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We systematically calculate the radiative corrections of order α=π to elastic muon-proton scattering at
low momentum transfers. These include vacuum polarization, photon-loop form factors of the muon and
the proton, two-photon exchange corrections and soft photon radiation. In particular, we discuss these
corrections for the kinematics of the upcoming AMBER experiment with a 100 GeV muon beam. It is
found that for the ratio to the Born cross section, only the minor terms from the photon-loop form factors of
the proton and two-photon exchange depend on the proton structure as predetermined by the strong
interactions. The inclusion of soft photon radiation (below 20 MeV), which as such is mandatory to cancel
the infrared divergences arising from virtual photon loops, points to a prominent role of bremsstrahlung
among the radiative corrections of order α=π. Therefore, the calculation of the process μ∓p → μ∓pγ must
be extended beyond the soft photon approximation and tailored to the specific experimental conditions for a
proper analysis of the upcoming AMBER data.
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I. INTRODUCTION

Elastic muon-proton scattering at low momentum trans-
fers offers an alternative method to measure the proton
charge radius rp, which is a fundamental quantity in the
theory of the strong interactions. It is defined here by the
slope of the proton electric form factor GE;pðQÞ at zero
momentum transfer r2p ¼ −6dGE;pðQÞ=dQ2jQ¼0, with Q2

the invariant four-momentum transfer squared. Any
deviation from the value measured in electron-proton
scattering would challenge the concept of lepton-flavor
universality, which is a cornerstone of the so successful
Standard Model of particle physics, that has been

challenged in recent experiments on certain decay modes
of B mesons; see Ref. [1] for a recent review. Two
experiments are pursuing such proton radius measure-
ments, namely MUSE at PSI [2] and AMBER at CERN
[3]. Both experiments were triggered by the so-called
“proton radius puzzle;” see e.g. Ref. [4], but it must be
said that most recent determinations of the proton radius
from electron-proton scattering and the Lamb shift in
electronic hydrogen are in favor of the so-called small
radius, rp ≃ 0.84 fm, as collected in Table I. The small
value is further supported by a dispersion-theoretical
analysis of all existing scattering and annihilation data
in the spacelike and the timelike region [5], as also shown
in the table. The underlying dispersive framework and the
history of proton radius extractions based on dispersion
relations (DRs) are discussed in detail in Ref. [6]. Still,
an independent extraction from μ∓p scattering would be
highly welcome, further complementing the groundbreak-
ing work on the Lamb shift in muonic hydrogen [7],
which essentially initiated the whole proton radius
discussion.
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In this work we consider the radiative corrections to μ∓p
scattering specifically for the kinematics of the AMBER
experiment, which operates with a high-energetic muon
beam at 100 GeVand measures in near-forward directions,
thus spanning the momentum transfers 32 MeV <
Q < 141 MeV, which nicely overlaps with the range of
the upcoming MUSE experiment at PSI with 45 MeV <
Q < 265 MeV, the PRAD-II experiment at Jefferson Lab
for e−p scattering with 14 MeV < Q < 245 MeV [13] as
well as the MAGIC e−p experiment at Mainz, that aims at a
momentum range 10 MeV < Q < 292 MeV [14]. The
AMBER experiment intends to measure the proton radius
with an accuracy of better than 0.01 fm, which requires a
detailed study of the radiative corrections to be able to
achieve such an accuracy. Such a calculation is provided
here, based on the works in Refs. [15,16] employing the
best phenomenological available proton form factors from
Ref. [5]. For related work on radiative corrections to muon-
proton scattering, see Refs. [17–20].
The manuscript is organized as follows: In Sec. II we

display the differential cross section for μ−p scattering
including the various radiative correction terms. These are
discussed in detail in the following sections, namely the
photon-loop form factors of the muon and of the proton in
Sec. III, the two-photon corrections in Sec. IVand the soft-
photon radiation in Sec. V. Finally, in Sec. VI, we put all
pieces together and display and discuss the radiative
corrections for the AMBER kinematics, adding for com-
parison the analogous results for the MUSE kinematics. We
end with a short summary and an outlook in Sec. VII.

II. DIFFERENTIAL CROSS SECTION

We consider elastic muon scattering off protons, spe-
cifically the process μ−ðk1Þ þ pðp1Þ → μ−ðk2Þ þ pðp2Þ,
and introduce the dimensionless Mandelstam variables:

s¼ðp1þk1Þ2=M2; t¼ðk1−k2Þ2=M2; u¼ðp1−k2Þ=M2;

ð1Þ

that satisfy the constraint sþ tþ u ¼ 2þ 2r, with M ¼
938.272 MeV the proton mass and the squared muon-
to-proton mass ratio r ¼ ðmμ=MÞ2 ¼ 1.2681 × 10−2. The

advantage of these (uncommon) dimensionless variables
ðs; t; uÞ is that they allow us to write the differential cross-
section and radiative corrections in concise analytical form
without repeating permanently the mass parameters.
The unpolarized differential cross section for μ−p →

μ−p including radiative corrections of order α=π, with
α ¼ 1=137.036 the electromagnetic fine-structure constant,
reads

dσ
dt

¼ 4πα2

M2t2P
fH0ð1þ 2Πvp þ δsoftÞ þH1 þH2g; ð2Þ

where the polynomial P ¼ s2 − 2sð1þ rÞ þ ð1 − rÞ2 is
equal to the Källén function λðs; 1; rÞ. The first term
proportional to H0 gives the Rosenbluth formula,
generalized by the inclusion of the finite lepton mass,
and reads

H0 ¼
�ðsþ 1− rÞ2

4− t
þ r− s

�
ð4G2

E − tG2
MÞ þ t

�
rþ t

2

�
G2

M:

ð3Þ

The argument Q ¼ ffiffiffiffiffi
−t

p
M of the proton electric and

magnetic form factors GEðQÞ and GMðQÞ, respectively,
that arise from the nonperturbative strong interactions, is
not displayed explicitly. The second term in Eq. (2)
describes vacuum polarization in the one-photon exchange
through the Q-dependent function Πvp. For the low
momentum transfers considered in this work, vacuum
polarization due to the two lightest leptons is sufficient:

Πvp ¼
α

3π

X
e;μ

�
1

τ2
−
5

3
þ 2τ2 − 1

τ3

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ τ2

p
lnðτþ

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ τ2

p
Þ
�
;

ð4Þ

where τe ¼ Q=2me and τμ ¼ Q=2mμ. At Q ¼ 300 MeV
one gets Πvp ¼ ð0.86þ 0.07Þ% ¼ 0.93%, and at Q ¼
100 MeV one has Πvp ¼ ð0.69þ 0.01Þ% ¼ 0.70%.
These numbers demonstrate the dominance of electronic
vacuum polarization. Further features are illustrated in
Fig. 82 of Ref. [21], which shows the quantity j1þ Πvpj2
in the spacelike and timelike regions below 2 GeV and
thereby delineates the region, where leptonic vacuum
polarization is actually dominant.
The next correction factor δsoft arises from soft photon

bremsstrahlung and its derivation will be outlined in Sec. V,
starting from the basic soft photon amplitude. Moreover,
the term proportional to H1 in Eq. (2) gives twice the
interference term of one-photon exchange with electro-
magnetic vertex corrections at the muon and at the proton.
It is given by the expression

TABLE I. Modern precision extractions of the proton charge
radius rp from the Lamb shift in electronic hydrogen and
electron-proton scattering as well as dispersion theory.

rp (fm) Year Method References

0.877(13) 2018 H Lamb shift [8]
0.833(10) 2019 H Lamb shift [9]
0.8482(38) 2020 H Lamb shift [10]
0.8584(51) 2021 H Lamb shift [11]
0.831(7)(12) 2019 ep scattering [12]

0.840(3)(2) 2022 Dispersion theory [5]
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H1 ¼ 2Fγ
1H0 þ Fγ

2tð2G2
E þ tG2

MÞ

þ 8Gγ
E

�ðsþ 1 − rÞ2
4 − t

þ r − s

�
GE

þ Gγ
M

�
2sþ t −

2ðsþ 1 − rÞ2
4 − t

�
tGM; ð5Þ

where Fγ
1;2 denote the photon-loop form factors of the

muon andGγ
E;M are those of the proton. These quantities are

discussed in some detail in Sec. III.
Finally, the last piece proportional to H2 in Eq. (2) gives

twice the interference term of one-photon exchangewith the
planar and crossed two-photon exchange box diagrams; see
Sec. IV. Note that H0 and H1 are even under s ↔ u, while
H2 is odd. The differential cross section for the process
μþðk1Þ þ pðp1Þ → μþðk2Þ þ pðp2Þ is thus obtained by
s ↔ u crossing of the terms in the curly brackets of
Eq. (2), i.e., one merely has to change the sign of H2.

III. PHOTON-LOOP FORM FACTORS
OF MUON AND PROTON

In this section, we discuss the photon-loop form factors
of the muon and of the proton that appear in the expression

for H1; see Eq. (5). The photon-loop form factors of the
muon are obtained from a standard QED calculation of the
triangle diagram (and self-energy diagram which contrib-
utes through the muon wave-function renormalization
factor Z2) and they explicitly read

Fγ
1 ¼

αt
2π

Z
∞

4

dx
1

xðxr − tÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 − 4x

p
�
½2ξir þ ln rþ lnðx − 4Þ�ðx − 2Þ þ 4 −

3x
2

�

¼ α

π

�
ð2ξir þ ln rÞ

�
1

2
þ t − 2rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

t2 − 4rt
p ln

ffiffiffiffiffiffiffiffiffiffiffiffi
4r − t

p þ ffiffiffiffiffi
−t

p
2

ffiffiffi
r

p
�
þ ð2r − tÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

t2 − 4rt
p

�
ln2

ffiffiffiffiffiffiffiffiffiffiffiffi
4r − t

p þ ffiffiffiffiffi
−t

p
2

ffiffiffi
r

p

þ
�
8r − 3t
4r − 2t

− ln
4r − t
r

�
ln

ffiffiffiffiffiffiffiffiffiffiffiffi
4r − t

p þ ffiffiffiffiffi
−t

p
2

ffiffiffi
r

p þ Li2

�
t − 2rþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 − 4rt

p

2r

�
þ π2

12

�
− 1

�
; ð6Þ

Fγ
2 ¼

2α

π

rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 − 4rt

p ln

ffiffiffiffiffiffiffiffiffiffiffiffi
4r − t

p þ ffiffiffiffiffi
−t

p
2

ffiffiffi
r

p : ð7Þ

The infrared divergence ξir is defined as ξir ¼ lnðM=mγÞ,
with mγ an infinitesimal regulator photon mass. Moreover,
Li2ðaÞ ¼ a

R∞
1 dx½xðx − aÞ�−1 ln x denotes the conven-

tional dilogarithmic function for a < 1. One observes that
the Fγ

1;2 are actually functions of the ratio −t=r and the first
version of Fγ

1 is a once-subtracted dispersion relation. Note
that Fγ

1ð0Þ ¼ 0 and Fγ
2ð0Þ ¼ α=2π ¼ 1.1614 × 10−3 gives

the leading correction to the muon anomalous magnetic
moment. These form factors are shown (multiplied with
π=α) in Fig. 1, leaving out the regularization-dependent ξir
term for Fγ

1.
The photon-loop form factors of the proton are com-

posed in a similar way of infrared-divergent and infrared-
finite pieces:

Gγ
E;M ¼ α

π
ξir

�
1þ 2t − 4ffiffiffiffiffiffiffiffiffiffiffiffiffi

t2 − 4t
p ln

ffiffiffiffiffiffiffiffiffiffi
4 − t

p þ ffiffiffiffiffi
−t

p
2

�
GE;M

þGγ-fin
E;M þ GγΔ

E;M þGγΔΔ
E;M; ð8Þ

where Gγ-fin
E;M denotes the infrared-finite part and GγΔ

E;M þ
GγΔΔ

E;M arises from treating inelastic contributions through
single and double Δþð1232Þ resonance excitation of the
proton.
The contributions to Gγ-fin

E;M from the triangle diagram
in Fig. 2 can be calculated numerically as double
integrals α

π

R
∞
0 dx

Rþ1
−1 dz

ffiffiffiffiffiffiffiffiffiffiffi
1−z2

p
f½…�GEðQÞþ½…�GMðQÞg

over cubic expressions in some given phenomenological
form factorsGE;M. The proton form factors enter linearly in
the external momentum transfer Q and quadratically in the
loop-momentum xM inside the square brackets. The wave-
function renormalization factor Z2 from the self-energy
diagram (see right part of Fig. 2) must also be taken into
account in order to ensure that Gγ

Eð0Þ ¼ 0. Using the

0 0.1 0.2 0.3 0.4 0.5
Q/M

0

1

2

3

4

/  F
2

/  F
1

-fin

FIG. 1. Photon-loop form factors Fγ
1;2 of the muon, where Fγ-fin

1

refers to the infrared-finite part.
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representation of Z2 in terms of an integral over the proton
form factors as written in Eq. (5) of Ref. [16], one gets
Z2 ¼ α

π ξir þ Zfin
2 , where Zfin

2 ≃ −2.1α=π depends weakly on
the choice of proton form factors GE;M.
In this work we model inelastic contributions to the

photon-loop form factors of the proton by single and
double excitation of the Δþð1232Þ resonance, as shown
in Fig. 3. As we will see later, this is appropriate here. More
sophisticated approaches could also be entertained, see e.g.
the review [22], but we refrain from doing so here. The
Lorentz-covariant description of the spin-3=2 Δ isobar
requires a Rarita-Schwinger spinor Ψα. We use a minimal
gauge-invariant form of the Δþpγ vertex:

ieκ�ffiffiffi
6

p
M

ðgμαγ · q − γμqαÞγ5GΔð
ffiffiffiffiffiffiffiffi
−q2

q
Þ; ð9Þ

in terms of the transition magnetic moment κ� ≃ 5.0 and a
phenomenological transition form factor

GΔðQÞ ¼
�
1þQ2

Λ2

�
−2

exp

�
−

Q2

7Λ2

�
; ð10Þ

with dipole mass Λ ¼ 843 MeV, as extracted from pion
electroproduction in the Δ-resonance region [23–25]. Here,
q denotes the spacelike four-momentum carried by the
virtual photon, so thatQ ¼

ffiffiffiffiffiffiffiffi
−q2

p
. A commonly used form

of the Rarita-Schwinger propagator (from index β to
index α) reads

i
3

γ · pþMΔ

M2
Δ − p2

�
3gαβ − γαγβ −

2pαpβ

M2
Δ

þ pαγβ − γαpβ

MΔ

�
;

ð11Þ

with p the four-momentum of the propagating Δ isobar.
The left two diagrams in Fig. 3 provide equal contributions
to GγΔ

E;M, respectively, and the condition GγΔ
E ð0Þ ¼ 0 fol-

lows immediately from the magnetic coupling vertex in
Eq. (9). In order to evaluate the right diagram in Fig. 3, the
ΔþΔþγ vertex is needed. It is naturally obtained by
gauging the kinetic term of the free Rarita-Schwinger
Lagrangian [26] as

ieð−γμgαβ þ γαg
μ
β þ γβg

μ
α − γαγ

μγβÞ; ð12Þ

with β the incoming and α the outgoing (Rarita-Schwinger)
index. Further, we multiply this electric vertex with a dipole
form factor times a (squared) exponential function as
in Eq. (10). The third diagram in Fig. 3 contributes as

ZðΔÞ
2 GE;M, with the wave-function renormalization factor

ZðΔÞ
2 ≃ 0.273α=π, whose formula is written in Eq. (16) of

Ref. [16]. It is worth to mention that only the combination
of both right diagrams ensures the condition GγΔΔ

E ð0Þ ¼ 0

for the photon-loop induced electric form factor. The
various contributions to the photon-loop proton form
factors multiplied with π=α are shown in Fig. 4, for two
choices of proton form factors, namely the well-known
(simple) dipole form and the most recent parametrization
based on dispersion theory, that describe essentially all data
in the timelike and in the spacelike regions [5]. We note that
there are cancellations between the single- and the double-
Δ contributions to both form factors, and that only the Δ
contribution to the magnetic form factor is sizable (on the
scale of α=π ¼ 2.323 × 10−3). Although the curve for
Gγ-fin

E shown in Fig. 4 appears to drop linearly for small
Q, the underlying analytical expression is manifestly
even under Q → −Q, and this is true for any form
factor.

IV. TWO-PHOTON EXCHANGE BOX DIAGRAMS

We now consider the two-photon exchange correction
incorporated in the H2 term. For a pointlike proton with
GE ¼ GM ¼ 1 the ratio H2=H0 can be inferred from the
calculation in Sec. 3 of Ref. [15] as

FIG. 2. Photonic vertex and self-energy corrections with proton
intermediate states.

FIG. 3. Photonic vertex and self-energy corrections with Δþð1232Þ intermediate states.
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H2

H0

¼ −
2t

A0 ⊗ A0 ReðIII0 ⊗ A0 þ IV0 ⊗ A0Þ; ð13Þ

where the change of sign is necessary, because there the
case of equally charged leptons of different masses has
been considered. The pertinent one-photon exchange term
is A0 ⊗ A0 ¼ 2ðs − 1 − rÞ2 þ 2stþ t2 and III0 ⊗ A0 is
written in Eq. (31) of Ref. [15], while IV0 ⊗ A0 ¼
−III0 ⊗ A0js→u.

For a structureless proton the ratio H2=H0 (setting
ξir ¼ 0) at the AMBER kinematics (E1 ¼ 100 GeV
or s ≃ 214) is found to be rather small, starting from
zero at Q ¼ 0 and increasing to about 0.016% at
Q ¼ M=2 ¼ 469 MeV; see Fig. 5. This small value results
from a strong cancellation between the planar and crossed
2γ-exchange box graph, namely 7.743%–7.727%. In the
limit Q → 0, where the cancellation becomes exact, the
contributions from the planar and crossed box graph behave
each as ξir þ lnðQ=MÞ times an ðr; sÞ-dependent factor of
opposite sign. As also shown in Fig. 5, this cancellation is
even more pronounced for the physical proton. For the
nucleon intermediate state, we use the Feynman graph
formalism of Ref. [27], representing the proton form factors
as a sum of monopoles, and the Δþ intermediate state is
evaluated using the dispersion relation approach of
Refs. [28,29] in an approximation that neglects quadratic
terms in the muon-to-proton mass ratio. The ratio H2=H0

does not exceed the value 0.003% for the low momentum
transfers considered here.

V. SOFT PHOTON RADIATION

Without the inclusion of the soft photon radiation
the treatment of radiative corrections to μ−p → μ−p is
incomplete or even meaningless. When working at higher
order in the electromagnetic coupling e, the muon and
proton can radiate a real photon with four-momentum l and
polarization vector ϵ in the initial or final state, as shown in
Fig. 6. The corresponding soft amplitude reads

e

�
ϵ · k1
l · k1

−
ϵ · k2
l · k2

−
ϵ · p1

l · p1

þ ϵ · p2

l · p2

�
; ð14Þ

where the soft momentum l is neglected in the numerator,
and the accompanying μ−p → μ−p process is kept in the
limit l ¼ 0. Note that the signs in Eq. (14) indicate the
charge of the radiating particle and whether this emission
happens in the initial or the final state. The soft amplitude
gets squared and summed over the two transversal
polarizations by employing

P
pol ϵ

μϵν ¼ −gμν, which
leads to

0 0.1 0.2 0.3 0.4 0.5
Q/M     

-1.5

-1

-0.5

0

0.5

dipole
DR result

/  G
E

-fin

/  G
M

-fin

10 /  G
E

/  G
M

/  G
M

10 /  G
E

FIG. 4. Various contributions to the electric and magnetic
photon-loop form factors of the proton. The black lines represent
results obtained by using the dipole parametrization and the red
lines show the calculations based on the form factors from
Ref. [5].

FIG. 5. The ratio H2=H0 for a pointlike proton (dashed line)
and for the physical proton (line labeled “N þ Δ”). The elastic
contribution and the inelastic contribution (modeled by single
Δ-isobar excitation) are shown separately by the lines labeled
“N” and “Δ.” Solid lines refer to the use of the form factors from
Ref. [5] and dotted-dashed lines are based on dipole form factors.

FIG. 6. Diagrams representing the four amplitudes for soft
photon radiation. Thin and solid lines denote muons and protons,
respectively, while the wiggly lines denote photons. The corre-
sponding (pointlike and structureful) vertices are depicted by
small and large filled circles.
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4πα

�
−

m2
μ

ðl · k1Þ2
−

m2
μ

ðl · k2Þ2
−

M2

ðl · p1Þ2
−

M2

ðl · p2Þ2

þ 2k1 · k2
l · k1l · k2

þ 2p1 · p2

l · p1l · p2

þ 2k1 · p1

l · k1l · p1

þ 2k2 · p2

l · k2l · p2

−
2k1 · p2

l · k1l · p2

−
2k2 · p1

l · k2l · p1

�
: ð15Þ

In any experiment with finite energy resolution, the emission of additional soft photons with jl⃗j < λ is undetectable and
thus gets subsumed in the cross section for the elastic scattering process. The integrals of the ten terms in Eq. (15) over a
(small) momentum sphere jl⃗j < λ are solved with the help of the following (infrared-regularized) master integral:

Z
λ

0

dl
l2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

γ þ l2
q

Z þ1

−1
dz

−1

ðE
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

γ þ l2
q

− plzÞ2
¼ 1

E2 − p2

�
ln
mγ

2λ
þ E
2p

ln
Eþ p
E − p

�
: ð16Þ

It applies directly to the first four terms in Eq. (15) with squares in the denominator, whereas for the six terms with products
in the denominator one makes use of the Feynman parametrization: ðABÞ−1 ¼ R

1
0 dx½Axþ Bð1 − xÞ�−2. Putting all pieces

together, the correction factor from soft photon radiation is given by the sum δsoft ¼ δðuniÞsoft þ δðcmÞ
soft , where the universal part

reads

δðuniÞsoft ¼ 4α

π

�
ln
M
2λ

− ξir

��
1þ t − 2rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

t2 − 4rt
p ln

ffiffiffiffiffiffiffiffiffiffiffiffi
4r − t

p þ ffiffiffiffiffi
−t

p
2

ffiffiffi
r

p þ t − 2ffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 − 4t

p ln

ffiffiffiffiffiffiffiffiffiffi
4 − t

p þ ffiffiffiffiffi
−t

p
2

þ 2ð1þ r − sÞffiffiffiffiffiffiffiffiffiffiffiffiffi
s − ρþ

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
s − ρ−

p ln
ffiffiffiffiffiffiffiffiffiffiffiffiffi
s − ρþ

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffi
s − ρ−

p
2r1=4

þ 2ð1þ r − uÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρþ − u

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ− − u

p ln
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρþ − u

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ− − u

p
2r1=4

�
; ð17Þ

with ρ� ¼ 1þ r� 2
ffiffiffi
r

p
. It cancels exactly the infrared divergences proportional to ξir from the virtual photon loops and the

remainder depends logarithmically on an infrared cutoff λ for undetected soft photon radiation. Note that the last two terms
cancel the infrared divergences from the two-photon exchange box diagrams. For these the antisymmetry under s ↔ u is
manifest by setting

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u − ρ�

p ¼ i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ� − u

p
,

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ� − s

p ¼ i
ffiffiffiffiffiffiffiffiffiffiffiffiffi
s − ρ�

p
and taking eventually the real part of a logarithm. In the

limit r → 0 the sum of these two terms simplifies drastically to lnð1 − uÞ − lnðs − 1Þ. For μþp → μþp the last two terms in
Eq. (17) change sign, keeping the role of s and u.
The other part of δsoft is specific for assuming in the center-of-mass frame a small momentum sphere jl⃗j < λ for

undetected soft bremsstrahlung:

δðcmÞ
soft ¼ α

π

�
2ffiffiffiffi
P

p
�
ðs − 1þ rÞ ln s − 1þ rþ ffiffiffiffi

P
p

2
ffiffiffiffiffi
sr

p þ ðsþ 1 − rÞ ln sþ 1 − rþ ffiffiffiffi
P

p

2
ffiffiffi
s

p
�

þ
Z

1=2

0

dx

�ðt − 2rÞðs − 1þ rÞ
½r − txð1 − xÞ� ffiffiffiffiffi

Rt
p ln

s − 1þ rþ ffiffiffiffiffi
Rt

p
s − 1þ r −

ffiffiffiffiffi
Rt

p þ ðt − 2Þðsþ 1 − rÞ
½1 − txð1 − xÞ� ffiffiffiffiffi

Rt
p ln

sþ 1 − rþ ffiffiffiffiffi
Rt

p
sþ 1 − r −

ffiffiffiffiffi
Rt

p
�

þ
Z

1

0

dx

� ð1þ r − sÞ½sþ ð1 − rÞð1 − 2xÞ�
ð1 − 2xÞ½sxð1 − xÞ þ ð1 − 2xÞð1 − x − rxÞ� ffiffiffiffi

P
p ln

sþ ð1 − 2xÞð1 − rþ ffiffiffiffi
P

p Þ
sþ ð1 − 2xÞð1 − r −

ffiffiffiffi
P

p Þ

þ ð1þ r − uÞ½sþ ð1 − rÞð1 − 2xÞ�
½1þ ðr − 1Þx − uxð1 − xÞ� ffiffiffiffiffiffi

Ru
p ln

sþ ð1 − rÞð1 − 2xÞ þ ffiffiffiffiffiffi
Ru

p
sþ ð1 − rÞð1 − 2xÞ − ffiffiffiffiffiffi

Ru
p

��
; ð18Þ

introducing the auxiliary polynomials Rt¼Pþ4stxð1−xÞ
and Ru ¼ Pþ 4xð1 − xÞ½su − ð1 − rÞ2�, with P ¼ s2 − 2s
ð1þ rÞ þ ð1 − rÞ2. Although possible, we refrain from
solving the Feynman-parameter integrals in Eq. (18) which
lead to overly complicated expressions involving squared
logarithms and dilogarithms (see e.g. Eqs. (4.10)–(4.12) in
Ref. [30]). For μþp → μþp the last term

R
1
0 dx… changes

sign, keeping the role of s and u.

VI. RESULTS AND DISCUSSION

We can now put the pieces together and discuss the
radiative corrections to muon-proton scattering. First,
it is interesting to see how much the radiative correc-
tions to μ−p → μ−p scattering (at a beam energy of
E1 ¼ 100 GeV) are affected by the underlying proton
structure. For that purpose we make comparisons with a
structureless proton, corresponding toGE;M ¼ 1. Returning
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to Eq. (2), one recognizes that the radiative corrections (i.e.
changes of cross-section ratios) from vacuum polarization
and soft photon bremstrahlung are the same for a struc-
tureful and structureless proton. Concerning the ratio
H1=H0, one finds that this feature still holds for the muonic
part written in the first line in Eq. (5). To high accuracy this
ratio is equal to 2Fγ

1, because the other muon form factor Fγ
2

is suppressed by a factor of the muon mass squared, and it
enters with a further suppression factor t. Interestingly, the
situation is different for the vertex corrections at the proton,
described by Gγ

E;M in the second and third line of Eq. (5).
As shown in the left panel of Fig. 7, for a structureless
proton1 one finds that this part of the ratio H1=H0 grows
from zero to 1.33 × 10−4 in the momentum transfer region
0 < Q < M=2. If these vertex corrections, as specified by
Gγ-fin

E;M , are evaluated with phenomenological form factors,
the corresponding radiative correction H1=H0 is negative
and reaches more significant values of about −0.4%.
Further effects from inelastic contributions [modeled here
by Δþð1232Þ-resonance excitations] turn out to be of
magnitude 10−4 and are thus not relevant in view of the
experimental accuracy; see the right panel of Fig. 7.
In Fig. 8 we show the radiative corrections from all

discussed sources2 (of order α=π) for the planned AMBER
experiment with a muon beam energy of E1 ¼ 100 GeV
and an assumed infrared cutoff of λ ¼ 20 MeV, corre-
sponding to an energy resolution that limits the detection of
photons with an energy below 20 MeV. We set ξir ¼ 0 in
order to have all individual contributions independent of

the regulator mass mγ . At small momentum transfers
Q=M ≲ 0.06, vacuum polarization is the most dominant
effect, because it is driven by the electron mass scale. After
that, the soft photon radiation takes over, with a sizable
contribution (of 2%) from the photon-loop form factor
2Fγ−fin

1 , involving the muon mass scale, at the upper end of
the momentum transfers considered here. The negative
photon-loop form factor contribution from the proton stays
below 0.4% in magnitude, and the two-photon exchange
correction of maximal size 0.3 × 10−4 can essentially be
neglected.
As a variation we show in Fig. 9 the radiative corrections

for a smaller muon beam energy of E1 ¼ 50 GeV (as it is
also planned by AMBER) and the same infrared cutoff of

FIG. 8. Radiative corrections for the AMBER kinematics with
E1 ¼ 100 GeV. The individual radiative corrections from vac-
uum polarization, the virtual photon loops and soft bremsstrah-
lung are shown together with their sum; see the solid line
labeled “total”.
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FIG. 7. Ratio H1=H0 due to electromagnetic vertex corrections separated into parts from the muon and the proton. Left panel:
Corrections from the photon loop around the muon, the pointlike proton and the composite proton using dipole form factors. Right
panel: Zoom in on the proton contribution using dipole form factors as well as the most recent form factors from dispersion theory [5].
The solid and dotted-dashed lines refer to the elastic and elastic plus inelastic contribution.

1For a pointlike proton one has Gγ
E ¼ Fγ

1 þ tFγ
2=4 and Gγ

M ¼
Fγ
1 þ Fγ

2 with Fγ
1;2 as in Eqs. (6), (7) setting r ¼ 1.

2For recent work on two-loop radiative corrections of order
ðα=πÞ2 to lepton-proton scattering, see Refs. [31,32].
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λ ¼ 20 MeV. In comparison to the case with
E1 ¼ 100 GeV, one observes an increase of the two-
photon exchange correction and some slight changes in
the soft photon components, but the overall pattern is nearly
the same.
Of equal interest is the pattern of radiative corrections for

the MUSE experiment, which measures at much lower
muon beam energies E1 ¼ 156, 186, 235 MeV. Our results
for the case of E1 ¼ 235 MeV are shown in Fig. 10,
choosing an infrared cutoff of λ ¼ 2 MeV which seems
appropriate for the energy resolution of MUSE. The
essential differences to Figs. 8, and 9 are (i) that the
muonic vertex corrections get slightly reduced by the Pauli
form factor Fγ

2 and (ii) that the effects from two-photon
exchange are strongly enhanced by more than a factor of
100. At the same time, the effects of Δþð1232Þ-resonance
excitation are completely negligible for both the 2γ
exchange and the electromagnetic vertex corrections at
the proton.

VII. SUMMARY AND OUTLOOK

In this work we have systematically calculated the
radiative corrections of order α=π to elastic muon-proton
scattering. These corrections consist of vacuum polariza-
tion, soft photon radiation, photon-loop form factors of the
muon and of the proton, and two-photon exchange cor-
rections. The first three components turn out to be universal
in the sense that the structure of the proton (as encoded in
the electric and magnetic form factors GE;M) drops out in
the respective ratios to the Born cross section. The photon-
loop induced vertex corrections at the proton give rise to
additional form factors Gγ

E;M ∼ α=π, whose infrared finite
pieces can be calculated with sufficient accuracy. The
elastic contribution to Gγ

E;M from the proton intermediate
state is almost independent of the input form factors into the
pertinent triangle diagram, while inelastic contributions
[modeled here by excitation of the low-lying Δð1232Þ-
resonance] play numerically no role for the relevant ratio
H1=H0. The same is even more true for the two-photon
exchange, whose relative effect measured by the ratio
H2=H0 stays well below 10−4 in the small momentum
transfer region Q < 400 MeV. The latter statement about
the marginal role of the 2γ exchange holds for the
kinematics of the AMBER experiment with high muon
beam energies of E1 ¼ 50, 100 GeV. However, for the
MUSE experiment at much lower beam energies E1 ∼
200 MeV the 2γ exchange contributes with ordinary size
up to about 1%. In any case, the aspects of proton structure
that enter the virtual radiative corrections do not limit the
precision of extracting the form factors GE;M, and finally
the proton radius rp, accurately from elastic muon-proton
scattering.
With the complete radiative corrections of the size of a

few percent and aiming for permille accuracy, a prominent
role is played by the soft photon radiation. The treatment of
undetected soft photon bremsstrahlung in this work in
terms of a small momentum sphere jl⃗j < λ in the center-of-
mass frame corresponds to an idealized experiment. In a
real experiment this region in phase space has a more
complicated structure with smooth edges due to varying
detector acceptances and other effects. By computing the
fivefold differential cross section d5σ=ðdΩμdΩγdωγÞ for
the process μ∓p → μ∓pγ at tree level, and integrating it
over the experimentally “blind regions” (of course, now
with exclusion of the small momentum sphere jl⃗j < λ) the
treatment of undetected soft and hard photon bremsstrah-
lung can be tailored to the specific experimental conditions.
At the same time this fivefold differential cross section can
be used for experimental verification of its spectral and
angular distributions in regions where additional photons
are detectable. Work along these lines in collaboration with
members of the AMBER collaboration is in progress. In
passing we note that our formalism applies in the same way
to e∓p scattering by setting r ¼ 2.966 × 10−7. One just

FIG. 10. Radiative corrections for the MUSE kinematics with
E1 ¼ 235 MeV. Same notation as in Fig. 8.

FIG. 9. Radiative corrections for the AMBER kinematics with
E1 ¼ 50 GeV. Same notation as in Fig. 8.
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keeps very small terms that are usually dropped in an
expansion up to leading logarithms plus constants.
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