑧

𝑘𝑒2𝑠2𝜎𝑧
𝑘𝜎𝑧

𝑘+1) = … (A.173)

Using simple logic with symmetry conditions and (A.167), 𝔼ℎ(𝜌3) should be easy to write out.

𝔼ℎ(𝜌3) = 2𝜂4
ℎ𝜎𝑧

𝑗 (−2 sinh(2(𝑠3 − 𝑠4)𝜎𝑧
𝑗+1𝜎𝑧

𝑗 ))⋅

(−2 sinh (2 (𝑠1(𝜎𝑧
𝑗+1𝜎𝑧

𝑗 + 𝜎𝑧
𝑗 𝜎𝑧

𝑗−1) + 𝑠2(𝜎𝑧
𝑗+2𝜎𝑧

𝑗+1 − 𝜎𝑧
𝑗+1𝜎𝑧

𝑗 ) − 𝑠3𝜎𝑧
𝑗+2𝜎𝑧

𝑗+1 − 𝑠4(𝜎𝑧
𝑗 𝜎𝑧

𝑗−1))) −

− 2 sinh (2 (𝑠1(𝜎𝑧
𝑗+1𝜎𝑧

𝑗 + 𝜎𝑧
𝑗 𝜎𝑧

𝑗−1) − 𝑠2(𝜎𝑧
𝑗+2𝜎𝑧

𝑗+1 + 𝜎𝑧
𝑗+1𝜎𝑧

𝑗 ) + 𝑠3𝜎𝑧
𝑗+2𝜎𝑧

𝑗+1 − 𝑠4(𝜎𝑧
𝑗 𝜎𝑧

𝑗−1))) −
− 2 sinh (2 (𝑠1(𝜎𝑧

𝑗+2𝜎𝑧
𝑗+1 + 𝜎𝑧

𝑗+1𝜎𝑧
𝑗 ) − 𝑠2(𝜎𝑧

𝑗+1𝜎𝑧
𝑗 − 𝜎𝑧

𝑗 𝜎𝑧
𝑗−1) − 𝑠3𝜎𝑧

𝑗+2𝜎𝑧
𝑗+1 − 𝑠4𝜎𝑧

𝑗 𝜎𝑧
𝑗−1)) +

+ 2 sinh (2 (𝑠1(𝜎𝑧
𝑗+2𝜎𝑧

𝑗+1 + 𝜎𝑧
𝑗+1𝜎𝑧

𝑗 ) − 𝑠2(𝜎𝑧
𝑗+1𝜎𝑧

𝑗 + 𝜎𝑧
𝑗 𝜎𝑧

𝑗−1) − 𝑠3𝜎𝑧
𝑗+2𝜎𝑧

𝑗+1 + 𝑠4𝜎𝑧
𝑗 𝜎𝑧

𝑗−1))) (A.174)

I’m left with 𝔼ℎ(𝜌2) to calculate. I start with finding 𝑃2.

Ρ2 = ∑
𝑘

[ℎ𝑘𝜎𝑥
𝑘𝑒2𝑠2𝜎𝑧

𝑘−1𝜎𝑧
𝑘𝑒2𝑠2𝜎𝑧

𝑘𝜎𝑧
𝑘+1 , ∫

𝑠2

0
∫

𝑠3

0
2ℎ𝑗ℎ𝑗𝜎𝑥

𝑗 𝜎𝑥
𝑗 𝜎𝑧

𝑗 Θ𝑘=𝑗(𝑠3, 𝑠4)d𝑠4d𝑠3] = (A.175)

= ∑
𝑘

(ℎ𝑘𝜎𝑥
𝑘𝑒2𝑠2𝜎𝑧

𝑘−1𝜎𝑧
𝑘𝑒2𝑠2𝜎𝑧

𝑘𝜎𝑧
𝑘+1 ⋅ ∫

𝑠2

0
∫

𝑠3

0
2ℎ𝑗ℎ𝑗𝜎𝑥

𝑗 𝜎𝑥
𝑗 𝜎𝑧

𝑗 Θ𝑘=𝑗(𝑠3, 𝑠4)d𝑠4d𝑠3−

− ∫
𝑠2

0
∫

𝑠3

0
2ℎ𝑗ℎ𝑗𝜎𝑥

𝑗 𝜎𝑥
𝑗 𝜎𝑧

𝑗 Θ𝑘=𝑗(𝑠3, 𝑠4)d𝑠4d𝑠3 ⋅ ℎ𝑘𝜎𝑥
𝑘𝑒2𝑠2𝜎𝑧

𝑘−1𝜎𝑧
𝑘𝑒2𝑠2𝜎𝑧

𝑘𝜎𝑧
𝑘+1) = (A.176)

=2ℎ2
𝑗 ∫

𝑠2

0
∫

𝑠3

0
∑

𝑘
ℎ𝑘⋅

(𝜎𝑥
𝑘𝑒2𝑠2𝜎𝑧

𝑘−1𝜎𝑧
𝑘𝑒2𝑠2𝜎𝑧

𝑘𝜎𝑧
𝑘+1 ⋅ 𝜎𝑧

𝑗 Θ𝑘=𝑗(𝑠3, 𝑠4) − 𝜎𝑧
𝑗 Θ𝑘=𝑗(𝑠3, 𝑠4) ⋅ 𝜎𝑥

𝑘𝑒2𝑠2𝜎𝑧
𝑘−1𝜎𝑧

𝑘𝑒2𝑠2𝜎𝑧
𝑘𝜎𝑧

𝑘+1)d𝑠4d𝑠3 = (A.177)

=2ℎ2
𝑗𝜎𝑧

𝑗 ∫
𝑠2

0
∫

𝑠3

0
∑

𝑘
ℎ𝑘((−1)𝛿(𝑘,𝑗)𝜎𝑥

𝑘𝑒2𝑠2𝜎𝑧
𝑘−1𝜎𝑧

𝑘𝑒2𝑠2𝜎𝑧
𝑘𝜎𝑧

𝑘+1 ⋅

2 cosh (2 ⋅ (𝑠4(𝜎𝑧
𝑗−1𝜎𝑧

𝑗 + 𝜎𝑧
𝑗 𝜎𝑧

𝑗+1) − 𝑠3(𝜎𝑧
𝑗−1𝜎𝑧

𝑗 + 𝜎𝑧
𝑗 𝜎𝑧

𝑗+1))) −

Ivana Kurečić 170



Appendix A. Additional Calculations

− 𝜎𝑥
𝑙 ⋅ 2 cosh (2 ⋅ (𝑠4(𝜎𝑧

𝑗−1𝜎𝑧
𝑗 + 𝜎𝑧

𝑗 𝜎𝑧
𝑗+1) − (−1)𝛿(𝑙,𝑗−1)+𝛿(𝑙,𝑗+1)𝑠3(𝜎𝑧

𝑗−1𝜎𝑧
𝑗 + 𝜎𝑧

𝑗 𝜎𝑧
𝑗+1))) ⋅

𝑒2𝑠2𝜎𝑧
𝑘−1𝜎𝑧

𝑘𝑒2𝑠2𝜎𝑧
𝑘𝜎𝑧

𝑘+1)d𝑠4d𝑠3 = (A.178)

=2ℎ2
𝑗𝜎𝑧

𝑗 ∫
𝑠2

0
∫

𝑠3

0
∑

𝑘
ℎ𝑘⋅

((−1)𝛿(𝑘,𝑗)𝜎𝑥
𝑘𝑒2𝑠2𝜎𝑧

𝑘−1𝜎𝑧
𝑘𝑒2𝑠2𝜎𝑧

𝑘𝜎𝑧
𝑘+1 ⋅ 2 cosh (2 ⋅ (𝑠4(𝜎𝑧

𝑗−1𝜎𝑧
𝑗 + 𝜎𝑧

𝑗 𝜎𝑧
𝑗+1) − 𝑠3(𝜎𝑧

𝑗−1𝜎𝑧
𝑗 + 𝜎𝑧

𝑗 𝜎𝑧
𝑗+1))) −

− 𝜎𝑥
𝑙 ⋅ 2 cosh (2 ⋅ (𝑠4(𝜎𝑧

𝑗−1𝜎𝑧
𝑗 + 𝜎𝑧

𝑗 𝜎𝑧
𝑗+1) − (−1)𝛿(𝑙,𝑗−1)+𝛿(𝑙,𝑗+1)𝑠3(𝜎𝑧

𝑗−1𝜎𝑧
𝑗 + 𝜎𝑧

𝑗 𝜎𝑧
𝑗+1))) ⋅

𝑒2𝑠2𝜎𝑧
𝑘−1𝜎𝑧

𝑘𝑒2𝑠2𝜎𝑧
𝑘𝜎𝑧

𝑘+1)d𝑠4d𝑠3 (A.179)

Ρ2,𝑘≠{𝑗−1,𝑗,𝑗+1} = 2ℎ2
𝑗𝜎𝑧

𝑗 ∫
𝑠2

0
∫

𝑠3

0
∑

𝑘
ℎ𝑘⋅

(𝜎𝑥
𝑘𝑒2𝑠2𝜎𝑧

𝑘−1𝜎𝑧
𝑘𝑒2𝑠2𝜎𝑧

𝑘𝜎𝑧
𝑘+1 ⋅ 2 cosh (2 ⋅ (𝑠4(𝜎𝑧

𝑗−1𝜎𝑧
𝑗 + 𝜎𝑧

𝑗 𝜎𝑧
𝑗+1) − 𝑠3(𝜎𝑧

𝑗−1𝜎𝑧
𝑗 + 𝜎𝑧

𝑗 𝜎𝑧
𝑗+1))) −

− 𝜎𝑥
𝑙 ⋅ 2 cosh (2 ⋅ (𝑠4(𝜎𝑧

𝑗−1𝜎𝑧
𝑗 + 𝜎𝑧

𝑗 𝜎𝑧
𝑗+1) − 𝑠3(𝜎𝑧

𝑗−1𝜎𝑧
𝑗 + 𝜎𝑧

𝑗 𝜎𝑧
𝑗+1))) 𝑒2𝑠2𝜎𝑧

𝑘−1𝜎𝑧
𝑘𝑒2𝑠2𝜎𝑧

𝑘𝜎𝑧
𝑘+1)d𝑠4d𝑠3 = (A.180)

=0 (A.181)

Ρ2 = Ρ2,𝑘={𝑗−1,𝑗,𝑗+1} = (A.182)

=2ℎ2
𝑗𝜎𝑧

𝑗 ∫
𝑠2

0
∫

𝑠3

0
(ℎ𝑗−1𝜎𝑥

𝑗−1𝑒2𝑠2𝜎𝑧
𝑗−2𝜎𝑧

𝑗−1𝑒2𝑠2𝜎𝑧
𝑗−1𝜎𝑧

𝑗 ⋅

2 cosh (2 ⋅ (𝑠4(𝜎𝑧
𝑗−1𝜎𝑧

𝑗 + 𝜎𝑧
𝑗 𝜎𝑧

𝑗+1) − 𝑠3(𝜎𝑧
𝑗−1𝜎𝑧

𝑗 + 𝜎𝑧
𝑗 𝜎𝑧

𝑗+1))) −
− ℎ𝑗−1𝜎𝑥

𝑗−1 ⋅ 2 cosh (2 ⋅ (𝑠4(𝜎𝑧
𝑗−1𝜎𝑧

𝑗 + 𝜎𝑧
𝑗 𝜎𝑧

𝑗+1) + 𝑠3(𝜎𝑧
𝑗−1𝜎𝑧

𝑗 + 𝜎𝑧
𝑗 𝜎𝑧

𝑗+1))) 𝑒2𝑠2𝜎𝑧
𝑗−2𝜎𝑧

𝑗−1𝑒2𝑠2𝜎𝑧
𝑗−1𝜎𝑧

𝑗 −
− ℎ𝑗𝜎𝑥

𝑗 𝑒2𝑠2𝜎𝑧
𝑗−1𝜎𝑧

𝑗 𝑒2𝑠2𝜎𝑧
𝑗 𝜎𝑧

𝑗+1 ⋅ 2 cosh (2 ⋅ (𝑠4(𝜎𝑧
𝑗−1𝜎𝑧

𝑗 + 𝜎𝑧
𝑗 𝜎𝑧

𝑗+1) − 𝑠3(𝜎𝑧
𝑗−1𝜎𝑧

𝑗 + 𝜎𝑧
𝑗 𝜎𝑧

𝑗+1))) +
+ ℎ𝑗𝜎𝑥

𝑗 ⋅ 2 cosh (2 ⋅ (𝑠4(𝜎𝑧
𝑗−1𝜎𝑧

𝑗 + 𝜎𝑧
𝑗 𝜎𝑧

𝑗+1) − 𝑠3(𝜎𝑧
𝑗−1𝜎𝑧

𝑗 + 𝜎𝑧
𝑗 𝜎𝑧

𝑗+1))) 𝑒2𝑠2𝜎𝑧
𝑗−1𝜎𝑧

𝑗 𝑒2𝑠2𝜎𝑧
𝑗 𝜎𝑧

𝑗+1+
+ ℎ𝑗+1𝜎𝑥

𝑗+1𝑒2𝑠2𝜎𝑧
𝑗 𝜎𝑧

𝑗+1𝑒2𝑠2𝜎𝑧
𝑗+1𝜎𝑧

𝑗+2 ⋅ 2 cosh (2 ⋅ (𝑠4(𝜎𝑧
𝑗−1𝜎𝑧

𝑗 + 𝜎𝑧
𝑗 𝜎𝑧

𝑗+1) − 𝑠3(𝜎𝑧
𝑗−1𝜎𝑧

𝑗 + 𝜎𝑧
𝑗 𝜎𝑧

𝑗+1))) −

− ℎ𝑗+1𝜎𝑥
𝑗+1 ⋅ 2 cosh (2 ⋅ (𝑠4(𝜎𝑧

𝑗−1𝜎𝑧
𝑗 + 𝜎𝑧

𝑗 𝜎𝑧
𝑗+1) + 𝑠3(𝜎𝑧

𝑗−1𝜎𝑧
𝑗 + 𝜎𝑧

𝑗 𝜎𝑧
𝑗+1))) 𝑒2𝑠2𝜎𝑧

𝑗 𝜎𝑧
𝑗+1𝑒2𝑠2𝜎𝑧

𝑗+1𝜎𝑧
𝑗+2)d𝑠4d𝑠3 =

(A.183)

=2ℎ2
𝑗𝜎𝑧

𝑗 ∫
𝑠2

0
∫

𝑠3

0
(2ℎ𝑗−1𝜎𝑥

𝑗−1𝑒2𝑠2𝜎𝑧
𝑗−2𝜎𝑧

𝑗−1𝑒2𝑠2𝜎𝑧
𝑗−1𝜎𝑧

𝑗 ⋅

(cosh (2 ⋅ (𝑠4(𝜎𝑧
𝑗−1𝜎𝑧

𝑗 + 𝜎𝑧
𝑗 𝜎𝑧

𝑗+1) − 𝑠3(𝜎𝑧
𝑗−1𝜎𝑧

𝑗 + 𝜎𝑧
𝑗 𝜎𝑧

𝑗+1))) −

cosh (2 ⋅ (𝑠4(𝜎𝑧
𝑗−1𝜎𝑧

𝑗 + 𝜎𝑧
𝑗 𝜎𝑧

𝑗+1) + 𝑠3(𝜎𝑧
𝑗−1𝜎𝑧

𝑗 + 𝜎𝑧
𝑗 𝜎𝑧

𝑗+1))))−
− 4ℎ𝑗𝜎𝑥

𝑗 𝑒2𝑠2𝜎𝑧
𝑗−1𝜎𝑧

𝑗 𝑒2𝑠2𝜎𝑧
𝑗 𝜎𝑧

𝑗+1

⋅ cosh (2 ⋅ (𝑠4(𝜎𝑧
𝑗−1𝜎𝑧

𝑗 + 𝜎𝑧
𝑗 𝜎𝑧

𝑗+1) − 𝑠3(𝜎𝑧
𝑗−1𝜎𝑧

𝑗 + 𝜎𝑧
𝑗 𝜎𝑧

𝑗+1))) +
+ 2ℎ𝑗+1𝜎𝑥

𝑗+1𝑒2𝑠2𝜎𝑧
𝑗 𝜎𝑧

𝑗+1𝑒2𝑠2𝜎𝑧
𝑗+1𝜎𝑧

𝑗+2

⋅ (cosh (2 ⋅ (𝑠4(𝜎𝑧
𝑗−1𝜎𝑧

𝑗 + 𝜎𝑧
𝑗 𝜎𝑧

𝑗+1) − 𝑠3(𝜎𝑧
𝑗−1𝜎𝑧

𝑗 + 𝜎𝑧
𝑗 𝜎𝑧

𝑗+1))) −
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− cosh (2 ⋅ (𝑠4(𝜎𝑧
𝑗−1𝜎𝑧

𝑗 + 𝜎𝑧
𝑗 𝜎𝑧

𝑗+1) + 𝑠3(𝜎𝑧
𝑗−1𝜎𝑧

𝑗 + 𝜎𝑧
𝑗 𝜎𝑧

𝑗+1)))))d𝑠4d𝑠3 = (A.184)

=2ℎ2
𝑗𝜎𝑧

𝑗 ∫
𝑠2

0
∫

𝑠3

0
((ℎ𝑗−1𝜎𝑥

𝑗−1𝑒2𝑠2(𝜎𝑧
𝑗−2𝜎𝑧

𝑗−1+𝜎𝑧
𝑗−1𝜎𝑧

𝑗 ) + ℎ𝑗+1𝜎𝑥
𝑗+1𝑒2𝑠2(𝜎𝑧

𝑗 𝜎𝑧
𝑗+1+𝜎𝑧

𝑗+1𝜎𝑧
𝑗+2))

⋅ 4 sinh (2𝑠4(𝜎𝑧
𝑗−1𝜎𝑧

𝑗 + 𝜎𝑧
𝑗 𝜎𝑧

𝑗+1)) sinh (−2𝑠3(𝜎𝑧
𝑗−1𝜎𝑧

𝑗 + 𝜎𝑧
𝑗 𝜎𝑧

𝑗+1)) −
− 4ℎ𝑗𝜎𝑥

𝑗 𝑒2𝑠2𝜎𝑧
𝑗−1𝜎𝑧

𝑗 𝑒2𝑠2𝜎𝑧
𝑗 𝜎𝑧

𝑗+1 ⋅ (cosh(2𝑠4(𝜎𝑧
𝑗−1𝜎𝑧

𝑗 + 𝜎𝑧
𝑗 𝜎𝑧

𝑗+1)) cosh(2𝑠3(𝜎𝑧
𝑗−1𝜎𝑧

𝑗 + 𝜎𝑧
𝑗 𝜎𝑧

𝑗+1))

− sinh(2𝑠4(𝜎𝑧
𝑗−1𝜎𝑧

𝑗 + 𝜎𝑧
𝑗 𝜎𝑧

𝑗+1)) sinh(2𝑠3(𝜎𝑧
𝑗−1𝜎𝑧

𝑗 + 𝜎𝑧
𝑗 𝜎𝑧

𝑗+1))))d𝑠4d𝑠3 = (A.185)

=2ℎ2
𝑗𝜎𝑧

𝑗 ∫
𝑠2

0
∫

𝑠3

0
((ℎ𝑗−1𝜎𝑥

𝑗−1𝑒2𝑠2(𝜎𝑧
𝑗−2𝜎𝑧

𝑗−1+𝜎𝑧
𝑗−1𝜎𝑧

𝑗 ) + ℎ𝑗𝜎𝑥
𝑗 𝑒2𝑠2𝜎𝑧

𝑗−1𝜎𝑧
𝑗 𝑒2𝑠2𝜎𝑧

𝑗 𝜎𝑧
𝑗+1 + ℎ𝑗+1𝜎𝑥

𝑗+1𝑒2𝑠2(𝜎𝑧
𝑗 𝜎𝑧

𝑗+1+𝜎𝑧
𝑗+1𝜎𝑧

𝑗+2))

⋅ 4 sinh (2𝑠4(𝜎𝑧
𝑗−1𝜎𝑧

𝑗 + 𝜎𝑧
𝑗 𝜎𝑧

𝑗+1)) sinh (−2𝑠3(𝜎𝑧
𝑗−1𝜎𝑧

𝑗 + 𝜎𝑧
𝑗 𝜎𝑧

𝑗+1)) −

− ℎ𝑗𝜎𝑥
𝑗 𝑒2𝑠2𝜎𝑧

𝑗−1𝜎𝑧
𝑗 𝑒2𝑠2𝜎𝑧

𝑗 𝜎𝑧
𝑗+1 ⋅ 4 cosh(2𝑠4(𝜎𝑧

𝑗−1𝜎𝑧
𝑗 + 𝜎𝑧

𝑗 𝜎𝑧
𝑗+1)) cosh(2𝑠3(𝜎𝑧

𝑗−1𝜎𝑧
𝑗 + 𝜎𝑧

𝑗 𝜎𝑧
𝑗+1)))d𝑠4d𝑠3 = (A.186)

=2ℎ2
𝑗𝜎𝑧

𝑗 ∫
𝑠2

0
∫

𝑠3

0
((ℎ𝑗−1𝜎𝑥

𝑗−1𝑒2𝑠2(𝜎𝑧
𝑗−2𝜎𝑧

𝑗−1+𝜎𝑧
𝑗−1𝜎𝑧

𝑗 ) + ℎ𝑗𝜎𝑥
𝑗 𝑒2𝑠2𝜎𝑧

𝑗−1𝜎𝑧
𝑗 𝑒2𝑠2𝜎𝑧

𝑗 𝜎𝑧
𝑗+1 + ℎ𝑗+1𝜎𝑥

𝑗+1𝑒2𝑠2(𝜎𝑧
𝑗 𝜎𝑧

𝑗+1+𝜎𝑧
𝑗+1𝜎𝑧

𝑗+2))

⋅ 2 (cosh(2(𝑠4 − 𝑠3)(𝜎𝑧
𝑗−1𝜎𝑧

𝑗 + 𝜎𝑧
𝑗 𝜎𝑧

𝑗+1)) − cosh(2(𝑠4 + 𝑠3)(𝜎𝑧
𝑗−1𝜎𝑧

𝑗 + 𝜎𝑧
𝑗 𝜎𝑧

𝑗+1))) −

− ℎ𝑗𝜎𝑥
𝑗 𝑒2𝑠2𝜎𝑧

𝑗−1𝜎𝑧
𝑗 𝑒2𝑠2𝜎𝑧

𝑗 𝜎𝑧
𝑗+1 ⋅ 2 (cosh(2(𝑠4 − 𝑠3)(𝜎𝑧

𝑗−1𝜎𝑧
𝑗 + 𝜎𝑧

𝑗 𝜎𝑧
𝑗+1)) + cosh(2(𝑠4 + 𝑠3)(𝜎𝑧

𝑗−1𝜎𝑧
𝑗 + 𝜎𝑧

𝑗 𝜎𝑧
𝑗+1))))d𝑠4d𝑠3 =

(A.187)

=2ℎ2
𝑗𝜎𝑧

𝑗 ∫
𝑠2

0
∫

𝑠3

0
((ℎ𝑗−1𝜎𝑥

𝑗−1𝑒2𝑠2(𝜎𝑧
𝑗−2𝜎𝑧

𝑗−1+𝜎𝑧
𝑗−1𝜎𝑧

𝑗 ) + ℎ𝑗+1𝜎𝑥
𝑗+1𝑒2𝑠2(𝜎𝑧

𝑗 𝜎𝑧
𝑗+1+𝜎𝑧

𝑗+1𝜎𝑧
𝑗+2))

⋅ 2 cosh(2(𝑠3 − 𝑠4)(𝜎𝑧
𝑗−1𝜎𝑧

𝑗 + 𝜎𝑧
𝑗 𝜎𝑧

𝑗+1))−
− (ℎ𝑗−1𝜎𝑥

𝑗−1𝑒2𝑠2(𝜎𝑧
𝑗−2𝜎𝑧

𝑗−1+𝜎𝑧
𝑗−1𝜎𝑧

𝑗 ) + 2ℎ𝑗𝜎𝑥
𝑗 𝑒2𝑠2(𝜎𝑧

𝑗−1𝜎𝑧
𝑗 +𝜎𝑧

𝑗 𝜎𝑧
𝑗+1) + ℎ𝑗+1𝜎𝑥

𝑗+1𝑒2𝑠2(𝜎𝑧
𝑗 𝜎𝑧

𝑗+1+𝜎𝑧
𝑗+1𝜎𝑧

𝑗+2))

⋅ 2 cosh(2(𝑠3 + 𝑠4)(𝜎𝑧
𝑗−1𝜎𝑧

𝑗 + 𝜎𝑧
𝑗 𝜎𝑧

𝑗+1)))d𝑠4d𝑠3 (A.188)

𝔼ℎ(𝜌2) = 𝔼ℎ(𝜀4 ∫
−𝑖𝑡

0
∫

𝑠1

0
∏

𝑎
𝑒−𝑖𝑡𝜎𝑧

𝑎𝜎𝑧
𝑎+1[∑

𝑐
ℎ𝑐𝜎𝑥

𝑐 𝑒2𝑠1𝜎𝑧
𝑐−1𝜎𝑐

𝑘𝑒2𝑠1𝜎𝑧
𝑐𝜎𝑧

𝑐+1 , 2ℎ2
𝑗𝜎𝑧

𝑗 ⋅

∫
𝑠2

0
∫

𝑠3

0
(2ℎ𝑗−1𝜎𝑥

𝑗−1𝑒2𝑠2𝜎𝑧
𝑗−2𝜎𝑧

𝑗−1𝑒2𝑠2𝜎𝑧
𝑗−1𝜎𝑧

𝑗 ⋅ (cosh (2 ⋅ (𝑠4(𝜎𝑧
𝑗−1𝜎𝑧

𝑗 + 𝜎𝑧
𝑗 𝜎𝑧

𝑗+1) − 𝑠3(𝜎𝑧
𝑗−1𝜎𝑧

𝑗 + 𝜎𝑧
𝑗 𝜎𝑧

𝑗+1))) −

− cosh (2 ⋅ (𝑠4(𝜎𝑧
𝑗−1𝜎𝑧

𝑗 + 𝜎𝑧
𝑗 𝜎𝑧

𝑗+1) + 𝑠3(𝜎𝑧
𝑗−1𝜎𝑧

𝑗 + 𝜎𝑧
𝑗 𝜎𝑧

𝑗+1))))−
− 4ℎ𝑗𝜎𝑥

𝑗 𝑒2𝑠2𝜎𝑧
𝑗−1𝜎𝑧

𝑗 𝑒2𝑠2𝜎𝑧
𝑗 𝜎𝑧

𝑗+1 ⋅ cosh (2 ⋅ (𝑠4(𝜎𝑧
𝑗−1𝜎𝑧

𝑗 + 𝜎𝑧
𝑗 𝜎𝑧

𝑗+1) − 𝑠3(𝜎𝑧
𝑗−1𝜎𝑧

𝑗 + 𝜎𝑧
𝑗 𝜎𝑧

𝑗+1))) +
+ 2ℎ𝑗+1𝜎𝑥

𝑗+1𝑒2𝑠2𝜎𝑧
𝑗 𝜎𝑧

𝑗+1𝑒2𝑠2𝜎𝑧
𝑗+1𝜎𝑧

𝑗+2 ⋅ (cosh (2 ⋅ (𝑠4(𝜎𝑧
𝑗−1𝜎𝑧

𝑗 + 𝜎𝑧
𝑗 𝜎𝑧

𝑗+1) − 𝑠3(𝜎𝑧
𝑗−1𝜎𝑧

𝑗 + 𝜎𝑧
𝑗 𝜎𝑧

𝑗+1))) −

− cosh (2 ⋅ (𝑠4(𝜎𝑧
𝑗−1𝜎𝑧

𝑗 + 𝜎𝑧
𝑗 𝜎𝑧

𝑗+1) + 𝑠3(𝜎𝑧
𝑗−1𝜎𝑧

𝑗 + 𝜎𝑧
𝑗 𝜎𝑧

𝑗+1))))d𝑠4d𝑠3] ∏
𝑏

𝑒𝑖𝑡𝜎𝑧
𝑏𝜎𝑧

𝑏+1d𝑠2d𝑠1) = (A.189)

=𝔼ℎ(𝜀4 ∫
−𝑖𝑡

0
∫

𝑠1

0
∫

𝑠2

0
∫

𝑠3

0
∏

𝑎
𝑒−𝑖𝑡𝜎𝑧

𝑎𝜎𝑧
𝑎+1 ⋅
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⋅ [∑
𝑐

ℎ𝑐𝜎𝑥
𝑐 𝑒2𝑠1𝜎𝑧

𝑐−1𝜎𝑐
𝑘𝑒2𝑠1𝜎𝑧

𝑐𝜎𝑧
𝑐+1 , 2ℎ2

𝑗𝜎𝑧
𝑗 (2ℎ𝑗−1𝜎𝑥

𝑗−1𝑒2𝑠2𝜎𝑧
𝑗−2𝜎𝑧

𝑗−1𝑒2𝑠2𝜎𝑧
𝑗−1𝜎𝑧

𝑗 ⋅

(2 sinh (2𝑠4(𝜎𝑧
𝑗−1𝜎𝑧

𝑗 + 𝜎𝑧
𝑗 𝜎𝑧

𝑗+1)) sinh (2𝑠3(𝜎𝑧
𝑗−1𝜎𝑧

𝑗 + 𝜎𝑧
𝑗 𝜎𝑧

𝑗+1)))−
− 4ℎ𝑗𝜎𝑥

𝑗 𝑒2𝑠2𝜎𝑧
𝑗−1𝜎𝑧

𝑗 𝑒2𝑠2𝜎𝑧
𝑗 𝜎𝑧

𝑗+1 ⋅ cosh (2 ⋅ (𝑠4(𝜎𝑧
𝑗−1𝜎𝑧

𝑗 + 𝜎𝑧
𝑗 𝜎𝑧

𝑗+1) − 𝑠3(𝜎𝑧
𝑗−1𝜎𝑧

𝑗 + 𝜎𝑧
𝑗 𝜎𝑧

𝑗+1))) +
+ 2ℎ𝑗+1𝜎𝑥

𝑗+1𝑒2𝑠2𝜎𝑧
𝑗 𝜎𝑧

𝑗+1𝑒2𝑠2𝜎𝑧
𝑗+1𝜎𝑧

𝑗+2 ⋅

(2 sinh (2𝑠4(𝜎𝑧
𝑗−1𝜎𝑧

𝑗 + 𝜎𝑧
𝑗 𝜎𝑧

𝑗+1)) sinh (2𝑠3(𝜎𝑧
𝑗−1𝜎𝑧

𝑗 + 𝜎𝑧
𝑗 𝜎𝑧

𝑗+1)))d𝑠4d𝑠3] ∏
𝑏

𝑒𝑖𝑡𝜎𝑧
𝑏𝜎𝑧

𝑏+1d𝑠2d𝑠1) = (A.190)

=𝔼ℎ(𝜀4 ∫
−𝑖𝑡

0
∫

𝑠1

0
∫

𝑠2

0
∫

𝑠3

0
∏

𝑎
𝑒−𝑖𝑡𝜎𝑧

𝑎𝜎𝑧
𝑎+1 ⋅

⋅ (∑
𝑐

ℎ𝑐𝜎𝑥
𝑐 𝑒2𝑠1𝜎𝑧

𝑐−1𝜎𝑐
𝑘𝑒2𝑠1𝜎𝑧

𝑐𝜎𝑧
𝑐+1 ⋅ 2ℎ2

𝑗𝜎𝑧
𝑗 2ℎ𝑗−1𝜎𝑥

𝑗−1𝑒2𝑠2𝜎𝑧
𝑗−2𝜎𝑧

𝑗−1𝑒2𝑠2𝜎𝑧
𝑗−1𝜎𝑧

𝑗

⋅ 2 sinh (2𝑠4(𝜎𝑧
𝑗−1𝜎𝑧

𝑗 + 𝜎𝑧
𝑗 𝜎𝑧

𝑗+1)) sinh (2𝑠3(𝜎𝑧
𝑗−1𝜎𝑧

𝑗 + 𝜎𝑧
𝑗 𝜎𝑧

𝑗+1)) −
− 2ℎ2

𝑗𝜎𝑧
𝑗 2ℎ𝑗−1𝜎𝑥

𝑗−1𝑒2𝑠2𝜎𝑧
𝑗−2𝜎𝑧

𝑗−1𝑒2𝑠2𝜎𝑧
𝑗−1𝜎𝑧

𝑗 ⋅ 2 sinh (2𝑠4(𝜎𝑧
𝑗−1𝜎𝑧

𝑗 + 𝜎𝑧
𝑗 𝜎𝑧

𝑗+1)) sinh (2𝑠3(𝜎𝑧
𝑗−1𝜎𝑧

𝑗 + 𝜎𝑧
𝑗 𝜎𝑧

𝑗+1))
⋅ ∑

𝑐
ℎ𝑐𝜎𝑥

𝑐 𝑒2𝑠1𝜎𝑧
𝑐−1𝜎𝑐

𝑘𝑒2𝑠1𝜎𝑧
𝑐𝜎𝑧

𝑐+1−

− ∑
𝑐

ℎ𝑐𝜎𝑥
𝑐 𝑒2𝑠1𝜎𝑧

𝑐−1𝜎𝑐
𝑘𝑒2𝑠1𝜎𝑧

𝑐𝜎𝑧
𝑐+1 ⋅ 2ℎ2

𝑗𝜎𝑧
𝑗 4ℎ𝑗𝜎𝑥

𝑗 𝑒2𝑠2𝜎𝑧
𝑗−1𝜎𝑧

𝑗 𝑒2𝑠2𝜎𝑧
𝑗 𝜎𝑧

𝑗+1

⋅ cosh (2 ⋅ (𝑠4(𝜎𝑧
𝑗−1𝜎𝑧

𝑗 + 𝜎𝑧
𝑗 𝜎𝑧

𝑗+1) − 𝑠3(𝜎𝑧
𝑗−1𝜎𝑧

𝑗 + 𝜎𝑧
𝑗 𝜎𝑧

𝑗+1))) +
+ 2ℎ2

𝑗𝜎𝑧
𝑗 4ℎ𝑗𝜎𝑥

𝑗 𝑒2𝑠2𝜎𝑧
𝑗−1𝜎𝑧

𝑗 𝑒2𝑠2𝜎𝑧
𝑗 𝜎𝑧

𝑗+1 ⋅ cosh (2 ⋅ (𝑠4(𝜎𝑧
𝑗−1𝜎𝑧

𝑗 + 𝜎𝑧
𝑗 𝜎𝑧

𝑗+1) − 𝑠3(𝜎𝑧
𝑗−1𝜎𝑧

𝑗 + 𝜎𝑧
𝑗 𝜎𝑧

𝑗+1)))
⋅ ∑

𝑐
ℎ𝑐𝜎𝑥

𝑐 𝑒2𝑠1𝜎𝑧
𝑐−1𝜎𝑐

𝑘𝑒2𝑠1𝜎𝑧
𝑐𝜎𝑧

𝑐+1+

+ ∑
𝑐

ℎ𝑐𝜎𝑥
𝑐 𝑒2𝑠1𝜎𝑧

𝑐−1𝜎𝑐
𝑘𝑒2𝑠1𝜎𝑧

𝑐𝜎𝑧
𝑐+1 ⋅ 2ℎ2

𝑗𝜎𝑧
𝑗 2ℎ𝑗+1𝜎𝑥

𝑗+1𝑒2𝑠2𝜎𝑧
𝑗 𝜎𝑧

𝑗+1𝑒2𝑠2𝜎𝑧
𝑗+1𝜎𝑧

𝑗+2

⋅ 2 sinh (2𝑠4(𝜎𝑧
𝑗−1𝜎𝑧

𝑗 + 𝜎𝑧
𝑗 𝜎𝑧

𝑗+1)) sinh (2𝑠3(𝜎𝑧
𝑗−1𝜎𝑧

𝑗 + 𝜎𝑧
𝑗 𝜎𝑧

𝑗+1)) −
− 2ℎ2

𝑗𝜎𝑧
𝑗 2ℎ𝑗+1𝜎𝑥

𝑗+1𝑒2𝑠2𝜎𝑧
𝑗 𝜎𝑧

𝑗+1𝑒2𝑠2𝜎𝑧
𝑗+1𝜎𝑧

𝑗+2 ⋅ 2 sinh (2𝑠4(𝜎𝑧
𝑗−1𝜎𝑧

𝑗 + 𝜎𝑧
𝑗 𝜎𝑧

𝑗+1)) sinh (2𝑠3(𝜎𝑧
𝑗−1𝜎𝑧

𝑗 + 𝜎𝑧
𝑗 𝜎𝑧

𝑗+1))

⋅ ∑
𝑐

ℎ𝑐𝜎𝑥
𝑐 𝑒2𝑠1𝜎𝑧

𝑐−1𝜎𝑐
𝑘𝑒2𝑠1𝜎𝑧

𝑐𝜎𝑧
𝑐+1d𝑠4d𝑠3) ∏

𝑏
𝑒𝑖𝑡𝜎𝑧

𝑏𝜎𝑧
𝑏+1d𝑠2d𝑠1) = (A.191)

=𝔼ℎ(𝜀4 ∫
−𝑖𝑡

0
∫

𝑠1

0
∫

𝑠2

0
∫

𝑠3

0
∏

𝑎
𝑒−𝑖𝑡𝜎𝑧

𝑎𝜎𝑧
𝑎+1 ⋅

⋅ (𝜎𝑥
𝑗−1𝑒2𝑠1𝜎𝑧

𝑗−2𝜎𝑧
𝑗−1𝑒2𝑠1𝜎𝑧

𝑗−1𝜎𝑧
𝑗 ⋅ 2ℎ2

𝑗𝜎𝑧
𝑗 2ℎ2

𝑗−1𝜎𝑥
𝑗−1𝑒2𝑠2𝜎𝑧

𝑗−2𝜎𝑧
𝑗−1𝑒2𝑠2𝜎𝑧

𝑗−1𝜎𝑧
𝑗

⋅ 2 sinh (2𝑠4(𝜎𝑧
𝑗−1𝜎𝑧

𝑗 + 𝜎𝑧
𝑗 𝜎𝑧

𝑗+1)) sinh (2𝑠3(𝜎𝑧
𝑗−1𝜎𝑧

𝑗 + 𝜎𝑧
𝑗 𝜎𝑧

𝑗+1)) −
− 2ℎ2

𝑗𝜎𝑧
𝑗 2ℎ2

𝑗−1𝜎𝑥
𝑗−1𝑒2𝑠2𝜎𝑧

𝑗−2𝜎𝑧
𝑗−1𝑒2𝑠2𝜎𝑧

𝑗−1𝜎𝑧
𝑗 ⋅ 2 sinh (2𝑠4(𝜎𝑧

𝑗−1𝜎𝑧
𝑗 + 𝜎𝑧

𝑗 𝜎𝑧
𝑗+1)) sinh (2𝑠3(𝜎𝑧

𝑗−1𝜎𝑧
𝑗 + 𝜎𝑧

𝑗 𝜎𝑧
𝑗+1))

⋅ 𝜎𝑥
𝑗−1𝑒2𝑠1𝜎𝑧

𝑗−2𝜎𝑧
𝑗−1𝑒2𝑠1𝜎𝑧

𝑗−1𝜎𝑧
𝑗 −

− 𝜎𝑥
𝑗 𝑒2𝑠1𝜎𝑧

𝑗−1𝜎𝑧
𝑗 𝑒2𝑠1𝜎𝑧

𝑗 𝜎𝑧
𝑗+1 ⋅ 2ℎ2

𝑗𝜎𝑧
𝑗 4ℎ2

𝑗𝜎𝑥
𝑗 𝑒2𝑠2𝜎𝑧

𝑗−1𝜎𝑧
𝑗 𝑒2𝑠2𝜎𝑧

𝑗 𝜎𝑧
𝑗+1

⋅ cosh (2 ⋅ (𝑠4(𝜎𝑧
𝑗−1𝜎𝑧

𝑗 + 𝜎𝑧
𝑗 𝜎𝑧

𝑗+1) − 𝑠3(𝜎𝑧
𝑗−1𝜎𝑧

𝑗 + 𝜎𝑧
𝑗 𝜎𝑧

𝑗+1))) +
+ 2ℎ2

𝑗𝜎𝑧
𝑗 4ℎ2

𝑗𝜎𝑥
𝑗 𝑒2𝑠2𝜎𝑧

𝑗−1𝜎𝑧
𝑗 𝑒2𝑠2𝜎𝑧

𝑗 𝜎𝑧
𝑗+1 ⋅ cosh (2 ⋅ (𝑠4(𝜎𝑧

𝑗−1𝜎𝑧
𝑗 + 𝜎𝑧

𝑗 𝜎𝑧
𝑗+1) − 𝑠3(𝜎𝑧

𝑗−1𝜎𝑧
𝑗 + 𝜎𝑧

𝑗 𝜎𝑧
𝑗+1)))

⋅ 𝜎𝑥
𝑗 𝑒2𝑠1𝜎𝑧

𝑗−1𝜎𝑧
𝑗 𝑒2𝑠1𝜎𝑧

𝑗 𝜎𝑧
𝑗+1+

+ 𝜎𝑥
𝑗+1𝑒2𝑠1𝜎𝑧

𝑗 𝜎𝑧
𝑗+1𝑒2𝑠1𝜎𝑧

𝑗+1𝜎𝑧
𝑗+2 ⋅ 2ℎ2

𝑗𝜎𝑧
𝑗 2ℎ2

𝑗+1𝜎𝑥
𝑗+1𝑒2𝑠2𝜎𝑧

𝑗 𝜎𝑧
𝑗+1𝑒2𝑠2𝜎𝑧

𝑗+1𝜎𝑧
𝑗+2

⋅ 2 sinh (2𝑠4(𝜎𝑧
𝑗−1𝜎𝑧

𝑗 + 𝜎𝑧
𝑗 𝜎𝑧

𝑗+1)) sinh (2𝑠3(𝜎𝑧
𝑗−1𝜎𝑧

𝑗 + 𝜎𝑧
𝑗 𝜎𝑧

𝑗+1)) −
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− 2ℎ2
𝑗𝜎𝑧

𝑗 2ℎ2
𝑗+1𝜎𝑥

𝑗+1𝑒2𝑠2𝜎𝑧
𝑗 𝜎𝑧

𝑗+1𝑒2𝑠2𝜎𝑧
𝑗+1𝜎𝑧

𝑗+2 ⋅ 2 sinh (2𝑠4(𝜎𝑧
𝑗−1𝜎𝑧

𝑗 + 𝜎𝑧
𝑗 𝜎𝑧

𝑗+1)) sinh (2𝑠3(𝜎𝑧
𝑗−1𝜎𝑧

𝑗 + 𝜎𝑧
𝑗 𝜎𝑧

𝑗+1))

⋅ 𝜎𝑥
𝑗+1𝑒2𝑠1𝜎𝑧

𝑗 𝜎𝑧
𝑗+1𝑒2𝑠1𝜎𝑧

𝑗+1𝜎𝑧
𝑗+2d𝑠4d𝑠3) ∏

𝑏
𝑒𝑖𝑡𝜎𝑧

𝑏𝜎𝑧
𝑏+1d𝑠2d𝑠1) = (A.192)

=𝜂4
ℎ ⋅ ∫

−𝑖𝑡

0
∫

𝑠1

0
∫

𝑠2

0
∫

𝑠3

0
∏

𝑎
𝑒−𝑖𝑡𝜎𝑧

𝑎𝜎𝑧
𝑎+1 ⋅

⋅ (8𝜎𝑧
𝑗 𝑒−2(𝑠1−𝑠2)(𝜎𝑧

𝑗−2𝜎𝑧
𝑗−1+𝜎𝑧

𝑗−1𝜎𝑧
𝑗 ) ⋅ sinh (2𝑠4(𝜎𝑧

𝑗−1𝜎𝑧
𝑗 + 𝜎𝑧

𝑗 𝜎𝑧
𝑗+1)) sinh (2𝑠3(𝜎𝑧

𝑗−1𝜎𝑧
𝑗 + 𝜎𝑧

𝑗 𝜎𝑧
𝑗+1)) −

− 8𝜎𝑧
𝑗 𝑒2(𝑠1−𝑠2)(𝜎𝑧

𝑗−2𝜎𝑧
𝑗−1+𝜎𝑧

𝑗−1𝜎𝑧
𝑗 ) ⋅ sinh (2𝑠4(𝜎𝑧

𝑗−1𝜎𝑧
𝑗 − 𝜎𝑧

𝑗 𝜎𝑧
𝑗+1)) sinh (2𝑠3(𝜎𝑧

𝑗−1𝜎𝑧
𝑗 − 𝜎𝑧

𝑗 𝜎𝑧
𝑗+1)) −

− 8𝜎𝑧
𝑗 𝑒−2(𝑠1−𝑠2)(𝜎𝑧

𝑗−1𝜎𝑧
𝑗 +𝜎𝑧

𝑗 𝜎𝑧
𝑗+1) ⋅ cosh (2(𝑠4 − 𝑠3)(𝜎𝑧

𝑗−1𝜎𝑧
𝑗 + 𝜎𝑧

𝑗 𝜎𝑧
𝑗+1)) +

+ 8𝜎𝑧
𝑗 𝑒2(𝑠1−𝑠2)(𝜎𝑧

𝑗−1𝜎𝑧
𝑗 +𝜎𝑧

𝑗 𝜎𝑧
𝑗+1) ⋅ cosh (2(𝑠4 − 𝑠3)(𝜎𝑧

𝑗−1𝜎𝑧
𝑗 + 𝜎𝑧

𝑗 𝜎𝑧
𝑗+1)) +

+ 8𝜎𝑧
𝑗 𝑒−2(𝑠1−𝑠2)(𝜎𝑧

𝑗 𝜎𝑧
𝑗+1+𝜎𝑧

𝑗+1𝜎𝑧
𝑗+2) ⋅ sinh (2𝑠4(𝜎𝑧

𝑗−1𝜎𝑧
𝑗 + 𝜎𝑧

𝑗 𝜎𝑧
𝑗+1)) sinh (2𝑠3(𝜎𝑧

𝑗−1𝜎𝑧
𝑗 + 𝜎𝑧

𝑗 𝜎𝑧
𝑗+1)) −

− 8𝜎𝑧
𝑗 𝑒2(𝑠1−𝑠2)(𝜎𝑧

𝑗 𝜎𝑧
𝑗+1+𝜎𝑧

𝑗+1𝜎𝑧
𝑗+2)

⋅ sinh (2𝑠4(𝜎𝑧
𝑗−1𝜎𝑧

𝑗 − 𝜎𝑧
𝑗 𝜎𝑧

𝑗+1)) sinh (2𝑠3(𝜎𝑧
𝑗−1𝜎𝑧

𝑗 − 𝜎𝑧
𝑗 𝜎𝑧

𝑗+1)) d𝑠4d𝑠3) ∏
𝑏

𝑒𝑖𝑡𝜎𝑧
𝑏𝜎𝑧

𝑏+1d𝑠2d𝑠1 = (A.193)

=𝜂4
ℎ ⋅ 8𝜎𝑧

𝑗 ∫
−𝑖𝑡

0
∫

𝑠1

0
∫

𝑠2

0
∫

𝑠3

0
∏

𝑎
𝑒−𝑖𝑡𝜎𝑧

𝑎𝜎𝑧
𝑎+1 ⋅

⋅ ((𝑒−2(𝑠1−𝑠2)(𝜎𝑧
𝑗−2𝜎𝑧

𝑗−1+𝜎𝑧
𝑗−1𝜎𝑧

𝑗 ) + 𝑒−2(𝑠1−𝑠2)(𝜎𝑧
𝑗 𝜎𝑧

𝑗+1+𝜎𝑧
𝑗+1𝜎𝑧

𝑗+2))

⋅ sinh (2𝑠4(𝜎𝑧
𝑗−1𝜎𝑧

𝑗 + 𝜎𝑧
𝑗 𝜎𝑧

𝑗+1)) sinh (2𝑠3(𝜎𝑧
𝑗−1𝜎𝑧

𝑗 + 𝜎𝑧
𝑗 𝜎𝑧

𝑗+1)) −
− (𝑒2(𝑠1−𝑠2)(𝜎𝑧

𝑗−2𝜎𝑧
𝑗−1+𝜎𝑧

𝑗−1𝜎𝑧
𝑗 ) + 𝑒2(𝑠1−𝑠2)(𝜎𝑧

𝑗 𝜎𝑧
𝑗+1+𝜎𝑧

𝑗+1𝜎𝑧
𝑗+2))

⋅ sinh (2𝑠4(𝜎𝑧
𝑗−1𝜎𝑧

𝑗 − 𝜎𝑧
𝑗 𝜎𝑧

𝑗+1)) sinh (2𝑠3(𝜎𝑧
𝑗−1𝜎𝑧

𝑗 − 𝜎𝑧
𝑗 𝜎𝑧

𝑗+1)) +
+ 2 sinh (2(𝑠1 − 𝑠2)(𝜎𝑧

𝑗−1𝜎𝑧
𝑗 + 𝜎𝑧

𝑗 𝜎𝑧
𝑗+1))

⋅ cosh (2(𝑠4 − 𝑠3)(𝜎𝑧
𝑗−1𝜎𝑧

𝑗 + 𝜎𝑧
𝑗 𝜎𝑧

𝑗+1))) ∏
𝑏

𝑒𝑖𝑡𝜎𝑧
𝑏𝜎𝑧

𝑏+1d𝑠4d𝑠3d𝑠2d𝑠1 (A.194)

𝔼ℎ(𝜌2) = 𝜂4
ℎ ⋅ 8𝜎𝑧

𝑗 ∫
−𝑖𝑡

0
∫

𝑠1

0
∫

𝑠2

0
∫

𝑠3

0

(2 sinh (2(𝑠1 − 𝑠2)(𝜎𝑧
𝑗−1𝜎𝑧

𝑗 + 𝜎𝑧
𝑗 𝜎𝑧

𝑗+1)) ⋅ cosh (2(𝑠4 − 𝑠3)(𝜎𝑧
𝑗−1𝜎𝑧

𝑗 + 𝜎𝑧
𝑗 𝜎𝑧

𝑗+1)) +

+ (𝑒−2(𝑠1−𝑠2)(𝜎𝑧
𝑗−2𝜎𝑧

𝑗−1+𝜎𝑧
𝑗−1𝜎𝑧

𝑗 ) + 𝑒−2(𝑠1−𝑠2)(𝜎𝑧
𝑗 𝜎𝑧

𝑗+1+𝜎𝑧
𝑗+1𝜎𝑧

𝑗+2))
⋅ sinh (2𝑠4(𝜎𝑧

𝑗−1𝜎𝑧
𝑗 + 𝜎𝑧

𝑗 𝜎𝑧
𝑗+1)) sinh (2𝑠3(𝜎𝑧

𝑗−1𝜎𝑧
𝑗 + 𝜎𝑧

𝑗 𝜎𝑧
𝑗+1)) −

− (𝑒2(𝑠1−𝑠2)(𝜎𝑧
𝑗−2𝜎𝑧

𝑗−1+𝜎𝑧
𝑗−1𝜎𝑧

𝑗 ) + 𝑒2(𝑠1−𝑠2)(𝜎𝑧
𝑗 𝜎𝑧

𝑗+1+𝜎𝑧
𝑗+1𝜎𝑧

𝑗+2))
⋅ sinh (2𝑠4(𝜎𝑧

𝑗−1𝜎𝑧
𝑗 − 𝜎𝑧

𝑗 𝜎𝑧
𝑗+1)) sinh (2𝑠3(𝜎𝑧

𝑗−1𝜎𝑧
𝑗 − 𝜎𝑧

𝑗 𝜎𝑧
𝑗+1)))d𝑠4d𝑠3d𝑠2d𝑠1 (A.195)

Then, I’ll combine the three parts to get the final result for the fourth order.

Ω4;𝑀 = ∫
−𝑖𝑡

0
∫

𝑠1

0
∫

𝑠2

0
∫

𝑠3

0
(2𝜂4

ℎ𝜎𝑧
𝑗 (−2 sinh(2(𝑠3 − 𝑠4)𝜎𝑧

𝑗−1𝜎𝑧
𝑗 ))⋅

⋅ (−2 sinh (2 (𝑠1(𝜎𝑧
𝑗−1𝜎𝑧

𝑗 + 𝜎𝑧
𝑗 𝜎𝑧

𝑗+1) + 𝑠2(𝜎𝑧
𝑗−2𝜎𝑧

𝑗−1 − 𝜎𝑧
𝑗−1𝜎𝑧

𝑗 ) − 𝑠3𝜎𝑧
𝑗−2𝜎𝑧

𝑗−1 − 𝑠4(𝜎𝑧
𝑗 𝜎𝑧

𝑗+1))) −
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− 2 sinh (2 (𝑠1(𝜎𝑧
𝑗−1𝜎𝑧

𝑗 + 𝜎𝑧
𝑗 𝜎𝑧

𝑗+1) − 𝑠2(𝜎𝑧
𝑗−2𝜎𝑧

𝑗−1 + 𝜎𝑧
𝑗−1𝜎𝑧

𝑗 ) + 𝑠3𝜎𝑧
𝑗−2𝜎𝑧

𝑗−1 − 𝑠4(𝜎𝑧
𝑗 𝜎𝑧

𝑗+1))) −
− 2 sinh (2 (𝑠1(𝜎𝑧

𝑗−2𝜎𝑧
𝑗−1 + 𝜎𝑧

𝑗−1𝜎𝑧
𝑗 ) − 𝑠2(𝜎𝑧

𝑗−1𝜎𝑧
𝑗 − 𝜎𝑧

𝑗 𝜎𝑧
𝑗+1) − 𝑠3𝜎𝑧

𝑗−2𝜎𝑧
𝑗−1 − 𝑠4(𝜎𝑧

𝑗 𝜎𝑧
𝑗+1))) +

+ 2 sinh (2 (𝑠1(𝜎𝑧
𝑗−2𝜎𝑧

𝑗−1 + 𝜎𝑧
𝑗−1𝜎𝑧

𝑗 ) − 𝑠2(𝜎𝑧
𝑗−1𝜎𝑧

𝑗 + 𝜎𝑧
𝑗 𝜎𝑧

𝑗+1) − 𝑠3𝜎𝑧
𝑗−2𝜎𝑧

𝑗−1 + 𝑠4(𝜎𝑧
𝑗 𝜎𝑧

𝑗+1))))+

+ 2𝜂4
ℎ𝜎𝑧

𝑗 (−2 sinh(2(𝑠3 − 𝑠4)𝜎𝑧
𝑗+1𝜎𝑧

𝑗 ))⋅

⋅ (−2 sinh (2 (𝑠1(𝜎𝑧
𝑗+1𝜎𝑧

𝑗 + 𝜎𝑧
𝑗 𝜎𝑧

𝑗−1) + 𝑠2(𝜎𝑧
𝑗+2𝜎𝑧

𝑗+1 − 𝜎𝑧
𝑗+1𝜎𝑧

𝑗 ) − 𝑠3𝜎𝑧
𝑗+2𝜎𝑧

𝑗+1 − 𝑠4(𝜎𝑧
𝑗 𝜎𝑧

𝑗−1))) −

− 2 sinh (2 (𝑠1(𝜎𝑧
𝑗+1𝜎𝑧

𝑗 + 𝜎𝑧
𝑗 𝜎𝑧

𝑗−1) − 𝑠2(𝜎𝑧
𝑗+2𝜎𝑧

𝑗+1 + 𝜎𝑧
𝑗+1𝜎𝑧

𝑗 ) + 𝑠3𝜎𝑧
𝑗+2𝜎𝑧

𝑗+1 − 𝑠4(𝜎𝑧
𝑗 𝜎𝑧

𝑗−1))) −
− 2 sinh (2 (𝑠1(𝜎𝑧

𝑗+2𝜎𝑧
𝑗+1 + 𝜎𝑧

𝑗+1𝜎𝑧
𝑗 ) − 𝑠2(𝜎𝑧

𝑗+1𝜎𝑧
𝑗 − 𝜎𝑧

𝑗 𝜎𝑧
𝑗−1) − 𝑠3𝜎𝑧

𝑗+2𝜎𝑧
𝑗+1 − 𝑠4𝜎𝑧

𝑗 𝜎𝑧
𝑗−1)) +

+ 2 sinh (2 (𝑠1(𝜎𝑧
𝑗+2𝜎𝑧

𝑗+1 + 𝜎𝑧
𝑗+1𝜎𝑧

𝑗 ) − 𝑠2(𝜎𝑧
𝑗+1𝜎𝑧

𝑗 + 𝜎𝑧
𝑗 𝜎𝑧

𝑗−1) − 𝑠3𝜎𝑧
𝑗+2𝜎𝑧

𝑗+1 + 𝑠4𝜎𝑧
𝑗 𝜎𝑧

𝑗−1)))+

+ 𝜂4
ℎ ⋅ 8𝜎𝑧

𝑗 (2 sinh (2(𝑠1 − 𝑠2)(𝜎𝑧
𝑗−1𝜎𝑧

𝑗 + 𝜎𝑧
𝑗 𝜎𝑧

𝑗+1)) ⋅ cosh (2(𝑠4 − 𝑠3)(𝜎𝑧
𝑗−1𝜎𝑧

𝑗 + 𝜎𝑧
𝑗 𝜎𝑧

𝑗+1)) +

+(𝑒−2(𝑠1−𝑠2)(𝜎𝑧
𝑗−2𝜎𝑧

𝑗−1+𝜎𝑧
𝑗−1𝜎𝑧

𝑗 ) + 𝑒−2(𝑠1−𝑠2)(𝜎𝑧
𝑗 𝜎𝑧

𝑗+1+𝜎𝑧
𝑗+1𝜎𝑧

𝑗+2))⋅sinh (2𝑠4(𝜎𝑧
𝑗−1𝜎𝑧

𝑗 + 𝜎𝑧
𝑗 𝜎𝑧

𝑗+1)) sinh (2𝑠3(𝜎𝑧
𝑗−1𝜎𝑧

𝑗 + 𝜎𝑧
𝑗 𝜎𝑧

𝑗+1)) −

−(𝑒2(𝑠1−𝑠2)(𝜎𝑧
𝑗−2𝜎𝑧

𝑗−1+𝜎𝑧
𝑗−1𝜎𝑧

𝑗 ) + 𝑒2(𝑠1−𝑠2)(𝜎𝑧
𝑗 𝜎𝑧

𝑗+1+𝜎𝑧
𝑗+1𝜎𝑧

𝑗+2))⋅sinh (2𝑠4(𝜎𝑧
𝑗−1𝜎𝑧

𝑗 − 𝜎𝑧
𝑗 𝜎𝑧

𝑗+1)) sinh (2𝑠3(𝜎𝑧
𝑗−1𝜎𝑧

𝑗 − 𝜎𝑧
𝑗 𝜎𝑧

𝑗+1))))

d𝑠4d𝑠3d𝑠2d𝑠1 (A.196)

This result is used here.
Partition function for a simple perturbed system

For a calculation of the Gibbs measure for simple perturbed system, as described by (2.166), it would be prudent
to first obtain the expectation of 𝑍:

𝔼ℎ (𝑍) = 𝔼ℎ (𝑍0 +
∞

∑
𝑗=1

tr ((−𝛽)𝑗𝑒−𝛽𝐻0𝐻𝑗
𝜈

𝑗! )) = (A.197)

=𝑍0 +
∞

∑
𝑗=1

𝔼ℎ (tr ((−𝛽)𝑗𝑒−𝛽𝐻0𝐻𝑗
𝜈

𝑗! )) = (A.198)

=𝑍0 +
∞

∑
𝑗=1

(−𝛽)𝑗

𝑗! 𝔼ℎ (tr (𝑒−𝛽𝐻0𝐻𝑗
𝜈)) (A.199)

Then, the inverse of the denominator can be calculated as:

𝑍−1 = (𝑍0 +
∞

∑
𝑗=1

tr ((−𝛽)𝑗𝑒−𝛽𝐻0𝐻𝑗
𝜈

𝑗! ))
−1

= (A.200)

=𝑍−1
0 (1 + 𝑍−1

0 ⋅
∞

∑
𝑗=1

tr ((−𝛽)𝑗𝑒−𝛽𝐻0𝐻𝑗
𝜈

𝑗! ))
−1

= (A.201)

=𝑍−1
0 (1 + 𝑍−1

0 ⋅ (tr (−𝛽𝑒−𝛽𝐻0𝐻𝜈) + tr (𝛽2𝑒−𝛽𝐻0𝐻2
𝜈

2! ) − tr (𝛽3𝑒−𝛽𝐻0𝐻3
𝜈

3! ) + …))
−1

= (A.202)

=𝑍−1
0 (1 +

∞
∑
𝑘=0

(−1)𝑘 (𝑍−1
0 ⋅ (tr (−𝛽𝑒−𝛽𝐻0𝐻𝜈) + tr (𝛽2𝑒−𝛽𝐻0𝐻2

𝜈
2! ) − tr (𝛽3𝑒−𝛽𝐻0𝐻3

𝜈
3! ) + …))

𝑘
) = (A.203)

=𝑍−1
0 (1 +

∞
∑
𝑘=0

(−1)𝑘𝑍−𝑘
0 ⋅ (tr (−𝛽𝑒−𝛽𝐻0𝐻𝜈) + tr (𝛽2𝑒−𝛽𝐻0𝐻2

𝜈
2! ) − tr (𝛽3𝑒−𝛽𝐻0𝐻3

𝜈
3! ) + …)

𝑘
) = (A.204)
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=𝑍−1
0

⎛⎜
⎝

1 +
∞

∑
𝑘=0

(−1)𝑘𝑍−𝑘
0 (

∞
∑
𝑗=1

tr ((−𝛽)𝑗𝑒−𝛽𝐻0𝐻𝑗
𝜈

𝑗! ))
𝑘
⎞⎟
⎠

= (A.205)

=𝑍−1
0

⎛⎜
⎝

1 +
∞

∑
𝑘=0

(−1)𝑘𝑍−𝑘
0 (

∞
∑
𝑗=1

(−𝛽)𝑗

𝑗! tr (𝑒−𝛽𝐻0𝐻𝑗
𝜈))

𝑘
⎞⎟
⎠

= (A.206)

Now, I can calculate the numerator. Here, I choose 𝐻0 and 𝐻𝜈 that commute:

𝑒−𝛽(𝐻0+𝐻𝜈) =𝑒−𝛽𝐻0𝑒−𝛽𝐻𝜈 = (A.207)

=𝑒−𝛽𝐻0
∞

∑
𝑙=0

(−𝛽)𝑙𝐻 𝑙
𝜈

𝑙! = (A.208)

=𝑒−𝛽𝐻0 (1 − 𝛽𝐻𝜈 + 𝛽2𝐻2
𝜈

2! − 𝛽3𝐻3
𝜈

3! + …) = (A.209)

=𝑒−𝛽𝐻0 − 𝛽𝑒−𝛽𝐻0𝐻𝜈 + 𝛽2𝑒−𝛽𝐻0𝐻2
𝜈

2! − 𝛽3𝑒−𝛽𝐻0𝐻3
𝜈

3! + … = (A.210)

=
∞

∑
𝑙=0

(−𝛽)𝑙𝑒−𝛽𝐻0𝐻 𝑙
𝜈

𝑙! (A.211)

Putting the numerator and denominator together, it follows that:

𝑃 = 𝔼ℎ ( 𝑒−𝛽(𝐻0+𝐻𝜈)

tr(𝑒−𝛽(𝐻0+𝐻𝜈))) = (A.212)

=𝔼ℎ
⎛⎜
⎝

∞
∑
𝑙=0

(−𝛽)𝑙

𝑙! 𝑒−𝛽𝐻0𝐻 𝑙
𝜈 ⋅ 𝑍−1

0
⎛⎜
⎝

1 +
∞

∑
𝑘=0

(−1)𝑘𝑍−𝑘
0 (

∞
∑
𝑗=1

(−𝛽)𝑗

𝑗! tr (𝑒−𝛽𝐻0𝐻𝑗
𝜈))

𝑘
⎞⎟
⎠

⎞⎟
⎠

= (A.213)

=𝔼ℎ
⎛⎜
⎝

𝑍−1
0

∞
∑
𝑙=0

(−𝛽)𝑙

𝑙! 𝑒−𝛽𝐻0𝐻 𝑙
𝜈 + 𝑍−1

0

∞
∑
𝑙=0

(−𝛽)𝑙

𝑙! 𝑒−𝛽𝐻0𝐻 𝑙
𝜈

∞
∑
𝑘=0

(−1)𝑘𝑍−𝑘
0 (

∞
∑
𝑗=1

(−𝛽)𝑗

𝑗! tr (𝑒−𝛽𝐻0𝐻𝑗
𝜈))

𝑘
⎞⎟
⎠

(A.214)

I can also derive a general form for the Gibbs measure, up to the second order:

𝑃 = 𝔼ℎ(𝑍−1
0 (𝑒−𝛽𝐻0 − 𝛽𝑒−𝛽𝐻0𝐻𝜈 + 𝛽2

2 𝑒−𝛽𝐻0𝐻2
𝜈 ) +

+ 𝑍−1
0 (Δ(𝑙 = 0; 𝑘 = 0) + Δ(𝑙 = 0; 𝑘 = 1; 𝑗 = 1, 2) + Δ(𝑙 = 0; 𝑘 = 2; 𝑗 = 1)+

+ Δ(𝑙 = 1; 𝑘 = 0) + Δ(𝑙 = 1; 𝑘 = 1; 𝑗 = 1) + Δ(𝑙 = 2; 𝑘 = 0))) = (A.215)

=𝔼ℎ(𝑍−1
0 (𝑒−𝛽𝐻0 − 𝛽𝑒−𝛽𝐻0𝐻𝜈 + 𝛽2

2 𝑒−𝛽𝐻0𝐻2
𝜈 ) +

+ 𝑍−1
0 (𝑒−𝛽𝐻0 + 𝑒−𝛽𝐻0(−1)𝑍−1

0 (−𝛽 tr (𝑒−𝛽𝐻0𝐻𝜈) + 𝛽2

2 tr (𝑒−𝛽𝐻0𝐻2
𝜈 )) +

+ 𝑒−𝛽𝐻0𝑍−2
0 (−𝛽 tr (𝑒−𝛽𝐻0𝐻𝜈))2 −

− 𝛽𝑒−𝛽𝐻0𝐻𝜈 − 𝛽𝑒−𝛽𝐻0𝐻𝜈𝑍−1
0 𝛽 tr (𝑒−𝛽𝐻0𝐻𝜈) + 𝛽2

2 𝑒−𝛽𝐻0𝐻2
𝜈 )) = (A.216)

=𝑒−𝛽𝐻0

𝑍0
𝔼ℎ(1 − 𝛽𝐻𝜈 + 𝛽2

2 𝐻2
𝜈 + 1 − 𝑍−1

0 (−𝛽 tr (𝑒−𝛽𝐻0𝐻𝜈) + 𝛽2

2 tr (𝑒−𝛽𝐻0𝐻2
𝜈 )) +

+ 𝑍−2
0 (−𝛽 tr (𝑒−𝛽𝐻0𝐻𝜈))2 − 𝛽𝐻𝜈 − 𝛽𝐻𝜈𝑍−1

0 𝛽 tr (𝑒−𝛽𝐻0𝐻𝜈) + 𝛽2

2 𝐻2
𝜈 ) = (A.217)
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=𝑒−𝛽𝐻0

𝑍0
𝔼ℎ(2 − 2𝛽𝐻𝜈 + 𝛽2𝐻2

𝜈 + 𝑍−1
0 𝛽 tr (𝑒−𝛽𝐻0𝐻𝜈) − 𝑍−1

0
𝛽2

2 tr (𝑒−𝛽𝐻0𝐻2
𝜈 ) +

+ 𝑍−2
0 𝛽2 (tr (𝑒−𝛽𝐻0𝐻𝜈))2 − 𝛽𝐻𝜈𝑍−1

0 𝛽 tr (𝑒−𝛽𝐻0𝐻𝜈)) = (A.218)

=𝑒−𝛽𝐻0

𝑍0
(2 − 𝔼ℎ (2𝛽𝐻𝜈) + 𝔼ℎ (𝛽2𝐻2

𝜈 ) + 𝔼ℎ (𝑍−1
0 𝛽 tr (𝑒−𝛽𝐻0𝐻𝜈)) − 𝔼ℎ (𝑍−1

0
𝛽2

2 tr (𝑒−𝛽𝐻0𝐻2
𝜈 )) +

+ 𝔼ℎ (𝑍−2
0 𝛽2 (tr (𝑒−𝛽𝐻0𝐻𝜈))2) − 𝔼ℎ (𝛽𝐻𝜈𝑍−1

0 𝛽 tr (𝑒−𝛽𝐻0𝐻𝜈))) = (A.219)

=𝑒−𝛽𝐻0

𝑍0
(2 − 2𝛽𝔼ℎ (𝐻𝜈) + 𝛽2𝔼ℎ (𝐻2

𝜈 ) + 𝛽
𝑍0

𝔼ℎ (tr (𝑒−𝛽𝐻0𝐻𝜈)) −

− 𝛽2

2𝑍0
𝔼ℎ (tr (𝑒−𝛽𝐻0𝐻2

𝜈 )) + 𝛽2

𝑍2
0

𝔼ℎ ((tr (𝑒−𝛽𝐻0𝐻𝜈))2) − 𝛽2

𝑍0
𝔼ℎ (𝐻𝜈 tr (𝑒−𝛽𝐻0𝐻𝜈))) = (A.220)

=𝑒−𝛽𝐻0

𝑍0
(2 + 𝛽2𝜂2

ℎ (
𝑁

∑
𝑗=1

𝜎𝑥
𝑗 𝜎𝑥

𝑗+1)
2

+ 𝛽
𝑍0

𝔼ℎ (tr (𝑒−𝛽𝐻0𝐻𝜈)) −

− 𝛽2

2𝑍0
𝔼ℎ (tr (𝑒−𝛽𝐻0𝐻2

𝜈 )) + 𝛽2

𝑍2
0

𝔼ℎ ((tr (𝑒−𝛽𝐻0𝐻𝜈))2) − 𝛽2

𝑍0
𝔼ℎ (𝐻𝜈 tr (𝑒−𝛽𝐻0𝐻𝜈))) (A.221)

This result is used here.

Specific values for Gibbs measure traces
First, here is the simple case.

tr (𝑒−𝛽𝐻0) = tr (
𝑛

∏
𝑗=1

𝑒−𝛽𝜎𝑧
𝑗 ) = (A.222)

= tr (
𝑛

∏
𝑗=1

3
∑
𝛼=0

𝑀𝛼𝜎𝛼
𝑗 ) = (A.223)

= tr ((
3

∑
𝛼=0

𝑀𝛼𝜎𝛼
1 ) ⋅ … ⋅ (

3
∑
𝜁=0

𝑀𝜁𝜎𝜁
𝑛)) = (A.224)

= tr ((𝑀0𝜎0
1 + 𝑀1𝜎𝑥

1 + 𝑀2𝜎𝑦
2 + 𝑀3𝜎𝑧

3) ⋅ … ⋅ (𝑀0𝜎0
𝑛 + 𝑀1𝜎𝑥

𝑛 + 𝑀2𝜎𝑦
𝑛 + 𝑀3𝜎𝑧

𝑛)) = (A.225)
= tr (𝑀0𝜎0

1𝑀0𝜎0
2 ⋅ … ⋅ 𝑀0𝜎0

𝑛) + tr (𝑀0𝜎0
1𝑀0𝜎0

2 ⋅ … ⋅ 𝑀1𝜎𝑥
𝑛) +

+ … + tr (𝑀3𝜎𝑧
1𝑀3𝜎𝑧

2 ⋅ … ⋅ 𝑀3𝜎𝑧
𝑛) = (A.226)

= tr (𝑀0𝜎0
1𝑀0𝜎0

2 ⋅ … ⋅ 𝑀0𝜎0
𝑛) + tr (𝑀0𝜎0

1𝑀0𝜎0
2 ⋅ … ⋅ 𝑀1𝜎𝑥

𝑛) +
+ … + tr (𝑀3𝜎𝑧

1𝑀3𝜎𝑧
2 ⋅ … ⋅ 𝑀3𝜎𝑧

𝑛) = (A.227)

=
3

∑
𝛼1,𝛼2,…,𝛼𝑛=0

tr (𝑀𝛼1
𝜎𝛼1

1 𝑀𝛼2
𝜎𝛼2

2 ⋅ … ⋅ 𝑀𝛼𝑛
𝜎𝛼𝑛𝑛 ) = (A.228)

=
3

∑
𝛼1,𝛼2,…,𝛼𝑛=0

𝑀𝛼1
𝑀𝛼2

… 𝑀𝛼𝑛
tr (𝜎𝛼1

1 𝜎𝛼2
2 … 𝜎𝛼𝑛𝑛 ) = (A.229)

=
3

∑
𝛼1,𝛼2,…,𝛼𝑛=0

𝑀𝛼1
𝑀𝛼2

… 𝑀𝛼𝑛
tr((𝜎𝛼1

1 ⊗ 𝕀 ⊗ … ⊗ 𝕀) ⋅ (𝕀 ⊗ 𝜎𝛼2
2 ⊗ 𝕀 ⊗ … ⊗ 𝕀) ⋅

⋅ … ⋅ (𝕀 ⊗ … ⊗ 𝕀 ⊗ 𝜎𝛼𝑛𝑛 )) = (A.230)
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=
3

∑
𝛼1,𝛼2,…,𝛼𝑛=0

𝑀𝛼1
𝑀𝛼2

… 𝑀𝛼𝑛
tr(𝜎𝛼1

1 ⊗ 𝜎𝛼2
2 ⊗ … ⊗ 𝜎𝛼𝑛𝑛 ) = (A.231)

=
3

∑
𝛼1,𝛼2,…,𝛼𝑛=0

𝑀𝛼1
𝑀𝛼2

… 𝑀𝛼𝑛
tr (𝜎𝛼1

1 ) tr (𝜎𝛼2
2 ) … tr (𝜎𝛼𝑛𝑛 ) (A.232)

Now follows the next more complicated form.

tr (𝑒−𝛽𝐻0𝐻𝑗
𝜈) = tr (

𝑛
∏
𝑗=1

𝑒−𝛽𝜎𝑧
𝑗 ⋅

𝑛
∑
𝑘=1

(ℎ𝑘𝜎𝑥
𝑘𝜎𝑥

𝑘+1)𝑗) = (A.233)

= tr (
𝑛

∏
𝑗=1

(𝑀0𝕀𝑗 + 𝑀3𝜎𝑧
𝑗 ) ⋅

𝑛
∑
𝑘=1

ℎ𝑗
𝑘 (𝜎𝑥

𝑘𝜎𝑥
𝑘+1)𝑗) = (A.234)

= tr (
𝑛

∏
𝑗=1

(𝑀0𝕀𝑗 + 𝑀3𝜎𝑧
𝑗 ) ⋅

𝑛
∑
𝑘=1

ℎ𝑗
𝑘 (𝜎𝑥

𝑘 ⊗ 𝜎𝑥
𝑘+1)𝑗) = (A.235)

= tr ((
3

∑
𝛼1,…,𝛼𝑛=0

𝑀𝛼1
𝜎𝛼1

1 𝑀𝛼2
𝜎𝛼2

2 … 𝑀𝛼𝑛
𝜎𝛼𝑛𝑛 ) ⋅ (

𝑛
∑
𝑘=1

ℎ𝑗
𝑘 ((𝜎𝑥

𝑘)𝑗 ⊗ (𝜎𝑥
𝑘+1)𝑗))) = (A.236)

= tr (
3

∑
𝛼1,…,𝛼𝑛=0

𝑛
∑
𝑘=1

𝑀𝛼1
𝜎𝛼1

1 𝑀𝛼2
𝜎𝛼2

2 … 𝑀𝛼𝑛
𝜎𝛼𝑛𝑛 ⋅ ℎ𝑗

𝑘 ((𝜎𝑥
𝑘)𝑗 ⊗ (𝜎𝑥

𝑘+1)𝑗)) = (A.237)

= tr(
3

∑
𝛼1,…,𝛼𝑛=0

𝑛
∑
𝑘=1

𝑀𝛼1
𝑀𝛼2

… 𝑀𝛼𝑛
⋅ ℎ𝑗

𝑘 (𝜎𝛼1
1 ⊗ 𝕀 ⊗ … ⊗ 𝕀) ⋅ (𝕀 ⊗ 𝜎𝛼2

2 ⊗ 𝕀 ⊗ … ⊗ 𝕀) ⋅

⋅ … ⋅ (𝕀 ⊗ … ⊗ 𝕀 ⊗ 𝜎𝛼𝑛𝑛 ) ⋅ ((𝜎𝑥
𝑘)𝑗 ⊗ (𝜎𝑥

𝑘+1)𝑗)) = (A.238)

= tr (
3

∑
𝛼1,…,𝛼𝑛=0

𝑛
∑
𝑘=1

𝑀𝛼1
𝑀𝛼2

… 𝑀𝛼𝑛
ℎ𝑗

𝑘 (𝜎𝛼1
1 ⊗ 𝜎𝛼2

2 ⊗ … ⊗ 𝜎𝛼𝑛𝑛 ) ⋅ ((𝜎𝑥
𝑘)𝑗 ⊗ (𝜎𝑥

𝑘+1)𝑗)) = (A.239)

= tr (
3

∑
𝛼1,…,𝛼𝑛=0

𝑛
∑
𝑘=1

𝑀𝛼1
𝑀𝛼2

… 𝑀𝛼𝑛
ℎ𝑗

𝑘 (… ⊗ 𝜎𝛼𝑘−1
𝑘−1 ⊗ 𝜎𝛼𝑘

𝑘 ⋅ (𝜎𝑥
𝑘)𝑗 ⊗ 𝜎𝛼𝑘+1

𝑘+1 ⋅ (𝜎𝑥
𝑘+1)𝑗 ⊗ 𝜎𝛼𝑘+2

𝑘+2 ⊗ …)) = (A.240)

=
3

∑
𝛼1,…,𝛼𝑛=0

𝑛
∑
𝑘=1

𝑀𝛼1
𝑀𝛼2

… 𝑀𝛼𝑛
ℎ𝑗

𝑘 ⋅ tr (… ⊗ 𝜎𝛼𝑘−1
𝑘−1 ⊗ 𝜎𝛼𝑘

𝑘 ⋅ (𝜎𝑥
𝑘)𝑗 ⊗ 𝜎𝛼𝑘+1

𝑘+1 ⋅ (𝜎𝑥
𝑘+1)𝑗 ⊗ 𝜎𝛼𝑘+2

𝑘+2 ⊗ …) = (A.241)

=
3

∑
𝛼1,…,𝛼𝑛=0

𝑛
∑
𝑘=1

𝑀𝛼1
𝑀𝛼2

… 𝑀𝛼𝑛
ℎ𝑗

𝑘 ⋅ … ⋅ tr (𝜎𝛼𝑘−1
𝑘−1 ) ⋅ tr (𝜎𝛼𝑘

𝑘 ⋅ (𝜎𝑥
𝑘)𝑗) ⋅ tr (𝜎𝛼𝑘+1

𝑘+1 ⋅ (𝜎𝑥
𝑘+1)𝑗) ⋅ tr (𝜎𝛼𝑘+2

𝑘+2 ) ⋅ … (A.242)

This result is used here.

Gibbs measure and expectation
The Gibbs measure expression calculation proceeds as follows.

𝑃 =𝑒−𝛽𝐻0

𝑍0
(2 + 𝛽2𝜂2

ℎ

𝑁
∑
𝑗=1

𝜎𝑥
𝑗 𝜎𝑥

𝑗+1 + 𝛽
𝑍0

𝔼ℎ (tr (𝑒−𝛽𝐻0𝐻𝜈)) − 𝛽2

2𝑍0
𝔼ℎ (tr (𝑒−𝛽𝐻0𝐻2

𝜈 )) +

+ 𝛽2

𝑍2
0

𝔼ℎ ((tr (𝑒−𝛽𝐻0𝐻𝜈))2) − 𝛽2

𝑍0
𝔼ℎ (𝐻𝜈 tr (𝑒−𝛽𝐻0𝐻𝜈))) (A.243)

=𝑒−𝛽𝐻0

𝑍0
(2 + 𝛽2𝜂2

ℎ

𝑁
∑
𝑗=1

𝜎𝑥
𝑗 𝜎𝑥

𝑗+1 − 𝛽2

2𝑍0
𝔼ℎ (tr (𝑒−𝛽𝐻0𝐻2

𝜈 ))) = (A.244)

Ivana Kurečić 178



Appendix A. Additional Calculations

=𝑒−𝛽𝐻0

𝑍0
(2 + 𝛽2𝜂2

ℎ

𝑁
∑
𝑗=1

𝜎𝑥
𝑗 𝜎𝑥

𝑗+1 − 𝛽2

2𝑍0
𝔼ℎ ((2 cosh(𝛽))𝑛 ⋅

𝑛
∑
𝑙=1

ℎ2
𝑙 )) = (A.245)

=𝑒−𝛽𝐻0

𝑍0
(2 + 𝛽2𝜂2

ℎ

𝑁
∑
𝑗=1

𝜎𝑥
𝑗 𝜎𝑥

𝑗+1 − 𝛽2

2𝑍0
⋅ (2 cosh(𝛽))𝑛 ⋅ 𝑛𝜂2

ℎ) = (A.246)

=𝑒−𝛽𝐻0

𝑍0
(2 + 𝛽2𝜂2

ℎ (
𝑛

∑
𝑗=1

𝜎𝑥
𝑗 𝜎𝑥

𝑗+1 − 𝑛
2𝑍0

⋅ (2 cosh(𝛽))𝑛)) (A.247)

The expectation value for 𝔼 (𝑍) is next.

𝔼ℎ (𝑍) =𝔼ℎ (𝑍0) + 𝔼ℎ (
∞

∑
𝑗=1

tr ((−𝛽)𝑗𝑒−𝛽𝐻0𝐻𝑗
𝜈

𝑗! )) = (A.248)

= tr (𝑒−𝛽𝜎𝑧
𝑗 )𝑛 +

∞
∑
𝑗=1

𝔼ℎ (tr ((−𝛽)𝑗𝑒−𝛽𝐻0𝐻𝑗
𝜈

𝑗! )) = (A.249)

= tr (𝑒−𝛽𝜎𝑧
𝑗 )𝑛 +

∞
∑
𝑗=1

(−𝛽)2𝑗

(2𝑗)! 𝔼ℎ (tr (𝑒−𝛽𝐻0𝐻2𝑗
𝜈 )) = (A.250)

= tr (𝑒−𝛽𝜎𝑧
𝑗 )𝑛 +

∞
∑
𝑗=1

(−𝛽)2𝑗

(2𝑗)! 𝔼ℎ ((2 cosh (𝛽))𝑛 ⋅
𝑛

∑
𝑙=1

ℎ2𝑗
𝑙 ) = (A.251)

=𝑍0 +
∞

∑
𝑗=1

(−𝛽)2𝑗

(2𝑗)! (2 cosh (𝛽))𝑛 ⋅ 𝑛𝜂2𝑗
ℎ = (A.252)

=𝑍0 + (2 cosh (𝛽))𝑛 ⋅ 𝑛 ⋅
∞

∑
𝑗=1

(𝛽𝜂ℎ)2𝑗

(2𝑗)! = (A.253)

=𝑍0 + (2 cosh (𝛽))𝑛 ⋅ 𝑛 ⋅ (
∞

∑
𝑗=0

(𝛽𝜂ℎ)2𝑗

(2𝑗)! − 1) = (A.254)

=𝑍0 + (2 cosh (𝛽))𝑛 ⋅ 𝑛 ⋅ (cosh (𝛽𝜂ℎ) − 1) = (A.255)
= (2 cosh(𝛽))𝑛 + (2 cosh (𝛽))𝑛 ⋅ 𝑛 ⋅ (cosh (𝛽𝜂ℎ) − 1) . (A.256)

Creating a Tensor Bridge for Perturbative Many-body Localization Solu-
tions

Norm of |𝜑1⟩ = 𝑒∑𝑗 𝑣𝑗
1
8 𝑋𝑗 |𝜑0⟩:

𝑁 = ⟨𝜑1 | 𝜑1⟩ = (A.257)

= ⟨𝜑0| 𝑒∑𝑗 𝑣𝑗
1
8 𝑋𝑗 ⋅ 𝑒∑𝑗 𝑣𝑗

1
8 𝑋𝑗 |𝜑0⟩ = (A.258)

= 1√
2

(⟨+𝑍| + ⟨−𝑍|) 𝑒∑𝑗 𝑣𝑗
1
8 𝑋𝑗 ⋅ 𝑒∑𝑗 𝑣𝑗

1
8 𝑋𝑗 1√

2
(|+𝑍⟩ + |−𝑍⟩) = (A.259)

=1
2 (⟨+𝑍| + ⟨−𝑍|) 𝑒∑𝑗 𝑣𝑗

1
4 𝑋𝑗 (|+𝑍⟩ + |−𝑍⟩) = (A.260)

=1
2 (⟨+𝑍| + ⟨−𝑍|) ∏

𝑗
𝑒 1

4 𝑣𝑗𝑋𝑗 (|+𝑍⟩ + |−𝑍⟩) = (A.261)

=1
2 ∏

𝑗
(⟨+𝑍| + ⟨−𝑍|) (𝟙 + 1

4𝑣𝑗𝑋𝑗𝟙 + 1
2 (1

4𝑣𝑗𝑋𝑗)
2

𝟙 + …) (|+𝑍⟩ + |−𝑍⟩) = (A.262)
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=1
2 ∏

𝑗
(⟨+𝑍| + ⟨−𝑍|) (𝟙 + 1

2 (1
4𝑣𝑗𝑋𝑗)

2
𝟙 + 1

4! (1
4𝑣𝑗𝑋𝑗)

4
+ …) (|+𝑍⟩ + |−𝑍⟩) = (A.263)

=1
2 ∏

𝑗
(⟨+𝑍| + ⟨−𝑍|) (𝟙 + 1

2 (1
4𝑣𝑗)

2
𝟙 + 1

4! (1
4𝑣𝑗)

4
+ …) (|+𝑍⟩ + |−𝑍⟩) = (A.264)

=1
2 ∏

𝑗
(⟨+𝑍| + ⟨−𝑍|) cosh (1

4𝑣𝑗) (|+𝑍⟩ + |−𝑍⟩) = (A.265)

= ∏
𝑗

cosh (1
4𝑣𝑗) (A.266)

This result is used here.
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