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Abstract

The transition of the power network towards cleaner and sustainable energy gener-

ation requires appropriate planning of the future power infrastructure, considering

both the technical and economic aspects. With this thesis, I propose an optimization

model to address the arising challenges and provide the necessary tools to effectively

solve energy planning problems. The proposed optimization model simultaneously

incorporates a multi-stage formulation, a finitely supported Markov structure of

random processes, and the alternating current (AC) nature of power flow dynamics,

filling a gap in the existing literature.

First, I propose a semi-metric for Markov processes involved in linear stochas-

tic optimization problems. The distance aims to assess the accuracy of a discrete

approximation and its influence on the optimal value of a multi-stage stochastic op-

timization. The distance relies on transportation metrics and depends on problem

parameters, allowing for consideration of randomness in both the objective function

and the constraints. Next, I provide a solution strategy for multi-stage stochastic

optimal power flow (OPF) problems. This strategy is based on recent developments

in convex semi-definite programming relaxations of OPF problems and the adapta-

tion of the stochastic dual dynamic programming (SDDP) algorithm. I discuss the

convergence conditions and properties of the algorithm. Lastly, I set up an exten-

sive case study focusing on renewable expansion and storage integration planning

within the IEEE RTS-GMLC network. The study illustrates the applicability and

computational tractability of the presented framework.
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Chapter 1

Introduction

1.1 Motivation

Climate change and the reduction of greenhouse gas emissions are pressing environ-

mental concerns capturing the attention of countries worldwide. National govern-

ments and international organizations have implemented ambitious plans and poli-

cies to bolster climate action. Notably, the Paris Agreement stands out as a legally

binding global climate consensus, adopted during the Paris Climate Conference in

December 2015 (see United Nations Framework Convention on Climate Change

2015). The agreement outlines a target to restrict the global average temperature

increase to 1.5 degrees Celsius above pre-industrial levels, aiming to mitigate the

risks and impacts of climate change. To realize this objective, emissions must be re-

duced by 45% from the 2010 level by 2030, ultimately achieving carbon neutrality by

2050 according to Intergovernmental Panel on Climate Change (2018). Given that

the energy sector accounts for over two-thirds of total global greenhouse gas emis-

sions, it emerges as a pivotal area for substantial actions to combat climate change.

A fundamental step involves transitioning the power network towards cleaner and

more sustainable energy generation, predominantly through the adoption of renew-

able energy sources in future infrastructure planning (see International Renewable

1



2 Chapter 1 Introduction

Energy Agency 2017b).

Among renewable energy technologies, two categories can be distinguished: dis-

patchable (e.g., biomass, concentrated solar power with storage, geothermal power,

and hydro) and non-dispatchable, also known as variable renewable energy (e.g.,

ocean power, solar photovoltaics, wind). Variable renewable energy sources (VRE)

can be characterized by properties that differentiate them from conventional gener-

ators. Firstly, the output of VRE can not be controlled and exhibits variable sea-

sonal and diurnal production patterns due to its weather-dependent nature, leading

to inherent forecasting uncertainty. Additionally, renewable energy generation is

location-constrained, and the areas with high output can be placed far from de-

mand centers, imposing additional requirements on the necessary power network

infrastructure.

The transformation of the existing power grid infrastructure towards renewable

energy sources necessitates an evaluation of the operation and planning of the fu-

ture power network from both technical and economic perspectives. According to

International Renewable Energy Agency (2017a), four components are discernible

in energy planning to ensure the reliability of the power system and meet ambitious

targets driven by national commitments, international agreements, and rapid tech-

nological development.

The first component involves planning for firm capacity, signifying the portion of

variable renewable energy that is assured to be produced even during periods of low

renewable generation.

The second component encompasses planning for flexibility. A techno-economic def-

inition by the International Energy Association states that power system flexibility

is the ability of a power system to reliably and cost-effectively manage the variability

and uncertainty of demand and supply across all relevant timescales (see Interna-

tional Energy Agency 2018). As VRE introduces intermittency and high uncertainty

of supply, it imposes a necessesity of investments in flexibility measures.
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Another crucial component is planning for transmission capacity, essential for trans-

mitting power from VRE resources to centers of demand. Additionally, long-distance

transmission lines may necessitate enhanced methods for controlling voltage.

The final element in integrating VRE into the power system is planning for stabil-

ity, ensuring the capability to respond to contingency events and control voltage.

Achieving this goal involves improving operational practices and implementing other

technical solutions.

These components highlight the complexity of the expansion planning problem

and the importance of handling it properly. To identify a cost-optimal strategy, one

effective approach is to formulate and solve an optimization problem. Therefore, de-

veloping an optimization model becomes crucial to effectively account for economic,

technical, environmental, and other constraints. Due to the increasing integration of

renewable energy sources and the uncertainty of their output, it also becomes evident

that traditional deterministic approaches to energy planning encounter significant

limitations.

Stochastic optimization is an approach to solve an optimization problem involv-

ing uncertainty (see Birge and Louveaux 2011, for an introduction). Therefore, it

emerges as a compelling solution in response to the inherent uncertainties associ-

ated with renewable energy generation, demand fluctuations, and unforeseen system

disturbances. Applying stochastic optimization techniques in energy planning ac-

knowledges the dynamic and uncertain nature of the energy environment. It also

empowers decision-makers to develop robust strategies that can adapt to unforeseen

events and market fluctuations.

Furthermore, the global commitment to reducing carbon emissions and the in-

creasing emphasis on achieving ambitious renewable energy targets necessitate in-

novative planning approaches. Stochastic optimization could contribute as a tool

for achieving sustainability goals while ensuring the reliability and cost-effectiveness

of energy systems by appropriate problem formulation.
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1.2 Contribution

Stochastic programming is an approach used to model and solve optimization prob-

lems involving uncertainty (Shapiro et al. 2009). Unlike deterministic optimization,

which assumes complete knowledge of all parameters, stochastic programming ac-

counts for the uncertainty of the parameters by considering their probability distri-

butions, whether known or estimated. Given the significance of including the vari-

ability of renewable generation in energy planning, stochastic programming seems

adequate to address this challenge and provide optimal decisions.

In the literature, energy planning models accounting for uncertainty are explored

mainly by the application of a straightforward discrete approximation of the ran-

dom process or by employing a relaxation of the optimization problem (e.g. Lara

et al. 2018, Peter and Wagner 2021). The authors often neglect some important fac-

tors and allow for less accurate solutions in their approach in favor of computational

efficiency, for example, by considering direct current (DC) instead of alternating cur-

rent (AC) in the optimal power flow (OPF) (see Bent et al. 2011, for a comparison).

In contrast to existing approaches, I have developed a theory that simultaneously

incorporates three important components into the stochastic optimization model:

a multi-stage formulation, a finitely supported Markovian structure of the random

process, and the alternating current (AC) nature of the power system. Undoubtedly,

this introduces a significant increase in the complexity of the problem, but this effort

is compensated by attaining more precise results.

1.2.1 Assumptions

In the thesis, stochastic optimization models are developed and applied under the

following assumptions:
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Multi-stage formulation

First, I consider a multi-stage stochastic formulation of the optimization problem.

In contrast, a two-stage optimization model is applied by most of the researchers in

energy planning (e.g. Byon et al. 2020, López-Ramos et al. 2020).

Two-stage and multi-stage optimization models differ in the number of decision-

making stages involved in the planning process. In a two-stage optimization, the

decision-maker makes initial decisions in the first stage without knowing the specific

realization of uncertain parameters, which are realized in the second stage. Subse-

quently, after the uncertainties are revealed, the decision-maker makes additional

decisions in the second stage, considering both the actual values of the uncertain

parameters and the decisions made in the previous stage. It is recommended to see

Birge and Louveaux (2011) and Shapiro et al. (2009) for a comprehensive overview.

Multi-stage optimization models involve more than two decision-making points,

each associated with a specific point in time or a particular phase of the decision

process (Pflug and Pichler 2014). The decision-maker considers uncertainties and

makes decisions sequentially at each stage, adapting to new information as it be-

comes available in the form of the actual values of uncertain parameters and decisions

taken in the previous stages. However, the dynamic and evolving information poses

a challenge of making optimal decisions with incomplete or changing data.

A multi-stage optimization model is a natural extension of a two-stage optimiza-

tion, but due to the complexity and the dynamic nature of the decision-making

process across multiple stages, the problem is often intractable (see Shapiro 2006,

2010). As the number of stages increases, one can observe an exponential increase

in the size of the solution space introduced as the curse of dimensionality in Hana-

susanto et al. (2016). Multi-stage optimization problems, with decisions across mul-

tiple stages, can suffer from this curse, making it harder to find feasible and optimal

solutions. Furthermore, interpreting the outcome becomes more challenging as the

decision-makers have to understand the implications of multi-stage solutions.
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Managing and solving problems with numerous decision points, variables, and

constraints can become challenging and demand sophisticated optimization algo-

rithms and significant computational resources. On the other hand, multi-stage

models allow for a more detailed and dynamic representation of the decision-making

process. In energy planning, the assumption of the multi-stage formulation of the

optimization problem facilitates accounting for the extended horizon of the power

network operation, enabling a more precise evaluation of the impact of investment

decisions as in Lara et al. (2020).

Finitely supported Markovian structure of the random process

Secondly, I assume that the random process involved in the multi-stage stochas-

tic optimization problem is a finitely supported Markov process represented by a

scenario lattice.

In many optimization problems, the random process is naturally continuously

distributed, and it requires the numerical evaluation of high dimensional integrals,

which is a challenge. Therefore, researchers use representative scenarios to approx-

imate the stochastic process or assume finite support to solve the problem.

The majority of the authors use scenario trees as a discrete representation of the

random process (e.g. Heitsch and Römisch 2009, Pflug and Pichler 2012). In a sce-

nario tree, every node has only one predecessor and possibly more than one succes-

sor, leading to the exponential growth of nodes as the number of stages increases.

Therefore, scenario trees are typically restricted to having only a few stages or con-

tain nodes with only one successor, resulting in deterministic sub-problems at these

nodes.

A possible solution to this dilemma is to assume that the random process satisfies

the Markov property, meaning that the value of the process at time t depends only

on the value at time t−1, and there is no need to remember the whole history of the

process. This property can be expressed by the following relation for the conditional
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probabilities:

P (ξt = ξt(ωt)|ξt−1(ωt−1), . . . , ξ0(ω0)) = P (ξt = ξt(ωt)|ξt−1(ωt−1)) t ∈ {1, . . . , T}

where ξ = (ξ0, ξ1, . . . , ξT ) with ξt : Ωt → Rnt is a Markov process. The restriction to

Markov processes strikes a good balance between capturing the realistic dynamics

of the system across multiple stages and the accurate representation of interdepen-

dencies.

A natural representation of a discrete Markov process is a scenario lattice that

consists of the same building blocks as a scenario tree but relaxes the requirement

that every node has only one predecessor, as depicted in Figure 1.1. The growth of

the number of nodes as the number of stages increases is linear, contrasting with

the exponential growth observed in a scenario tree. Thereby, scenario lattice offers

computational advantages over a scenario tree.

Figure 1.1: Comparison of a scenario tree with 31 nodes representing 16 scenarios
on the left with a scenario lattice with 15 nodes representing 120 scenarios on the
right.

The decision-making process in multi-stage stochastic optimization problems

where the random process satisfies the Markov property is called the Markov Deci-

sion Process (MDP). It was officially introduced in Horward (1960) and later elab-

orated in Puterman (1994). It serves as a structured framework for modeling and

solving sequential decision problems that involve actions taken over time, and MDPs

effectively capture this dynamic nature. Markov Decision Processes are successfully
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applied in many areas, including operations research, logistics, and supply chain

management, where they are used to optimize resource allocation (e.g. Huang

et al. 2023), scheduling (e.g. He et al. 2022), and inventory management (e.g. Shin

and Lee 2015). MDPs offer a systematic approach to decision-making, which is

particularly relevant in designing investment strategies (see Chang and Lee 2017),

managing network resources (see Williams 2009), and planning energy generation

and distribution (see Reyes et al. 2020).

In summary, Markov Decision Processes are important because they provide a

versatile and principled framework for modeling, analyzing, and solving sequential

decision problems in the presence of uncertainty, leading to optimal decision policies

in a wide range of applications across different domains. Nevertheless, the literature

on Markov Decision Processes in the context of energy planning remains limited,

leaving a place for improvement. Therefore, I intend to contribute to fill this gap

with my findings.

AC OPF

Finally, I assume that the formulation of the optimization problem applied to en-

ergy planning, where the operational planning of the power network is included in

the model, consists of the optimal power flow (OPF) problem constructed under

alternating current (AC).

Optimal power flow problems represent a framework for determining the most

economical and reliable configuration of power system operating parameters. The

primary objective is to achieve the optimal allocation of power generation, transmis-

sion, and distribution resources while adhering to system constraints and ensuring

the secure and stable functioning of the grid. OPF, as a mathematical optimization

problem, involves the simultaneous optimization of various operational variables

within a power network, encompassing generator setpoints, transformer tap ratios,

and bus voltages.



1.2 Contribution 9

Two approaches to formulating the OPF problem can be distinguished: direct

current (DC) and alternating current. The optimal power flow between units for

alternating current is an NP-hard problem (see Bienstock and Verma 2019), and

therefore, many researchers use direct current approximation as in Pandzic et al.

(2015), Qiu et al. (2017). The DC optimal power flow model simplifies the com-

plexities of AC power systems to provide a computationally efficient solution for

large-scale power system optimization. In the DC model, voltage magnitudes are

assumed constant, and only active power flows are considered. This simplification

significantly reduces the computational burden, making it suitable for quick and

preliminary power system operation and planning analyses.

Advantages of the DC approach include its speed and scalability, making it

particularly useful for large-scale grid studies and real-time applications. However,

its simplicity comes at the cost of accuracy. The DC model neglects reactive power

flows, voltage variations, and transmission line impedance, leading to inaccuracies

in certain situations, especially when dealing with heavily loaded or highly stressed

power systems.

In contrast, the AC optimal power flow model provides a more accurate repre-

sentation of power system behavior by considering both active and reactive power

flows, as well as voltage magnitudes and phase angles. The AC model incorporates

the complexities of transmission line impedances and voltage constraints, making it

suitable for detailed studies requiring higher accuracy.

The advantages of the AC approach lie in its ability to capture voltage stability,

reactive power interactions, and the impact of network constraints more accurately.

This makes it essential for detailed planning, especially in scenarios involving high

renewable energy penetration and increased complexity in power system configura-

tions. Nevertheless, the AC model requires higher computational resources than the

DC model.

In summary, the AC approach better reflects reality and provides a more accurate
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solution for the power network operation. However, its implementation involves a

combination of advanced optimization techniques, computational methods, and a

profound understanding of the specific problem domain.

1.2.2 A Stability Result for Linear Markovian Stochastic

Optimization Problems

In the first paper, I focus on the problem of approximation of random processes

(possibly continuous) involved in the optimization problem. Having a discrete ap-

proximation of the random process allows us to formulate an approximating op-

timization problem by replacing the original process with generated scenarios and

obtain a solution to the original problem, which was often intractable in reasonable

computational time. The way of constructing scenarios is not obvious and differs

from standard scenario generation approaches, as we want to guarantee that an op-

timal value of approximating optimization problem lies within reasonable accuracy

to the optimal value of the original optimization problem.

Stochastic programming provides many different methods of constructing a dis-

crete approximation of the random process. The most common and widely used

approach is applying a sampling technique, e.g., Monte Carlo, to construct scenarios

and approximate the expectation function by the average over generated scenarios in

the objective function of an optimization problem. This simple idea was suggested

by different authors (e.g. Kleywegt et al. 2001), and it is known as the sample aver-

age approximation in the recent literature. More information about the statistical

properties of this method can be found in Shapiro (2006) and a discussion on the

complexity of two and multi-stage versions in Shapiro and Nemirovski (2005), indi-

cating that the method is practically inapplicable for solving multi-stage problems.

Another approach relies on the explicit choice of representative scenarios, and it can

be accomplished in various ways, which are mentioned in Section 2.1.

In this paper, I focus on the method that uses probability metrics to assess the
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accuracy of an approximation. The probability metric usually refers to the dis-

tance between probability distributions, but it can be easily defined for stochastic

processes. Concerning optimization problems, the distance is used to bound the

difference between optimal values of stochastic optimization problems for different

random processes, thereby allowing us to infer the accuracy of the approximation.

Proving such relation for a certain probability metric is analogous to the basic con-

cept of the Lipschitz property (see Definition 1.1) for a function f which returns the

optimal value of defined stochastic optimization problem for the given stochastic

process being the argument of this function. The difficulty relies on finding a proper

metric dX for stochastic processes that satisfies the required relation.

Definition 1.1. Given two metric spaces (X, dX) and (Y, dY ) where dX and dY are

metrics on the set X and Y respectively, a function f : X → Y is called a Lipschitz

function if there exists a real constant L ≥ 0 such that for all x1, x2 ∈ X

dY (f(x1), f(x2)) ≤ LdX(x1, x2) (1.1)

Looking into literature, different definitions of the distance between stochas-

tic processes can be found (e.g. Dupacová et al. 2003, Heitsch and Römisch 2011,

Heitsch et al. 2006, Pflug and Pichler 2012). These metrics are usually based on

the Wasserstein or Kantorovich distance introduced in Kantorovich (1942)(see also

Villani 2003), which is defined as an optimization problem minimizing the total cost

of passing from an original distribution to a desired one by moving probability mass.

Similarly to other researchers, I used the Wasserstein distance as a starting point

for the study.

In existing approaches, most authors focus mainly on scenario trees as a discrete

representation of the random process (e.g. Heitsch and Römisch 2011, Pflug and

Pichler 2012). As previously mentioned, this structure exhibits exponential growth

of nodes as the number of stages increases, significantly impacting the computa-

tional tractability of a multi-stage optimization problem. Therefore, I restrict the
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type of random processes to Markov processes and use scenario lattice as a discrete

representation as in Löhndorf et al. (2013).

Another difficulty associated with existing metrics relies on finding the exact

value of the Lipschitz constant, as it has to be the same value for all stochastic pro-

cesses depending only on the optimization problem. In the presented approach, the

constant is included in the distance itself, and detailed instructions for its calcula-

tions are provided, considering all specifics of the optimization problem in contrast

to existing results. Unfortunately, it can be assured only when the optimization

problem with a certain structure is considered, e.g., linear, quadratic, etc. There-

fore, I focus on linear optimization problems, which are widely applied in many

areas, including energy planning problems.

The advantage and novelty of the presented distance in the context of stability

results is the inclusion of uncertainty in the objective function as well as in the

constraints. The latter significantly increases the complexity of the optimization

problem, as the feasible set can change for every realization of the stochastic pro-

cess. In comparison to the existing approaches (e.g. Heitsch and Römisch 2011,

Heitsch et al. 2006) where equality constraints involving random parameters are

considered, I relax this assumption and allow for dependence on randomness in

inequality constraints as well.

The important contribution of this paper is also the description of distance im-

plementation for a scenario lattice. In section 2.5, I provide a pseudocode for the

calculation of the distance and numerical results for the flower girl problem. Ad-

ditionally, I consider a simplified version of the example (without uncertainty in

constraints) and compare the performance of the proposed metric with the nested

distance introduced by Pflug and Pichler (2012). The metric defined in Pflug and

Pichler (2012) is suitable for general stochastic processes and multi-stage stochastic

optimization problems with uncertainty in the objective function, and therefore it

is the perfect reference point. The experiment reveals that the proposed distance
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provides a tighter bound than the nested distance, improving existing results and

demonstrating that this metric is innovative due to the covered research area.

Furthermore, I show that every Markov process can be approximated to arbitrary

precision in terms of the defined distance, laying the solid foundations for advanc-

ing research in scenario generation methods that employ a distance of probability

measures (e.g. Kaut 2021). The proposed distance offers a means to control the

error in optimal values resulting from replacing a complex Markov process with a

simpler scenario lattice, thereby significantly reducing problem complexity.

In summary, this paper introduces the distance between Markov processes and

demonstrates that the optimal value of a stochastic linear optimization problem,

with predetermined form, is a function of a random process satisfying the Lips-

chitz property with respect to the lattice distance. The innovation of the considered

model lies in the multi-stage structure, Markovian randomness, and the incorpora-

tion of uncertainty in both the objective function and constraints. Consequently,

this model fills a gap in the literature, contributing to the field of probability met-

rics and exploiting the properties of Markov processes. Furthermore, the example

demonstrates the advantage of the lattice distance over the nested distance for cer-

tain class of problems.

1.2.3 Stochastic Dual Dynamic Programming for Optimal

Power Flow Problems under Uncertainty

The efficient and secure operation of the power network is important in the delivery

of electricity from suppliers to customers. The optimal power flow (OPF) prob-

lem serves as a foundation for achieving this objective and offers an approach to

identifying the most economical and reliable power system configuration.

The OPF aims to find an optimal allocation, transmission, and distribution of

resources in the power network that minimizes a certain cost function subject to

physical constraints imposed by electrical laws and engineering limits. The power



14 Chapter 1 Introduction

flow equations, representing the relationship between voltages and power injections

using alternating current (AC), are nonlinear and lead to nonconvex optimization

problems. That is the reason that the AC OPF problems are strongly NP-hard (see

Bienstock and Verma 2019).

The OPF problem requires a combination of operations research and power engi-

neering to find a reliable solution strategy and ensure secure and stable power system

operation. Therefore, an understanding of power flow dynamics and the building

blocks of OPF, e.g., the admittance matrix, is essential to propose an effective algo-

rithm for this class of problems. In this paper, I provide an extensive introduction to

the formulation of the OPF problem, including the construction of the admittance

matrix and treatment of phase-shifting and tap-changing transformers.

The most common approach in the literature dealing with the AC OPF problem

relies on an approximation of power flow equations assuming direct current (DC).

This approximation notably simplifies the problem from non-convex to linear op-

timization and enables a variety of effective algorithms that can possibly be used

as a solution method. However, the DC OPF model doesn’t take into account all

physical properties of power flow, and the solution has to be modified to meet the

requirements of the AC power system (see Larrahondo et al. 2021).

Apart from DC relaxation, there is rich literature on the relaxation of AC OPF

problems. The most common include linear programming in Coffrin and Van Hen-

tenryck (2014), Misra et al. (2018), quadratic programming in Coffrin et al. (2016),

Marley et al. (2017), integer programming in Quiroga et al. (2019) or mixed-integer

programming in Bienstock and Muñoz (2014).

In particular, convex relaxations have attracted significant attention in recent

years. The results of Lavaei and Low (2012) on convex semi-definite programming

(SDP) relaxations of AC OPF problems triggered a flurry of research in refined

conic approximations in Bingane et al. (2021), Low (2014a) and further relaxations

to second order cone programming in Jabr (2006), Kocuk et al. (2016b), Yang and
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Nagarajan (2021). The main reason for the remarkable interest in conic relaxations

is that they provide a bound on the global optimal value and may lead to global

optimality. Furthermore, the infeasibility of the relaxation implies the infeasibility

of the AC OPF problem.

Since the SDP relaxations are not always exact (e.g., Bukhsh et al. 2013b,

Molzahn and Hiskens 2015c), numerous authors focus on tightening them and demon-

strating under what conditions an exactly global optimal solution for AC OPF can

be reached with that relaxation. Examples include branch-and-bound algorithms to

iteratively partition the feasible set of relaxations in order to find a solution with a

smaller gap (see Chen et al. 2016, Phan 2012). In Madani et al. (2015b) and Natara-

jan et al. (2013), penalization terms are incorporated into the objective to ensure

the feasibility of solutions produced by relaxation. Josz et al. (2015), Molzahn and

Hiskens (2015c) propose employing moment-based hierarchies to form conic relax-

ations that result in globally optimal solutions for AC-OPF problems. Andersen

et al. (2014), Molzahn et al. (2013) leverage the sparsity of power networks through

a tree decomposition of the problem. Further work in this direction uses valid in-

equalities as in Kocuk et al. (2016b), cutting planes in Kocuk et al. (2018), convex

envelopes in Coffrin et al. (2017), and sequential and bound-tightening methods in

Schetinin (2019), Wei et al. (2017). A comprehensive overview of this very active

field of research can be found in Molzahn and Hiskens (2019), Zohrizadeh et al.

(2020).

Despite the recent advances on convex relations of the AC OPF problem, most

authors focus on the deterministic optimization model (e.g. Lara et al. 2018), as

uncertain parameters, e.g., demand, can be very well predicted. However, we are

witnessing the increasing penetration of renewable energy sources and the expansion

of electric vehicles, bringing intermittency and uncertainty to the energy system.

Therefore, there is an increased need to consider the uncertainty in the optimization

model to obtain the actual representation of the power network operation.
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The main approaches to consider uncertainty in the OPF problem include stochas-

tic programming in Papavasiliou et al. (2018), robust optimization in Attarha et al.

(2018), or chance-constrained optimization in Roald and Andersson (2018). How-

ever, most authors apply DC approximation of the OPF problem as in Mégel et al.

(2016) or consider a two-stage formulation of the stochastic optimization problem

as in Bucciarelli et al. (2018).

In the two-stage formulation, the operational planning is usually reduced to one

stage, assuming perfect information. This implies the sacrifice of accuracy in the

OPF problem in favor of computational efficiency, which can lead to the overloading

of transmission lines or voltage violations that threaten the stability and reliability

of the power system.

In order to fill the gap and contribute to this research area, I propose a general

multi-stage stochastic formulation of the AC OPF problem. The proposed model

may include the investment as well as the operational decisions over the given time

horizon, enabling a wide range of applications.

Additionally, I assume that random variables are finitely supported Markov pro-

cesses represented by a scenario lattice. It ensures computational tractability and

avoids the exponential growth of nodes as the number of stages increases, which can

be observed for scenario trees.

In order to propose an effective solution strategy for the formulated model, I use

recent developments in convex relaxations of AC OPF problem driven by Lavaei and

Low (2012). The selection of this relaxation is motivated by its capability to provide

an accurate solution in reasonable computational time for a variety of applications.

However, the design of a successful algorithm for a multi-stage stochastic AC

OPF problem requires further steps to effectively handle the multi-stage formulation

and uncertainty. I have explored the latest advances in decomposition methods that

have already been applied to the OPF problems, especially Benders decomposition,

which gained significant attention in this field of research (see Lara et al. 2018, Mégel
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et al. 2016). In numerous improvements and adaptations, Bender decomposition-

based approaches demonstrate a remarkable decrease in computational time with

a relatively minor accuracy tradeoff for deterministic OPF problems. Therefore,

decomposition methods appear to deliver favorable results and seem well-suited for

the proposed model.

The most successful method for solving sequential decision problems under un-

certainty is the stochastic dual dynamic programming (SDDP) algorithm originally

proposed by Pereira and Pinto (1991). The SDDP algorithm decomposes the multi-

stage stochastic optimization problems into smaller subproblems and combines the

cutting-plane approximations based on the dual variables with a sampling technique.

The SDDP algorithm converges toward an optimal solution by iteratively improving

the value function estimates.

Primarily, the algorithm required that the random process was stagewise inde-

pendent. Since the method gained enormous interest and has been extensively re-

searched, numerous improvements and enhancements to broader problem classes can

be found in the literature. I refer to Füllner and Rebennack (2023) for an overview

of extensions and applications of the SDDP algorithm. From the perspective of the

proposed model, the most promising results include Löhndorf and Wozabal (2021a),

Löhndorf et al. (2013) where the SDDP algorithm is extended to Markov processes.

Finally, I combine the convex relaxation of the AC OPF problem proposed by

Lavaei and Low (2012) with the SDDP algorithm for Markov processes to solve

multi-stage stochastic AC OPF problems. I demonstrate the convergence of the

approach to the true solution as long as the tightness of the relaxation of the AC OPF

problem is preserved in consecutive iterations. Additionally, I propose a method to

recover a physically feasible solution from a solution of the relaxed AC OPF problem

for the cases where the employed relaxation is not exact.

As a proof of concept, I provide a case study on storage siting, sizing, and

operations for a modified version of the power network described in Barrows et al.
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(2020). The formulated optimization problem consists of the first stage, representing

the storage investments, and the later stages, covering the operational planning of

the energy system over one week. The model considers the uncertainty of load and

renewable production for wind and solar, as well as the alternating current nature

of the power flow.

The proposed algorithm achieves an optimality gap below 3% compared to the

globally optimal solution for the described case study. In comparison to the rolling

deterministic planning, the stochastic approach demonstrates higher investment

costs, leading to lower curtailment costs and 27% lower total costs. The presented

case study contributes to the existing literature on storage integration problems (e.g.

Mégel et al. 2016, Xiong and Singh 2016) illustrating that it is possible to encompass

a wider range of complexities in the operational planning by considering multi-stage

stochastic formulation of AC OPF instead of DC OPF.

In summary, this paper introduces an effective solution strategy for a general

class of multi-stage stochastic AC-OPF problems built on the combination of recent

developments in convex relaxations of AC OPF problems and the SDDP decom-

position algorithm for Markovian stochastic optimization problems. The proposed

model fills the existing gap in the literature by considering multi-stage formulation,

uncertainty, and alternating nature of power flow simultaneously. Furthermore, the

approach to recover a physically accurate solution and the convergence properties of

the algorithm are demonstrated. In the end, the applicability and the performance

of the recommended solution strategy are illustrated in the extensive case study.

1.2.4 Optimal Renewable Expansion and Storage Integra-

tion Planning under Uncertainty

The successful implementation of renewable energy sources in the power network is

challenging due to their variability and demands appropriate modeling and planning.

Different approaches to the expansion planning problem are considered in the litera-
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ture to determine the optimal direction of changes in the electrical grid. Generation

expansion, transmission expansion, or a mix of both can be distinguished among re-

cent results collected and reviewed in Skolfield and Escobedo (2021). In this paper,

I propose a generation expansion planning problem focusing on the extension and

integration of renewable energy sources.

In 2021, renewable generation constituted an all-time high of 30% in global

electricity generation, being the result of impressive progress over the past decade

where renewables capacity increased by 130%, reaching 3064 GW. The main drivers

of the growth are solar PV and wind power, which increased installation capacity 21-

fold and over 4-fold between 2010 and 2021, respectively. The observed increase in

renewables capacity is a result of significant cost reductions caused by technological

developments, high learning rates, policy support, and innovative financing models.

According to International Renewable Energy Agency (2021a), the cost of electricity

from utility-scale solar photovoltaics fell 85%, followed by concentrating solar power

(68%), onshore wind (56%) and offshore wind (48%) between 2010 and 2020. Those

statistics present substantial improvement in the competitiveness of solar and wind

technologies, leading to a situation where the existing coal-fired capacity is less

profitable than the new renewable capacity. Therefore, I focus on the extension

of solar and wind power capacity in the proposed generation expansion planning

model.

The integration of a high share of renewable energy sources into the electricity

grid leads to the necessity of exploiting flexibility sources and planning them ahead

of time. The flexibility of a power system allows to cope with the variability and

uncertainty introduced by variable renewable generation in different time scales,

from the very short to the long term, avoiding curtailment of renewable energy and

providing a reliable supply of the demanded energy to customers.

The main sources of flexibility are dispatchable power plants, energy storage,

demand response, and interconnectors for cross-border trade (see International Re-
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newable Energy Agency 2018).

Power plants that can ramp up or down fast, have a low minimum operating level,

and have fast start-up and shutdown times can serve as a source of flexibility. For

example, hydro generators and open-cycle gas turbines are considered to be among

the most flexible conventional generators.

Energy storage also gains interest as an approach to maintaining the flexibility of

the power system by storing and dispatching energy. The most common type of

electricity storage is pumped hydropower, but batteries are getting more attention

as an alternative solution due to advancements in storage technology and reductions

in storage costs. Storage systems are mainly characterized by the following parame-

ters: power capability - the amount of power that can be provided, storage capacity

- the amount of energy that can be stored and discharged per cycle, and storage

efficiency - the ratio of the total discharged energy to the total charged energy in

one cycle.

Demand response represents techniques for load reduction during peak usage or

decrease of renewable production. It comprises direct load control by utilities, vol-

untary load reduction (usually activated by price signals), and dynamic demand

relying on automated regulation of power usage. Those techniques operate as a

virtual peaking plant that can ramp up very quickly to the full capacity.

Interconnectors provide flexibility to the power system by allowing for the transfer

of a production surplus to a deficit area. It requires technical network connection

between areas by building suitable transmission lines and operational agreements

between interconnected systems.

Among the listed sources of flexibility, energy storage seems to be a promising

technology for the integration of renewable energy sources. It can help to miti-

gate fluctuations in renewable energy generation by storing the excess energy when

generation is high and releasing it when generation is low. Thereby, it increases

renewable energy utilization and reduces curtailment. Furthermore, energy storage
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can improve the power network stability and resilience by providing grid-balancing

services and backup power. Energy storage can also be used as a peak shaving

tool, helping to manage electricity consumption and reduce energy costs. It means

that energy storage can enhance the power system operations from technical and

economic perspectives. Therefore, I include it in the proposed generation expansion

planning model as a source of flexibility supporting the integration of renewable

energy generation.

In this paper, a multi-stage stochastic optimization model is formulated to eval-

uate the generation expansion in the power network necessary to phase out fossil

fuels. The optimization problem consists of the first stage, representing the in-

vestment planning, and the consecutive stages, reflecting days of the operational

planning. In the first stage, the model identifies the optimal location and capacity

of the energy storage and new renewable generation units focusing on solar and

wind power plants. In the subsequent stages, the stability and flexibility of the

network are assessed in the optimization of the daily power network operations in

hourly resolution. The proposed model aims to find optimal decisions that minimize

investment and operating costs over the given time horizon.

The main contribution of this paper is formulating the generation expansion

planning problem that considers the uncertainty of the demand and renewable gen-

eration, alternating current of the power flow, and multi-stage planning of the power

network operations simultaneously. In the literature, generation expansion planning

models vary widely in scope and resolution of time and space, as researchers often

focus more on one of the above aspects to manage complexity.

The effective evaluation of the impact of investment decisions on the power

system requires including operational planning in the model. In order to cover

the full physical complexity, the operation of the power network should take into

account the alternating current nature of power flows. As the AC OPF problem is

an NP-hard nonconvex optimization problem, planners usually use a linearized DC
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approximation model, (e.g. Lara et al. 2018).

Further, the impact of solar and wind variability has been noticed in the last few

years, especially in power networks with aggressive targets for renewable generation.

Therefore, the intermittency and unpredictability of renewable generation can not

be neglected in the generation expansion planning model, which aims to effectively

integrate high renewable energy shares. There are stochastic models in the literature,

e.g., Pineda et al. (2016), proposing a market-focused approach with uncertainty in

demand and renewable generation. Still, authors use DC approximation of AC OPF

and two-stage formulation.

Lastly, the multi-stage formulation can enhance the assessment of the power sys-

tem’s stability and reliability. There are researchers considering multi-stage models,

e.g., Hinojosa and Velasquez (2016), formulating multi-stage DC-based security-

constrained generation capacity expansion planning problem. However, again, they

use DC approximation in the power system operations or consider a deterministic

model.

The above arguments indicate that the proposed generation expansion planning

model is innovative and fills the gap in the existing literature by simultaneously

incorporating all complexities in the model.

In addition, I consider not only the physics law of AC power flow but also the

representation of the reactive power for renewable energy sources, particularly wind

power. I use the approach introduced in Gil-González et al. (2020) to model the

reactive power for wind power plants, where the limits depend on the capacity and

power generation at the respective point in time. As the renewable generation is

assumed to be random, it implies that the bounds are changing with every realization

of the random process. This approach is not widely adopted in the literature, as

most authors employ DC approximation, where the reactive power is completely

omitted.

The expansion of renewable generation is driven by ambitious climate targets
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aiming to reduce greenhouse gas emissions and involves the profound transformation

of the power network infrastructure. The progress of the energy transition can

be measured with the share of renewable generation covering power demand. In

relation to generation expansion planning, this measure can be used to find an

optimal investment strategy to achieve a given target. To support decision-makers

following global policies, I incorporate the constraint that guarantees a given ratio

of renewable generation covering power demand on a daily basis in the proposed

optimization model. Any deviation from the target is penalized with the defined

cost in the objective function. A similar constraint has already been implemented

in Lara et al. (2018) but for a deterministic model and applying DC approximation

of the power flow.

The proposed generation expansion planning model is a nonconvex optimiza-

tion problem where the nonconvexity appears in the operational stages due to the

alternating current nature of power flows. Due to the complexity, the formulated

problem requires powerful tools to solve it. In this paper, I apply the solution strat-

egy proposed in Chapter 3, built on convex relaxation introduced by Lavaei and

Low (2012) and the SDDP algorithm. I also provide a detailed explanation of the

required problem reformulations and the algorithm adaptation to this particular

class of problems.

Finally, I present a case study where the generation expansion planning model

is implemented for the modified version of the IEEE RTS-GMLC network. The

results include an analysis of the optimal investment decisions for two seasons, com-

paring required storage and new renewable capacities for different daily renewable

generation targets.

In summary, this paper proposes the generation expansion planning model, which

considers the uncertainty, alternating current of the power flows, and multi-stage

formulation simultaneously in contrast to the existing results in the literature. The

optimization model provides optimal storage and new renewable capacity required to
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phase out fossil fuels and ensure a given share of renewable generation covering power

demand, minimizing total costs. The proposed generation expansion planning model

can support decision-makers in determining the optimal direction of changes in the

power infrastructure so they can effectively participate in the energy transition.

1.3 Structure of the Thesis

As the contribution of this thesis, I provide a framework to handle energy plan-

ning problems that incorporate a multi-stage formulation, finitely supported Markov

structure of random processes and the alternating current nature of power flows. In

consecutive chapters, I focus on different aspects and challenges in this class of

problems. In Section 2, I develop a theory for discrete approximation of the Markov

process involved in the linear stochastic optimization problem. I introduce the lat-

tice distance, which enables the measurement of the error in optimal values resulting

from replacing a complex Markov process with a simpler scenario lattice. In Chapter

3, I propose an effective solution method for the OPF problems under uncertainty.

The strategy is built upon the convex relaxation of the power flow equations and

SDDP algorithm. Lastly, in Chapter 4, I demonstrate the application of the de-

veloped theory for generation expansion planning problems in the case study for

the modified IEEE RTS-GMLC network. Finally, Chapter 5 concludes the thesis,

summarizing the results and discussing further research ideas.



Chapter 2

A Stability Result for Linear

Markovian Stochastic

Optimization Problems

written in collaboration with Prof. David Wozabal1

In this paper, we propose a semi-metric for Markov processes that al-

lows to bound optimal values of linear Markovian stochastic optimization

problems. Similar to existing notions of distance for general stochastic

processes, our distance is based on transportation metrics. As opposed

to the extant literature, the proposed distance is problem-specific, i.e.,

dependent on the data of the problem whose objective value we want to

bound. As a result, we are able to consider problems with randomness in

the constraints as well as in the objective function and, therefore, relax

an assumption in the extant literature. We derive several properties of

the proposed semi-metric and demonstrate its use in a stylized numerical

example.

1Publication History: Initially submitted on 02.07.2018. Accepted for publication in Math-
ematical Programming on 25.09.2020. Published online on 06.10.2020.
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Problems

2.1 Introduction

Stochastic optimization is concerned with the solution of optimization problems that

involve random quantities as data. Consequently, the decisions x(ξ) depend on the

values of a random process ξ, making stochastic optimization a problem in function

spaces. Mirroring the situation in deterministic optimization, only a few stochastic

optimization problems lend themselves to analytical treatment and allow for closed-

form solutions. In the following, we, therefore, focus on discrete-time problems that

are solved numerically.

The theory of stochastic optimization as well as the development of solution

methods made great advances in the last decades. In particular, there exists a sound

theory for two-stage stochastic optimization problems, i.e., problems with only one

decision stage in the future (see Birge and Louveaux (2011), Shapiro et al. (2009) for

an overview). Consequently, two-stage stochastic optimization is nowadays routinely

applied by researchers and industry practitioners alike. State-of-the-art methods are

based on discrete representations of the possibly continuous source of randomness in

the form of a finite set of samples or scenarios. This can either be achieved by sample

average approaches (see Shapiro et al. (2009) for an introduction) or by explicitly

choosing representative scenarios. In this paper, we will focus on the latter.

Despite the abovementioned successes, it became clear quite early that the effort

required to solve stochastic optimization does not scale well in the problem’s size.

More specifically, it has been shown that stochastic optimization problems exhibit a

non-polynomial increase in complexity as the number of random variables increases

Hanasusanto et al. (2016). The problem underlying these difficulties is the numerical

evaluation of high dimensional integrals, which is, in turn, related to the problem of

optimal discretization of probability distributions.

The situation is even more complicated for multi-stage problems, where we deal

with random processes resulting in additional random variables in every stage and

the issue of finding discretizations for conditional distributions. Consequently, it was
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Figure 2.1: A scenario tree with 31 nodes representing 16 scenarios on the left
and a scenario lattice with 15 nodes representing 120 scenarios on the right. The
transition probabilities on the arcs are not depicted to keep the picture legible.

observed in Shapiro (2006, 2010) that solving multi-stage stochastic optimization

problems is often practically intractable.

Notwithstanding these problems, there is a rich literature on multi-stage stochas-

tic optimization. The majority of authors use scenario trees as a representation of

discrete stochastic processes (see the left panel in Figure 2.1 for an illustration).

In a scenario tree, nodes represent possible states of the world and are assigned to

a point in time. All nodes at the same point in time are usually depicted at the

same level of the tree. Possible transitions between nodes in consecutive stages are

represented by probability-weighted arcs connecting the nodes. Consequently, the

collection of transition probabilities between a node and the nodes of the next stage

connected by arcs describes the distribution of the random process conditional on

that node. Note that the requirement that the resulting graph is a tree implies that

every node is allowed to have exactly one predecessor in the previous stage.

There are various ways to construct scenario trees for multi-stage stochastic

programs (see Dupacová et al. (2000), Kaut and Wallace (2007) for surveys). In

Høyland and Wallace (2001), Høyland et al. (2003), a recursive application of mo-

ment matching is presented. The approach is easy to understand and apply but

suffers from an exponential explosion of nodes in the resulting trees as the number

of stages increases. Furthermore, the method offers no theoretical insight regarding
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the discretization error made when replacing the original process with the generated

tree.

The papers Pennanen (2005, 2009) propose a method for the construction of

scenario trees that is based on integration quadratures and ensures that the approx-

imated problems based on scenario trees epi-converge to the true infinite-dimensional

problem yielding convergence in optimal value as well as in optimal decisions. How-

ever, the results are asymptotic in nature, i.e., the approximation scheme doesn’t

offer guarantees for any given discrete approximation.

Another approach is based on the principle of bound-based constructions, see

Casey and Sen (2005), Edirisinghe (1996), Frauendorfer (1996), Kuhn (2005). The

idea is to construct two discrete stochastic programs that provide upper and lower

bounds on the optimal value of the original problem.

The results in this paper extend a stream of literature that uses probability

metrics to define notions of distance for stochastic processes and allows inference

about the accuracy of approximating trees, see Dupacová et al. (2003), Heitsch

and Römisch (2003, 2009), Pflug (2001), Pflug and Pichler (2012, 2014). The au-

thors in Dupacová et al. (2003), Heitsch and Römisch (2003) consider a distance

between discrete stochastic processes and assume that both processes are defined

on the same probability space. This assumption is relaxed in Pflug and Pichler

(2012, 2014) where a nested distance between value-and-information structures is

developed, which can be applied to continuous processes. Heitsch and Römisch

(2011), Heitsch et al. (2006) prove stability results using the sum of a Lr−distance

and a filtration distance to bound objective values of a certain class of stochastic

optimization problems.

Scenario trees are discrete approximations of general processes and, therefore,

lend themselves to the construction of a general theory of stochastic optimization.

However, the requirement that every node has only one predecessor makes it hard to

construct scenario trees with many stages that model the conditional distributions
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well, i.e., ensure that every node has a sufficient number of successors and, at the

same time, avoid exponential growth of the number of nodes.

A possible way out of this dilemma is to restrict the type of stochastic opti-

mization to problems with a Markovian structure where the random processes in

the problem formulation are Markov processes Löhndorf et al. (2013) or, even more

common, independent Pereira and Pinto (1991). In this setting, the history of ran-

dom variables and decisions is condensed in the state variables of the problem, and

there is no need to remember the whole history of the randomness and the decisions.

This paves the way for leaner discretizations, which we call scenario lattices in this

paper and which are similar to stochastic meshes used in option pricing Broadie and

Glasserman (2004). In particular, a scenario lattice consists of the same building

blocks as a scenario tree but relaxes the requirement that every node has only one

predecessor and, therefore, solves the problem of the exponential explosion of the

number of nodes as the number of stages grows (see the right panel in Figure 2.1).

In the same way that a scenario tree is a natural representation of a general discrete

stochastic process, a scenario lattice is a natural representation of a discrete Markov

process.

Even though the abovementioned problem class is quite popular, there are no

theoretical results on how to construct optimal scenario lattices. An exception is

Bally and Pagès (2003a,b), who design an algorithm for the construction of scenario

lattices for Brownian motions based on ideas of optimal quantization.

We mention that there is a large and well developed theory on the approximations

of Markov decision processes (MDPs) that is concerned with similar questions as

this article. Typical formulations of MDP problems feature finite state and action

states as well as a stationary Markov process describing the randomness, which is

potentially influenced by the actions taken by the decision maker.

The setting as well as the solution methods differ from our paper in several

important ways. Firstly, methods for solving MDPs are almost exclusively based
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on the discretization of the whole state space, leading to the well-known curse of

dimensionality as the dimension of the state space grows. Consequently, methods

to approximate MDPs either assume a finite or countable state and action space to

start with (Bertsekas and Shreve 1978, Fox 1971, Langen 1981, Ren and Krogh 2002,

White 1980, 1982) or discretize the state space to be able to solve the problem.

Furthermore, much of the work on approximations of MDPs deals with infinite

horizon problems relying on the fact that optimal value functions are fixed points

of the Bellman operator (Chow and Tsitsiklis 1991, Hinderer 2005, Ren and Krogh

2002, Saldi et al. 2017, White 1980, 1982).

Papers that deal with continuous state spaces usually impose (Lipschitz) conti-

nuity conditions on the probability transition kernels (Bertsekas and Shreve 1978,

Dufour and Prieto-Rumeau 2012, 2013, 2015, Hinderer 2005, Müller 1997, Saldi et al.

2017), which we do not require.

The difference between our approach and the MDP literature is thus threefold:

Firstly, we keep the resource state continuous in order to be able to solve the prob-

lems on the nodes of the scenario lattice by linear optimization. This avoids at least

part of the curse of dimensionality usually encountered in dynamic programming.

Second, unlike most of the literature on approximation of MDPs, we deal with finite

horizon problems. Lastly, we do not assume any Lipschitz continuity of the Markov

kernel.

With this paper, we contribute to the development of a theory for discrete ap-

proximations of Markov processes that can be used in stochastic programming. In

particular, we propose a class of problem-specific semi-distances for Markov pro-

cesses and show that the objective value of a certain class of linear stochastic op-

timization problems is Lipschitz continuous with respect to these distances. This

lays the foundations for constructing scenario lattices approximating general Markov

processes that, in turn, can be used to formulate approximating optimization prob-

lems. In particular, the results in this paper can be used to control the error that



2.1 Introduction 31

results from replacing a stochastic optimization problem that is formulated using a

complex (possibly continuous) Markov process with another, simpler problem using

a compact scenario lattice instead of the original process. Furthermore, we discuss

a LP formulation of our distance for discrete Markov processes, i.e., scenario lat-

tices. We consider a multi-stage version of the well-known newsvendor problem to

demonstrate how to use our results in practical problems.

Our approach is inspired by Pflug and Pichler (2012), who work on optimal

scenario trees and general stochastic optimization problems. In contrast to Pflug

and Pichler (2012), our approach is specialized to linear stochastic programs with

a Markovian structure, which results in tighter bounds for this problem class and

additionally allows for problems where the randomness does not only affect the

objective function but also the feasible set. The latter makes it necessary to adopt

a different technique of proof based on stability results for linear programs rather

than the idea of transporting solutions from one problem to the other. While in the

MDP literature there are papers that model differences in feasible sets in terms of the

Hausdorff distance (Hinderer 2005), to the best of our knowledge, we are the first to

propose stability results based on transportation distances that allow for problems

where the feasible set depends on randomness in inequality constraints: Dupacová

et al. (2003), Heitsch and Römisch (2003), Pflug and Pichler (2012, 2014) require the

feasible set to be independent of randomness, while in Heitsch and Römisch (2011),

Heitsch et al. (2006) the constraints involving random parameters are required to be

equality constraints. Furthermore, we demonstrate that our distance yields tighter

bounds than Pflug and Pichler (2012) for problems where the constraints do not

depend on the random process.

This paper is structured as follows: In Section 2.2, we introduce some notation

and discuss the problem setup. In Section 2.3, we define the problem-dependent

lattice distance and establish some of its key properties. Section 2.4 contains the

main results of the paper which allow to connect the lattice distance to optimal
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values of linear stochastic programming problems, while Section 2.5 is devoted to

the case of discretely supported processes representable by lattices and a numerical

example. Section 2.6 concludes the paper.

2.2 Problem Description

We consider a class of discrete-time, finite horizon, and linear stochastic dynamic

programming problems depending on a Markov process. The time periods in our

problem are indexed by t ∈ T = {0, 1, . . . , T}, where the values at t = 0 represent

the deterministic start state of the problem. We partition the state space in an

environmental state ξ and a resource state S. The former is governed by a (possibly

inhomogeneous) Markov process ξ = (ξ0, ξ1, . . . , ξT ), ξt : Ωt → Rnt which is assumed

to be independent of the decisions. Examples are prices, demand for a product, or

weather-related variables such as temperature. The resource state St, on the other

hand, describes the part of the state space that is influenced by the decision maker.

Examples include inventory levels, states of machinery, and contractual obligations.

We equip the probability space Ωt with the σ-algebra σt = σ(ξt) generated

by the random variable ξt and define the path space Ω = Ω0 × . . . × ΩT and a

corresponding σ-algebra F = σ0 ⊗ . . .⊗ σT . Note that we base our σ-algebras only

on the random variables ξt and not on the whole history of random variables until t

as it is usually done when working with scenario trees. Consequently, σ0, σ1 . . . , σT

is not a filtration.

Furthermore, we define the paths for which the event H ∈ σt occurs as

HΩ
t := Ω0 × Ω1 × . . .× Ωt−1 ×H × Ωt+1 × . . .× ΩT

and the corresponding σ-algebra as

σΩ
t = {Ω0 × . . .× Ωt−1 ×H × Ωt+1 × . . .× ΩT : H ∈ σt} =

{
HΩ

t : H ∈ σt

}
.
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The distribution of ξ is described by a sequence of Markov kernels, and we write

P
ωt−1

t for the distribution of ξt given ωt−1 ∈ Ωt−1. The kernel as a function from

Ωt−1 to the set of probability measures on Ωt is σt−1-measurable Pollard (2002).

For a given sequence of Markov kernels, we denote ω = (ω0, . . . , ωT ) and define the

distribution on Ω as

P (H) :=

∫
Ω0

. . .

∫
ΩT

1H(ω)P
ωT−1

T (dωT ) . . . P
ω0
1 (dω1)P0(dω0)

for every H ∈ F .

We consider stochastic optimization problems that can be written as

V0(S0, ξ0) =

 max
x,S

E

(
T∑
t=0

ct(ξt)
⊤xt

)
s. t. (xt, St+1) ∈ Xt(St, ξt) ∀t ∈ T

(2.1)

with x = (x0, . . . , xt), S = (S1, . . . , ST+1), St ∈ Rkt and feasible sets

Xt(St, ξt) =


(xt, St+1) :

A1,txt ≤ b1,t(ξt) + C1,tSt

A2,txt = St+1

A2,txt ≤ b2,t+1

xt, St+1 ≥ 0


, (2.2)

which we assume to be compact. Note that the data of the problem depends on the

stochastic process ξ via the functions ξt 7→ ct(ξt) and ξt 7→ b1,t(ξt), which we assume

to be continuous.

We assume that for planning in stage t, the decision maker knows St, i.e., the

system’s resource state at the beginning of the period as well as ξt, i.e., the realization

of the Markov process in period t. Given this information the feasible set for the

decision xt as well as the definition of St+1 can be expressed using linear inequality

constraints. The decisions xt are auxiliary decision variables in stage t that are not

part of the resource state. Note that in order for the problem to be feasible b2,t+1 ≥ 0
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has to hold. The combination of constraints in (2.1) ensures that

0 ≤ St+1 = A2,txt ≤ b2,t+1,

i.e., that the feasible region for St+1 is box-constrained and therefore compact.

Remark 2.1. Usually, we would expect a state transition equation of the form

St+1 = St+Axt. However, since we want to make the proposed distance independent

of the resource state, we formulate the state transition using xt. More specifically,

we assign St to a subset of variables in xt in the first constraint. The state transition

is subsequently modeled in the equality constraint using those variables instead of St.

Alternatively, we could assign St+1 to variables in xt in the equality constraint and

then formulate the state transition using the first inequality constraint. We refer to

the example in Section 2.5 for an illustration of this principle.

Because of its recursive structure, problem (2.1) can be equivalently written in

terms of its dynamic programming equations using value functions, i.e.,

Vt(St, ξt) =

 max
xt,St+1

ct(ξt)
⊤xt + E (Vt+1(St+1, ξt+1)|ξt)

s. t. (xt, St+1) ∈ Xt(St, ξt)
∀t ∈ T (2.3)

and VT+1(ST+1, ξT+1) ≡ 0 or, more generally, a known piecewise linear concave

function. Since ξ is a Markov process and Vt as well as the decisions (xt, St+1) only

depend on the current state (St, ξt), we call the problem a stochastic optimization

problem with Markovian structure.

If we are dealing with discrete Markov processes, the expectations of the value

functions Vt, which are concave functions of the resource state, can be written as a

minimum of finitely many affine functions. We formalize this well-known fact in the

following lemma whose proof can be found, for example, in Löhndorf et al. (2013),

Philpott and Guan (2008), Shapiro (2011).

Lemma 2.1. If ξ is finitely supported, then for every realization of ξt, St+1 7→



2.3 A Distance for Markov Processes 35

E (Vt+1(St+1, ξt+1)|ξt) is a concave, polyhedral function. In particular, there are co-

efficients bi3,t+1(ξt) ∈ R and row vectors Ci
3,t+1(ξt) ∈ Rk for i = 1, . . . ,mt+1(ξt) such

that

E (Vt+1(St+1, ξt+1)|ξt) = min
i=1,...,mt+1(ξt)

bi3,t+1(ξt) + Ci
3,t+1(ξt)St+1,

where mt+1(ξt) is the number of affine functions required to model

E (Vt+1(St+1, ξt+1)|ξt) .

2.3 A Distance for Markov Processes

In order to introduce the concept of a distance between Markov processes, we first

recall the Wasserstein or Kantorovich distance for distributions Kantorovich (1942),

Villani (2003). Loosely speaking, the Wasserstein distance is defined as the total

cost of passing from a given distribution to a desired one by moving probability

mass accordingly.

Definition 2.1. Let ξ : (Ω,A) → Rn and ξ̃ : (Ω̃, Ã) → Rn be two random vectors

with distributions P and P̃ , respectively. The Wasserstein distance of order r (r ≥ 1)

between ξ and ξ̃ is defined as

Wr(ξ, ξ̃) =


inf
π

 ∫
Ω×Ω̃

∥ξ(ω)− ξ̃(ω̃)∥rr π (dω, dω̃)


1
r

s.t. π(H × Ω̃) = P (H) ∀H ∈ A,

π(Ω× H̃) = P̃ (H̃) ∀H̃ ∈ Ã,

(2.4)

where the infimum is taken over all probability measures π on (Ω× Ω̃,A⊗ Ã).

Remark 2.2. Note that, following Pflug and Pichler (2012), we define Wr as a

distance between two random vectors ξ : Ω→ Rn and ξ̃ : Ω→ Rn instead of between

two distributions P and P̃ . However, in order for Wr to be well defined, information



36
Chapter 2 A Stability Result for Linear Markovian Stochastic Optimization

Problems

on the probability measures P and P̃ on Ω and Ω̃ is required, as can be seen from

(2.4).

In particular, when changing P and P̃ while holding ξ and ξ̃ constant, the image

measure of ξ and ξ̃ and therefore also Wr changes. By a slight abuse of notation,

we consider ξ and ξ̃ to contain the information on the probability spaces (Ω, P ) and

(Ω̃, P̃ ), i.e., as mappings ξ : (Ω, P ) → Rn and ξ̃ : (Ω̃, P̃ ) → Rn in the same way

that Pflug and Pichler (2012) do, when defining nested distributions.

Remark 2.3. The above problem is bounded, and an optimal transportation measure

π exists due to the weak compactness of the set of transportation plans (see Villani

(2003), Lemma 4.4). Furthermore, according to the famous Kantorovich-Rubinstein

Theorem, for r = 1, the dual of (2.4) can be written as the following maximization

problem

W1(ξ, ξ̃) =


sup
f

(∫
fdP −

∫
fdP̃

)
s.t. Lip(f) ≤ 1,

where Lip(f) is the Lipschitz constant of f .

Clearly, for a two-stage stochastic optimization problem

v(P ) =

 inf
x

f(x) + EP (Q(x, ξ))

s.t. x ∈ X
, Q(x, ξ) =

 inf
y

g(y, ξ)

s.t. y ∈ Y(x)

with

|Q (x, ξ)−Q(x, ξ̃)| ≤ L ∥ξ − ξ̃∥1 ∀x ∈ X , (2.5)

we have

v(P )− v(P̃ ) ≤ EP (Q(x̃∗, ξ))− EP̃ (Q(x̃∗, ξ̃)) ≤ L W1(ξ, ξ̃)

where x̃∗ is the optimal solution for v(P̃ ). By symmetry, it follows that

|v(P )− v(P̃ )| ≤ L W1(ξ, ξ̃),
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i.e., the objective value of the two-stage stochastic program is Lipschitz continuous

with respect to W1, as long as the cost-to-go function Q is Lipschitz in ξ. This was

first recognized in Römisch and Schultz (1991).

The authors in Pflug and Pichler (2012, 2014) generalize these ideas to a multi-

stage setting using the notion of nested distributions, which correspond to general-

ized scenario trees. Based on a modified transportation problem and an assumption

similar to the uniform Lipschitz property in (2.5), they obtain a distance with respect

to which the objective value of a general multi-stage problem is Hölder continuous,

see Section 2.4 for more details.

We aim for a similar result for scenario lattices and problems of the form (2.1).

Additionally, we relax one major assumption in the abovementioned approaches,

namely that randomness enters the problem only in the objective function. Observe

that the argument above hinges on the fact that the set Y does not depend on ξ.

The same restriction applies to the results on multi-period problems in Pflug and

Pichler (2012, 2014).

We begin with analyzing the following simple deterministic linear optimization

problem, which is of a similar structure as (2.3), with the second last inequality

constraint and the second term in the objective function, y, modeling the piecewise

linear value function (see Lemma 2.1)

max
x∈Rn,y∈R,z∈Rk


c⊤1 x+ y :

A1x ≤ b1

A2x = z

A2x ≤ b2

1my ≤ b3 + C3z

x, z ≥ 0


. (2.6)

Furthermore, we define 1m ∈ Rm as the column vector of ones, assume that C3 has

m rows and k columns, and assume that the other matrices and vectors are of fitting

dimension.
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First, we prove the following result which is motivated by Hoffman’s lemma

Hoffman (1952) and, in particular, its discussion in Shapiro et al. (2009), Theorem

7.11 and Theorem 7.12. For what follows, we adopt the notational convention that

the addition of a vector x = (x1, . . . , xn) and a scalar y ∈ R is to be interpreted

pointwise, i.e., results in the vector (x1 + y, . . . , xn + y) and, similarly, inequalities

of the form x ≤ y are interpreted pointwise as well.

Lemma 2.2. Let V (b1) be the optimal value of problem (2.6) dependent on the

parameter b1 and assume that there is a κ ≥ 0 with

∥∥C⊤
3 λ
∥∥
∞ ≤ κ

for all Rm ∋ λ ≥ 0 with |1⊤mλ| ≤ 2. Then for any b1, b
′
1 for which (2.6) is feasible

|V (b1)− V (b′1)| ≤ γ(A1, A2, κ, c1) ∥b1 − b′1∥1 . (2.7)

where γ(A1, A2, κ, c1) = maxλ∈ext(Γ) ||λ2||∞ < ∞ and ext(Γ) are the vertices of the

polyhedron

Γ =

(λ2, λ3, λ4, λ6, λ7) :

∥A⊤
1 λ2 + A⊤

2 (λ3 + λ4)− λ6∥∞ ≤ 1 + ∥c1∥∞
∥λ3 − λ7∥∞ ≤ 1 + κ

λ2, λ4, λ6, λ7 ≥ 0

 .

Proof. We start by rewriting (2.6) as

max
t∈R,x∈Rn,y∈R,z∈Rk


t :

t− c⊤1 x− y ≤ 0

A1x ≤ b1

A2x = z

A2x ≤ b2

1my ≤ b3 + C3z

x, z ≥ 0


. (2.8)

Denote byM(b1) the set of feasible points of problem (2.8) and consider a point
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α = (x, y, z, t) ∈ M(b1). Note that for any a ∈ Rn, ||a||1 = sup
||u||∞≤1

u⊤a and define

u = (u1, u2, u3, u4) with ui corresponding to the respective entries in α, i.e., u1 ∈ Rn,

u2 ∈ R and so on. Therefore, we have

dist(α,M(b′1)) = inf
α′∈M(b′1)

||α− α′||1 = inf
α′∈M(b′)

sup
||u||∞≤1

u⊤(α− α′)

= sup
||u||∞≤1

inf
α′∈M(b′1)

u⊤(α− α′).

By a change of variables defining w = (w1, w2, w3, w4) = α − α′ and using linear

optimization duality with λ = (λ1, λ2, λ3, λ4, λ5, λ6, λ7), we have

inf
α′∈M(b′1)

u⊤(α− α′) = inf
w∈M̃(b′1)

u⊤w = sup
λ∈M̃∗(u)

λ⊤
1 (t− c⊤1 x− y)

+ λ⊤
2 (A1x− b′1) + λ⊤

4 (A2x− b2) + λ⊤
5 (1my − b3 − C3z) + λ⊤

6 (−x) + λ⊤
7 (−z),

where

M̃(b′1) =



w :

t− c⊤1 x− y ≤ w4 − c⊤1 w1 − w2

A1x− b′1 ≤ A1w1

A2w1 − w3 = 0

A2x− b2 ≤ A2w1,

1my − b3 − C3z ≤ 1mw2 − C3w3

−x ≤ −w1

−z ≤ −w3


and

M̃∗(u) =


λ :

−c1λ1 + A⊤
1 λ2 + A⊤

2 λ3 + A⊤
2 λ4 − λ6 = u1

−λ1 + 1
⊤
mλ5 = u2

λ3 − C⊤
3 λ5 − λ7 = u3

λ1 = u4

λ1, λ2, λ4, λ5, λ6, λ7 ≥ 0


.
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Consequently we obtain that

dist(α,M(b′1)) = sup
||u||∞≤1,λ∈M̃∗(u)

λ⊤
1 (t− c⊤1 x− y) + λ⊤

2 (A1x− b′1) (2.9)

+ λ⊤
4 (A2x− b2) + λ⊤

5 (1my − b3 − C3z) + λ⊤
6 (−x) + λ⊤

7 (−z).

The right-hand side of (2.9) has a finite optimal value (since the left-hand side of

(2.9) is finite) and, hence, has an optimal solution (û, λ̂). It follows that

dist(α,M(b′1)) = λ̂⊤
1 (t− c⊤1 x− y) + λ̂⊤

2 (A1x− b′1) + λ̂⊤
4 (A2x− b2)

+ λ̂⊤
5 (1my − b3 − C3z) + λ̂⊤

6 (−x) + λ̂⊤
7 (−z).

Since α ∈M(b1) and λ̂1, λ̂2, λ̂4, λ̂5, λ̂6, λ̂7 ≥ 0, we have

dist(α,M(b′1)) ≤ λ̂⊤
2 (A1x− b′1) = λ̂⊤

2 (A1x− b1) + λ̂⊤
2 (b1 − b′1)

≤ λ̂⊤
2 (b1 − b′1) ≤ ||λ̂2||∞||b1 − b′1||1.

To find a bound for ||λ̂2||∞, we analyze the extreme points of the feasible set

Γ′ =


λ :

∥−c1λ1 + A⊤
1 λ2 + A⊤

2 λ3 + A⊤
2 λ4 − λ6∥∞ ≤ 1

∥−λ1 + 1
⊤
mλ5∥∞ ≤ 1

∥λ3 − C⊤
3 λ5 − λ7∥∞ ≤ 1

∥λ1∥∞ ≤ 1

λ1, λ2, λ4, λ5, λ6, λ7 ≥ 0


.

Since we know that ||λ1||∞ ≤ 1, we can replace the constraint

∥∥−λ1 + 1
⊤
mλ5

∥∥
∞ ≤ 1

with

|1⊤mλ5| ≤ 2
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and the constraint

∥∥−c1λ1 + A⊤
1 λ2 + A⊤

2 λ3 + A⊤
2 λ4 − λ6

∥∥
∞ ≤ 1

with ∥∥A⊤
1 λ2 + A⊤

2 (λ3 + λ4)− λ6

∥∥
∞ ≤ 1 + ∥c1∥∞ .

Then using the assumption that
∥∥C⊤

3 λ5

∥∥
∞ ≤ κ we can substitute

∥∥λ3 − C⊤
3 λ5 − λ7

∥∥
∞ ≤ 1

with the constraint

||λ3 − λ7||∞ ≤ 1 + κ

to increase the feasible set of problem (2.9), and hence increase its optimal value.

Consequently,

max
λ∈Γ′
∥λ2∥∞ ≤ max

λ∈Γ
∥λ2∥∞

with

Γ =

(λ2, λ3, λ4, λ6, λ7) :

∥A⊤
1 λ2 + A⊤

2 (λ3 + λ4)− λ6∥∞ ≤ 1 + ∥c1∥∞
∥λ3 − λ7∥∞ ≤ 1 + κ

λ2, λ4, λ6, λ7 ≥ 0

 .

Note that the optimal value remains bounded when replacing Γ′ with Γ, since if

there would be a ray

R =
{
λ(α) = λ0 + αλ1 : α ∈ [0,∞)

}
in Γ such that ||λ2(α)||∞

α→∞−−−→∞ and at the same time

∥∥A⊤
1 λ2(α) + A⊤

2 (λ3(α) + λ4(α))− λ6(α)
∥∥
∞ ≤ 1 + ||c1||∞, ∀α > 0,
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this would imply that

α||(A⊤
1 λ

1
2 + A⊤

2 (λ
1
3 + λ1

4)− λ1
6)||∞ − ||A⊤

1 λ
0
2 + A⊤

2 (λ
0
3 + λ0

4)− λ0
6||∞

≤
∥∥A⊤

1 λ2(α) + A⊤
2 (λ3(α) + λ4(α))− λ6(α)

∥∥
∞

≤ 1 + ∥c1∥∞ , ∀α > 0

and therefore

||A⊤
1 λ

1
2 + A⊤

2 (λ
1
3 + λ1

4)− λ1
6||∞ = 0. (2.10)

In this case, we can define λ1′ = (0, λ1
2, λ

1
3, λ

1
4, 0, λ

1
6, λ

1
7) and a ray

R′ =
{
0 + αλ1′ : α ∈ [0,∞)

}
.

Clearly, points in R′ fulfill the first constraint of Γ′ by (2.10), the second one since

the first and the fifth component of λ1′ are zero, and the third since λ1
3 = λ1

7 has

to hold for R to be in Γ. This means that R′ is contained in Γ′, contradicting

the boundedness of the original problem. Hence, the modified problems remain

bounded, and therefore, the maximum is taken at a vertex of the polyhedron Γ.

The polyhedral set Γ has a finite number of extreme points. Hence, ||λ̂2||∞ can

be bounded by γ(A1, A2, κ, c1) which depends on A1,A2, κ, c1 and

dist(α,M(b′1)) ≤ ∥λ̂2∥∞ ∥b1 − b′1∥1 ≤ γ(A1, A2, κ, c1) ∥b1 − b′1∥1 . (2.11)

Assume that α = (x, y, z, t) is the optimal solution of problem (2.8) and t =

V (b1). Let further α′ ∈ M(b′1) be a point minimizing the distance dist(α,M(b′1)).

Then (2.11) implies

|t− t′| ≤ γ(A1, A2, κ, c1) ∥b1 − b′1∥1

and we obtain

V (b1)− V (b′1) ≤ V (b1)− t′ = t− t′ ≤ γ(A1, A2, κ, c1) ∥b1 − b′1∥1 .
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Analogously, we get

V (b′1)− V (b1) ≤ γ(A1, A2, κ, c1) ∥b1 − b′1∥1

and finally (2.7).

Remark 2.4. The matrix C3 represents slopes of the linear functions modeling

value function for discrete distributions (see Lemma 2.1). Applying Lemma 2.2

to the problem (2.3), C3 may differ depending on the stage t and the state of the

random process ξt. Therefore, we write C3,t(ξt−1) for the matrix of slopes of the

linear functions used in the representation of E (Vt(St, ξt)|ξt−1) and choose κt(ξt−1)

as follows

κt(ξt−1) = max
{∥∥C3,t(ξt−1)

⊤λ
∥∥
∞ : λ ≥ 0, |1⊤mt(ξt−1)

λ| ≤ 2
}
= 2max

i,j
|Cij

3,t(ξt−1)|

where Cij
3,t is the entry in the ith row and jth column of the matrix C3,t.

Remark 2.5. For continuous distributions, the matrix C3 doesn’t exist. However,

in our formulation of the problem St 7→ E (Vt(St, ξt)|ξt−1) is a continuous function

on the compact set of permissible St for every ξt−1, hence it is Lipschitz continuous

with Lipschitz constant Lt(ξt−1) on this set. Therefore, in this case we use κt(ξt−1) =

2Lt(ξt−1) in the definition of the distance below.

An alternative proof of the above lemma could be based on the Lipschitz conti-

nuity of the feasible set with respect to the Hausdorff metric as shown in Robinson

(1975), Walkup and Wets (1969). However, the aforementioned papers do not pro-

vide any instruction for calculation of the Lipschitz constant, which makes it difficult

to apply their results in concrete optimization problems. Our approach does not suf-

fer from this problem since it allows to explicitly bound the variation in the objective

as a function of the right-hand side data of the problem (2.6). Next, we will prove a

similar result to bound the objective value when the objective coefficient c1 changes.
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Lemma 2.3. If V (c1) is the optimal value of problem (2.6) in dependence on the

objective value coefficient c1, then

|V (c1)− V (c̃1)| ≤ ϕ(A1, b1, A2, b2)||c1 − c̃1||1

with ϕ(A1, b1, A2, b2) = maxx∈ext(Φ) ||x||∞ and

Φ = {x ∈ Rn : A1x ≤ b1, A2x ≤ b2, A2x ≥ 0, x ≥ 0}.

Proof. Let (x∗, y∗) be an optimal solution to V (c1), then we have

V (c1) = c⊤1 x
∗ + y∗ = c⊤1 x

∗ + y∗ − c̃⊤1 x
∗ + c̃⊤1 x

∗ =

= (c1 − c̃1)
⊤x∗ + c̃⊤1 x

∗ + y∗ ≤ ||c1 − c̃1||1||x∗||∞ + V (c̃1).

By symmetry, this implies

|V (c1)− V (c̃1)| ≤ max(||x∗||∞, ||x̃∗||∞)||c1 − c̃1||1

for an optimal solution (x̃∗, ỹ∗) to V (c̃1). Notice that the set of feasible points is

invariant with respect to the parameter c1. Hence, x∗ and x̃∗ can be selected as

extreme points of the same polyhedral set

Φ = {x ∈ Rn : A1x ≤ b1, A2x ≤ b2, A2x ≥ 0, x ≥ 0}.

Φ depends on A1, b1, A2, b2 and has a finite number of vertices. Therefore ||x∗||∞
and ||x̃∗||∞ can be bounded by a constant ϕ(A1, b1, A2, b2) for which

|V (c1)− V (c̃1)| ≤ ϕ(A1, b1, A2, b2)||c1 − c̃1||1

finishing the proof.

Remark 2.6. When applying the above lemma to the problem (3), b1,t(ξt) + C1,tSt

corresponds to the second parameter of ϕ. Since we would like to avoid dependence

of our distance on the resource state, we note that ϕ is increasing with respect to this
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parameter and replace b1,t(ξt)+C1,tSt by b1,t(ξt)+C+
1,tb2,t where C

+
1,t = (max(ci,j, 0))i,j

and ci,j are the entries in the matrix C1,t. Since St ≥ 0 and b2,t ≥ 0, we thereby

increase the size of the polyhedron Γ and thus make the bound slightly looser but

independent of St.

Note that the problems in (2.3) fulfill the assumptions of Lemma 2.2 and Lemma

2.3. Equipped with these results, we define a transportation distance between two

Markov processes. The distance is defined for a given problem of the form (2.1), i.e.,

we do not propose one distance but a whole family of problem-specific distances,

which differ in the matrices and vectors used to define the constants γ and ϕ in

Lemma 2.2 and Lemma 2.3. To avoid cluttered notation, we write

γt(ξt, ξ̃t) = γ(A1,t, A2,t,min{κt+1(ξt), κ̃t+1(ξ̃t)}, ct(ξt))

and

ϕt (ξt) = ϕ(A1,t, b1,t(ξt) + C+
1,tb2,t, A2,t, b2,t+1).

Furthermore, we omit the explicit dependence of ξ on ω wherever no confusion can

arise, i.e., write ξ instead of ξ(ω).

Remark 2.7. Note that to ensure measurability of ϕt and γt we have to use the

universal sigma algebra, which is a natural extension of the Borel sigma algebra

fitting for dynamic programming. See Bertsekas and Shreve (1978), Chapter 7 for

an in-depth treatment of the subject and Bertsekas (2013), Appendix C for a short

primer.

In particular, we mention that the vertices of the polyhedra in the proofs of

Lemma 2 and Lemma 3 change continuously with the right-hand sides of the lin-

ear inequality constraints almost everywhere. The functions γt and ϕt are, therefore,

Borel measurable due to the Borel measurability of the functions ct and bt.

Furthermore, standard arguments yield that, by Borel measurability of the Markov
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kernel, the functions

(St, ξt−1) 7→ E(Vt(St, ξt)|ξt−1)

are lower semi-analytic. Hence, the function

f(St, S
′
t, ξt−1) =

E(Vt(St, ξt)− Vt(S
′
t, ξt)|ξt−1)

St − S ′
t

is lower semi-analytic on Y×Rnt−1 with Y =
{
(x, y) ∈ Rkt ×Rkt : x ̸= y

}
. It follows

from Bertsekas (2013), Proposition C.1 that

ξt−1 7→ κt(ξt−1) = sup
St ̸=S′

t

f(St, S
′
t, ξt−1)

is lower semi-analytic and, therefore, universally measurable.

Consequently, we interpret all integrals as integrals with respect to the unique

extensions of measures with respect to the universal sigma algebra (see Bertsekas

and Shreve 1978).

Definition 2.2. Let ξ and ξ̃ be two Markov processes defined on probability spaces

Ω and Ω̃, respectively, and P and P̃ corresponding probability measures on Ω and

Ω̃. We define a lattice distance for the problem (2.1) as

DL(ξ, ξ̃) =


inf
π

∫
Ω×Ω̃

d(ξ(ω), ξ̃(ω̃))π(dω, dω̃)

s.t. π
ωt−1,ω̃t−1

t (Ht × Ω̃t) = P
ωt−1

t (Ht), (t ∈ T\{0})

π
ωt−1,ω̃t−1

t (Ωt × H̃t) = P̃
ω̃t−1

t (H̃t), (t ∈ T\{0})

(2.12)

taking the infimum over all Markov probability measures π defined on F ⊗ F̃ . We

assume that the constraints hold for almost all (ωt−1, ω̃t−1) ∈ Ωt−1 × Ω̃t−1, as well

as all Ht × H̃t ∈ σt ⊗ σ̃t and define

d(ξ, ξ̃) :=
T∑
t=0

min
{
dt(ξt, ξ̃t), dt(ξ̃t, ξt)

}
, (2.13)
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and

dt(ξt, ξ̃t) := γt(ξt, ξ̃t)∥b1,t(ξt)− b1,t(ξ̃t)∥1 + ϕt(ξ̃t)∥ct (ξt)− ct(ξ̃t)∥1. (2.14)

Remark 2.8. Note that similar to the convention discussed in Remark 2.2, we

require the information on the measures P̃ and P on the underlying probability spaces

to calculate the distance between the two Markov processes.

Remark 2.9. As will become clear in the proof of Theorem 2.3, both dt(ξt, ξ̃t) and

dt(ξ̃t, ξt) can be used to construct bounds for the difference in stochastic optimization

problems. We therefore use the minimum in (2.13) to improve the bounds and ensure

symmetry of DL.

Note that the objective function in (2.12) is defined in terms of the unconditional

transport plan π between the joint distributions P and P̃ while the constraints rely

on the corresponding disintegration in the form of Markov kernels π
ωt−1,ω̃t−1

t , which

are guaranteed to exist Pollard (2002) and relate to π via

π(H × H̃) =

∫
Ω×Ω̃

1H×H̃(ω, ω̃) . . . π
ωt−1,ω̃t−1

t (dωt, dω̃t) . . . π0(dω0, dω̃0)

for H × H̃ ∈ F ⊗ F̃ . However, since the disintegration of π into Markov kernels is

only π-almost surely unique, the constraints in (2.12) have to be fulfilled πt−1 almost

surely, where πt−1 is the unconditional marginal of π in stage t− 1.

Remark 2.10. Analogously to the Remark 2.3 and Pflug and Pichler (2012, 2014),

the infimum in the above definition is attained due to weak-compactness of the set

of transportation plans.

Next, we show that there is always at least one feasible transport plan between

any two Markov processes, i.e., there are no processes with infinite distance.

Proposition 2.1. The defining optimization problem of DL is always feasible. In

particular, the product measure π := P ⊗ P̃ is always part of the feasible set.
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Proof. Let A ∈ σt+1 and B ∈ σ̃t+1 for given t and C ∈ F and D ∈ F̃ . We have∫
C×D

P ωt
t+1(A) · P̃ ω̃t

t+1(B)π(dω, dω̃) =

∫
C

P ωt
t+1(A)P (dω) ·

∫
D

P̃ ω̃t
t+1(A)P̃ (dω̃)

= P (C ∩ AΩ
t+1) · P̃ (D ∩BΩ̃

t+1) = π((C ∩ AΩ
t+1)× (D ∩BΩ̃

t+1))

= π((C ×D) ∩ (AΩ
t+1 ×BΩ̃

t+1)) =

∫
C×D

πωt,ω̃t

t+1 (A×B)π(dω, dω̃)

where the first equality follows from the properties of the product measure. Since the

sets A, B, C, and D are chosen arbitrarily and P ωt
t+1(A)·P̃ ω̃t

t+1(B) as well as πωt,ω̃t

t+1 (A×

B) are σt ⊗ σ̃t measurable, it follows that they coincide π-almost everywhere, i.e.,

P ωt
t+1(A) · P̃ ω̃t

t+1(B) = πωt,ω̃t

t+1 (A×B).

For the particular choices A = Ωt+1 or B = Ω̃t+1, we get the conditions in problem

(2.12).

Next, we show that DL is a semi-metric, i.e., that it is non-negative and sym-

metric. Example 2.1 demonstrates that it does not fulfill the triangle inequality.

Proposition 2.2. If either ct or b1,t have a continuous inverse, DL is a semi-metric

on the equivalence classes of Markov processes that have the same distribution.

Proof. From the non-negativity of the norms and the constants ϕt and γt, we obtain

that DL ≥ 0. Clearly, d(ξ, ξ̃) = d(ξ̃, ξ). If π∗ is the optimal transportation plan for

DL(ξ, ξ̃), then π̃∗(ω̃, ω) = π∗(ω, ω̃) is the optimal transportation plan for DL(ξ̃, ξ).

Therefore we have DL(ξ, ξ̃) = DL(ξ̃, ξ).

To show

DL(ξ, ξ̃) = 0⇔ ξ = ξ̃ in distribution,

we note that one direction is trivial, since ξ = ξ̃ in distribution implies that

DL(ξ, ξ̃) = 0.
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Figure 2.2: The three processes used in Example 2.1 to show that the triangle
inequality of DL does not hold.

If ct or b1,t have continuous inverses, then b1,t(ξt) ̸= b1,t(ξ̃t) or ct(ξt) ̸= ct(ξ̃t) in

distribution for any two processes ξ and ξ̃ that do not have the same distribution.

Under these circumstances, if DL(ξ, ξ̃) = 0, similar to Villani (2009), we can

without loss of generality assume that Ω = Ω̃ and find a measure π whose image

measure on×T

t=1
Rnt is almost surely concentrated on the diagonal. This implies

that ξ and ξ̃ have the same distribution.

Example 2.1. In the following example, we demonstrate that the triangle inequality

does not hold in general for DL. To that end, consider a simple two-stage problem

with the objective function in period t defined by

ct(ξt)
⊤xt = (ξt − 8, 0)xt

where ξt is a one-dimensional random variable. The constraints in the form of (2.2)

are described by

A1 = ( 1 0 ), b1 = 0, C1 = 1, A2 = ( 0 1 ), b2 = 10.

Considering the three random processes presented in Figure 2.2 and using defini-

tion (2.12), we obtain the following values of the lattice distance between every pair

of processes

DL(ξ
(1), ξ(2)) = 59.8, DL(ξ

(2), ξ(3)) = 19.8, DL(ξ
(1), ξ(3)) = 88.
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We refer to Section 2.5 for a detailed description on how to calculate the distances.

Hence, we have

DL(ξ
(1), ξ(2)) +DL(ξ

(2), ξ(3)) = 59.8 + 19.8 = 79.6 < 88 = DL(ξ
(1), ξ(3))

confirming that the triangle inequality does not hold.

2.4 Bounding Linear Markov Decision Problems

In this section, we show how the lattice distance DL can be used to approximate

linear stochastic programming problems with a Markovian structure as defined in

(2.1). We start by showing that every Markov process can be approximated to an

arbitrary precision by a discrete process in Theorem 2.1. We proceed by proving

Theorem 2.3 in which we show that optimal values of problems in (2.1) are Lipschitz

continuous with respect to DL. These two results, in combination, imply that DL

can, in theory, be used to find discrete Markov processes (scenario lattices) that,

when used in optimization problems, lead to an arbitrarily close approximation of

the objective values.

In order to show Theorem 2.1, we require the following result demonstrating

that distances between any pair of Markov processes can be approximated to an

arbitrary precision by distances where one of the processes is replaced by a discrete

approximation. For what follows, we denote by Lp(Ω× Ω̃, π) the Lebesgue space of

p-integrable functions.

Lemma 2.4. Let

θt(ξt, ξ̃t) = min{dt(ξt, ξ̃t), dt(ξ̃t, ξt)} (2.15)

and π be transportation plan that minimizes DL(ξ, ξ̃) for two given processes ξ and

ξ̃. If for all 0 ≤ t ≤ T , θt(ξt, ξ̃t) ∈ Lp(Ωt × Ω̃t, πt) for some p > 1 and there is a
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x0t ∈ Rnt such that ∫
Ω×Ω̃

θt(ξt, x0t) ν(dω, dω̃) <∞ (2.16)

for all feasible transportation plans ν, then there is a sequence of discrete approxi-

mations (ξ̃k)k∈N such that DL(ξ, ξ̃
k)

k→∞−−−→ DL(ξ, ξ̃).

Note that the condition p > 1 ensures that the space Lp(Ω × Ω̃, π) is reflexive,

which is used for the proof of Lemma 2.5 below, which in turn is required for the

proof of Lemma 2.4.

Theorem 2.1. Every Markov process ξ for which (2.16) holds can be approximated

arbitrarily well in terms of DL by a discrete process, i.e., there are discrete Markov

processes (ξk)k∈N such that DL(ξ, ξ
k)

k→∞−−−→ 0.

Proof. Use ξ instead of ξ̃ in Lemma 2.4 and note that θ(ξt, ξt) = 0 for the transporta-

tion plan that does not transport anything. Therefore the conditions of Lemma 2.4

are fulfilled and DL(ξ, ξ
k)

k→∞−−−→ 0 follows.

Note that this result is purely theoretical, showing that, loosely speaking, dis-

crete Markov processes are dense with respect to DL. In particular, the crude dis-

cretization used below to show Lemma 2.4 does not yield efficient approximations

of Markov processes.

Remark 2.11. We note that similar to the tree distance proposed in Pflug and

Pichler (2012), the empirical distribution does not converge to the true distribution in

DL. This follows essentially by the same argument that is given in Pflug and Pichler

(2016) in Proposition 1. Modifications of the distance based on non-parametric

estimates addressing this issue as in Pflug and Pichler (2016) would be, in principle,

possible but are out of the scope of this paper.

To prove Lemma 2.4, we define discrete approximations ξ̃k of ξ̃. We start by

noting that since θt is continuous, it is uniformly continuous on Bk
t := Bt(0, k) ×
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Bt(0, k), where Bt(0, k) is the ball of radius k around 0 in Rnt . Now, for each k

define a discrete random variable ξ̃kt : Ω̃t → Rnt with atoms ξ̃kt,m and

Ek
t,m =

{
ω̃t ∈ Ω̃t : ξ̃

k
t (ω̃t) = ξ̃kt,m

}
such that

|θt(ξt(ωt), ξ̃t(ω̃t))− θt(ξt(ωt), ξ̃
k
t (ω̃t))| ≤ k−1, ∀ωt ∀ω̃t : ξ̃t(ω̃t) ∈ Bt(0, k)

and ξ̃kt (ω̃t) = x0t for all ω̃t such that ξ̃t(ω̃t) /∈ Bt(0, k). Furthermore, define corre-

sponding Markov kernels as

P̃
ξ̃kt−1,m

t,k (ξ̃kt,j) =

∫
Ek

t−1,m

P̃
ω̃t−1

t (Ek
t,j) P̃t−1(dω̃t−1)

and the functions

f t
k(ν) =

∫
Ωt×Ω̃t

θt(ξt, ξ̃
k
t ) νt(dωt, dω̃t), f t

0(ν) =

∫
Ωt×Ω̃t

θt(ξt, ξ̃t) νt(dωt, dω̃t)

for νt ∈ Lq(Ωt × Ω̃t, πt) with q−1 + p−1 = 1 the unconditional distributions of the

transportation plan ν in stage t.

In Lemma 2.5, we will show that the approximations defined above epi-converge

to the objective function of the optimization problem defining the lattice distance.

Epi-convergence is the weakest notion of convergence of functions that allows to

conclude that convergence of objective functions implies the convergence of optimal

solutions and is defined as follows.

Definition 2.3 (epi-convergence). A sequence of functions fn : X → R defined on

a metric space X epi-convergences to a function f : X → R, if for each x ∈ X

lim inf
n→∞

fn(xn) ≥ f(x) for every xn → x and

lim sup
n→∞

fn(xn) ≤ f(x) for some xn → x.
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We write fn
epi−→ f .

We will additionally require the notion of barrelled spaces, which are exactly the

spaces where the uniform boundedness principle is valid, which we will use in the

proof of Lemma 2.4.

Definition 2.4 (barrel, barrelled space). A closed set B ⊆ X in a real topological

vector space X is a barrel, if and only if the following conditions hold

1. B is absolutely convex, i.e.,

x1, x2 ∈ B ⇒ λ1x1 + λ2x2 ∈ B

for |λ1|+ |λ2| = 1.

2. B is absorbing, i.e., for every x ∈ X there is a α > 0 with x ∈ αB.

A locally convex vector space is called barrelled, if and only if every barrel is a

neighborhood of zero.

Theorem 2.2 (Uniform boundedness principle, Theorem III.2.1 in Bourbaki et al.

(1987)). Let X be a barrelled locally convex vector space and Y be an arbitrary locally

convex vector space. A collection F of continuous linear functions f : X → Y is

bounded pointwise, i.e.,

{f(x) : f ∈ F} ⊆ Y

is bounded for all x ∈ X, if and only if the functions are equi-continuous, i.e., for

every neighborhood V ⊆ Y of zero, there is a neighborhood of zero U ⊆ X, such that

f−1(V ) ⊆ U, ∀f ∈ F .

Lemma 2.5. If the integrability conditions (2.16) hold for ξ and ξ̃, then

T∑
t=0

f t
k

epi−→
T∑
t=0

f t
0 as k →∞.
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Proof. Define

f t
kn(ν) =

∫
Ωt×Ω̃t

θt(ξt, ξ̃
k
t )1Bn

t
(ξt, ξ̃t) νt(dωt, dω̃t)

f t
0n(ν) =

∫
Ωt×Ω̃t

θt(ξt, ξ̃t)1Bn
t
(ξt, ξ̃t) νt(dωt, dω̃t).

Fix ϵ > 0. By integrability of θt with respect to νt and an application of the

dominated convergence theorem, it follows that there is a compact setKt ⊂ Rnt×Rnt

for every t = 0, . . . , T such that∫
Ωt×Ω̃t

θt(ξt, x0t)1Kc
t
(ξt, ξ̃t) νt(dωt, dω̃t) < ϵ,

∫
Ωt×Ω̃t

θt(ξt, ξ̃t)1Kc
t
(ξt, ξ̃t) νt(dωt, dω̃t) < ϵ.

Now choose k ∈ N such that Kt ⊆ Bk
t and k > ϵ−1 and note that

|f t
kn(ν)− f t

0n(ν)| ≤
∫

Ωt×Ω̃t

|θt(ξt, ξ̃kt )− θt(ξt, ξ̃t)|1Bk
t
(ξt, ξ̃t) νt(dωt, dω̃t)

+

∫
Ωt×Ω̃t

θt(ξt, ξ̃t)1Bn
t \Bk

t
(ξt, ξ̃t) νt(dωt, dω̃t)

+

∫
Ωt×Ω̃t

θt(ξt, x0t)1Bn
t \Bk

t
(ξt, ξ̃t) νt(dωt, dω̃t) ≤ 3ϵ,

i.e., f t
kn → f t

0n uniformly for all n. Note further that

f t
0 = lim

n
f t
0n = lim

n
lim
k

f t
kn = lim

k
lim
n

f t
kn = lim

k
f t
k

where the two limits can be exchanged because of the uniform convergence shown

above and the first equality follows by the monotone convergence theorem. As the
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convergence holds for every t = 0, . . . , T , we obtain that

T∑
t=0

f t
0 = lim

k

T∑
t=0

f t
k.

Lp(Ω× Ω̃, π) is reflexive, and therefore, the weak topology is barrelled (see Meise

et al. (1997), Theorem 23.22). Since
T∑
t=0

f t
k →

T∑
t=0

f t
0 weakly, the set

{
T∑
t=0

f t
k,

T∑
t=0

f t
0

}
is weakly bounded and therefore weakly equi-continuous by the uniform bounded-

ness principle. Since

{
T∑
t=0

f t
kn : n ∈ N0

}
is equi-continuous, it is equi–lower semi-

continuous and
T∑
t=0

f t
k

epi−→
T∑
t=0

f t
0 (see Dolecki et al. (1983), Theorem 2.18).

Lemma 2.4. Because of the epi-convergence proved in Lemma 2.5, we obtain (see

Attouch and Wets (1983), Theorem 2.5)

DL(ξ, ξ̃
k) = min

ν∈Υ

T∑
t=0

f t
k(ν)→ min

ν∈Υ

T∑
t=0

f t
0(ν) = DL(ξ, ξ̃).

Note that the feasible set Υ can w.l.o.g. be assumed the feasible set of DL(ξ, ξ̃),

since for every feasible transportation plan for DL(ξ, ξ̃
k) there exists a plan that is

feasible for DL(ξ, ξ̃) yielding the same objective.

Next, we prove the main result of the paper, establishing that the optimal value

of the stochastic optimization problem associated with DL is Lipschitz with respect

to DL. We first note the following useful lemma assuming that it : Ωt × Ω̃t → Ωt,

ĩt : Ωt × Ω̃t → Ω̃t are natural projections for t = 0, . . . , T .

Lemma 2.6. For a measurable function f : Ωt → R and measures Pt, P̃t, πt that

fulfill the conditions in (2.12), we have

Eπt(f ◦ it) = EPt(f).

Proof. The result clearly holds for functions f = 1A with A ∈ Ωt, and therefore, by

the usual argument, also for general measurable functions.
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Theorem 2.3. Let ξ and ξ̃ be Markov processes and V0 be the value function for a

stochastic optimization problem of the form (2.1), then

|V0(S0, ξ0)− Ṽ0(S0, ξ̃0)| ≤ DL(ξ, ξ̃).

Proof. We start by choosing ϵ > 0 arbitrarily. If the process ξ is continuous, we de-

fine an ϵ-exact approximation of the value functions. To this end, we note that since

for every ξt−1, St 7→ E(Vt(St, ξt)|ξt−1) is a continuous function on the compact set of

permissible decisions St, it is Lipschitz continuous with Lipschitz constant Lt(ξt−1).

By concavity of St 7→ E(Vt(St, ξt)|ξt−1) there exists a supergradient CSt
3,t(ξt−1) and

by continuity there is an open neighborhood U(St) of St such that

|E(Vt(S, ξt)|ξt−1)− bSt
3,t(ξt−1)− CSt

3,t(ξt−1)S| ≤ ϵ, ∀S ∈ U(St).

with bSt
3,t(ξt−1) = E(Vt(St, ξt)|ξt−1).

By compactness, the set of feasible St can be covered by a finite open cover

U i = U(Si
t) with corresponding bi3,t(ξt−1) and Ci

3,t(ξt−1) for i = 1, . . . ,mt(ξt−1) such

that

|E(Vt(S, ξt)|ξt−1)−min
i

bi3,t(ξt−1) + Ci
3,t(ξt−1)S| ≤ ϵ, ∀ feasible S.

Clearly, it follows that

κ̂t(ξt−1) := max
i,j
|Ci,j

3,t(ξt−1)| ≤ 2Lt(ξt−1) (2.17)

and therefore κ̂t(ξt−1) ≤ κt(ξt−1) = 2Lt(ξt−1). An analogous argument holds for

process ξ̃. Note that if ξ or ξ̃ are discrete, we can choose ϵ = 0 and κ̂t = κt or

ˆ̃κt = κ̃t, since the value function approximation constructed above can be made

exact due to Lemma 2.1.
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Defining

δ1t (ξt, ξ̃t) = γ(A1,t, A2,t,min{κ̂t+1(ξt), ˆ̃κt+1(ξ̃t)}, ct(ξt))∥b1,t(ξt)− b1,t(ξ̃t)∥1

δ2t (ξt, ξ̃t) = ϕ(A1,t, b1,t(ξ̃t) + C+
1,tb2,t, A2,t, b2,t+1)∥ct(ξt)− ct(ξ̃t)∥1

as well as δt(ξt, ξ̃t) = δ1t (ξt, ξ̃t) + δ2t (ξt, ξ̃t), we note that

VT (ST , ξT ) = max
{
cT (ξT )

⊤xT : (xT , ST+1) ∈ XT (ST , ξT )
}

≥ max
{
cT (ξT )

⊤xT : (xT , ST+1) ∈ XT (ST , ξ̃T )
}
− δ1T (ξT , ξ̃T )

≥ max
{
cT (ξ̃T )

⊤xT : (xT , ST+1) ∈ XT (ST , ξ̃T )
}
− δT (ξT , ξ̃T )

= ṼT (ST , ξ̃T )− δT (ξT , ξ̃T ), (2.18)

where first inequality follows from Lemma 2.2 and second from Lemma 2.3 and

Remark 2.6. Note that since VT+1 ≡ 0, κT+1(ξT ) = κ̃T+1(ξ̃T ) = 0. Exchanging the

order of steps in which Lemma 2.2 and Lemma 2.3 are applied yields

ṼT (ST , ξ̃T )− δT (ξ̃T , ξT ) ≤ VT (ST , ξT )

and exchanging the roles of VT and ṼT finally results in

|ṼT (ST , ξ̃T )− VT (ST , ξT )| ≤ min
{
δT (ξT , ξ̃T ), δT (ξ̃T , ξT )

}
=: ∆T (ξT , ξ̃T ).

Proceeding to the next stage, we assume w.l.o.g. that

min{κ̂T (ξT−1), ˆ̃κT (ξ̃T−1)} = ˆ̃κT (ξ̃T−1).
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Then for all ξT−1 ∈ ΩT−1, ξ̃T−1 ∈ Ω̃T−1 we have

VT−1 (ST−1, ξT−1) =

 max cT−1 (ξT−1)
⊤ xT−1 + EPT

(VT (ST , ξT ) |ξT−1 )

s. t. (xT−1, ST ) ∈ XT−1 (ST−1, ξT−1)

=

 max cT−1 (ξT−1)
⊤ xT−1 + EπT

(VT (ST , ξT ) ◦ iT |ξT−1, ξ̃T−1)

s. t. (xT−1, ST ) ∈ XT−1 (ST−1, ξT−1)

≥

 max cT−1 (ξT−1)
⊤ xT−1 + EπT

(ṼT (ST , ξ̃T ) ◦ ĩT −∆T |ξT−1, ξ̃T−1)

s. t. (xT−1, ST ) ∈ XT−1 (ST−1, ξT−1)

=

 max cT−1 (ξT−1)
⊤ xT−1 + EP̃T

(ṼT (ST , ξ̃T )|ξ̃T−1)

s. t. (xT−1, ST ) ∈ XT−1 (ST−1, ξT−1)

− EπT
(∆T |ξT−1, ξ̃T−1)

≥


max cT−1 (ξT−1)

⊤ xT−1 + γ̃ − ϵ

s. t. (xT−1, ST ) ∈ XT−1 (ST−1, ξT−1)

1mT (ξ̃T−1)
γ̃ ≤ b̃3,T (ξ̃T−1) + C̃3,T (ξ̃T−1)ST

− EπT
(∆T |ξT−1, ξ̃T−1)

≥


max cT−1 (ξT−1)

⊤ xT−1 + γ̃

s. t. (xT−1, ST ) ∈ XT−1(ST−1, ξ̃T−1)

1mT (ξ̃T−1)
γ̃ ≤ b̃3,T (ξ̃T−1) + C̃3,T (ξ̃T−1)ST

− ϵ− EπT
(∆T |ξT−1, ξ̃T−1)− δ1T−1(ξT−1, ξ̃T−1)

≥


max cT−1(ξ̃T−1)

⊤xT−1 + γ̃

s. t. (xT−1, ST ) ∈ XT−1(ST−1, ξ̃T−1)

1mT (ξ̃T−1)
γ̃ ≤ b̃3,T (ξ̃T−1) + C̃3,T (ξ̃T−1)ST

− ϵ− EπT
(∆T |ξT−1, ξ̃T−1)− δT−1(ξT−1, ξ̃T−1)

≥


max cT−1(ξ̃T−1)

⊤xT−1 + γ̃ + ϵ

s. t. (xT−1, ST ) ∈ XT−1(ST−1, ξ̃T−1)

1mT (ξ̃T−1)
γ̃ ≤ b̃3,T (ξ̃T−1) + C̃3,T (ξ̃T−1)ST

− 2ϵ− EπT
(∆T |ξT−1, ξ̃T−1)− δT−1(ξT−1, ξ̃T−1)

≥ ṼT−1(ST−1, ξ̃T−1)− 2ϵ− EπT
(∆T |ξT−1, ξ̃T−1)− δT−1(ξT−1, ξ̃T−1)
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where the second equality follows by Lemma 2.6, the first inequality from (2.18),

the following equality again from Lemma 2.6 and the subsequent inequalities follow

from Lemma 2.2 and Lemma 2.3 and (2.17). As in the derivation of (2.18), we can

exchange the order in which Lemma 2.2 and Lemma 2.3 are applied to get the above

inequality with δT−1(ξT−1, ξ̃T−1) replaced by δT−1(ξ̃T−1, ξT−1). Exchanging the roles

of VT−1 and ṼT−1 we obtain

|ṼT−1(ST−1, ξ̃T−1)− VT−1(ST−1, ξT−1)| ≤ EπT
(∆T (ξT , ξ̃T )|ξT−1, ξ̃T−1)

+ ∆T−1(ξT−1, ξ̃T−1) + 2ϵ.

Proceeding by backward induction, and noting that the distanceDL is non-decreasing

when replacing κ̂t(ξt−1) by κt(ξt−1) and ˆ̃κt(ξt−1) by κ̃t(ξ̃t−1), we arrive at

|Ṽ0(S0, ξ̃0)− V0(S0, ξ0)| ≤ DL(ξ, ξ̃) + 2Tϵ

and since ϵ > 0 was arbitrary, the result follows.

Remark 2.12. Linear stochastic optimization problems without randomness in the

constraints are special cases of the problems for which Pflug and Pichler (2012)

provide stability results analogous to Theorem 2.3. Hence, a comparison of the two

types of results for this problem class is of interest.

The authors in Pflug and Pichler (2012) show that for their nested distance DT ,

a convex set X, and a general objective function h : X× Ω→ R

|min
x∈X

E(h(x, ξ))−min
x∈X

E(h(x, ξ̃))| ≤ L DT (ξ, ξ̃)

assuming that there is a constant L such that

|h(x, ξ)− h(x, ξ̃)| ≤ L ∥ξ − ξ̃∥1, ∀x ∈ X, ∀ (ω, ω̃) ∈ Ω× Ω̃.

Defining Gt = σ(ξ0, . . . , ξt), G̃t = σ(ξ̃0, . . . , ξ̃t) as the σ-algebras generated by the

history of the processes, the distance DT for arbitrary stochastic processes is defined
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as

DT (ξ, ξ̃) =


inf
π

∫
Ω×Ω̃

∥ξ − ξ̃∥1 π (dω, dω̃)

s.t. π(A× Ω̃|Gt ⊗ G̃t) = P (A |Gt ) , ∀A ∈ GT
π(Ω× Ã|Gt ⊗ G̃t) = P̃ (Ã|G̃t), ∀Ã ∈ G̃T .

(2.19)

In this paper, we treat the special case h (x, ξ) =
T∑
t=0

ct (ξt)
⊤ xt for which L can

be calculated as L = max
t

Lctϕt assuming that the functions ct are Lipschitz with

constants Lct and ϕt is the function calculated in Lemma 2.3. Note that ϕt is deter-

ministic in the case of a deterministic feasible set.

It is easy to see that for two Markov processes, the permissible transportation

plans π for DT and for DL are equivalent. Assume that π∗ is an optimal transporta-

tion plan for DT , then we have

DL(ξ, ξ̃) ≤
∫

Ω×Ω̃

T∑
t=0

ϕt∥ct (ξt)− ct(ξ̃t)∥1 π∗ (dω, dω̃)

≤
∫

Ω×Ω̃

T∑
t=0

ϕtLct∥ξt − ξ̃t∥1 π∗ (dω, dω̃)

≤ L

∫
Ω×Ω̃

∥ξ − ξ̃∥1 π∗ (dω, dω̃) = L DT (ξ, ξ̃).

The above calculations show that our bound is tighter than DT for problems where

both bounds are applicable, i.e., linear stochastic optimization problems with deter-

ministic feasible set X.

2.5 Implementation for Finite Scenario Lattices

In this section, we focus on the computation of DL for two finitely supported Markov

processes. In Section 2.5.1, we detail all necessary steps to compute DL, provide a

formal algorithm for the computation, and discuss computational issues. In Section
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2.5.2, we discuss a simple example demonstrating the bounding property of DL and

provide a comparison to the tree distance of Pflug and Pichler (2012).

2.5.1 Computation of DL

In this section, we show that similar to the case of the classical Wasserstein distance

and Pflug and Pichler (2012), the distance can be computed by solving a linear

optimization problem to find the optimal transport plan π.

We represent two discrete Markov processes ξ and ξ̃ by scenario lattices. To that

end, at every stage t ∈ T we define the probability spaces

Ωt = {i ∈ N : 1 ≤ i ≤ Nt} , Ω̃t =
{
ĩ ∈ N : 1 ≤ ĩ ≤Mt

}
where Nt and Mt are the number of atoms of the unconditional distributions Pt and

P̃t, respectively. The conditional transition from a given state i (̃i) at time (t − 1)

to a state j (j̃) at time t is described by a conditional probability P i
t (j) and P̃ ĩ

t (j̃),

respectively.

The optimal transport plan π is a Markov process on Ω, which is fully described

by the conditional probabilities

π

(
(ωt, ω̃t) = (i, ĩ)

∣∣∣∣∣ t−1×
s=1

(ωs, ω̃s)

)
= π

ωt−1,ω̃t−1

t (i, ĩ), ∀(i, ĩ) ∈ Ωt × Ω̃t.

The measure π can therefore be represented by a set of non-negative matrices

π
ωt−1,ω̃t−1

t ∈ R|Ωt|×|Ω̃t| with π
ωt−1,ω̃t−1

t (i, ĩ) the element in row i and column ĩ for

(i, ĩ) ∈ Ωt × Ω̃t and ∑
(i,̃i)∈Ωt×Ω̃t

π
ωt−1,ω̃t−1

t (i, ĩ) = 1.

We furthermore denote by πt the unconditional distributions at time t.

To be able to compute the lattice distance as a linear program, we define

τ
ωt−1,ω̃t−1

t (i, ĩ) = π
ωt−1,ω̃t−1

t (i, ĩ)πt−1(ωt−1, ω̃t−1), ∀(i, ĩ) ∈ Ωt × Ω̃t



62
Chapter 2 A Stability Result for Linear Markovian Stochastic Optimization

Problems

as well as πt−1(ωt−1, ω̃t−1) as decision variables. For given (ωt−1, ω̃t−1) and (i, ĩ), the

constraints in the definition of DL can therefore be written as linear constraints in

these variables as

τ
ωt−1,ω̃t−1

t ({i} × Ω̃t) = P
ωt−1

t (i) πt−1(ωt−1, ω̃t−1),

τ
ωt−1,ω̃t−1

t (Ωt × {̃i}) = P̃
ω̃t−1

t (̃i) πt−1(ωt−1, ω̃t−1)

where τ
ωt−1,ω̃t−1

t ({i}×Ω̃t) =
∑

ω̃t∈Ω̃t
τ
ωt−1,ω̃t−1

t (i, ω̃t) and τ
ωt−1,ω̃t−1

t (Ωt×{̃i}) is defined

analogously.

Hence, given two discrete processes ξ and ξ̃ as well as θt(ξt(ωt), ξ̃t(ω̃t)), DL(ξ, ξ̃)

can be computed as the following linear optimization problem in the variables

τ
ωt−1,ω̃t−1

t (i, ĩ) and πt(ωt, ω̃t)

DL(ξ, ξ̃) =



min
T∑
t=1

∑
ωt,ω̃t

θt(ξt(ωt), ξ̃t(ω̃t)) πt(ωt, ω̃t)

s.t. τ
ωt−1,ω̃t−1

t ({i} × Ω̃t) = P
ωt−1

t (i)πt−1(ωt−1, ω̃t−1)

τ
ωt−1,ω̃t−1

t (Ωt × {̃i}) = P̃
ω̃t−1

t (̃i)πt−1(ωt−1, ω̃t−1)

πt(ωt, ω̃t) =
∑

ωt−1,ω̃t−1
τ
ωt−1,ω̃t−1

t (ωt, ω̃t)

πt−1(ωt−1, ω̃t−1) =
∑

ωt,ω̃t
τ
ωt−1,ω̃t−1

t (ωt, ω̃t)

(2.20)

where the constraints hold for all (ωt−1, ω̃t−1) ∈ Ωt−1×Ω̃t−1 and for all (i, ĩ) ∈ Ωt×Ω̃t

for all t ∈ T\{0} and π0(1, 1) := 1. Note that the third set of constraints ensures that

the unconditional probabilities in πt sum to one, while the last set of constraints

ensures that the probability mass of πt−1(ωt−1, ω̃t−1) is distributed amongst the

successors of (ωt−1, ω̃t−1), i.e., that the stages are properly connected.

Note that, since we model the conditional probabilities π
ωt−1,ω̃t−1

t (i, ĩ) only depen-

dent on the state of the process in (t− 1), the feasible measures π are automatically

Markov.

Since (2.20) is a linear program, it can be efficiently solved. However, in order to

do so, the θt(ξt, ξ̃t) have to be computed. Since θt(ξt, ξ̃t) only depends on the values
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of the two processes ξ and ξ̃ and are thus independent of the probabilities π, they

can be obtained offline.

In order to compute θt(ξt, ξ̃t), the constants γt(ξt(ωt), ξ̃t(ω̃t)) and ϕt(ξt(ωt)) and

ϕt(ξ̃t(ω̃t)) are required. These quantities are maxima of || · ||∞ over the vertices of

the polyhedra Γt and Φt defined in Lemma 2.2 and Lemma 2.3 and dependent on

the constant problem data A1,t, A2,t, b2,t+1, C1,t, as well as the random data b1,t, ct,

and κt.

Candidates x+ for vertices of a polyhedron Λ =
{
x ∈ Rk : Ax ≤ b

}
with A ∈

Rm×k can be found choosing a subset I ⊆ {1, . . . ,m} with |I| = k and solving

AIx+ = bI where AI ∈ Rk×k and bI are the submatrices of A and b with rows i ∈ I,

respectively. x+ is a vertex of Λ if it fulfills Ax+ ≤ b.2

The number of vertices grows exponentially with the number of constraints in the

linear problems on the nodes. However, the type of problems that are solved using

the decomposition approaches described in Section 2.2 usually have a large number

of stages but rather small nodal problems. Furthermore, in most problems, the data

on the left-hand side of the problem A1,t, A2,t, b2,t+1, C1,t does not vary with the

stage or the randomness and some of the right-hand sides remain constant as well.

Hence, one can precompute the value of ||x+||∞ for all vertices where the right-hand

side does not change and store the factorization of the left-hand side matrix for all

the vertices where the right-hand side is random in order to efficiently compute x+

for varying b. This, together with the limited problem size on the nodes, makes the

computation of γt and ϕt computationally relatively cheap even for larger scenario

lattices.

We provide pseudocode for the calculation of DL in Algorithm 1. The algorithm

loops over the stages t of the problem and iteratively computes the constants γt and

ϕt.

In line 2, we write polyhedra defined in Lemma 2.2 and Lemma 2.3 as a system

2Note that m has to be necessarily greater than k, since otherwise optimization problems
defining γt and ϕt would be unbounded.
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Algorithm 1 Computation of DL

Require: Data A1,t, A2,t, b2,t, C1,t, functions ct, b1,t, κt for all t ∈ T
1: for t ∈ T do
2: Define Aγ, bγ, Aϕ, bϕ such that Γt = {x : Aγx ≤ bγ} and Φt = {x : Aϕx ≤ bϕ}
3: MD

γ ← −∞, MD
ϕ ← −∞, Iγ ← ∅, Iϕ ← ∅

4: for I ⊂ {1, . . . , Nγ,t} with |I| = Kγ,t do ▷ deterministic vertices LU for γ
5: if bIγ(ξt, ξ̃t) ≡ bIγ ∈ RKγ,t then ▷ rhs deterministic
6: xI

γ solves AI
γx

I
γ = bIγ

7: if Aγx
I
γ ≤ bγ then MD

γ ← max(MD
γ , ||xI

γ,2)||∞)
8: else ▷ rhs stochastic
9: Store LU factorization of AI

γ in (P I
γ , L

I
γ, U

I
γ )

10: Iγ ← Iγ ∪ {I}
11: end if
12: end for
13: for I ⊂ {1, . . . , Nϕ,t} with |I| = Kϕ,t do ▷ deterministic vertices LU for ϕ
14: if bIϕ(ξt) ≡ bIϕ ∈ RKϕ,t then ▷ rhs deterministic
15: xI

ϕ solves AI
ϕx

I
ϕ = bIϕ

16: if Aϕx
I
ϕ ≤ bϕ then MD

ϕ ← max(MD
ϕ , ||xI

ϕ||∞)
17: else ▷ rhs stochastic
18: Store LU factorization of AI

ϕ in (P I
ϕ , L

I
ϕ, U

I
ϕ)

19: Iϕ ← Iϕ ∪ {I}
20: end if
21: end for
22: for ωt ∈ Ωt do ▷ compute ϕt(ξt)
23: ϕt(ξt(ωt))←MD

ϕ

24: for I ∈ Iϕ do
25: Use (P I

ϕ , L
I
ϕ, U

I
ϕ) to solve AI

ϕx
I
ϕ = bIϕ(ξt(ωt))

26: if Aϕx
I
ϕ ≤ bϕ then ϕt(ξt(ωt))← max(ϕt(ξt(ωt)), ||xI

ϕ||∞)
27: end for
28: end for
29: for ω̃t ∈ Ω̃t do
30: ϕt(ξ̃(ω̃t))←MD

ϕ

31: for I ∈ Iϕ do ▷ compute ϕt(ξ̃t)
32: Use (P I

ϕ , L
I
ϕ, U

I
ϕ) to solve AI

ϕx
I
ϕ = bIϕ(ξ̃t(ω̃t))

33: if Aϕx
I
ϕ ≤ bϕ then ϕt(ξ̃t(ω̃t))← max(ϕt(ξ̃t(ω̃t)), ||xI

ϕ||∞)
34: end for
35: for ωt ∈ Ωt do
36: γt(ξt(ωt), ξ̃t(ω̃t))←MD

γ

37: for I ∈ Iγ do ▷ compute γt(ξt(ωt), ξ̃t(ω̃t))
38: Use (P I

γ , L
I
γ, U

I
γ ) to solve AI

γx
I
γ = bIγ(ξt(ωt), ξ̃t(ω̃t))

39: if Aγx
I
γ ≤ bγ then γt(ξt(ωt), ξ̃t(ω̃t)) ←

max(γt(ξt(ωt), ξ̃t(ω̃t)), ||xI
γ,2||∞)

40: end for
41: Compute θt(ξt(ωt), ξ̃t(ω̃t)) according to (2.14) and (2.15).
42: end for
43: end for
44: end for
45: Compute DL(ξ, ξ̃) according to (2.20)
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of linear inequalities with single vectors and matrices Aγ, bγ, Aϕ, and bϕ. This is

merely for notational convenience in the rest of the algorithm. We assume that there

are in all Nγ,t and Nϕ,t inequalities defining Γt and Φt, respectively.

We define Kγ,t and Kϕ,t as dimensions of Γt and Φt. In lines 4-12 and 13-21 we

iterate over all sets of size Kγ,t and Kϕ,t of linear inequalities defining the polyhedra.

The solution to the corresponding system of linear equalities defines a vertex if it

fulfills all the rest of the constraints. We evaluate the norm of those vertices that do

not depend on random data and keep track of the maximum while we store the LU

factorization of the systems whose right-hand sides are random. Note that for the

computation of γt, we only require the norm of the components that correspond to λ2

in Lemma 2.2, which we denote by xI
γ,2 for a specific set of inequality constraints I.

We also remark that for γt all vertices except the origin depend on the randomness

unless either κt is independent of the randomness (stagewise independence) or the

objective is deterministic.

In lines 23-29, we compute ϕt(ξt) by solving the linear systems Iϕ for all possible

realizations of ξt using the stored LU factorizations. In line 37-44 we compute ϕt(ξ̃t)

for the realizations of ξ̃t and additionally compute γt(ξt, ξ̃t).

Given these quantities we easily obtain θt(ξt, ξ̃t) in line 43 and finally DL in line

47. Note that if either Γt or Φt are independent of the stage or at least identical in

some stages, the algorithm can be modified by changing the outer loop in line 1 in

an obvious way to avoid repetitive computations.

2.5.2 The flower girl Problem

As a demonstration, we consider a multi-stage extension of the classical newsvendor

problem – the problem of a flower girl selling flowers, facing a random demand and

a random sales price with the possibility to store excess flowers for the next periods.

The problem has (T +1) stages, with stage t = 0 being the deterministic start state.

In every stage t, we start with the inventory level St limited by the storage capacity
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S̄t. After the demand ξ1t and the price ξ2t become known in stage t, the flower girl

sells x2
t flowers and places an order x1

t for flowers to be delivered from a wholesaler

for a price p on the next day. If the available quantity exceeds the demand, the

flower girl adds the excess to her inventory for sale in (t+1). Due to the perishable

nature of flowers, a fraction of k ∈ (0, 1) of the stored flowers are spoilt on the next

day. The order in stage t has to be placed without knowing the random demand

ξ1t+1. On the next day, the flowers can be sold at a market price ξ2t+1 not known on

day t. The flower girl starts in period t = 0 without any stock and no demand, i.e.,

S0 = 0 and ξ10 = 0.

The decisions in every stage consist of the number of flowers to order for the next

stage x1
t , the number of flowers to sell x2

t , and the inventory level of the next day

x3
t . Note that, as described in Remark 2.1, the environmental state variable St+1 is

represented by x3
t so as to make the feasible set fit (2.2).

The storage equation consequently is

x3
t = (1− k) · (St − x2

t ) + x1
t , ∀t = 0, . . . , T.

The sales decisions are constrained by the random demand as well as the storage

level, i.e.,

x2
t ≤ min

{
ξ1t , St

}
, ∀t = 0, . . . , T, a.s.

Furthermore, we impose the following constraints

x3
t = St+1, x3

t ≤ S̄t+1, x1
t , x

2
t , x

3
t , St+1 ≥ 0, ∀t = 0, . . . , T.

The flower girl maximizes her expected profit, which is given by

E

(
T∑
t=0

ξ2t x
2
t − px1

t

)
.

For our numerical example, we consider the three-stage version of the problem,

i.e., the problem with T = 2. Further, we choose k = 0.1, p = 5 and the vector of
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storage capacities S̄ = (S̄0, S̄1, S̄2, S̄3) = (0, 11, 9, 0). To rewrite the problem to the

form in (2.1), we define ct(ξt) = (−p, ξ2t , 0)⊤ and the vectors and matrices appearing

in the constraints as

A1,t =


0 1 0

0 1 0

−1 (1− k) 1

1 −(1− k) −1

 , b1,t(ξt) =


ξ1t

0

0

0

 , C1,t =


0

1

(1− k)

−(1− k)

 ,

A2,t =
(

0 0 1
)
, b2,t = ( S̄t ).

As the function ct and the matrices A1,t, A2,t and C1,t have the same form for all

stages, we can ignore the index t.

Next, we find the constants κt(ξt−1), which depend on the slopes of the value

functions. Note that, in every period t, the flower girl can either sell all flowers for

the price ξ2t or hold them for sale in future periods, in which case part of the flower

will perish. In the last period κT+1(ξT ) = 0, since the flowers are worthless at the

end of planning while in period (T − 1), stored flowers can be sold in period T , i.e.,

κT (ξT−1) = 2E(ξ2T |ξT−1). In periods t < (T − 1), flowers can either be sold in period

t + 1 or carried on to period t + 2, in which case they have to be evaluated using

the respective value function. This yields the approximation

κt(ξt−1) = 2E(max{ξ2t , (1− k)κt+1(ξt)}|ξt−1).

This logic can be recursively applied to find all the constants κt.
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Putting everything together, the problem can be formulated as

Vt (St, ξt) =



max
xt,St+1

c(ξt)
⊤xt + E (Vt+1 (St+1, ξt+1) |ξt )

s. t. A1xt ≤ b1,t(ξt) + C1St

A2xt = St+1

A2xt ≤ b2,t+1

xt, St+1 ≥ 0

=



max
xt,St+1

c(ξt)
⊤xt + γ

s. t. A1xt ≤ b1,t(ξt) + C1St

A2xt = St+1

A2xt ≤ b2,t+1

1mt+1(ξt)γ ≤ b3,t+1(ξt) + C3,t+1(ξt)St+1

xt, St+1 ≥ 0.

We consider the two Markov processes ξ and ξ̃ presented in Figure 2.3a and

Figure 2.3b with transition probabilities

P1 =
(
0.5523 0.0871 0.3605

)
, P2 =


0.5489 0.0005 0.2901 0.1606

0.4576 0.0004 0.2067 0.3353

0.3953 0.0403 0.2681 0.2962

 ,

P̃1 =
(
0.6374 0.3626

)
, P̃2 =

 0.5529 0.2855 0.1626

0.4364 0.2838 0.2797

 .

To bound the difference in the optimal values, we calculate DL(ξ, ξ̃). As detailed

in Algorithm 1, the constant γt(ξt, ξ̃t) can be obtained by maximizing ∥λ2∥∞ over

the extreme points of the polyhedron

Γ =

(λ2, λ3, λ4, λ6, λ7) :

∥∥A⊤
1 λ2 + A⊤

2 (λ3 + λ4)− λ6

∥∥
∞ ≤ 1 + ∥ct(ξt)∥∞

∥λ3 − λ7∥∞ ≤ 1 + min
{
kt+1(ξt), κ̃t+1(ξ̃t)

}
λ2, λ4, λ6, λ7 ≥ 0

 .
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(10, 0)

(13, 12)

(12, 10)

(9, 11)

(15, 8)

(12, 9)

(10, 11)

(8, 13)

(a) First Markov Process ξ

(10, 0)

(13, 12)

(9, 11)

(15, 8)

(10, 11)

(8, 13)

(b) Second Markov Process ξ̃

Figure 2.3: Depiction of the two Markov processes used for the numerical calculation
of the flower girl example.

Similarly, the constant ϕt(ξt) = ϕ(A1, b1,t(ξt) + C+
1 b2,t, A2, b2,t+1) can be found by

maximizing ∥x∥∞ over the extreme points of the polyhedron

Φ =
{
x : A1x ≤ b1,t(ξt) + C+

1 b2,t, A2x ≤ b2,t+1, A2x ≥ 0, x ≥ 0
}
.

Having calculated γt and ϕt, we proceed by computing θt(ξt, ξ̃t) using (2.13) and

(2.14). Then, we can determine the joint distribution π that minimizes the distance

between processes by solving the linear optimization problem (2.20).

The resulting optimal transportation plan yields a distance of DL(ξ, ξ̃) = 7.03.

The optimal value of our problem for ξ is equal to 126.59, and for ξ̃, the optimal

value equals 129.16, resulting in a difference of 2.58. Hence, our bound overestimates

the difference in the optimal values by 4.45.

Lastly, we compare the performance of DL to the performance of the nested dis-

tance defined in Pflug and Pichler (2012, 2014). For this calculation, it is necessary

to simplify the problem to make the constraints independent of the randomness.

To this end, we fix the demand at each stage. In particular, we assume that the
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demand is equal to 0, 11, and 9 in the stages t = 0, 1, and 2, respectively. For this

simplified setup, we obtain DL(ξ, ξ̃) = 3.94 and DT (ξ, ξ̃) = 4.31 demonstrating that

for our problem DL provides a tighter bound than DT (see also Remark 2.12).

2.6 Conclusions

Stochastic optimization problems with a Markovian structure strike a good balance

between the complexity of the underlying randomness and the expressiveness of the

corresponding problem class. In particular, since scenario lattices offer leaner dis-

cretization structures than scenario trees, the unfavorable computational properties

of general stochastic optimization problems can be, in part, mitigated.

In this paper, we define a family of problem-dependent semi-distances for linear

stochastic optimization problems with a Markovian structure that can be used to

bound objective values. We also show that every Markov process can, in theory, be

approximated to arbitrary precision in terms of the defined distances. Therefore, the

concepts in this paper can be used to find arbitrary precise discrete approximation

of complicated problems, possibly with continuous state spaces.

Furthermore, we contribute to the literature on transportation distances by an

approach that is capable of dealing with randomness in the constraints. This ne-

cessitates a different technique of proof since the transport of solutions between

problems becomes impossible in this framework. We, therefore, base our results on

stability results for linear programs.

In this paper, we laid the foundations for a theory-driven method to generate

scenario lattices. Further research is required to find computationally efficient ways

to do so and to evaluate the outcomes of real-world problems.



Chapter 3

Stochastic Dual Dynamic

Programming for Optimal Power

Flow Problems under Uncertainty

written in collaboration with Prof. David Wozabal1

Planning in the power sector has to take into account the physical laws of

alternating current (AC) power flows as well as uncertainty in the data of

the problems, both of which greatly complicate optimal decision-making. We

propose a computationally tractable framework to solve multi-stage stochastic

optimal power flow (OPF) problems in AC power systems. Our approach uses

recent results on dual convex semi-definite programming (SDP) relaxations of

OPF problems in order to adapt the stochastic dual dynamic programming

(SDDP) algorithm for problems with a Markovian structure. We show that

the usual SDDP lower bound remains valid and that the algorithm converges

to a globally optimal solution of the stochastic AC-OPF problem as long as

the SDP relaxations are tight. To test the practical viability of our approach,

1Publication History: Submitted to European Journal of Operational Research on
13.12.2023. Review&Resubmit process as of 07.05.2024.
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we set up an extensive case study of a storage siting, sizing, and operations

problem. We show that the convex SDP relaxation of the stochastic problem

is usually tight and discuss ways to obtain near-optimal physically feasible

solutions when this is not the case. The algorithm finds a physically feasible

policy with a small optimality gap and yields a significant added value of 27%

over a rolling deterministic policy, which leads to overly optimistic policies and

underinvestment in flexibility. This demonstrates that the standard industry

practice of assuming direct current and deterministic problems should be aban-

doned in favor of models that consider realistic AC flows and stochasticity in

the data.

3.1 Introduction

The power sector is instrumental in the efforts to transition to a clean, carbon-

neutral energy system. In the process of this transition, power systems worldwide

experience transformational change as new sources of demand like electric mobility

or electric heating are gaining importance, and production is increasingly shifting

to variable renewable sources of electricity (VRES).

The latter development especially increases the stress on existing power systems

since VRES capacities are often located far from demand centers and consequently

induce flows that existing transmission systems were not designed for. Furthermore,

the output of wind energy and solar PV, the most common forms of renewable power

generation, is intermittent and depends on environmental factors outside the control

of plant owners and transmission system operators.

As a result, there are numerous challenges in the design and operation of future

power systems, and it is presently unclear how to best resolve them in a manner

that leads to reliable electricity systems that are at the same time emission-free and

cost-efficient. In particular, the question of how and to which extent existing grid
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infrastructure has to be updated and what role grid-level electricity storage should

play is central.

In order to answer these questions, one has to consider the physical laws of power

flow and solve optimal power flow (OPF) problems, i.e., optimization problems that

incorporate explicit rules governing physical flows in their constraints or objective

functions. The goal of OPF problems is to optimize the steady-state operating

point of transmission and distribution networks in order to deliver electricity from

suppliers to consumers as efficiently as possible. This fundamental problem was for-

mulated for the first time by Carpentier (1962), and since then, substantial progress

has been made in the understanding of this problem class. See Frank et al. (2012a,b)

for excellent surveys of the recent literature.

While direct current (DC) networks can be incorporated relatively easily in op-

timization models through a set of linear constraints, networks with alternating

current (AC) require non-linear constraints that make the resulting AC-OPF prob-

lems non-convex and ultimately NP-hard (e.g. Lavaei and Low 2012).

However, real-world power systems use alternating current since AC power can

be easily stepped up and down between different voltage levels, enabling the parallel

operation of a long-distance, high-voltage transmission system and a distribution

grid, which provides safe low-voltage electricity to end consumers.

Many standard planning tools, used, for example, by network operators, ignore

the complexities of AC power flow and employ DC relaxations. While these approx-

imations work well for the high-voltage transmission systems, where the X/R ratio

is high enough to ensure de-facto decoupling of active and reactive power flow loops,

they lead to large deviations from physical realities in lower voltage grids (see, e.g.,

Larrahondo et al. 2021, Stott et al. 2009).

There are many tractable approximations that can be used to solve AC-OPF

problems including various linear programming-based relaxations and approxima-

tions (e.g., Coffrin and Van Hentenryck 2014), local search algorithms (e.g., Wu
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et al. 2018a), and a variety of conic relaxations (e.g., Low 2014a,b).

In classic power systems planning, the only sources of uncertainty are conven-

tional demand and power plant outages. Since in large networks, the former can

be very well predicted, and the latter is a rare event that is taken care of by re-

dundancies in network design, traditional OPF problem formulations are usually

deterministic. However, the transition to carbon-neutral power systems that rely on

many distributed resources and encompass an increasing share of load from electric

heating and electric mobility introduces new sources of uncertainty, changing the

nature of OPF problems and necessitating a more explicit treatment of randomness.

In particular, the large-scale introduction of VRES introduces uncertainty on the

supply side, which is absent from classical power systems planning. Furthermore,

as the potential for demand response by small dispersed consumers keeps increasing

with the introduction of smart grids, electric heating, and electric mobility, the

resulting flexibilities can be used by grid operators. Making use of this flexibility

entails dealing with resources that are only partly controllable and whose availability

and operational state have to be considered uncertain.

In this paper, we propose a general multi-stage stochastic optimization frame-

work for AC-OPF problems that explicitly models AC power flow and, at the same

time, is computationally tractable. In particular, we show that recent advances in

convex relaxations of AC-OPF problems and decomposition methods for Marko-

vian stochastic optimization problems can be combined to generate high-quality,

physically accurate solutions for multi-stage stochastic AC-OPF problems.

Since even linear two-stage stochastic optimization, the most well-behaved sub-

class of stochastic optimization problems, is NP-hard (Hanasusanto et al. 2016),

solving stochastic multi-stage AC-OPF problems seems hopeless at first glance.

Nevertheless, some attempts have been made to solve stochastic AC-OPF prob-

lems in the extant literature. However, most approaches consider two-stage stochas-

tic optimization problems (e.g. Bai et al. 2017, Bucciarelli et al. 2018) and most
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authors additionally use DC approximations (e.g., Bienstock et al. 2014, Pandzic

et al. 2015). These models typically combine an investment decision on the first

stage with operational decisions, possible over a longer period of time, in the second

stage.

However, multi-stage stochastic programming, where uncertainty gradually re-

veals itself over several stages, is important for operational planning in systems

containing assets that link several time periods, such as electricity storage. Models

that merge operational planning into a single stage implicitly assume perfect infor-

mation, which is overly optimistic and typically leads to underinvestment in storage

and line capacity.

The literature on multi-stage stochastic optimization in OPF problems is ex-

tremely scarce. The authors in Papavasiliou et al. (2018) solve a multi-stage stochas-

tic OPF problem based on stochastic dual dynamic programming (SDDP) using DC

relaxations. Yang and Nagarajan (2021) use second-order-cone relaxation and adapt

SDDP for a specific multi-stage (N − 1) contingency planning problem with ran-

dom disruptions. The paper that comes closest to our approach is Rosemberg et al.

(2021), which considers standard instances of a long-term hydro-planning problem

and tests different convex relaxations to obtain approximations of optimal dispatch

decisions. However, the authors use a highly abstracted tactical planning version of

the problem in monthly time steps and do not provide many details on their im-

plementation of the SDDP algorithm and how to recover from physically infeasible

solutions. Furthermore, the considered problems deal with high voltage transmis-

sion grids with high X/R ratios, where the non-convexities of power flow problems

generally play less of a role.

In our approach, we utilize recent advances in convex semi-definite program-

ming (SDP) relaxations of AC-OPF problems that have been shown to allow for

fast and accurate solutions to deterministic problems. In particular, the seminal pa-

per Lavaei and Low (2012) uses the dual of a relaxed SDP formulation of a specific
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AC-OPF problem and demonstrates that after some small modifications to the ad-

mittance matrix, which do not change the problem in a practically meaningful way,

the approximation is tight for a large range of problems. These results triggered

a flurry of research, which is comprehensively reviewed in Molzahn and Hiskens

(2019), Zohrizadeh et al. (2020).

Another important building block of our approach is the advances in decompo-

sition methods for multi-stage stochastic optimization that make it possible to solve

large convex Markovian problems with many stages in a relatively short time. One

of the most successful algorithmic frameworks in this regard is SDDP, which decom-

poses stochastic optimization problems along its stages and was originally proposed

for problems with stage-wise independent randomness in Pereira and Pinto (1991).

Since then, the original SDDP algorithm has been considerably refined and is now

very well understood. In particular, Löhndorf and Wozabal (2021a), Löhndorf et al.

(2013), Philpott and de Matos (2012) extend the original SDDP method to Marko-

vian processes.

Convergence of SDDP is studied in Philpott and Guan (2008) for the linear case

and in Girardeau et al. (2015) for a fairly general class of convex problems. Further-

more, Löhndorf et al. (2013) relax some of the restrictions of the original version

of the method and Shapiro (2011) studies probabilistic stopping criteria. Terça

and Wozabal (2020) show how to compute sensitivities for stochastic optimization

problems solved using SDDP and propose an asymptotic approximation error of

lattice-based approximations.

Finally, Lan (2020) shows that the complexity of SDDP only grows polynomially

in the number of stages and therefore curbs the curse of dimensionality for stochastic

optimization problems where the main difficulty are not large decision problems in

the stages but rather the fact that there are many decision stages.

The contribution of this paper can be summarized as follows:

1. We propose an SDDP decomposition algorithm for a general class of multi-
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stage stochastic AC-OPF problems by combining recent results on SDDP for

Markovian multi-stage stochastic optimization problems based on scenario lat-

tices with results on convex SDP relaxation of AC-OPF problems. The result

is a general framework that can be used to solve a large class of multi-stage

AC-OPF problems.

2. We show that the proposed algorithm converges to the true solution if the

relaxation of the AC-OPF problems is exact in the forward pass and the back-

ward pass of the algorithm. Furthermore, we show that the gap between the

SDDP upper and lower bound can be used as a certificate of convergence as

long as physically feasible voltages can be found in the forward pass. To that

end, we propose a method to compute such physically feasible solutions as

projections of the solutions of the relaxed AC-OPF problem to the feasible set

of the non-convex problem in cases where the employed convex relaxation is

not tight.

3. We provide a proof of concept in the form of an extensive storage siting,

sizing, and operations problem in a modified version of the network proposed

in Barrows et al. (2020). We model renewable production by wind and solar

and loads as random and decide about storage investments in the first stage

and about operation for a consecutive week of planning in the later stages.

The results illustrate that the problem can be solved in a reasonable time

with an optimality gap of below 3% relative to the globally optimal policy.

We furthermore demonstrate that the stochastic approach yields significantly

different policies than rolling deterministic planning, which leads to lower in-

vestment in storage and consequently more curtailment of production and

loads as well as higher cost, resulting in a significant value of the stochastic

solution of 27%.

The rest of the manuscript is organized as follows: In Section 3.2, we give a
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short, yet self-contained, introduction to AC-OPF problems and their formulation as

semi-definite programs, which is complemented by an appendix that provides more

details on the construction of admittance matrices. In Section 3.3, we integrate the

dual of a relaxed AC-OPF problem with the SDDP algorithm and give sufficient

conditions for convergence to the true solutions of the non-convex problem. Section

3.4 is devoted to the storage siting, sizing, and operations problem, which explores

the computational aspects of the proposed approach in a medium-sized application

example. Finally, Section 3.5 concludes the paper and discusses avenues for further

research. All proofs are relegated to A.

Notation: We work on a standard probability space (Ω,F) and define a filtration

{∅,Ω} = F0 ⊆ F1 ⊆ · · · ⊆ FT ⊆ F such that all random quantities ξt that realize

in period t are measurable with respect to Ft, denoted by ξt ◁ Ft. We denote by Sd

the set of symmetric (d× d) matrices. Furthermore, x ◦ y denotes the element-wise

multiplication of two vectors x and y ∈ Rd, while A • B = tr(AB) with tr(A) the

trace of a matrix A. Lastly, we use the notation [d] = {1, . . . , d} for d ∈ N, denote

complex conjugation by ∗, and the conjugate transpose by H .

3.2 Problem Description

This section specifies a class of fairly general finite-horizon multi-stage AC-OPF

problems. Section 3.2.1 briefly introduces the relevant principles of AC power flow.

For an in-depth treatment of the fundamentals of power flow, we refer to Glover et al.

(2008), while Frank and Rebennack (2016) give a compact yet excellent introduction

to the subject of optimal power flow problems. In Section 3.2.2, these principles are

applied to power system modeling. Section 3.2.3 uses these preparations to define

a multi-stage stochastic AC-OPF problem in its extensive form. Finally, in the

spirit of Lavaei and Low (2012), Section 3.2.4 introduces an SDP formulation of the

AC-OPF problem, which naturally lends itself to a convex approximation.
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3.2.1 Alternating Current Power Flow

In a direct current circuit, the voltage remains constant over time. In this setting,

all features of the system relevant to this paper can be explained with the water

analogy, where electric charge is equated to water flowing between reservoirs of

different elevations, which correspond to nodes of the electrical circuit. Gravity

induces a potential between the reservoirs, which corresponds to voltage V ∈ R and

represents the potential energy per unit of water/charge, while the flow of water

equals electric current I ∈ R. Lastly, the limited diameter of the pipes connecting

the reservoirs introduces an opposition to flow, which has an effect that is analogous

to electric resistance R ∈ R. Note that V is a difference in potential, i.e., voltages

relate to different nodes of a circuit. If voltages are associated with single nodes,

they are to be interpreted as differences to the system reference, usually ground, i.e.,

the lowest possible voltage level of no electric potential at all.

Bearing in mind this analogy, Ohm’s law, V = IR, stating that for a given

voltage/pressure, the induced current/flow is inversely proportional to the resistance,

makes intuitive sense. Furthermore, it is easy to comprehend Kirchhoffs current law,

which states that the current flowing into a node from connected nodes equals the

current flowing out of the node (no current/water is lost) as well as the Kirchhoffs’

voltage law, which requires voltages (elevation differences) to sum to zero when going

around a closed loop in the network. These ingredients are sufficient to solve DC

networks, i.e., given an input voltage and resistances of components, calculate all

unknown voltages and currents using linear equations that can be easily incorporated

in convex optimization problems.

Alternating current networks differ from the DC situation in that voltages follow

a sinusoidal pattern v(t) = V A sin(2πwt + ϕ) over time t, where V A is the peak

voltage, ϕ is the phase angle, and w is the frequency in Hertz (if time is measured

in seconds). This pattern is induced by AC voltage sources, which typically come

in the form of generators that transform mechanical energy into electric energy by
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rotating a coiled wire in a magnetic field in a circular motion with constant angular

speed, as illustrated in Figure 3.1. Since moving a conductor in a magnetic field

produces a voltage in the conductor that is proportional to the speed at which the

coil crosses the magnetic field lines, i.e., the horizontal speed of the conductor in

the right panel of Figure 3.1, the induced voltage follows a sinusoidal pattern. Note

that as the two parts of the coil change positions, the voltage differences change sign

due to Flemming’s right-hand rule.

Figure 3.1: The left panel shows a simplified design of an AC generator where
a looped conductor is rotated in a magnetic field by an external force (image by
courtesy of www.saVRee.com). The right panel shows a cut through the generator
on the right with the two dots representing the wire and the induced sinusoidal
voltage wave on the right.

Since voltages and currents fluctuate in AC systems, they are usually described

in terms of either their peak values V A or, more commonly, their root mean square

(RMS) values, which, in the case of the voltage, are defined as

V RMS =

√∫ 1

0

(V A sin(2πwt+ ϕ))2 dt = V A

√∫ 1

0

sin(2πwt)2dt =
V A

√
2
.

The definition of IRMS for currents i(t) is analogous.

While in the DC network, the only opposition to current flow is resistance,

the pulsating nature of AC voltage induces another type of opposition, which is

called reactance. Reactance is caused by the charge being stored either in magnetic

fields that form around coils in electric components such as motors or transformers

www.saVRee.com
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(inductive reactance) or on the plates of a capacitor (capacitive reactance). In the

case of the more common inductive reactance, the magnetic field lines cross the

coil as the voltage in the network rises and the field builds up, inducing a current

in the opposite direction of the current supplied by the voltage source. This is a

manifestation of the same electromagnetic principle by which a voltage is induced

when a coil moves through the magnetic field in a generator.

Both inductive and capacitive reactance thus disturb the current flow i(t) and

cause it to be out of phase with the voltage that is produced by the voltage source

as shown in Figure 3.2. In reality, loads are never purely resistive, inductive, or

capacitive but rather present themselves as a mixture of these effects which together

result in a cumulative phase shift ϕ ∈ [−π/2, π/2] of the current i(t) relative to the

voltage v(t). However, the current can always be decomposed by projection on a

purely resistive component (in phase with the voltage) and a component that is

purely reactive/capacitive (completely out of phase) in the Hilbert space of square-

integrable functions.

Figure 3.2: Three types of loads represent the different opposition to current flow
in AC circuits, assuming the phase angle of the voltage to be equal to zero. The
first panel shows a purely resistive load with voltage and current in phase, and the
second panel shows a purely inductive load with a negative phase angle of ϕ = −π/2
(the current leads the voltage), while the last panel shows a purely capacitive load
with a positive phase angle of ϕ = π/2 (the current lags the voltage).

As in DC networks, in AC networks, the instantaneous power at time t is the

product of voltage and current, i.e., p(t) = v(t)i(t). Assuming without loss of

generality that the phase angle of the voltage is zero and i(t) = IA sin(2πwt + ϕ),



82 Chapter 3 SDDP for OPF Problems under Uncertainty

results in a cumulative power production of

P = V AIA
∫ 1

0

sin(2πwt) sin(2πwt+ ϕ)dt

= V AIA
(
cos(ϕ)

∫ 1

0

sin(2πwt)2dt+ sin(ϕ)

∫ 1

0

sin(2πwt) cos(2πwt)dt

)
(3.1)

= V AIA cos(ϕ)

∫ 1

0

sin(2πwt)2dt = V RMSIRMS cos(ϕ)

in one unit of time, which is called active power and represents the amount of useful

electrical work delivered to the system. Note that due to the phase shift, the second

term in (3.1) occurs, which represents the wastage of energy due to reactance in

the network and which at times produces negative power flows, reducing the overall

useful energy in the circuit. Taking the absolute value of these flows results in

V RMSIRMS sin(ϕ), which is called reactive power Q.

These relationships are frequently described by representing voltages, currents,

and powers as complex numbers. Taking the example of currents, the idea is to

represent i(t) = IA sin(2πwt + ϕI) by the complex number I = IRMSeiϕI , which

encodes both the magnitude and the phase angle. Using this notation and setting

the phase angle of the voltage to ϕV , we can write active and reactive power as

P = Re(V I∗) = Re(V RMSIRMSei(ϕV −ϕI)), Q = Im(V I∗), (3.2)

which are the real and imaginary part of complex power S = V I∗ = P + iQ, re-

spectively. Note that the apparent power |S| is the amount of energy that has to

be put into the system, e.g., in the form of mechanical energy turning the gener-

ator. Hence, active, reactive, and apparent power are related by the pythagorean

relationship |S|2 = P 2 + Q2, which is usually referred to as the power triangle,

imagining the components P , Q, and S as the sides of a right-angled triangle with

angle ϕ = (ϕV − ϕI) between the hypotenuse |S| and the side P . We remark that

reactive power Q has no physical manifestation but merely represents the loss of

power induced by reactance according to the abovementioned relationship.
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Note that Ohm’s law, which relates voltages, currents, and resistance, can be

generalized to AC circuits by writing V = IZ where Z is the complex impededance

Z = |Z|eiϕ = R + iX with R being classic resistance and X being the reactance.

Multiplying complex current with impedence therefore does not only have a scaling

effect (as in the DC case), but, by the choice of a non-zero reactance, also causes a

rotation by ϕ which allows to model the phase-shifting effect of reactance. Equiva-

lently, we can write I = V Y , where Y = Z−1 is called the admittance.

We conclude our introduction to AC power flow by noting the fact that relevant

quantities in AC networks, such as active and reactive power in (3.2), depend in

non-convex ways on the phase angles through the sine and cosine functions, and

make AC-OPF problems non-convex and usually NP-hard (Lavaei and Low 2012).

3.2.2 Network Modeling

Electrical power systems are modeled as a network of n buses N = {1, 2, . . . , n}

which are interconnected by branches (lines) L ⊆ N ×N . A bus corresponds to a

node in a circuit and represents a load center (such as a lower voltage subnetwork),

a generation unit, or a connection point to a higher voltage grid.

We associate to every bus k ∈ N a voltage Vk ∈ C relative to the system

reference, usually ground, a current Ik which is absorbed/produced in the bus,

and a shunt admittance yk which models the admittance to the bus. Furthermore,

each branch (l,m) ∈ L has an associated series admittance ylm ∈ C modeling the

impedance of the branch.

Note that by Kirchhoff’s current law and Ohm’s law, we get for every node k ∈ N

0 = yk(Vk − Vk0) +
∑
i ̸=k

yki(Vk − Vi)⇔ Ik = ykVk +
∑
i ̸=k

yki(Vk − Vi),

where Vk0 is the bus voltage and the first term, therefore, is the flow of current

into/out of the bus while the second term is the flow from other buses. In order



84 Chapter 3 SDDP for OPF Problems under Uncertainty

to represent these relationships in a parsimonious form, we organize voltages and

currents in vectors V = (V1, . . . , Vn)
⊤ and I = (I1, . . . , In)

⊤ and define a so-called

admittance matrix Y with elements

(Y )kj =

yk +
∑

i ̸=k yki, k = j

−ykj, k ̸= j,

so that we can express the relationship between currents and voltage vectors as

I = Y V .

In a real network, the computation of the admittance matrix is complicated by

the need to account for shunt admittances of lines and possibly the existence of

phase-shifting transformers with off-nominal turn ratios. We refer to Appendix B

for details.

With these preparations, we can state AC-OPF problems entirely in terms of

voltage and power, writing

S = V ◦ I∗ = V ◦ Y ∗V ∗, P = Re(S), Q = Im(S) (3.3)

for the vector of complex, active, and reactive powers at the buses of the network.

In order to describe flow on lines, let ek ∈ Rn be the standard basis vectors and

define the partial admittance matrices Ylm = (ele
⊤
l − ele

⊤
m)ylm, which allow to write

the currents Ilm and powers Slm, Plm, and Qlm flowing on line (l,m) ∈ L as

Ilm = ylm(Vl − Vm) = e⊤l YlmV, Slm = VlI
∗
lm = V ⊤Y ∗

lmV
∗, (3.4)

Plm = Re(Slm), Qlm = Im(Slm). (3.5)

Similarly, we define the matrices Yk = eke
⊤
k Y containing only the k-th row of Y such

that Ik = e⊤k YkV .

Lastly, we remark that in power system analysis, electrical quantities are usually

expressed in a per unit system as a ratio of the actual SI quantity to a base quantity.

The per unit values are easier to interpret, as they usually lie within a narrow
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numerical range close to 1. Furthermore, the per unit system improves the numerical

stability of power flow calculations and reduces serious calculation errors, e.g., when

referring quantities from one side of a transformer to the other.

3.2.3 A Stochastic Optimal Power Flow Problem

Optimal power flow problems are optimization problems that include the physical

rules for power flow in their constraints or objectives. Classic formulations minimize

the cost of electricity generation while maintaining the power system within safe

operating limits.

We propose a general formulation of a finite horizon multi-stage stochastic AC-

OPF problem. To this end, we assume that the part of the problem that is not

directly concerned with modeling the power flow can be formulated as an SDP, thus

covering most convex problem formulations of interest. We refer to Section 3.4 for

a concrete instance of the proposed model class.

We denote the set of time periods by t ∈ T = {1, . . . , T} and organize the non-

electrical decision variables that model decisions taken in stage t into the symmetric,

positive semi-definite matrix Xt ∈ Sdt , which may, for example, contain investment,

operational, as well as trading and financial decisions.

We define the objective function as the expected cost over all stages

E

[∑
t∈T

Ft •Xt

]
,

where Ft : Ω → Sdt are random symmetric matrices with Ft ◁ Ft. Note that the

formulation above does not only cover risk-neutral decision-making but, by a suitable

definition of variables and constraints, can also accommodate the most common risk

measures (see, e.g., Föllmer and Schied 2004, Pflug and Römisch 2007).

We impose the following set of st ∈ N constraints in every stage of the problem

A1
ti •Xt−1 + A2

ti •Xt ≤ ati, ∀i ∈ [st], t ∈ T , (3.6)
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where A1
ti, A

2
ti : Ω→ Sdt and ati : Ω→ R are random data with A1

ti, A
2
ti, ati◁Ft. As in

standard stochastic optimization formulations, for example, for two-stage stochas-

tic optimization problems (Birge and Louveaux 2011), (3.6) serves two purposes:

Firstly, it models the constraints on decision variables in one stage of the problem,

and secondly, it can be used to relate the variables in stage t− 1 with the variable

in stages t, thereby defining the dynamics of the problem on the level of the deci-

sions. In this sense, the matrices A1
ti take the role of the recourse matrix in classic

multi-stage linear stochastic programming.

Apart from Xt, the model also contains the voltages Vtk, the complex powers

Stk, the active powers Ptk, and the reactive powers Qtk for bus k in time period t as

decision variables. In order to model the physical behavior of the electrical system,

we impose the following constraint

St = Vt ◦ Y ∗
t V

∗
t , Pt = Re(St), Qt = Im(St), (3.7)

which relates voltages and powers on all buses of the network. In order to connect

the decisions Xt to these variables, we impose the constraints

Ptk = AP
tk •Xt + aPtk, ∀k ∈ N , t ∈ T (3.8)

Qtk = AQ
tk •Xt + aQtk, ∀k ∈ N , t ∈ T , (3.9)

where AP
ti , A

Q
ti : Ω → Sdt and aPti , a

Q
ti : Ω → R are random. The above constraints

model inflows and outflows of power in the form of (possibly random) generation or

random load and ensure that the electric variables modeling the power flow are in

line with the decisions Xt, which determine how much power is injected/withdrawn

in each bus.

Furthermore, we make the upper bounds for active power Ptlm, apparent power

Stlm, and voltage differentials between buses that are connected by branches (l,m)
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dependent on the decisions Xt

|Ptlm| ≤ BP
tlm •Xt + bPtlm, ∀(l,m) ∈ L, t ∈ T (3.10)

|Stlm|2 ≤ BS
tlm •Xt + bStlm, ∀(l,m) ∈ L, t ∈ T (3.11)

|Vtl − Vtm|2 ≤ BV
tlm •Xt + bVtlm, ∀(l,m) ∈ L, t ∈ T , (3.12)

with random symmetric coefficient matrices BP
tlm, B

S
tlm, B

V
tlm and random parameters

bPtlm, bStlm, and bVtlm. Note that as these quantities are highly dependent on one

another, most power flow models feature only one set of the above constraints.

Putting everything together, we arrive at the following multi-stage stochastic

optimization problem for which we assume all constraints hold almost surely.

min E

[∑
t∈T

Ft •Xt

]
s.t. (3.4), (3.7), ∀t ∈ T (power flow)

Pt, Qt, Vt, Ptlm, Stlm ◁ Ft, ∀t ∈ T , (l,m) ∈ L (non-anticipativity)

(3.8), (3.9), (3.10), (3.11), (3.12) (connection with Xt)

(3.6), Xt ⪰ 0, Xt ◁ Ft, ∀t ∈ T . (constraints on Xt)

(3.13)

Note that the measurability constraints enforce the non-anticipativity of the deci-

sions.

3.2.4 An SDP Reformulation

In this section, we will cast (3.13) as an SDP. To achieve this, we need to write the

problem entirely in terms of real numbers and reformulate power flow constraints.

Following the approach in Lavaei and Low (2012), we write

Mk =

 eke
⊤
k 0

0 eke
⊤
k

 , Mlm =

 (el − em)(el − em)
⊤ 0

0 (el − em)(el − em)
⊤

 .
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Furthermore, for a matrix A ∈ Cn×n, we define A, Â ∈ R2n×2n as

A =
1

2

Re(A+ A⊤) Im(A⊤ − A)

Im(A− A⊤) Re(A+ A⊤)

 , Â = −1

2

Im(A+ A⊤) Re(A− A⊤)

Re(A⊤ − A) Im(A+ A⊤)

 ,

which we use to define matrices Yk, Ŷk, Ylm, and Ŷlm. We then define ỹ =

[Re(y)⊤, Im(y)⊤]⊤ ∈ R2n for y ∈ Cn and note that for A ∈ Cn and y1, y2 ∈ Cn, we

get

Ãy1 =

Re(A) −Im(A)

Im(A) Re(A)

 ỹ1, and Re(y⊤1 y2) = (̃y∗1)y2. (3.14)

To reformulate the problem, define Ṽt as a real-valued version of the voltage

vector and Wt = ṼtṼ
⊤
t ∈ R2n×2n. The idea of the employed SDP reformulation is to

transfer the problem into the real numbers by using Ṽt and then reformulate such

that relevant quantities can be written as the product • of Wt with matrices that

are derived from the admittance matrix. We demonstrate this principle using the

example of active power at time t in node k, which we can write as

Ptk = Re(V ∗
tkItk) = Re

(
V H
t eke

⊤
k It
)
= Re

(
V H
t YkVt

)
= Ṽ ⊤

t

Re(Yk) −Im(Yk)

Im(Yk) Re(Yk)

 Ṽt

= Ṽ ⊤
t YkṼt = tr(Ṽ ⊤

t YkṼt) = tr(YkṼtṼ
⊤
t ) = tr(YkWt) = Yk •Wt,

where the fourth equality gets rid of complex numbers and uses (3.14), the fifth uses

x⊤Ax = 1
2
x⊤(A + A⊤)x, while the subsequent steps use the properties of the trace

operator.

The following lemma from Lavaei and Low (2012) executes this program for all

relevant electrical quantities. We give a detailed proof in Appendix A.1.

Lemma 3.1. For every time t ∈ T , every node k ∈ N , and every branch (l,m) ∈ L
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the following relationships hold:

Qtk = Ŷk •Wt, |Vtk|2 = Mk •Wt

|Itlm|2 = Y⊤
lmYlm •Wt, Ptlm = Ylm •Wt

|Stlm|2 = (Ytlm •Wt)
2 + (Ŷlm •Wt)

2, |Vtl − Vtm|2 = Mlm •Wt.

Using the above result, we can reduce the power flow part of the problem to a

decision about a positive semi-definite matrix Wt with rank one. Since every such

matrix can be uniquely factored as Wt = ṼtṼ
⊤
t for a vector Ṽt ∈ R2n, the voltages

and hence all the other electrical variables can be recovered from Wt.

Using the identities in Lemma 3.1, we can now reformulate the multi-stage

stochastic programming problem as

min E

[∑
t∈T

Ft •Xt

]
s.t. Yk •Wt = AP

tk •Xt + aPtk, ∀k ∈ N , ∀t ∈ T

Ŷk •Wt = AQ
tk •Xt + aQtk, ∀k ∈ N , ∀t ∈ T

Mk •Wt = AV
tk •Xt + aVtk, ∀k ∈ N , ∀t ∈ T

Ylm •Wt ≤ BP
tlm •Xt + bPtlm, ∀(l,m) ∈ L, ∀t ∈ T

−BS
tlm •Xt − bStlm Ylm •Wt Ŷlm •Wt

Ylm •Wt −1 0

Ŷlm •Wt 0 −1

 ⪯ 0, ∀(l,m) ∈ L, ∀t ∈ T

Mlm •Wt ≤ BV
tlm •Xt + bVtlm, ∀(l,m) ∈ L, ∀t ∈ T

A1
ti •Xt−1 + A2

ti •Xt ≤ ati, ∀i ∈ [st], ∀t ∈ T

Xt ⪰ 0, Wt ⪰ 0, Wt ◁ Ft, Xt ◁ Ft, rank(Wt) = 1, ∀t ∈ T .
(Pnc)

where due to the Schur’s complement formula the constraint imposing negative
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semi-definiteness is equivalent to (BS
tlm •Xt + bStlm) ≥ 0 and

0 ≤ BS
tlm •Xt + bStlm − [−Ylm •Wt,−Ŷlm •Wt][−Ylm •Wt,−Ŷlm •Wt]

⊤

= BS
tlm •Xt + bStlm − (Ylm •Wt)

2 − (Ŷlm •Wt)
2 = BS

tlm •Xt + bStlm − |Stlm|2,

which is constraint (3.11) on apparent power.

Note that except for the rank constraint, which makes the problem non-convex,

(Pnc) is a convex SDP. Therefore, we define the problem (Pc) as the convex problem,

resulting from removing the rank constraint from (Pnc). Clearly, (Pc) approximates

(Pnc) from below, i.e., is an optimistic approximation of the AC-OPF problem.

3.3 A Solution by Markovian Stochastic Dual Dy-

namic Programming

In this section, we show how the Markovian stochastic AC-OPF problems (Pc) can

be solved using SDDP type composition methods and discuss under which circum-

stances the gap between the non-convex problem (Pnc) and (Pc) vanishes.

In Section 3.3.1, we propose a dynamic programming formulation of a Markovian

version of (Pc). Section 3.3.2, discusses a Markovian SDDP algorithm and provides

details on how value functions can be trained. Finally, in Section 3.3.3, we show

how the dual solution can be used to check for a positive duality gap in the relaxed

AC-OPF problems.

3.3.1 A Markovian Formulation

In this section, we will reformulate the extensive form of the stochastic programming

problem in (Pc) to a dynamic programming formulation. For this purpose, we denote

by ξt all the random elements in the problem formulation that are measurable with

respect to Ft. Note that while potentially all data of the problem (Pc) may be
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random, in actual applications, this is usually only the case for a small subset of

variables.

In order to obtain numerical solutions, we introduce the following running as-

sumption.

Assumption 3.1 (Finite Support). The process ξ = (ξ1, . . . , ξT ) is finitely sup-

ported.

Remark 3.1. Note that in many instances, the randomness in stochastic optimiza-

tion problems is most naturally modeled as continuously distributed. In these cases,

one can approximate the original stochastic process by a discrete process and then

solve the problem based on the approximation. There is a large literature that deals

with qualitative and quantitative bounds on the error induced by this approach (e.g.

Heitsch and Römisch 2009, Kiszka and Wozabal 2022, Löhndorf and Wozabal 2021a,

Pflug and Pichler 2014, Shapiro et al. 2009). Here, we will ignore this complication

and assume that Assumption 3.1 is either naturally fulfilled or, alternatively, that

the problem can be closely approximated by a problem based on a finitely supported

process ξ.

The most general representation of a discrete time and discrete value stochastic

process is a scenario tree, an example of which is displayed in Figure 3.3 (left).

However, in a scenario tree where every node has more than one successor, the

number of nodes necessarily grows exponentially in the number of stages. To deal

with this complication, scenario trees typically have only a few stages or contain

nodes with only one successor, which effectively leads to deterministic sub-problems

at these nodes.

The complexity of a scenario tree can be reduced substantially if the data process

is Markovian. In particular, all histories (ξ1, . . . , ξt) of the process that lead to the

same state ξt continue in identical sub-trees that can be combined without the loss

of information. In line with the terminology often used in mathematical finance, we

refer to such recombining scenario trees as scenario lattices.
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Figure 3.3: A tree with 31 nodes representing 16 scenarios on the left and a lattice
with 15 nodes representing 120 scenarios on the right.

An example of a scenario lattice is depicted in Figure 3.3 (right). Formally,

a scenario lattice is a graph organized in a finite number of layers. Each layer

is associated with a discrete point in time and contains a finite number of nodes.

Successive layers are connected by arcs. A node represents a possible state of the

stochastic process, and an arc indicates the possibility of a state transition between

the two connected nodes. Each arc connecting node i in stage t with node j in stage

t+1 is associated with a probability weight ptij, and the weights of outgoing arcs of

a node add up to one. Note that this definition also covers inhomogeneous Markov

processes where conditional distributions change over time. A scenario tree differs

from a scenario lattice by the additional requirement that every node in t has only

one predecessor in (t − 1). We denote the number of nodes of a scenario lattice in

stage t by Nt, and ξtj, j ∈ [Nt] as the state of the lattice process at node j in stage

t and refer to Kiszka and Wozabal (2022) for a more in-depth treatment of scenario

lattices and their properties.

In order to use scenario lattices in stochastic programming, we additionally need

the decisions in stage t that do not explicitly depend on the whole history of the

problem, but only implicitly via the current state of the problem. To formalize this

concept, we define the state of the problem at time t as ξt and Xt−1 with ξt as
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the environmental state, which evolves randomly independent of the decisions, and

Xt−1 as the resource state, which can be directly controlled by the decision maker.

Summarizing, to avoid the exponential explosion of complexity in the number of

stages, we assume that the problem is Markovian in the stochastic process as well

as in the decisions as detailed in the following assumption.

Assumption 3.2 (Markovian Stochastic Programming Problem). 1. The stochas-

tic process ξt is Markovian, i.e., E[ξt+1|Ft] = ξt.

2. The decision Xt depends on (X1, . . . , Xt−1) only via its dependence on Xt−1.

We note that Assumption 3.2 is natural in most situations, and for the problems

where this is not the case, it can always be enforced by a state space expansion.

Using Assumption 3.2, we represent (Pc) by its dynamic programming equations

Ct(ξtj, Xt−1) =

 min Ft •Xt + E[Ct+1(ξt+1, Xt)|ξt = ξtj]

s.t. (Xt,Wt) ∈ Xt(ξtj, Xt−1),
(3.15)

where Xt(ξtj, Xt−1) is the feasible set for stage t, and all random elements take

the values stored at lattice node ξtj and CT+1 is a given SDP representable convey

function that acts as a boundary condition for the problem.

If the expected cost-to-go functions

(ξtj, Xt) 7→ Ct+1(ξtj, Xt) := E[Ct+1(ξt+1, Xt)|ξt = ξtj]

are known explicitly, the problems in (3.15) reduce to deterministic AC-OPF prob-

lems that depend on the current state and relate to the next stage via Ct+1, which

in turn depends on the decisions taken at time t.

The following proposition relates the solution of the dynamic programming equa-

tions (3.15) with the solution of the original stochastic optimization problem.

Proposition 3.1. If Assumptions 3.1 and 3.2 hold and for all t ∈ T , all realizations

of (ξ1, . . . , ξt), and all optimal solutions Xt−1 of Ct−1, there are optimal solutions
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(Xt,Wt) such that Wt has rank 1, then the optimal values and solutions for (3.15)

are also optimal for the original problem (Pnc).

3.3.2 A Solution by Stochastic Dual Dynamic Programming

While stochastic optimization problems that use scenario trees to discretize ran-

domness can be solved via their deterministic equivalent by assigning one decision

vector to each node of the tree, this property is lost when using scenario lattices.

In particular, since the lattice does not contain information on the history of the

process, optimal decisions do not only depend on the environmental state ξt but also

on the resource state Xt−1, which is not uniquely defined for a node but depends on

the history of the decision process. Hence, in order to solve the problem, one has

to obtain the cost functions Ct, which effectively define the optimal policy via the

problems (3.15).

In order to obtain cost functions, we propose to use SDDP, which is a sampling-

based decomposition algorithm that allows to learn increasingly accurate approxi-

mations of Ct. The algorithm goes back to the seminal work of Pereira and Pinto

(1991) and has been extensively used to solve problems in energy planning.

The main idea of SDDP is to approximate the cost-to-go functions Ct by a piece-

wise affine model C̄t. This is based on the fact that since the problems (3.15) are

convex and Xt−1 only enters the right-hand sides of the constraints, the functions

Ct(ξt, Xt−1) are convex and can be approximated below by a maximum of affine

functions whose slopes are the subgradients of Ct at finitely many trial points Xt−1.

The SDDP algorithm alternates between simulating the decision policy (forward

pass) based on the current approximations C̄t and recursively updating the piecewise

affine models C̄t (backward pass). In order to describe the algorithm in more detail,

we define the approximated problem on lattice node j in period t in the l-th iteration

as
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C̄tl(ξtj, Xt−1) =

min Ft •Xt + θ

s.t. Yk •Wt = AP
tk •Xt + aPtk, ∀k ∈ N [λk]

Ŷk •Wt = AQ
tk •Xt + aQtk, ∀k ∈ N [γk]

Mk •Wt = AV
tk •Xt + aVtk, ∀k ∈ N [µk]

Ylm •Wt ≤ BP
tlm •Xt + bPtlm, ∀(l,m) ∈ L [λlm]

−BS
tlm •Xt − bStlm Ylm •Wt Ŷlm •Wt

Ylm •Wt −1 0

Ŷlm •Wt 0 −1

 ⪯ 0, ∀(l,m) ∈ L [rlm]

Mlm •Wt ≤ BV
tlm •Xt + bVtlm, ∀(l,m) ∈ L [µlm]

A1
ti • Zt−1 + A2

ti •Xt ≤ ati, ∀i ∈ [st] [σi]

Zt−1 = Xt−1, [Φ]

eti + Eti •Xt ≤ θ, ∀i ∈ [l − 1] [νi]

Xt ⪰ 0, Wt ⪰ 0,

where the decision variables are Xt, Wt and Zt−1, the dual multipliers of the con-

straints are indicated in square brackets, and realizations for random data are taken

from node ξtj.

Note that θ, together with the second last constraint, models the piecewise affine

approximation of the value function at lattice node j that has been constructed in

the first (l − 1) iterations. Also note that Zt−1 is introduced purely for notational

convenience to extract a subgradient of the function Xt−1 7→ C̄tl(ξtj, Xt−1) as the

dual multiplier Φ of the constraint Zt−1 = Xt−1.

In our general formulation, the resource state of the problem consists of the entire

Xt, which is typically not required because only a few variables are relevant for the

decision on the next stage. However, in order to simplify the exposition, we do not

explicitly distinguish between environmental state variables and decisions that are
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taken in period t.

Algorithm 2 Markov Chain SDDP

Require: Lattice ξ, number of iterations L, start state X0

1: l← 1 ▷ initialize
2: while [ domain loop]l ≤ L
3: ξ̂l1 ← ξ1, X̂

l
0 = X0

4: for [ doforward pass]t ∈ [T ]
5: Get solutions X̂ l

t for C̄tl(ξ̂
l
t, X̂

l
t−1)

6: Sample ξ̂lt+1 given ξ̂lt from ξt
7: end for
8: for [ dobackward pass]t ∈ T : 2
9: for j ∈ [Nt] do

10: Get objective otlj and dual Φtlj for C̄t(ξtj, X̂
l
t−1)

11: end for
12: for [ dogenerate new cuts]i ∈ [Nt−1]
13: et−1,il ←

∑
j∈[Nt]

pt−1,ijotlj, Et−1,il ←
∑

j∈[Nt]
pt−1,ijΦtlj

14: end for
15: end for
16: l← l + 1
17: end while

We summarize SDDP in Algorithm 2 defining L as the number of iterations.

The algorithm takes a scenario lattice ξ and a start state X0 as inputs. In the

forward passes (lines 4 to 6), the algorithm simulates a path from the lattice process

and solves the problems C̄tl at the sampled lattice nodes using the value function

approximations trained so far. In the backward pass (lines 8 to 14), the algorithm

solves the problems on all the nodes at the resource states sampled in the forward

pass and extracts an affine cut that is added to the representation of the respective

value functions at the nodes of the lattice one stage earlier by multiplying with the

corresponding conditional probabilities in line 13.

Note that we do not incorporate a convergence check but stop after a prede-

termined number of L iterations. Alternatively, one can periodically estimate the

optimality gap

gapl = Ul − C̄1l(ξ1, X0),
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where

Ul = E

[
T∑
t=1

Ft •Xtl

]
is the expected value of the policy Xtl that results from solving the nodal problems

using the value function approximations C̄tl to represent future costs. Note that

the cost functions approximation C̄1l is a lower bound for the convex relaxation of

the AC-OPF problem and, therefore, also for the original non-convex problem. On

the other hand, Ul is an upper bound of the optimal value for the relaxed problem

because the decisions Xtl are based on approximations of the real value functions,

and the resulting policies are, therefore, suboptimal. Hence, for any iteration l,

gapl is an upper bound on the optimality gap of the SDDP policy for the relaxed

AC-OPF problem.

In order to obtain an estimate of this gap, one can sample Ul by computing

K forward passes based on independent samples (ξ̂kt )k∈[K],t∈T from the lattice and

recording their objective values, i.e.,

ÛK
l = K−1

K∑
k=1

T∑
t=1

F̂ k
t • X̂k

t ,

where X̂k
t is the sampled decision and F̂ k

t is the objective value coefficient which

belongs to the sampled node ξ̂kt . An unbiased estimate of the gap is therefore

ĝapK
l = ÛK

l − C̄1l(ξ1, X0).

Note that ĝapK
l is a random quantity since it is based on a sampled upper bound

ÛK
l . See Shapiro (2011) for a discussion on how to use confidence bands around Uk

l in

convergence checks. Further, note that ĝapK
l is potentially underestimating the gap

between the SDDP policy and the costs of the true non-convex AC-OPF problem

since Û l
K might be smaller than the cost of the non-convex AC-OPF problem.

Our discussion of the convergence properties is based on Girardeau et al. (2015),

who show that SDDP converges almost surely to the true solution of the problem

if the problem is convex, the feasible set of decisions is compact, and the problems
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have relatively complete recourse. We, therefore, make the following assumption.

Assumption 3.3. (Pnc) has relatively complete recourse and a compact feasible set.

Based on this, we summarize the convergence results for SDDP in the following

proposition.

Proposition 3.2. For a problem (Pnc) fulfilling Assumptions 3.1 – 3.3, the follow-

ing holds:

1. The cost function approximation for the first stage C̄1l(ξ1, X0) is a valid lower

bound for the objective value of the multi-stage stochastic AC-OPF problem

(Pc) and therefore also for (Pnc).

2. As L → ∞, Algorithm 2 converges, i.e., ĝapKl → 0 and the optimal solutions

obtained using the cost functions approximations C̄t converge to the optimal

solutions of (Pc).

3. For any given l, if the problems in the K forward passes defining ÛK
l yield

physically feasible solutions for the non-convex problems on the nodes, then

ĝapKl is an unbiased estimate of an upper bound on the gap between the SDDP

policy and the true objective of (Pnc).

4. If there is a l̄ such that for all l ≥ l̄ all nodal problems in forward and back-

ward passes yield physically implementable solutions, then the optimal objective

values calculated by Algorithm 2 converge to the true value of (Pnc).

Point 3 of Proposition 3.2 establishes that even if the convex relaxations of the

AC-OPF problems in the nodes are not tight, one could use a computationally more

expensive method to ensure physically feasible solutions to solve problems C̄tL in the

forward pass to make sure that ĝapK
l is a valid estimate of the optimality gap for the

non-convex problem. In the next section, we will discuss this point in more detail

and propose a method how to obtain such a physically feasible policy by modifying

the forward simulations in convergence checks.
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3.3.3 Dualization of Nodal Problems and Reconstruction of

Voltages

Following Lavaei and Low (2012), we solve the dual of the nodal problems to compute

C̄tl in Algorithm 2 instead of the primal as this allows to check whether the relaxation

of the original non-convex problem on the nodes is tight. In particular, the solutions

Wt of the primal problem usually do not have rank 1, even if there is an optimal

rank 1 solution. Luckily, in most cases, the dual solution of C̄tl allows for the

construction of a voltage vector that is part of an optimal solution of the original

non-convex primal problem.

For the dual approach to work, we have to ensure that there is no duality gap

between primal and dual nodal problems. Unlike in linear programming, for SDPs,

a Slater condition has to be fulfilled to show strong duality. Unfortunately, it is not

possible to verify this condition for problem C̄tl in general. However, as is shown

in Section 3.4, the constraints related to power flow are generally unproblematic in

this regard and, in particular, allow for inner points of the feasible sets. Therefore,

we make the following abstract assumption, which ensures a strong duality between

the primal and dual problems.

Assumption 3.4 (Slater’s Condition). The problems C̄tl have finite optimal values,

and the feasible sets of the dual problem have an interior point.

In order to dualize, we write out the Lagrangian of C̄tl(ξtj, Xt−1). To that end,

we denote the elements of the symmetric matrix rlm by

rlm =


r1lm r2lm r3lm

r2lm r4lm 0

r3lm 0 r5lm


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and define the following functions of the collection of dual variables denoted by α

ht(α) =
∑
k∈N

(
−λka

P
k − γka

Q
k − µka

V
k

)
−
∑

(l,m)∈L

(
λlmb

P
lm + r1lmb

S
lm + r4lm + r5lm + µlmb

V
lm

)
−
∑
i∈[st]

σiai + ΦXt−1 +
∑
i∈[l]

νietnl

Gt(α) =
∑
k∈N

(
λkYk + γkŶk + µkMk

)
+
∑

(l,m)∈L

(
λlmYlm + 2r2lmYlm + 2r3lmŶlm + µlmMlm

)
Ht(α) = Ft −

∑
k∈N

(
λkA

P
k + γkA

Q
k + µkA

V
k

)
−
∑

(l,m)∈L

(
λlmB

P
lm + r1lmB

S
lm + µlmB

V
lm

)
+
∑
i∈[st]

σiA
2
ti +

∑
i∈[l]

νiEtnl.

With the help of these functions, we can write the Lagrangian as

L(Wt, Xt, Zt, θ, α) = ht(α)+Gt(α)•Wt+Ht(α)•Xt+Zt−1•(−Φ+A1
tiσi)+θ

1−
∑
i∈[l]

νi


which by minimax duality leads to the following dual problems on the nodes

C̄tl(Xt−1, ξtj) =



max
α

E [h(α)]

s.t. Gt(α) ⪰ 0, Ht(α) ⪰ 0

rlm ⪰ 0, ∀(l,m) ∈ L∑
i∈[l] νi = 1

Φ = A1
tiσi, ∀i ∈ [st],

(3.16)

where the first and second inequalities are enforced by the fact that the primal

variables Wt and Xt are symmetric and positive semi-definite.

Note that (3.16) is also the dual problem of the non-convex formulation of the

AC-OPF problem on the lattice nodes, which include the rank condition on Wt

(Lavaei and Low 2012). This implies that C̄tl is the bidual of the original non-convex

AC-OPF problem on the node and, consequently, the tightest convex approximation.

The following proposition gives a sufficient condition that ensure zero duality

gap in the AC-OPF problems and allows to construct a physically feasible voltage
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vector from the solution of the dual problem.

Proposition 3.3 (Lavaei and Low (2012)). Let α and Wt be optimal dual and primal

solutions of problem C̄tl(ξ̄tn, Xt−1). If

dim(ker(Gt(α))) = dim({x ∈ R2n : Gt(α)x = 0}) ≤ 2, (3.17)

then

1. the problem C̄tl(ξtj, Xt−1) has a rank one optimal solution W ⋆
t implying that

AC-OPF problem is solved without duality gap;

2. a physically feasible voltage vector V ⋆
t can be constructed from an arbitrary vec-

tor K = (K1,K2)
⊤ in the null space of Gt and conditions on real or imaginary

parts of voltages on two buses.

Remark 3.2. For the second point, note that, for some g1 and g2 ∈ R, we can write

Ṽ ⋆
t = g1K + g2K⊥

where K⊥ = (−K⊤
2 ,K⊤

1 )
⊤ (see Appendix A.4). To determine g1 and g2, we need two

conditions. As a first condition, we can use that the voltage angle at the swing bus

n0 equals 0 by convention, i.e.,

0 = g1K2,n0 + g2K1,n0 ⇔ g1 = −g2
K1,n0

K2,n0

.

As a second condition, we can use any binding voltage, power, or current constraint

on a bus m̄. We proceed for the case of a binding upper bound on the squared

absolute value of voltage and remark that formulas for the other cases can be derived

analogously.

Assuming |V ⋆
t,m̄|2 = V̄ 2

m̄, where V̄m̄ is the upper bound on the absolute value of the

voltage on node m̄, yields

|V̄m̄|2 = (g1K1m̄ − g2K2m̄)
2 + (g1K2m̄ + g2K1m̄)

2
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Substitution for g1 and solving for g2 results in

g2 = V̄m̄

((K2
1,n0

K2
2,n0

+ 1

)(
K2

1m̄ +K2
2m̄

))−1/2

.

If condition (3.17) is not fulfilled, then the AC-OPF problem might not be solv-

able efficiently. In order to check condition (3.17), it is sufficient to verify that

the multiplicity of the eigenvalue 0 is less than 2. In our numerical case study in

Section 3.4, we find that (3.17) is fulfilled in most problems solved in the forward

and backward pass of the SDDP algorithm. However, the condition is somewhat

hard to check numerically since the eigenvalues are never exactly zero due to finite

floating point precision and the implementation of interior point solvers for SDPs.

One option to deal with these issues is to set numerical thresholds for considering

eigenvalues to be zero, as is done for example in Molzahn et al. (2013).

We propose a different approach to ensure that the solution of the dual of the

relaxed OPF problem yields a physically feasible voltage vector and to construct a

valid optimality gap between the SDDP policy and an optimal solution of (Pnc). To

this end, we first solve the equations in Remark 3.2 for all the binding constraints and

check if there is a Ṽ ⋆
t , which yields voltages that do not violate any voltage bounds

and, up to a certain accuracy, yield the same powers on the nodes as computed with

the dual solution. If this is the case, we conclude that there is a physically feasible

voltage vector that reproduces the solution of the dual problem.

If, on the other hand, we get a difference in powers or violations of voltage bounds

on the buses for all voltage vectors obtained from bindings constraints, we infer that

there is a duality gap between the real problem and its convex SDP relaxation. In

this case, we find a physically feasible voltage vector that reproduces the powers on

the buses as close as possible by solving the non-convex problem

min
Vt

||Re(Vt ◦ Y ∗V ∗
t )− Pt||χχ + ||Im(Vt ◦ Y ∗V ∗

t )−Qt||χχ

s.t. V 2 ≤ |Vt|2 ≤ V̄ 2,
(3.18)
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where χ ≥ 1 and Pt and Qt are the vectors of active and reactive powers implicitly

used by the dual solution with Ptn = Yn •Wt and Qtn = Ŷn •Wt.

While the above problem is non-convex, it has only a few variables and can be

solved quickly with standard software. Furthermore, the computations have to be

only performed in those forward passes that are used for convergence checks, i.e., in

relatively few problems. In our numerical experiments, we choose χ > 1 to make the

objective function differentiable and aid gradient-based solvers (see Section 3.4).

We then recalculate the cost by re-solving the primal problems C̄tl with fixed

Ŵt = V̂tV̂
⊤
t , where V̂t is the optimal solution of (3.18). Fixing Ŵt yields a convex

SDP that is always feasible due to Assumption 3.3 and necessarily yields an objective

value larger than C̄tl. In this way, we obtain a physically feasible decision policy and

thus an unbiased upper bound ÛK
L for the true optimal cost in the calculation of

ĝapK
L , which therefore is a valid estimate of the optimality gap of the SDDP policy

relative to (Pnc).

3.4 A Problem of Storage Siting, Sizing, and Op-

eration

In this section, we present a numerical example demonstrating the performance of

the proposed framework for a medium-sized problem of siting, sizing, and operation

for grid-level battery storage systems using the IEEE RTS-GMLC network (Barrows

et al. 2020) with random electricity demand and random renewable generation.

The extant literature on choosing the optimal location for electric storage (sit-

ing), determining its optimal size, and finding optimal operational decisions is ex-

tensive, and we refer to Miletić et al. (2020) for a comprehensive survey.

Most authors use deterministic planning and employ either DC approximations

to model power flow (e.g., Wogrin and Gayme 2015) or rely on SDP or SOCP

relaxations (e.g., Marley et al. 2017).
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Since electricity storage helps to deal with the uncertainty of renewable produc-

tion, deterministic approaches tend to underinvest in storage and arrive at solutions

that perform sub-optimally in practice. Therefore, some authors seek to explicitly

incorporate uncertainty into storage planning models.

Most papers in the stochastic optimization literature employ two-stage models

where the first stage represents investment decisions while the second stage models

operational decisions (e.g., Bucciarelli et al. 2018). Some authors use this setup

combined with chance constraints to limit the probability of network failure (e.g.,

Baker et al. 2017).

There are only a few papers that use multi-stage stochastic programming and

explicitly model the uncertainty in storage operation over several time stages when

deciding on storage capacity. Pandzic et al. (2015), Qiu et al. (2017) employ a three-

stage model using DC power flow while to the best of our knowledge Xiong and

Singh (2016) is the only truly multi-stage approach using scenario trees. However,

the authors use a DC approximation and a rather crude modeling of randomness

using a trinomial scenario tree.

In the following, we propose what we believe is the first stochastic optimization

model that combines the decision about storage investment on the first stage with

multiple daily stages of stochastic planning in hourly resolution representing the

operation of the power system. In Section 3.4.1, we describe the optimization model

as an instance of the general model class described in Section 3.3, while Section 3.4.2

is dedicated to the discussion of our numerical results.

3.4.1 Optimization Problem

We use the IEEE RTS-GMLC network (Barrows et al. 2020) that contains 74 buses

partitioned in three areas and is one of the few publicly available test cases that,

next to technical specifications of the grid and power generation, also contains one

year of data on demand as well as renewable generation on the buses for the year
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2020.2 For our numerical experiments, we only use the 24 buses in area 1 of the

network.

We consider a stochastic optimization problem with 8 stages D = {0, . . . , 7}: in

the first stage d = 0, the investment decision on storage capacity is taken and the

remaining 7 stages represent one week of operational planning, for which, following

Barrows et al. (2020), we choose the 10th to the 16th of July. On each of the days

d ∈ [7], we plan for the hours H = {1, . . . , 24} in hourly resolution, i.e., we solve

24 AC-OPF problems per stage instead of one as in the models in Section 3.3.

The overall problem setup largely follows Barrows et al. (2020) and Helistö et al.

(2019) and additionally relaxes unit commitment constraints, enabling a fully convex

modeling of conventional dispatchable power plants.

We note that in order to get an accurate picture of the value of storage, one would

have to include days from all seasons. Strategies for doing so are, for example,

discussed in Qiu et al. (2017) or Xiong and Singh (2016). Since we are mainly

interested in the performance of SDDP for AC-OPF problems, we abstain from

these complications in the present paper.

We model PV and wind production as well as demand as random and provide a

detailed description of the stochastic modeling of these variables in Appendix C. In

the model formulation, we are interested in residual demand for active and reactive

power PD
dhk and QD

dhk on the day d, hour h, and on bus k, which we calculate by

subtracting the renewable production at bus k from the load. Using the stochastic

gradient descent method described in Löhndorf and Wozabal (2021a), we use our

stochastic model to simulate scenarios to generate a lattice.

In order to make the investment in electricity storage more attractive, we change

the energy mix towards a future partially decarbonized system. To that end, we

phase out the coal plants at nodes 101, 102, 115, 116, and 123 with capacities

76MW, 76MW, 155MW, 155MW, and 350MW, respectively, jointly accounting for

2All case related data is available at https://github.com/GridMod/RTS-GMLC.

https://github.com/GridMod/RTS-GMLC
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73% of coal generation capacity. To compensate for the loss of fossil production, we

double renewable capacities by multiplying their simulated production by 2.

We denote by G = {1, 2, . . . ,m} the set of all generators and by Gk ⊆ G the set

of generators at bus k. Furthermore, we let N S ⊆ N be the subset of buses where

storage can be built and choose N S to be equal to the eight buses with renewable

production capacities. We denote the first-stage decision on energy capacity (in

MWh) by B̄k for k ∈ N S.

In line with the phase-out of much of fossil fuel capacities and the ramp-up of

renewables, we assume a 2030 scenario for storage cost and use the projections of

Cole and Frazier (2020) who estimate a cost of $208/kWh for grid-level battery

storage. Due to a lack of detailed cost estimates as functions of energy and power

capacity, we follow Cole and Frazier (2020) in assuming that the duration of the

storages is four hours, i.e., that the storage runs empty latest within four hours if

it is discharged at full power capacity. Correspondingly, the maximum real power

charge and discharge are η−1B̄k/4, ηB̄k/4, where η ∈ (0, 1) is the efficiency of the

storage, which is assumed to be symmetric for charging and discharging.

To scale down the cost to one week of planning, we compute annuities based on

a lifetime of 20 years and an interest rate of 2% yielding a weekly investment cost

of fB = $230/MWh, where we assume that the year has exactly 52 weeks.

This leads to the following first-stage problem in the l-th iteration of the SDDP

algorithm

C̄0l(ξ0) =


min fB

∑
k∈NS

Bk + θ

s.t. e00i +B
⊤
e10i ≤ θ, ∀i ∈ [l − 1],

where B = (Bk)k∈NS ∈ R|NS | and e00i and e10i are the intercepts and slopes of the

affine functions that approximate C1.

Next, we describe the nodal problems C̄dl in stages d ∈ [7], which are solved in

the forward and backward pass. The random residual demands are read from the
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corresponding lattice node, and we drop the time index d for the day to keep the

notation manageable.

To operate the storage, we decide about real injections and withdrawals O+
hk ≥ 0,

O−
hk ≥ 0, which are subject to the constraints

O+
hk ≤ Bk/4η, k ∈ N S,∀h ∈ H [β

+

hk] (3.19)

O−
hk ≤ ηBk/4, k ∈ N S,∀h ∈ H [β

−
hk] (3.20)

and the storage balance constraints for the storage level Bhk

Bhk = Bh−1,k + ηO+
hk − η−1O−

hk, ∀k ∈ N S,∀h ∈ H [σhk] (3.21)

Bhk ≤ Bk, ∀k ∈ N S,∀h ∈ H [κhk], (3.22)

where the initial storage level B0k is the level in hour h = 24 on the previous day

and together with the storage capacities B̄k form the environmental state. Note

that the Greek letters in the square brackets are the dual variables of the respective

constraints.

Since we start planning on a Monday after the weekend, which is characterized

by low loads, we assume the storage to be 75% filled in the first hour of stage 1.3

In order to avoid end-of-horizon effects, we force the storage back to its initial level

by imposing the following constraints in the last hour of the problem in d = 7,

B24,k = 0.75× B̄k, ∀k ∈ N S, [δk]. (3.23)

Apart from electricity storage, power can be provided by generators. As specified

in the case description, we assume the cost of power generation f g to be a convex,

piecewise linear function of active power generation PG
tg with breakpoints (agi, bgi)

3Alternatively, one could make the initial storage level a decision variable converting the problem
to an infinite horizon logic.
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i = 1, . . . , rg such that

f g(PG
hg) =



mg1(P
G
hg − ag1) + bg1, ag1 < PG

hg ≤ ag2

mg2(P
G
hg − ag2) + bg2, ag2 < PG

hg ≤ ag3
...

...

mg(rg−1)(P
G
hg − ag(rg−1)) + bg(rg−1), ag(rg−1) < PG

hg ≤ agrg .

To keep the problem convex, we relax the on/off constraints of the power plants,

set the lower bound on production P g = ag,1 = 0, and impose the following linear

constraints on active and reactive power generation in hour h

PG
hg ≤ P g, ∀g ∈ G, ∀h ∈ H [λhg] (3.24)

Q
g
≤ QG

hg ≤ Qg, ∀g ∈ G, ∀h ∈ H [γ
hg
, γhg]. (3.25)

We denote by PD
hk and QD

hk the active and reactive power demand in hour h at

node k, which is the difference of conventional demand and renewable generation,

and for all k ∈ N , h ∈ H

Phk = Yk •Wh =
∑
g∈Gk

PG
hg − PD

hk −O+
hk +O−

hk +DP+
hk −DP−

hk , [λhk] (3.26)

Qhk = Ŷk •Wh =
∑
g∈Gk

QG
hg −QD

hk +DQ+
hk −DQ−

hk , [γhk], (3.27)

where D+
hk and D−

hk are curtailment of demand and supply with associated cost

fD+ and fD−, which we set to $1000/MWh and $100/MWh, respectively. This

implies that renewable production can be curtailed for a moderate fee, while it is

considerably more expensive to curtail load. Note that the possibility of curtailment

ensures that the problems at the nodes are always feasible and that Assumption 3.3

is fulfilled.
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Furthermore, we impose the following constraints on voltages and powers

(V k)
2 ≤ |Vhk|2 = Mk •Wh ≤ (V k)

2, ∀k ∈ N ,∀h ∈ H [µ
tk
, µtk] (3.28)

|Shlm|2 = (Ylm •Wh)
2 + (Ŷlm •Wh)

2 ≤ S
2

lm, ∀(l,m) ∈ L,∀h ∈ H, (3.29)

where we used the results from Lemma 3.1 to rewrite the constraints in terms of Wh.

Note that the dual multipliers for the constraints (3.29), represented in the form of

negative semidefiniteness constraints, are positive semidefinite matrices rhlm of the

form

r =


r1 r2 r3

r2 r4 0

r3 0 r5

 .

In the stages d ∈ [7], we thus solve the problems Cd(ξd, B,Bd−1)

min
∑
h∈H

[∑
g∈G

fG
hg +

∑
k∈N

fD+
(
DP+

hk +DQ+
hk

)
+ fD−

(
DP−

hk +DQ−
hk

)]
+ θ

s.t. mgi(P
G
hg − agi) + bgi ≤ fG

hg, ∀i ∈ [rg − 1], g ∈ G, h ∈ H [ζhgi]

(3.19)− (3.28)
−S2

lm Ylm •Wh Ŷlm •Wh

Ylm •Wh −1 0

Ŷlm •Wh 0 −1

 ⪯ 0, ∀(l,m) ∈ L,∀h ∈ H [rhlm]

e0i +B
⊤
e1i +B⊤

24e
2
i ≤ θ, ∀i ∈ [l − 1] [νi]

PG
hg, Q

G
hg ≥ 0, ∀g ∈ G,∀h ∈ H

Bhk, O
+
hk, O

−
hk ≥ 0, ∀k ∈ N S,∀h ∈ H

DP+
hk , DP−

hk , DQ+
hk , DQ−

hk ≥ 0, ∀k ∈ N ,∀h ∈ H

Wh ⪰ 0, ∀h ∈ H,

where the respective dual multipliers are indicated next to the constraints, B is the

vector of storage capacities, B0 = (B0,k)k∈NS are the initial storage levels, and the

value function approximation is described by the intercepts e0i and the slopes e1i , e
2
i .
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We denote by α the collection of Lagrange multipliers in the above problem and

collect all terms of the Lagrangian that do not contain primary variables in the

function

Γd(α) =
∑
h∈H

∑
g∈G

(
rg−1∑
i=1

ζhgi(bgi −mgiagi)− λhgP g − γhgQg + γ
hg
Q

g

)

+
∑
h∈H

∑
k∈N

(
µ
hk
V 2

k − µhkV
2

k + λhkP
D
hk + γhkQ

D
hk

)
−
∑
h∈H

∑
(l,m)∈L

(
S
2

lmr
1
hlm + r4hlm + r5hlm

)

−
∑
k∈NS

σ1kB0,k +
∑
h∈H

(
κhk +

β
+

hk

4η
+

ηβ
−
hk

4

)
Bk + 0.75δkBk −Bk

∑
i∈[l−1]

νie
1
ik

+
∑

i∈[l−1]

νie
0
i

(3.30)

where the terms 0.75δk are only required in d = 7.

In the next step, we define the matrix that contains all the terms that are mul-

tiplied with the primal decision variable Wh

Gh(α) =
∑
k∈N

(
λhkYk + γhkŶk + (µhk − µ

hk
)Mk

)
+
∑

(l,m)∈L

(
2r2hlmYlm + 2r3hlmŶlm

)
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Using this definition, we can define the dual problem in iteration l in a lattice

node as

max Γd(α)

s.t. Gh(α) ⪰ 0 ∀h ∈ H [Wh]∑
i∈[rg−1]

ζhgi = 1 ∀g ∈ G,∀h ∈ H [fG
hg]

∑
i∈[rg−1]

ζhgimgi + λhg − λhk ≥ 0 ∀k ∈ N ,∀g ∈ Gk,∀h ∈ H [PG
hg]

γhg − γ
hg
− γhk = 0 ∀k ∈ N ,∀g ∈ Gk,∀h ∈ H [QG

hg]

σhk − σh+1,k + κhk ≥ 0 ∀k ∈ N S,∀h ∈ [23] [Bhk]

σ24,k + κ24,k +
∑

i∈[l−1]

νie
2
ik + δk ≥ 0 ∀k ∈ N S [B24,k]

λhk − σhkη + β
+

hk ≥ 0 ∀k ∈ N S [C+
hk]

− λhk + σhk
1

η
+ β

−
hk ≥ 0 ∀k ∈ N S [C−

hk]

λhk ≤ fD+
hk ∀k ∈ N ,∀h ∈ H [DP+

hk ]

λhk ≥ −fD−
hk ∀k ∈ N ,∀h ∈ H [DP−

hk ]

γhk ≤ fD+
hk ∀k ∈ N ,∀h ∈ H [DQ+

hk ]

γhk ≥ −fD−
hk ∀k ∈ N ,∀h ∈ H [DQ−

hk ]∑
i∈[l−1]

νi = 1 [θ]

rhlm ⪰ 0 ∀(l,m) ∈ L

νi ≥ 0, ∀i ∈ [l − 1]

ζhgi, β
−
hk, β

+

hk, κhk, λhg, γhg, γhg
, µhk, µhk

≥ 0, ∀k ∈ N ,∀g ∈ G, ∀h ∈ H,

where the variable δk is only required on the last stage of the problem and can be

removed from Γd and the constraint with dual multiplier B24,k in all other stages

and Gh(α).
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When solving problem Cd(ξd, B,Bd−1) with d ∈ 2, . . . , 7 in a backward pass for

a given state (B,B0), it follows from (3.30) that the subgradients of B and B0 are ∑
i∈[l−1]

νie
1
ik −

∑
h∈H

(
κhk +

β
+

hk

4η
+

ηβ
−
hk

4

)
− 0.75δk


k∈NS

and (−σ1k)k∈NS , respectively, where again the last term 0.75δk is only present in the

last stage of the problem. For d = 1, the environmental state space only consists of

B̄ and the subgradient of C̄1l with respect to storage capacity is ∑
i∈[l−1]

νie
1
ik −

∑
h∈H

(
κhk +

β
+

hk

4η
+

ηβ
−
hk

4

)
+ 0.75(−σ1k)


k∈NS

as the initial storage level is 75% of storage capacity.

We conclude this section by showing that the Slater condition holds for the prob-

lems on the nodes, implying no duality gap between the primal and dual problem.

Proposition 3.4. Strong duality holds between the primal and dual of Cd(ξd, B̄, Bd−1).

3.4.2 Numerical Results

We implement the algorithm in MATLAB 2021b and use MOSEK 9.3.10 to solve

the optimization problems on the nodes. We approximate ξ using a scenario lattice

with 100 nodes per stage. Furthermore, we use YALMIP (Löfberg 2004) to formu-

late optimization problems and solve problems on nodes in the same stage in the

backward pass as well as multiple forward passes for convergence checks in parallel.

In our experiment, we run the algorithm for 100 iterations, where in every fifth

iteration, we increase the number of scenarios in the forward pass to 150 to generate

upper bounds on the cost generated by the current policy. All calculations are

performed on an Amazon virtual machine of the type c5a.16xlarge (256 GB, 64

AMD CPU@3.3 GHz) on which the computations took 17.94 hours. Looking at the

convergence plot in the left panel of Figure 3.4, we can observe that the algorithm
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Figure 3.4: The panel on the left shows the convergence of SDDP upper and lower
bound and a 95% confidence interval for the upper bound. The right panel shows
fan plots of the distributions of storage level as well as the residual load on node
122 from 500 scenarios.

converges roughly after 60 iterations.

In order to assess the performance of the approach, we generate 500 scenarios and

solve the relaxed OPF problem using the approximations of the cost-to-go functions

obtained in the last SDDP iteration. We obtain that the optimal storage capacity

is equal to 3732 MWh, where storage at buses 122 and 119 account for 53% and

28% of the capacity, respectively. As the storage capacity at bus 122 plays a crucial

role and the only wind power plant is placed at this bus, we present the operation

of this storage on the right panel of Figure 3.4, where it can be observed that the

storage level fluctuates around a regular daily pattern and that the deviations from

this pattern are frequent and occasionally substantial.

As the presented approach relies on a convex relaxation of the OPF problem,

in some situations optimal decisions Wh do not correspond to physically feasible

solutions. To obtain a physically feasible policy for these cases, we solve (3.18)

using the MATLAB function fmincon using the sqp algorithm and δ = 1.25 to

find voltages V̂h for the 500 forward passes and re-solve the primal nodal problems

fixing these voltages as discussed in Section 3.3.3. We find that the cost for this

modified primal problem is only 1.8% (standard deviation 0.0013) higher than the
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cost when the convex approximation is used, which implies that the dual relaxation

of the AC-OPF problem is relatively tight and physically feasible voltages that do

not significantly increase cost, can be found using (3.18). After this operation,

we obtain a new upper bound of 5.95 mio. (standard deviation 50, 982) and thus

an optimality gap of 0.19 millions representing 3% of the SDDP lower bound as

computed after 100 iterations.

To compute the value of the stochastic solution, we calculate the value of a

rolling horizon deterministic policy, which uses conditional means of the stochastic

process to re-optimize decisions in every stage of the problem (see Powell 2019,

Schildbach and Morari 2016, Sethi and Sorger 1991, for similar approaches). More

specifically, we first solve one large deterministic problem over seven days, replacing

all stochastic variables by their unconditional means and using the resulting storage

investment cost as the cost of the policy in stage 0. We then simulate a random

state transition to a lattice node ξ̂1j in stage 1, update the expected realizations of

ξd for d ≥ 2 conditional on ξ̂1j, re-solve the problem for the 7 days of operation, and

use the cost incurred on day d = 1 as the cost of the deterministic policy for that

day. We proceed in this manner until the last stage to simulate the overall cost of

deterministic planning for the sampled scenario. We repeat this procedure for the

500 scenarios and we used above to test the SDDP policy.

Figure 3.5: Comparison of curtailment values for the primal problem and the rolling
deterministic approach. Blue and red indicate curtailment of supply and demand
respectively.
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The deterministic benchmark policy invests in 1402 MWh of storage, which is

only 37% of the storage capacity bought by the SDDP policy. Comparing curtailed

power Figure 3.5 shows that this reduced storage capacity leads to substantially

increased curtailment and is therefore suboptimal. This results in an average cost

of 7.56 mio (standard deviation 8, 362), which is 27% higher than the optimal cost

incurred by the SDDP policy, which equals 5.96 (standard deviation 50, 982) million

dollars. We can thus conclude that stochastic planning has a substantial added

value over state-of-the-art deterministic planning approaches.

3.5 Conclusions

We propose the first framework to solve multi-stage stochastic AC-OPF problems.

To find solutions to these NP-hard problems, we combine SDDP, which allows to

efficiently solve Markovian stochastic programming problems with many stages, with

a convex SDP relaxation for AC-OPF problems, which has proven to be of a high

quality in deterministic optimization.

We investigate the convergence properties of the resulting algorithmic framework

and describe how a physically feasible policy that yields a valid upper bound on the

original non-convex problem can be obtained. Together with the SDDP lower bound,

which is valid for the non-convex stochastic AC-OPF problem, an optimality gap

can be computed.

In a numerical example on storage siting, sizing, and operations, we show that

the proposed approach is computationally tractable for medium-sized problems and

allows to learn policies that have a small optimality gap.

Our numerical results show that the value of the stochastic solution is substantial,

and therefore, stochastic optimization is able to dramatically reduce expected costs

in systems with a high share of unpredictable renewable generation.

This paper opens several avenues for further research. Firstly, it would be inter-
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esting to extend the problem class to include binary variables in the non-electrical

part of the problem, which would enable (N − 1) security-constrained dispatch and

more accurate modeling of technical characteristics of power plants.

Secondly, a speed-up in solving the AC-OPF problems in the nodes could be

achieved by partitioning the admittance matrix for larger networks as in Andersen

et al. (2014), Molzahn et al. (2013) or the switch to looser but faster relaxations of the

AC-OPF power flow problems in the backward passes, for example, by reformulation

as SOCP as in Coffrin et al. (2016), Marley et al. (2017).

Thirdly, a more efficient implementation of SDDP in a low-level programming

language would help leverage speed-ups from parallelization in the backward pass as

well as from quicker setup of optimization problems. Furthermore, an asynchronous

version of SDDP would facilitate the distribution of a problem instance amongst

several machines in a cluster.



Chapter 4

Optimal Renewable Expansion

and Storage Integration Planning

under Uncertainty

This paper proposes a multi-stage stochastic formulation for renewable

and storage expansion planning, accounting for uncertainties in both de-

mand and renewable generation as well as the physical laws of alternating

current (AC) power flows. The optimization problem comprises an initial

stage involving investment decisions and subsequent stages representing

daily network operations at an hourly resolution. The objective is to

minimize costs over the specified time horizon and identify the optimal

location and capacity of storage units and renewable generation sources

necessary to achieve a targeted share of renewable generation.

To address the computational challenges posed by this large-scale

problem, we apply the solution strategy proposed in Kiszka and Woza-

bal (2024) and provide a detailed explanation and reformulations of the

optimization problem required to implement the algorithm.

To illustrate the computational tractability of the problem, the for-

117
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mulated model and algorithm are implemented in an extensive case study

focusing on renewable expansion and storage integration within the part

of the IEEE RTS-GMLC network. The results demonstrate the evolu-

tion of the generation infrastructure needed to achieve future renewable

generation targets.

4.1 Introduction

The world is facing a critical challenge of reducing greenhouse gas emissions to

mitigate the impacts of climate change. According to the Intergovernmental Panel

on Climate Change (2018), emissions from fossil fuels and industry are the primary

driver of global warming, which accounted for 89% of global CO2 emissions in 2018.

Consequently, there is a growing consensus to eliminate fossil fuels and shift towards

cleaner, renewable energy sources. As a consequence, the profound transformation

of the power system is necessary to address climate change, ensure energy security,

and promote sustainable economic growth.

The transition to a low-carbon energy future requires the crucial participation of

both governments and communities, and many nations are taking active measures

by employing policy targets that aim to expand the use of renewable energy sources.

For example, the European Climate Law sets the goal to become climate neutral

by 2050 and the intermediate target of reducing net greenhouse gas emissions by

at least 55% by 2030 compared to 1990 levels. The −55% target implies that coal

power plants in Europe will be phased out almost completely by 2030 as coal is

the dirtiest of the fossil fuels and responsible for over 30% of the global average

temperature increase.

According to International Renewable Energy Agency (2021b), replacing 800

GW of coal-fired capacity with new renewable capacity could significantly reduce

emissions by 2030, as it would avoid around 3 giga tonnes of CO2 per year, which
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correspond to 9% of global energy-related CO2 emissions in 2020. Additionally,

retiring these power plants would bring financial benefits up to $32.3 billion annually

by reducing power generation costs.

To determine the optimal direction of changes needed in the specific power net-

work infrastructure to meet given targets, a generation expansion planning problem

can be formulated and solved to support decision-makers.

There is a rich literature on optimization techniques used to solve generation

expansion planning problems. The most common include linear programming in

Diewvilai and Audomvongseree (2021), Massé and Gibrat (1957), integer program-

ming in Heuberger et al. (2017), Koltsaklis et al. (2014), Quiroga et al. (2019),

non-linear programming in Hemmati et al. (2016), Zhang et al. (2017), dynamic pro-

gramming in Booth (1972), Oree et al. (2017) and metaheurstic methods in Gupta

et al. (2014), Neshat and Amin-Naseri (2015). Due to the computational complexity

of non-linear models, simplified mixed-integer linear programming models (MILP),

especially multi-period MILP, gained significant attention in the expansion planning

area. Among these models, we can find a multi-period MILP model with area dis-

cretization and integrated energy resource management in Koltsaklis et al. (2014), a

multi-period stochastic MILP with budget constraints in Afful-Dadzie et al. (2017),

a multi-period MILP model for generation and transmission expansion planning in

Guerra et al. (2016) or a multi-period MILP model with operation constraints in

Koltsaklis and Georgiadis (2015).

As renewable production is highly variable and largely unpredictable, a number

of flexibility sources need to be exploited and planned ahead of time. An effective

tool to mitigate the impact of variable renewable energy on power system planning

and operation is energy storage. For example, Opathella et al. (2020) presents a

MILP formulation for generation and storage expansion planning with power balance

constraints, Hemmati et al. (2017) proposes a two-level microgrid planning tool

considering distributed generation resources and energy storage, Xiong and Singh
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(2016) propose an approach for determining the optimal location and size of energy

storage in power system with wind power generation in which economic dispatch

and power flow need to be solved.

In the generation expansion planning problem, a trade-off between investment

and operating decisions can be critically assessed only if we include hourly or sub-

hourly operational decisions as an evaluation of the flexibility of the system. As

solving the alternating current optimal power flow (AC OPF) problem is NP-hard

(see Bienstock and Verma 2019), planners usually use linearized direct current

(DC) approximation models of power flow in expansion planning, e.g. Bussar et al.

(2014), Khodaei and Shahidehpour (2012), Lara et al. (2018), López-Ramos et al.

(2020), Pineda et al. (2016). In practice, the approximations are attractive from

the computational perspective and sufficient for the needs of operational planners.

However, the DC OPF problem doesn’t faithfully model physical variables of AC

power system in expansion and integration planning. For example, a comparison

of DC OPF and AC OPF deterministic model for the RTS GMLC network can be

found in Bent et al. (2011), where it is shown that a plan based upon DC power flow

must be significantly modified to meet requirements of the AC power flow model.

Another significant complication in expansion planning models is accounting for

uncertainty. In literature, many authors use deterministic approaches (e.g. Bussar

et al. 2014, Lara et al. 2018) and conduct analysis of certain scenarios (e.g. Hirth

2015, Peter and Wagner 2021). Nevertheless, there also exist stochastic approaches:

Pineda et al. (2016) presents a market-focused approach with uncertainty in de-

mand and renewable generation, Dehghan et al. (2016) propose tri-stage reliability-

constrained model allowing for randomness in demand, wind generation and avail-

ability of generation and transmission, Moreira et al. (2021) adopts robust opti-

mization model to schedule operating of the network. However, they mostly don’t

include operational decisions in problem setting or use DC approximation, which

significantly simplifies the problem.
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As we can observe, generation expansion planning models can vary widely in

scope and components as well as in the resolution of time and space, which drive

the complexity of optimization problems. Therefore, planners usually focus on one

aspect while relaxing other assumptions or using approximations of the original

problem. We refer to Skolfield and Escobedo (2021) for an extensive guide to recent

methodologies and applications of optimal power flow problems.

In this paper, a multi-stage stochastic optimization model is proposed to evaluate

the expansion of the grid infrastructure required to phase out fossil fuels while taking

into account operating constraints and the variability of the demand and renewable

generation sources. The model aims to identify the location and capacity of storage

units and new renewable generation sources that ensure the stability and flexibility

of the network while minimizing investment and operating costs over the given time

horizon. The optimization problem is divided into two parts: the first stage with

investment decisions and the consecutive stages representing days of operation with

hourly resolution using AC OPF.

As already mentioned, AC OPF itself is an NP-hard nonconvex optimization

problem, and considering an extension to a multi-stage optimization problem sig-

nificantly increases the complexity of the problem. We use the method proposed

in Kiszka and Wozabal (2024), which constitutes an innovative approach capturing

the complexities of this optimization model.

Next, the model and the algorithm are implemented in the case study considering

part of the IEEE RTS GMLC network. The optimal storage and renewable energy

capacities are compared for different seasons and analyzed with respect to changes

in the required share of renewable energy generation.

To the best of our knowledge, the presented generation expansion planning for-

mulation is the first one covering multi-stage planning, AC OPF, and uncertainty

simultaneously, and the applied methodology ensures the computational tractability

of the problem.
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The contribution of this paper can be summarized as follows:

1. We propose a generation expansion planning problem including multi-stage

formulation, alternating current nature of power flows, and uncertainty of

demand and renewable generation simultaneously. The optimization problem

can be divided into the first stage, representing investment decisions, and

subsequent stages, reflecting operational planning of the network over a given

time horizon.

2. We model the reactive power limits of wind power generation as a function of

random generation leading to randomness in inequality constraints.

3. We introduce the constraint ensuring the minimum daily renewable generation

requirement expressed as a percentage of daily demand.

4. We apply the solution strategy proposed in Kiszka and Wozabal (2024), pro-

viding a detailed explanation of the reformulations and adaptation of the al-

gorithm.

5. We implement the model using the part of the IEEE RTS GMLC network. The

resulting expansion strategies are compared for different seasons and minimum

renewable generation targets.

Section 4.2 presents the multi-stage problem formulation with an explanation of

all variables and constraints. The applied solution strategy is described in section

4.3 with a detailed explanation of the problem evaluation. Section 4.4 describes the

case study on the real data, providing all optimization parameters and analyzing

numerical results. Section 4.5 concludes the paper.

Notation: Re(·) and Im(·) denote real and imaginary parts of their arguments.

∗ denotes complex conjugation.
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4.2 Problem Description

This section proposes a generation expansion planning problem to provide the op-

timal investment strategy required to accomplish a given share of renewable energy

and guarantee stable power network operation over a defined time horizon while

minimizing the expected costs. In order to include uncertainty of renewable genera-

tion and load, Markov process in the form of scenario lattice is used in the proposed

multi-stage stochastic optimization model.

The generation expansion planning model is assumed to consist of T + 1 stages.

The first stage is denoted by 0 and comprises the investment decisions on storage

and new renewable capacity at predefined units. As solar and wind energy continue

to lead renewable generation expansion in the last few years, we focus only on those

technologies in the proposed model. The following stages T = {1, . . . , T} represent

T days of operational planning where every day includes planning for every hour

H = {1, . . . , 24}.

In order to address the uncertainty of load and renewable generation, we intro-

duce a random process ξ = (ξ0, ξ1, . . . , ξT ), ξt : Ωt → R4×24 with ξt = (ξht)h∈H and

ξht = (ξLht, ξ
S
ht, ξ

W
ht , ξ

H
ht) representing random load of the area, solar, wind and hydro

generation per unit of capacity respectively. It means that ξSht, ξ
W
ht , ξ

H
ht ∈ [0, 1] for ev-

ery h ∈ H, t ∈ T . ξ is assumed to be a finitely supported Markov process, implying

that the set Ωt is finite and conditional distribution of ξt+1 depends only on ξt for

every t ∈ {0, 1, . . . , T − 1}. Let assume that Πt(ωt, ωt+1) represents the conditional

probability P(ξt+1 = ξt+1(ωt+1)|ξt = ξt(ωt)) establishing the transition matrix Πt.

The power network is represented by n buses N = {1, . . . , n} which are intercon-

nected by lines L ⊆ N ×N . The generation units are divided into two categories:

conventional generators and renewable energy sources. The conventional generators

include coal, gas, oil, and nuclear power plants and are designated as G = {1, . . . ,m}.

Renewable energy sources, on the other hand, are comprised of solar, wind, and hy-

dropower plants and are denoted as G̃ = {1, . . . , m̃} = G̃S ∪ G̃W ∪ G̃H , where G̃S,
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G̃W , and G̃H represent solar, wind and hydropower plants, respectively. The set G̃

encompasses not only existing units but also the potential solar and wind power

plants represented by subsets G̃S,new ⊆ G̃S and G̃W,new ⊆ G̃W , respectively, and the

sum of which forms G̃new ⊆ G̃. To identify the set of generators at a specific bus, we

use the subscript k, i.e. Gk, and define the functions k : G → N and k̃ : G̃ → N to

associate a generator with its corresponding bus number.

To ensure the stability and reliability of the energy system, we also consider energy

storage solutions and N S ⊆ N denotes the subset of buses where storage capacity

can be built.

The network topology is defined by the admittance matrix Y ∈ Cn×n, which is

based on the provided impedance and shunt admittance values of each line and bus

in the power system. For more information on obtaining the admittance matrix and

its transformations, refer to Frank and Rebennack (2016) and Kiszka and Wozabal

(2024).

The first stage in the proposed optimization model corresponds to the investment

planning for renewable energy and storage capacity. Three vectors represent the

decision variables:

B = (Bk)k∈NS ∈ R|NS |,

P S,max = (P G̃,max
j )j∈G̃S,new ∈ R|G̃S,new|,

PW,max = (P G̃,max
j )j∈G̃W,new ∈ R|G̃W,new|

which define the storage capacity, new solar, and new wind power capacity at selected

locations respectively. These decisions are assumed to be nonnegative and have

investment costs fB, fS, fW ≥ 0, denoting the cost per MW of storage, solar, and

wind capacity, respectively, that add up to the value of

c0(B,P S,max, PW,max) = fB
∑
k∈NS

Bk+fS
∑

j∈G̃S,new

P G̃,max
j +fW

∑
j∈G̃W,new

P G̃,max
j . (4.1)
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The following stages t ∈ {1, . . . , T} focus on the operational planning of the

power system, aiming to ensure optimal power flow while minimizing costs. Deci-

sions on power generation, storage operation, and curtailment have to be made at

every stage based on the realization of the random process.

The random variable ξL, which represents the random demand for the entire

area, must be scaled to calculate the load for individual buses, taking into account

both active and reactive power. Therefore, we assume that

PD
k,ht = ξLhtρ

P
k ∀k ∈ N , ∀h ∈ H, (4.2)

QD
k,ht = ξLhtρ

Q
k ∀k ∈ N ,∀h ∈ H (4.3)

where ρPk , ρ
Q
k ≥ 0 are predefined coefficients for every k ∈ N , representing the

distribution of the total demand among buses.

To calculate the production from renewable sources, we need to multiply the

capacity of each generator by the generation per capacity unit represented by random

variables ξS, ξW , and ξH . Using capacities for existing generators j ∈ G̃\G̃new and the

optimal decisions from the first stage optimization for potential generators j ∈ G̃new

the output of the renewable energy sources is given as follows:

P G̃
j,ht = ξRhtP

G̃,max
j ∀R ∈ {S,W,H},∀j ∈ G̃R,∀h ∈ H. (4.4)

The reactive power of renewable generators QG̃
j,ht is considered a decision variable

that must comply with the provided limits. For wind power plants, we use the

approach introduced in Gil-González et al. (2020), stating that

|QG̃
j,ht| ≤

P G̃,max
j

κ

√
1− κ2(ξWht )

2 ∀j ∈ G̃W ,∀h ∈ H (4.5)

where 0 < κ ≤ 1 is a chargeability factor of the paired wind turbine-power converter,

representing that when the maximum active power is obtained from the wind power

system, the power conversion system works at level κ. It enables the use of the wind
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power system as a variable energy compensator which can operate with lagging or

leading power factor depending on the grid requirements, as the reactive power can

be positive or negative.

Whereas solar power plants do not produce reactive power, they are considered DC

generators, implying that

QG̃
j,ht = 0 ∀j ∈ G̃S,∀h ∈ H.

For hydropower plants, the reactive power is restricted by the network limits:

QG̃,min
j ≤ QG̃

j,ht ≤ QG̃,max
j ∀j ∈ G̃H ,∀h ∈ H. (4.6)

The active power PG
g,ht and reactive power QG

g,ht for conventional generators g ∈ G

are decision variables constrained as follows:

PG,min
g ≤PG

g,ht ≤ PG,max
g ∀g ∈ G,∀h ∈ H (4.7)

QG,min
g ≤QG

g,ht ≤ QG,max
g ∀g ∈ G,∀h ∈ H (4.8)

where PG,min
g , PG,max

g and QG,min
g , QG,max

g are the network limits. Contrary to renew-

able energy sources, conventional power generation has a cost that is assumed to be

a convex, piecewise linear function of active power generation PG
g,ht with breakpoints

(agi, bgi), i = 1, . . . , rg such that

f g(PG
g,ht) =



mg1(P
G
g,ht − ag1) + bg1, ag1 < PG

g,ht ≤ ag2

mg2(P
G
g,ht − ag2) + bg2, ag2 < PG

g,ht ≤ ag3
...

...

mg(rg−1)(P
G
g,ht − ag(rg−1)) + bg(rg−1), ag(rg−1) < PG

g,ht ≤ agrg .
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Due to its convexity, the cost function can be reformulated in an equivalent form:

f g(PG
g,ht) = max

i=1,...,rg−1
(mgi(P

G
g,ht − agi) + bgi)

=

 min αg,ht

s.t. mgi(P
G
g,ht − agi) + bgi ≤ αg,ht ∀i ∈ [rg − 1]

(4.9)

This simplifies the optimization problem’s solving procedure, particularly the dual-

ization step.

Remark 4.1. In the presented generation expansion model, once the first stage op-

timization problem is resolved, the renewable generation becomes a random variable

while the conventional generation is treated as a decision variable.

To ensure the flexibility of the power system, energy storage is considered in

the first stage of investment planning. As proposed by Cole and Frazier (2020),

we assume that the duration of the storage is four hours, meaning that the storage

runs empty within four hours if it is fully charged. It implies that real injections

O+
k,ht ≥ 0 and withdrawals O−

k,ht ≥ 0, which represent the operation of energy

storage, are restricted in the following way:

0 ≤ O+
k,ht ≤

Bk

4η
∀k ∈ N S,∀h ∈ H,

0 ≤ O−
k,ht ≤

ηBk

4
∀k ∈ N S,∀h ∈ H

(4.10)

where η ∈ (0, 1) is the efficiency assumed to be symmetric for charging and dis-

charging decisions. The balancing equation for the storage level Bk,ht is determined

by the operational decisions and the storage level at the previous step:

Bk,ht = Bk,(h−1)t + ηO+
k,ht − η−1O−

k,ht ∀k ∈ N
S,∀h ∈ H (4.11)

and it has to satisfy the technical restrictions:

0 ≤ Bk,ht ≤ Bk ∀k ∈ N S,∀h ∈ H. (4.12)
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The initial storage level of the planning period is defined as a proportion B0 of

the storage capacity, meaning that Bk,01 = B0Bk. For the consecutive days, the

initial storage level is equal to the level in the last hour h = 24 on the previous

day Bk,0t = Bk,24(t−1). In order to obtain an objective assessment of the model, the

storage level at the end of the operational period is forced back to the initial one by

the constraint:

Bk,24T = B0Bk ∀k ∈ N S. (4.13)

Taking into account all described components, the active and reactive injections

can be determined for every bus k ∈ N and time step h ∈ H by equations:

Pk,ht =
∑
g∈Gk

PG
g,ht +

∑
j∈G̃k

P G̃
j,ht − PD

k,ht −O+
k,ht +O−

k,ht +DP+
k,ht −DP−

k,ht (4.14)

Qk,ht =
∑
g∈Gk

QG
g,ht +

∑
j∈G̃k

QG̃
j,ht −QD

k,ht +DQ+
k,ht −DQ−

k,ht (4.15)

where

DP+
k,ht, D

P−
k,ht, D

Q+
k,ht, D

Q−
k,ht ≥ 0 (4.16)

and D+
k,ht = DP+

k,ht +DQ+
k,ht, D

−
k,ht = DP−

k,ht +DQ−
k,ht denote curtailment of demand and

supply with associated cost fD+ and fD− respectively.

Remark 4.2. Introducing curtailment decisions ensures that the problems are al-

ways feasible and have relatively complete recourse, which is required to apply the

solution strategy proposed in Kiszka and Wozabal (2024).

On the other hand, the power, voltages, and admittance matrix are strictly

related to the generalization of Ohm’s law to AC networks. It implies that

Pk,ht = Re(Vk,hte
T
k Y

∗V ∗
ht) ∀k ∈ N ,∀h ∈ H

Qk,ht = Im(Vk,hte
T
k Y

∗V ∗
ht) ∀k ∈ N ,∀h ∈ H

Slm,ht = V T
htY

∗
lmV

∗
ht ∀(l,m) ∈ L,∀h ∈ H

(4.17)

where Vht = (V1,ht, . . . , Vn,ht)
T is a vector of voltages for all buses. As the network
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infrastructure imposes limitations on the power flow, additional constraints are re-

quired to ensure the reliability of the power system. Therefore the voltages at buses

are bounded according to the following inequality:

V min
k ≤ |Vk,ht| ≤ V max

k , ∀k ∈ N ,∀h ∈ H. (4.18)

Additionally, the power flow through the lines, expressed by the apparent power, is

limited as follows:

|Slm,ht|2 ≤ S
2

lm, ∀(l,m) ∈ L,∀h ∈ H. (4.19)

These constraints ensure the power system operates within safe parameters and

avoids potential failures or disruptions.

Investing in renewable energy infrastructure entails high initial costs and un-

certain output due to weather conditions. To promote the expansion of renewable

energy sources, we propose introducing an additional constraint that guarantees a

specific percentage ∆ ∈ (0, 1) of renewable generation in the daily power demand:∑
h∈H

∑
j∈G̃

P G̃
j,ht + TRt ≥ ∆

∑
h∈H

∑
k∈N

PD
k,ht. (4.20)

We penalize any deviation from this target using the cost fTR ≥ 0 per MWh, which

accounts for the missing generation TRt that results from not meeting the goal.

As all required components of the model are already defined, the generation

expansion planning problem can be formulated to provide the optimal investment

strategy and optimal power flow decisions for the given period. The optimization

problem can be written in the form:

min c0(B,P S,max, PW,max) + E

(∑
t∈T

ct(ξt, B, P S,max, PW,max, B0t)

)
s.t. (4.4)− (4.20) ∀t ∈ T

(4.21)
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where the cost for particular stage t ∈ T is defined as

ct =
∑
h∈H

∑
k∈N

(∑
g∈Gk

αg,ht + fD+D+
k,ht + fD−D−

k,ht

)
+ fTRTRt. (4.22)

In the problem formulation, all decisions depend on the realization of random vari-

ables, but we omit the subscript to simplify the notation.

Remark 4.3. Dependence between subsequent stages of the optimization model is

hidden in the balancing constraint of the storage. Additionally, operational stages

depend on the capacities obtained in the first stage.

4.3 Solution Strategy

In this section, we present the applicability of the solution strategy proposed in

Kiszka and Wozabal (2024) to the formulated generation expansion planning prob-

lem. The primary description of the method will be complemented with detailed

reformulations and instructions for the considered class of problems.

Before applying the proposed algorithm, the required assumptions have to be

verified. The stochastic process ξ should be finitely supported and Markovian in

order to obtain numerical results, as imposed by the definition of the process ξ in

Section 4.2. Additionally, the feasible decisions at stage t should depend only on

decisions at stage t−1, not the whole history of decisions. This condition is ensured

by the formulation of the problem, where the storage level and capacity decisions

connect consecutive stages. Furthermore, the curtailment decisions introduced in the

problem description ensure the assumption of relatively complete recourse. Once we

have verified that all assumptions are met, we can proceed with reformulating the

problem and applying the algorithm.

In Section 4.3.1, we implement the recommended reformulation and relaxation

of the problem. Subsequently, in section 4.3.2, we present the dynamic formulation

of the problem, and in section 4.3.3, we perform dualization of the problem required
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to apply the SDDP algorithm and find a solution. In the section 4.3.4, details of the

SDDP algorithm are provided, and in the last section 4.3.5, a simplified model is

explored to facilitate the straightforward application of the procedure to the slightly

modified expansion problems.

4.3.1 Reformulation and Relaxation

The formulation of the problem (4.21) requires operations on the complex numbers,

which significantly increase the difficulty of the problem. To overcome this obstacle

Lavaei and Low (2012) propose Lemma 1 with an equivalent form of equations (4.17)

where the real and imaginary part of voltage values are separated. In consequence

equations (4.14)-(4.15) can be reformulated as follows:

tr(YkWht) =
∑
g∈Gk

PG
g,ht +

∑
j∈G̃k

P G̃
j,ht − PD

k,ht −O+
k,ht +O−

k,ht +DP+
k,ht −DP−

k,ht (4.23)

tr(ŶkWht) =
∑
g∈Gk

QG
g,ht +

∑
j∈G̃k

QG̃
j,ht −QD

k,ht +DQ+
k,ht −DQ−

k,ht (4.24)

where

Wht = ṼhtṼ
T
ht for Ṽht =

 Re(Vht)

Im(Vht)


and Yk, Ŷk represent adaptations of the admittance matrix Y , as defined in Lavaei

and Low (2012) and thoroughly elaborated upon in Kiszka and Wozabal (2024).

Furthermore, the combination of Lemma 1 and Schur’s complement formula

enables the transformation of the quadratic constraint (4.19) into a semidefinite

inequality: 
−S2

lm Ylm •Wht Ŷlm •Wht

Ylm •Wht −1 0

Ŷlm •Wht 0 −1

 ⪯ 0. (4.25)

As the constraint (4.18) can also be reformulated using the matrix Wht to the
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form of:

(V min
k )2 ≤ tr(MkWht) ≤ (V max

k )2, (4.26)

the variable Ṽht can be eliminated from the problem. To ensure the equivalence of

the problems, it is necessary to leverage the fact that a given matrix Wht can be

expressed as ṼhtṼ
T
ht for some nonzero vector Ṽht if and only if Wht is both positive

semidefinite and of rank 1. Consequently, the following constraints must be imposed:

Wht ⪰ 0 (4.27)

rank(Wht) = 1 (4.28)

to eliminate the decision variable Ṽht and maintain the equivalence of the problems.

Given that the reformulated problem is a non-convex optimization problem, with

non-convexity arising from the rank constraint, we alleviate this by eliminating the

rank constraint. This transformation yields a convex optimization problem that

serves as a lower-bound approximation to the original problem.

4.3.2 Dynamic Formulation

In this section, we present the dynamic formulation of the problem, enabling the

application of the SDDP algorithm. As mentioned before, the existence of storage

introduces dependence on the storage level between consecutive stages. Additionally,

the feasible set at a given stage depends on the storage and renewable capacity,

which are the first-stage decisions. This enables writing the problem using the value

functions, as suggested in Kiszka and Wozabal (2024), assuming that the random

parameter is an environmental state, and storage and renewable capacity with the

initial storage level of the stage compose a resource state. The dynamic programming
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equations of the problem take the following form:

C0(ξ0, B0) =


min c0(B,P S,max, PW,max) + C1(ξ0, B, P S,max, PW,max, B01)

s.t. B,P S,max, PW,max ≥ 0

B01 = B0B

and

Ct(ξt, B, P S,max, PW,max, B0t) = min ct(ξt, B, P S,max, PW,max, B0t) + Ct+1(ξt, B, P S,max, PW,max, B24t)

s.t. (4.4)− (4.13), (4.16), (4.20), (4.23)− (4.27)

for operational stages t ∈ T , where the recourse functions are defined as:

Ct+1(ξt, B, P S,max, PW,max, B24t) = E(Ct+1(ξt+1, B, P S,max, PW,max, B24t)|ξt). (4.29)

Given that the functions Ct are convex, the recourse functions can be effectively

approximated from below by the maximum of affine functions, converging to the

actual function. Therefore the approximation of the recourse function based on l

affine functions is introduced as C̄t+1,l and can be written as

C̄t+1,l(ξt, B, P S,max, PW,max, B24t) = min θ

s.t. e0i,t + e1i,tB + e2i,tP
S,max + e3i,tP

W,max + e4i,tB24t ≤ θ ∀i ∈ [l]

where e0i,t ∈ R, e1i,t, e4i,t ∈ R|NS | and e2i,t ∈ R|G̃S,new|, e3i,t ∈ R|G̃W,new| for all i ∈ [l], t ∈ T .

It implies that the approximation of the value function at stage t has the following

form with the dual multipliers indicated in the square brackets:
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C̄tl(ξt, B, P S,max, PW,max, B0t) =

min ct(ξt, B, P S,max, PW,max, B0t) + θ

s.t. tr(YkWht) =
∑
g∈Gk

PG
g,ht +

∑
j∈G̃k

P G̃
j,ht − PD

k,ht

−O+
k,ht +O−

k,ht +DP+
k,ht −DP−

k,ht ∀k ∈ N , h ∈ H [λk,ht]

tr(ŶkWht) =
∑
g∈Gk

QG
g,ht +

∑
j∈G̃k

QG̃
j,ht −QD

k,ht

+DQ+
k,ht −DQ−

k,ht ∀k ∈ N , h ∈ H [γk,ht]

(V min
k )2 ≤ tr(MkWht) ≤ (V max

k )2 ∀k ∈ N , h ∈ H [µ
k,ht

, µk,ht]
−S2

lm Ylm •Wht Ŷlm •Wht

Ylm •Wht −1 0

Ŷlm •Wht 0 −1

 ⪯ 0 ∀(l,m) ∈ L, h ∈ H [rlm,ht]

PG,min
g ≤ PG

g,ht ≤ PG,max
g ∀g ∈ G, h ∈ H [λg,ht, λg,ht]

QG,min
g ≤ QG

g,ht ≤ QG,max
g ∀g ∈ G, h ∈ H [γ

g,ht
, γg,ht]

mgi(P
G
g,ht − agi) + bgi ≤ αg ∀g ∈ G, i ∈ [rg − 1], h ∈ H [ζgi,ht]

|QG̃
j,ht| ≤

P G̃,max
j

κ

√
1− κ2(ξWht )

2 ∀j ∈ G̃W , h ∈ H [γW
j,ht

, γW
j,ht]

QG̃,min
j ≤ QG̃

j,ht ≤ QG̃,max
j ∀j ∈ G̃H , h ∈ H [γH

j,ht
, γH

j,ht]∑
h∈H

∑
j∈G̃

P G̃
j,ht + TRt ≥ ∆

∑
h∈H

∑
k∈N

PD
k,ht [τt]

O+
k,ht ≤

Bk

4η
∀k ∈ N S, h ∈ H [β

+

k,ht]

O−
k,ht ≤

ηBk

4
∀k ∈ N S, h ∈ H [β

−
k,ht]

Bk,ht = Bk,(h−1)t + ηO+
k,ht − η−1O−

k,ht ∀k ∈ N S, h ∈ H [σk,ht]

Bk,ht ≤ Bk ∀k ∈ N S, h ∈ H [κk,ht]

Bk,24T = B0Bk ∀k ∈ N S, h ∈ H [δk]

e0i,t + e1i,tB + e2i,tP
S,max + e3i,tP

W,max + e4i,tB24t ≤ θ ∀i ∈ [l], h ∈ H [νi,t]

Bk,ht ≥ 0 ∀k ∈ N S, h ∈ H

DP+
k,ht, D

P−
k,ht, D

Q+
k,ht, D

Q−
k,ht ≥ 0 ∀k ∈ N , h ∈ H

TRt ≥ 0,Wht ⪰ 0

(4.30)
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Distinguished from the others, the dual multiplier for the semidefinite inequality

has the matrix form:

rlm,ht =


r1lm,ht r2lm,ht r3lm,ht

r2lm,ht r4lm,ht 0

r3lm,ht 0 r5lm,ht


Remark 4.4. As CT+1 = 0, it means that e0i,T , . . . , e

4
i,T for every i ∈ [l] are also

equal to zero.

Remark 4.5. Note that parameters of affine functions in the problem (4.30) depend

on the value of an environmental state ξt. However, for the sake of notational

simplicity, we omit this dependence.

4.3.3 Dualization

Following the approach proposed in Lavaei and Low (2012) and subsequently reit-

erated in Kiszka and Wozabal (2024), in the next step, the dual of (4.30) is defined

and has the following form:
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C̃tl(ξt, B, P S,max, PW,max, B0t) =

max ht

s.t. Aht ⪰ 0 [Wht]∑
i∈[rg−1]

ζgi,ht = 1 ∀g ∈ G, h ∈ H [αG
g,ht]

λg,ht − λg,ht +
∑

i∈[rg−1] ζgi,htmgi − λk(g) = 0 ∀g ∈ G, h ∈ H [PG
g,ht]

γg,ht − γ
g,ht
− γk(g) = 0 ∀g ∈ G, h ∈ H [QG

g,ht]

γR
j,ht − γR

j,ht
− γk̃(j) = 0 ∀R ∈ {W,H}, j ∈ G̃R, h ∈ H [QG̃

j,ht]

β+
k,ht + λk,ht − ησk,ht ≥ 0 ∀k ∈ N S, h ∈ H [O+

k,ht]

β−
k,ht − λk,ht +

1
η
σk,ht ≥ 0 ∀k ∈ N S, h ∈ H [O−

k,ht]

σk,ht − σk,(h+1)t + κk,ht ≥ 0 ∀k ∈ N S, h ∈ H [Bk,ht]

σk,24t + κk,24t +
∑
i∈[l]

νi,te
4
ki,t + δk1(t = T ) ≥ 0 ∀k ∈ N S, h ∈ H [Bk,24t]

fD+ − λk,ht ≥ 0 ∀k ∈ N , h ∈ H [DP+
k,ht]

fD− + λk,ht ≥ 0 ∀k ∈ N , h ∈ H [DP−
k,ht]

fD+ − γk,ht ≥ 0 ∀k ∈ N , h ∈ H [DQ+
k,ht]

fD− + γk,ht ≥ 0 ∀k ∈ N , h ∈ H [DQ−
k,ht]∑

i∈[l] νi,t = 1 [θ]

fTR − τt ≥ 0 [TRt]

rlm,ht ⪰ 0 ∀(l,m) ∈ L, h ∈ H

νi,t ≥ 0 ∀i ∈ [l]

µk,ht, µk,ht
, , β

−
k,ht, β

+

k,ht, κk,ht,≥ 0 ∀k ∈ N , h ∈ H

λg,ht, λg,ht, γg,ht, γg,ht
, ζgi,ht ≥ 0 ∀g ∈ G, h ∈ H

γR
j,ht, γ

R
j,ht
≥ 0 ∀R ∈ {W,H}, j ∈ G̃R, h ∈ H

τt ≥ 0

(4.31)
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where

ht =
∑
h∈H

∑
k∈N

λk,ht

PD
k,ht −

∑
j∈G̃k

P G̃
j,ht

+ γk,htQ
D
k,ht + µ

k,ht
(V min

k )2 − µk,ht(V
max
k )2

−
∑
h∈H

∑
(l,m)∈L

(
S
2

lm + r4lm,ht + r5lm,ht

)
+ τt

∆
∑
h∈H

∑
k∈N

PD
k,ht −

∑
h∈H

∑
j∈G̃

P G̃
j,ht


+
∑
h∈H

∑
k∈N

∑
g∈Gk

(
λg,htP

G,min
g − λg,htP

G,max
g + γ

g,ht
QG,min

g − γg,htQ
G,max
g +

rg−1∑
i=1

ζgi,ht(bgi −mgiagi)

)

−
∑
h∈H

∑
j∈G̃W

P G̃,max
j

κ

√
1− κ2(ξWht )

2(γW

j,ht
+ γW

j,ht) +
∑
h∈H

∑
j∈G̃H

(
γh

j,ht
QG̃,min

j − γH
j,htQ

G̃,max
j

)

−
∑
k∈NS

(
σk,1tBk,0t +

∑
h∈H

(
κk,ht +

β
+

k,ht

4η
+

ηβ
−
k,ht

4

)
Bk + δk1(t = T )B0Bk

)

+
∑
i∈[l]

νi,te
0
i,t +

∑
k∈NS

Bk

∑
i∈[l]

νi,te
1
ki,t +

∑
j∈G̃S,new

P G̃,max
j

∑
i∈[l]

νi,te
2
ji,t +

∑
j∈G̃W,new

P G̃,max
j

∑
i∈[l]

νi,te
3
ji,t

and

Aht =
∑
k∈N

(
λk,htYk + γk,htŶk + (µk,ht − µ

k,ht
)Mk

)
+
∑

(l,m)∈L

(
2r2lm,htYlm + 2r3lm,htŶlm

)
.

To ensure strong duality between (4.30) and (4.31), the satisfaction of the Slater

condition is imperative. Demonstrating this condition involves proving that the

primal problem attains a finite optimal value and that the dual problem possesses a

feasible solution within the interior of the feasible set. The first condition is evidently

satisfied based on the problem formulation and the feasible set of the dual problem
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has an interior point defined by:

λk,ht = 0, γk,ht = 0, µk,ht = 2, µ
k,ht

= 1 ∀k ∈ N

λg,ht =

∣∣∣∣∣∣ 1

rg − 1

∑
i∈[rg−1]

mgi

∣∣∣∣∣∣− 1

rg − 1

∑
i∈[rg−1]

mgi + 1, λg,ht =

∣∣∣∣∣∣ 1

rg − 1

∑
i∈[rg−1]

mgi

∣∣∣∣∣∣+ 1 ∀g ∈ G

ζgi,ht =
1

rg − 1
∀i ∈ [rg − 1]

γg,ht = γ
g,ht

= 1, γR
j,ht = γR

j,ht
= 1 ∀g ∈ G, R ∈ {W,H}, j ∈ G̃R

σk,ht = 25− h, κk,ht = 1, δk = 1, β
+

k,ht = (25− h)η + 1, β
−
k,ht = 1 ∀k ∈ N S

τt =
1

2
fTR, νi,t =

1

l
∀i ∈ [l]

r1lm,ht = r4lm,ht = r5lm,ht = 1, r2lm,ht = r3lm,ht = 0 ∀(l,m) ∈ L

for h ∈ H. All variables in the presented feasible solution are strictly positive, except

for λk,ht and γk,ht, indicating an interior point.

4.3.4 Details of SDDP Algorithm

After reformulation, relaxation, and dualization of the formulated problem, the

SDDP algorithm can be applied. The procedure consists of two main parts: forward

and backward passes, which are described in Kiszka and Wozabal (2024).

First, we address the problem consecutively across stages for generated scenar-

ios during the forward pass, determining the resource state values. In the back-

ward pass, we solve the problem 4.31 starting from the last stage, assuming the

resource state values obtained in the forward pass and considering all possible

environmental states on the stage. Slopes of a new cut approximating the re-

course function Ct(ξt−1, B, P S,max, PW,max, B24,t−1) for state ωt−1 are calculated as

the conditional expectation of slopes of C̃tl(ξt, B, P S,max, PW,max, B0t) with respect

to B,P S,max, PW,max and B0t over all environmental states ωt. The particular slopes

of C̃tl are obtained as derivatives with respect to the given parameters and can be
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easily extracted from the objective function ht of the dual problem for the optimal

solution. Thereby, with every consecutive iteration, we gain a new cut to the re-

course function where slopes with respect to storage capacity, solar capacity, wind

capacity, and storage level are calculated using the following formulas:

∀k ∈ N S :

e1k(l+1),t−1 =
∑
ωt∈Ωt

Πt−1(ωt−1, ωt)

∑
i∈[l]

νi,te
1
ki,t −

∑
h∈H

(
κk,ht +

β
+

k,ht

4η
+

ηβ
−
k,ht

4

)
−B0δk1(t = T )


e4k(l+1),t−1 = −

∑
ωt∈Ωt

Πt−1(ωt−1, ωt)σk,1t

∀j ∈ G̃S,new :

e2j(l+1),t−1 =
∑
ωt∈Ωt

Πt−1(ωt−1, ωt)

∑
i∈[l]

νi,te
2
ji,t −

∑
h∈H

(λk̃(j),ht + τt)ξ
S
ht


∀j ∈ G̃W,new :

e3j(l+1),t−1 =

=
∑
ωt∈Ωt

Πt−1(ωt−1, ωt)

∑
i∈[l]

νi,te
3
ji,t −

∑
h∈H

1

κ

√
1− κ2(ξWht )

2(γW

j,ht
+ γW

j,ht)−
∑
h∈H

(λk̃(j),ht + τt)ξ
W
ht


for the environmental state ωt−1. As the initial storage level of the operational

period is represented as the share of storage capacity Bk,01 = B0B̄k, the affine

function approximating the recourse function at the first stage depends on three,

not four, variables having the form

e0l+1,0 + (e1l+1,0 +B0e
4
l+1,0)B + e2l+1,0P

S,max + e3l+1,0P
W,max.

4.3.5 Simplified Expansion Model

Due to the curse of dimensionality, a problem featuring only a few candidate lo-

cations for new renewable power plants may become computationally intractable.

Consequently, we present a simplified model with a reduced number of first-stage
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decisions, where the determination of the total new solar and wind capacity, along

with its distribution among predefined locations according to the given ratios, is

consolidated into single decisions denoted as P S,max ∈ R and PW,max ∈ R. The

first-stage cost function is then slightly modified to the following form:

c0(B,P S,max, PW,max) = fB
∑
k∈NS

Bk + fSP S,max + fWPW,max. (4.32)

Capacity for a single newly built renewable generator can be calculated using the

formula

P G̃,max
j = ρSj P

S,max ∀j ∈ G̃S,new,

P G̃,max
j = ρWj PW,max ∀j ∈ G̃W,new,

(4.33)

where all coefficients ρSj ≥ 0, ρWj ≥ 0 are predefined and represent a distribution of

the total source capacity with∑
j∈G̃S,new

ρSj = 1 and
∑

j∈G̃W,new

ρWj = 1.

It also requires two additional updates in equations (4.4),(4.5) where we have to

replace decisions P G̃,max
j with values from equation (4.33).

Furthermore, the coefficients e2l+1,t and e3l+1,t in the linear approximation of the

recourse function undergo a change in both dimension and value. Consequently, the

slope of the total new capacity for a given renewable source equals the weighted

average of the slopes of individual capacities, with respective weights ρS and ρW :

e2(l+1),t−1 =
∑
ωt∈Ωt

Πt−1(ωt−1, ωt)

∑
i∈[l]

νi,te
2
i,t −

∑
j∈G̃S,new

ρSj
∑
h∈H

(λk̃(j),ht + τt)ξ
S
ht


e3(l+1),t−1 =

∑
ωt∈Ωt

Πt−1(ωt−1, ωt)

∑
i∈[l]

νi,te
3
i,t

−
∑

j∈G̃W,new

ρWj

(∑
h∈H

1

κ

√
1− κ2(ξWht )

2(γW

j,ht
+ γW

j,ht) +
∑
h∈H

(λk̃(j),ht + τt)ξ
W
ht

)
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Remark 4.6. The utilization of the simplified model significantly diminishes the di-

mension of the resource state while still yielding satisfactory results when the weights

are appropriately chosen.

4.4 Case Study

In this section, we present numerical results for the formulated generation expansion

planning problem defined for part of the IEEE RTS-GMLC network (Barrows et al.

2020), incorporating random electricity demand and renewable generation. This

case study aims to determine the optimal wind, solar, and storage capacities to

achieve a targeted share of renewable generation and enable the phase-out of fossil

fuels.

Figure 4.1: Map of connections between buses for the area 1.

The IEEE RTS-GMLC network serves as a comprehensive test case, providing

technical parameters of the grid along with one year of demand and renewable

generation data for 2020 at an hourly resolution. The network includes 74 buses

distributed across three areas. For this numerical experiment, we focus on 24 buses
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within area 1 presented in Figure 4.1 where the width of a line connecting buses

denotes the flow limit of a line. The existing generation capacities for the area and

their distribution across individual buses are depicted and compared to the base

load in Figure 4.2. The ratio of the base load of the bus to the total base load of the

area is used to distribute the random demand of the area among individual buses.

Considering the environmental impact, particularly the high emissions associated

with coal power plants, and our commitment to phasing out fossil fuels through the

proposed strategy, we exclude them from the network in the calculations.

To model random demand and renewable generation per capacity unit, denoted

by ξ, we adopt the approach outlined in Kiszka and Wozabal (2024). This involves

identifying seasonal effects by estimation of a LASSO regression model with 10-fold

cross-validation and applying Principal Component Analysis (PCA) to the trans-

formed residuals. Subsequently, scenarios for the random process are generated

using the resampling method and reverse procedure. Employing these scenarios, we

construct a scenario lattice with 50 nodes per stage using the stochastic gradient

descent method described in Löhndorf and Wozabal (2021b), which is provided in

the library Quasar.

4.4.1 Optimization Parameters

In the presented case study, we examine the simplified model of the formulated

expansion problem where the investment decisions in the first stage involve the

storage capacity at predefined buses and the total renewable capacity built for wind

and solar power generation. Subsequent stages address operational planning for the

network over a one-week horizon, with t ∈ T = {1, 2, . . . , 7} representing individual

days and h ∈ H = {1, 2, . . . , 24} denoting each hour within a day.

The investment decisions require selecting specific buses where both storage and

renewable capacity will be installed in addition to the existing generation capacities.

Based on the network map presented in Figure 4.1 and existing generation capacities
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compared in Figure 4.2, we choose the buses 1, 13, 21 as candidates to build the

storage capacity. We additionally assume that the storage efficiency, denoted by

η, is set at 0.9 and that the storage is initially filled to 50% capacity, with the

requirement to maintain this level by the end of the period.

Figure 4.2: The left graph presents the original generation capacities in the network
for area 1, and the right plot shows the distribution of generation capacities across
individual buses in comparison to the base load.

In the renewable generation expansion, our primary focus lies on extending the

existing capacities of solar and wind power plants depicted in Figure 4.2. We con-

sider buses 1, 2, 4, 13 as potential candidates for solar capacity installation, as they

exhibit the highest ratio of generated power to the existing capacity based on the

historical data. As the simplified model provides the total new solar capacity as the

investment decision, we assume it will be distributed among selected candidates in

proportion to the existing solar capacity at those buses.

Given that only one wind power plant is in this network, the investment decision

determines the new capacity installed at bus 22. Additionally, we assume the charge-

ability factor denoted by κ to be equal to 0.9.

Running the case study requires the configuration of the specific parameters ap-
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Table 4.1: Parameters of investment decisions

Source Cost ($/MW) Candidate buses Existing capacity (MW)
Storage 230 1,13,21 0
PV 2149 1,2,4,13 498.1
Wind 2182 22 713.5

pearing in the optimization problem, such as the costs associated with the respective

decisions. To estimate the cost of storage capacity, we rely on projections from Cole

and Frazier (2020), forecasting a cost of $208/kW for grid-level battery storage.

Considering our one-week planning horizon, we scale the cost by calculating annu-

ities based on a 20−year lifetime and a 2% interest rate. Consequently, we arrive at

a weekly investment cost of $230/MW, assuming a year consists of 52 weeks.

Similarly, we estimate the costs of wind and solar capacity by referencing data

from the U.S. Energy Information Administration. Accounting for both capacity

investment costs and operational and maintenance costs, we scale them by calcu-

lating annuities based on the life expectancy of 25 and 30 years for wind and solar,

respectively, along with a 2% interest rate. Dividing the results by 52, we obtain a

weekly cost of $2182/MW and $2149/MW for wind and solar capacity, respectively.

We introduce the penalty for the curtailment of demand and generation with the

cost of fD+ = $5000/MWh and fD− = $500/MWh, respectively, indicating that it is

more expensive to curtail load than supply. Additionally, our aim is to convince the

decision-maker to invest in renewable energy sources and storage capacities instead

of using fossil fuels to achieve a specified share of renewable generation covering

daily demand. We integrate this objective in the problem formulation by assuming

that any shortfall in meeting the target incurs a penalty, with the cost of fTR = $50

for each MWh.
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4.4.2 Numerical Results

In order to solve the case study, we implemented the SDDP algorithm in MAT-

LAB 2021b using YALMIP (Löfberg 2004) to formulate the presented optimization

problem and the solver MOSEK 9.3.11 for execution. The algorithm was run with

the increased number of scenarios in forward passes to 100 every fifth iteration.

The number of iterations was established based on the convergence check, ensuring

that the difference between the upper and lower bound constitutes less than 5%

of the lower bound. The experiment was run on a private computer, DELL Pre-

cision 5520, with the Intel(R) Core(TM) i7-7820HQ CPU@2.90GHz processor, and

installed RAM memory of 32GB.

Figure 4.3: Evolution of optimal renewable and storage capacities for the 29th week
of the year and renewable target of 55% over the algorithm iterations.

At the beginning, we assess the performance of the algorithm for the defined

generation expansion planning problem. Figure 4.3 illustrates the evolution of the

optimal renewable and storage capacities for the 29th week of the year alongside a

renewable target of 55%, enabling a comparison of solution change over iterations.

Notably, we observe the stabilization of the optimal solution after 30 iterations,

which is remarkable given the complexity of the problem. It demonstrates that
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the applied solution strategy is appropriate for the specified problem and exhibits

strong convergence properties. In this case, the optimal solution recommends no

investment in the extension of the wind power capacity, and the reason for this can

include the price difference between wind and solar capacity as well as the lack of

demand at the candidate bus and its neighboring buses.

We observed distinct seasonal patterns by analyzing the network’s historical data

on demand and renewable generation. Therefore, we have decided to assess the in-

fluence of seasons on investment decisions, selecting two weeks for analysis: the 7th

and 29th week of the year representing diverse weather conditions. Furthermore, we

explore the impact of the minimum daily renewable generation requirement on opti-

mal renewable and storage capacity, considering targets from 40% to 90% every 5%.

Figure 4.4: Comparison of optimal renewable and storage capacities for the 7th and
the 29th week of the year.

The comparison of optimal capacities for the considered settings is illustrated in

Figure 4.4. A noticeable disparity in investment decisions between the 7th and 29th

week of the year highlights the significant impact of varying weather conditions on

the outcomes. The approach to addressing this divergence could involve using the
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solution for the 29th week, which is the maximum of both solutions or averaging

the optimal solutions based on the probabilities of each week’s pattern occurring.

In addition, the preference for solar over wind power plants can be observed

mainly due to slightly lower costs. However, the number of investigated locations

and the base load values of candidate buses can also influence those decisions. Fur-

thermore, a strong dependence between investment decisions on storage and renew-

able capacity can be noticed, as the storage candidate buses near extended solar

power generation are more desirable.

4.5 Conclusions

In the paper, we propose the first multi-stage stochastic formulation of the gen-

eration expansion planning problem, which accounts for the uncertainty of power

demand and renewable generation as well as the AC nature of the power system. In

order to solve the problem, we apply the strategy proposed in Kiszka and Wozabal

(2024) and present a detailed and extensive explanation of the particular steps of

the procedure.

In the numerical example of optimal renewable expansion and storage integration

for the IEEE RTS-GMLC network, we demonstrate the computational tractability

of the applied solution strategy for the generation expansion problems. Further-

more, the presented case study illustrates the relevance of the formulated problem

for governments and communities that are going to actively participate in the tran-

sition to a low-carbon energy future and phase out fossil fuels. The model can

support decision-makers by indicating the optimal direction of changes in the power

infrastructure to achieve the minimum daily renewable generation requirement.

Analysis of the results indicates a notable impact of the weather conditions, rep-

resented by seasons, on investment decisions. In future work, it would be interesting

to build a model that accounts for different seasons without solving the optimization
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problem for the horizon of the year, which would be computationally very costly or

even intractable.

Furthermore, a comparison of investment decisions obtained from simplifications

commonly used in the literature (e.g. assumption of DC power system or represen-

tation of the random process using scenario tree instead of scenario lattice) would

allow us to assess the advantage of the proposed generation expansion planning

model.

Additionally, it would be interesting to extend the proposed framework by in-

cluding the transmission expansion, which is also relevant to the energy transition.

It would give a more detailed overview of the network capabilities and could poten-

tially result in the development of costly competitive investment strategies.
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Conclusions

This doctoral thesis proposes a framework to effectively solve energy planning prob-

lems under uncertainty that involve power flow constraints. It covers the whole

modeling chain from the approximation of random processes through the model-

ing of power flow problems to the solution strategy for the optimization problem.

The research thus incorporates three important components simultaneously: multi-

stage formulation, finitely supported Markov structure of random processes, and the

alternating current nature of power flows.

In Chapter 2, I introduce a lattice distance, which is a semi-metric defined for

Markov processes involved in multi-stage linear stochastic optimization problems.

The distance takes into account not only the structure of the processes but also the

data of the optimization problem. It allows for the derivation of quantitative stability

results for problems with randomness in both objective functions and constraints.

The lattice distance can be used to find a discrete approximation of the Markov

process involved in the linear optimization problem. The metric then provides a

bound for the difference between optimal values of the original and the approxi-

mated problem and thus enables the bounding of the error introduced by replacing

the original process with its discrete approximation. Solving the optimization prob-

lem for the approximation process decreases the complexity and improves the com-
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putational tractability of the problem, and simultaneously can offer a high-quality

solution.

The evaluation of how two Markov processes impact the optimal value of the

optimization problem can be examined with the lattice distance. The metric enables

comparing two Markov processes, but it doesn’t guarantee obtaining the optimal

approximation. In order to find an optimal approximation of the Markov process

within a specified margin of error, further steps are required.

While determining the optimal approximation of a given distribution generally

poses a nonconvex and nondifferentiable problem, there are different algorithmic

approaches for achieving optimal quantization. These include stochastic gradient

descent, stochastic approximation methods, and stochastic branch-and-bound tech-

niques (see Bally and Pagès 2003a,b, Hochreiter and Pflug 2007, Pflug and Pichler

2015). In further research, the newly proposed distance could be integrated into

existing algorithms to enhance scenario generation methods for Markov processes

involved in linear optimization problems.

Additionally, optimal approximations and convergence rates have been estab-

lished for Wasserstein metrics Graf and Luschgy (2000), suggesting analogous out-

comes can be demonstrated for the introduced lattice distance.

In regard to energy planning problems where the demand and renewable genera-

tion can be modeled as Markov processes in many applications, the lattice distance

can be employed to obtain a finitely supported representation of those processes.

As the metric is defined for linear optimization problems and energy planning mod-

els incorporating AC OPF are nonconvex, the linear relaxation of the model (e.g.

DC relaxation) can be applied to establish a discrete approximation of the Markov

processes.

In Chapter 3, I propose an effective solution strategy for multi-stage stochastic

optimal power flow problems in AC power systems where the Markov processes are

employed to represent the uncertainty. The solution approach uses recent advances
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in convex relaxations of OPF problems and the stochastic dynamic dual program-

ming algorithm for Markovian optimization problems.

To facilitate the practical implementation of the proposed algorithm, I offer an

in-depth explanation of the power flow dynamics and key components inherent in

the AC OPF problem, such as the admittance matrix and phase-shifting transform-

ers. Furthermore, I thoroughly describe the steps of the convex relaxation of the

OPF problem, including reformulation, relaxation, and dualization, to ensure the

applicability of the model across various energy planning problems. In addition, I

provide a methodology for recovering a physically feasible solution in the event that

the relaxation of the OPF problem is not exact.

The convergence properties of the algorithm are demonstrated in the case study

on the storage siting, sizing, and operation for the widely utilized IEEE RTS-GMLC

power network. Following the presented steps enables the application of the algo-

rithm to solve other energy planning problems.

In future research, extending the model to incorporate unit commitment deci-

sions could be explored and followed by an investigation into the performance of

the proposed algorithm within this framework. For example, Fattahi et al. (2017)

propose a semi-definite programming relaxation of unit commitment, which could

be applied to the extended model. In the literature, Lara et al. (2020) introduce

a multi-stage stochastic mixed-integer programming model to optimize generation

expansion planning and apply stochastic dual dynamic integer programming (SD-

DiP) algorithm to solve the problem. However, they don’t take into account the

alternating current nature of power flow and eventually consider a scenario tree as

a representation of the random process. Hence, there remains a gap in the existing

research that requires further contributions.

Moreover, a comparison of the algorithm’s performance under various relaxation

techniques could yield valuable insights. Systematical evaluation of the algorithm’s

effectiveness across different relaxation methods could provide a deeper understand-
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ing of its robustness, efficiency, and suitability for diverse optimization scenarios.

In Chapter 4, I formulate a generation expansion planning model in order to

find an optimal renewable and storage capacity required to phase out fossil fuels.

The model aims to support decision-makers in the transition of the power network

towards cleaner energy sources by providing optimal investment decisions.

The proposed model considers the uncertainty of demand and renewable gen-

eration as well as the physics of alternating current power flow, contributing to

the research field addressing generation expansion planning problems. Moreover, it

incorporates minimum daily renewable generation requirement to ensure that the

future policy targets are met through the optimal investment plan.

I use the advances from Chapter 3 to solve the formulated generation expansion

planning problem for the modified version of IEEE RTS GMLC network. Thereby,

the presented case study demonstrates the importance and applicability of the model

proposed in Chapter 3 to a wide range of energy planning problems.

The examination of the findings suggests that there is potential for improvement,

given the notable impact of the weather conditions on investment decisions. In

future investigations, creating a model that accounts for various seasons without

significantly extending the time horizon could provide meaningful insights.

Furthermore, expanding the model to incorporate transmission expansion would

enable a more comprehensive analysis of the network’s capabilities. By considering

the expansion of transmission infrastructure, the model can assess the system’s abil-

ity to effectively accommodate future growth and changes in demand. Additionally,

it would facilitate a better understanding of how potential expansions or upgrades to

transmission lines can improve the overall performance and reliability of the energy

system.

In conclusion, this thesis explores Markovian stochastic optimization formula-

tions within energy planning contexts. The subsequent chapters present methodolo-

gies designed to handle the complexities of the proposed model. Firstly, an approach
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is introduced to derive a discrete approximation of the Markov process involved in

the optimization problem. Subsequently, an effective solution strategy is outlined

to ensure the attainment of a reliable solution. Finally, the performance of the

proposed algorithm is demonstrated through its application to the generation ex-

pansion planning problem. By systematically addressing the challenges posed by

multi-stage stochastic optimization in energy planning, this research contributes to

advancing the field and provides valuable insights for both future academic studies

and practical applications.
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H. Föllmer and A. Schied. Stochastic Finance: An Introduction in Discrete Time. De

Gruyter studies in mathematics. Walter de Gruyter, 2004.



Bibliography 159

B. Fox. Finite-state approximations to denumerable-state dynamic programs. Journal of

Mathematical Analysis and Applications, 34(3):665 – 670, 1971.

S. Frank and S. Rebennack. An introduction to optimal power flow: Theory, formulation,

and examples. IIE Transactions, 48(12):1172–1197, 2016.

S. Frank, I. Steponavice, and S. Rebennack. Optimal power flow: a bibliographic survey

i. Energy systems, 3(3):221–258, 2012a.

S. Frank, I. Steponavice, and S. Rebennack. Optimal power flow: a bibliographic survey

ii. Energy systems, 3(3):259–289, 2012b.

K. Frauendorfer. Barycentric scenario trees in convex multistage stochastic programming.

Mathematical Programming, 75:277–293, 1996.
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N. Saldi, S. Yüksel, and T. Linder. On the asymptotic optimality of finite approximations

to markov decision processes with borel spaces. Mathematics of Operations Research,

42(4):945–978, 2017.

D. Schetinin. Efficient bound tightening techniques for convex relaxations of ac optimal

power flow. IEEE Transactions on Power Systems, 34(5):3848–3857, 2019.

G. Schildbach and M. Morari. Scenario-based model predictive control for multi-echelon

supply chain management. European Journal of Operational Research, 252(2):540–

549, 2016.

S. Sethi and G. Sorger. A theory of rolling horizon decision making. Annals of Operations

Research, 29(1):387–415, 1991.

A. Shapiro. On complexity of multistage stochastic programs. Operations Research Letters,

34(1):1–8, 2006.

A. Shapiro. Computational complexity of stochastic programming: Monte carlo sampling

approach. Proceedings of the International Congress of Mathematicians, pages 2979–

2995, 2010.

A. Shapiro. Analysis of stochastic dual dynamic programming method. Eur J Oper Res,

209(1):63–72, 2011.



Bibliography 169

A. Shapiro and A. Nemirovski. On Complexity of Stochastic Programming Problems, pages

111–146. Springer US, 2005.

A. Shapiro, D. Dentcheva, and A. Ruszczyński. Lectures on Stochastic Programming:
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Appendix A

Proofs

A.1 Proof of Lemma 3.1

We start by noting that for any vector x ∈ Rn and matrix A ∈ Rn×n the following

holds

x⊤Ax = x⊤
(
2A

2

)
x =

x⊤Ax+ x⊤Ax

2
=

x⊤Ax+ x⊤A⊤x

2
= x⊤

(
A+ A⊤

2

)
x.

(A.1)

We also note that for a matrix A ∈ Cn×n and a vector y ∈ Cn, we have

Ay = (Re(A) + iIm(A))(Re(y) + iIm(y))

= (Re(A)Re(y)− Im(A)Im(y)) + i(Re(A)Im(y) + Im(A)Re(y))

By (A.1), this implies that

Ãy =

Re(A) −Im(A)

Im(A) Re(A)

 ỹ and Re(yHAy) = ỹ⊤

Re(A) −Im(A)

Im(A) Re(A)

 ỹ = ỹ⊤Aỹ,

(A.2)

which is what we used to prove in the formula for real power in Section 3.2.4.
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Turning to injected imaginary power, we obtain for similar reasons

Im(yHAy) = ỹ⊤

 Im(A) Re(A)

−Re(A) Im(A)

 ỹ = −ỹ⊤Ãỹ (A.3)

Starting from the equality for injected reactive power, we obtain

Qtk = Im(VtkI
∗
tk) = −Im(V ∗

tkItk) = −Im(V H
t eke

⊤
k It) = −Im(V H

t YkVt)

= Ṽ ⊤
t ŶkṼt = tr(Ṽ ⊤

t ŶkṼt) = tr(ŶkṼtṼ
⊤
t ) = tr(ŶkWt) = Ŷk •Wt,

where the second equality follows from Im(VtkI
∗
tk) = −Im(V ∗

tkItk), the fourth from

It = Y Vt and the definition of Yk = eke
⊤
k Y and the rest from (A.3) and the properties

of the trace.

For the squared voltage, we get

|Vtk|2 = V ∗
tkVtk = V H

t eke
⊤
k Vt = Ṽ ⊤

t MkṼt = tr(MkṼtṼ
⊤
t ) = Mk •Wt.

To prove relations for lines, we recall the definitions in (3.4) via Ylm

|Itlm|2 = (e⊤l YlmVt)
H(e⊤l YlmVt) = (YlmVt)

H(YlmVt) = (YlmṼt)
⊤(YlmṼt) = Ṽ ⊤

t Y
⊤
lmYlmṼt

= tr(Y⊤
lmYlmṼtṼ

⊤
t ) = Y⊤

lmYlm •Wt

|Stlm|2 = Re(V H
t YlmVt)

2 + Im(V H
t YlmVt)

2 = (Ylm •Wt)
2 + (Ŷlm •Wt)

2

and the result of the active power on the line immediately follows. Finally, the

relation for voltage difference can be proven in the same way as for the squared

voltage

|Vtl − Vtm|2 = (Vtl − Vtm)
∗(Vtl − Vtm) = V H

t (el − em)(el − em)
TVt = Ṽ T

t MlmṼt

= tr(MlmṼtṼ
T
t ) = Mlm •Wt.
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A.2 Proof of Proposition 3.1

If Ct(ξt, Xt−1) has an optimal solution (Xt,Wt) with rank(Wt) = 1, then there is a

voltage vector Vt ∈ Cn such that Wt = ṼtṼ
⊤
t . The vectors Vt are thus physically

feasible for the original AC-OPF problems in state (ξt, Xt−1). If all (ξt, Xt−1) have

that property, the approximations of the non-convex AC-OPF problem on the nodes

are tight, and (Xt, Vt) are the solutions of the dynamic programming equations for

the original problem (Pnc) and thus optimal.

A.3 Proof of Proposition 3.2

The first three points follow from Proposition 3.1 and Girardeau et al. (2015). To

see the last point, we define Cnc
t as the cost function of the non-convex problem and

note that due to our assumption CT (XT−1, ξTj) = Cnc
T (XT−1, ξTj) for all optimal

decisions XT−1 and all lattice nodes ξTj, which establishes that CT = CncT at all

lattice nodes and all points chosen by the optimal policy.

In the second last stage, we note that due to 2, we have

FT−1 •XT−1,L + C̄TL(XT−1,L, ξT−1,j)
L→∞−−−→ FT−1 •XT−1 + CT (XT−1, ξT−1,j)

where XT−1,L and XT−1 are the optimal decisions for the problem with value func-

tions C̄TL and CT respectively. At the same time, due to the above and our assump-

tion that

FT−1 •Xnc
T−1,L + C̄TL(X

nc
T−1,L, ξT−1,j) = FT−1 •XT−1,L + C̄TL(XT−1,L, ξT−1,j)

where Xnc
T−1,L is the optimal decision for the non-convex problem at lattice node

ξT−1,j and some resource state XT−2, we have CT−1 = CncT−1. Continuing in this

manner until the first stage establishes 4.
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A.4 Proof of Proposition 3.3

Denote by Kl the normed eigenvectors of Wt with positive eigenvalues. Since

tr(G(α)Wt)

is part of the Lagrangian, it has to hold that for every Kl

G(α)Kl = 0,

i.e., that Kl is in the null space of G(α). If this is not the case, then one could

choose a W ′
t such that the eigenvalue of Kl is zero, thereby reducing the objective

of the inner optimization problem in the Lagrangian, leading to a contradiction to

the optimality of Wt.

Therefore if the dimension of the kernel of G(α) is at most two, there are at

most 2 linearly independent eigenvectors of Wt with positive eigenvalues. If there

is only one, then Wt = ṼtṼ
⊤ for some vector Ṽt whose components can be directly

interpreted as voltages. In case there are two, we note that by the structure of Yk

and Ŷk, the matrix G(α∗) has the form

G(α)) =

 T (α) T̄ (α)

−T̄ (α) T (α)

 ,

for some matrices T dependent on α.

Therefore, if K = (K⊤
1 ,K⊤

2 )
⊤ is one of the two eigenvectors, then the orthogonal

vector K⊥ = (−K⊤
2 ,K⊤

1 )
⊤ also has a non-zero eigenvalue, since G(α)K⊥ yields a the

same vector as G(α)K with flipped components. We can, therefore, conclude that

Wt = ρ1KK⊤ + ρ2K⊥K⊤
⊥.

Since for any matrix A of the general form of G it holds that tr(AKK⊤) =

tr(AK⊥K⊤
⊥), for a given choice of the other primal and dual variables the rank 1
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matrix

W ⋆
t = (ρ1 + ρ2)KK⊤

yields the same results as Wt in the constraints of C̄tl(ξtn, Xt−1) and therefore is a

feasible solution with the same objective as Wt. This proves the first point of the

proposition.

To prove the second point, we have to find the vector Ṽt = (Ṽt1, Ṽt2)
⊤ in the

null space of G(α) whose components can be interpreted as the real and imaginary

component of the voltage vector such that ṼtṼ
⊤
t is the physically correct rank one

solution of the problem.

To find such a vector, we find parameters g1, g2 ∈ R such that

Ṽt = g1

K1

K2

+ g2

−K2

K1


and the reconstructed voltages

V ⋆
t = (g1K1 − g2K2) + i(g1K2 + g2K1)

fit the known voltages at nodes m1 and m2, i.e.,

Re(Vt,m1) = g1K1,m1 − g2K2,m1 , Im(Vt,m2) = g2K1,m2 + g1K2,m2 ,

which finishes the proof.

A.5 Proof of Proposition 3.4

We have to show that the primal problem has a finite optimal value and that the

dual problem has a feasible solution in the interior of the feasible set. Clearly, since

the demand and the production are finite on every lattice node, the finiteness of the

optimal objective of the primal holds.
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To show that the feasible set of the dual problem has an interior point, set

λhk = 0, ζhgi =
1

rg − 1
, λhg =

∣∣∣∣∣∣ 1

rg − 1

∑
i∈[rg−1]

mgi

∣∣∣∣∣∣+ 1,

γhk = 0, γhg = γ
hg

= 1,

µhk = 2, µ
hk

= 1

σhk = 25− h, κhk = 1, δk = 1

β
+

hk = (25− h)η + 1, β
−
hk = 1, νi =

1

l − 1

r1hlm = r4hlm = r5hlm = 1, r2hlm = r3hlm = 0

for k ∈ N , h ∈ H, g ∈ G, i ∈ [rg − 1] and (l,m) ∈ L. Observe that all variables

except λhk and γhk, which are not sign-constrained, are thus strictly positive.

It is easy to verify that all dual constraints hold and in particular

rhlm = I ≻ 0

Gh(α) =
∑
k∈N

Mk = I ≻ 0,

establishing that there is a strictly feasible point for the dual problem.



Appendix B

Additional Material on AC Power

Flow

B.1 Phase-Shifting Transformers with Off-Nominal

Turns Ratios

As outlined in Section 3.2.1, current that flows through a conductor induces a mag-

netic field, which increases in strength with the amount of current and if the conduc-

tor is wound up in a coil. In an AC network, the magnetic field, therefore, pulsates

and changes polarity along with the current.

This electromagnetic effect works in both directions, i.e., if magnetic field lines

are moved over a conductor, a current is induced. Hence, if a second coil is placed

in close proximity to a coil for which a fluctuating magnetic field is induced by

AC current passing through the coil, the field induces an AC current in the second

coil because the change in intensity and direction of the magnetic field constantly

disturbs the free electrons in the second coil and forces them to move.

This is the basic principle of a transformer, which converts an AC voltage in the

primary coil in front of the transformer to a different AC voltage in the secondary
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coil behind of the transformer. Note that if the coils would just be placed next

to another, a significant part of the magnetic field from the primary side would

not be in range of the secondary coil. Therefore, in real transformers, a core of

ferromagnetic material is placed in a loop between primary and secondary coils to

prevent the wastage of energy.

The change of voltage between the primal and secondary coil depends on the

turns ratio of the two coils, and for an ideal transformer (without any losses), it can

be expressed as
V1

V2

=
N1

N2

=
I2
I1

where N1 and N2 are the numbers of turns of the respective coils and V1, I1 and V2,

I2 are the primary and secondary voltages and currents, respectively.

It follows that the induced voltage in the secondary coil V2 = V1
N2

N1
increases

in the primary voltage and in the proportion of turns in the secondary coil to the

primary one. Hence, V2 can be stepped up by using more windings in the secondary

coil and stepped down by using less windings. While higher voltages V2 imply lower

currents I2 (by the conservation of power) and, therefore, lower transmission losses

(which are proportional to current), lower voltages are safer to handle and, therefore,

more suitable for end-consumers. The ability to easily switch between voltage levels

using transformers is one of the main advantages of AC current over DC current

and the reason why AC technology is used in contemporary electric grids.

We distinguish transformers with nominal and off-nominal turns ratio. When

the ratio of selected voltage bases for the per-unit system on either side of the

transformer is equal to the turns ratio, the transformer is called a transformer with

nominal turns ratio. In such a situation, the transformer can effectively be elimi-

nated from power flow calculations as voltages, currents, external impedances, and

admittances expressed in the per-unit system do not change when they are referred

from one side of a transformer to the other. Taking voltages as an example, we see
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Ilm Il′m ylm

1
2
yShlm

1
2
yShlm

Figure B.1: Graph presents two buses connected with the line including transformer
and respective admittances.

that

V1,p.u.

V2,p.u.

=

V1

V1,base

V2

V2,base

=
V1

V2

V2,base

V1,base

=
N1

N2

N2

N1

= 1

for a transformer with a nominal turns ratio.

However, in some cases, it is impossible to select voltage bases in this manner –

see Glover et al. (2008) for an example of two parallel transformers where this is

the case. Such transformers have off-nominal turns ratios and require correction to

the admittance matrix to account for the additional voltage magnitude T relative

to the nominal case, i.e.,
N1

N2

=
V1,base

V2,base

T.

This implies that when we are operating in a per-unit system, the effective turns

ratio, i.e., the factor of proportionality between the two per unit voltages, equals T ,

since

V1,p.u.

V2,p.u.

=
V1

V2

V2,base

V1,base

=
N1

N2

V2,base

V1,base

=
V1,base

V2,base

T
V2,base

V1,base

= T.

Apart from transformers having an off-nominal turns ratio, another complication

relative to the simple situation described in Section 3.2 is that transformers can

be used to control the phase angle. Such transformers are called phase-shifting

transformers and are modeled by a (hypothetical) complex turns ratio eiϕ, which

allows to represent a phase shift ϕ for transformers in power flow calculations.
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To sum up, consider a phase-shifting transformer with an off-nominal turns ratio

represented by a magnitude Tlm and a phase shift ϕlm and assume that the trans-

former is placed on the line (l,m) and assigned to bus l. Then the effective turns

ratio of the transformer is
Vl

Vl′
= Tlme

iϕlm .

where l and l′ refer to the left and right side of the transformer, respectively, as

presented in Figure B.1 and Vl and Vl′ represent voltage values in the per-unit

system just before and just after the current passes through the transformer. Note

that l′ acts as a new node in the network, and we will see below how to get rid of it

again for the price of an asymmetric admittance matrix.

Since the power loss is negligible in the ideal transformer, we have

VlI
∗
lm = Vl′I

∗
l′m

where Ilm is the current flowing through line (l,m) from bus l to m, which implies

Ilm
Il′m

=

(
Vl′

Vl

)∗

=

(
1

Tlmeiϕlm

)∗

=
1

Tlme−iϕlm
. (B.1)

B.2 The Admittance Matrix

In Section 3.2, we discuss a simple form of the admittance matrix, which does

neither take into account shunt admittances of lines nor phase-shifting transformers

or transformers with off-nominal turns ratios. While this simpler view is sufficient for

modeling many power systems, we discuss the general case here since it is required

for our application example in Section 3.4.

We start by noting that besides buses, branches may also have a shunt admit-

tance yShlm (also called total charging susceptance) representing leakage of current

from within the branch (l,m) to the reference node. As is common, we apply this

admittance equally to the buses at the end of the branch to incorporate leakage
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along the branch.

Furthermore, we assume that there is a transformer represented by magnitude

Tlm and phase shift ϕlm placed at the branch (l,m) and assigned to bus l (see Figure

B.1).

To model this situation, we start by applying Kirchhoff’s current law to node l′

behind the transformer. Since there are no losses associated with the transformer,

the current flowing into l′ is just Il′m. To transform this current into the per-unit

system in front the transformer and thereby eliminate l′, we use (B.1) to write

Il′m = IlmTlme
−iϕlm . The current flowing out of node l′ is on the one hand the

current lost due to half of the shunt admittance, which due to Ohm’s law, can be

written as Vl′
1
2
yShlm and the current that flows from l′ to m, which is (Vl′ − Vm)ylm.

In summary, we can write

0 = IlmTlme
−iϕlm − Vl′

1

2
yShlm − (Vl′ − Vm)ylm

which can be re-written as

Ilm = (Tlme
−iϕlm)−1

(
Vl′

1

2
yShlm + (Vl′ − Vm)ylm

)
= (Tlme

−iϕlm)−1

((
ylm +

1

2
yShlm

)
Vl′ − ylmVm

)
= (Tlme

−iϕlm)−1

((
ylm +

1

2
yShlm

)
1

Tlmeiϕlm
Vl − ylmVm

)
=

1

T 2
lm

(
ylm +

1

2
yShlm

)
Vl −

1

Tlme−iϕlm
ylmVm, (B.2)

where in the third line we used the definition of Vl′ in terms of Vl in order to eliminate

the node l′ from the equation and ylm is series admittance of the line (l,m).

Similarly, we can use Kirchhoff’s current law for (m, l), which, expressed in the

per-unit system of bus m, yields

0 = Iml − Vm
1

2
yShlm − (Vm − Vl′)ylm
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which we can re-arrange to

Iml =

(
ylm +

1

2
yShlm

)
Vm −

1

Tlmeiϕlm
ylmVl. (B.3)

Inspecting (B.2) and (B.3), it becomes clear that allowing for transformers with

off-nominal turns ratios and non-zero phase shifts introduces an asymmetry in the

admittance matrix when using the per-unit system. In order to deal with this in the

definition of the admittance matrix, we define L̃ = L∪ {(m, l) : (l,m) ∈ L} and set

yml = ylm, y
Sh
ml = yShlm , Tml = 1, ϕml = −ϕlm for every (l,m) ∈ L with the transformer

assigned to the bus l.

In order to define the partial admittance matrix Ylm in the presence of phase-

shifting transformers with off-nominal turns ratios and shunt admittances, we write

Ylm =
1

T 2
lm

(
ylm +

1

2
yShlm

)
ele

⊤
l −

1

TlmTmle−iϕlm
ylmele

⊤
m, ∀(l,m) ∈ L̃.

Note that for the above definition Ilm = eTl YlmV and Iml = eTmYmlV are satisfied.

Finally, to derive the relationships between voltage and current on the buses in

the setting of this section, based on Ohm’s law and Kirchoff’s current law, we write

Ik = Ik0 +
∑

j:(k,j)∈L̃

Ikj = ykVk +
∑

j:(k,j)∈L̃

(
1

T 2
kj

(
ykj +

1

2
yShkj

)
Vk −

1

TkjTjke−iϕkj
ykjVj

)

=

yk +
∑

j:(k,j)∈L̃

1

T 2
kj

(
ykj +

1

2
yShkj

)Vk +
∑

j:(k,j)∈L̃

(
− 1

TkjTjke−iϕkj
ykj

)
Vj

for every k ∈ N . In order to represent this in the compact form I = Y V as in

Section 3.2.1, we define the elements of the admittance matrix Y as

(Y )kk = yk +
∑

j:(k,j)∈L̃

1

T 2
kj

(
ykj +

1

2
yShkj

)
,

(Y )kj = −
∑

(k,j)∈L̃

1

TkjTjke−iϕkj
ykj, j ̸= k.



Appendix C

Modeling of Randomness

We model conventional demand, wind power production, and photovoltaic produc-

tion as random. For each of these variables, we use hourly data on day-ahead

forecasts to estimate a 24-dimensional aggregate stochastic process in daily resolu-

tion for the whole network. Since there is only one bus in area 1 that has installed

wind power capacities, we directly model wind power production at this bus. To

disaggregate load and PV power production to single buses, we apply fixed scaling

factors. More specifically, for load, we apply the scaling factors given in the case

description to arrive at bus-level active and reactive power demands, while for PV

production, we model cumulative production at all buses and then disaggregate it

to individual buses proportional to yearly production volumes.

This implies that we model a 3 × 24 = 72 dimensional stochastic process that

evolves in daily time increments. In order to model the process, we first capture the

variation that can be attributed to seasonal effects and then reduce the dimension-

ality of the process using principal component analysis (PCA).

To this end, for each of the three random processes, we set up a linear regression

model with a constant term, 23 dummies for the hours of the day, a weekend dummy,

and yearly seasonality modeled by the two regressors cos (2πd/366) , sin (2πd/366), which

together represent a yearly sinusoidal pattern with a variable amplitude and phase
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shift dependent on the day d ∈ [366] of the year. We then use all quadratic interac-

tions of these regressors and end up with 299 regressors in each of the models. To

avoid overfitting, we estimate the model with LASSO regression, where the degree

of regularization is chosen by 10-fold cross-validation.

While the fit of the model for PV production and load is rather good with a R2

of 93% and 96.3% respectively, the fit for wind power production is, as expected,

considerably worse with an R2 of 23.4%, since wind speeds do not follow a clear

seasonal pattern.

We base our stochastic model on the residuals udhj on the day d, in hour h for

variable j = 1, 2, 3 of the regression models. To deal with the pronounced het-

eroskedasticity of the residuals, we employ quantile transformations, i.e., we trans-

form κdjh = F−1
jh (udhj), where F−1

jh is the inverse empirical distribution of all the

residuals of variable j in hour h. In this way, the residuals are uniformly distributed

on [0, 1] for every hour h and variable j.

Finally, for every day d, we end up with a vector of residuals κd ∈ R72, which

collects the transformed errors for all three technologies for the 24 hours of the day.

To reduce the dimensionality of this process, we perform a PCA on the 366 vectors

κd associated with the one year of data provided with the case and model the first

6 principle components Λ1, . . . ,Λ6, which together account for more than 95% of

the variance as basic stochastic factors in our model. To capture the day-by-day

autocorrelation structure of the components, we use LASSO regression with 10-fold

cross-validation to estimate a six-dimensional vector autoregressive model

Λd = LΛd + τd, (C.1)

where L is the lag operator.

To simulate our stochastic process, we resample the residuals τd ∈ R6 of the

regression model (C.1) to generate scenarios Λ̂d. These scenarios are, in turn, trans-

formed to residuals κ̂d ∈ R72 by multiplying with the first 6 rows of the coefficient



185

matrix of the PCA, which is further transformed to ûd with linearly interpolated

versions of Fjh.

Finally, the seasonal linear models are used to predict seasonal means for wind

and solar production as well as load to which the corresponding simulated residuals

ûd are added to arrive at scenarios for the three variables of interest.
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