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We explore a novel approach to compute the force between a static quark and a static antiquark with
lattice gauge theory directly. The approach is based on expectation values of Wilson loops or Polyakov
loops with chromoelectric field insertions. We discuss theoretical and technical aspects in detail, in
particular, how to perform their finite multiplicative renormalization and their evaluation using a multilevel
algorithm. We also compare the numerical results for the static force to the corresponding results obtained
in the traditional way, i.e., by computing first the static potential and then taking the derivative.
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I. INTRODUCTION

The static quark-antiquark potential VðrÞ is one of the
best-studied quantities in QCD. Very early after QCD was
established, it was related to the large time behavior of
Wilson loop expectation values [1–4]. Wilson loop expect-
ation values can be computed in lattice QCD. Indeed, they
were among the first quantities studied numerically and can
nowadays be computed very precisely. At small quark-
antiquark separations, r the static potential, also referred to
as QCD static energy, can also be calculated in a weak
coupling expansion. The perturbative expression of the
static energy is known quite accurately. The three loop
contributions have been computed in Refs. [5,6]. At three
loops, the static energy contains also a term proportional to
ln αs. This term has been computed in Refs. [7,8] and
resummed to all orders at leading logarithmic accuracy in
Ref. [9]. Next-to-leading logarithms have been computed
and resummed to all orders in Refs. [10,11]. At present, the
static energy is therefore known at next-to-next-to-next-to-
leading-logarithmic accuracy.
Combining the high-precision results for VðrÞ from

lattice QCD as well as from perturbative QCD allows for
an accurate extraction of the strong coupling αs that is
competitive with lattice determinations using other

observables [12]. Recent extractions of αs from VðrÞ can
be found in Refs. [13–18].
The perturbative expression for the static potential

computed in dimensional regularization is affected by a
renormalon ambiguity of order ΛQCD [19,20]. In a lattice
regularization, there is no renormalon ambiguity, but a
linear divergence due to the self-energy, which is of
order αsð1=aÞ=a, where a denotes the lattice spacing.
The self-energy vanishes order by order in dimensional
regularization. Both the divergent self-energy in a lattice
regularization and the renormalon in dimensional regulari-
zation can be absorbed into an additive r-independent
constant. Indeed, the physical information is contained in
the shape of VðrÞ, which, after charge renormalization, is
finite and renormalon-free. The shape of the potential is the
static force defined via FðrÞ ¼ ∂rVðrÞ. The static force
also carries the relevant information to extract αs.
A possibility to compute the static force with lattice

gauge theory is to first compute the static potential and then
to take the derivative via finite differences. This program
has been successfully carried out in quenched lattice QCD
[21,22]. In full QCD and at small separations, lattice data
points for VðrÞ are typically sparse and exhibit large
discretization errors. One can still determine the static
force by interpolating the lattice data points with a smooth
function, but the interpolation might become a sizable
source of uncertainty [14].
In Refs. [23,24], it has been recently suggested that the

force between a static quark and a static antiquark can be
computed directly from the expectation value of a Wilson
loop with a chromoelectric field inserted in one of the
temporal Wilson lines, a result originally derived in
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Ref. [25]. In this paper, we carry out a quenched lattice
QCD study of this quantity. We discuss technical aspects in
detail, e.g., how to compute the static force using either
Wilson or Polyakov loops with chromoelectric field inser-
tions. We also compute the finite multiplicative renormal-
ization of the insertions. Moreover, we compare the
efficiency of this novel method to compute the static force
with the traditional method of first computing the static
potential and then taking the derivative. Our conclusion is
that the determination of the static force from the expect-
ation value of a Wilson loop or a pair of Polyakov loops
with a chromoelectric field insertion is a viable alternative
method. Both methods provide consistent results with
comparable errors, but different systematics. We note that
the connection between the force and the color-electric field
has already been used, e.g., in Refs. [26,27], to determine
the string tension in quenched lattice QCD.
The paper is organized in the following way. In Sec. II,

we review the derivation of the force in terms of a Wilson
loop with a chromoelectric field inserted in one of the
temporal lines, and we discuss the lattice discretization of
this expression and its renormalization. In Sec. III, we
specify our SU(3) lattice setup, and we explain how we use
the multilevel algorithm [28] in our computations. The
numerical results are presented in Sec. IV. In particular, we
compare the results obtained with our method to the
corresponding results obtained by deriving the static
potential, and we discuss the efficiency of the two methods.
In Sec. V, we draw some conclusions and give a brief
outlook. Some details on the optimization of the parameters
of the multilevel simulations can be found in the Appendix.
Preliminary results of this work have been presented at a
recent conference [29].

II. THEORETICAL AND TECHNICAL ASPECTS

A. The static force from the static potential

The traditional way to compute the force between a static
quark-antiquark pair is to take the numerical derivative of
the static potential,

FðrÞ ¼ ∂rVðrÞ: ð1Þ

The latter is extracted from a nonperturbative evaluation of
rectangular Wilson loops

TrfPWr×Tg ¼ Tr

�
P exp

�
ig
I
r×T

dxμAμðxÞ
��

ð2Þ

extending in space from 0 to r and in time from −T=2 to
þT=2. They represent the correlation function of a static
quark at 0 and an antiquark at r connected by a string of
color flux. Here and in the following, time and fields are
understood as Euclidean, Trf…g denotes the color trace,
and P implies the path ordering prescription for the color

matrices. The spectral decomposition of the Wilson loop
expectation value reads

hTrfPWr×Tgi¼ ja0ðrÞj2e−E0ðrÞTþ
X
n>0

janðrÞj2e−EnðrÞT:

ð3Þ

The coefficients janðrÞj2 describe the overlap of the
spatial Wilson lines with the eigenstates jnαβðrÞi of the
Hamiltonian of Yang-Mills theory in the presence of two
static color charges in temporal gauge with energy En,

H0jnαβðrÞi ¼ EnðrÞjnαβðrÞi: ð4Þ

The color indices α, β ¼ 1, 2, 3 indicate the transformation
of the states in the fundamental and antifundamental
representations at 0 and r, respectively. The ground state
energy is identified with the static potential VðrÞ≡ E0ðrÞ,
and the excited states with n > 0 have energies
EnðrÞ > VðrÞ. Clearly, in the large T limit, the terms with
n > 0 in Eq. (3) are exponentially suppressed with respect
to the first one. For sufficiently large T, the Wilson loop
expectation value thus allows us to extract VðrÞ from the
first term.
Instead of the Wilson loop, also a correlation function

of Polyakov loops can be employed to compute the
potential. Defining the Polyakov loop as a normalized
trace of a temporal Wilson line closing through the periodic
boundary

LðxÞ ¼ 1

Nc
Tr
�
P exp

�
ig
Z

T

0

dtA0ðxÞ
��

; ð5Þ

the expectation value of its correlation function has the
spectral decomposition

hL†ð0ÞLðrÞi ¼ 1

N2
c

X
n;α;β

jhnαβjnβαij2e−EnðrÞT

¼ 1

N2
c

X
n

e−EnðrÞT ð6Þ

(see, e.g., Ref. [30]), again permitting us to extract VðrÞ for
large T from the leading term.

B. The static force in terms of the chromoelectric field

An alternative way to compute the static force was
proposed in Refs. [23,24] using the equation

FðrÞ ¼ ∂rVðrÞ ¼ lim
T→∞

− i
hTrfPWr×T r̂ · gEðr; t�Þgi

hTrfPWr×Tgi
: ð7Þ

Here, r̂ is the spatial direction of the separation of the static
color charges, and Eðr; t�Þ denotes the chromoelectric field
located on one of the temporal Wilson lines at a time
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−T=2 < t� < þT=2. The chromoelectric field components
are defined as EjðxÞ ¼ Fj0ðxÞ in terms of the non-Abelian
field strength tensor. In the limit T → ∞, the right-hand
side of Eq. (7) is independent of t�, as long as t� is a
fixed time.
The derivation of Eq. (7) follows from Ref. [25]. First,

we recall the identities

Djðr;þT=2Þϕðr;þT=2;r;−T=2Þ
¼ϕðr;þT=2;r;−T=2ÞDjðr;−T=2Þ

þ i
Z þT=2

−T=2
dtϕðr;þT=2;r; tÞgEjðr; tÞϕðr; t;r;−T=2Þ;

ð8Þ

Diðr;�T=2Þϕðr;�T=2; 0;�T=2Þ
¼ ϕðr;�T=2; 0;�T=2Þ∂i þO� ð9Þ

(see Refs. [25,31]), where ϕðy; xÞ is a straight Wilson line
connecting the point x with the point y, DjðxÞ ¼ ∂j −
igAjðxÞ is the gauge covariant derivative computed at the
point x, ∂j ¼ ∂=∂xj, and O� are operators involving the
chromomagnetic field on the Wilson lines at the times

�T=2 (their explicit expression can be found in Ref. [25]).
From this, one can derive

h∂jTrfPWr×Tgi∼ i
Z þT=2

−T=2
dthTrfPWr×TgEjðr; tÞgi; ð10Þ

where ∼ denotes the asymptotical equivalence
with respect to large T [i.e., fðTÞ ∼ gðTÞ if and only if
limT→∞ fðTÞ=gðTÞ ¼ 1]. This is because the chromomag-
netic fields in the spatial Wilson lines have no overlap with
the lowest energy level in the spectrum of the static quark-
antiquark pair; hence, their contribution is exponentially
suppressed in the large T limit. Since in that limit, we
furthermore have hTrfPWr×Tgi ∼ ja0ðrÞj2e−VðrÞT , we can
conclude from Eq. (10) that for large T,

−∂jVðrÞT∼
i

hTrfPWr×Tgi
Z þT=2

−T=2
dthTrfPWr×TgEjðr; tÞgi:

ð11Þ

The spectral decomposition of the expectation value of a
Wilson loop with a chromoelectric field insertion reads [25]

hTrfPWr×TgEjðr; tÞgi ¼ ja0ðrÞj2e−VðrÞTh0αβjgEβγ
j j0γαi

þ
X

ðn;mÞ≠ð0;0Þ
a�nðrÞamðrÞe−ðEnðrÞþEmðrÞÞT=2þðEnðrÞ−EmðrÞÞthnαβjgEβγ

j jmγαi; ð12Þ

where the greek indices label the fundamental representa-
tion color components and run from 1 to 3; cf. Sec. II A.
From the spectral decomposition, it follows that

Z þT=2

−T=2
dthTrfPWr×TgEjðr; tÞgi

∼ Tja0ðrÞj2e−VðrÞTh0αβjgEβγ
j j0γαi

∼ ThTrfPWr×TgEjðr; t�Þgi: ð13Þ

The first line of Eq. (13) makes clear that the large T limit
of the left-hand side selects the ground state contribution.
The second line shows that evaluating the integral with the
chromoelectric field at some fixed arbitrary time −T=2 <
t� < T=2 instead of t is a valid leading order approximation
in the large T limit.
Thus, in the large T limit, Eq. (11) reduces to Eq. (7),

∂jVðrÞ ∼ −i
hTrfPWr×TgEjðr; t�Þgi

hTrfPWr×Tgi
: ð14Þ

Equation (7) provides a way to compute the force directly
from a Wilson loop expectation value rather than to

compute it by taking a numerical derivative of the static
potential VðrÞ. However, the spectral decomposition
shows a faster convergence for the ordinary Wilson
loop than for hTrfPWr×T r̂ · gEðr; t�Þgi. In fact, the expo-
nential suppression of the subleading terms in Eq. (3),
which is e−ðEnðrÞ−VðrÞÞT , is stronger than the exponential
suppression of the subleading terms in Eq. (13), which is
e−ðEnðrÞ−VðrÞÞT=2. Thus, it is not clear a priori which
observable is more efficient to evaluate numerically.
Just as in the case of the static potential, the static force

may also be extracted from correlation functions of
Polyakov loops instead of from Wilson loops. To this
end, we define a Polyakov loop with a chromoelectric field
insertion,

LEðrÞ ¼
1

Nc
Tr

�
P exp

�
ig
Z

T

t�
dtA0ðxÞ

�
r̂ · gEðr; t�ÞP

× exp

�
ig
Z

t�

0

dtA0ðxÞ
��

: ð15Þ

The analog of Eq. (7) then reads

LATTICE GAUGE THEORY COMPUTATION OF THE STATIC … PHYS. REV. D 105, 054514 (2022)

054514-3



FðrÞ ¼ lim
T→∞

− i
hL†ð0ÞLEðrÞi
hL†ð0ÞLðrÞi : ð16Þ

The static force corresponds to a renormalization group
invariant quantity, which does not require renormalization
and thus can be computed from bare fields. In order to see
this, consider its calculation via the static potential
extracted from ordinary, bare Wilson loops as described
in Sec. II A. The static potential is an eigenvalue of the
Hamiltonian H0 of Yang-Mills theory in the presence of
static sources, and as such contains an r-independent, linear
divergence due to the self-energies of the static sources.
This divergence is removed by taking the r derivative, so
that the force FðrÞ ¼ ∂rVðrÞ is the same when computed
from either renormalized or unrenormalized Wilson loops.
Equation (7) then implies the same to hold for the new
observable on its right side.

C. Lattice discretization

The Wilson loop Wr×T is discretized by the standard
product of adjacent link variables UμðxÞ ¼ eiagAμðxÞ around
a rectangle with sides of length r and T, where r=a and T=a
are integers and a denotes the lattice spacing. In the
following, we always choose separations r parallel to the
z axis. The static potential can then be obtained via

Vðr; aÞ ¼ lim
T→∞

Veffðr; T; aÞ;

Veffðr; T; aÞ ¼ −
1

a
ln
hTrfPWr×ðTþaÞgi
hTrfPWr×Tgi

: ð17Þ

Vðr; aÞ depends on a and diverges in the continuum limit
because of the self-energy of the static quarks. One can get
rid of this self-energy by considering static potential
differences Vðr1; aÞ − Vðr2; aÞ, which have leading order
discretization errors proportional to a2, because the unim-
proved Wilson pure gauge action we are using in this work
is accurate up to Oða2Þ [32].
A straightforward way of computing the static force from

the static potential is using a discretized derivative,

F∂Vðr; aÞ ¼
Vðrþ a; aÞ − Vðr − a; aÞ

2a
: ð18Þ

Discretization errors in static potential differences are
known to be particularly large for small quark-antiquark
separations r. A common procedure to reduce these is to
define tree-level improved separations

rI ¼ rIðrÞ ¼
�

2a
4πðGðrþ aÞ − Gðr − aÞÞ

�
1=2

ð19Þ

with

GðrÞ ¼ 1

a

Z þπ

−π

d3k
ð2πÞ3

cosðrk3=aÞ
4
P

3
j¼1 sin

2ðkj=2Þ
; ð20Þ

and to replace Eq. (18) by

F∂VðrI; aÞ ¼
Vðrþ a; aÞ − Vðr − a; aÞ

2a
ð21Þ

(see Ref. [33] for details). At tree level, one then obtains

F∂VðrI; aÞ ¼
g2

4πr2I
; ð22Þ

in agreement with continuum perturbation theory.
The lattice formulation of the observable given by the

right-hand side of Eq. (7) is straightforward. We place the
field insertion Eðr; t�Þ in the numerator at t� ¼ 0, such
as to maximize the distance to the temporal boundaries of
the Wilson loop (which are located at −T=2 and þT=2).
The discretization of the field insertion Ej ¼ Fj0 depends
on the choice for the discrete partial derivative in the field
strength tensor. For the simple forward derivative
∂jfðxÞ ¼ ðfðxþ aÞ − fðxÞÞ=a, the field strength tensor
is related to the plaquette Pμ;ν in the usual way,

Pμ;ν ¼ 1þ ia2gFμν þOða3Þ; ð23Þ

which gives the chromoelectric lattice field components

gEj ¼
Pj;0 − P†

j;0

2ia2
þOðaÞ: ð24Þ

A smaller discretization error can be achieved using the
symmetric definition of the derivative ∂jfðxÞ¼ ðfðxþaÞ−
fðx−aÞÞ=2a, and either a so-called butterfly

Πj0 ¼
Pj;0 þ P0;−j

2
ð25Þ

or a cloverleaf

Πj0 ¼
Pj;0 þ P0;−j þ P−j;−0 þ P−0;j

4
ð26Þ

of the plaquettes (see, e.g., Ref. [34]). For those cases, the
chromoelectric field is given by

gEj ¼
Πj0 − Π†

j0

2ia2
þOða2Þ: ð27Þ

In our computations, we use these symmetric discretiza-
tions (cloverleaf for Wilson loops, butterfly for Polyakov
loops). With these definitions, we arrive at the discretized
version of Eq. (7),
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FEðrI; aÞ ¼ lim
T→∞

FE;effðrI; T; aÞ;

FE;effðrI; T; aÞ ¼ −i
hTrfPWr×T r̂ · gEðr; t�Þgi

hTrfPWr×Tgi
ð28Þ

with r parallel to one of the spatial coordinate axes, and
where we use again the tree-level improved separations rI
defined in Eq. (19) [one can show that at tree level
FEðrI; aÞ ¼ g2=4πr2I ; i.e., also in this case there is agree-
ment with continuum perturbation theory]. FEðrI; aÞ
depends on a with leading order corrections proportional
to a2 (cf. similar observables discussed in Refs. [34–36]).
With these choices, both ways to compute the static

force formally have discretization errors of Oða2Þ and we
expect

FðrÞ ¼ lim
a→0

F∂VðrI; aÞ ¼ lim
a→0

FEðrI; aÞ: ð29Þ

However, the approach to the continuum limit may well be
quantitatively quite different for the two observables,
because for operators involving elements of the field
strength tensor, significant finite renormalization factors
are expected when comparing the lattice regularization with
regularization schemes in the continuum at values of the
gauge coupling typically used in numerical simulations.
The reason is the slow convergence of lattice perturbation
theory when expanded in the bare coupling [37]. This has
been noted heuristically in early treatments of spin cor-
rections to the static potential [34,35,38] and is observed
both in a perturbative renormalization of the color-electric
field correlator [39] as well as in a nonperturbative
renormalization of the color-magnetic field operator [40].
Since Eq. (28) involves a color-electric field, while the
standard Wilson loop does not, we expect sizable
differences between the two extractions of the static force
at finite lattice spacing. To a large extent, these differences
can, however, be absorbed into a multiplicative renormal-
ization factor,

ZEðaÞ ¼
F∂Vðr�I ; aÞ
FEðr�I ; aÞ

; ð30Þ

where r�I is an arbitrary separation, with ZEðaÞ → 1 for
a → 0. After determining this renormalization factor at a
single arbitrary separation r�I , it can be applied to FEðrI; aÞ
at all other separations,

Fren
E ðrI; aÞ ¼ ZEðaÞFEðrI; aÞ: ð31Þ

Fren
E ðrI; aÞ should be significantly closer to both F∂VðrI; aÞ

and FðrÞ than is the case for FEðrI; aÞ, also at values
of the gauge coupling typically used in numerical
simulations.
All considerations of this section can be applied to

correlation functions of Polyakov loops in an analogous

way. Particularly important is the counterpart of Eq. (28),
which is

FEðrI; aÞ ¼ lim
T→∞

− i
hL†ð0ÞLEðrÞi
hL†ð0ÞLðrÞi : ð32Þ

III. LATTICE SETUP

A. Gauge link ensembles

To discretize SU(3) Yang-Mills theory, we used the
standard Wilson plaquette action. For the relation between
the lattice spacing a and the gauge coupling β, we took the
parametrization from Ref. [21],

lnða=r0Þ ¼ −1.6804 − 1.7331ðβ − 6Þ þ 0.7849ðβ − 6Þ2
− 0.4428ðβ − 6Þ3: ð33Þ

The parameters of the gauge link ensembles we gen-
erated for this work are collected in Table I. We note that
the spatial volumes L3 are quite small with spatial extents
L ≈ 1.2 fm. Consequently, our results might be subject to
sizable finite volume corrections. We do not consider this as
a primary problem at this stage, because we were exploring
and testing a new method, not trying to determine the static
force or any other physical quantity precisely, i.e., for
infinite volume.
To improve the ground state overlaps generated by the

spatial Wilson lines in the Wilson loops, we used APE
smeared spatial links with αAPE ¼ 0.5 and NAPE ¼ 50
smearing steps (for detailed equations on APE smearing,
see, e.g., Refs. [41,42]).

B. Multilevel algorithm

To compute in a very efficient way the correlation
functions introduced in Sec. II, i.e., Wilson loops
and Polyakov loop correlation functions with and without
chromoelectric field insertions, we used the multilevel
algorithm [28]. We partitioned a lattice with T=a lattice
sites in temporal direction into nts time slices with
thicknesses p1; p2;…; pnts , where

P
j pj ¼ T=a. For con-

venience, we defined the time-slice partitioning
pts ¼ fp1; p2;…; pnpg, which was repeated N times to
fill the lattice, i.e., pj ¼ pjþnp and nts ¼ Nnp. In principle,

TABLE I. Gauge link ensembles. To quote the lattice spacing in
fm, we define r0 ¼ 0.5 fm.

Ensemble β ðL=aÞ3 × T=a r0=a a (fm)

A 6.284 203 × 40 8.333 0.060
B 6.451 263 × 50 10.417 0.048
C 6.594 303 × 60 12.500 0.040
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time slices can be partitioned again, but throughout this
work, we used only a single level of partitioning.
Following a notation similar to that of Ref. [28], corre-

lation functions are written in terms of two-link operators
Tðx; rĵÞαβγδ ¼ fU�

0ðxÞgαβfU0ðxþ rĵÞgγδ, where U0ðxÞ are
link variables in the temporal direction, and ĵ denotes the
unit vector in the j direction. In the context of the multilevel
algorithm, a regular Wilson loop is written as

Wr×TðxÞ ¼ Lðx; rĵÞαγf½P1�½P2�…½Pnts �gαβγδ
× L�ðxþ T0̂; rĵÞβδ; ð34Þ

where Lðx; rĵÞ is an APE smeared spatial Wilson line

Pk ¼ Tðxþðdk−pkÞa0̂;rĵÞTðxþðdk−pkþ1Þa0̂;rĵÞ…
×Tðxþðdk−1Þa0̂;rĵÞ; ð35Þ

and ½Pk� is the average of Pk in the time slice extending
from dk − pk to dk with dk ¼

P
k
j¼1 pj. In Eqs. (34) and

(35), we have used the multiplication prescription for two-
link operators,

fT1T2gαβγδ ¼ fT 1gασγρfT 2gσβρδ: ð36Þ

As discussed below in more detail, ½Pk� corresponds to an
average over nm sublattice configurations separated by nu
heat bath sweeps, where only links in the interior of the kth
time slice are updated, and spatial links on the time-slice
boundaries are fixed. This requires locality, which is a
property of the standard Wilson plaquette action. Wilson
loop averages hWr×Ti are obtained by computing the
average of the right-hand side of Eq. (34), which contains
the time-slice averages ½Pk�. Polyakov loop correlation
functions can be computed in almost the same way, just
replacing Eq. (34) by

L�ðxÞLðxþ rĵÞ ¼ f½P1�½P2�…½PNts
�gααββ: ð37Þ

When inserting chromoelectric fields using the clover-
leaf discretization (26), as done in the case of Wilson loops,

one has to choose their positions in such a way that they do
not contain interior links of two time slices. Clearly, this
requires time slices of thickness pj ≥ 2. Moreover, for
Wilson loops the spatial Wilson lines L should be located
on time-slice boundaries. This implies certain restrictions
for the temporal extent of the Wilson loop T for given time-
slice partitioning. For example, with time-slice partitioning
pts ¼ f2g, only Wilson loops with temporal extent T=a ¼
2; 6; 10;… can be computed, since the chromoelectric field
is always inserted at the center of one of the two temporal
Wilson lines. For efficiency reasons, one should select a
time-slice partitioning, which allows one to compute a large
number of different temporal extents T. The time-slice
partitionings we used for the Wilson loops are collected in
Table II. For Polyakov loops, such restrictions do not exist,
and we chose the simple partitioning pts ¼ fT=10ag with
chromoelectric fields always inserted at t ¼ a.
A multilevel simulation includes the following steps:
(0) Start with any gauge link configuration (we use “hot

starts” for our Wilson loop simulations, i.e., ran-
domly chosen gauge links, and “cold starts” for our
Polyakov loop simulations, i.e., all gauge links set to
unity). Perform nu;th heat bath sweeps to generate a
thermalized gauge link configuration, where each
sweep is followed by nor over-relaxation steps.

(1) Generate nm sublattice configurations for each of the
nts time slices by updating the links in the interior
nmnu times using the heat bath algorithm (the nm
sublattice configurations are then separated by nu
updates).

(2) Compute time-slice averages ½Pk� on the correspond-
ing nm sublattice configurations.

(3) Compute Wilson loop or Polyakov loop samples on
the full gauge link configuration according to
Eqs. (34) or (37), respectively, using the time-slice
averages ½Pk� obtained in step (2).

(4) Generate the next full gauge link configuration by
performing nu;0 heat bath sweeps, where each sweep
is followed by nor over-relaxation steps.

(5) Repeat steps (1) to (4) nm;0 times and estimate
hWr×Ti or hL�ð0ÞLðrÞi, respectively, from the sam-
ples obtained in step (3).

TABLE II. Time-slice partitionings for the computation of Wilson loops with the multilevel algorithm. Chromoelectric fields are
inserted at time slices marked with �.

Ensemble Simulation pts r=a T=a

A 1 f1; 1; 1; 1; 1; 1; 1; 1; 2�g f2; 3;…; 10g f5; 6;…; 18g
B 2 f1; 1; 1; 1; 1; 1; 1; 1; 2�g f2; 3;…; 13g f2; 3;…; 18g
C 3 f1; 1; 1; 1; 1; 1; 1; 1; 2�g f2; 3;…; 8g f2; 3;…; 17g
C 4 f1; 1; 1; 1; 1; 1; 1; 1; 2�g f9; 10;…; 15g f2; 3;…; 17g
C 5 f1; 1; 1; 1; 1; 1; 2�; 1; 1; 1, 1, 1, f2; 3;…; 15g f18; 19g

1; 2�; 1; 1; 1; 1; 1; 1; 2�; 1; 1, 1, 1, f20; 21; 22; 23g
1; 1; 2�; 1; 1; 1; 1; 1; 1; 2�; 1, 1, 1,
1; 1; 1; 2; 1; 1; 1; 1; 1; 1; 2; 4g
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Gauge link configurations for our Wilson loop computa-
tions and our Polyakov loop computations were generated
with different simulation codes, with the CL2QCD software
package [43] and a code developed in Ref. [44]. The values
of the simulation parameters, which were crudely opti-
mized by numerical tests (see the Appendix), are collected
in Table III.

IV. NUMERICAL RESULTS

The majority of quantities discussed in the following are
lattice quantities and thus depend on the lattice spacing a.
In contrast to Sec. II C, we suppress the a dependence
throughout this section to keep the notation simple. For
example, Vðr; aÞ from Sec. II C is equivalent to VðrÞ in this
section. Moreover, we exclusively use tree-level improved
separations rI , as discussed in Sec. II C. For simplicity, we
omit the index, i.e., denote separations just by r.

A. The static potential

To have a reference, we first computed the static potential
VðrÞ using Eq. (17). For each value r ¼ a; 2a; 3a;…, we
fitted a constant to Veffðr; TÞ in the range Tmin ≤ T ≤ Tmax.
Tmin and Tmax were chosen sufficiently large to guarantee a
strong suppression of excited states using an algorithm
discussed in Sec. 5 of Ref. [45]:

(i) T 0
min is the minimal T, where Veffðr; TÞ and

Veffðr; T þ aÞ differ by less than 2σ.
(ii) T 0

max is the maximum T, where correlation functions
have been computed (see Table II).

(iii) Fit constants VðrÞ to Veffðr; TÞ for all ranges
Tmin…Tmax with T 0

min ≤ Tmin, Tmax ≤ T 0
max, and

Tmax − Tmin ≥ 2a. Results with χ2red > 1.0 are dis-
carded, where χ2red denotes the uncorrelated reduced
χ2 of the corresponding fit. If all fits yield χ2red > 1.0,
keep the one with the smallest χ2red and discard all
others.

(iv) As the final result for VðrÞ, take the fit result
corresponding to the longest plateau, i.e., with
maximum Tmax − Tmin. If there are several fit results
with the same maximum Tmax − Tmin, take the fit
result with the smallest Tmin.

The fit results represent the static potential V at tree-level
improved separations according to Appendix B of Ref. [21].

We find agreement with results from the literature [21,46].
Similarly, we computed the static potential at finite
but small temperature 1=T ¼ 1=Nta ≈ 1=4.8r0 ≈ 82 MeV
from Polyakov loops

VðrÞ ¼ −
1

T
lnhL†ð0ÞLðrÞi ð38Þ

with the Polyakov loops separated along one of the
spatial coordinate axes, e.g., LðrÞ ¼ Lðr ¼ ð0; 0; rÞÞ.
VðrÞ obtained via Eq. (38) should be almost identical to
VðrÞ obtained via Eq. (17), because the leading finite
temperature correction in hL†ð0ÞLðrÞi is suppressed by
e−ðE1ðrÞ−VðrÞÞT ≈ e−ð3=r0Þ×4.8r0 ≈ 5 × 10−7, as can be read off
from Eq. (6) [the crude estimate E1ðrÞ − VðrÞ ≈ 3=r0 was
taken from Ref. [45] ]. This is supported by our numerical
results as well as by numerical results from Refs. [47,48].
For spatial separations r=a≳ 3a and r≳ 0.13 fm, the lattice
results forVðrÞ can be parametrized by the Cornell potential

VCornellðrÞ ¼ V0 −
α

r
þ σr ð39Þ

(see, e.g., Ref. [15]). Performing a fit to the lattice results for
VðrÞ obtained with Wilson loops and ensemble B in the
range 2.889 ≤ r=a ≤ 14.012, we find α ¼ 0.260 and
σ ¼ 1.508=r20, in reasonable agreement with results from
the literature, e.g., Ref. [49]. The additive constant V0 is
divergent in the continuum limit and physically irrelevant.

B. Numerical proof of concept

Now we consider FEðrÞ=FEðr�Þ, where FE is the non-
renormalized force defined in Eq. (28), when using Wilson
loops. We determined FEðrÞ by fitting a constant to
FE;effðrÞ, where the T range for the fit was chosen in
the same way as for the static potential (see the discussion
at the beginning of Sec. IV). When using Polyakov loops,

FIG. 1. FEðrÞ=FEðr�Þ as a function of r for r� ¼ 0.48r0 ≈
0.24 fm obtained from Wilson loops (boxes) and
Polyakov loops (triangles). For comparison, we also show
∂rVCornellðrÞ=∂rVCornellðr�Þ.

TABLE III. Multilevel simulation parameters.

Ensemble Loops nm;0 nu;th nu;0 nor nm nu

A Wilson 800 1000 20 1 50 2
Polyakov 1284 150 5 3 6000 1

B Wilson 800 40000 200 15 50 2
Polyakov 1825 150 5 3 3000 1

C Wilson 800 40000 200 15 50 2
Polyakov 1391 150 5 3 6000 1
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we determine FEðrÞ by Eq. (32). In both cases, r� ¼
0.48r0 ≈ 0.24 fm is a fixed separation chosen such that
r�=a is an integer for all three ensembles, i.e., r�=a ¼ 4, 5,
6 for ensembles A, B, and C, respectively. Since
we compute the static force at improved separations,
we take the two data points FEðr1Þ and FEðr2Þ with r1
and r2 closest to and enclosing r� and interpolate with
α=r2 þ σ to read off FEðr�Þ. Note that, because
of the multiplicative renormalization of FE discussed in
Sec. II C, FEðrÞ=FEðr�Þ ¼ Fren

E ðrÞ=Fren
E ðr�Þ. Thus, also

FEðrÞ=FEðr�Þ should exhibit only mild differences
to FðrÞ=Fðt�Þ.
In Fig. 1, we show FEðrÞ=FEðr�Þ as a function

of the separation for all three ensembles obtained from
Wilson loops as well as from Polyakov loops. For
comparison, we also show ∂rVCornellðrÞ=∂rVCornellðr�Þ,
which represents the same physical quantity, this time,
however, obtained from the lattice result for the static
potential parametrized according to Eq. (39) and not
from a direct computation of the static force. The agree-
ment of FEðrÞ=FEðr�Þ and ∂rVCornellðrÞ=∂rVCornellðr�Þ is a
numerical proof of concept for our method of computing
the static force.

C. The renormalization factor ZE

In Fig. 2, we show the renormalization factor ZE ¼
F∂Vðr�Þ=FEðr�Þ defined in Eq. (30) as a function of r�,
both for Wilson loops (left plot) and for Polyakov loops
(right plot). As discussed in Sec. II C, ZE should be fairly

independent of r�. This expected constant behavior of ZE is
confirmed by our numerical results, which exhibit clear
plateaus. There is, however, a dependence on β and, thus,
on the lattice spacing a, where ZE is slowly decreasing for
decreasing a. This is consistent with our expectation
ZEðaÞ → 1 for a → 0 discussed in Sec. II C.
We determined the numerical values for ZE separately

for Wilson loops and for Polyakov loops and for each of our
three ensembles by fitting a constant to the lattice data
points shown in Fig. 2 in the range 0.35r0 ≤ r� ≤ 0.65r0.
The fit results are collected in Table IV.

D. Comparison of efficiency: F∂V versus FE

1. Asymptotic T behavior of Wilson loops

The spectral decomposition of Wilson loops and of
Wilson loops with chromoelectric field insertions has been
discussed in Secs. II A and II B. For large T, the Wilson
loop hTrfPWr×Tgi is proportional to e−VðrÞT with leading
order correction suppressed by e−ðE1ðrÞ−VðrÞÞT [see Eq. (3)].
In contrast, the Wilson loop with chromoelectric field
insertion hTrfPWr×TgEjgi has a leading order correction
proportional to e−ðE1ðrÞ−VðrÞÞT=2 [see Eq. (12)], i.e., a
correction more weakly suppressed with respect to the
temporal separation T. Thus, to determine the static force
using FE, we expect that one has to consider correlation
functions at T values around twice as large compared to
using F∂V to get a similar suppression of unwanted
contributions by excited states.
In Fig. 3, we compare the asymptotic T behavior of the

renormalized effective force

Fren
E;effðr; TÞ ¼ ZEFE;effðr; TÞ ð40Þ

with ZE taken from Table IV and of

F∂V;effðr; TÞ ¼
Veffðrþ a; TÞ − Veffðr − a; TÞ

2a
ð41Þ

FIG. 2. ZE ¼ F∂Vðr�Þ=FEðr�Þ as a function of r�. The colored horizontal lines and error bands represent the fits to determine a
numerical value for ZE for each ensemble. Left: Wilson loops. Right: Polyakov loops.

TABLE IV. Renormalization factors ZE obtained by fitting
constants to F∂Vðr�Þ=FEðr�Þ in the range 0.35r0 ≤ r� ≤ 0.65r0.

Ensemble a (fm)
ZE from Wilson

loops
ZE from Polyakov

loops

A 0.060 1.4068(63) 1.4001(20)
B 0.048 1.3853(30) 1.3776(10)
C 0.040 1.348(11) 1.3628(13)
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for spatial separation r=a ¼ 5 and ensemble C. Fren
E;effðr; TÞ

converges to a plateau only at T=a≳ 14. F∂V;effðr; TÞ,
on the other hand, is essentially constant already for
T=a≳ 6, which is consistent with our theoretical
expectation.
For Polyakov loops, there is no such difference between

the two methods. In both cases, contributions by excited
states are proportional to e−ðE1ðrÞ−VðrÞÞT , where T denotes
the temporal extent of the lattice.

2. Statistical precision and computing time

Now we compare the efficiency of different approaches
to compute the static force. A useful quantity to assess the
efficiency is ðΔOÞ2τ—the computing time τ needed to
compute an observable O with statistical error ΔO. Small
values indicate an efficient method, large values an ineffi-
cient method. Since statistical errors in Monte Carlo
simulations are proportional to 1=

ffiffiffi
τ

p
, this quantity allows

a simple and fair comparison of two methods, even if the
times invested for the corresponding computations are
different.

We start by exploring the benefit of using the
multilevel algorithm for the case of Wilson loops. To this
end, we compare in Fig. 4 a computation, where we
employed the multilevel algorithm with optimized para-
meters, as discussed in the Appendix, to a standard heat
bath simulation without multilevel algorithm using the ratio
ðΔOÞ2τjmultilevel=ðΔOÞ2τjno multilevel. The observable inves-
tigated in the left plot is the effective force, i.e.,
O ¼ FE;effðr; TÞ, for several fixed separations r. The
observable investigated in the right plot is the effective
potential, i.e., O ¼ Veffðr; TÞ, for the same fixed separa-
tions r. Both plots show that at small temporal separations
T, it is even more expensive to use the multilevel algorithm.
However, at large temporal separations, which are typically
needed for a precise extraction of the static force or the
static potential, there is a huge gain in efficiency when
employing the multilevel algorithm. For example, for
ensemble C and T=a ¼ 14, the time needed to compute
the static force with the same statistical precision is reduced
by a factor of around 104 almost independent of r. As one
can read off from Fig. 3, it is necessary to compute the
correlation functions at such temporal separations.
In Fig. 5, we compare the efficiency of computing the

static force when using FE and when using F∂V . Again, we
show ratios of the quantity ðΔOÞ2τ. The left plot shows
the result for Wilson loops, where O ¼ Fren

E;effðr; TÞ in the
numerator andO¼F∂V;effðr;T=2Þ in the denominator (note
that roughly twice as large temporal separations T are
needed for Fren

E;eff compared to F∂V;eff for a similar suppres-
sion of contributions by excited states; see Sec. IV D 1). The
right plot shows the result for Polyakov loops, where O ¼
Fren
E ðrÞ in the numerator and O ¼ F∂VðrÞ in the denomi-

nator. The plots indicate that it is advantageous to compute
the static force via FE when using Wilson loops and typical
temporal and spatial separations, while for Polyakov loops
the traditionalmethod viaF∂V is significantlymore efficient.
This different behavior is somewhat surprising and should
be investigated in more detail in the future.

FIG. 3. Asymptotic T behavior of Fren
E;effðr; TÞ and of

F∂V;effðr; TÞ for r=a ¼ 5 and ensemble C.

FIG. 4. Comparison of the efficiency when using the multilevel algorithm and when not using the multilevel algorithm for ensemble C.
Left: computation of the effective force FE;effðr; TÞ. Right: computation of the effective potential Veffðr; TÞ.
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V. CONCLUSIONS

We tested a novel method to compute the static force
FðrÞ from expectation values of Wilson or Polyakov
loops with chromoelectric field insertions, which was
suggested in Refs. [23,24]. The numerical results con-
verged well toward the continuum limit, after a multi-
plicative renormalization by ZE, where ZE ¼ 1þOðg20Þ
was computed nonperturbatively from the standard force
F∂V . Concerning efficiency, our method appears to be
comparable to the traditional method of first computing
the static potential and then taking the derivative. For
Wilson loops, we even found a slight advantage, while
for Polyakov loops, our method seemed to be somewhat
less efficient. In this exploratory study, we used pure
SU(3) gauge theory, lattices with rather small spatial
volume, and the multilevel algorithm. In the future, it
will be interesting to study the applicability and effi-
ciency of our method on full QCD gauge link ensembles
with larger spatial volume, where the multilevel algo-
rithm is not available.
This explorative computation of the static force

also constitutes an important preparatory step for future
projects, where similar correlation functions (Wilson or
Polyakov loops with chromoelectric or chromomagnetic
field insertions) need to be computed. An example is
the computation of 1=m and 1=m2 corrections (m denotes
the heavy quark mass) to the ordinary static potential,
as obtained in potential nonrelativistic QCD in
Refs. [25,50,51] (see also Refs. [31,52]) and evaluated
on the lattice in Refs. [34,36,38,53], or to hybrid static
potentials, as theoretically worked out and suggested in
Refs. [54–56].
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APPENDIX: OPTIMIZATION OF
MULTILEVEL PARAMETERS

To crudely optimize the multilevel parameters for our
Wilson loop computations on ensemble A, we first com-
pared several time-slice partitionings pts for fixed nm ¼
100 and nu ¼ 1. Figure 6 (top plot) indicates that thinner
time slices are more efficient. Thus, we decided for time-
slice partitionings pts, where the majority of time slices
have thickness pj ¼ 1 (see Table II).
In a second step, we investigated how efficiency is

related to the parameter nu—the number of heat bath
updates between two successive sublattice configurations.
For fixed nm ¼ 100, we find nu ¼ 2 as optimum (see
Fig. 6, bottom left plot).
Finally, we investigated how efficiency is related to the

parameter nm—the number of sublattice configurations
used to compute time-slice averages ½Pk�. For fixed
nu ¼ 2, we identify nm ¼ 50 as a rather efficient choice
(see Fig. 6, bottom right plot).
Similar optimizations were carried out for ensembles B

and C and for the Polyakov loop computations.

FIG. 5. Comparison of the efficiency when computing the static force using FE and when using F∂V for ensemble C. Left: Wilson
loops. Right: Polyakov loops.
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