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A top-down approach to the flavor puzzle leads to eclectic flavor groups which include modular and
traditional flavor symmetries. Based on examples of semirealistic T 2=Z3 orbifold compactifications of
heterotic string theory, we discuss the breakdown patterns of the eclectic flavor group via the interplay of
vacuum expectation values (vevs) of moduli and flavon fields. This leads to an attractive flavor schemewith
various possibilities to obtain “flavor hierarchies” through the alignment of these vevs. Despite the fact that
the top-down approach gives strong restrictions for bottom-up flavor model building, it seems to be well
suited to provide a realistic flavor pattern for quarks and leptons.
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I. INTRODUCTION

In his influential work [1], Feruglio considered finite
modular groups for flavor model building. This proposal
has triggered intense activity in the construction of bottom-
up (BU) models of quark and lepton interactions based on
various finite modular groups [2–7] (see e.g., the review [8]
for a complete set of references and further details on the
BU approach). One successful result of these constructions
is that they can provide good fits to data by typically
requiring a smaller number of free parameters than in
models endowed with traditional flavor symmetries.
However, the predictability of such BU constructions
may be challenged through the appearance of uncontrol-
lable terms in the Kähler potential [9]. In the BU approach,
there are thus many working models with some degree of
predictability, but we still lack a baseline theory coming
from an underlying fundamental principle.

To address this problem, there has been extensive work
devoted toward top-down (TD) derivations of modular
flavor symmetries from ultraviolet complete models based
on string theory [10,11]. Apart from heterotic orbifold
compactifications [11,12], TD models include scenarios
based on compactifications on toroidal orientifolds [13] and
magnetized tori [14–17]. TD constructions typically give
strong restrictions on the allowed symmetries and the
particle spectrum and may also allow one to constrain
(or even compute) the otherwise free terms of the Kähler
potential [17–20]. Furthermore, TD models naturally
include unification of flavor with CP-like transformations
[11,12,21,22]. This unification becomes even more trans-
parent in models where the modular group is extended to its
metaplectic [17,23,24] or symplectic cover [25–29] as
recently discussed both in the BU and TD approaches.
In the present paper, we concentrate on the TD approach.

This approach to the flavor problem leads to a holistic view
that necessarily encompasses all available kinds of discrete
flavor symmetries. It thus has to include traditional flavor
symmetries and R-symmetries as well as finite modular
flavor symmetries and their associated CP transformations
[11]. These symmetries reflect the symmetries of the
underlying UV complete theory, which we consider here
in the framework of heterotic strings with compactifications
with elliptic fibrations. The discrete flavor symmetries can
be derived in full generality as the outer automorphisms of
the Narain space group [11,12]. This leads to the concept of
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the eclectic flavor group [18,20,30,31] as a multiplicative
closure of all flavor symmetries. The eclectic flavor group
is the maximal possible flavor group, but it is only partially
linearly realized. The linearly realized flavor subgroup is
nonuniversal in moduli space, a property that leads to the
concept of “local flavor unification” [12]. This holistic
picture teaches us some general lessons:

(i) One cannot just consider a specific flavor group
(e.g., modular flavor) without the others.

(ii) There is always a traditional flavor group (universal in
moduli space) that could give severe restrictions to the
Kähler potential and superpotential of the theory.

(iii) Apart from the finite discrete modular flavor group
and its specific representations, one has to consider
the modular weights of the matter fields as well, as
they might lead to further R-symmetries that play the
role of “shaping symmetries.”

Flavor symmetries have to be spontaneously broken,
and thus the full eclectic picture requires several sources
of breakdown. On the one hand, this leads to a serious
complication of the picture. On the other hand, it is welcome
oncewewant to obtain the hierarchical structure ofmasses and
mixing angles of quarksand leptons.While themodular group
can be broken via the moduli [with hierarchical patterns close
to the fixedpoints of SLð2;ZÞ],we have to consider additional
flavon fields to break the traditional flavor symmetries via
nontrivial vacuum expectation values (vevs). These flavon
vevs might then lead to a further breakdown of the discrete
modular flavor symmetry as well. It is this subtle interplay of
breakdown via moduli and flavons that is the main subject of
the present paper. We shall see that there are various ways to
obtain hierarchical patterns from the breakdownof the eclectic
flavor group via moduli and flavons.
Flavor symmetries should, of course, also be discussed

from a BU perspective. There, one has the free choice of the
groups, the representations, and modular weights of matter
fields to confront a model with existing data. Ideally, one
might hope to find a specific model as a “best fit” to masses
and mixing angles of quarks and leptons. This then might
give useful hints toward a fundamental theory of flavor.
Unfortunately, no one has yet been able to identify such a
distinct model (or even a class of models). Good fits to the
data can be achieved for various groups and representations.
Still, even in the BU approach, we might try to find some
theoretical guidelines. If we, for example, have a traditional
flavor group G, we could design an eclectic scheme with a
discrete modular flavor group that is included in the outer
automorphisms of the groupG [30]. This could be a first step
to bridge the gap between the TD and BU approaches to
flavor. Both approaches enjoy various desirable properties as
e.g., the appearance of local flavor unificationwith enhanced
symmetry at certain fixed points or regions in moduli space,
eventually broken spontaneously via moduli vevs.
The TD approach is very restrictive and a challenge for

realistic model building:

(i) We first have to design models with the desired
flavor groups explicitly in string compactifications.

(ii) The explicit representations of the flavor group are
then fixed and cannot be chosen by hand.

(iii) Likewise, modular weights are fixed and determined
as well.

(iv) There are various restrictions from R-symmetries
that appear in the six-dimensional compactification.

Given these restrictions, there remains still awidegap between
TD attempts and the models considered in the BU approach.
There have not been any attempts yet in TD model

building, and in this paper, we want to make a first step in
this direction. We are particularly interested in string models
with elliptic fibrations, and these are classified according to
two-dimensional T 2=Zk orbifold sectors with k ¼ 2, 3, 4, 6.
The traditional flavor symmetries of these scenarios were
analyzed some time ago [32,33]. In those works, it is found
that the T 2=Z3 orbifold sector (which in some sense also
qualitatively covers the Z6 case as well) leads to the most
promising class of string models that reproduce the matter
spectrum of the minimal supersymmetric standard model
(MSSM). These models are endowed with traditional flavor
symmetry Δð54Þ and twisted states that transform as (irre-
ducible) triplet representations of this group. Therefore, we
want to concentrate on this class of models with traditional
flavor symmetry Δð54Þ and modular flavor symmetry T 0.
Fortunately, there have been explicit semirealistic model
constructions of heterotic string theory that exhibit elliptic
fibrations of typeZ3 [34].A full classification of thesemodels
with the relevant field content is given in Table III of the
present paper.
All of these models share the same eclectic flavor group

but differ in the available representations of candidate
flavon and matter fields. A first step toward phenomeno-
logical applications would then be the analysis of break-
down patterns of the eclectic flavor group, and this is the
main goal of the present paper. We have to clarify which
fields are needed for an efficient breakdown of the eclectic
flavor group, which, in addition, allow a hierarchical
pattern for a successful description of masses and mixing
angles of quarks and leptons (originating partially through
the proximity to local gauge group enhancements). Before
proceeding to explicit model building, we would therefore
like to know the qualitative breakdown pattern of Δð54Þ
and T 0. In future work [35], we shall then use these results
for the selection of suitable models (from the classes in
Table III) for phenomenological applications.
The paper is structured as follows. In Sec. II, we describe

a T2=Z3 orbifold sector with traditional flavor group Δð54Þ
and eclectic flavor group1 Ωð2Þ ≅ ½1944; 3448� [as the

1We follow the notation of the SmallGroup library of GAP [36],
where the first number in the square parentheses denotes the order
of the group and the second number is the group identification.
We also use the nomenclature conventions of Ref. [37].
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multiplicative closure of Δð54Þ, T 0 and ZR
9 ], derived as

the two-dimensional elliptic fibration of a T 6=ðZ3 × Z3Þ
orbifold. We identify the representations of the groups in
the massless sector including the modular weights. At a
generic point in moduli space, we have a flavor sym-
metry Δð54Þ ∪ ZR

9 ¼ Δ0ð54; 2; 1Þ ≅ ½162; 44�. We discuss
in detail the enhancements at the fixed points of the Kähler
modulus T ¼ i, 1, and ω ≔ expð2πi=3Þ that lead to the
groups Ξð2; 2Þ ≅ ½324; 111� (for T ¼ i) or [468,125] (for
T ¼ 1;ω). In Sec. III, we discuss the possible breakdown of
Δð54Þ via flavon vevs. Candidate flavons are identified via
the inspection of the massless sector of the T6=ðZ3 × Z3Þ
orbifold under consideration. We show that triplets of
Δð54Þ are very efficient in the breakdown of the traditional
flavor group. We extend this analysis to the breakdown of
the eclectic flavor group in Sec. IV, with particular attention
to the groups [324,111] and [468,125] at the fixed points
T ¼ i and T ¼ 1, ω, respectively. The various breakdown
patterns are summarized in the Figs. 1–3 with details given
in Tables IV–VI. In Sec. V, we conclude by discussing the
relevance of our analysis to flavor model building and give
an outlook to future work.

II. HOLISTIC PICTURE OF THE ECLECTIC
FLAVOR SYMMETRY

Eclectic flavor groups [30] arise naturally in compacti-
fications of string theory [16,18,20,31]. They consist
of a nontrivial combination of the effective traditional
flavor symmetries Gtraditional and finite modular symmetries
Gmodular under which string states are charged. Eclectic
flavor groups can also include CP-like transformations and
discrete R-symmetries. Let us here discuss the appearance
of these symmetries in detail.
We focus on factorizable six-dimensional orbifolds,which

contain three two-dimensional T2=ZN orbifold sectors. Each
of the T2 is endowed with two modular groups, SLð2;ZÞU
and SLð2;ZÞT , associated respectively with the complex
structure modulus U and the (stringy) Kähler modulus T of
the torus. For N ¼ 2, the values of both T and U remain
unrestricted. ForN > 2, due to its geometric nature,U has to
be fixed to a value that is compatible with the orbifold twist
ZN . In these cases, SLð2;ZÞU is broken down to a discrete
remnant of the Lorentz group of discrete rotations in the
compact dimensions, which is an Abelian group compatible
with the orbifold. This subgroup appears as a discrete
R-symmetry in the effective theory [31]. SLð2;ZÞT , how-
ever, remains a symmetry of the effective theory. This
symmetry is nonlinearly realized, as can be seen from its
action on the modulus T and matter fields Φn. An element
γ ∈ SLð2;ZÞT transforms these fields according to [38,39]

T ↦
γ aT þ b

cT þ d
and Φn ↦

γ ðcT þ dÞnρsðγÞΦn; with

γ ≔
�
a b

c d

�
∈ SLð2;ZÞT: ð1Þ

Here, Φn denotes a multiplet of string matter states with
identical quantum numbers, except for their location at
different orbifold singularities. Furthermore, n denotes the
modular weight of the matter multiplets Φn, ðcT þ dÞn is
known as automorphy factor, and ρsðγÞ is an s-dimensional
matrix representation of γ in a (discrete) finitemodular group
Gmodular that depends on the ZN twist of the orbifold sector.
On the other hand, the traditional flavor symmetries

Gtraditional can be identified through the geometric features
of toroidal orbifolds [32]. First, Gtraditional includes the
permutations among the various equivalent orbifold singu-
larities where matter states comprising the multipletsΦn are
located. Since permutations are non-Abelian, so are these
traditional flavor symmetries. Second, Gtraditional contains
the discrete symmetries governing the admissible couplings
among the states inΦn, which are known as string selection
rules. The resulting traditional flavor group is obtained by
multiplicative closure of these two types of symmetries. It is
universal in moduli space, as all its elements only act onΦn.
In addition to traditional flavor and classical modular

transformations, there are CP-like transformations. On
the moduli T and U, these act with an element γ of

FIG. 1. Spontaneous breakdown patterns of the Δð54Þ tradi-
tional flavor symmetry of the T 2=Z3 orbifold sector due to

different flavon vevs. The index i ¼ 1, 2, 3, 4 in SðiÞ3 and ZðiÞ
3

labels various (nonconjugate) subgroups built by different gen-
erators; see Table IV.

FIG. 2. Spontaneous breakdown patterns of the linearly real-
ized unified flavor symmetry Ξð2; 2Þ at hTi ¼ i by T2=Z3 flavon

vevs. The index i ¼ 1, 2 in SðiÞ3 and ZðiÞ
3 labels various (non-

conjugate) subgroups built by different generators; see Table V.

TOP-DOWN ANATOMY OF FLAVOR SYMMETRY BREAKDOWN PHYS. REV. D 105, 055018 (2022)

055018-3



determinant −1, thereby enhancing the respective modular
groups to SLð2;ZÞT;U ⋊ Z2 ≅ GLð2;ZÞT;U. Fixing U by
orbifolding selects specific CP-like transformations com-
patible with the twist ZN and fixed value of U [12,40].
The general action on the modulus T is given by [11,12]
(see also Ref. [40] as well as Ref. [21] for the BU approach)

T ↦
γCP aT̄þb

cT̄þd
; with

γCP ≔
�
a b

c d

�
∈GLð2;ZÞT and detγCP ¼−1; ð2Þ

while string matter multiplets transform as

Φn ↦
γCP ðcT̄ þ dÞnρs̄ðγCPÞΦ̄n: ð3Þ

Here, bars denote complex conjugation.2

Interestingly, with the help of the Narain formulation of
toroidal orbifolds [43,44] (see Ref. [45] for further tech-
nical details), it is found that the outer automorphisms of
the orbifold space group yield all symmetries of the
effective theory of these compactifications. In particular,
all of Gtraditional and Gmodular, as well as the discrete
R-symmetries and the CP-like transformations turn out
to have their origin in these outer automorphisms, revealing
a unified origin of flavor in string compactifications [11].
This rich set of flavor symmetries containing all these

elements builds the eclectic flavor group of a toroidal
orbifold. Thus, an eclectic flavor group is the multiplicative
closure of the various flavor subgroups, i.e.,

Geclectic ¼ Gtraditional ∪ Gmodular ∪ GR ∪ CP; ð4Þ

where GR denotes here the Abelian discrete R-symmetry, a
remnant of SLð2;ZÞU.
One of the phenomenological advantages of models

endowed with eclectic flavor symmetries is that they
provide control over the structure of the effective super-
potential and Kähler potential, preventing in particular the
loss of predictability that is found in models based on finite
modular symmetries only [9]. The predictive power of the
eclectic picture results from the large amount of symmetry
of Geclectic. Phenomenological applications require a spon-
taneous breakdown of this huge symmetry, and this is a

FIG. 3. Spontaneous breakdown patterns of the linearly realized unified flavor symmetry Hð3; 2; 1Þ at hTi ¼ ω; 1; i∞. Here, Δð27Þ ⋊
Z3 stands for the group [81, 9] when hTi ¼ ω and for [81, 7] in case of hTi ¼ 1; i∞. The two boxes with Z2 and Z

ð2Þ
3 represent the same

Z2 and Zð2Þ
3 groups, respectively. The various ZðiÞ

3 and SðiÞ3 are not related by conjugation and have different generators; see Table VI.

2We note that, in general, not all of the transformations γCP
correspond to transformations that map representations of string
matter multiplets s to their complex conjugate representations s̄.
Whether or not this is the case crucially depends on the nature of
the outer automorphisms of the involved finite groups and the
specific representations [41]. However, as we will consider
throughout this work only the massless spectrum of T 2=Z3,
for which complex conjugation applies [42], we restrict ourselves
to the statement of Eq. (3).
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challenge for flavor model building. One of the goals of this
paper is precisely to address this question in an illustrative
example of the eclectic picture based on string theory.

A. The Eclectic flavor symmetry of T2=Z3

We chose the T2=Z3 orbifold sector as an example to
illustrate the phenomenological potential of eclectic flavor
symmetries. The outer automorphisms of the correspond-
ing Narain space group yield the following symmetries
[12,18,31]:

(i) an SLð2;ZÞT modular symmetry which acts as a
Γ0
3 ≅ T 0 finite modular symmetry on matter fields

and their couplings,
(ii) a Δð54Þ traditional flavor symmetry,
(iii) a ZR

9 discrete R-symmetry as a remnant of
SLð2;ZÞU, and

(iv) a ZCP
2 CP-like transformation.

As explained in detail in Refs. [31,40] and summarized in
Table I, the SLð2;ZÞT modular generators S and T arise
from rotational outer automorphisms. These generators can
be represented by

S ¼
�

0 1

−1 0

�
and T ¼

�
1 1

0 1

�
ð5Þ

and act on the modulus T and the matter fields Φn
according to Eq. (1). Further, there is a reflectional outer
automorphism which corresponds to a ZCP

2 CP-like trans-
formation. It can be chosen to be represented by

K� ¼
�−1 0

0 1

�
; ð6Þ

which acts on the modulus and matter fields as in Eq. (2).
The traditional flavor symmetry Δð54Þ is generated by

two translational outer automorphisms of the Narain space
group A and B of order 3 together with the Z2 rotational
outer automorphism C ≔ S2. The automatic identification
of C with S2 implies that Δð54Þ and the modular symmetry
have a nontrivial overlap and, furthermore, that Δð54Þ is
actually a non-Abelian R-symmetry.

Finally, in our example, the complex structure modulus
is geometrically stabilized at hUi ¼ expð2πi=3Þ in order for
T2 to be compatible with the Z3 point group. If T2=Z3 is
embedded in a six-dimensional orbifold, hUi breaks the
original SLð2;ZÞU of T 2 to a discrete remnant generated by
R that acts as a ZR

9 symmetry on matter fields (normalizing
their R-charges to be integers).
Since Δð54Þ and ZR

9 both act trivially on the
modulus T, the traditional flavor symmetry is enhanced
to Δð54Þ∪ZR

9 ≅Δ0ð54;2;1Þ≅ ½162;44�. Including the
additional ZCP

2 CP-like transformation (3), the full eclectic
group according to Eq. (4) is a group of order 3888 given by

Geclectic ¼Ωð2Þ⋊ZCP
2 ; whereΩð2Þ≅ ½1944;3448�: ð7Þ

In semirealistic heterotic orbifold compactifications
endowed with a T 2=Z3 orbifold sector, the massless
spectrum consists of (i) untwisted string states that trans-
form as flavor singlet states Φ0 or Φ−1 free to move in the
bulk and (ii) twisted string states transforming as flavor
triplets, attached to the three orbifold fixed points. The
modular weights of twisted states depend on the twisted
sector they belong to. As shown in Table II, in the θ sector,
only n ∈ f−2=3;−5=3g are possible, while only n ∈
f−1=3; 2=3g appear in the θ2 twisted sector. The trans-
formations (1) of twisted triplets Φ−2=3 are governed by the
three-dimensional matrix representations of the modular
generators [12]

ρðSÞ ¼ iffiffiffi
3

p

0
B@

1 1 1

1 ω2 ω

1 ω ω2

1
CA and

ρðTÞ ¼

0
B@

ω2 0 0

0 1 0

0 0 1

1
CA; ð8Þ

which form the representation s ¼ 20 ⊕ 1 of the finite
modular group Γ0

3 ≅ T 0 ≅ ½24; 3�. Furthermore, the action
of the Δð54Þ generators on Φ−2=3 is given by

TABLE I. Eclectic flavor group Ωð2Þ for six-dimensional orbifolds that contain a T 2=Z3 orbifold sector. In this case, SLð2;ZÞU of the
stabilized complex structure modulus hUi ¼ exp ð2πi=3Þ is broken, resulting in a remnant ZR

9 R-symmetry. Including ZR
9 enhances the

traditional flavor groupΔð54Þ toΔ0ð54; 2; 1Þ ≅ ½162; 44�, which together with T 0 finally leads to the eclectic groupΩð2Þ ≅ ½1944; 3448�.
Table from Ref. [31].

Nature of symmetry Outer automorphism of Narain space group Flavor groups

Eclectic

Modular
Rotation S ∈ SLð2;ZÞT Z4 T 0

Ωð2Þ

Rotation T ∈ SLð2;ZÞT Z3

Traditional flavor

Translation A Z3 Δð27Þ
Δð54Þ

Δ0ð54; 2; 1Þ
Translation B Z3

Rotation C ¼ S2 ∈ SLð2;ZÞT ZR
2

Rotation R ∈ SLð2;ZÞU ZR
9
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ρðAÞ ¼

0
B@

0 1 0

0 0 1

1 0 0

1
CA; ρðBÞ ¼

0
B@

1 0 0

0 ω 0

0 0 ω2

1
CA and

ρðCÞ ¼ −

0
B@

1 0 0

0 0 1

0 1 0

1
CA ¼ ρðSÞ2; ð9Þ

and they generate the representation r ¼ 32 of Δð54Þ. The
representations associated with the other twisted triplets
are expressed in terms of Eqs. (8) and (9), according to
the prescription given in Table II. Finally, the integer
ZR

9 R-charges of matter fields can be uniquely determined
by using their SLð2;ZÞU properties and the fixed value
hUi; see Ref. [40], Sec. 4.2.
It is important to stress that the massless spectrum of the

T2=Z3 orbifold sector of heterotic orbifold compactifica-
tions does not include all possible representations ofΔð54Þ.
In particular, note that there are no massless doublet
representations. In fact, doublets arise as winding modes
of strings around different singularities and, hence, corre-
spond to massive states [42].
At different points hTi in moduli space, SLð2;ZÞT and T 0

are broken down to the stabilizer subgroup, i.e., to the
modular subgroup that leaves hTi invariant. Since the
modulus is no longer transformed at hTi, the surviving
symmetry yields an enhancement of the traditional flavor
symmetry Δð54Þ. This enhancement, associated with the
specific location inmoduli space, has been called local flavor
unification [12]. Next, we study the most relevant scenarios
of local flavor unification in the T2=Z3 orbifold sector.

B. Flavor enhancement at hTi= i
First, we discuss the point hTi ¼ i in moduli space (see

Sec. 6.2 in Ref. [40] for details of the derivation). In this
case, SLð2;ZÞT is broken to a Z4 subgroup generated by S.
Twisted matter fields transform as

Φ−2=3 ↦
S

expð2πi=6ÞρðSÞΦ−2=3; ð10aÞ

Φ−5=3 ↦
S

expð2πi5=12ÞρðSÞΦ−5=3: ð10bÞ

Here, we use c ¼ −1, d ¼ 0 for the automorphy factor
ðchTi þ dÞn ¼ ð−iÞn of S ∈ SLð2;ZÞT at hTi ¼ i, which
results in

ð−iÞ−2=3 ¼ expð2πi=6Þ for n ¼ −2=3; ð11aÞ

ð−iÞ−5=3 ¼ expð2πi5=12Þ for n ¼ −5=3: ð11bÞ

The superpotential also transforms under S as W ↦
S

iW.
This implies that also S generates a discrete R-symmetry,
which altogether leads to a non-Abelian discrete R-sym-
metry [46].
At hTi ¼ i, the explicit representation matrices (which

include the associated automorphy factors) of the unified
flavor group of twisted matter fields Φ−2=3 and Φ−5=3 are
given by

Φ−2=3∶ ρ32;iðAÞ¼ ρðAÞ; ρ32;iðBÞ¼ ρðBÞ;
ρ32;iðCÞ¼ ρðCÞ;
ρ32;iðRÞ¼ e2πi=913; ρ32;iðSÞ¼ e2πi=6ρðSÞ; and

ð12Þ

Φ−5=3∶ ρ31;iðAÞ¼ ρðAÞ; ρ31;iðBÞ¼ ρðBÞ;
ρ31;iðCÞ¼−ρðCÞ;
ρ31;iðRÞ¼ e−4πi=913; ρ31;iðSÞ¼ e2πi5=12ρðSÞ:

ð13Þ

The CP-like transformation generated by Eq. (6) acts
on the modulus as T ↦ −T̄, which is conserved for
hTi ¼ i. The corresponding automorphy factor and

TABLE II. T 0 and Δð54Þ irreducible representations and ZR
9 R-charges of massless matter fields Φn with modular weights n in

semirealistic heterotic orbifold compactifications with a T 2=Z3 sector. T 0, Δð54Þ, and ZR
9 combine nontrivially to the eclectic flavor

group Ωð2Þ ≅ ½1944; 3448�, as described in Table I. Untwisted matter fields Φn (with integer modular weights n) form one-dimensional
representations, while twisted matter fields Φn (with fractional modular weights n) build triplet representations. Table from Ref. [18].

Eclectic flavor group Ωð2Þ
Modular T 0 subgroup Traditional Δð54Þ subgroup ZR

9

Sector Matter fields Φn Irrep s ρsðSÞ ρsðTÞ n Irrep r ρrðAÞ ρrðBÞ ρrðCÞ R

Bulk Φ0 1 1 1 0 1 1 1 þ1 0
Φ−1 1 1 1 −1 10 1 1 −1 3

θ Φ−2=3 20 ⊕ 1 ρðSÞ ρðTÞ −2=3 32 ρðAÞ ρðBÞ þρðCÞ 1
Φ−5=3 20 ⊕ 1 ρðSÞ ρðTÞ −5=3 31 ρðAÞ ρðBÞ −ρðCÞ −2

θ2 Φ−1=3 200 ⊕ 1 ðρðSÞÞ� ðρðTÞÞ� −1=3 3̄1 ρðAÞ ðρðBÞÞ� −ρðCÞ 2
Φþ2=3 200 ⊕ 1 ðρðSÞÞ� ðρðTÞÞ� þ2=3 3̄2 ρðAÞ ðρðBÞÞ� þρðCÞ 5

Superpotential W 1 1 1 −1 10 1 1 −1 3
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representation matrix in Eqs. (2) and (3) are trivial, see

Refs. [11,40], such that3 Φn ↦
CP

Φ̄n.
Altogether, the linearly realized unified flavor group at

hTi ¼ i is found to be

Δð54Þ ∪ Z9
R ∪ S ∪ ZCP

2

¼ Ξð2; 2Þ ⋊ ZCP
2 ≅ ½324; 111� ⋊ Z2 ≅ ½648; 548�: ð14Þ

C. Flavor enhancement at hTi=ω
Next, following Sec. 6.3 in Ref. [40], we consider the

point hTi ¼ ω in moduli space. There, SLð2;ZÞT is broken
to a Z3 subgroup generated by ST such that our twisted
matter fields transform as

Φ−2=3 ↦
ST

expð2πi2=9ÞρðSTÞΦ−2=3; ð15aÞ

Φ−5=3 ↦
ST

expð2πi5=9ÞρðSTÞΦ−5=3: ð15bÞ

Here, we use c ¼ d ¼ −1 for ST ∈ SLð2;ZÞT, which
yields ðchTi þ dÞn ¼ ð−ω − 1Þn ¼ ðω2Þn and, hence, the
automorphy factors

ðω2Þ−2=3 ¼ expð2πi2=9Þ for n ¼ −2=3; ð16aÞ

ðω2Þ−5=3 ¼ expð2πi5=9Þ for n ¼ −5=3: ð16bÞ

In addition, the superpotential transforms under ST as

W ↦
ST

ωW. Hence, also here the residual flavor symmetry
is a non-Abelian discrete R-symmetry [46].
The explicit representation matrices of the unified flavor

group of twisted matter fieldsΦ−2=3 andΦ−5=3 are given by

Φ−2=3∶ρ32;ωðAÞ¼ρðAÞ; ρ32;ωðBÞ¼ρðBÞ;
ρ32;ωðCÞ¼ρðCÞ;
ρ32;ωðRÞ¼e2πi=913; ρ32;ωðSTÞ¼e2πi2=9ρðSTÞ; and

ð17Þ

Φ−5=3∶ ρ31;ωðAÞ¼ ρðAÞ; ρ31;ωðBÞ¼ ρðBÞ;
ρ31;ωðCÞ¼−ρðCÞ;
ρ31;ωðRÞ¼ e−4πi=913; ρ31;ωðSTÞ¼ e2πi5=9ρðSTÞ:

ð18Þ

A representative of theZCP
2 transformation is given by K�T,

which acts on the modulus and matter fields as

T ↦
CP

− T̄ − 1; and Φn ↦
CP

ρðTÞ�Φ̄n; ð19Þ

such that hTi ¼ ω is left invariant.
The linearly realized unified flavor group at hTi ¼ ω is

thus

Δð54Þ∪Z9
R ∪ST∪ZCP

2

¼Hð3;2;1Þ⋊ZCP
2 ≅ ½486;125�⋊Z2 ≅ ½972;469�: ð20Þ

D. Flavor enhancement at hTi= 1 and hTi= i∞
Since the point hTi ¼ 1 has not been investigated in the

literature for residual symmetries, we give more details
here. First, note that the discussion for hTi ¼ 1 also applies
to the point hTi ¼ i∞ because these points are dual via
conjugation by the element ST−1, i.e., working in the limit
ϵ → 0þ,

ST−1∘hTi¼
�

0 1

−1 1

�
∘hTi

¼ 0hTiþ1

−1hTiþ1
⟶
ϵ→0þ

i∞ for hTi¼1þ iϵ⟶
ϵ→0þ

1:

ð21Þ

To find the local enhancement of the traditional flavor
symmetry by the stabilizer of the modulus, note that
hTi ¼ 1 is left invariant by the γ ∈ SLð2;ZÞT transforma-
tions satisfying

γ ∘ hTi ¼
�
a b

c d

�
∘ hTi

¼ ahTi þ b
chTi þ d

¼! hTi ⇔
hTi¼1

aþ b¼! cþ d: ð22Þ

Combining this with the constraint ad − bc ¼ 1, we obtain

ðcþ d − bÞd − bc ¼ 1 ⇔ ðcþ dÞðd − bÞ ¼ 1: ð23Þ

Recalling that all variables here are integers, we observe
that

s ≔ cþ d ¼ d − b with s ¼ �1

⇒ γ ¼
�
s − b b

−b sþ b

�
: ð24Þ

This yields the stabilizer at hTi ¼ 1. All solutions to
Eq. (22) then read

�
s − b b

−b sþ b

�
¼

� ðST−2Þb for s ¼ þ1;

S2ðST−2Þ−b for s ¼ −1;
ð25Þ

3For explicit computations, it is useful to combine Φ ⊕ Φ̄ and
extend also the other generators to this r ⊕ r̄-dimensional
representation.
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for b ∈ Z. Therefore, the stabilizer can be generated by the
two elements

S2 ¼
�−1 0

0 −1

�
and ST−2 ¼

�
0 1

−1 2

�
: ð26Þ

The first generator corresponds to the Δð54Þ element
C, while the second generator locally (at hTi ¼ 1) enhances
the traditional flavor symmetry Δð54Þ to a larger group.
Noting that ST−2 ¼ TS−1TST−1 ¼ ðST−1Þ−1TðST−1Þ
shows that the second generator is dual to the T trans-
formation T ↦ T þ 1 that leaves hTi ¼ i∞ invariant. At
the level of the finite modular group T 0, the SLð2;ZÞT
transformation ST−2 is realized as the Z3 transformation
ρðST−2Þ ¼ ρðSTÞ. The automorphy factor of ðST−2Þb is
trivial at hTi ¼ 1 for any modular form of weight n; i.e.,
using Eq. (25) for s ¼ 1, we obtain

ðchTi þ dÞn ¼ ð−bþ 1þ bÞn ¼ 1: ð27Þ

Hence, for matter fields in Δð54Þ representations r ¼ 32
(forΦ−2=3) or r ¼ 31 (forΦ−5=3), the explicit representation
matrix of the generator that locally enhances the traditional
flavor symmetry is given by

ρr;hTi¼1ðSTÞ ¼ ρðSTÞ: ð28Þ

We note that the s ¼ −1 case would give rise to a nontrivial
automorphy factor and, hence, different matrix generators
for 32 and 31, but ultimately lead to exactly the same group.
Hence, altogether, the unified flavor group at hTi ¼ 1

can be generated by

Φ−2=3∶ ρ32;1ðAÞ¼ ρðAÞ; ρ32;1ðBÞ¼ ρðBÞ;
ρ32;1ðCÞ¼ ρðCÞ;
ρ32;1ðRÞ¼ e2πi=913; ρ32;1ðSTÞ¼ ρðSTÞ; and

ð29Þ

Φ−5=3∶ ρ31;1ðAÞ¼ ρðAÞ; ρ31;1ðBÞ¼ ρðBÞ;
ρ31;1ðCÞ¼−ρðCÞ;
ρ31;1ðRÞ¼ e−4πi=913; ρ31;1ðSTÞ¼ ρðSTÞ: ð30Þ

One can show that the groups generated by Eqs. (17) and
(29), as well as by Eqs. (18) and (30) are identical.
To identify the CP-like stabilizer at hTi ¼ 1, we solve

γCP ∘ hTi ¼ ahT̄i þ b
chT̄i þ d

¼! hTi ⇔
hTi¼1

aþ b¼! cþ d; ð31Þ

for an element γCP ∈ GLð2;ZÞT with det γCP ¼ −1. Hence,
altogether,

ðcþ dÞðd − bÞ ¼! − 1: ð32Þ

Once more, recalling that the matrix representation of γCP
has integer entries, we see that

s ≔ ðcþ dÞ ¼ −ðd − bÞ with

s ¼ �1 ⇒ γCP ¼
�

s − b b

2s − b −sþ b

�
: ð33Þ

This yields the CP-like stabilizer at hTi ¼ 1. The solutions
to Eq. (31) can be written as

�
s − b b

2s − b −sþ b

�
¼

� ðST−2Þ−bþ1SK� for s ¼ þ1;

S2ðST−2Þbþ1SK� for s ¼ −1;
ð34Þ

for b ∈ Z. Since all these transformations differ only
by an element of the stabilizer group itself, it is clear
that they give rise to equivalent resulting groups. For
definiteness, we choose for the generator of the CP-like
stabilizer the element with s ¼ 1 and b ¼ 2, i.e.,
ρððST−2Þ−1SK�Þ ¼ ρðT2K�Þ, such that the resulting ZCP

2

acts on the modulus and matter fields as

T ↦
CP

− T̄ þ 2; and Φn ↦
CP

ρðT2ÞΦ̄n: ð35Þ

Combining this with the unified flavor group, the full
linearly realized unified flavor group at hTi ¼ 1 results as

Δð54Þ ∪ Z9
R ∪ ST ∪ ZCP

2

¼ Hð3; 2; 1Þ ⋊ ZCP
2 ≅ ½486; 125� ⋊ Z2 ≅ ½972; 469�: ð36Þ

We realize that this result at hTi ¼ 1 coincides with the
linearly realized unified flavor group at hTi ¼ ω, Eq. (20).
For completeness, we note that the generator of the CP-

like stabilizer at the dual point hTi ¼ i∞ can be represented
by S2K� ¼ −K�, which acts as T ↦ −T̄ and clearly
leaves hTi ¼ i∞ invariant. The resulting linearized flavor
group at hTi ¼ i∞ is, as expected, the same as for hTi ¼ 1.

E. Heterotic configurations of T 6=ðZ3 × Z3Þ
with Ωð2Þ eclectic symmetry

The T 2=Z3 orbifold sector appears naturally in six-
dimensional T6=Z3, T 6=Z6-II, T6=ðZ3×Z3Þ and T 6=ðZ3 ×
Z6Þ orbifolds. These orbifolds have been explored in the
search of models arising from heterotic string compactifi-
cations with the MSSM spectrum plus vectorlike exotics
[33,47,48]. The details of the matter spectra of these
constructions are determined by the choices of the embed-
ding of the six-dimensional orbifold into the gauge degrees
of freedom, subject to consistency requirements, such as
modular invariance; see e.g., Refs. [49–52].
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Inspecting the consistent semirealistic string models
classified in Refs. [33,47,48] endowed with a T2=Z3

orbifold sector, we observe that the light MSSM matter
superfields appear only in a reduced number of field
configurations. For example, considering the T 6=ðZ3 ×
Z3Þ (1,1) orbifold geometry (see Ref. [53] for details on this
geometry) with one and two vanishing Wilson lines, we
identify five types of configurations of massless MSSM
matter superfields, as summarized in Table III in terms of
the field labels used in Table II. Given these configurations,
one can arrive at the flavor phenomenology of the Ωð2Þ
eclectic flavor symmetry by using the effective super-
potential and Kähler potential given in Ref. [18], including
the spontaneous breakdown of the eclectic flavor group
triggered by the vevs of the indicated flavon representations
and the Kähler modulus T. This shall be done explicitly for
models of configuration type A in a companion paper [35].
To conclude this section, let us stress an important

empirical TD observation. As we see in Table II (and
use in Table III), the modular weights alone suffice to
characterize the transformation behavior of fields under
the flavor symmetries. That is, there is here a one-to-one
relation between the modular weights and all flavor
symmetry charges of the fields. This also holds for other
known TD constructions; see e.g., Refs. [17,20,54–56]. If
this feature turned out to be correct for generic TD models,
it would suggest that consistent BU constructions should
abide to the same rule. Namely, fields of the same modular
weight should also transform in the very same representa-
tion of all modular flavor symmetries.

III. BREAKING OF THE TRADITIONAL
FLAVOR SYMMETRY Δð54Þ

In order to understand the breakdown of the Ωð2Þ
eclectic flavor symmetry of the T2=Z3 orbifold sector,
let us first discuss the breaking of the traditional flavor
symmetry Δð54Þ ⊂ Ωð2Þ. Since Δð54Þ is universal in
moduli space, it can only be broken via nontrivial vevs
of flavon fields, but not by the moduli. Motivated by the
spectra identified in Sec. II E, we consider the three matter
multipletsΦ−1,Φ−2=3, andΦ−5=3 as possible candidates for

flavon fields. Depending on their structure, the vevs can
either preserve different subgroups of Δð54Þ or break the
traditional flavor symmetry of the T 2=Z3 orbifold sector
completely. The possible breaking patterns of individual
vevs are schematically displayed in Fig. 1.
Let us consider a specific Δð54Þ → S3 example to

understand how to arrive at the details of the breakdown
patterns. TheΔð54Þ elements A and C generate a traditional

flavor subgroup S3 ⊂ Δð54Þ that we denote as Sð1Þ3 . This
group corresponds to the geometric permutation symmetry
of the T 2=Z3 orbifold sector. Any representation of Δð54Þ
can be decomposed into irreducible representations of this
subgroup. If the decomposition of a particular representa-

tion includes one or more trivial singlets of Sð1Þ3 , then the

spontaneous breakdown of Δð54Þ to Sð1Þ3 occurs if a flavon
field transforming in such a particular representation
develops a vev along the trivial singlet direction(s).
Using the characters of A and C, it is straightforward to
determine how the Δð54Þ representations of flavon candi-

dates branch in Sð1Þ3 (see e.g., Ref. [57] for a pedagogical
introduction):

hΦ−1i∶ 10 → 10; ð37aÞ

hΦ−2=3i∶ 32 → 10 ⊕ 2; ð37bÞ

hΦ−5=3i∶ 31 → 1 ⊕ 2: ð37cÞ

We see that only the representation 31 associated with the
matter field Φ−5=3 branches into a trivial singlet of S3.
Therefore, any nonzero vev of Φ−1 or Φ−2=3 breaks not

only Δð54Þ but also the Sð1Þ3 subgroup. Only the vev of
Φ−5=3 along the direction in field space associated with the

trivial singlet can result in an unbroken Sð1Þ3 symmetry
generated by A and C. This direction can be identified in
the 31 Δð54Þ representation of Φ−5=3 as the simultaneous
eigenvector of ρ31ðAÞ ¼ ρðAÞ and ρ31ðCÞ ¼ −ρðCÞ with
eigenvalue 1, which is found to be ð1; 1; 1ÞT, up to an
arbitrary overall factor. Note that there are physically

TABLE III. Flavor symmetry representations of MSSM matter fields in T 2=Z3 orbifold sectors of five different types of six-
dimensional T 6=ðZ3 × Z3Þ heterotic orbifold models (consistent string theory configurations; see text). For each different type of
configuration, we display all possibilities for representations that multiplets of quark (q; ū; d̄), lepton (l; ē; ν̄), and Higgs superfields can
take on in the relevant T 2=Z3 orbifold sector. We use the field notation of Table II, where the subindices denote modular weights.
Multiple subindices indicate that matter fields of all those modular weights appear in the respective model.

Model l ē ν̄ q ū d̄ Hu Hd Flavons

A Φ−2=3 Φ−2=3 Φ−2=3 Φ−2=3 Φ−2=3 Φ−2=3 Φ0 Φ0 Φ−2=3;−1
B Φ−1=3 Φ−2=3 Φ−2=3 Φ−2=3 Φ−2=3 Φ−1=3 Φ−1 Φ0 Φ−2=3;−1
C Φ−2=3 Φ−1=3 Φ−1=3 Φ−1=3 Φ−1=3 Φ−2=3 Φ−1 Φ−1 Φ−1=3;−1
D Φ−1=3 Φ−1=3 Φ�2=3;0 Φ−1=3 Φ−1=3 Φ−1=3 Φ0 Φ−1;0 Φ�2=3;−1
E Φ−2=3;−1=3 Φ−2=3;0 Φ0;−2=3;−1=3;−5=3 Φ−1;−2=3 Φ−2=3 Φ0;−2=3 Φ0 Φ0 Φ−2=3;−1=3;−5=3;−1
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equivalent subgroups conjugate to the Sð1Þ3 group generated
by A and C. Each choice of conjugate generators naively
yields a different vev structure, but all of them are related
by conjugation with an element of Δð54Þ. By contrast, any
pattern of hΦ−5=3i vevs that cannot be related to ð1; 1; 1ÞT
by conjugation will break Sð1Þ3 , too.
The previous procedure can be repeated for different

choices of generators, which yield different subgroups of
Δð54Þ. All remnant subgroups (up to conjugation), a choice
of their corresponding generators, and the flavon vev
patterns associated with the spontaneous breakdown of
Δð54Þ to such subgroups are listed in Table IV. As in the

case of Δð54Þ → Sð1Þ3 , it mostly suffices to consider the vev
of a single flavon to arrive at the different traditional flavor
subgroups. To arrive at the subgroup Z3

ð1Þ, for example, it
suffices that hΦ−2=3i acquires a nontrivial vev. However, if
Φ−2=3 is not present in the spectrum, one may arrive at the
same Z3

ð1Þ subgroup by letting Φ−5=3 and Φ−1 develop
vevs simultaneously.
Altogether, we see that vevs hΦ−1i, hΦ−2=3i, and hΦ−5=3i

are quite efficient in breaking the traditional flavor sym-
metry. However, they can leave remnant symmetries
unbroken, and this might happen by default, as potentials
are known to be often minimized at symmetry enhanced
points (i.e., by vevs with remnant subgroups). In order to
break the flavor symmetry completely, vevs can be mis-
aligned from their symmetry enhanced directions (thereby
still allowing for approximate or softly broken symmetries

that can give rise to “flavor hierarchies”), or multiple vevs
could be present simultaneously. From the stated patterns
of single vevs, it is straightforward to work out remnant
groups also if multiple vevs are present. The respective
remnant groups would be given as the nontrivial inter-
section of the preserved symmetries of each individual vev.
We will further explore the phenomenological conse-
quences of these scenarios in our forthcoming paper [35].

IV. BREAKING OF THE COMPLETE ECLECTIC
FLAVOR SYMMETRY Ωð2Þ

After theΔð54Þ example, let us consider the spontaneous
breakdown patterns of the complete eclectic flavor sym-
metry Ωð2Þ ⋊ ZCP

2 . As discussed above, only parts of this
group can be linearly realized on the spectrum of twisted
matter fields, while other parts are necessarily broken by
the vev hTi of the Kähler modulus. Compatibility with
observations requires that, on top of the breaking induced
by hTi, the linearly realized unified flavor symmetry must
be further broken by vevs of flavon fields.
At a generic point in moduli space, the traditional flavor

symmetry is Δð54Þ, and the results of the previous section
apply. In this section, we investigate analogous breaking
patterns at the symmetry enhanced points in moduli space.
In detail, we study the points hTi ¼ i and hTi ¼ ω; 1; i∞,
where the traditional flavor symmetry Δð54Þ is enhanced,
respectively, to Ξð2; 2Þ ≅ ½324; 111� and Hð3; 2; 1Þ ≅
½486; 125� as discussed in Secs. II B to II D. As derived
above, these flavor symmetries are additionally enhanced

TABLE IV. Overview of subgroups of the Δð54Þ traditional flavor group and the corresponding vevs for the breakdown. The second
column shows the branching of the relevant representations into the subgroups. The 1 here denotes the trivial singlet, and nontrivial
singlets are labeled by their eigenvalue under the Abelian generator. We provide examples for generators of each subgroup (up to
conjugation) that are left unbroken by the different choices of vevs specified in the last two columns. The notation “⊕ hΦ−1i”means that
a vev of a nontrivial Δð54Þ singlet field has to be switched on in addition to the vev of a triplet in order to achieve the breaking to the
respective subgroup. The provided generators and vevs are not unique since their conjugation can yield equivalentΔð54Þ subgroups. All
the subgroups are stated up to conjugation; i.e., the groups are distinct and not related by conjugation. We omit here an arbitrary global
(normalization) factor for each of the vevs, α is an arbitrary complex number, while “…” denotes the absence of a suitable vev.

Branchings
Subgroup
generator(s)

Corresponding vevs

Δð54Þ subgroup Φ−1 Φ−2=3 Φ−5=3 hΦ−2=3i hΦ−5=3i
Δð27Þ 1 3 3 A, B ð0; 0; 0ÞT ⊕ hΦ−1i ð0; 0; 0ÞT ⊕ hΦ−1i
Sð1Þ3

10 10 ⊕ 2 1 ⊕ 2 A, C … ð1; 1; 1ÞT

Zð1Þ
3

1 1 ⊕ 1ω ⊕ 1ω2 A ð1; 1; 1ÞT ð1; 1; 1ÞT ⊕ hΦ−1i
Sð2Þ3

10 10 ⊕ 2 1 ⊕ 2 B, C … ð1; 0; 0ÞT

Zð2Þ
3

1 1 ⊕ 1ω ⊕ 1ω2 B ð1; 0; 0ÞT ð1; 0; 0ÞT ⊕ hΦ−1i
Sð3Þ3

10 10 ⊕ 2 1 ⊕ 2 ABA, C … ðω; 1; 1ÞT

Zð3Þ
3

1 1 ⊕ 1ω ⊕ 1ω2 ABA ðω; 1; 1ÞT ðω; 1; 1ÞT ⊕ hΦ−1i
Sð4Þ3

10 10 ⊕ 2 1 ⊕ 2 AB2A;C … ðω2; 1; 1ÞT

Zð4Þ
3

1 1 ⊕ 1ω ⊕ 1ω2 AB2A ðω2; 1; 1ÞT ðω2; 1; 1ÞT ⊕ hΦ−1i
Z2 1−1 1 ⊕ 1−1 ⊕ 1−1 1 ⊕ 1 ⊕ 1−1 C ð0; 1;−1ÞT ð1; 0; 0ÞT þ αð0; 1; 1ÞT
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byCP-like transformations. However, for practical reasons,
we first focus on non-CP-like transformations and com-
ment on the possible enhancements by CP-like trans-
formations in the end.
We focus on the matter fieldsΦ−2=3 andΦ−5=3 from the θ

sector of a T2=Z3 orbifold, as well as on the bulk field Φ−1,
because these fields arise as potential flavons in the models
under consideration; see Sec. II E. The complete charge
assignment of these fields together with the generators
under the relevant modular and flavor transformations is
summarized in Table II. As already stressed at the end of
Sec. II E, the complete transformation behavior of a field
can be inferred already from the respective modular
weights which are fixed by the string theory construction.

Our results for the breakdown patterns induced by flavon
vevs hΦ−2=3i, hΦ−5=3i and/or hΦ−1i are depicted in Fig. 2
for the linearly realized unified flavor symmetry Ξð2; 2Þ at
hTi ¼ i and in Fig. 3 for the unified flavor symmetry
Hð3; 2; 1Þ at hTi ¼ ω; 1; i∞. Details of our results are
summarized in Table V (for hTi ¼ i) and Table VI (for
hTi ¼ ω; 1; i∞). Just as in the previous section, we
determine the branching of the respective irreducible
representations into subgroups of the flavor symmetries.
If at least one trivial singlet 1 is present in the branching, the
associated flavon vev can break the original unified flavor
group to the listed subgroup. We do not list subgroups that
cannot be realized by any of the given vevs because they
would actually preserve a larger subgroup. We give explicit

TABLE V. Maximal subgroups (up to conjugation) of Ξð2; 2Þ that can be achieved from its breakdown by vevs of flavon fields at
hTi ¼ i. We provide the branchings of the flavon representations under the resulting subgroups, followed by samples of the generators of
such subgroups and the flavon vevs that yield the corresponding breakdown. Note that the Z2 generator satisfies C ¼ ðS3Þ2. We follow
the same notation as in Table IV.

Branchings Corresponding vevs

Ξð2; 2Þ subgroup Φ−2=3 Φ−5=3 Subgroupgenerator(s) hΦ−2=3i hΦ−5=3i
Sð1Þ3

10 ⊕ 2 1 ⊕ 2 A, C … ð1; 1; 1ÞT
Zð1Þ

3
1 ⊕ 1ω ⊕ 1ω2 1 ⊕ 1ω ⊕ 1ω2 A ð1; 1; 1ÞT ð1; 1; 1ÞT ⊕ hΦ−1i

Sð2Þ3
10 ⊕ 2 1 ⊕ 2 ABA, C … ðω; 1; 1ÞT

Zð2Þ
3

1 ⊕ 1ω ⊕ 1ω2 1 ⊕ 1ω ⊕ 1ω2 ABA ðω; 1; 1ÞT ðω; 1; 1ÞT ⊕ hΦ−1i
Z4 1−1 ⊕ 1i ⊕ 1−i 1 ⊕ 1−1 ⊕ 1i S3 … ð1þ ffiffiffi

3
p

; 1; 1ÞT
Z2 1 ⊕ 1−1 ⊕ 1−1 1 ⊕ 1 ⊕ 1−1 C ð0; 1;−1ÞT ð1; 0; 0ÞT þ αð0; 1; 1ÞT

TABLE VI. Maximal subgroups (up to conjugation) of Hð3; 2; 1Þ that can be achieved from its breakdown by vevs of flavon fields at
hTi ¼ ω (similar results hold for hTi ¼ 1; i∞). We provide the branchings of the flavon representations under the resulting subgroups,
followed by samples of the generators of such subgroups and the flavon vevs that yield the corresponding breakdown. In the first row of
the top block, the subindices in the branching representations correspond to the charges with respect to the Z3 generated by
ðB2A2Þ2RðSTÞ4. We use the definitions a ≔ −1þ η − η4 þ η5 − η8 and b ≔ −ηþ η4 − η8 with η ≔ e2πi=18. Whenever the vev preserves
not only the subgroup but a larger symmetry, the resulting symmetry is explicitly given in parentheses. In all other aspects, we follow the
same notation as in Table IV.

Branchings
Subgroup
generator(s)

Corresponding vevs

Hð3; 2; 1Þ subgroup Φ−2=3 Φ−5=3 hΦ−2=3i hΦ−5=3i

Sð2Þ3 × Z3
101 ⊕ 2ω 11 ⊕ 2ω AC;B2A2;RðSTÞ4 … ð1;ω2; 1ÞT

Zð2Þ
3 × Zð3Þ

3
1 ⊕ 1ω2 ;1 ⊕ 1ω;ω2 1 ⊕ 1ω2 ;1 ⊕ 1ω;ω2 B2A2;RðSTÞ4 ð1;ω2; 1ÞT ð1;ω2; 1ÞT ðpreserves Sð2Þ3 × Z3Þ

Zð2Þ
3

1 ⊕ 1ω2 ⊕ 1ω 1 ⊕ 1ω2 ⊕ 1ω B2A2 ð1;ω2; 1ÞT ⊕ hΦ−1i ð1;ω2; 1ÞT ⊕ hΦ−1i
Zð3Þ

3
1 ⊕ 1 ⊕ 1ω2 1 ⊕ 1 ⊕ 1ω2 RðSTÞ4 ð−ω2; 1; 0ÞT þ αð−ω2; 0; 1ÞT ð−ω2; 1; 0ÞT þ αð−ω2; 0; 1ÞT

Sð1Þ3
10 ⊕ 2 1 ⊕ 2 C, A … ð1; 1; 1ÞT

Z3
ð1Þ 1 ⊕ 1ω ⊕ 1ω2 1 ⊕ 1ω ⊕ 1ω2 A ð1; 1; 1ÞT ð1; 1; 1ÞT ⊕ hΦ−1i

Z6 1 ⊕ 1−1 ⊕ 1−ω 1 ⊕ 1−1 ⊕ 1ω CR2ðSTÞ8 ð0; 1;−1ÞT ð−2ω2; 1; 1ÞT
Z3

ð3Þ 1 ⊕ 1 ⊕ 1ω2 1 ⊕ 1 ⊕ 1ω2 RðSTÞ4 ð−ω2; 1; 0ÞT þ αð−ω2; 0; 1ÞT ð−ω2; 1; 0ÞT þ αð−ω2; 0; 1ÞT
Z3

ð4Þ 1 ⊕ 1ω ⊕ 1ω2 1 ⊕ 1ω ⊕ 1ω2 BRðSTÞ2 ðb�;ω; aÞT ð1; a; bÞT
Z2 1 ⊕ 1−1 ⊕ 1−1 1 ⊕ 1 ⊕ 1−1 C ð0; 1;−1ÞT ðpreservesZ6Þ ð1; 0; 0ÞT þ αð0; 1; 1ÞT
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generators for all subgroups and the associated explicit
vevs (up to conjugation). There exist multiple equivalent
subgroups which can be obtained from the stated examples
by conjugation.
As noted already above, the flavor symmetry enhance-

ment at hTi ¼ ω, hTi ¼ 1 and at hTi ¼ i∞ leads to
isomorphic unified flavor groups. We have confirmed
explicitly that also the respective matrix groups for the
triplets generate identical groups (and irreducible repre-
sentations). Hence, the analysis of the triplet vevs is exactly
the same at all three points. For definiteness, we chose in
Table VI the generator convention at hTi ¼ ω provided
explicitly in Eqs. (17) and (18).
Here, we comment on the breakdown induced by the vev

of the nontrivial singlet field hΦ−1i. The transformation
behavior ofΦ−1 can be read off from Table II. Generators of
the remnant modular group S and T furthermore have to be
amended by the correct automorphy factors, stated in
Eqs. (11) and (16) taken for modular weight n ¼ −1.
Altogether, we find that the single vev hΦ−1i induces the
breakings

hΦ−1i∶ Ξð2; 2Þ → Δð27Þ; Hð3; 2; 1ÞhTi¼ω → ½81; 9�;
Hð3; 2; 1ÞhTi¼1;i∞ → ½81; 7�: ð38Þ

We see that, unlike the triplet winding states, the breaking
induced by the vev of the nontrivial singlet bulk field hΦ−1i
differs between points hTi ¼ ω and hTi ¼ 1; i∞. However,
the structure of the groups [81, 9] and [81, 7] coincides in
both cases with Δð27Þ ⋊ Z3, which is the notation that we
adopt in Fig. 3.
To conclude, let us discuss the stabilizers of the CP-like

type, i.e., the possibility of enhanced CP-like transforma-
tions. Whether or not CP-like transformations are broken
or preserved is often a model dependent statement. As we
will see, this is because rephasing transformations of fields
are important in this context, and whether or not those
rephasings are physical or unphysical depends on the
specifics of the model. This is why in our previous
discussion we have focused on the non-CP-like flavor
symmetries, where model independent statements are
possible. However, independently of the model, one can
answer the question of whether or not the vev of a specific
field would automatically break the associated CP-like
transformation (i.e., whether or not the respective vev has a
CP-like stabilizer). The transformations we investigate here
are described by Eq. (3); i.e., they transform Φ ↦ UΦ̄ in
short. In addition, the transformation might include
an element of the initial (non-CP-like) eclectic flavor
symmetry that is preserved at the specific location hTi,
i.e., a transformation of the type Φ ↦ ρðgÞUΦ̄ with
g ∈ Gtraditional ∪ Gmodular ∪ GR. Note that there is a crucial
difference here with respect to generic bottom-up con-
structions: from the BU perspective, U has to be a
representation matrix of a suitable outer automorphism

transformation of the flavor symmetry that maps the
representations to their complex conjugates. Such matrices
are only defined up to a global phase by construction.

Therefore, in solving the equation UΦ̄¼! Φ, a phase can
always be absorbed in U. This is to be contrasted with the
TD construction. Here, first of all, not all outer auto-
morphisms of the flavor symmetry are possible, but only
those which are part of the eclectic group and preserved by
the specific vev hTi of the modulus. Second, as the matrix
U itself is a representation matrix within the eclectic group,
arbitrary global phases for U are not admissible.
In order to clarify whether or not the vevs listed in

Tables V and VI have a CP-like stabilizer, we take the
representative U of the respective CP-like transforma-
tion, stated in Eqs. (35) and (19), and before Eq. (14).
Furthermore, we allow to amend this generator by multi-
plying it by any element ρðgÞ of the unified flavor
symmetries at the respective moduli location hTi. Then,
we check whether the flavon vev can solve the equation

ρðgÞUhΦ̄i¼! hΦi: ð39Þ

We find that all of the flavon vevs listed in Tables Vand VI
exhibit CP-like stabilizers, with one exception. The sole
exception is the vev ð1; 1; 1ÞT for Hð3; 2; 1Þ (as always
irrespective of whether hTi is ω, 1 or i∞). This vev does not
allow for a solution of Eq. (39) unless a rephasing by a
global phase of i to ði; i; iÞT is admitted. Note that also the
omission of the global prefactors for all other vevs is, of
course, an explicit choice of a global phase, in the sense that
Eq. (39) would be spoiled also for these vevs upon a
“wrong” choice of global phase. Altogether, we see that all
of the vevs have CP-like stabilizers (modulo the global
choice of phase). In other words, none of the discussed
breaking patterns leads itself to CP violation in a model
independent way. Nonetheless, CP will certainly be broken
(just as the other residual symmetries) once the flavon and/
or modulus vevs are deflected away from their symmetry
enhanced points or, alternatively, if multiple vevs with
incommensurable stabilizers are switched on at the
same time.

V. CONCLUSIONS AND OUTLOOK

We have analyzed in detail the breakdown of the eclectic
flavor group as it appears in the top-down approach based
on string theory. In a realistic setup, the eclectic flavor
symmetry has to be broken. This breaking is induced by
two mechanisms. First, the vev of the modulus breaks the
finite modular symmetry, at least partially. Second, the
traditional flavor symmetry is universal in moduli space
and, hence, unbroken by the modulus vev. It can be
enhanced by elements of the finite modular symmetry at
specific, symmetry enhanced points in moduli space. Thus,
in the top-down approach, one cannot just consider the
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finite modular flavor symmetry and ignore the traditional
flavor group. The latter enhances the predictive power of
the scheme as it gives severe restrictions on the Kähler
potential and superpotential of the theory (see Ref. [18],
Sec. III, for a detailed discussion). Of course, the (possibly
enhanced) traditional flavor symmetry has to be broken as
well, and this requires the introduction of flavon fields. This
increases the number of parameters, but there is no
alternative. The flavon fields that break the traditional
flavor symmetry might break the modular symmetries as
well. This leads to an attractive flavor structure due to the
subtle interplay of the symmetry breakdown via flavons and
moduli as it allows the incorporation of various possibilities
for flavor hierarchies through the alignment of vevs.
We illustrate the scheme in detail for an example based

on the T 2=Z3 orbifold sector with traditional flavor group
Δð54Þ, modular flavor group T 0, and eclectic flavor group
Ωð2Þ as displayed in Table I. For the top-down approach,
we consider a representation content as it appears in
orbifold compactifications of the heterotic string (here,
the T 6=ðZ3 × Z3Þ orbifold, as discussed in Ref. [34]). All
possible massless representations are given in Table II. As
usual in the top-down approach, the spectrum is very
selective, and only a few representations of Δð54Þ and T 0
appear as massless modes. In the present example, we also
observe that the automorphy factors of the fields are strictly
correlated with the corresponding representations of the
discrete modular group T 0. Thus, there is here no freedom

to choose modular weights by hand; they are fixed by the
underlying string theory construction.
As a warm-up example, we discuss the breakdown

of Δð54Þ via flavon fields in Sec. III. The breakdown
pattern is shown in Fig. 1 and Table IV. The main result
of the paper concerns the breakdown patterns of the
eclectic flavor group Ωð2Þ, which is derived in Sec. IV.
We specifically consider the flavor groups Ξð2; 2Þ ¼
½324; 111� and Hð3; 2; 1Þ ¼ ½486; 125�, which appear as
unbroken subgroups of Ωð2Þ at the fixed points T ¼ i and
T ¼ 1;ω (as well as at T ¼ i∞ which is dual to T ¼ 1),
respectively. The qualitative breakdown patterns via flavon
fields are summarized in Figs. 2 and 3. The specific form of
the corresponding flavon vevs is given in Tables V and VI.
This shows that even a simple system like the T2=Z3

orbifold sector exhibits a rich web of breakdown patterns
via flavon and modulus vevs that might be suitable to be
applied to discuss the flavor structure of quarks and leptons
in the standard model of particle physics. In a companion
paper [35], we shall show that a successful fit of the masses
and mixing angles of quarks and leptons can be achieved.
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