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Abstract: The inheritance of historic human-induced disruption and the fierceness of its impact
change aquatic ecosystems. This work reviews some of the main stressors on freshwater ecosystems,
focusing on their effects, threats, risks, protection, conservation, and management elements. An
overview is provided on the water protection linked to freshwater stressors: solar ultraviolet radia-
tion, thermal pollution, nanoparticles, radioactive pollution, salinization, nutrients, sedimentation,
drought, extreme floods, fragmentation, pesticides, war and terrorism, algal blooms, invasive aquatic
plants, riparian vegetation, and invasive aquatic fish. Altogether, these stressors build an excep-
tionally composite background of stressors that are continuously changing freshwater ecosystems
and diminishing or even destroying their capability to create and maintain ongoing natural healthy
products and essential services to humans. Environmental and human civilization sustainability
cannot exist without the proper management of freshwater ecosystems all over the planet; this
specific management is impossible if the widespread studied stressors are not deeply understood
structurally and functionally. Without considering each of these stressors and their synergisms, the
Earth’s freshwater is doomed in terms of both quantitative and qualitative aspects.

Keywords: freshwater; natural and anthropogenic stressors; threats; risks; management

1. Introduction, Background, and an Analysis of Necessity

The interrelations and synergies among planetary freshwater and a high variety of
natural and anthropogenic stressors are logically expected to be very complex. In terms of
scientific research approach coverage, a bibliographical analysis of 2083 research papers of
the Web of Science Core Collection dealing with freshwater stressors highlights the status
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and trends in this knowledge advance, and last but not least, it identifies some structural
gaps in the science world’s efforts and results in this field of interest (Figure 1).
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The temporal trend (Figure 2) of the international scientific community’s studies
reveals that modern research have tried to focus on the interactions among different aquatic
ecosystem environments, stressors, exposure, biodiversity, interactions, and risks.
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The scope of this review is to reveal the importance of the vital freshwater planetary
ecosystems’ risks associated with some of the main identified natural and anthropogenic
stressors. This work’s objectives were focused on 16 main natural and anthropogenic
stressors, which were identified based on publication result gaps and trend analysis
(Figures 3–32) and their characteristics, interrelations, threats, risks, and management.
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For the bibliographical analysis we used scientific materials published on Web of
Science Core Collection, using as search terms “freshwater” in combination with each of
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the seventeen stressors studied in this review paper. The search specified that the terms
should be present either in the title or keywords of the analyzed scientific papers. The
results were filtered; only articles, reviews, and proceeding papers were selected.

Water is the key to biological entities’ structures, processes, and functions [1,2]. This
vital substance for all organisms and ecological systems, fluxes, and circuits is present in
large quantities (4.16818183 km3) on Earth. It varies in its richness: 97.24% in marine areas,
2.14% in icecaps and glaciers, 0.61% in groundwater, 0.009% in freshwater lakes, 0.008%
in inland seas, 0.005% in soil, 0.001% in atmosphere, and 0.0001% in rivers [3]. This fact
gives the illusion of this resource high availability; however, less than 1% of it is suitable for
human needs [4]. The heritage of human-induced disruption and the severity of its present
impact greatly distress the structure and function of aquatic habitats [5]; specifically, the
growing human population is the main cause of the water shortage and its falling quality,
and this growth trend continuing [6,7].

Human-induced environmental change is causing a rise in water temperature, declines
in dissolved oxygen content, sea level rises, amplified toxicity from pollution, and habitat
degradation and loss, among other changes. These impacts will impose strong pressures on
aquatic and semi-aquatic habitats, ecosystems, and their associated resources and services
and render future water availability uncertain [8–14].

The proper management of water and related biological and ecological structures and
functions, resources, and services can be undertaken at the local, regional, and/or planetary
scales. Yet, this may only be accomplished if most threats are approached through an
integrated management system to curb human pressures based on state-of-the-art research
on freshwater inventory, description, threats, risks, and trends.

In the 20th century, UNESCO began partnerships to cooperate on water-related issues
that the Earth is challenged by. The Millennium Development objectives also aim to
provide humans with viable access to good-quality water, hygiene, and public health. The
Johannesburg Summit proposed that international leaders make safe drinking water and
good sanitation available. Have we reached these targets? Are we able to properly manage
freshwaters and their associated products and resources? Apart from some local cases,
until now, we have failed in this. But do we have the knowledge to adequately manage the
many stressors that threaten freshwater ecosystems?

All ecosystems are facing record levels of human-induced stress, pushing them toward
global tipping points. Multiple stressors determine these ecosystems’ ecological status
at continental and global scales [15–19]. Among them, aquatic ecosystems are affected
by a wide range of different stressors [20]. This situation raises difficult challenges for
academia and decision-makers, who need a solid knowledge base to manage the environ-
mental change crisis. In this review, we highlight some of the natural and anthropogenic
stressors in freshwater ecosystems by providing an overview of their status and future
prospects in terms of their description, effects, threats, risks, management elements, and
freshwater ecosystem protection elements. Specifically, we reviewed, in this respect, the fol-
lowing freshwater ecosystem stressors: solar ultraviolet radiation (1), thermal pollution (2),
nanoparticles (3), radioactive pollution (4), salinization (5), nutrients (6), sedimentation (7),
drought (8), floods (9), habitat fragmentation (10), pesticides (11), war and terrorism (12),
algal blooms (13), invasive aquatic plants (14), riverine plants (15), and invasive aquatic
fishes (16). Our review emphasizes some key stressors that influence the quantitative and
qualitative features of freshwater ecosystems.

In the context of the global water management challenges, the main idea of our efforts
is to manage present and future challenges facing freshwaters to provide appropriate
protection to complex ecosystem structures and functions of freshwaters. The key point
of this review is to highlight a sequence of individual and categories of environmental
stressors with synergistic negative effects, which must be carefully considered for the
assessment, monitoring, and management of freshwater ecosystems.
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2. Solar Ultraviolet Radiation (UVR)

There has been a fluctuating interest in the impact of the UVR (solar ultraviolet
radiation) stressor on freshwater for researchers in recent years both globally (analyses that
include countries with both developed and undeveloped scientific networks and financial
and human resources) and in Europe (analyses that include countries with preponderant
developed scientific networks and financial and human resources), with a significant
decrease in interest trends in recent years (Figures 3 and 4). The need for an increase in
qualitative and quantitative research efforts is obvious.

Solar radiation influences habitats, organisms, and ecosystems in many different ways
depending on its spectral composition [21]. Longer wavelengths (>400 nm) are required for
vision in animals and photosynthesis in plants and protists. UV-B radiation (280–320 nm)
is harmful to organisms because it damages DNA, biomembranes, and other organelles,
whereas UV-A (320–400 nm) can cause damage or stimulate the photo-repair of UV-B
damage through photolyases [22].

The UVR effects on organisms depend on diverse levels of exposure, influenced
by many factors, including climate change [23]. Climate change is altering the mixing–
stratification regimes in the water [24]. These changes are altering key ecosystem services,
such as water quality and fishery productivity [25], and impacting biogeochemical cycles,
climate-system feedbacks, and biodiversity by inhibiting primary production [26] or rush-
ing the organic matter decomposition through photodegradation, growing the release of
greenhouse gases [27]. UVR also alters community structure, distribution and migration
patterns, mate choice, foraging, and predator–prey interactions, which ultimately alters
trophic interactions and energy transfer efficiency [28]. By contrast, UVR can impact the
timing and size of disease outbreaks as it decreases pathogens’ infectivity [29] and parasites’
fitness [30,31] and reduces their habitat suitability [32,33].

Because UVR is a chronic stressor, it is not straightforward to modify or control the
stress response. Even though we have a comprehensive understanding of the individual
effect of UVR on aquatic ecosystems, we scarcely know how its interaction with other
drivers (e.g., temperature, acidification, nutrient inputs, de-oxygenation) could alter the
predictions available. The usefulness of data based on single-driver studies in a future
scenario of multifaceted planetary change will be limited [34].

The most effective specific strategy to protect life below water from UVR was the
implementation of the Montreal Protocol. This implementation, considered the most
successful treaty ever, has protected aquatic life by preventing the large increases in UVR
that would have occurred due to the Antarctic ozone “hole” (by 20% today, with respect to
the 1990s) without the real protection provided by the ozone layer [35].

The impact of UVR on habitats has been greatly increasing eutrophication and brown-
ing of water bodies [36,37]. Rising nutrient and organic matter inputs derived from human
activities and extreme climate events (i.e., rainfall and wind) are, in many cases, reducing
water transparency [38]. Increased water turbidity exerts negative feedback on primary
producers because it can limit [39] and inhibit photosynthesis [40]. By contrast, it favors
heterotrophic processes, such as respiration, which can trigger anoxia processes that can
affect higher trophic levels (e.g., fishes) [41]. These interlinked processes and global-change
drivers can not only impair the ecosystems’ functioning but also alter the social perception
that we have about ecosystems in a negative way and the provision of several ecosystem
services (e.g., food supply, drinking water, recreational activities) [42].

It is critical to quantify the costs of multiple perturbations that freshwater ecosystems
are facing. A dialogue between governments, natural area managers, and scientists should
be promoted to improve and spread knowledge about how anthropogenic activities and
changes in land use affect water quality and other ecosystem services and to build commit-
ment. Thus, funding to perform large-scale and long-term experiments designed to test
how communities and ecosystems respond to climatically and anthropogenically driven
changes is pivotal for providing knowledge-based decisions that support the practices to
be developed in future management and conservation plans.
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3. Thermal Pollution

The impact of thermal pollution on freshwater has generated an extremely low level
of interest for researchers in recent years, both globally and in Europe (eight studies in the
studied period, seven of which are in Europe) (Figure 5). The need for both qualitative and
quantitative research on these issues is urgent.

The water temperature in the natural environment varies and depends on the region of
the planet and on the source of heat, which can be natural (e.g., volcanoes, hot groundwater)
or human-made (e.g., thermal and nuclear power plants). The term thermal pollution is
applicable only to the second group of sources. Thermal pollution is one type of physical
pollution of the natural environment characterized by a periodic or prolonged input of hot
or cold waters to the natural water bodies that cause the degradation of water quality by
changes in water temperature associated with human activities [43–45].

The water temperature of the water bodies affects not only biological processes but
also the growth of aquatic plants and animals [43,46–49]. Cold water pollution suppresses
the development of fauna in freshwater [50]. Conversely, warming increases the rate of pho-
tosynthesis due to an increasing number of producers up to a temperature of about 32 ◦C,
with temperatures above this temperature beginning to cause mortality and decomposition
by aerobic bacteria [51,52]. Water temperature interacts with other abiotic stressors as a
driving force for impact. Its effect on ecological processes is due to the complex combined
nature of the interaction of stressors [53]. Thermal pollution is a stress factor for aquatic
ecosystems and is also capable of exacerbating the effects of anthropogenic pollution. While
chemical pollution factors are classified according to their degree of presence in a natural
water body, thermal pollution can be measured in a particularly polluted water body but is
not classified among other variables [54]. The reaction of an aquatic ecosystem to thermal
pollution is assessed by the change in the state of its biotic part [54]. As a result of thermal
pollution of water bodies, the production of organic matter in them begins to prevail over
destruction, aerobic processes are replaced by anaerobic ones, the sanitary condition of
water bodies deteriorates, and significant changes occur in biota [53]. A drop or increase in
water temperature in the receiving water body of about 10 degrees or more is likely a value
that leads to intense changes in the biotic part of the ecosystem [43,48].

Since the source of thermal pollution is anthropogenic, the intensity of warm or hot
water release can be controlled [55]. However, it is impossible to assess the degrees of
damage caused as a result to the aquatic ecosystem by measuring the temperature at the
inlet of hot water in the reservoir [56] since the distribution of water temperature and
the impact in the receiving reservoir has an uneven character [44,47,57]. In this case, the
communities structure [58] turns out to be a particularly sensitive link in the ecosystem, and
bioindication [59–61] was the most sensitive method for assessing ongoing changes. The
innovative methods can lead to positive results in the assessment of the thermal pollution
effects on aquatic ecosystems [44,61–65]. It was found that the similarity between thermal
pollution and organic pollution impacts [60] can show the parallel in both ecosystem
response processes and, therefore, open a new field for thermal influence research [44].

To protect aquatic ecosystems, the United States has an upper temperature limit of
32 ◦C for surface waters [56] or up to 28 ◦C according to European Union environmental
standards [55]. But, the main thing is to assess the degree of influence of the influx of hot
water on the receiving reservoir [66]. The ecosystem can modify its characteristics as the
trophic state (e.g. algae or cyanobacteria blooming), the ecosystem’s basic structure [61],
invasive organisms’ events, etc. [47].

The monitoring of species content changes in the natural biota of aquatic ecosystems
is important for providing forecasts of future changes, which, together with modeling, can
be a part of the biodiversity conservation strategy [50,60,62,66].

An analysis of existing approaches to assessing the thermal impact on freshwater
ecosystems has shown that more attention is paid to studies of aquatic animals and plants
than to microalgae. The system for indicating thermal exposure (cold or hot) has not yet
been sufficiently developed. Research is of a more private or experimental nature, while
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assessments of the impact of temperature anomalies are made on natural open systems.
However, assessment methods are developing quite actively.

If we are not able to manage water temperature, the water quality and quantity could
be disturbed more than we anticipate, transforming it into an unsafe environment. The
water temperature should be kept within the local and regional natural ranges by full
real-time monitoring, automatic alerts, and real-time status reporting of the problematic
effluents and their strict technological control by insulation, cooling, etc., at the very points
of contact with water bodies.

4. Nanoparticles

There has been a steadily increasing number of articles and citations on nanoparticles
(NPs) as stressors that impact freshwater in recognition of its importance globally (investi-
gations that include countries with developed and undeveloped scientific networks and
financial and human posibilities) but with a sharp decline in recent years—a trend that
needs to be reversed for this area of interest in the future—and in Europe (analyses that
comprise countries with preeminent developed scientific networks and financial and hu-
man resources) (Figures 6 and 7). The need for increasing both qualitative and quantitative
research efforts on these issues is evident.

NPs ranging in size from 1 to 100 nanometers [67], have emerged as a relatively new
stressor in freshwater aquatic ecosystems. NPs are composed of various materials, includ-
ing metals, metal oxides, and polymers. Their unique physical and chemical properties
make NPs valuable for a wide range of industrial, commercial, and medical applications
such as drug delivery, energy production, and electronics. However, their unique properties
make them potentially hazardous to the environment.

Once released into the nature, NPs shows high persistence, undergo major transfor-
mation, and display high reactivity with other substances around. These characteristics can
lead to harmful effects on ecosystems, both by directly impacting and indirectly influencing
the complex ecological interactions within multiple-stressor environments.

The presence of NPs in aquatic environments can exert major impacts on organisms,
yielding adverse effects. One such result is the induction of reactive oxygen species (ROS)
by NPs, leading to oxidative stress within the tissues of organisms. Also, the accumulation
of NPs in diverse organs can cause physical stress and tissue damage. NPs can also
affect the food chain in aquatic ecosystems by accruing in tissues and being transferred to
larger organisms, causing biomagnification. Furthermore, the delicate balance of aquatic
microbiota and enzymatic activity can be disrupted by NPs, further exacerbating the
negative repercussions on the health of aquatic organisms and water quality [68].

Concerning management elements, the physicochemical characterization (size, surface
area, shape, solubility, aggregation, etc.) and the elucidation of biological effects have
been proposed [69]. Effective management should involve assessing and monitoring the
sources, fate, and transport of NPs in the freshwater ecosystems. Vale et al. [68] highlighted
the importance of assessing the dynamic speciation of NPs in the exposure media and
identifying specific endpoints for risk assessment studies. In particular, particle size and
shape are important factors to consider when assessing the toxicity of NPs in aquatic
environments. For example, smaller Ag-NPs present more severe toxicity to aquatic
organisms due to their higher particle-related toxicity caused by small particles and higher
ion-related toxicity caused by their high dissolution rate and extent [70].

Protection may include implementing green chemistry practices, promoting the use
of alternative materials, and developing sustainable manufacturing processes. Strategies
to mitigate the effects of NPs on aquatic organisms include the use of nanoremediation
techniques and developing early warning systems for NPs contamination.

One rapidly growing field is focused on nanopesticides. When it comes to assessing
their aquatic ecotoxicity, it has been suggested that nanopesticides pose a lower environ-
mental risk compared to conventional pesticides due to reduced drift. However, there is
still a scarcity of studies that comprehensively evaluate this risk, particularly in comparison
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to conventional pesticides on an ecosystem scale [71]. Considering the potential environ-
mental contamination resulting from the use of nanopesticides in food production and the
potential risks they may pose to aquatic life, there is an urgent need for comprehensive
studies on their ecotoxicity prior to their introduction into the market.

In conclusion, we need to urgently and exhaustively monitor environmental contami-
nation and regulate the use and disposal of NPs, prioritizing the reduction of their release
into the environment and developing guidelines for their safe handling.

5. Radioactive Pollution

There is fluctuant evolution in the number of articles on radioactive pollution as a
stressor with an impact on freshwater, with a significant interest trend in recent years as a
recognition of its importance globally (analyses that include states with both developed
and undeveloped research networks and financial and human resources), and in Europe
(analyses that include states with preponderant advanced scientific networks and financial
and human resources), there has been a fluctuant evolution in the number of articles, with
a significant interest trend in latest years (Figures 8 and 9). The need for an increase in both
quantitative and qualitative research efforts for these issues is clear.

In the last century, the testing and use of nuclear energy resulted in global contami-
nation by artificial radionuclides [72]. Other sources of the technogeneous radionuclides
entering freshwaters consist of mining, refining, and hydrometallurgical processing of the
uranium ores; production, processing, and storage of nuclear fuel; operation of nuclear
power facilities; production and use of radioactive isotopes; radioactive wastes; and nuclear
and radiation incidents, accidents, and disasters [73–75].

The International Atomic Energy Agency (IAEA) identifies natural or technogeneous
radioactive contamination as the occurrence of radioactive compounds where their presence
is unintended or undesirable or the process gives rise to their presence [76].

Ecosystem response to radiation depends on species’ sensitivities and the multitude
of direct and indirect pathways by which individual organisms can be affected, including
the potential for complex interactions across multiple trophic levels [77,78].

The water bodies located near nuclear power plants are the most vulnerable, as they
are subjected to thermal discharge, chemical pollution, eutrophication, mechanical stress,
and additional irradiation by artificial radionuclides. The liquid discharges of the most
widely used WWER-type reactors contain a wide spectrum of radionuclides, mainly the
fission products, first of all, 3H, and radioisotopes of biologically essential elements and
their chemical analogs 131I, 89, 90Sr, 134, 137Cs, 141, 144Ce, 103, and 106Ru, among others. The
other group of radionuclides comprises products of corrosion of the reactor active zone
and the first contour of the heat carrier 51Cr, 54Mn, 60Co, etc. [79,80].

The destructive impact of radiation on the nucleic DNA and other molecular com-
ponents of organelles, which, depending on the impact intensity and duration, can be
irreversibly damaged, is accepted as the main threat of radiation [81–83].

The radiation dose on the organisms, first by the radionuclides contained in water and
bottom sediments, is an important integral criterion of the radioactive pollution effect on
the aquatic biota [80,84,85]. At this, the organisms are able to concentrate the radionuclides
in organs and tissues, which can result in a notable increase in the dose load owing to
internal irradiation [86–88]. At the same time, average levels of internal irradiation of
aquatic organisms from the radionuclides near nuclear power plants are much lower than
irradiation from radionuclides occurring in the environment [79,80].

Despite the relative resistance of aquatic organisms, chronic doses of irradiation can
cause damage, mostly mutations, and reduce their vitality, which results in a decrease in the
species diversity and changes in the hydrobiocenoses’ structure [78,89,90]. The ecosystems’
response to the stress impact of the radioactive contamination appears in decades, owing to
changes in the structural and functional characteristics of populations and communities of
the organisms, as certain irradiation doses can stimulate some species or can be ineffective
for others, and suppress radiosensitive species [91,92].
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The radioactive contamination of freshwater requires optimization of the complex
radioecological monitoring systems, which serve as an “end point” of many biologically
hazardous long-living radionuclides, as well as an in-depth study of the nuclear energetics
impact on the organisms [93,94]. The radioecological monitoring should include regulated
collection and analysis of the primary survey data, prompt detection of the radioactive
compounds in the aquatic environment, and informational support for assessment and
forecast of risk degree for the aquatic ecosystems as well as for decision-making for the
radiation and hydro-ecological safety of the nuclear-cycle enterprises [95].

IAEA is authorized to establish and accept safety standards of radiation protection
and provide the application of these standards [96].

The irradiation effects on freshwater ecosystems can be mitigated by chemical, physi-
cal, and social countermeasures [97,98]. Computerized systems are under development for
management support to identify optimal strategies for the rehabilitation of radionuclide-
contaminated aquatic ecosystems and the selection of optimal strategies for freshwater
ecosystems with different contamination scenarios [98].

6. Salinization

There has been a constant increase in the number of articles on salinization as a
stressor that impacts freshwater, with a low decrease in the interest trend in recent years
as a recognition of its importance globally (analyses that include countries with both
developed and undeveloped scientific networks and financial and human resources), and
in Europe (analyses that include countries with preponderant developed scientific networks
and financial and human resources), there has been a constant increase in the number of
articles, with a low decrease in the interest trend in recent years (Figures 10 and 11). The
need for qualitative and quantitative research efforts on these issues is clear.

Salinization is the increase in inorganic ions in water bodies [99,100]. Primary saliniza-
tion results from natural processes such as rainfall, rock weathering, seawater intrusion,
and aerosol deposits, and secondary salinization is induced by human activities [101].
Anthropogenic salinization is mainly caused by the runoff from irrigation in agriculture,
industrial discharges, mining, and salt use in winter on roads [102–104].

The leaching of excess salts increases concentrations of chloride ions and heavy
metals in water bodies, which pose a risk to human health and freshwater-related pro-
cesses [105,106] and can produce temporary yet acute stress on biota [107]. The high
salinity levels in rivers create an osmotic pressure on their animals, which can have ef-
fects on metabolism, growth, reproduction, and survival [108–111]. Bacterial, fungal, and
macroinvertebrate richness can be reduced with salinity increase, altering organic matter
decomposition by microorganisms and detritivores and other ecosystem functions affected
by the loss of salinity-sensitive taxa [112,113]. For instance, chlorides negatively impact
aquatic organisms but favor the phytoplankton, accelerating eutrophication and increasing
algal blooms [114]. Freshwater salt retention also reduces benthic organisms’ diversity, like
bivalves sensitive to salinity [115,116]. Acute stress has negative effects on several aquatic
species, mostly fish [117–119]. Fish have diverse ranges of salt tolerance, depending on
species, life stage, salt concentration, temperature, and exposure duration. Exposure to high
salinity compromises metabolism and influence osmoregulation, and fish development
may be impaired [111,120,121]. Short-term effects of salinization stress on fish include
behavior modifications [122,123]. Therefore, if freshwater fish populations are exposed to
behavioral disruptors such as salinity, there may be severe ecological implications [124]. In
contrast, some research suggests some organisms might be less sensitive or have developed
a tolerance for high salinity, like Daphia pulex [125].

The main contributors to the salinization of rivers are humans. There is thus the
chance to reduce saline chronic inputs by properly managing land uses and promoting
adequate water natural filtering, i.e., riparian forests, and water gathering and treatment,
e.g., for the road salts case. Ecosystem-scale experiments, advances in water quality
monitoring technology, and models are required to advance and better inform management
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frameworks for predicting salinization consequences and identifying possible restoration
opportunities of freshwater ecosystems [126]. For the chronic input threats, we should add
the acute events, like, for example, the well-known case when emergency releases of saline
water from chemical plant lagoons led to a complete resetting of all living organisms in the
Dniester River for 500 km and triggered the spread of invasive fish species [126].

The management of freshwater secondary salinization must be improved at different
scales through mitigation (e.g., source control of main inputs of salt ions, agricultural
chemical inputs’ regulation, land-use change limitation, backfilling of mine tailings), reme-
diation (e.g., riparian buffer areas care, solutions to clean-up of surface and groundwater,
enhanced wastewater treatment), prevention (e.g., eco-friendly alternatives to roads salts),
and monitoring (e.g., assessing salt loads to freshwater ecosystems) [127].

Multiple stressors will likely co-occur in nature in addition to increasing salinity, and
sequential stressful events may have additive, synergistic, or antagonistic cumulative effects,
intensifying or not, the effects of salinity [128–131]. Furthermore, these repercussions of
human-driven salinization on river systems could additionally be amplified by climate
changes [102,104], as temperatures will rise, and evaporation and dilution capacity of
freshwater bodies will be affected [132], augmenting residence time and salt concentration
in many water bodies, thus endangering many aquatic species and causing biodiversity
loss [133–135]. Extreme salinity may grant competitive advantages to non-native species
and produce a community unbalance that may lead to reduced functional community
resilience and the failure of ecological processes.

Secondary salinization is increasing vividly across the globe, and climate changes ex-
acerbate it. Salinity stress threatens biodiversity and changes communities. Understanding
the impacts on human health and freshwater taxa is critical to predicting the ecosystem im-
pacts of salinization and informing conservation and management decisions. Coordinated
management should take place to prevent future pressure on existing freshwaters.

7. Nutrients

There has been a small number of scientific articles on nutrients as stressors and their
impact on freshwater (analyses that include nations with both developed and undeveloped
scientific networks and financial and human resources), and in Europe (analyses that
include nations with preponderant developed scientific networks and financial and human
resources), there has been a small number of scientific articles (Figures 12 and 13). The need
for these issues to gain attention in the science world is urgent.

Nutrient pollution has emerged as a major stressor in freshwater ecosystems as a direct
consequence of the increasing human population and their activities. Nutrient pollution
occurs when nutrients, mainly nitrogen and phosphorus, accumulate in water bodies at ex-
cess levels. Nutrients are essential to the maintenance of freshwater ecosystem functioning;
however, the accelerated and uncontrolled nature of anthropogenic nutrient pollution has
led to nutrient levels reaching historically high levels in freshwaters worldwide [136].

Nutrient pollution is the most pervasive threat impacting freshwater ecosystems
worldwide. The overuse of agricultural fertilizers, the combustion of fossil fuels, and in-
creasing urban pressures have led to the mass runoff of nutrients into local waterways [135].
Nutrient pollution is expected to worsen with ongoing human development and is pre-
dicted to act synergistically with other global threats to endanger aquatic life [137].

Freshwater ecosystems are completely transformed by long-term excess nutrient in-
puts. Surface plants and cyanobacteria become over-abundant and dominant over other
plant forms, which creates low light conditions for underwater organisms [138]. Low
levels of oxygen typically trigger mass fish deaths, which further exacerbate environ-
mental problems [139,140]. Water conditions are also disrupted; hypoxic (low oxygen)
episodes become frequent, turbidity levels increase, and high nutrient levels disrupt aquatic
life [135,138,141].

Nutrient pollution threatens to endanger aquatic habitats unless targeted management
strategies are implemented. Management of nutrient pollution should target the source of



Water 2024, 16, 1483 20 of 46

the pollution that is limiting the application of nitrogen and phosphorus in agriculture and
urban settings through strategies such as fertilization management, conservation tillage,
and control of water irrigation [142,143]. Key to source control is the application of strict
regulations regarding agricultural practices, though enforcement of regulations remains a
challenge [134]. Once in the environment, process controls aim to eliminate nutrients before
they leach into the receiving water. For instance, buffer zones (e.g., vegetative buffers)
along waterways trap and filter excess nutrients from runoff.

Recent decades have seen technological advancements that can treat industrial and
domestic effluent as a protection treatment strategy to curb nutrient pollution in freshwa-
ters [144,145]. Among them are water-saving irrigation, ecological ditches, constructed
wetlands, and buffer strips, which have successfully been applied to control agricultural
runoff [145]. However, no single technology can manage nutrient pollution at all spatial
and temporal scales.

Nutrient pollution presents a strong conservation challenge for aquatic fauna. Under
the impact of the high levels of nutrients, an overabundance of algal biomass can destabilize
food web dynamics [146], and long-term nutrient disturbance can homogenize freshwater
communities across local (α diversity) and regional (β diversity) scales that threaten eco-
logical and evolutionary process [146]. Nutrient pollution can also affect aquatic animals
through direct toxic effects [147–150].

Conservation strategies have focused on determining minimum ecotoxicological end-
points (e.g., lethal concentrations; LC50; [151]), physiological disruptions [148,152], and
also sublethal toxicological effects [141] of nutrients on aquatic organisms.

Nutrient pollution presents a growing risk to freshwater ecosystems. Targeted and
holistic management strategies and actions, including source control, process control, and
end-treatment processes, are required to control nutrient pollution [153].

8. Sediments

There has been a constant increase in the number of global articles and citations on
sediments as stressors with an impact on freshwater (analyses that include countries with
both developed and undeveloped scientific networks and financial and human resources),
and in Europe (analyses that include countries with preponderant developed scientific
networks and financial and human resources), there has been a constant increase in the
number of articles and citations (Figures 14 and 15). The need for these issues to gain
attention in the science world is urgent.

Changes in land use are growing erosion, which subsequently introduces excessive
amounts of fine sediments in some sectors of aquatic ecosystems [154,155]. In general, both
increases and decreases in the transport of suspended sediments can be witnessed as a
direct consequence of anthropogenic activities. The building of an extremely high number
of dams and barriers along the rivers has had the effect of decreasing the river transport
of suspended sediments in numerous systems worldwide, causing the erosion of river
delta, coastal lagoons, and coastlines. Global climate change resulting in more extreme
weather conditions, such as heavy rainfall, as well as structural stream modifications, such
as unwise dam construction in rivers, can exacerbate fine sediment accumulation problems,
particularly if they involve changes in flow regimes [156].

The stream bed is a crucial habitat for many riverine organisms as a permanent or
temporary habitat. This includes multiple target species of conservation, such as gravel-
spawning salmonids and early life stages of endangered freshwater mussels [157]. Increased
introductions of fine sediment can result in colmation and reduced oxygen supply to the
interstitial zone, which increases mortality in fish eggs of gravel-spawning fishes [158,159],
decreases juvenile habitat quality for endangered freshwater mussels [157,160], and can even
affect microbial community structure and associated ecosystem services [161]. Fine sed-
iment synergistically interacts with other stressors, such as increased temperature and
flow alterations, exacerbating the problems, e.g., related to recruitment in gravel-spawning
cold-water fishes [162].
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Elements of sediment management in river systems include reducing their introduc-
tion, e.g., by buffer strips [154], appropriate management of aquaculture systems connected
to hydrographical nets of streams and rivers [163,164], as well as the management of flow
regime dynamics [156]. The restoration of stream beds by flushing out fine sediments or
introducing gravel has been tested, with lower success in central European streams of
intensive agricultural land use compared to forest-dominated Scandinavian streams with
forested catchments [165,166].

Since, in the past, a much greater management focus has been placed on freshwater
quality, nonstop awareness about the extraordinary importance of the stream bed for
stream ecosystem functioning, as well as about the factors that can adversely impact this
very important type of habitat, is also fundamental. Several species act as ecosystem
engineers and directly interact with fine sediment. For instance, the bioturbation resulting
from the burrowing behavior of lampreys, different insect larvae, and mussels can all
impact the quality of the stream bed [167,168]. On the other hand, filter-feeding species
such as mussels can reduce the amount of suspended fine sediments and turbidity [169].
Protection strategies have to take the interaction of fine sediment with other stressors [162]
into account. Protection strategies need to consider complete catchments that govern the
process of influencing erosion and sedimentation patterns.

Integrative conservation management of streams and rivers and their biodiversity
require the inclusion of stream beds as a fundamental habitat [170]. Maintaining the patchi-
ness and habitat heterogeneity in the end is governed by structurally rich habitats [171]
since numerous efforts of restoration, such as the introduction of coarse gravel or the
washing out of fine sediments, are very laborious and of limited persistence [171]. In light
of the climatic change with warmer temperatures, more severe and prolonged droughts,
low-flow conditions, and more extreme weather increasing peak erosion, the conservation
and restoration challenges related to functional stream beds will increase.

The too often-overlooked stressor of fine sediment pollution needs to be better con-
sidered in the management of rivers and streams habitats quality and biodiversity conser-
vation, especially in light of climatic change, which exacerbates the problem of anoxia in
this zone.

9. Extreme Drought

There has been a constant globally increase in the number of articles and citations
on drought as a stressor that impacts freshwater, with a decrease in the last few years
(analyses that include countries with both developed and undeveloped scientific networks
and financial and human resources), and in Europe (analyses that include countries with
preponderant developed scientific networks and financial and human resources), there has
been a constant increase in the number of articles and citations, with a decrease in the last
few years in terms of articles but not in terms of the number citations (Figures 16 and 17).
The need for these issues to gain attention in the science is urgent.

Meteorological droughts are defined as a period (seasonal, annual, or interannual)
of low rainfall relative to the statistical multi-year average for a given location [172,173].
Droughts are a natural characteristic of the hydrological cycle that drives population
dynamics and evolutionary processes in freshwater ecosystems [174,175]. Yet, climate
warming and human activities are working in tandem to exacerbate drought conditions
in freshwaters around the world [175–177]. For one, freshwater ecosystems and the life
they support are facing the strain of overextraction and catchment degradation due to the
competing needs of human development [178,179]. Freshwater faces the compound risk of
climate change, where shifts in precipitation and warmer temperatures mean that some
regions are forced to contend with less rainfall than historical norms [172].

In freshwaters, droughts develop as below-average rainfall leads to reduced surface
runoff and stream inputs and a loss of soil moisture. Periods of drought may cause
water bodies to dry up or be reduced to small pools. The receding water column is
typically accompanied by a suite of physicochemical changes, including an increase in
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water conductivity (salinity), decreasing oxygen levels, a buildup of nutrients, and an
increased risk of harmful algal blooms [178,179]. The risks of drought are exacerbated
by human alterations to freshwater ecosystems, such as water extraction, sedimentation,
and the construction of water barriers (dams, weirs) [178]. Drought conditions create
a dangerous cocktail of stressors that can result in a reduced abundance and localized
extinction of aquatic life, as well as altered ecosystem functioning [179–181].

Options for mitigating drought impacts are vast [176,182–184] but require a combi-
nation of technological and social actions. Technological tools can lessen the impacts of
drought on freshwater through improved water conservation, water reuse, and improved
water-efficiency devices [184]. Public outreach and strict water conservation policy will
be crucial in curtailing extreme drought [182]. For example, policy reforms led to pro-
found changes in public perception of water conservation during Australia’s Millennium
Drought [185–187]. However, combating the contributions of climate warming to extreme
droughts will require intergovernmental actions [185].

Drought protection requires proactive strategies that minimize the impact of man-
made alterations to waterways. For example, the restoration of catchments and riverbank
zones, maintenance of refuge habitats, and reinstatement of water flow can introduce
resilience to freshwaters against increasing drought conditions [178].

Worsening drought conditions pose a significant conservation issue to freshwater
ecosystems. Droughts act as a ramp disturbance, meaning that their severity increases
with time [188,189]. As such, sensitive species will be lost early in the disturbance, while
resistant species could withstand intensifying drought conditions [179,190]. Conservation
measures to combat drought will require an understanding of the spatial variation in the
severity of drought impacting freshwater habitats [176,190] and the drought sensitivities
of regionally important species, coupled with pre-emptive and responsive management
actions [180,191], all of which are within the well-known climate change context.

Drought conditions can pose extreme challenges to freshwater. With predictions for
longer and more severe droughts, coordinated efforts are required at global, regional, and
local levels to ensure the long-term sustainability of freshwater ecosystems.

10. Extreme Floods

There has been a constant globally increase in the number of articles and citations
on floods as stressors that impact freshwater (analyses that include states with both de-
veloped and undeveloped scientific networks and financial and human resources). By
contrast, in Europe (analyses that include states with preponderant developed scientific
networks and financial and human resources), it is of low interest, with a small number
of articles published annually but a relatively constant increase in the number of citations
(Figures 18 and 19). The need for all these complex issues to gain attention in Europe is
a necessity.

Extreme fluvial floods are associated with intense natural phenomena resulting in
overbank flows in natural river bodies. It is also linked with artificial high flows in strongly
modified rivers influenced by the operation of hydropower plants or channelization works
to alleviate river water levels. Flooding is the most important environmental parameter in
floodplain aquatic environments, and therefore, floodplain wetlands should be considered
integrated components of a single dynamic system linked by strong interactions between
hydrological and ecological processes [192]. The concept of the flooding pulse was first
introduced by Jung et al. [193], defining the flood as a main driving force responsible for
the existence, productivity, and interaction of the major biota in river-floodplain systems.
Flooding pulses are strongly linked with habitat and organisms’ diversity, nutrient and
sedimentation life cycles, etc.

The floodplain habitat expansion during flooding creates important spawning, nursery,
and foraging areas for many fish species and a variety of other vertebrates. The alteration
of the natural flooding regime may substantially impact aquatic ecosystems since it has
been observed that reduced summer floods and increased winter flows cause excessive
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growths of submerged aquatic macrophytes in some rivers regulated by hydropower
stations [194]. The effect of flooding in determining fish access to nurseries and food has
been well defined [195,196]. The latter has also been investigated in conjunction with
the river regulation for quantifying the value of inundated floodplains for breeding and
juvenile habitats [197] and whether the fish will remain trapped in isolated floodplain water
bodies or are released back into the river system [198].

Another main way that fluvial flooding is linked with biodiversity is associated with
the floodplain alluvium since the duration of floods has been the most vital variable driving
riparian dynamics. For example, Poiani et al. [199] predicted that the abundance of mature
cottonwood would decrease from 40% to about 20% without flooding within a period
of about 120 years and would disappear completely in about 450 years. Other studies
present similar outcomes as the flow regulation/stabilization below existing dams reduces
floodplain size and substantially impacts the riparian ecosystem by altering the trophic
structure and reducing the biodiversity, which is highly adapted to the periodic flooding
regime and the associated input of nutrients and sediment [200–204].

Assessing the actual connection between extreme flooding and aquatic health is
often a challenging task, as a variety of in situ gauges are required to define intercon-
nected study layers [205,206]. Long-term monitoring gauges for multiple abiotic and biotic
parameters, as set out above, should be available to provide wise decisions relating to
water/environmental exploitation issues.

To manage the negative effects of extreme flooding in the aquatic systems, there
is a strong need to provide multidiscipline approaches based on advanced hydrology,
hydrodynamics, and environmental modeling in order to investigate optimal strategies for
minimizing the flooding impacts on societies and the environment. Integrated engineering
solutions must be considered by thoroughly specifying aquatic environmental impacts
and, where possible, by promoting environmental wealth as recently proposed by the
natural-based approach [207] and also by integrating ecohydrological views within the
new major reservoir infrastructure design [208].

Even though the existing and planned hydropower plants have received criticism for
unprecedented negative impacts on the downstream riverine environments [209–212], the
irreplaceable social value of these types of infrastructure [213] in conjunction with modern
and holistic environmental modeling approaches [214] can offer benefits to the aquatic,
riverine restoration and maintenance.

The well-defined connection degree of flood flows and riverine ecological components
in both unregulated and strongly modified river bodies highlights the importance of
setting up detailed integrated modeling approaches based on long-term multiparametric
gauges for establishing sustainable scientific solutions, as well as developing reliable and
environmentally resilient water infrastructure.

11. Habitat Fragmentation

There has been a relatively constant increase in the globally number of articles and
citations on habitat fragmentation as a stressor that impacts freshwater, with an obvious
decrease in the last 3–4 years (analyses that include countries with both developed and
undeveloped scientific networks and financial and human resources). By contrast, in
Europe (analyses that include countries with preponderant developed scientific networks
and financial and human resources), there has been a constant increase in the number of
articles and citations (Figures 20 and 21).

Fragmentation can be characterized as the lack of connectedness along the river
network. When it is the consequence of human activities, such as the construction of river
barriers, it is considered to be one of the most threatening stressors affecting freshwater
systems. Fragmentation promotes the isolation of habitat patches or even the separation of
a given habitat into smaller isolated habitat patches.

Rivers constitute complex, intricate, and dynamic systems that can be characterized
by spatial and temporal fluctuations. These systems have been described as having four
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classical dimensions: longitudinal—along the river; vertical—between the river channel
and the hyporheic zone; lateral—between the river channel and river banks; and temporal—
over time [215]. Because habitats relevant for the functioning of the systems and for the
life-cycle completion of some species are spatially separated, longitudinal connectivity
can be arguably considered the most important. Dams and weirs introduce a breach in
the longitudinal connectivity of aquatic systems [216–218], which leads to alterations in
habitats and flow patterns that can alter environmental cues [219] and affect the biotic
communities [220]. These fragmentation effects have been described across various regions,
including North America [221–224], Europe [225,226], Australia [219], Africa [227], and
Asia [228,229].

River connectivity is a way of understanding rivers, how these relate and interplay
with the spatial components within riverscapes, and how this impacts ecological pro-
cesses [230]. By the same token, connectivity conservation is a guarantee of ecological
processes. To understand to what extent protection should be provided, it is vital to account
for classic theories, such as the river continuum concept [231], and for more contemporary
hypotheses [232], like the river discontinuum concept [233], network dynamic hypothe-
sis [234], and theory of riverine ecosystem synthesis [235]. The solution to fragmentation
along river networks is usually linked with solutions that promote connectivity enhance-
ment at a given barrier when removal is impossible [236]. In this situation, fish passages
are probably the most ubiquitous solution that can be used to retrofit existing barriers
and serve more than just to fish species, allowing water and sediment movement to be
partially restored. Artificial barriers block the communication between spatial elements
along river networks. These barriers provide several ecosystem services, such as water
storage, agricultural irrigation, energy production, and cultural and scenic values, as well
as providing nations with a certain level of energy and water resources security that is
currently so appealing [237]. A full understanding is crucial not only for grasping the
overall effects of river fragmentation due to different physical barriers on targeted fauna
populations but also for devising management strategies to enhance connectivity, aiding in
the conservation and management of biodiversity.

Habitat fragmentation is not linearly correlated to the number of barriers present in
a system; it is dependent on their features (e.g., height, slope, flow alteration promoted),
on the scale of analysis (e.g., river reach, segment, sub-basin, or whole basin), as well as
the movement patterns and capability of affected species. River fragmentation by barriers
can limit movement and migration along the river, leading to the decline or extinction of
numerous native species across Europe [238,239]. Even small obstacles that outnumber
bigger barriers may significantly affect flow dynamics, temperature patterns, animal move-
ment, and habitat quality [217,240], potentially altering the composition, structure, and
distribution of communities by promoting the loss of genetic diversity, increasing the risk
of extinction through demographic, environmental, and genetic uncertainties [216].

The proper management of freshwater systems to maintain a healthy level of con-
nectivity along the network is paramount to fully maintaining ecosystem functioning and
allowing the community to be functionally resilient in a time of global changes. The best
possible solution to reconnect a system fragmented by the presence of an artificial barrier
is to remove it and, by doing so, completely restore longitudinal and lateral connectivity.
But, not all barriers can be removed; most, particularly non-obsolete barriers, provide a
wide number of ecosystem services and determinants for societal well-being. In such cases,
technical as well as nature-based solutions can be applied to existing, non-removable barri-
ers. In these situations, we are enhancing connectivity while maintaining the barrier and
its associated ecosystem service provisions. These connectivity enhancements mean that,
at least for some species, the connectivity is only partially restored with, at times, severe
directional connectivity asymmetries. The maintenance of river connectivity is among
the objectives of the Water Framework Directive [241], and the recovery of free-flowing
rivers is inscribed in the European Strategy for Biodiversity 2030 [242] as part of the Green
Deal’s [243] overall architecture.
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12. Pesticides

There has been a constant globally increase in the number of articles and citations on
pesticides as stressors that impact freshwater, with a significant decrease in the last years
(analyses that include states with both developed and undeveloped scientific networks and
financial and human resources), in contrast to Europe (analyses that include states with
preponderant developed scientific networks and financial and human resources), where
there has a been constant increase in the number of articles and citations, with a significant
decrease in the last 4–5 years (Figures 22 and 23).

Pesticides, comprising chemicals or mixtures aimed at pest control, including insects,
fungi, and weeds, saw an estimated global usage of 3.5 million tons of different active
ingredients in agriculture in 2021 [244]. Despite the existence of over 1680 distinct active
ingredients [245], the market boasts more than 100,000 different commercial formulations.
These pesticides arrive in aquatic ecosystems through drift, runoff, or direct fumigation,
leading to the widespread contamination of freshwater ecosystems worldwide [246,247].

A lot of impacts of pesticides on freshwater ecosystems have been documented. Stud-
ies have extended from laboratory experiments to complex mesocosm assessments. The
obtained outcomes have revealed an extensive range of effects at the species level, includ-
ing oxidative stress, alterations in behavior, increased mortality, disruption of endocrine
systems, and reproductive impairment. These impacts have been observed across var-
ious communities, including algae, cyanobacteria, zooplankton, macrophytes, macroin-
vertebrates, and vertebrates [248]. Comprehensive investigations at the community and
ecosystem levels have unveiled alterations through trophic webs, and some pesticides have
exhibited biomagnification phenomena. For instance, glyphosate, the most widely used
pesticide [249], has been found to selectively enhance the growth of pico-cyanobacteria in
the laboratory, mesocosm, and also in field studies [250,251].

A significant challenge in managing pesticide contamination lies in the fact that they
are often detected in mixtures. Even individual commercial formulations consist of various
mixtures. Co-formulations have been found to increase toxicity, sometimes surpassing
that of the active ingredients alone, as evidenced in studies on algae [252]. Furthermore,
the common practice of using combined pesticides exacerbates this complexity. Further
studies on the impacts of pesticide mixtures at the ecosystem scale are essential to prevent
potential underestimations of risks [253].

Most studies have focused on various forms of bioremediation, yet the ecological
ramifications of pesticide contamination can be profoundly significant. Existing evidence
regarding glyphosate underscores the imperative to intensify proactive measures against
contamination [251,254–256]. Mitigating pesticide usage and bolstering safeguards for
freshwater bodies stand as paramount challenges of the present.

Strict monitoring and control of pesticide contamination in freshwater bodies are
essential for providing early warnings and halting contamination sources. Furthermore,
local environmental regulations play a crucial role in formulating protective policies that
prevent pollution and promote the transition to more sustainable agricultural practices.

Pesticide contamination stands as one of the most significant stressors on freshwater
systems. The presence of highly complex mixtures and various types of impacts have been
reported. Avoiding contamination is crucial because persistent ecological impacts continue
to be detected despite the environmental persistence of these substances.

13. Terrorism and War

There have been a very small number of articles globally on war and terrorism as
stressors that impact freshwater, all of which are outside Europe, despite a present war
in our continent. In the new international tense situation, there is an urgent need for this
research (Figure 24).

Identification of terrorism and war is important, but until now, there has been no
single definition of these terms. For example, contrary to UN resolution 3314, in the
Russian Federation, aggression against Ukraine is not called “a war” but a “special military
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operation” [257]. Terrorism remains undefined beyond a vague sense of “a non-state actor
attacking civilian targets to spread fear for some political goal” [258]. Here, we consider
that any actions aimed at the destruction of the water management infrastructure, water
resource redistribution, or water quality deterioration to achieve political or military goals
should be considered water terrorism, which can be considered a multistressor.

The first armed events connected with freshwater resources were mentioned in the
Sumerian legend when, over 2500–2400 BC, the Mesopotamian city-states fought over the
redistribution of the Tigris and Euphrates Rivers’ flow [259]. Recently, water often serves
as the subject of the negative impacts caused by war [260,261]. Such a display of water
terrorism is well known. Thus, during the Persian Gulf War, Iraq spilled oil into the sea,
which later leaked into the desalinization plants in north Saudi Arabia, and in Zambia, the
war destroyed the water pipes supplying about 3 million inhabitants [262].

The main impact on population and aquatic ecosystems is caused by the dams’ de-
struction. Their explosions were usual over the Second World War (WWII): the Soviet army
exploded the dam on the Dnieper River, the British Royal Air Force bombed the dams on
German rivers, the German troops destructed dams in Italy, etc. [262,263].

The terroristic war unleashed by Russia against Ukraine brings new facts on the
impacts on the aquatic ecosystems [264–268]. There were five main groups of impacts of
this war on these ecosystems delineated: the destruction of the hydrotechnical facilities;
water bodies’ contamination; destruction and shutdown of the hydropower facilities and
disorders of the HPP and NPP cooling ponds regime; navigation issues; and threats to
fishery and aquaculture [268,269]. The most drastic display of water terrorism in war was
the explosion of the Kakhovka Dam, which had the most catastrophic consequences of our
time [270–274].

According to UN prognosis, by the middle of the XXI century, 7 billion persons in
48 states will face a water deficit. Considering climate changes, this increases the risk
of wars for water resources [275]. The impact of terroristic actions on freshwater is not
reduced to the above-mentioned problems. A complete inventory of the impacts should be
carried out on the basis of the waters’ monitoring, which comprises biological, physico-
chemical, and hydromorphological parameters, and accounts for basin-specific pollutants
and compounds to assess the chemical state of the water bodies [276]. The integral assess-
ment of the terroristic actions’ impact on the aquatic ecosystems should be realized by the
waters’ monitoring in view of the revelation of the effects on biota and assessment of the
actual ecological state of the modified by war aquatic ecosystems. At this, the monitoring
programs should be completed by tasks regarding the collection of information to be used
for assessment of the losses of the aquatic ecosystems. The precedents of the UN Interna-
tional Court of Justice’s decisions on compensation of environmental losses owing to the
hostilities are quite often regarded as just under-received ecological services of the aquatic
ecosystems [277].

One of the consequences of the terrible WWII, which affected the aquatic ecosystems
as well, consisted of the development of specific international humanitarian legislation,
including the Geneva Convention of 1949 and Additional Protocols to it of 1977. Among
numerous provisions of these acts, some actually prohibit the use of water and water supply
systems as a weapon against the civil population. For example, Article 56 of Protocol I
and Article 15 of Protocol II of 1977 of the Geneva Convention prohibit attacks on infras-
tructure “containing dangerous forces”, including explicitly “dams’ and ‘dykes” if such
attacks “may cause the release of dangerous forces and consequent severe losses among
the civilian population” [278]. Such a limitation underlies international humanitarian law;
however, in our view, the environmental crimes associated with water resources need
greater responsibility at the level of international legislation against terrorism.

Last but not least, it is obvious that terrorist activities are triggers for both environ-
mental issues and finally war and associated risks, e.g., the Al-Qaeda pan-Islamist terrorist
attack on USA civil targets induced the USA-led coalition—Iraq War—and the Hamas
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terrorist attacks on Israeli civil targets started the Israel–Hamas-led Palestinian groups
War, etc.

14. Algal Blooms

There has been a constant increase in the global number of articles and citations on
algal blooms as stressors that impact freshwater (analyses that include countries with both
developed and undeveloped scientific networks and financial and human resources), and
there has been a constant increase in the number of articles and citations in Europe (analyses
that include countries with preponderant developed scientific networks and financial and
human resources) (Figures 25 and 26).

In the conditions of global climate change and increasingly intense negative anthro-
pogenic influence, water quality has declined all over the world, and eutrophication of
many freshwater ecosystems has been observed more often. Because of the increased
concentration of nutrients in the freshwater, there is an overgrowth of algae and cyanobac-
teria, which are referred to as “Harmful Algal Blooms” (HAB). HAB can be caused by
autochthonous, as well as non-native, invasive micro and macro algae and cyanobacteria.
In stagnant waters, the bloom of planktonic Cyanobacteria, as well as Dinophyceae, Bacil-
lariophyceae, Euglenophyta, and Chlorophyta, causes a change in the color and smell of
the water and the appearance of foam and coatings [279,280]. During the blooming period
of green filamentous algae (Cladophora sp., Oedogonium sp., Microspora sp., Pithophora sp.),
large mats are formed on the bottom or surface of aquatic ecosystems [281,282]. In river
and stream systems all over the world, in recent decades, ‘blooms’ of Bacillariophyceae,
primarily the diatom Didimosphaenia geminata, have appeared. This periphyton alga forms
large ‘blooms’ in primarily oligotrophic streams and rivers [283,284].

HAB has a negative environmental and socioeconomic impact, and it is a threat
to public health [280]. Light and temperature conditions, oxygen, ammonia, and pH
concentrations change in the water, which can affect the living conditions of other aquatic
or semi-aquatic organisms [284,285]. Different species of cyanobacteria and algae produce
different toxins, and they could accumulate in the tissues, cause damage to the tissues and
the functioning of certain organ diseases, and cause the death of aquatic organisms, namely
fish [286,287].

Due to HAB, there are disruptions in water supply, the use of water for irrigation, as
well as for sports and recreational activities [286,288].

General management practices for nuisance algae are divided into two most important
categories: nutrient manipulation and direct control techniques [281]. It is also essential to
implement effective technologies for the inactivation and removal of toxins [289].

Water quality protection is possible by implementing preventive specific measures:
wastewater treatment, proper planning of places where reservoirs are formed, respecting
sanitary protection zones, banning or limiting the use of surrounding land for agricultural
purposes, creating a buffer zone that will absorb nutrients, implementing anti-erosion
measures, maintaining forest zones and macrovegetation, and implementing a good on-site
fishing strategy and activities. An important measure is a ban on the transfer of ‘blooming
algae’ by fishing tools, fish translocation, gravel, etc. [279].

The appearance of HAB in the future poses significant challenges for preserving
ecological balance, biodiversity, and the intended function of aquatic ecosystems.

The occurrence of HAB in aquatic ecosystems is becoming increasingly common,
leading to significant environmental and economic consequences. Besides implementing
the mentioned protection measures, it is crucial to enhance our ability to predict and
prevent the proliferation of “blooming” cyanobacteria and algae by obtaining detailed
and relevant information about their ecology and behavior. Furthermore, it is essential to
explore the significant biotechnological potential of non-toxic algae biomass [282].
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15. Invasive Aquatic Plants

There has been a constant increase in the global number of articles and citations on
invasive aquatic plants as stressors that impact freshwater (analyses that include states with
both developed and undeveloped scientific networks and financial and human resources),
and there has been a constant increase in the number of articles and citations in Europe
(analyses that include states with preponderant developed scientific networks and financial
and human resources) (Figures 27 and 28).

Aquatic plants are especially vulnerable to any changes in their environment. Inva-
sive plant species pose severe threats to native wildlife. A total of 75% of all European
freshwaters are anthropogenically changed [290].

About 42% of endangered or threatened species are affected by invasive species.
Invasive species also threaten human health and the economy. Havel et al. [291] reported
that the dispersion of microbes over long distances and infection of new hosts might have
consequences for human health. Invasive aquatic species (IAS) reproduce very quickly;
reduce the habitats of native plant species; have a negative effect on fish, insects, etc.; and
lower the biological diversity of aquatic ecosystems. Many alien aquatic plants strongly
negatively affect aquatic ecosystems by blocking rivers [292].

Human activity has dramatically increased IAS’s spread rate [293], and global changes
accelerate the invasiveness of specific IAS [294].

Biological invasions have become a consequence of globalization [295–297]. Pistia
stratiotes, an invasive alien species, was introduced to Prilipe, an oxbow in Slovenia. Šajna
et al. [298] reported on the successful winter survival of P. stratiotes in a natural thermal
stream. Climate change and global warming can accelerate such local populations of
invasive species as stepping stones for further dispersal [299]. Šajna et al. [300] recently
stated that thermally abnormal waters pose an invasion risk for further deliberation.

Hundreds of non-native organisms are introduced to different parts of the world every
year, but not all become invasive. However, for different reasons, most do not survive in
the newly invaded environment. Some non-native organisms cannot adapt to the new
environment or have a population that is too small to reproduce successfully.

Lind et al. [301] reported that the effects of climate change may lead to an increased
abundance and distribution of emergent and floating species and a lowered abundance
and distribution of submerged macrophytes, which are most sensitive to global changes.
The same authors also claimed that an increase in invasive species would probably occur
at high latitudes while not at high altitudes. It makes lakes at higher altitudes in tropical
areas hotspots for future conservation measures to protect endemic macrophyte species.

Climate change will cause frequent extreme events of heavy precipitation and drought,
impacting hydrological conditions in riverine ecosystems, like flow velocity and evapotran-
spiration, which will cause drought or runoff due to heavy rainfall [297].

There are several mechanisms with which we can try to stop the spread of IAS, such
as lowering the water level, shading, manual and mechanical removal, and measures to
reduce the input of nutrients into water bodies, but none of the methods are completely
successful.

The spread of IAS is hard to prevent. However, we can limit their spread in various
ways. It is important not to remove riparian vegetation, as empty corridors along water
bodies are quickly occupied by IAS. It is also important to educate and make people aware
of the negative effects of IAS on the aquatic ecosystem.

We will not preserve IAS, but we can take advantage of their positive characteristics.
The introduction and large dispersion of miscellaneous non-native species is predominantly
detrimental to invaded ecosystems. However, the study provides an example of the positive
effects of non-native Eurasian Watermilfoil, Myriophyllum spicatum [299]. Kourantidou
et al. [300] also stated in their recent review that IAS has potentially beneficial roles. It was
also reported that IAS’s competitive success depends on environmental conditions [302].

We cannot prevent the spreading of IAS to new areas in the world. With increasing
globalization and climate change, their occurrence will be even greater. Therefore, it
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is crucial to make people aware so that they do not intentionally introduce non-native
organisms into nature.

16. Riverine Vegetation

There has been a constant increase in the number of articles and citations on riverine
vegetation as a stressor that impacts freshwater, with big fluctuations and a significant
decrease in interest in the last 3–4 years (analyses that include countries with both developed
and undeveloped scientific networks and financial and human resources). There has been
a relatively small number of articles published annually and a significant deflection in
interest in the last 3–4 years (Figures 29 and 30).

These plant formations and environments are both essential for the hydrogeologi-
cal balance of water bodies, for ecosystem functionality, and for biodiversity, ensuring
protection from hydrogeological catastrophes, environmental connectivity, and ecological
dynamics.

In general, freshwater bodies’ bank vegetation is dominated by the presence of azonal
vegetation, from the most hydrophilic to the mesic portions. There are also particular cases
in which even the most xeric vegetation can contribute to forming communities in riparian
environments like, for example, high banks or under other extreme draining conditions.

Riverine environments and related vegetation, in any case, represent important values
and provide services, goods, and ecosystem functionality of primary importance, which are
essential for the good functioning and for the protection from hydrogeological catastrophes.
Naturally, the riverine vegetation follows a gradient from the minor bed to the major
riverbed, according to the variations in the topographic conditions and moisture. The
characteristics of riverine vegetation also depend on other factors that can lead to further
differences, such as the variation of salinity, temperature, precipitations, organic and
mineral substances concentration, deposition/erosion, etc. [303–306]. The anthropogenic-
induced effects (fragmentation, deterioration, pollution, urbanization, etc.) generally
have modified or eliminated natural habitats’ functions, negatively influencing also the
connected ecosystems. This led to an increase in the related risk of natural catastrophes,
especially in a scenario of global and local socio-economic and climate changes.

The riverine habitats and vegetation expression have been the most impacted by
human activities during history. The banks have been artificialized, canalized, narrowed,
rectified, walled up, and reclaimed to obtain greater spaces to be used for agriculture,
farming, pastures, fishing, hunting, industrial, and trade goals or for urbanistic purposes
(residential, industrial, navigation, portual facilities, etc.). The vegetation in these habitats
is often seen as a pest, as something to be eliminated, or in a way that needs strict and
strong control. Riverine vegetation is too often seen as dirt that needs to be cleaned up or
as a danger that needs to be eliminated. This ends up negatively influencing the stability
of the banks of waterways, destroying very important environments and their ecotones,
undermining biodiversity, destroying ecological continuity and functionality, increasing
land and water management costs, increasing environmental risks, etc. The artificialization
of riverine habitats represents a significant degradation of the natural vegetation types,
plants aging, fluctuation, regeneration, biological successions, and dead wood cycle, and
it influences feeding, nesting, refuge, roost, passage habitats for insects, fishes, reptiles,
amphibians, birds, and mammals [307,308].

Many riverine environments that are today widely considered by people as green or
natural have instead been greatly altered over time, although they look green, pleasant, or
not urbanized [309–311]. This happened not only in large lowlands rivers but also in small
rivulets and streams up to the mountains [312].

In the hydraulic management of water bodies and forests, it has too often been thought
to ensure the greatest quantity of water flows downstream rivers and streams in the
shortest possible time. This ended up reducing water body suface, simplifinge their natural
complexity, transforming their functioning and changing their forms, altering the processes
of erosion/deposition to the point of creating problems such as the beaches’ retreat, siltation



Water 2024, 16, 1483 30 of 46

of wetlands, or other hydrogeological problems, as well as causing drought and water
scarcity. Urbanization has also increased the risks related to flooding. Today, we should
rethink this logic and, to the contrary, favor the diversification and the re-naturalization
of these areas. We must not only think about the banks or riverbed conditions, but we
should pay attention to the whole catchment basin, promoting the vegetation cover (in
particular forests), which allows for greater precipitation absorption together with better
water redistribution, just as we should encourage or re-establish water storage areas. To
ensure the water flow, rather than continuing or promoting the systematic elimination of the
woody vegetation on the waterbody banks, with the fallen wood into the rivers, it would
be necessary, for example, to rethink the bridge system, avoiding pylons in the rivers, and
rethink the management of the banks restoring spaces, forms variability, and functionality
of the narrowed/deepened water bodies that are now forced to be artificialized water
canals or reservoirs. We should rethink the riverine spaces to leave more green surfaces and
more variable forms where vegetation can express itself as freely and as much as possible.
Even the water expansion areas must be rethought to be not simple artificial expansion
pools but as possible floodable heterogenous wetland habitats as they could have been
in the past, before land reclamation and other human interventions. We should rethink
artificial water expansion areas as possible natural areas for biodiversity conservation, to be
used as wetland vegetation refugia, and to foster ecological connectivity, thinking of spaces
where vegetation and ecosystems can develop autonomous dynamics without necessarily
being forced or determined by man.

Today, alongside the restoration of those riverine portions, we should also pay atten-
tion to artificialized springs and fountains, which remain important historical, architectural,
and cultural landmarks. We should rethink those waterpoint areas, considering the eco-
logical function that these waterpoints should perform in the landscape. In that way, we
should recreate wetlands, swamps, and mesic forests using the water that flows out of
these managed water points, with the possible related potential vegetation communities
and related ecosystems. In that way, we can also encourage the communities of animals
and plants that live inside those fountains and that are strongly threatened by cleaning or
maintenance operations carried out by the users or by the offices in charge, in line with
what should also be carried out with different water bodies. We should pay even more
specific attention to wet cave environments from tourist management modifications.

17. Fish

There has been a relatively constant increase in the global number of scientific articles
and their citations, including in European countries, on invasive fish species as stressors
with an impact on freshwater (analyses that include countries with both developed and
undeveloped scientific networks and financial and human resources) (Figures 31 and 32).

Fish are aquatic, craniate, and gill-bearing, such as hagfish, lampreys, cartilaginous,
and bony fish, and are naturally mostly ectothermic and relatively abundant in most bodies
of water in nearly all aquatic environments, exhibiting greater species diversity than any
other group of aquatic vertebrates. In spite of the fact that fish are ecological keystones for
aquatic environments, ecological indicators, and important resources for humans [312–320],
some of them can sometimes be undesirable.

Fish can be considered in some circumstances as stressors for their ecosystems and
human health.

With a growing world population, over-industrialization, extensive and intensive
agriculture development, transport extension and intensity, land-use changes, and wars,
aquatic life is susceptible to the harmful effects of agrochemicals, different poisons, heavy
metals and non-metals, phytotoxins, microbial toxins, genotoxins, and other contami-
nants [321–324]. Fish under environmental pollution induces toxicokinetics, biotransfor-
mations, bioaccumulation, or multi-transgenerational effects [325]. Also, the biological
uptake and transport vectors for different anthropogenic substances negatively affect both
the environment and human health [326,327].
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General and specific freshwater ecosystems’ complex point and non-point pollution
phenomena that impact the fish, too [300], which became stressors for the environment and
human health, can be managed in an integrated way only at the watershed level [328–331].

Non-native fishes are frequently used to enhance aquaculture and fisheries; some
of them will become aggressively invasive, producing adverse ecological effects [332].
Aquatic ecosystems, especially those already disturbed by human activities, appear to
be particularly vulnerable to alien and invasive organisms [333]. All these organisms,
including fish, can be, in some circumstances, major environmental stressors, impacting
native species, habitats, and ecosystems through predation and competition for resources;
spreading other organisms and diseases, ultimately disrupting the environment by reducing
water quality; contributing to erosion; increasing nutrient levels; etc. [334–336].

In this multifaceted context, very complex management actions may be needed to
minimize their naturalization, dispersal and impacts. These actions include eradication
attempts from specific waters or well-defined spatial areas, population control by suppres-
sion (e.g., through removal programs), and containment of existing populations to prevent
their further spread. These remedial actions have generally only been undertaken across
large spatial areas in developed countries, but the experience suggests fundamental scarce
selective removal methods that target the non-native fish species only [337].

A well-balanced ecological status of the ichthyofauna is not possible in disturbed
ecosystems and vice versa [338,339].

Consequently, all the needed conservation issues have to be targeted in an integrated
manner, not only for the ecologically healthy ichthyofauna but also for their habitats and
ecosystems.

The pollution-related larger and more complex circumstance should be necessarily
approached in an integrative local, regional, and international crosborders context. In terms
of alien and invasive species, almost all fish species are difficult to control once established,
but biological control offers some hope in controlling widespread water pest species.

18. Discussion

The issue of environmental stressors on freshwater ecosystems is extremely vast and
encompasses a multitude of aspects worldwide.

This work deals with seventeen major stressors from a planetary scale perspective,
dealing with their description, induced effects, threats and risks, management, protection,
and conservation-related elements.

The present review, even if not exhaustive due to the vastness of the addressed
subjected evidence, shows that we are dealing with a wide spectrum of sources that can
cause stress on freshwater ecosystems. As could be concluded, agriculture, industry, energy
production, transport, and urbanization are the main drivers of the negative effects on
freshwater ecosystems, but in changing classic perspectives of the observations, we found
that relatively less frequent events, such as, for example, terrorist actions and war, can have
effects at least as harmful. Moreover, indirect factors, such as climate changes, can act as
vectors amplifying the effects of the aforementioned activities, just as combined actions of
these can generate effects of much greater magnitude or can constitute the inflection point
of triggering the stress mechanism on the freshwater ecosystems.

Additionally, multiple stressors with cumulative and/or synergistic effects can act on
the same freshwater ecosystem with much more significant effects, given the easily formed
connection between phenomena from the same spectrum. Thus, for example, the discharge
of thermal waters can create conducive conditions for the development of algal blooms,
which, in turn, decrease the amount of dissolved oxygen in the water and could favor the
spread of invasive fish species, some adapted to conditions with less dissolved oxygen, but
more sensible to parasites, etc. In this context, habitat fragmentation can contribute to the
confinement in areas with limited extension of algal blooms, not allowing the dispersion of
algae over a large area and increasing local-level effects. Thermally polluted waters can
favor the spread of invasive aquatic plant species, especially those with higher temperature
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preferences (such as some species used by aquarists, for example). Military activities can
lead to the production of warmer waters, can lead to local increases in radioactivity, and
can be responsible for the discharge of nanoparticles into water bodies, in addition to
more obvious effects such as intentionally caused floods. Drought periods can lead to
the concentration of nutrients in the water, which, in turn, can be the starting point for
algal blooms, with the previously discussed effects. Drought can also lead to increased
salinity, and floods lead to large quantities of fine sediments being transported into the
water, affecting their sharing in the basin and influencing the species that depend on stream
beds as their habitat.

The examples of these stressors single and/or interrelated negative effects can infinitely
continue as the review highlighted.

Attempting a classification, we can conclude that actions with a stress effect on water
bodies can be categorized into three major groups: (1) adding content, (2) disturbing the
natural characteristics or normal functions of the water body, and (3) disturbing biological
components or processes.

In the first category, we include the addition of waters with different temperatures,
altering the local temperature, the discharge of nanoparticles, and chemical and radioactive
pollution, all three based on the introduction of unnatural elements into the aquatic circuit.
Traditionally, it is assumed that this first category would be the most important.

The second category includes a larger number of stressors: increased salinity, extreme
floods and droughts, disturbance of fine sediments, and the increase or concentration
of nutrient quantities—factors that, in addition to the way they influence each other, as
discussed earlier, have extremely long-lasting, if not permanent, effects on the affected
ecosystems, often requiring more complex and costly reparative interventions than those
in the first category. Of course, the first category and the second category of stressors can
interact and produce cumulative and synergistic effects.

Regarding the last category, it includes algal blooms, invasive or potentially dominant
aquatic species, and biocoenotic destructuring, whose effects are among the most serious at
the ecosystem level, disturbing the entire structure of the ecosystem and causing effects
that are often difficult to reverse. All three categories of stressors can interact and produce
cumulative and synergistic effects.

From each stressor perspective, and more than that, from the stressor interactions
and the interrelated perspective, it is important to analyze the trajectory of cause—type of
influence and effects—and, last but not least, potential solutions specific to each situation.

In relation to the causes, it is important to identify whether we are talking about a direct
cause of an impact, or an indirect cause, whether it is solvable through a quick/medium/long
period and simple/complex intervention, or whether its effects can no longer be removed
by external interventions. Likewise, the type of influence is of similar importance, being
necessary to distinguish between direct and indirect, chronic, and acute influences in order
to be able to evaluate the impact and propose solutions. In this context, it is necessary to
estimate whether the effects of a certain phenomenon are, in principle, quantifiable, given
that the reparative intervention on an unquantifiable event is much more difficult.

19. Conclusions

The health of the aquatic ecosystems is a key point where assessments and monitoring
of the impact of various stress factors intersect, but these factors themselves, which desta-
bilize biodiversity and ecosystem structure and functions, have been studied to varying
degrees. Thus, in the future, it will be productive not only to strengthen the study of
individual stressors but also to evaluate their cumulative, additive, and synergistic effects
through mathematical modeling and accurate predictions.

The stressors’ influence on freshwater is often combined, and the factors are triggered
in a cascade, causing effects on one another, leading to irreversible effects that are costly to
counteract in many situations.
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To meet the challenges regarding the multi-interacting natural and anthropogenic stres-
sors’ effects on freshwater ecosystems, unified systematic and comprehensive frameworks
are needed to identify key questions and for data collection to build ecological conceptual
models based on which a proper assessment, monitoring, analysis, and management can
be achieved.

Climate change, especially global warming, has an aggravating effect on most of these
stressors, making the issue of protecting freshwater bodies even more difficult.

In a context where freshwater resources are of utmost importance to human society,
protecting them against a large and complex number of stressors becomes a very difficult
endeavor, requiring complex solutions, especially in situations where the effect of some
factors is chronic and can only be controlled or maintained at a certain level and not
completely or partially eliminated.

As a result, the protection of freshwater ecosystems must be considered in conjunction
with the protection of other important ecosystems, whose indirect role in regulating natural
processes as fundamental for freshwater, but not only.

Integrated theoretical and applied holistic approaches concepts should be strengthened
in a more focused research direction and, last but not least, reliably transferred from a pure
scientific niche family of works in an emergent day-by-day tendency of practical in situ
freshwater ecosystems sustainable management.
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9. Bănăduc, D.; Marić, S.; Cianfaglione, K.; Afanasyev, S.; Somogy, D.; Nyeste, K.; Antal, L.; Kosco, J.; Marko, C.; Wanzenböck, L.;
et al. Stepping Stone Wetlands, Last Sanctuaries for European Mudminow: How Can the Human Impact, Climate Change, and
Non-Native Species Drive a Fish to the Edge of Extinction. Sustainability 2022, 14, 13493. [CrossRef]

10. Vorosmarty, C.J.; Green, P.; Salisbury, J.; Lammers, R.B. Globalwater resources: Vulnerability from climate change and population
growth. Science 2000, 289, 284–288. [CrossRef]

11. Curtean-Bănăduc, A.; Bănăduc, D. Aspecte privind impactul deversării apelor uzate asupra sistemelor ecologice lotice receptoare.
In Apa Resursă Fundamentală a Dezvoltării Durabile. Metode

Water 2024, 16, 1483 34 of 46 
 

 

References 

1. Goncharuk, W.; Goncharuk, V.V. Water is everywhere. It holds everything a key to understanding the universe. D. I. Mende-

leev’s law is the prototype of the universe constitution. J. Water Chem. Technol. 2019, 41, 341–346. 

2. Maruyama, S.; Ikoma, M.; Genda, H.; Hirose, K.; Yokohama, T.; Santosh, M. The naked planet earth: Most essential pre-requisite 

for the origin and evolution of life. Geosci. Front. 2013, 4, 141–165. 

3. NOOA National Oceanic and Atmospheric Administration, National Weather Service. Learning Lesson: Water, Water Every-

where. Available online: https://www.weather.gov/jetstream/ll_water (accessed on 11 August 2021). 

4. Longo, S.B.; York, R. Structural Influences on Water Withdrawals: An Exploratory Macro-Comparative Analysis. Hum. Ecol. Rev. 

2009, 16, 75–83. Available online: http://www.jstor.org/stable/24707738 (accessed on 27 August 2022). 

5. Antonelli, M.; Laube, P.; Doering, M.; Scherelis, V.; Wu, S.; Hurni, L.; Heitzler, M.; Weber, C. Identifying anthropogenic legacy 

in freshwater ecosystems. Wiley Interdiscip. Rev. Water 2024, e1729. https://doi.org/10.1002/wat2.1729. 

6. Ehrlich, P.R.; Ehrlich, A.H. The Population Bomb Revisited. Electron. J. Sustain. Dev. 2009, 1, 63–71. 

7. Boretti, A.; Rosa, L. Reassessing the projections of the World Water Development Report. NPJ Clean. Water 2019, 2, 15. 

8. IPCC Science Report: Climate Change Unequivocal, Human Influence at Least 95% Certain. Available online: https://ec.eu-

ropa.eu/clima/news-your-voice/news/ipcc-science-report-climate-change-unequivocal-human-influence-least-95-certain-2013-

09-27_en (accessed on 27 September 2013). 

9. Bănăduc, D.; Marić, S.; Cianfaglione, K.; Afanasyev, S.; Somogy, D.; Nyeste, K.; Antal, L.; Kosco, J.; Marko, C.; Wanzenböck, L.; 

et al. Stepping Stone Wetlands, Last Sanctuaries for European Mudminow: How Can the Human Impact, Climate Change, and 

Non-Native Species Drive a Fish to the Edge of Extinction. Sustainability 2022, 14, 13493. 

10. Vorosmarty, C.J.; Green, P.; Salisbury, J.; Lammers, R.B. Globalwater resources: Vulnerability from climate change and popula-

tion growth. Science 2000, 289, 284–288. 

11. Curtean-Bănăduc, A.; Bănăduc, D. Aspecte privind impactul deversării apelor uzate asupra sistemelor ecologice lotice recep-

toare. In Apa Resursă Fundamentală a Dezvoltării Durabile. Metode ȿi Tehnici Neconvenţionale de Epurare ȿi Tratare a Apei; 

Oprean, L., Ed.; Editura Academiei Române: Bucharest, Romania, 2012; Volume 2, pp. 393–416. 

12. Bănăduc, D.; Joy, M.; Olosutean, H.; Afanasyev, S.; Curtean-Bănăduc, A. Natural and anthropogenic driving forces as key ele-

ments in the Lower Danube Basin-South-Eastern Carpathians-North-Western Black Sea coast area lakes: A broken steping 

stones for fish in a climatic change scenario? Environ. Sci. Eur. 2020, 32, 73. https://doi.org/10.1186/s12302-020-00348-z. 

13. Bănăduc, D.; Sas, A.; Cianfaglione, K.; Barinova, S.; Curtean-Bănăduc, A. The role of aquatic refuge habitats for fish, and threats 

in the context of climate change and human impact, during seasonal hydrological drought in the Saxon Villages area (Transyl-

vania, Romania). Atmosphere 2021, 12, 1209. https://doi.org/10.3390/atmos12091209. 

14. Bănăduc, D.; Afanasyev, S.; Akeroyd, J.R.; Năstase, A.; Năvodaru, I.; Tofan, L.; Curtean-Bănăduc, A. The Danube Delta: The 

Achilles Heel of Danube River-Danube Delta-Black Sea Region Fish Diversity under a Black Sea Impact Scenario Due to Sea 

Level Rise—A Prospective Review. Fishes 2023, 8, 355. https://doi.org/10.3390/fishes8070355. 

15. Scheffer, M.; Carpenter, S.; Foley, J.A.; Folke, C.; Walker, B. Catastrophic Shifts in Ecosystems. Nature 2001, 413, 591–656. 

16. Steffen, K.; Richardson, J.; Rockström, S.E.; Cornell, I.; Fetzer, E.M.; Bennett, R.; Biggs, S.R.; Carpenter, W.; de Vries, C.A.; de 

Wit, C.; et al. Planetary Boundaries: Guiding Human Development on a Changing Planet. Science 2015, 347, 6223. 

17. Walker, B.; Holling, C.S.; Stephen, R.; Carpenter, A.; Kinzig, P. Resilience, Adaptability and Transformability in Social-Ecologi-

cal Systems. Ecol. Soc. 2004, 9, 2. 

18. Ferreira, T.; Globevnik, L.; Schinegger, R. Water stressors in Europe: New Threats in the Old World. In Multiple Stressors in River 

Ecosystems, Status, Impacts and Prospects for the Future; Elsevier: Amsterdam, The Netherlands, 2019; pp. 139–155. 

19. Lima, A.C.; Sayanda, D.; Wrona, F.J. A Roadmap for multiple stressors assessment and management in freshwater ecosystems. 

Environ. Impact Assess. Rev. 2023, 102, 107191. 

20. Reid, A.J.; Carlson, A.K.; Creed, I.F.; Eliason, E.J.; Gell, P.A.; Johnson, P.T.J.; Kidd, K.A.; MacCormack, T.J.; Olden, J.D.; Ormerod, 

S.J.; et al. Emerging threats and persistent conservation challenges for freshwater biodiversity. Biol. Rev. 2019, 94, 849–873. 

https://doi.org/10.1111/brv.12480. 

21. Helbling, E.W.; Zagarese, H.E. UV Effects in Aquatic Organisms and Ecosystems; The Royal Society of Chemistry: Cambridge, UK, 

2003; pp. 1–575. 

22. Barnes, P.W.; Robson, T.M.; Neale, P.J.; Williamson, C.E.; Zepp, R.G.; Madronich, S.; Wilson, S.R.; Andrady, A.L.; Heikkilä, 

A.M.; Bernhard, G.H.; et al. Environmental effects of stratospheric ozone depletion, UV radiation, and interactions with climate 

change: UNEP Environmental Effects Assessment Panel, Update 2021. Photochem. Photobiol. Sci. 2022, 21, 275–301. 

https://doi.org/10.1007/s43630-022-00176-5. 

23. Barnes, P.W.; Williamson, C.E.; Lucas, R.M.; Robinson, S.A.; Madronich, S.; Paul, N.D.; Bornman, J.F.; Bais, A.F.; Sulzberger, B.; 

Wilson, S.R.; et al. Ozone depletion, ultraviolet radiation, climate change and prospects for a sustainable future. Nat. Sustain. 

2019, 2, 569–579. https://doi.org/10.1038/s41893-019-0314-2. 

24. Woolway, R.I.; Merchant, C.J. Worldwide alteration of lake mixing regimes in response to climate change. Nat. Geosci. 2019, 12, 

271–276. https://doi.org/10.1038/s41561-019-0322-x. 

25. Williamson, C.E.; Neale, P.J.; Hylander, S.E.; Rose, K.C.; Figueroa, F.L.; Robinson, S.A.; Häder, D.-P.; Wängberg, S.-Å.; Worrest, 

R.C. The interactive effects of stratospheric ozone depletion, UV radiation, and climate change on aquatic ecosystems. Photo-

chem. Photobiol. Sci. 2019, 18, 717–746. https://doi.org/10.1039/C8PP90062K. 

i Tehnici Neconvenţionale de Epurare
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Cyanobacteria and cyanotoxins in fishponds and their effects on fish tissue. Harmful Algae 2016, 55, 66–76. [CrossRef] [PubMed]
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