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Abstract. Utilizing robotic systems in the construction industry is gaining popularity due to their 
build time, precision, and efficiency. In this paper, we introduce a system that allows the 
coordination of multiple manipulator robots for construction activities. As a case study, we chose 
robotic brick wall assembly. By utilizing a multi-robot system where arm manipulators collaborate 
with each other, the entirety of a potentially long wall can be assembled simultaneously. However, 
the reduction of overall bricklaying time is dependent on the minimization of time required for each 
individual manipulator. In this paper, we execute the simulation with various placements of material 
and the robot’s base, as well as different robot configurations, to determine the optimal position of 
the robot and material and the best configuration for the robot. The simulation results provide users 
with insights into how to find the best placement of robots and raw materials for brick wall assembly.  

1. Introduction 
The construction industry utilizes individualized production lines that are frequently labor-
intensive, manual, and involve on-site activities (Naoum, 2016). Consequently, these operations 
often struggle to meet the increasing demands for rapid and cost-effective methods. 
Nevertheless, the current construction industry is facing a significant change due to 
advancements in automation and robotics. Utilizing robotic systems can automate human tasks 
and speed up construction activities in various operations (Bock & Linner, 2015), such as 
bricklaying. Collaborative robotic systems in the construction industry hold promise for 
overcoming these limitations by introducing precision, efficiency, and scalability to 
construction activities. 
An industrial arm robot has high flexibility, but it restricts the task size that can be manipulated 
due to limitations in the robot’s workspace. This issue can be avoided by using larger 
manipulators; however, investing in larger manipulators is not always financially viable (Zhang 
et al., 2021). Moreover, moving the robot placement based on the wall geometries is another 
option; however, relocating the arm robot is time-consuming and not an efficient solution, 
indicating that utilizing a single manipulator is not a time-efficient approach for building large-
scale parts (Bhatt, Kulkarni, et al., 2022). Furthermore, another option is to use arm robots with 
rails to cover larger working spaces; however, rail installation is cumbersome and requires extra 
effort, and in some cases, it is impossible due to the unstructured terrain and dynamic 
environment in construction sites. On the other hand, utilizing a collaborative robotic system 
and minimizing the time for an individual arm robot can lead to a decrease in the total time 
required for task completion. 
This paper presents a novel system to generate multi-robot placements for different parts of a 
wall, given certain wall patterns and dimensions. Furthermore, the system proposed the robots’ 
placement and raw material placement to minimize the time spent bricklaying.  
The rest of the paper is organized as follows: Section 2 presents the related works; Section 3 is 
dedicated to the methodology; and Section 4 presents the case study. Section 5 presents the 
simulation setup and experimental evaluation, while Section 6 concludes our work.  
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2. Related works 
Several attempts have been made to automate robotic construction assembly, including the 
assembly of wooden structures using robotic systems (Koerner-Al-Rawi et al., 2020; Naboni et 
al., 2021); component transfer using automated tower cranes (Lee et al., 2009); automated 
positioning and installation robots for steel beam (Nam et al., 2007); the cooperative robotic 
assembly method for brick vault construction (Parascho et al., 2020); enhancing the precision 
of the manipulator by determining the optimal positioning of the robot for additive 
manufacturing purposes (Bhatt et al., 2021); optimization-driven algorithm for placing a single 
robot that evaluates the velocity and forces of the end-effector tool, as well as conducts a 
reachability (Malhan et al., 2019); optimization robot placement developed by (Spensieri et al., 
2016) aims to enhance the efficiency of automotive assembly and minimize cycle time. 
Moreover, (Slepicka et al., 2022) proposed Fabrication Information Modelling (FIM) 
methodology with which the information of a digital building model can be detailed, component 
by component to transfer to arm robot for execution. Furthermore, Shen et al. (2029) proposed 
a methodology for additive manufacturing based on a multi-robot system and achieved 73% 
faster printing time compared to a single-robot printing system. Zhu et al. (2021) investigated 
a component-oriented robot construction approach. By applying the smart construction object 
(SCO) paradigm, diverse construction tasks are allocated to robots by assigning states and 
requirements to the components to drive robots for the assembly of prefabricated housing (Zhu 
et al., 2021). However, the current literature does not address the combined material and robotic 
arm placement problems, which is required for efficient robotized bricklaying.  

3. Methodology 
3.1 Multi-robot coordination 

We propose a methodology for coordinating multi-robot construction tasks. In this 
methodology, the number of robots required to complete the task is determined based on the 
task’s structure and pattern, the robots’ availability, and the robots’ working space size. 
Subsequently, the robots need to be placed in positions in an arrangement that ensures their 
workspace covers all parts of the task, Figure 1 (a). Furthermore, the robots’ placement should 
satisfy the required working space for task execution while minimizing the shared space to 
avoid collisions between them. The system divides a task into distinct zones, each 
corresponding to a specific workspace for individual manipulators. This segmentation is 
instrumental in defining subtasks tailored to the robots’ capabilities and workspace size. 
Considering each robot’s unique working space, the construction task decomposes into several 
subtasks. Furthermore, subtasks are allocated to the robots to ensure optimal utilization of 
material and efficient completion of the process. An essential aspect of the methodology is to 
minimize the task duration for a single manipulator by proposing the best placements of 
materials and robots. The objective of reducing the time required for a manipulator is to 
minimize the overall time spent on task completion within a multi-robot system.  
Multi-robot system is more versatile and economical as it can be used for different tasks; 
however, utilizing several arm robots to perform construction tasks presents various challenges. 
By decomposing the operation into multiple subtasks for the robots, certain parts of the task 
can be successfully built by the first agent, while another segment of the task can be built by 
another robot simultaneously. Furthermore, the robots’ relative positions can increase or 
decrease their flexibility and reachability. For example, if the manipulator reachability regions 
have significant overlap, the multi-robot system provides high flexibility, as shown in Figure 1 
(b). This means that if one of the manipulators fails, the other one can take over its task. 
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However, this limits the size of the task (e.g., a wall) that can be built in the multi-robot system, 
or it needs more arm robots for a specific size, which is not cost effective (Bhatt, Nycz, & 
Gupta, 2022). Furthermore, high overlap increases the possibility of collisions between robots 
and necessitates a complex task-planning system to avoid such collisions. Therefore, 
minimizing the shared space between robots can provide us with less complicated task planning, 
Figure 1 (c). Therefore, it is essential to investigate the optimal placement of robots to enhance 
their reachability and minimize collision probability. 

    

 

Figure 1: (a) multi-robot coordination for bricklaying case with different shared spaces. (b) covering 
the wall by three robots (high flexibility and collision probability), (c) covering the wall by two robots 

(lower flexibility and collision probability)  

The optimal placement of the material (bricks) and the robots will emphasize the potential 
benefits of this approach, such as a reduction in build time, and improved manipulator 
reachability. In addition, it will reduce the probability of collisions and avoid unnecessary time 
spent calculating collision avoidance paths. This work has three contributions. (1) It provides 
novel path decomposition and multi-robot placement algorithms for performing construction 
activities. (2) providing the best robot’s base placement to improve efficiency and operation 
time. (3) It also provides the best material placement to decrease the operation time. 

3.2 Simulation framework for construction robotics 
We utilize a framework that allows us to plan the deployment of robotic systems for 
construction tasks. The framework uses existing software and tools for robots’ simulation. It 
relies on the incorporation of the Robot Operating System (ROS1) as the underlying framework 
that facilitates different communication types to connect several nodes in real-time. MoveIt, a 
powerful robotic framework, stands as a component for motion planning and computing the 
inverse kinematic of robots for task planning and execution. Furthermore, for visualization 
purposes, we used Rviz. The integration of ROS, Rviz, and motion planning is the basis of this 
framework, providing a comprehensive and versatile framework for simulating, planning, and 
executing using arm manipulators. 

 
1 https://docs.ros.org/en/humble/index.html 



4 
 

4. Case study 
In this study, we are considering a dry bricklaying case with collaborative robotic arms. The 
primary objective is to present a system that enables efficient bricklaying operations by 
determining the optimal number of robots based on the wall’s pattern and the robots’ working 
space size. Furthermore, optimizing the initial positioning of the material and robots would 
enhance the operation’s efficiency. The system divides the wall into several zones, with each 
zone allocated to one arm robot to enable coordinated cooperation (Figure 1). Furthermore, the 
approach assigns brick positions in each zone to minimize bricklaying time. This approach 
speeds up the bricklaying by utilizing automated planning and optimization of the placement 
of the robots and bricks.  
The system based on robots sharing workspaces divides the wall into safe zones (blue) and 
danger zones (yellow and red), as shown in Figure 1 (a-b). The yellow zones are available to a 
pair of robots, whereas the red zone is accessible to all robots. Therefore, the system provides 
sequences so that two or more robots are not allowed to work in these zones simultaneously. 
Considering those zones and our rule that only one robot should operate in a dangerous zone, 
provide safe multi-robot coordination. 
The overall time of bricklaying depends on the number of robots performing the task 
simultaneously. Since each robot has a specific working space, the number of robots has a direct 
effect on the total time spent bricklaying. Moreover, for individual robots, the time of picking 
and placing the bricks depends on two main parts: time for planning ( 𝑡𝑡𝑝𝑝) and time for execution 
( 𝑡𝑡𝑒𝑒). Time for planning means the amount of time that a solver needs to calculate the inverse 
kinematic for each stage of the activity. The time for execution depends on the robot 
configuration, the distance of the bricks’ initial position to the robot position, and the bricks 
target positions. 

4.1 Problem formulation 

We consider a set of 7 Degrees Of Freedom (DOF) arm manipulators (Panda) 𝑀𝑀 =
{𝑀𝑀1,𝑀𝑀1,   .  .  . ,𝑀𝑀𝑛𝑛} who are tasked to assemble a brick wall (𝑛𝑛 = 3 in our examples) as shown in 
Figure 1 (a). Each manipulator is equipped with a gripper and is capable of picking and placing 
a brick. To perform efficient bricklaying by using this multi-robot system, we need to achieve 
the following goals: 

1- Reduce the assembly time: Assembly time is the total time required by the set of 
manipulators to build the part completely, 𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 =  𝑇𝑇1 +  𝑇𝑇2 + 𝑇𝑇3. We need to decompose 
the wall and assign each part to each manipulator. By doing so, the manipulators can 
simultaneously assemble the part in the minimum amount of time. 

2- Find the best robot position: Robot position has a direct impact on the time of execution 
for an individual robot. For instance, placing a brick takes longer for each manipulator if 
there is a big distance between the robot and the brick’s target position. 

3- Find the best material (bricks) position: The duration of bricklaying is directly influenced 
by the initial position of the bricks for each arm manipulator. 

4- Optimal robot trajectory: 7 DOF arm manipulator can consist of multiple Inverse 
Kinematic (IK) solutions for each stage of the task for the same end effector pose (Spong 
et al., 2020). The reachability of the manipulator is formed by the combination of IK 
solutions from various IK families (Bhatt, Nycz, & Gupta, 2022). Ideally, the manipulator 
should follow the easiest and fastest IK solution while picking and placing bricks. 
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However, it is not always possible because of joint limits and collision avoidance. Since 
we are using MoveIt to calculate the IK for every stage and MoveIt handles the IK by 
utilizing several solvers and optimization algorithms, we do not discuss trajectory planning 
as it is not within the scope of this paper. 

4.2 Approach 

Our approach consists of two processing steps: decomposing the wall into a set of continuous 
segments and finding the best positions of the robots’ base and material. During the 
decomposition, it tries to ensure that the decomposed segment sets have equal execution time 
and there are no gaps between them. This means that the manipulators will have less idle time 
when simultaneously executing the allocated segment sets. Thus, the wall decomposition 
module’s goal is to reduce the time spent bricklaying. The wall decomposition modules output 
the 𝑛𝑛 decomposed set of segments 𝐿𝐿1,𝐿𝐿2, … , 𝐿𝐿𝑛𝑛 which is taken as an input to the multi-robot 
placement module. Finally, the multi-robot placement module returns the placement locations 
for the 𝑛𝑛 manipulators. 

A. Wall decomposition 
Since in our case the number of robots is three, therefore: 

𝐿𝐿𝑤𝑤𝑡𝑡𝑡𝑡𝑡𝑡 =  𝐿𝐿1 + 𝐿𝐿2 + 𝐿𝐿3 (1) 

Since we used the same robots as our multi-robot system, we expect to reduce the assembly 
time by assigning the robots an equal number of tasks. Therefore, we have: 

 𝐿𝐿1 =  𝐿𝐿2 = 𝐿𝐿3 =
𝐿𝐿𝑤𝑤𝑡𝑡𝑡𝑡𝑡𝑡

3
   (2) 

Another condition that should be satisfied is: 

𝐿𝐿𝑤𝑤𝑡𝑡𝑡𝑡𝑡𝑡 ≤ 𝑛𝑛. 𝐿𝐿𝑡𝑡𝑝𝑝𝑡𝑡𝑜𝑜𝑜𝑜𝑡𝑡𝑡𝑡 (3) 

𝐿𝐿𝑡𝑡𝑝𝑝𝑡𝑡𝑜𝑜𝑜𝑜𝑡𝑡𝑡𝑡 is the maximum length of wall that each of the robots can cover and build within the optimal 
time. 

B. Multi-robot placements 

The decomposed segment sets( 𝐿𝐿1, 𝐿𝐿2, 𝐿𝐿3) generated in the path decomposition module, are 
assigned to the manipulators (𝑀𝑀1,𝑀𝑀2,𝑀𝑀3). Since we are using several independent arm robots 
to collaborate and perform the task, minimizing the assembly time for each of them, leads to a 
reduction in the overall time required for task completion by the collaborative robotic system. 
Therefore, in simulation, we focused on finding the best robot’s position, material position, and 
robot configurations for the Panda robot. 

5. Simulation 
We tested our approach with several simulation setups. We defined the robot configuration as 
‘Ready-Front-01’, ‘Ready-Front-02’, and ‘Ready-Side’ as the middle stage for IK calculation. 
The multi-robot placement problem is defined in cartesian coordinates < x, y, z >. Since z is the 
same in all scenarios, the only two coordinates define the position of the manipulator and 
material, < x, y >. For each scenario, we load the bricks in the same predetermined location to 
test the impact of the robot and material position. This means that in one scenario, all bricks 
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possess the same initial positions (Figure 2). We execute the simulation 78 times with four 
different initial positions of bricks (in ‘Ready-Front-01’ case five), six target position lines, and 
three different robot configurations. In the position line parameter, we evaluate the robots’ 
placement effect on brick layering time by changing the distance between the robot and the 
target line.  

 

Figure 2: The plot to visualize the robot and material placements with respect to Table 1. parameters  

Table 1: Parameters of various simulation scenarios 

Parameters 𝒓𝒓𝒘𝒘𝒘𝒘𝒓𝒓𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘 𝒓𝒓𝟏𝟏,𝒚𝒚𝟏𝟏 𝒓𝒓𝟐𝟐,𝒚𝒚𝟐𝟐 𝒓𝒓𝟑𝟑,𝒚𝒚𝟑𝟑 𝒓𝒓𝟒𝟒,𝒚𝒚𝟒𝟒 𝒓𝒓𝟓𝟓,𝒚𝒚𝟓𝟓 𝒓𝒓𝟔𝟔,𝒚𝒚𝟔𝟔 𝒓𝒓𝟕𝟕 

Value [m] 0.85 0.2 0.3 0.4 0.5 0.6 0.7 0.8 

 

 
 (a) 
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Figure 3: Simulation time result for the Panda robot. (a) assembly time with ‘Ready-Front-01’ 
configuration, (b) assembly time with ‘Ready-Front-02’ configuration, (c) assembly time with  

‘Ready-Side’ configuration 

According to the simulation results (Figure 3), in all robot configurations, the time required for 
bricklaying is minimized when the distance between the robot and the desired wall is 𝑦𝑦2 = 0.3. 
Furthermore, when the distance between the target wall and the robot increases, there is a 
corresponding rise in the duration of bricklaying. Nevertheless, this simulation demonstrates 
that, in contrast to the idea that a smaller distance between the robot and the wall leads to a 
quicker construction time, the smallest distance does not necessarily represent the optimal 
placement. The problem lies in the robot’s need to travel a longer path to avoid the collision, 
which consequently leads to an extended duration for calculating the inverse kinematics. The 
result identifies an optimal position, 𝑦𝑦2 = 0.3, where the assembly’s duration is minimized. 
Moreover, according to the results of the simulation (Figure 3), the optimal initial location of 
bricks for the Panda robot is determined to be in 0.5m and 0.4m (green and blue circles in Figure 
2) on the x-axis. Conversely, despite the idea that the closest material placement is optimal for 
the initial placement of bricks, the results indicate that 𝑥𝑥 = 0.3m does not represent the best 
material placement. Through the simulation of multiple scenarios, we identified the optimal 
positioning of bricks and robots. Consequently, we expanded our theory to encompass the 
coordination of several robots. 

(b) 

(c) 
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Figure 4: Simulation time results based on different bricks initial position. (a) initial position is 0.3,   
(b) initial position is 0.4, (c) initial position is 0.5, (d) initial position is 0.8 

In Figure 4, we tested the effect of the robot’s configuration as the middle stage for IK 
calculation, with four brick initial placements and six brick target positions. As it is obvious, 
“Ready-Front-01” is the best configuration among all of them. Finally, based on our simulation, 
we found the best brick initial placements, robot placements, and robot configuration.  

Therefore, we can calculate the 𝐿𝐿𝑡𝑡𝑝𝑝𝑡𝑡𝑜𝑜𝑜𝑜𝑡𝑡𝑡𝑡, since we obtain the best line of bricks. In our case, the 
𝐿𝐿𝑡𝑡𝑝𝑝𝑡𝑡𝑜𝑜𝑜𝑜𝑡𝑡𝑡𝑡 = 1.48 [𝑚𝑚] based on equation (4). 

𝐿𝐿𝑡𝑡𝑝𝑝𝑡𝑡𝑜𝑜𝑜𝑜𝑡𝑡𝑡𝑡 = 2 ∗ �(𝑟𝑟72 − 𝑟𝑟22) (4) 

 

 

(a) (b) 

(d) (c) 
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Figure 5: The process of defining robots’ placement based on the wall pattern and length. (a) shows 
the wall pattern and length, (b) shows the lines of robots’ positions, (c) shows the multi-Panda 

coordination and their positions 

Finally, our system can suggest the robots’ positions based on wall length and pattern. 

𝑃𝑃1 = (𝑥𝑥0  + �
1
2
� . 𝐿𝐿𝑡𝑡𝑝𝑝𝑡𝑡𝑜𝑜𝑜𝑜𝑡𝑡𝑡𝑡 ,𝑦𝑦0 − 𝑟𝑟2) (5) 

𝑃𝑃2 = (𝑥𝑥0  + �
3
2
� . 𝐿𝐿𝑡𝑡𝑝𝑝𝑡𝑡𝑜𝑜𝑜𝑜𝑡𝑡𝑡𝑡,𝑦𝑦0 + 𝑟𝑟2) (6) 

𝑃𝑃3 = (𝑥𝑥0  + �2 +
cos(𝜃𝜃)

2 � . 𝐿𝐿𝑡𝑡𝑝𝑝𝑡𝑡𝑜𝑜𝑜𝑜𝑡𝑡𝑡𝑡  + 𝑟𝑟2 sin(𝜃𝜃) ,𝑦𝑦0 − �
sin(𝜃𝜃)

2 �. 𝐿𝐿𝑡𝑡𝑝𝑝𝑡𝑡𝑜𝑜𝑜𝑜𝑡𝑡𝑡𝑡 + 𝑟𝑟2 cos(𝜃𝜃) ) (7) 

6. Conclusion and future steps 

This paper presents a novel multi-robot system that provides the best placement for material 
and robots based on the wall pattern and dimension parameters (Figure 5). We execute 
simulations to obtain the time for bricklaying with different positions of bricks and robots and 
robot configurations. The simulation results indicate that 𝑥𝑥 = 0.5 and 𝑥𝑥 = 0.4 in the x-axis 
determines the optimal initial position of bricks. Furthermore, the best robot placement is when 
the distance between the robot and the desired wall is 0.3 (𝑦𝑦2). However, the multi-robot 
placement problem was designed based on a few assumptions that can be addressed in future 
work. Due to MoveIt’s limitations, we could not run the multi-robot simulation simultaneously. 
Moreover, we enforced the rule allowing only one robot to operate in the shared spaces to 
prevent collisions between them. Nevertheless, improving the collision constraint is possible to 
enhance operational efficiency. This paper used the same type of robots; however, future 
research can extend this by using different arm manipulators. 
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