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We explicitly carry out the symplectic quantization of a family of multifield generalized Proca (GP)
electrodynamics theories. In the process, we provide an independent derivation of the so-called secondary
constraint enforcing relations—consistency conditions that significantly restrict the allowed interactions
in multifield settings already at the classical level. Additionally, we unveil the existence of quantum
consistency conditions, which apply in both single- and multifield GP scenarios. Our newly found
conditions imply that not all classically well-defined (multi-)GP theories are amenable to quantization. The
extension of our results to the most general multi-GP class is conceptually straightforward, albeit
algebraically cumbersome.
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I. INTRODUCTION

Quantum electrodynamics (QED) is the commonly
employed relativistic quantum field theory of the electro-
magnetic force. Even so, generalizations of QED are
relevant in many branches of physics, including condensed
matter, cosmology, optics, particle physics and string
theory, e.g., [1–5]. Here, we derive the partition function
of some recently proposed extensions of QED, which
comprise an arbitrary number of massive photons with
derivative (self-)interactions. The renowned quantization
procedure put forward by Dirac, repeatedly refined and
extended since its inception, would be the standard
approach to achieve this goal. However, owing to the
noteworthy difficulty of its implementation in our targeted
class of theories, we resort to the distinct yet physically
equivalent symplectic quantization methodology instead.
It was almost 160 years ago that Maxwell laid the

foundations of classical electromagnetism [6]. Viewed as a
field theory, this describes an Abelian massless vector field
and its linear interactions with sources. The quantization of
Maxwell’s theory took several decades, earned some of its
key developers a Nobel Prize in 1965 and yielded what

arguably remains the most successful theory to date: QED.
For a historical review, we refer the reader to [7].
As is well known and was nicely recapped in [7], early

attempts at quantizing electromagnetism met with a diver-
gent self-energy for any static point particle, such as the
electron, placed in an electromagnetic field. In order to
overcome this problem, two fundamentally different mod-
ifications to Maxwell’s theory were introduced. In 1934,
Born and Infeld proposed a certain nonlinear extension,
which is gauge-invariant and contains a single free para-
meter [8]. On the other hand, in the period of 1936-1938,
Proca constructed a massive version of Maxwell’s electro-
dynamics [9,10], which explicitly breaks the gauge sym-
metry. The Born-Infeld (BI) model is a concrete realization
of what ultimately became a large class of theories [11–13],
collectively known as nonlinear electrodynamics (NLE).
For an excellent recent review of NLE, see [14].
Contrariwise, Proca electrodynamics rapidly became and
remains cornerstone to optics in its original form [15–18].
It is only comparatively recently, in 2014, that classical,

nonlinear extensions of Proca’s massive electromagnetism,
containing derivative self-interactions of the vector field,
were put forward [19,20]. These conform a vast class of
theories, usually referred to as generalized Proca (GP) or
Vector Galileon. The axiomatization and non-trivial exten-
sion to multiple fields of GP electrodynamics was carried
out in [21,22]. It is this class of theories, (multi-)GP
electrodynamics, whose quantization we shall focus on.
For the ease of the reader, we note that GP can be
understood as the massive counterpart to the more familiar
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class of NLE theories,1 see Table I. We highlight the
relevance of the multifield settings: they allow for non-
Abelian augmentations of GP, upon imposing the desired
group structure in the field space.
To date, the phenomenology of (multifield) GP theories

has been fruitfully exploited in the context of cosmology,
after their coupling to gravity. Remarkable studies in this
regard include the viable late-time acceleration scenarios in
[2], the alleviation of the so-called H0 tension in [28] and
the primordial inflationary solutions in [29]. The most
stringent empirical constraints on the free parameters of GP
theories in a curved background follow from the measured
propagation of gravitational waves [30]. However, the vast
free parameter space of GP theories is far from being ruled
out by this and other observations. Therefore, our sub-
sequent quantization of (multi-)GP theories in flat space-
time should be regarded as an important nontrivial step
toward the promising extension of the above investigations
to the quantum realm.
Additionally, we advance the premise that quantum GP

theories also show a noteworthy, although virtually unex-
plored, potential already in flat spacetime. On the one hand,
they allow for a towering generalization of the physical
equivalence between Maxwell electrodynamics in certain
media and Proca electrodynamics in the vacuum, which is
the theoretical basis of the prevalence of Proca’s theory in
optics. In this regard, quantum GP can effectively describe
light propagation in a much wider set of media than
Proca theory. Free parameters in GP will then need to
be fine-tuned to match the dielectric constant of the
material of interest [31]. On the other hand, the imminent,
first-ever experimental probes of the nonlinear regime
of QED—most prominently by PVLAS [32] and LUXE
[33]—necessitate strong theoretical foundations to model
the forthcoming observations. In this context, GP goes
hand in hand with NLE, the chief constraint on its free

parameters coming from the upper bound on the mass of
the photon [34,35].
All the theories mentioned so far are singular or con-

strained. Further examples are non-Abelian gauge field
theories, gravitational theories and supersymmetric theo-
ries. The systematic study of such systems was initiated
by Dirac in 1950 [36], whose work was promptly and
abundantly followed upon [37–41], including recent
advancements [42–46]. In particular, the path integral
formulation of Dirac’s canonical quantization procedure
has been known for over four decades [47,48].
The formalism instituted by Dirac is ubiquitous but not

unique. In the present manuscript, we will employ the
distinct quantization scheme introduced by Faddeev and
Jackiw in 1988 [49]. This method is conceptually simpler
and, for some theories, it is algebraically easier to imple-
ment as well. The main reason for the conceptual simplicity
lies in the fact that Faddeev and Jackiw’s approach does not
require to classify the constraints present in the theory into
first and second class.2 The algebraic ease is particularly
prominent when considering systems with only second
class constraints, as is the case of (multi-)GP electrody-
namics. Last but not least, we note that Dirac’s method is a
Hamiltonian based one, while Faddeev and Jackiw’s is
Lagrangian based. This makes the Faddeev-Jackiw pre-
scription particularly befitting for dealing with (multi-)GP
theories, which have been formulated and are almost
exclusively employed in their Lagrangian formulation.
As with Dirac’s original work [36], Faddeev and

Jackiw’s proposal [49] has been extensively followed upon
[50–55]. Of particular interest for this work is the path
integral formulation of their approach, established in
[56,57]. Here, we refer as symplectic quantization to the
quantization procedure derived from the cumulative con-
sideration of [49,51,52,56,57], nicely summarized in Sec. 2
of [57]. The outcome of this method is the central object of
any quantum field theory: the partition function.
The paper is organized as follows. We begin with a

technical review of multi-GP in Sec. II A. For clarity,
we focus on a particular subset of multi-GP in Sec. II B
and perform its symplectic quantization in detail in
Secs. II C–II F. We thus identify two distinct sets of
consistency conditions:
(1) The already known conditions [21,22], which seve-

rely restrict classical, multifield settings.
(2) New conditions, which apply in the quantum realm

and affect both single- and multifield settings.
We exemplify the resulting quantization procedure in
Sec. II G. Section III is devoted to the elucidation of the
novel quantum consistency conditions. We conclude with

TABLE I. Classification of single-field electromagnetic theo-
ries, whose Lagrangian density is manifestly first-order. Both
NLE and GP stand for populous classes of such theories. In this
work, we shall consider the nontrivial multifield extension of the
GP class, constructed in [21,22].

Linear Nonlinear

Massless Maxwell Nonlinear electrodynamics (NLE)
Massive Proca Generalized Proca (GP)

1Our lightning review of extensions of classical electromag-
netism is limited to theories described by first-order Lagrangian
densities. Higher-order generalizations are of course possible. On
the massless side, the most renowned example is that of Podolsky
electrodynamics [23,24]. On the massive side, there exists a
single proposal so far: Proca-Nuevo [25,26], which can also be
extended through some GP interaction terms [27].

2As a reminder, first/second class constraints are those which
do/do not have a weakly vanishing Poisson bracket with all
constraints.
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Sec. IV, summarizing the results and pointing out possibil-
ities for future work.

A. Conventions

We work on a d-dimensional Minkowski spacetime
manifold M, with d ≥ 2 and the mostly positive metric
signature. Spacetime indices are denoted by the Greek
letters ðμ; ν; ρ…Þ and raised or lowered with the metric
ημν ¼ diagð−1; 1; 1;…; 1Þ and its inverse ημν. Space indi-
ces are denoted by the Latin letters ði; j; k…Þ and are
trivially raised or lowered. The alphabets ðα; β;…Þ label
different vector fields. These vector field labels are trivially
raised or lowered. We employ the standard short-hand
notations ∂μf ≔ ∂f=∂xμ and ∂if ≔ ∂f=∂xi, where xμ and
xi are spacetime and space local coordinates in M,
respectively. The dot stands for derivation with respect
to time: _f ≔ ∂0f. Here, f is any local function f∶ M → R.
Einstein summation convention applies for all repeated
indices and labels throughout the text.

II. SYMPLECTIC QUANTIZATION

In this section, we perform the detailed symplectic
quantization of a family of electrodynamics theories, all
of which describe the dynamics of an arbitrary numberN ∈
N of GP fields coupled through derivative (self-)inter-
actions. By definition, the theories here considered describe
multifield, generalized massive electrodynamics, whose
Lagrangian is manifestly first-order.

A. Review of multi-GP electrodynamics

In order to set the notation and contextualize the results
obtained in this work, we start with a brief review of
our previous work on multi-GP electrodynamics [21,22].
Let N be the number of GP fields Aα ¼ Aα

μdxμ, with
α ¼ 1; 2;…N. The most general first-order Lagrangian
density, encoding the dynamics of these GP fields can
be written as

Lgen ¼ Lkin þ Lint; ð2:1Þ

where the kinetic piece is canonically normalized

Lkin ¼ −
1

4
Aα
μνA

μν
α ; Aα

μν ≔ ∂μAα
ν − ∂νAα

μ; ð2:2Þ

and the (self-)interaction piece is given by

Lint ¼ Lð0Þ þ
X∞
n¼1

LðnÞ: ð2:3Þ

Here, Lð0Þ is an arbitrary real smooth function of the GP
fields and their field strengths,

Lð0Þ ¼ Lð0ÞðAα
μ; Aα

μνÞ; ð2:4Þ

while the factors LðnÞ are of the general form

LðnÞ ¼ T μ1…μnν1…νn
α…αn ∂μ1A

α1
ν1…∂μnA

αn
νn ; ð2:5Þ

where the above T objects are real and smooth and can
depend on the GP fields but not on their derivatives:

T μ1…μnν1…νn
α…αn ¼ T μ1…μnν1…νn

α…αn ðAα
μÞ;

T μ1…μnν1…νn
α…αn ≠ T μ1…μnν1…νn

α…αn ð∂μAα
νÞ: ð2:6Þ

Therefore, n counts the number of derivative terms of the
GP fields present in Lðn≥1Þ. Notice that the Lagrangian Lgen

is manifestly first-order. Namely, it explicitly depends on
the GP fields and (powers of) their first derivatives only. No
second- or higher-order derivatives appear. This feature
guarantees that the equations of motion are second-order
at most.
In order for the above Lagrangian Lgen to be mathemati-

cally well-defined at the classical level, it must fulfil two
necessary and sufficient sets of constraints: (2.7) and (2.9)
below. The initial GP works [19,20] identified (2.7). The
mathematical procedure was completed in [21,22], with
an outcome of (2.9). In more detail, (2.7) enforces the
existence of a second class constraint for every GP field
considered. Such constraints are preserved under time
evolution iff (2.9) is fulfilled, which ensures the existence
of another second class constraint per GP field. The
trivialization of (2.9) for a single GP field implies the
automatic existence of the latter second class constraint in
this case. Contrastively, multifield (and therefore non-
Abelian) settings are severely restricted by (2.9).
The first set of constraints has been referred to as

primary constraint enforcing relations and is given by

∂2Lgen

∂ _Aα
0∂ _Aβ

μ

¼! 0: ð2:7Þ

This has two drastic consequences on Lgen. On the one
hand, it truncates the sum over n in (2.3) at n ¼ d, so that
the interaction piece reduces to

Lint ¼ Lð0Þ þ
Xd
n¼1

LðnÞ: ð2:8Þ

On the other hand, it forces a certain form on the T objects
in Lðn≥2Þ, albeit without fully fixing them. The interested
reader can consult the form of such T ’s, for the particular
case when d ¼ 4, in Eqs. (21)–(23) of [21].
The second set of constraints, the so-called secondary

constraint enforcing relations, is
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∂2Lgen

∂ _Aα
0∂Aβ

0

−
∂2Lgen

∂ _Aβ
0∂Aα

0

¼! 0: ð2:9Þ

The above further restricts the form of the T objects in all
Lðn≥1Þ, although it still does not completely determine
them. Owing to the very significant complexity of both
Lgen and (2.9), the latter has not yet been exhaustively
implemented, even in the particular d ¼ 4 case. Namely, to
date there is no complete list of T ’s that simultaneously
satisfy (2.7) and (2.9). Therefore, for the time being, (2.9) is
to be viewed as an essential classical consistency condition
that must be fulfilled in any multi-GP electrodynamics one
may wish to consider. Particular examples of T ’s in Lð1Þ
and Lð2Þ that satisfy both (2.7) and (2.9) have been
proposed in d ¼ 4 [21,22].

B. The targeted multi-GP electrodynamics

In the present work, we will restrict computational
attention to the following subset of interactions within
the above described Lgen massive electrodynamics theory:

Lð0Þ ¼ −
1

2
m2Aα

μA
μ
α þ cAα

μA
μ
βA

β
νAν

α; Lðn≥2Þ ¼ 0; ð2:10Þ

withm ∈ Rþ the (hard) mass of the GP fields (chosen to be
the same for all GP fields for simplicity) and c ∈ R a
dimensionless constant. We will consider all the terms in
Lð1Þ. Specifying a certain Lð0Þ is necessary in order to
explicitly (as opposed to formally) carry out the symplectic
quantization procedure. We here choose to consider the
standard mass term for the GP fields, originally proposed in
[9,10], as well as the quartic interactions among the GP
fields. The latter are the simplest (self-)interactions for the
massive vector fields, yet they are interesting in their own
right. Remarkably, they have been shown to admit a non-
Wilsonian ultraviolet completion [58]. They lead to time-
dependent solitonic solutions [59]. Recently, such terms
have attracted attention in the context of Proca stars as well
[60,61]. Here, we introduced the constant c to straightfor-
wardly keep track of subsequent contributions stemming
from these quartic interactions. We will comment on the
nontrivialities involved in the extensions of (2.10) with
Lðn≥2Þ ≠ 0 shortly. At last, we will include external sources
Jμα. All in all, we shall consider the particular multi-GP
electrodynamics theories encoded in

Lpar ¼ −
1

4
Aα
μνA

μν
α −

1

2
m2Aα

μA
μ
α þ cAα

μA
μ
βA

β
νAν

α

þ T μν
α ∂μAα

ν þ Aα
μJ

μ
α; ð2:11Þ

where the objects T μν
α are required to satisfy the classical

consistency condition (2.9), with Lgen replaced by Lpar.
Here, the Aα

μ’s are the generalized coordinates (that is,
the a priori independent degrees of freedom in terms of

which the electrodynamics theories of our interest are
described):

Q ¼ fAα
μg: ð2:12Þ

The generalized coordinates span the configuration space
of the theories, which in this case is dN-dimensional. The
time derivatives of the generalized coordinates are the
generalized velocities:

_Q ¼ f _Aα
μg: ð2:13Þ

Upon a space-time decomposition, (2.11) becomes

Lpar ¼
1

2
_Aα
i
_Ai
α þ _Aα

i ∂iA0
α −

1

2
ð∂iA0

αÞ∂iAα
0 −

1

4
Aα
ijA

ij
α

−
1

2
m2ðAα

0A
0
α þAα

i A
i
αÞ þ cðAα

0A
0
βA

β
0A

0
α þ 2Aα

0A
0
βA

β
i A

i
α

þAα
i A

i
βA

β
jA

j
αÞ þ T 00

α
_Aα
0 þ T 0i

α
_Aα
i þ T i0

α ∂iAα
0

þ T ij
α ∂iAα

j þAα
0J

0
α þAα

i J
i
α; ð2:14Þ

where, for the convenience of the reader, we have placed
the terms coming from Lkin, Lð0Þ and Lð1Þ (plus the
coupling to the external sources) in the first, second and
third lines, respectively. The classical consistency condition
for the above explicitly reads

∂̄0
βT

00
α − ∂̄0

αT 00
β ¼! 0; ð2:15Þ

where we have introduced the short-hand

∂̄μ
α ≔

∂
∂Aα

μ
: ð2:16Þ

C. Input for the iterative procedure

The symplectic quantization method can only be employed
on Lagrangian densities which are linear in the generalized
velocities. Namely, Lagrangian densities of the form

L ¼ θ · _Qþ L̂; ð2:17Þ

where θ and L̂ are functions of the generalized coordinatesQ
but not of the generalized velocities _Q. θ is known as the
canonical one-form. Upon termination of the symplectic
quantization iterative procedure, L̂ is minus the Hamiltonian
density.
Clearly, (2.14) is not of the above form. Indeed, Lpar

contains quadratic terms in the generalized velocities.
These stem from Lkin. In order to bring (2.14) to the
desired form (2.17), we will extend the configuration space
of our theory, by declaring the canonical momenta pμ

α (with
respect to Aα

μ) generalized coordinates as well:
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Q ¼ fAα
μ; p

μ
αg: ð2:18Þ

At this point, we thus consider a configuration space that is
2dN-dimensional, with the canonical momenta given by

p0
α ≔

∂Lpar

∂ _Aα
0

¼ T 00
α ; pi

α ≔
∂Lpar

∂ _Aα
i

¼ _Ai
α þ ∂iA0

α þ T 0i
α :

ð2:19Þ

It is of utmost importance to make the following two
observations. First, the canonical momenta pi

α depend on
(some of) the generalized velocities _Q, while the canonical
momenta p0

α do not. The fact that p0
α ≠ p0

αð _QÞ is a direct
consequence of the primary constraint enforcing relations
(2.7) and it implies that we must view

φα ≔ p0
α − T 00

α ¼! 0 ð2:20Þ

as a set of N number of (functionally independent)
constraints that must be appropriately accounted for in
our considered theories. This can be readily done via
Lagrange multipliers λα, which we must regard as further
generalized coordinates:

Q ¼ fAα
μ; p

μ
α; λαg: ð2:21Þ

We thus settle for a ð2dþ 1ÞN-dimensional configuration
space associated to (2.14) with views to performing the
symplectic quantization of the theories.
Second, we notice that the second set of equalities in

(2.19) forms a system of ðd − 1ÞN number of linearly
independent equations. Such linear independence is guar-
anteed by construction [21] for all electrodynamics theories
reviewed in the previous section II A. Further, in the
particular case at hand, it is straightforward to solve this
system for _Ai

α in terms of ðpi
α; Aα

μÞ:

_Ai
α ¼ pi

α − ∂iA0
α − T 0i

α : ð2:22Þ

The situation becomes more involved if Lðn≥2Þ ≠ 0.
When Lð2Þ ≠ 0 with Lðn≥3Þ ¼ 0, the aforementioned linear

independence ensures a unique solution _Ai
α ¼ _Ai

αðpi
α; Aα

μÞ
exists. Then, the difficulty amounts to the algebraic effort
required for its explicit determination. Whenever
Lðn≥3Þ ≠ 0, we encounter a polynomial in _Ai

α of order
(n − 1) on the right-hand side of the second set of equalities
in (2.19). We are thus confronted with a setting where
the inversion of the generalized velocities in terms of the
canonical momenta (and the generalized coordinates) is
multivalued. This looks like a worse problem than it
actually is: the complication is a technical—as opposed
to a fundamental—one and was elegantly resolved in [62]
by defining a generalized notion for the Legendre

transform. The increased algebraic effort associated with
choosing Lðn≥2Þ ≠ 0 is notorious, but certainly not insur-
mountable, and would obscure the transcendence of our
results. For this reason, we have opted to set Lðn≥2Þ ¼ 0 in
this work.
Overall, the reconsideration of (2.14) such that (2.21) are

the generalized coordinates yields, upon minor algebraic
effort employing (2.22), a Lagrangian density of the desired
form (2.17), with θ ¼ fpμ

α; 0;φαg and

L̂ ¼ −
1

2
pi
αpα

i − pi
α∂iAα

0 −
1

4
AijAij −

1

2
m2ðAα

0A
0
α þ Aα

i A
i
αÞ

þ cðAα
0A

0
βA

β
0A

0
α þ 2Aα

0A
0
βA

β
i A

i
α þ Aα

i A
i
βA

β
jA

j
αÞ

þ ðpα
i þ ∂iAα

0ÞT 0i
α þ 1

2
T 0i

α T α
0i þ T i0

α ∂iAα
0

þ T ij
α ∂iAα

j þ Aα
0J

0
α þ Aα

i J
i
α; ð2:23Þ

where, once more for the convenience of the reader,
we have placed the terms coming from Lkin, Lð0Þ and
Lð1Þ (plus the coupling to the external sources) in the first,
second and third lines, respectively. Of course, the classical
consistency conditions (2.15) must be fulfilled in this
rewriting as well.
Here, it is important to note that we have viewed the

essential terms enforcing the constraints (2.20) via
Lagrange multipliers as belonging within the symplectic
part of the Lagrangian, i.e., the first term in (2.17). This is
because the Lagrange multipliers are arbitrary, so we can
enforce (2.20) via their time derivatives just as well. In
other words, we can incorporate the constraints (2.20) to
our electrodynamics theories in two physically equivalent
ways: adding either λαφα or _λ

αφα to (2.14). The first way is
followed in Dirac-based standard quantization procedures,
whereas the second way is a cornerstone to the symplectic
quantization methodology. The interested reader can con-
sult [52] for a detailed exploration of the said two manners
to incorporate constraints, as well as a proof of their
physical equivalence. In the present work, we have of
course elected the second option.
An important technical remark is as follows. The expert

reader may here worry that we are overlooking the
prescription in [63] for field theories. Namely, that we
may be missing out on unveiling purely spatial consistency
conditions, since these can only be found by introducing d
number of Lagrange multipliers per constraint, in the form
∂μλ

μαφα. We have explicitly checked that no such spatial
conditions apply to our considered settings (2.11) and,
a posteriori, have opted for alleviating the algebraic
presentation throughout the text by only introducing one
Lagrange multiplier per constraint: _λαφα. The inclusion of
all d Lagrange multipliers leads to the generation of
functionally dependent (d − 1) number of constraints at
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the first iteration, given by ∂iφα¼! 0, which are simply
redundant.
For completeness, we point out that our above manipu-

lation of (2.11), or equivalently of (2.14), to bring it into the
FJ form (2.17) is not the only possible one. It is the one
employed in [57] for the symplectic quantization of Proca
electrodynamics and therefore our forthcoming results are
most easily compared to this reference, in the appropriate
limit. It is worth noting that [55] also promotes canonical
momenta and Lagrange multipliers to additional general-
ized coordinates for the quantization of Proca electrody-
namics. However, this work is primarily concerned with the
introduction of a distinct, albeit Faddeev-Jackiw-based,
quantization procedure. Therefore, a step-wise comparison
of our work to [55] is not possible. There is another
possibility, which was exploited in [64], also in the context
of the symplectic quantization of Proca electrodynamics.
In this reference, the theory is first manipulated to enjoy
a Uð1Þ gauge symmetry. This is achieved through the
suitable inclusion of an additional scalar field, in a
procedure that in some contexts is referred to as the
Stückelberg mechanism, originally proposed in [65]. (We
refer the interested reader to [66] for a compelling modern
review of this mechanism.) Afterwards, the Proca and
scalar fields, together with their canonical momenta are
regarded as the generalized coordinates and the symplectic
quantization method is employed. While it is possible to
proceed in an analogous manner for our considered
electrodynamics theories (2.11), this is algebraically more
cumbersome. With simplicity in mind, we have opted for
quantizing the theories as they are, with no gauge sym-
metry at all. We stress that the said two distinct manners
in which a Lagrangian can be brought into the form
(2.17) are explicitly shown to yield the same physics in
[67] for the nontrivial case of Podolsky electrodynamics
[23,24]. For clarity, we point out that the authors of
[67] refer to the aforementioned enlargement of the
configuration space and to the Stückelberg mechanism
as reduced order formalism and Ostrogradsky prescrip-
tion, respectively. The latter name alludes to the original
paper [68], but employs the modern understanding devel-
oped in [69,70].

D. First iteration

The first step in the symplectic quantization prescription
amounts to the calculation of the so-called symplectic
twoform Ω, a totally antisymmetric square matrix, whose
components are given by

Ωmn ≔
δθ0n
δQm −

δθm
δQ0n ; ð2:24Þ

where m; n ¼ 1; 2;…; ð2dþ 1ÞN label the individual ele-
ments in θ ¼ fpμ

α; 0;φαg and Q in (2.21). The symplectic
twoform is defined on a constant time hypersurface

Σ ⊂ M. The nonprimed quantities ðθ; QÞ are to be under-
stood as evaluated at some point x ¼ ðt�; xiÞ ∈ Σ, with t�
an arbitrary but fixed time; while their primed counterparts
ðθ0; Q0Þ are to be understood as evaluated at some other
point x0 ¼ ðt�; x0iÞ ∈ Σ. We can succinctly spell out Ω as

Ω ¼

0
BB@

0 −δμνδβα −∂̄μ
αT 00

β

δνμδ
α
β 0 δ0μδ

α
β

∂̄ν
βT

00
α −δ0νδ

β
α 0

1
CCAδd−1ðxi − x0iÞ: ð2:25Þ

Next, we need to determine whether the above sym-
plectic twoform is singular or not. The calculation of the
determinant is subtle, so we will carry it out explicitly. To
this aim, we will make use of Schur’s identity. Namely,
given any square matrix M that admits a block decom-
position of the form

M ¼
�
M1 M2

M3 M4

�
; ð2:26Þ

such that M1 and M4 are square and M1 is invertible, its
determinant can be computed as

detðMÞ ¼ detðM1Þ detðM4 −M3M−1
1 M2Þ: ð2:27Þ

Notice that Schur’s identity does not require M2 and M3 to
be square. Upon the identifications M ¼ Ω,

M1 ¼
�

0 −δμνδβα
δνμδ

α
β 0

�
δd−1ðxi − x0iÞ;

M2 ¼
�−∂̄μ

αT 00
β

δ0μδ
α
β

�
δd−1ðxi − x0iÞ;

M3 ¼ ð∂̄ν
βT

00
α − δ0νδ

β
αÞδd−1ðxi − x0iÞ; M4 ¼ 0 ð2:28Þ

and noting that

detðM1Þ ¼ 1; M−1
1 ¼ M1; ð2:29Þ

we easily arrive at

detðΩÞ ¼ detð−M3M1M2Þ
¼ det ½ð∂̄0

αT 00
β − ∂̄0

βT
00
α Þδd−1ðxi − x0iÞ�: ð2:30Þ

By virtue of the classical consistency conditions (2.15),
the above determinant vanishes. The symplectic twoform
Ω in (2.25) is therefore singular. Its singularity implies
the existence of further constraints, beyond the already
unveiled ones in (2.20). Before calculating these additional
constraints, we reflect upon (2.30).
For just a moment, suppose that we would not have been

aware of the classical consistency conditions (2.15) from
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the very beginning. In such a case, at this point we would
have derived (2.15) from (2.30). This is because the
singularity of the symplectic twoform is indispensable
for the correct postulation of any electrodynamics theory
and thus for our considered particular theory (2.11) too. For
instance, it is well known that Proca electrodynamics is
associated with two (second-class) constraints. The first
such constraint amounts to the independence of the action
from p0 or, equivalently, from _A0. The second constraint
exists iff3 the symplectic twoform vanishes. In the Proca
case, this vanishing is automatic. We now turn to the more
general GP case. Since all (multi-)GP are nonlinear
extensions of Proca electrodynamics, they must have
its same constraint algebraic structure: each GP field
must be associated with two (second-class) constraints.
The first set is that in (2.20). The second set exists iff
(2.30) is zero, which uniquely and straightforwardly
implies (2.15). Therefore, at this point we have obtained
the following important side-result: an independent deri-
vation of the classical consistency conditions applying to
all multi-GP electrodynamics theories, which were origi-
nally disclosed in [21,22] following a different approach,
à la Dirac.
As a first step in the determination of the necessary

additional constraints in our considered generalized mas-
sive electrodynamics theories, we compute the zero modes
of Ω in (2.25). The number of linearly independent zero
modes that Ω admits is equal to

dimðΩÞ − rankðΩÞ ¼ ð2dþ 1ÞN − 2dN ¼ N: ð2:31Þ

The above rank readily follows from the observation that
(2.30) identically vanishes for a single GP field, together
with (2.29). The N linearly independent zero modes of Ω
are of the generic form γα ¼ ðuαμ; vμα; wαÞ and fulfill that
their left multiplication with Ω vanishes.4 This vanishing
implies

uα0 ¼ −wα; uαi ¼ 0; v0α ¼ −wβ∂̄0
βT

00
α ;

viα ¼ −wβ∂̄i
αT 00

β ð2:32Þ

and we have the freedom to choose the wα components. A
simple consistent choice amounts to setting

wα ¼ ð0; 0;…; 0;−1; 0; 0;…; 0Þ≕ − Iα; ð2:33Þ

where the nonzero entry is in the α-th position. All in all,
we shall consider the following zero modes of Ω:

γα ¼ ðδ0μIα; Iβðδμ0∂̄0
βT

00
α þ δμi ∂̄i

αT 00
β Þ;−IαÞ: ð2:34Þ

There are as many new constraints as linearly indepen-
dent zero modes. These additional constraints φ̃α can be
determined employing the above zero modes according to
the formula

φ̃ ≔ γ ·
δL̂
δQ

¼! 0; ð2:35Þ

with the generalized coordinates Q, the nonsymplectic part
of the Lagrangian density L̂ and the zero modes γα as given
in (2.21), (2.23) and (2.34), respectively. It is easy to verify
that the above constraints are explicitly given by

φ̃α ¼ −m2A0
α þ 2cA0

βðAβ
0A

0
α þ 2Aβ

i A
i
αÞ

þ ðpβ
i þ 2∂iA

β
0 þ T β

0iÞ∂̄0
αT 0i

β þ ð∂iA
β
j Þ∂̄0

αT
ij
β

þ ðpβ
i þ ∂iA

β
0 þ T β

0iÞ∂̄i
βT

00
α þ ∂ipi

α

− ∂iðT 0i
α þ T i0

α Þ þ J0α¼! 0: ð2:36Þ

Henceforth, it is essential to only consider the function-
ally independent constraints. As was the case for (2.20)
earlier on, the functional independence of the above
constraints is also ensured by construction [21].
Therefore, all N number of constraints in (2.36) must be
taken into account. We redirect the interested reader to
Sec. IID in [71] for an astute methodology to deal with
(almost all) scenarios where there is no functional inde-
pendence among the constraints. It is worth noting that this
reference contains enlightening examples as well.
The (functionally independent) constraints (2.36) are to

be incorporated through new Lagrange multipliers λ̃α. The
novel Lagrange multipliers must be viewed as further
generalized coordinates, so that the configuration space
of our electrodynamics theories is now spanned by

Q ¼ fAα
μ; p

μ
α; λα; λ̃αg ð2:37Þ

and is 2ðdþ 1ÞN-dimensional. Following our remarks

below (2.23), we include the terms φ̃α
_̃λ
α

to our
Lagrangian density. This is of the required form (2.17),
with

θ ¼ fpμ
α; 0;φα; φ̃αg ð2:38Þ

and L̂ as in (2.23). Once again, there is no need to include d
number of Lagrange multipliers per constraint ∂μλ̃

μαφ̃α, as
generally required for field theories [63]. This is because no

3This statement will become clear shortly, in (2.35).
4This is but a harmless choice. It is also possible to choose to

define the zero modes as those column vector, whose right
multiplication with Ω yields zero. Here, we opt for the left
multiplication convention also employed in [57], with the
constant goal to make our results easily comparable to the
limiting scenario of Proca electrodynamics worked out in this
reference.
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constraints arise at the second iteration, as we shall
immediately show.

E. Second iteration

We proceed to calculate the symplectic twoform Ω
associated to the above obtained Lagrangian density. We
do so according to the definition in (2.24), but this time
with n;m ¼ 1; 2;…; 2ðdþ 1ÞN referring to the compo-
nents of Q and θ in (2.37) and (2.38), respectively. The
result is

Ω ¼

0
BBBBB@

0 −δμνδβα −∂̄μ
αT 00

β Xμ
αβ

δνμδ
α
β 0 δ0μδ

α
β −Yα

μβ

∂̄ν
βT

00
α −δ0νδ

β
α 0 0

−X0ν
βα Y 0β

να 0 0

1
CCCCCA
δd−1ðxi − x0iÞ;

ð2:39Þ

where we have introduced

X0
αβ ≔ m2δβα − 2cðAγ

0A
0
γδ

β
α þ 2Aβ

μA
μ
βÞ þ ð∂̄0

βT
0i
γ þ ∂̄i

γT 00
β Þ∂̄0

αT
γ
0i þ ðpγ

i þ 2∂ 0
iA

γ
0 þ T γ

0iÞ∂̄0
α∂̄0

βT
0i
γ

þ ð∂ 0
iA

γ
jÞ∂̄0

α∂̄0
βT

ij
γ þ ðpγ

i þ ∂ 0
iA

γ
0 þ T γ

0iÞ∂̄0
α∂̄i

γT 00
β − ∂ 0

i∂̄0
αðT 0i

β þ T i0
β Þ − 2∂i∂̄0

βT
0i
α − ∂i∂̄i

αT 00
β ;

Xi
αβ ≔ 4cðA0

αAi
β − Aγ

0A
i
γδ

β
αÞ þ ð∂̄0

βT
0j
γ þ ∂̄j

γT 00
β Þ∂̄i

αT
γ
0j þ ðpγ

j þ 2∂ 0
jA

γ
0 þ T γ

0jÞ∂̄0
β∂̄i

αT
0j
γ

þ ð∂ 0
jA

γ
kÞ∂̄0

β∂̄i
αT

jk
γ þ ðpγ

j þ ∂ 0
jA

γ
0 þ T γ

0jÞ∂̄i
α∂̄j

γT 00
β − ∂j∂̄0

βT
ji
α − ∂ 0

j∂̄i
αðT 0j

β þ T j0
β Þ;

Yα
μβ ≔ δiμðδβα∂i þ ∂̄α

i T
00
β þ ∂̄0

βT
α
0iÞ: ð2:40Þ

The primed counterparts X0μ
αβ and Y

0α
μβ follow from replacing

∂i ↔ ð−Þ∂ 0
i everywhere in the above expressions, with ∂ 0

i
the shorthand for derivation with respect to x0i. The minus
sign applies only for those partial derivatives ∂ð0Þ

i that act on
the Dirac delta δd−1ðxi − x0iÞ. Namely, the first term on the
right-hand side of Yα

μβ. We note the additional components
in (2.39), as compared to (2.25) before. These stem directly
from the newly found constraints in (2.36). We stress that,
generically, Xμ

αβ ≠ Xμ
βα and Y

α
μβ ≠ Yβ

μα; which holds true for
X0μ
αβ and Y 0α

μβ as well.
As in the first iteration earlier on, we now calculate the

determinant of the above symplectic twoform, with views
to establishing whether it is singular or not. Once more, we
employ Schur’s identity (2.27), with M ¼ Ω in (2.39), M1

and M4 as in (2.28) and

M2 ¼
�−∂̄μ

αT 00
β Xμ

αβ

δ0μδ
α
β −Yα

μβ

�
δd−1ðxi − x0iÞ;

M3 ¼
� ∂̄ν

βT
00
α −δ0νδ

β
α

−X0ν
βα Y 0β

να

�
δd−1ðxi − x0iÞ: ð2:41Þ

As an intermediate step, we note that

ðM3M1M2Þαβ¼
�

0 Zαβ

−Z0
βα −X0μ

γαY
γ
μβþY 0γ

μαX
μ
γβ

�
δd−1ðxi−x0iÞ;

ð2:42Þ

where the vanishing components are a direct consequence
of the classical consistency conditions (2.15) and where we
have introduced

Zαβ ≔ ð∂̄μ
γT 00

α ÞYγ
μβ − X0

αβ: ð2:43Þ

As explained below (2.40), the primed analogue Z0
αβ stands

for Zαβ under the replacements ∂i ↔ ð−Þ∂ 0
i. From (2.42), it

readily follows that the determinant of Ω in (2.39), which
we denote by ϱ henceforth, is not zero in general:

ϱ ¼ − det ½ðZ0 · ZÞδd−1ðxi − x0iÞ� ≠ 0: ð2:44Þ

From (2.42), it is clear that this is a direct consequ-
ence of

Zαβ ≠ 0: ð2:45Þ

The fact that the above determinant ϱ does not vanish
signals the closure of the symplectic quantization iterative
method.
Upon recalling our discussion below (2.30), a crucial

observation follows:

ϱ≠
!

0 ⇒ Zαβ≠
!

0: ð2:46Þ

This is an essential self-consistency condition for the
targeted family of massive electrodynamics theories
(2.11). Indeed, if ϱ ¼ 0, then more than 2N constraints
would be present. These can be determined in a third
iteration of the symplectic quantization procedure and
would overconstrain the theories, which would no longer
enjoy the same constraint algebraic structure of N copies
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of Proca electrodynamics.5 We therefore name (2.46) as
quantum consistency conditions for (2.11). This comple-
ments the classical consistency condition in (2.15).
Remarkably and unlike (2.15), the new conditions (2.46)
apply to both single and multiple GP field settings. We
regard the unveiling of the quantum consistency conditions
as another important result in this paper, which will be
elaborated upon in Sec. III.

F. Output: The partition function

The above nonsingular symplectic twoform is central to
symplectic quantization. Indeed, the commutation relations
between the generalized coordinates (2.37) are given by

fQn;Qmg ¼ ðΩmnÞ−1; ð2:47Þ

with the right-hand side denoting the inverse ofΩ in (2.39).
It is convenient to make two observations at this point.
First, it is easy to deduce that, in our case, (2.47) is not
of the standard canonical form. This is because in the
symplectic piece ðθ · _QÞ of our second iterated Lagrangian
density—where θ and Q are given by (2.38) and (2.37),
respectively—the set ðθ; QÞ is not formed by independent
fields: recall (2.20) and (2.36). By construction [49], it
is guaranteed that there exists a Darboux transformation
that brings ðθ; QÞ to a canonical set of variables, whose
commutation relations will then be of the standard canoni-
cal form. In general, finding the said Darboux trans-
formation is tedious, if not difficult as well. Its
calculation is a pivotal point in [51,52] and finds in [55]
what could well be the most complicated worked out
example available to date. In our persistent aim for a
quantization without tears, amenable to extrapolation to
more cumbersome Lagrangian densities and aligned with
the very essence of the employed method [54], we omit the
determination of such a Darboux transformation. Second,
as a direct consequence of our first observation, the explicit
computation of the inverse matrix in (2.47) is operationally
lengthy and prone to error. In fact, it can become quite a
mathematical feat to do so, depending on the theory under
consideration. We therefore refrain from its calculation and
instead will promptly follow [56,57], which will lead to the

path integral formulation of the partition function for the
theories of our interest (2.11). For completeness, we note
that yet another way around this technical complication was
put forward in [55], which proposes a quantization meth-
odology that markedly departs from the symplectic pre-
scription à la Faddeev and Jackiw.
As just anticipated and adhering to [56,57], our prior

analysis readily yields the sought partition function [56]:

Z ¼
Z

dσ exp

�
i
Z
M

ddxL
�
: ð2:48Þ

Here, the Lagrangian density L is of the FJ form (2.17),
with L̂,Q and θ as in (2.23), (2.37) and (2.38), respectively.
The measure is

dσ ¼ J
�Y

μ;α

½dAα
μ�
��Y

ν;β

½dpν
β�
��Y

γ

½dλγ�
��Y

δ

½dλ̃δ�
�
;

ð2:49Þ

where J stands for the Jacobian of the aforementioned
Darboux transformation. It is the main result of [57] to
prove the identification

J ¼ ϱ1=2; ð2:50Þ

with ϱ as in (2.44) for the theories of our present interest.
The transcendence of (2.50) is clear, given our above
observation that obtaining the Darboux transformation is
generically complicated: it fully specifies the path integral
measure in terms of the central object of the symplectic
quantization method—the (possibly iterated) nonsingular
symplectic twoform Ω—in a computationally simple man-
ner. Therefore and recalling Schwartz’s appreciation that “if
you have an exact closed-form expression for Z for a
particular theory, you have solved it completely” [72], we
have now concluded the symplectic quantization of (2.11)
in the path integral formulation.6

G. Examples

With the main goal of neatly illustrating our above
analysis, we proceed to examine two simple, massive
extensions of QED. We will first contemplate the well-
known Proca electrodynamics case and explicitly ensure
we reproduce its familiar results. We then use the developed

5At this point, the attentive and expert reader may well develop
an educated (yet unfounded) suspicion. Namely, that perhaps
ϱ ¼ 0 is possible, as long as each and every of the additional
constraints that follow are functionally dependent on the already
found 2N constraints. However, this is not possible in the targeted
theories. The reason is that a closure of the iterative procedure
through functional dependence of the constraints implies the
presence of a (gauge) symmetry. Clearly, our considered massive
electrodynamics theories explicitly break the Uð1ÞN gauge
invariance of N-field massless electrodynamics theories and thus
enjoy no symmetry at all. Therefore, the iterative algorithm
cannot close in such a manner for these theories; for them, ϱ ¼ 0
is necessary. We refer the interested reader to [46] for further
details.

6As a side remark, we point out that the authors of [56] built
upon their own work in [73], which seems to be a reference that
[57] is unaware of. Here, they introduced the so-called equiv-
alently extended Lagrangian, which does not contain the
Jacobian J, as a means to resolve the ambiguity in their
prescribed measure for those cases where the Darboux trans-
formation is such that J ≠ 1. We find this unillustrated proposal
rather obscure and unnecessarily involved and therefore favor the
neat resolution of [57].
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approach to quantize a single-field GP scenario, where the
mass of the GP field is realized through a derivative self-
interaction term.

1. Proca electrodynamics

We begin by considering the renowned Lagrangian
density

LP ¼ −
1

4
AμνAμν −

1

2
m2AμAμ; m2 ∈ R>0; ð2:51Þ

dating back to [9,10] and subjected to symplectic quanti-
zation in e.g., [55,57,64,74]. The theoretical appeal of the
above singular theory is largely due to the fact that it is
the simplest field theory with only second class constraints.
As such, over the years it has been recurrently used in
diverse contexts as a representative of the subtleties this
class of theories displays during quantization; for instance,
see [75–80].
Proca electrodynamics is a subcase of our targeted

family of theories. It is obtained by considering the single
field limit N ¼ 1 in (2.11), along with the choices
c ¼ 0 ¼ T μν and in the absence of external sources
Jμ ¼ 0.
It is immediate to see that the first iterated symplectic

twoform (2.25) has a zero determinant in this case.
Therefore, the classical consistency condition (2.15) is
automatically satisfied. The second iterated symplectic
twoform (2.39) always has a nonzero determinant ϱ, with

ϱ1=2 ¼ det ½m2δd−1ðxi − x0iÞ�: ð2:52Þ

Consequently, the quantum consistency conditions (2.46)
are also automatically satisfied.
The partition function of Proca electrodynamics in the

symplectic quantization is of the form in (2.48), where the
path integral measure is

dσ ¼ ϱ1=2
�Y

μ

½dAμ�
��Y

ν

½dpν�
�
½dλ�½dλ̃�; ð2:53Þ

with ϱ1=2 as in (2.52), and where the Lagrangian density L
therein is explicitly given by

L ¼ pμ _Aμ þ p0 _λþ ð∂ipi −m2A0Þ _̃λ − 1

2
pipi

− pi∂iA0 −
1

4
AijAij −

1

2
m2AμAμ: ð2:54Þ

Our above (limiting) result is in agreement with the relevant
literature. We restate that this can be most easily verified by
direct comparison to [57].

2. A simple GP electrodynamics

We proceed to consider the Lagrangian density

LGP1 ¼ −
1

4
AμνAμν þ f∂μAμ; f ¼ fðAμÞ; ð2:55Þ

which is a subcase of the original GP proposal in [19,20].
There exist preliminary results regarding the quantum
behavior of (single field) GP theories [81–84], also in
a curved background [85]. All of these works are
concerned with tree-level and one-loop observables.
However, to our knowledge, no complete and rigorous
quantization scheme had been proposed for GP theories
prior to this paper.
The above (2.55) follows from the single field limit

N ¼ 1 of (2.11), with

m2 ¼ 0 ¼ c; T μν ¼ fημν; ð2:56Þ

for no external sources: Jμ ¼ 0.
As for Proca electrodynamics earlier on, the first iterated

symplectic twoform (2.25) has a zero determinant. This is
because the classical consistency condition (2.15) does not
restrict single-GP theories. Minor algebraic effort yields the
following determinant ϱ for the second iterated symplectic
twoform (2.39):

ϱ1=2 ¼ det½Fδd−1ðxi − x0iÞ�;
F ¼ ð∂̄ifÞð∂̄if − ∂iÞ − ð∂iAiÞ∂̄0∂̄0f

þ ðpi þ ∂iA0Þ∂̄0∂̄if − ∂i∂̄if ð2:57Þ

which is nonzero for any f that is genuinely a function of
the GP field Aμ. However, the quantum consistency
conditions rule out the classical possibility that f be a
constant (of suitable length dimension −2). For the simple
case here studied, choosing f to be a constant in (2.55)
renders the masslike derivative self-interaction into a
boundary term, a case that is obviously of no interest from
the very onset. Therefore, the quantum consistency con-
ditions (2.46) are also automatically satisfied in our second
simple example.
Symplectic quantization gives rise to partition function

of (2.55) in the form (2.48), where the measure is as in
(2.53), with ϱ1=2 given by (2.57), and where

L ¼ pμ _Aμ þ ðp0 þ fÞ_λþ ½∂ipi þ ðpi þ ∂iA0Þ∂̄if

þ ð∂iAiÞ∂̄0f� _̃λ − 1

2
pipi − pi∂iA0 −

1

4
AijAij þ f∂iAi:

ð2:58Þ
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III. QUANTUM CONSISTENCY CONDITIONS

The above symplectic quantization of (2.11) has revealed
two insights. On the one hand, the necessarily singular
character of the first iterated symplectic twoform (2.25)
implies the (already known) classical consistency condi-
tions (2.15). On the other hand, the necessarily nonsingular
character of the second iterated symplectic twoform
(2.39) implies the (newly found) quantum consistency
conditions (2.46). If any given theory within (2.11) fails
to fulfill (2.15), then this theory is ill-defined at the classical
level. Specifically, it would be prone to Ostrogradski
instabilities [68]. If any given theory within (2.11) fulfills
(2.15) but not (2.46), then this theory does not admit
quantization. Namely, such a theory must be exclusively
viewed as a classical effective field theory (EFT); it cannot
be employed as a quantum EFT.
The violation of the quantum consistency conditions

(2.46) should not be interpreted as an anomaly, i.e., the
quantum breaking of a classical symmetry. This is because,
in any (multi-)GP electrodynamics theory, the gauge
symmetry is explicitly broken already at the classical level.
Moreover, the violation of (2.46) should not be regarded as
related to a symmetry enhancement, wherein multi-GP
(partially) restores the Uð1ÞN gauge symmetry of N copies
of Maxwell electrodynamics or its massless nonlinear
extensions. (Multi-)GP explicitly breaks the gauge sym-
metry, regardless of whether the quantum consistency
conditions are satisfied or not. An easy way to see this
is as follows. Consider the example (2.55). This Lagrangian
density enjoys a Uð1Þ gauge symmetry when either f ¼ 0
or ∂μAμ ¼ 0. The quantum consistency conditions for this
theory imply that F in (2.57) cannot vanish. Since f ¼ 0,
∂μAμ ¼ 0 and F ¼ 0 are functionally independent formu-
las, we readily deduce that there exists no relation between
the violation of the quantum consistency conditions and the
restoration of a gauge symmetry in the theory.
In full generality, the class of multi-GP electrodynamics

theories in Sec. II A can be reasonably expected to
reproduce the above described structure. Namely, the
imperative singularity of their first iterated symplectic
twoform presumably implies the classical consistency
conditions (2.9), while the essential nonsingularity of their
second iterated symplectic twoform presumably implies the
suitable generalization of the quantum consistency con-
ditions (2.46) to

P≠
!

0⇒ Z̃αβ≠
!

0; ð3:1Þ

with P the determinant of the second iterated symplectic
twoform and Z̃αβ the appropriate extension of Zαβ in (2.43).
We emphasize that (3.1) affects a large class of theories.
For instance, it restricts in an unprecedented manner any
GP electrodynamics theory, wherein the mass of the GP
field is realized exclusively through derivative self-

interactions. This means considering a single-field N ¼ 1
and setting Lð0Þ ¼ 0 with Lðn≥1Þ ≠ 0 in (2.8), for one or
more such n ≥ 1. In this case, (3.1) rules out the classically
consistent possibility of having constant T objects for
Lðn≥2Þ, since (3.1) necessarily involves at least one deriva-
tive with respect to the GP field. Thus, we conclude that, for
the general multi-GP electrodynamics theories reviewed in
section II A, the T ’s are nontrivially constrained by (2.9),
as well as by our newly found quantum consistency
conditions (3.1).

IV. CONCLUSIONS AND OUTLOOK

In this work, we have carried out the symplectic
quantization of the family of multifield generalized-
Proca (GP) electrodynamics theories in (2.11).
Specifically, we have determined the partition function
(2.48). As a by-product, we have obtained an independent
derivation of the classical consistency conditions (2.15)
that apply to these theories. Moreover, we have unveiled
a necessary additional set of restrictions for (multi-)GP
theories in the quantum regime, which we call quantum
consistency conditions (2.46). Remarkably, these affect
both single- and multifield scenarios and imply that (most
but) not all generalizations of massive electrodynamics
considered here can be quantized.
It is possible that our newly found quantum consistency

conditions, even when generically fulfilled for a given
Lagrangian, are dynamically violated. For the family
of theories (2.11), this would mean that there exists
one or more points in the moduli space for which
(2.46) does not hold true. In the second example consid-
ered in Sec. II G, this is realized when the generalized
coordinates Aμ and pi take on-shell values that result in
the vanishing of F in (2.57). This type of singularities in
the second iterated symplectic twoform would imply the
existence of further constraints in the theory, which, if
functionally independent, would lead to a reduction of
the local number of physical modes. We have explicitly
checked that such reduction of the local degrees of
freedom indeed takes place in the example (2.55), for
the particular choice f ¼ −AμAμ=2. Phenomena like
shock wave propagation and birefringence are then
expected to occur.
Indeed, similar degenerate behavior is theoretically well-

known to happen in the massless sector: in the family of
theories known as nonlinear electrodynamics (NLE)—
recall Table I. For instance, shock waves have been studied
in the particular NLE cases of Born electrodynamics
[86,87], and of Euler-Heisenberg electrodynamics [88],
as well as generically in the Plebanski formulation of the
full NLE family [89] (see also references therein). Born-
Infeld electrodynamics constitutes the only sensible excep-
tion within NLE: this theory displays no shock waves and
no birefringence [90].
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As already noted in Sec. I, massless scenarios in NLE are
currently pending experimental verification. Our work
suggests that analogue massive settings in (multi-)GP
should be phenomenologically studied and confronted
with the outcome of the relevant future experiments, such
as PVLAS [32] and LUXE [33]. A particularly appealing
question to be addressed is the examination of whether the
class of multi-GP electrodynamics theories contains a
subset which, like Born-Infeld, completely avoids degen-
erate behavior.
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