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Bound-state formation can have a large impact on the dynamics of dark matter freeze-out in the early
Universe, in particular for colored coannihilators. We present a general formalism to include an arbitrary
number of excited bound states in terms of an effective annihilation cross section, taking bound-state
formation, decay, and transitions into account, and derive analytic approximations in the limiting cases of
no or efficient transitions. Furthermore, we provide explicit expressions for radiative bound-state formation
rates for states with arbitrary principal and angular quantum numbers n;l for a mediator in the fundamental
representation of SUð3Þc, as well as electromagnetic transition rates among them in the Coulomb
approximation. We then assess the impact of bound states within a model with Majorana dark matter and a
colored scalar t-channel mediator. We consider the regime of coannihilation as well as conversion-driven
freeze-out (or coscattering), where the relic abundance is set by the freeze-out of conversion processes. We
find that the region in parameter space where the latter occurs is considerably enhanced into the multi-TeV
regime. For conversion-driven freeze-out, dark matter is very weakly coupled, evading direct and indirect
detection constraints but leading to prominent signatures of long-lived particles that provide great prospects
to be probed by dedicated searches at the upcoming LHC runs.
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I. INTRODUCTION

Thermal freeze-out of dark matter has proved to be a
successful framework for explaining the measured dark
matter abundance in the Universe. However, the sizeable
couplings of dark matter to the Standard Model (SM)
particles required in the simplest realizations of this
mechanism have been put under pressure by experimental
null results at colliders [1] and direct [2] and indirect [3]
detection experiments. Hence, fulfilling the relic density
constraint often requires the exploration of “exceptional”
[4] regions, e.g., the region where coannihilation effects
increase the effective annihilation rate [5].
Such effects commonly occur in models with a so-called

t-channel mediator, where the mediator is taken to be odd

under the Z2-parity that stabilizes dark matter and for
relatively small mass splittings between the mediator
and the dark matter particle. Prominent and well-studied
examples are the sfermion coannihilation regions in the
minimal supersymmetric standard model (MSSM); see,
e.g., Refs. [6–8]. They have, in turn, motivated a wide
range of phenomenological studies of t-channel media-
tors in the simplified model framework exploring dif-
ferent spin assignments and a wide range of coupling
strengths [9–14].
While the presence of coannihilating mediators can

increase the effective dark matter annihilation rate, toward
small mass splittings, mediator pair-annihilation alone
can become so efficient that dark matter is rendered
underabundant (seemingly) independent of the dark
matter coupling. However, this conclusion is only valid
if dark matter remains in chemical equilibrium with
the mediator during freeze-out through efficient con-
versions. Dropping this assumption opens up a cosmo-
logically viable part of the parameter space where the
relic density is set by conversion-driven freeze-out [15]
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(or coscattering [16]).1 In this scenario, thermal
decoupling is initiated by the breakdown of efficient
conversions between dark matter and the coannihilating
partner(s). The required coupling is several orders of
magnitude smaller than the one required to initiate the
breakdown of dark matter pair annihilations. This is due
to the significantly larger number density for light
standard-model initial states in conversion processes with
respect to the dark matter number density.
The boundary between the coannihilation and conver-

sion-driven freeze-out region marks a significant change in
the phenomenology within the parameter space of a given
model. While the former is characterized by sizeable
couplings that give rise to observable signals in conven-
tional dark matter searches, the latter is largely immune to
constraints from (in)direct detection but predicts long-lived
particles with typical lifetimes of the order of millimeters to
meters to be searched for at the LHC. The conversion-
driven freeze-out region was unexplored terrain for a long
time and often flagged underabundant when displaying the
viable parameter space in terms of masses; see, e.g.,
Ref. [9]. Recently, it has been studied in various contexts

]17–22 ] and often constitutes one of a few regions still
allowed within a given model [14].
For electrically and color-charged coannihilators—inter-

acting via massless force carriers—nonperturbative effects
such as Sommerfeld enhancement and, in particular,
bound-state formation can play an important role in dark
matter freeze-out. Radiative bound-state formation has
been studied for a variety of dark matter models and
for general unbroken Abelian and non-Abelian gauge
theories [23–27]. The latter is related to earlier results
for quarkonium formation inside the quark-gluon plasma
obtained in potential nonrelativistic quantum chromody-
namics (pNRQCD) (see, e.g., Refs. [28,29]). Recently,
next-to-leading-order finite temperature corrections of
the general singlet-adjoint dipole interactions have been
computed [30].
While it has been shown that bound-state formation

effects provide sizeable corrections to the effective anni-
hilation cross section for a coannihilation scenario with a
colored mediator [26,31,32], it has widely been overlooked
that their effects become considerably more relevant for
scenarios with small dark matter couplings such as con-
version-driven freeze-out. As a consequence of the small
coupling, freeze-out is a prolonged process, and the
mediator annihilation down to significantly smaller temper-
atures (i.e., later times) becomes important. This increases
the relevance of bound-state effects further prolonging
the freeze-out process. Furthermore, studies have focussed
on the effect of the ground state, while excited bound

states become (increasingly) relevant toward smaller
temperatures.
In this work, we extend the study of bound-state effects

in several aspects:
(i) First, we revisit the formulation of the underlying

Boltzmann equations in the presence of excited
bound states and derive a general framework for
incorporating their effects in terms of an effective
annihilation cross section of the coannihilator. This
general form requires not only the knowledge of
bound-state formation and decay rates but also
the transition between the various excited states.
However, we formulate two meaningful limiting
cases considering fully efficient or nonefficient
transitions, the latter of which is considered as a
(conservative) benchmark scenario. This part is
model independent and applies to any set of bound
states in general.

(ii) Second, focussing on the case of a colored mediator
in the fundamental representation of SUð3Þc, we
derive general expressions for the bound-state
formation rates of arbitrary n;l (the principal and
angular momentum quantum numbers of the bound
state, respectively) and estimates for the transition in
some cases. Furthermore, we discuss the impact of
higher-order corrections to the bound-state forma-
tion and decay rates.

(iii) Finally, we assess the impact of bound states for a
colored t-channel mediator model and study the
phenomenological consequences of bound-state
effects in the coannihilation and conversion-driven
freeze-out region. In particular, we observe a drastic
shift in the boundary between the two regimes,
greatly enlarging the latter region. These consider-
ations allow us to assess the importance of the
various corrections in the prescription of bound-state
effects studied here.

The remainder of the paper is structured as follows.
In Sec. II, we introduce the considered benchmark model
and review the Boltzmann equations that describe both the
coannihilation and conversion-driven freeze-out scenario.
In Sec. III, we develop our general formalism to include
bound states and discuss various limiting cases analytically.
In Sec. IV, we compute the involved rates for a colored
mediator in the fundamental representation of SUð3Þc.
Section V is dedicated to the phenomenological application
before concluding in Sec. VI. Appendixes A and B contain
further details of the computation of bound-state formation
cross sections and discuss next-to-leading-order (NLO)
QCD effects, respectively.

II. MODEL AND CONVERSION-DRIVEN
FREEZE-OUT

We consider a simplified t-channel model with a singlet
Majorana fermion χ providing the dark matter candidate

1We use the term conversion-driven freeze-out here as the
mechanism is not restricted to scattering processes. In general,
conversions can proceed via (inverse) decays and scatterings [15].
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and a colored scalar mediator q̃ that exhibits a Yukawa
coupling involving χ and a right-handed SM quark q,

L ¼ λχ q̃q̄Rχ þ H:c: ð1Þ

The scalar mediator q̃ transforms as a triplet under SUð3Þc
and as a singlet under SUð2ÞL and has hypercharge that is
identical to the one of right-handed SM quarks. It gives rise
to a t-channel annihilation diagram for a pair of χ particles,
and the corresponding process χχ → q̄q leads to a relic
abundance of χ via thermal freeze-out.
If the masses of χ and q̃ are of comparable size,

coannihilation processes need to be taken into account as
well, in particular mediator pair annihilation, which domi-
nantly proceeds via the process q̃q̃† → gg. (Annihilation into
a pair of quarks is p-wave suppressed.) Being a pure QCD
process, its cross section is entirely determined by the strong

coupling αs. Indeed, this contribution can be so large that the
χ relic density falls below the measured dark matter abun-
dance, independently of the value of λχ [9].
However, this conclusion hinges on the assumption that

χ and q̃ are in chemical equilibrium during the freeze-out
process, i.e., that the corresponding conversion rates are
large compared to the Hubble expansion rate H during
the freeze-out process. Since the rates of all conver-
sion processes necessarily involve some power of the
coupling λχ , the assumption of chemical equilibrium can
be violated if the coupling strength is small enough. In that
case, the conversions have to be included along with (co)
annihilation processes in the Boltzmann equations. This
scenario is known as conversion-driven freeze-out [15] or
coscattering [16].
In general, for the minimal t-channel model considered

here, the coupled set of Boltzmann equations reads [15]

dYχ

dx
¼ 1

3H
ds
dx

�
hσχχviðY2

χ − Yeq2
χ Þ þ hσχq̃viðYχYq̃ − Yeq

χ Y
eq
q̃ Þ

−
Γconv

s

�
Yq̃ − Yχ

Yeq
q̃

Yeq
χ

�
−
1

2
hσq̃q̃†→χχvi

�
Y2
q̃ − Y2

χ

Yeq2
q̃

Yeq2
χ

��
; ð2Þ

dYq̃

dx
¼ 1

3H
ds
dx

�
1

2
hσq̃q̃†viðY2

q̃ − Yeq2
q̃ Þ þ hσχq̃viðYχYq̃ − Yeq

χ Y
eq
q̃ Þ

þΓconv

s

�
Yq̃ − Yχ

Yeq
q̃

Yeq
χ

�
þ 1

2
hσq̃q̃†→χχvi

�
Y2
q̃ − Y2

χ

Yeq2
q̃

Yeq2
χ

��
; ð3Þ

where x ¼ mχ=T and Yi ¼ ni=s, with number density ni
and entropy density s, with

1

3H
ds
dx

¼ −
ffiffiffiffiffi
8

45

r
πMpl

mχ

x2
ffiffiffiffiffi
g⋆

p
; ð4Þ

where Mpl ≃ 2.4 × 1018 GeV is the reduced Planck mass.
Yq̃ represents the summed contribution of the mediator and
its antiparticle,

Yq̃ ≡ ðgq̃ þ gq̃†Þ
1

s

Z
d3p
ð2πÞ3 fq̃ðpÞ; ð5Þ

leading to the various factors 1=2. Here, gq̃ ¼ gq̃† ¼
Nc ¼ 3, and fq̃ is the distribution function that is assumed
to be identical for particles and antiparticles as well as
all colors. The processes in the first line of each equa-
tion denote the usual (co)annihilation processes into SM
particles.
The conversion terms in the second line of each equation

can be split into processes of the form q̃ → χ and

q̃q̃† → χχ. The former case requires accompanying SM
particles and can be further decomposed into 1 → 2 and
2 → 2 processes,

Γconv ¼ Γq̃→χq þ Γq̃X→χY; ð6Þ

with

Γq̃→χq ≡ Γ
�
1

γ

�
¼ Γ

K1ðmq̃=TÞ
K2ðmq̃=TÞ

; ð7Þ

where Γ is the decay rate at rest, and

Γq̃X→χY ¼
X
k;l

hσq̃k→χlvineqk ¼
X
k;l

gk
4π2m2

q̃K2ðmq̃=TÞ

×
Z

ds
ffiffiffi
s

p
p2
inðsÞσq̃k→χlðsÞK1ð

ffiffiffi
s

p
=TÞ; ð8Þ

where neqi ¼ T=ð2π2Þgim2
i K2ðmi=TÞ and Ki denote modi-

fied Bessel functions of the second kind. Depending on
kinematic constraints, further 1 → 3, 1 → 4, or 2 → 3
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process can be relevant, especially for a coupling to top
quarks, q̃ ¼ t̃ [12]. In the following, we focus on a coupling
to bottom quarks, q̃ ¼ b̃, and include the processes stated
in Eq. (6).
The set of Boltzmann equations can describe both

coannihilations in and out of chemical equilibrium, with
well-known simplifications being possible in the former
case by summing both equations [5]. Out of chemical
equilibrium, the coupled set of equations needs to be
solved. However, since the coupling λχ is small in this
case, all terms except for the ones involving hσq̃q̃†vi and
Γconv can be neglected for conversion-driven freeze-out.
The former process is considerably Sommerfeld enhanced
for small relative velocities, due to the attractive potential
generated by gluon exchange in the color singlet configu-
ration of the q̃q̃† pair [10]. In addition, the same potential
leads to the formation of bound states [25,26,32,33]. In this
work, we improve the computations of the relic density in
the coannihilation and conversion-driven freeze-out sce-
nario by considering bound-state effects, including an
exploration of the role of excited states.

III. INCLUDING BOUND STATES

Within the t-channel model, bound states of q̃q̃† pairs in
the color singlet configuration exist and can contribute to
the freeze-out process. We consider an extension of the
Boltzmann equation by including a set of bound states Bi,
enumerated by an abstract index i, and with gBi

internal
degrees of freedom. Within the model considered here, the
bound states are characterized by their n and l quantum
numbers, i≡ ðn;lÞ and gBnl

¼ 2lþ 1, but the discussion
in this section applies to any set of bound states in general.
We add a Boltzmann equation for the yield YBi

¼ nBi
=s

for each bound state, taking into account ionization (or
equivalently breaking) into an unbound q̃q̃† pair via gluon
or photon absorption, direct decay of the bound state into
SM particles, and transitions between two bound states. In
addition, the collision term in the Boltzmann equation of
the mediator q̃ picks up an extra term due to ionization and
its inverse process, recombination [or equivalently bound-
state formation (BSF)]. The changes in the Boltzmann
equations compared to (2) and (3) are given by

dYBi

dx
¼ 1

3Hs
ds
dx

�
Γi
ion

�
YBi

− Yeq
Bi

Y2
q̃

Yeq2
q̃

�
þ Γi

decðYBi
− Yeq

Bi
Þ −

X
j≠i

Γj→i
trans

�
YBj

− YBi

Yeq
Bj

Yeq
Bi

��
; ð9Þ

dYq̃

dx
¼

�
dYq̃

dx

�
Eq: ð3Þ

þ 1

3Hs
ds
dx

X
i

1

2
hσBSF;ivi

�
Y2
q̃ − Yeq2

q̃

YBi

Yeq
Bi

�
: ð10Þ

The ionization rate Γi
ion is related to the thermally averaged

recombination cross section hσBSF;ivi via the Milne relation

Γi
ion ¼

s
4

Yeq2
q̃

Yeq
Bi

hσBSF;ivi; ð11Þ

originating from the detailed balance condition in thermal
equilibrium. Indeed, the Milne relation ensures that the
ionization and recombination terms drop out in the sum
dðYq̃ þ 2

P
i YB;iÞ=dx, consistent with the conservation of

the total number of q̃ and q̃† in the absence of decays. Note
that in the nonrelativistic limit

s
4

Yeq2
q̃

Yeq
Bi

≃
g2q̃
gBi

�
Tm2

q̃

2πmBi

�3=2

e−EBi
=T ; ð12Þ

where EBi
¼ 2mq̃ −mBi

> 0 is the binding energy and we
used that Yq̃ denotes the yield of the sum of q̃ and q̃†.
In addition, detailed balance requires

Γi→j
trans ¼ Γj→i

trans

Yeq
Bj

Yeq
Bi

: ð13Þ

Also, here, we can see that transition terms drop out when
summing the Boltzmann equations for all bound states, as
required.
Before discussing explicit expressions for corresponding

rates in Sec. IV, we investigate generic features of the
coupled set of equations.

A. Single bound state

We first recall the case of a single bound state B. In a
typical cosmological setting, the ionization and decay rates
(mediated by the strong interaction) are much larger
than H. In this case, the density of bound states almost
instantaneously adjusts to a quasistationary number (from
the point of view of cosmological versus strong interaction
timescales) that can be obtained by setting the left-hand
side of the Boltzmann equation for B to zero, turning it into
an algebraic equation [34]. For the case of a single bound
state (dropping the index i and transition terms), one
obtains

YB

Yeq
B

¼ ΓionY2
q̃=Y

eq2
q̃ þ Γdec

Γion þ Γdec
: ð14Þ
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Inserting this relation in Eq. (10) yields the same form as
Eq. (3) but with the substitution

hσq̃q̃†vi → hσq̃q̃†vieff ¼ hσq̃q̃†vi þ hσBSFvi
Γdec

Γion þ Γdec
:

ð15Þ

This means it is sufficient to solve the Boltzmann equations
for q̃ and χ, while the impact of the bound state is captured
by replacing the q̃q̃† annihilation cross section by the
effective cross section.
In the limit H ≪ Γdec ≪ Γion, the ionization and recom-

bination processes establish equilibrium between the bound
state and unbound q̃ (ionization equilibrium). The corre-
sponding rates therefore drop out of the effective cross
section, which only depends on the decay rate Γdec, as can
be seen using the Milne relation, Eq. (11),

hσq̃q̃†vieff → hσq̃q̃†vi þ
gB
g2q̃

�
2πmB

Tm2
q̃

�
3=2

eEB=TΓdec: ð16Þ

The effective cross section increases exponentially with
falling temperature, due to the energetic preference for
bound states in equilibrium. This increase stops once the
ionization rate, which itself becomes exponentially sup-
pressed at low temperatures, falls below the decay rate, and
ionization equilibrium breaks down. Therefore, at low
enough temperatures, the regime H ≪ Γion ≪ Γdec
becomes relevant, for which

hσq̃q̃†vieff → hσq̃q̃†vi þ hσBSFvi: ð17Þ

In that limit, any bound state that forms decays almost
immediately, and therefore the effective cross section is
only sensitive to the recombination cross section hσBSFvi.

B. Multiple bound states

Let us now generalize the previous findings to a set of
bound states. When assuming as before that all relevant
ionization, decay, and transition rates are much larger than
H, we obtain a set of coupled algebraic equations for the
yields YBi

from setting the left-hand sides of the Boltzmann
equations (9) to zero. It can be written as

YB;i

Yeq
B;i

¼ Γi
ion

Γi

Y2
q̃

Yeq2
q̃

þ Γi
dec

Γi þ
X
j≠i

Γi→j
trans

Γi

YB;j

Yeq
B;j

; ð18Þ

where we used Eq. (13) and introduced the total width of Bi,

Γi ¼ Γi
ion þ Γi

dec þ
X
j≠i

Γi→j
trans: ð19Þ

From the structure of the Boltzmann equation, it is a priori
not clear whether the impact of bound states can be captured

by an effective cross section when inserting the solution to
Eq. (18) into the Boltzmann equation (10) for q̃. However,
this turns out to be the case in general. To see it, we rewrite
Eq. (18) in the form

yi − 1 −
X
j≠i

Γi→j
trans

Γi ðyj − 1Þ ¼ Γi
ion

Γi ðy2 − 1Þ; ð20Þ

where we defined yi ≡ YB;i=Y
eq
B;i and y≡ Yq̃=Y

eq
q̃ .

Introducing the matrix

Mij ≡ δij −
Γi→j
trans

Γi ; ð21Þ

the solution for the bound-state abundances reads

yi ¼ 1þ
X
j

ðM−1Þij
Γj
ion

Γj ðy2 − 1Þ: ð22Þ

Inserting it in the Boltzmann equation (10) for q̃ indeed
yields a contribution that has the form of the annihilation
term, involving in particular a factor y2 − 1. Therefore,
provided the rates are large compared to the expansion rate,
the impact of a set of bound states can in general be captured
by an effective cross section, given by

hσq̃q̃†vieff ¼ hσq̃q̃†vi þ
X
i

hσBSF;iviRi; ð23Þ

with

Ri ≡ 1 −
X
j

ðM−1Þij
Γj
ion

Γj ð24Þ

The effective cross section, Eq. (23), describes the impact of
an arbitrary number of bound states on the q̃ abundance,
which can all individually be populated by recombination
processes and decay into SMparticles and undergo a network
of transitions among them, with the corresponding rates
entering in the determination of Ri. For a given setup, the Ri
can be determined numerically. Nevertheless, it is instructive
to study two limiting cases analytically.

1. No transition limit

In the limit Γi→j
trans ≪ Γi

dec;Γi
ion, we can neglect the

transition terms, such that Mij → δij becomes the unity
matrix, and the total width depends only on ionization and
decay rates. The effective cross section becomes

hσq̃q̃†vieff ¼ hσq̃q̃†vi þ
X
i

hσBSF;ivi
Γi
dec

Γi
ion þ Γi

dec
: ð25Þ

In the absence of transitions, each bound state therefore
gives a contribution to the effective cross section that is
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analogous to the case for a single bound state; see Eq. (15).
In particular, each summand exhibits the limiting cases of
ionization equilibrium (Γi

ion ≫ Γi
dec) or instantaneous decay

(Γi
ion ≪ Γi

dec) in close analogy to the case of a single
bound state.

2. Efficient transition limit

In the limit Γi→j
trans ≫ Γi

dec;Γi
ion, we expect that the

transitions establish chemical equilibrium among the bound
states,

YB;j

YB;i
→

Yeq
B;j

Yeq
B;i

≃ eðEBj
−EBi

Þ=T; ð26Þ

which is indeed a solution to Eq. (18) in that limit. The most
straightforward way to derive the effective cross section in
that limit is to proceed similarly to the case of coannihi-
lations [5], introducing

YB ¼
X
i

YB;i ð27Þ

and summing up all Boltzmann equations (9) for the Bi,
such that the transition terms drop out. Using (26) to write

YB;i ¼ YB
Yeq
B;i

Yeq
B

; ð28Þ

one obtains

dYB

dx
¼ 1

3Hs
ds
dx

½Γeff
ionðYB − Yeq

B y
2Þ þ Γeff

decðYB − Yeq
B Þ�; ð29Þ

with effective ionization and decay rates

Γeff
ion=dec ¼

P
iΓi

ion=decY
eq
B;i

Yeq
B

: ð30Þ

Setting again the left-hand side of the Boltzmann equa-
tion (29) to zero, and inserting the resulting algebraic
expression together with Eq. (28) into Eq. (10) yields

hσq̃q̃†vieff ¼ hσq̃q̃†vi þ hσBSFvisum
Γeff
dec

Γeff
ion þ Γeff

dec

; ð31Þ

where hσBSFvisum ¼ P
ihσBSF;ivi. The result is similar in

form to the case of a single bound state, Eq. (15), but with
the ionization and decay rates replaced by a thermal
average over all bound states and the recombination cross
section replaced by the sum.
It turns out that obtaining this result directly from the

general expression (23) is tedious. The reason is that
naively neglecting the ionization and decay rates in the
total width would lead to a singular matrix Mij. However,

by carefully expanding the abundances around the chemi-
cal equilibrium solution yi ¼ const, and treating Γi

ion=Γi

and Γi
dec=Γi as small, one ultimately arrives at the same

expression (31).
We also note that using the Milne relation, Eq. (11), for

each bound state one finds

Γeff
ion ¼

s
4

Yeq2
q̃

Yeq
B

hσBSFvisum; ð32Þ

i.e., the summed recombination cross section and the
effective ionization rate satisfy a generalized Milne rela-
tion. This implies that, in analogy to the case of a single
bound state, within the regime of ionization equilibrium
(Γeff

ion ≫ Γeff
dec), the effective cross section becomes indepen-

dent of the recombination cross section and only depends
on the effective decay rate. In the opposite limit Γeff

ion ≪ Γeff
dec

of almost instantaneous decay, the decay rate drops out, and
the effective cross section depends only on hσBSFvisum.

3. Ionization equilibrium

The limit of ionization equilibrium is somewhat orthogo-
nal to the two limiting cases considered above. When
ionization and recombination processes are assumed to be
efficient enough to establish ionization equilibrium, the
effective cross section approaches the universal form

hσq̃q̃†vieff → hσq̃q̃†vi þ
X
i

gBi

g2q̃

�
2πmBi

Tm2
q̃

�
3=2

eEBi
=TΓi

dec;

ð33Þ
which is a straightforward generalization of Eq. (16) and
independent of ionization rates Γi

ion as well as transition
rates Γi→j

trans. The reason is that efficient ionization and
recombination processes establish chemical equilibrium
with the unbound q̃ particles in that case for each bound
state. This means, in turn, that they are in chemical
equilibrium among each other, such that the transition
processes play no role for their relative abundances in that
limit. This result agrees with the finding in Ref. [35], in
which a set of bound states in ionization equilibrium is
considered.
Indeed, it is easy to see that Eq. (33) follows from both

the effective cross section in either the limiting case of no
transitions or the case of efficient transitions when assum-
ing in addition that Γi

ion ≫ Γi
dec. Moreover, the fact that

Eq. (33) is even valid independently of the size of transition
rates can be seen by noticing that the derivation presented
in Sec. III B 2 relies only on the assumption of chemical
equilibrium among the bound states, which is satisfied in
ionization equilibrium.
Therefore, as long as ionization equilibrium holds, the

effective cross section is only sensitive to the bound-state
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decay rates, independently of the size of transition and
ionization rates.
In a realistic setup, the limiting assumptions made

above may be too restrictive and at best hold only for a
subset of bound states and a subset of the corresponding
ionization, decay, or transition processes. In this case, the
effective cross section can be computed using the general
result, Eq. (23).

IV. RATES

While the discussion in the previous section was generic,
we focus on the set of bound states and ionization, decay,
and transition rates that are relevant for the scalar mediator
q̃ that carries hypercharge and transforms under the
fundamental representation of SUðNcÞ with Nc ¼ 3 in
the following.
A heavy (mq̃ ≫ ΛQCD), nonrelativistic q̃q̃† pair can be

described by two wave functions ψ ½R�, one for the color
octet (½8�) and one for the color singlet (½1�) configuration.
They obey a Schrödinger equation with kinetic energy
p2rel=ð2μÞ, where

μ ¼ mq̃=2 ð34Þ

is the reduced mass, and potential in Coulomb approxi-
mation [26]

V ½R�ðrÞ ¼ −
αeff½R�
r

; ð35Þ

with effective coupling strength

αeff½R� ¼ αs
C½3�
2 þ C½3̄�

2 − C½R�
2

2
: ð36Þ

Here, C½R�
2 denotes the quadratic Casimir of SUðNcÞ

with CF¼C½3�
2 ¼ðN2

c−1Þ=ð2NcÞ¼4=3 and CA ¼ C½8�
2 ¼

Nc ¼ 3, and αs ¼ g2s=ð4πÞ is related to the strong coupling
constant. Thus,

αeff½1� ¼ CFαs ¼
4

3
αs;

αeff½8� ¼ ðCF − CA=2Þαs ¼ −
1

6
αs: ð37Þ

The singlet configuration feels an attractive potential, while
it is repulsive for the octet. Therefore, bound states

Bnl ≡ B½1�
nl ð38Þ

exist for the singlet only. Note that we treat the m quantum
number as an internal degree of freedom of the bound state
in the Boltzmann equation and therefore label the bound
states by n and l only.

In the Coulomb approximation, the bound states are

described by hydrogenlike wave functions ψ ½1�
nlm, with the

fine-structure constant replaced by αeff½1� and the electron
mass by the reduced mass μ. On the other hand, unbound

scattering states ψ ½R�
prel exist for both the octet and singlet,

with wave functions containing the respective effective
coupling strength (see Appendix A).

A. Ionization and recombination

The leading-order QCD process for bound-state forma-
tion is

ðq̃q̃†Þ½8� → B½1�
nl þ g; ð39Þ

where the initial state corresponds to a scattering state in the
octet configuration due to color conservation. The matrix
element can be computed within pNRQCD analogously to
hydrogen recombination [29,36], with a dipole interaction
Hamiltonian of the form gsωr · E where E ¼ taEa is the
color-electric field, r is the relative coordinate, and

ω ¼ EBnl
þ p2

rel

2μ
¼ EBnl

þ 1

2
μv2rel ð40Þ

is the energy difference of initial and final state, which
corresponds to the energy of the emitted gluon in the
nonrelativistic limit.
The thermally averaged ionization (or breaking) rate and

recombination (or bound-state formation) cross section are
given by [26]

Γnl
ion ¼

g2q̃μ
3

ð2πÞ3gBnl

Z
d3vrel fgðωÞσBSF;nlvrel;

hσBSF;nlvi ¼
�

μ

2πT

�
3=2

Z
d3vrel exp

�
−
μv2rel
2T

�
× ½1þ fgðωÞ�σBSF;nlvrel; ð41Þ

which can be checked to satisfy the Milne relation,
Eq. (11), with fgðωÞ ¼ 1=ðeω=T − 1Þ. The recombination
cross section can be expressed as [29]

σBSF;nlvrel ¼
ω

2πN2
c
ð2lþ 1ÞjMj2; ð42Þ

with the matrix element for the QCD process given by

jMj2ðq̃q̃†Þ½8�→B½1�
nlþg

¼ 2

3
g2sCFω

2jhψ ½1�
nljrjψ ½8�

prelij2 ð43Þ

and

jhψ ½1�
nljrjψ ½8�

prelij2 ¼
1

2lþ 1

X
m

jhψ ½1�
nlmjrjψ ½8�

prelij2: ð44Þ
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One can also consider the analogous electromagnetic
process,

ðq̃q̃†Þ½1� → B½1�
nl þ γ; ð45Þ

that proceed from a color singlet scattering to bound state
and matrix element obtained from the electromagnetic
dipole interaction,

jMj2ðq̃q̃†Þ½1�→B½1�
nlþγ

¼ 2

3
e2Q2

q̃ω
2jhψ ½1�

nljrjψ ½1�
prelij2; ð46Þ

where Qq̃ ¼ 1=3 is the electric charge of q̃.
We evaluate the strong couplings entering in the scatter-

ing- (s) and bound-state (b) wave function at renormaliza-
tion scale of the typical momentum transfer related to
bound and scattering states, respectively, using the notation

αeffb ¼ αeff½1� ðμMS ¼ μαeffb =nÞ;

αeffs ¼
8<
:

αeff½8� ðμMS ¼ μvrelÞ ðq̃q̃†Þ½8� → B½1�
nl þ g;

αeff½1� ðμMS ¼ μvrelÞ ðq̃q̃†Þ½1� → B½1�
nl þ γ:

ð47Þ

For the strong coupling that enters via the interaction
Hamiltonian, we choose αBSFs ¼ αsðμMS ¼ ωÞ, evaluated at
the gluon momentum scale. In contrast to Ref. [26], we use
an identical scale choice for couplings entering either via
Abelian or non-Abelian vertices. Within pNRQCD, the
latter manifest themselves exclusively by the CA contribu-
tion to αeffs for the gluonic recombination process. For the
binding energy, we use

EBnl
¼ 1

2
μ
ðαeffb Þ2
n2

: ð48Þ

Using a partial wave decomposition as well as an integral
representation for the hypergeometric function entering the
scattering-state wave function and the generating function
of the Laguerre polynomials contained in the bound-state
wave function, we arrive at the following expressions for
the bound-state formation cross sections via the strong and
electromagnetic processes (see Appendix A for details):

σ
ðq̃q̃†Þ½8�→B½1�

nlþg
BSF;nl vrel ¼

παBSFs αeffb

μ2
27CF

3N2
c
SBSFnl ðζs; ζbÞ;

σ
ðq̃q̃†Þ½1�→B½1�

nlþγ
BSF;nl vrel ¼

παemα
eff
b

μ2
27Q2

q̃

3N2
c
SBSFnl ðζs; ζbÞ; ð49Þ

where we defined

ζb ¼
αeffb

vrel
; ζs ¼

αeffs

vrel
; ð50Þ

and

SBSFnl ðζs; ζbÞ ¼
1

26ζb
ð1þ ζ2b=n

2Þ3

× ½ðlþ 1ÞjIRj2l0¼lþ1
þ ljIRj2l0¼l−1�: ð51Þ

Here, l0 corresponds to the partial wave of the scattering
state, which is constrained by the usual selection rule, and
the radial part of the wave function yields the overlap
integral

IR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πζs
1 − e−2πζs

r
ð−1Þlþl0nl

0þ12l−l
0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðn − l − 1Þ!ðnþ lÞ!p

×
ζlþ3=2
bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ζ2s × ð1þ ζ2sÞ × � � � × ðl02 þ ζ2sÞ
p

×

�
d
dt

�
n−l−1

�
d
dζb

�
lþl0þ3

×
ð1þ ðζbn 1þt

1−tÞ2Þl
0

ð1þ tÞlþl0þ3ð1 − tÞl−l0−1 e
−2ζsarccotðζbn 1þt

1−tÞjt¼0: ð52Þ

This expression can be easily evaluated numerically. The
result has the structure

SBSFnl ðζs; ζbÞ ¼ sBSFnl ðζs; ζbÞ
2πζs

1 − e−2πζs

×
ζ2lþ2
b

ðζ2b þ n2Þ2nþ1
e−4ζsarccotð

ζb
n Þ; ð53Þ

where sBSFnl is a polynomial, with explicit expressions for
n ≤ 3 given in Table I. For the 1s ground state, our result
agrees with Ref. [26], and for the 2s state, it agrees with
Refs. [29,30]. The result for 2p differs from the one given
in Refs. [29,30] (by a factor 3 for the s-wave contribution
with l0 ¼ 0 and a factor 3=2 for the d-wave contribution
with l0 ¼ 2) but matches the result for hydrogen when
translated to the electromagnetic case [36].
We show the functions SBSFnl ðζs; ζbÞ, which are propor-

tional to the bound-state formation cross section, in Fig. 1.
For the figure, we assume that the strong coupling entering
in ζs and ζb is evaluated at a common renormalization
scale, such that SBSFnl depends only on the ratio αs=vrel.
Furthermore, we show the sum over all l ¼ 0;…; n − 1 for
a given n (solid lines) as well as the results for the s-orbital
with l ¼ 0 (dashed lines). For αs=vrel ≪ 1, the bound-state
formation cross section scales as ðαs=vrelÞ4þ2l for all n. The
limit is given by

SBSFnl ðζs; ζbÞ→
22lζ4þ2l

b

ðð2lþ 1Þ!!Þ2
�
1− δl;0
4l

�
ð3lþ 1Þ ζs

ζb
− 3l

�
2

þ ðlþ 1Þ
�
ðlþ 1Þ ζs

ζb
− ðlþ 2Þ

�
2
�

×

Q
l
j¼0ðn2 − j2Þ
n5þ2l ; ζs;b → 0; ð54Þ
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where the second line arises from the l0 ¼ lþ 1 contri-
bution and the first from l0 ¼ l − 1 exists only for l > 0.
The contribution from l ¼ 0 orbitals therefore dominates
for αs=vrel ≪ 1, as can also be seen by the convergence of
solid and dashed lines for each n ≥ 2 in Fig. 1 in that limit.
In the opposite limit αs=vrel ≫ 1,

SBSFnl ðζs; ζbÞ →
2πζs

1 − e−2πζs
fBSFnl

�
ζs
ζb

�
; jζs;bj → ∞; ð55Þ

where

fBSFnl

�
ζs
ζb

�
¼ e−

4nζs
ζb

sBSFnl j4n−2l
ζ4n−2lb

: ð56Þ

Here, sBSFnl j4n−2l corresponds to the polynomial obtained
when keeping only the terms with maximal combined

power in ζs and ζb in sBSFnl ðζs; ζbÞ, being 4n − 2l, such that
fBSFnl depends only on the ratio ζs=ζb ¼ αeffs =αeffb . Up to the
different renormalization scale at which the effective
couplings are evaluated, fBSFnl approaches a constant
for αs=vrel ≫ 1.
The behavior at small relative velocities is therefore

governed dominantly by the first factor in Eq. (55).
It exhibits a qualitatively different behavior depending

on the sign of ζs. For ðq̃q̃†Þ½8� → B½1�
nl þ g, the repulsive

potential relevant for the initial state implies ζs < 0, leading
to an exponential suppression for small relative velocities,
SBSFnl → 2πjζsje−2πjζsjfBSFnl . For the electromagnetic process

ðq̃q̃†Þ½1� → B½1�
nl þ γ, both the initial- and final-state wave

functions are sensitive to the attractive color singlet
potential, such that in particular ζs > 0, and SBSFnl →
2πζsfBSFnl grows with ζs ∝ αs=vrel.

FIG. 1. Bound-state formation cross section, Eq. (49), for the strong (left) and elecromagnetic process (right). We show the sumP
l S

BSF
nl ðζs; ζbÞ (solid lines) as well as the l ¼ 0 contribution only (dashed lines). The various colors correspond to the principal

quantum numbers n ¼ 1;…; 6, as given in the legend. For large αs=vrel, the cross section of the strong process is Sommerfeld
suppressed due to the repulsive interaction of the q̃q̃† pair in the octet representation, while it is Sommerfeld enhanced for the
electromagnetic process, involving a scattering wave function in the color singlet configuration.

TABLE I. Polynomials sBSFnl ðζs; ζbÞ entering the bound-state formation cross section.

n l sBSFnl ðζs; ζbÞ
1 0 1s ð−2ζb þ ζsÞ2ð1þ ζ2sÞ
2 0 2s 8ð1þ ζ2sÞð4ζ3b þ 4ζs − 9ζ2bζs þ 4ζbð−2þ ζ2sÞÞ2
2 1 2p 2ð3ζ6b − 36ζ5bζs þ 16ζ3bζsð11 − 19ζ2sÞ þ 12ζ4bð−2þ 13ζ2sÞ

þ64ζ2sð4þ 2ζ2s þ ζ4sÞ − 64ζbζsð10þ 5ζ2s þ 4ζ4sÞ þ 48ζ2bð9þ 2ζ2s þ 8ζ4sÞÞ
3 0 3s 3ð1þ ζ2sÞð243ζs þ ζbð−486þ 324ζ2b − 22ζ4b þ 123ζbð−6þ ζ2bÞζs þ 36ð9 − 5ζ2bÞζ2s þ 72ζbζ

3
sÞÞ2

3 1 3p 24ðζ10b − 28ζ9bζs þ 12ζ7bζsð97 − 121ζ2sÞ þ 4ζ8bð−15þ 73ζ2sÞ þ 8748ζ2sð4þ 2ζ2s þ ζ4sÞ
−36ζ5bζsð579 − 379ζ2s þ 218ζ4sÞ þ 18ζ6bð159 − 309ζ2s þ 239ζ4sÞ
þ2916ζbζsð−30 − 7ζ2s − 8ζ4s þ 2ζ6sÞ − 324ζ3bζsð−285þ 69ζ2s − 106ζ4s þ 14ζ6sÞ
þ108ζ4bð−225þ 364ζ2s − 237ζ4s þ 77ζ6sÞ þ 243ζ2bð243 − 230ζ2s þ 78ζ4s − 96ζ6s þ 4ζ8sÞÞ

3 2 3d 48ð1þ ζ2sÞð20ζ6b − 180ζ5bζs þ 36ζ3bζsð34 − 29ζ2sÞ þ 27ζ4bð−8þ 23ζ2sÞ − 324ζbζsð33þ 5ζ2s þ 2ζ4sÞ
þ54ζ2bð126 − ζ2s þ 20ζ4sÞ þ 81ζ2sð53þ 2ζ2sð5þ ζ2sÞÞÞ
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The different shape of SBSFnl for the two processes can
clearly be seen in Fig. 1. For the electromagnetic process,
the combined contribution from all angular momentum
states

P
l S

BSF
nl decreases with increasing values of n, for all

velocities vrel. On the other hand, for the strong process,
the exponential suppression at large ζs leads to a maximum
of SBSFnl . Its position shifts to higher values of αs=vrel for
excited states with increasing n. In addition, the value at the
maximum increases with n. This indicates that excited
levels become more and more relevant the smaller the
relative velocity, i.e., the lower the temperature that is
relevant for determining the relic density.

B. Decay

The leading decay process is due to annihilation of the
constituents of the bound state into a pair of gluons,
Bnl → gg. Here, we briefly review the derivation of the
decay rate following Ref. [23], provide an expression for
general n (for l ¼ 0), and discuss the role of higher-order
corrections.
For a generic 1 → N decay process, Bnl → X1X2…XN ,

the matrix element Mnl can be related to the usual
Feynman matrix element for the process q̃ðk1; iÞ þ
q̃†ðk2; jÞ → X1ðp1Þ þ � � � þ XNðpNÞ, with color indices
in the initial state contracted with Ps

ij ¼ δij=
ffiffiffiffiffiffi
Nc

p
, which

we denote by Msðk1; k2; fpjgÞ, via

Mnlm ¼
Z

d3q
ð2πÞ3

ψnlmðqÞffiffiffiffiffiffiffiffiffi
2Nq

p MsðK=2þ q;K=2 − q; fpjgÞ;

ð57Þ

with Nq → μ in the nonrelativistic limit and bound-state

wave function ψnlm ≡ ψ ½1�
nlm in momentum space, normal-

ized such that
R
d3xjψnlmðxÞj2 ¼ 1 in position space. Here,

K is the 4-momentum of the bound state. The bound-state
decay rate is given by

Γnl
dec ¼

1

2mBnl

1

S!

Z
dLIPSðK; fpjgÞjMnlj2; ð58Þ

where mBnl
¼ 2mq̃ − EBnl

≃ 2mq̃, and jMnlj2 ¼
1

2lþ1

P
m

P
gXj

jMnlmj2 is averaged over the 2lþ 1 states

with different m and summed over final-state degrees of
freedom. Furthermore, the usual factor 1=S! is included if
S particles in the final state are of identical type. For two-
body decays at rest, the integration over the Lorentz-
invariant phase space (LIPS) reduces to a factor 1=ð8πÞ.
At leading order in the small relative momentum q and in

the nonrelativistic expansion,

Mnlm ¼ ZnlmMsðK=2; K=2; fpjgÞ; ð59Þ

with on-shell 4-momentum K2 ¼ m2
Bnl

, and

Znlm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jψnlmðx ¼ 0Þj2

2μ

s
: ð60Þ

The wave function at the origin is nonzero for orbitals with
l ¼ 0 only, while the decay of bound states with orbital
angular momentum would require keeping further terms in
the expansion of Ms in q, leading to a suppression of the
decay rate of order q2=K2 ∼ Enl=mq̃. We therefore focus on
the decay of l ¼ 0 states in the following.
For the leading process Bnl → gðp1; a; μÞgðp2; b; νÞ,

Ms
n00 ¼ Zn00

ig2sffiffiffiffiffiffi
Nc

p ϵ�μϵ�νδab

�
gμνp1 · p2 − pμ

2p
ν
1

p1 · p2

�
; ð61Þ

and including a factor 1=2 due to the identical particles in
the final state yields

ΓBn;l¼0→gg
dec ¼ CF

πðαanns Þ2
m2

q̃
jψn00ð0Þj2

¼ 1

8n3
CFðαanns Þ2ðαeffb Þ3mq̃; ð62Þ

where we used jψn00ð0Þj2 ¼ μ3ðαeffb Þ3=π=n3, and

αanns ¼ αsðμMS ¼ mq̃Þ: ð63Þ

The result agrees with Ref. [26] for n ¼ 1.
The decay rate can also be obtained from an effective

operator that describes the interaction of an l ¼ 0 bound
state with a pair of gluons,

Leff ¼ −
g2s

4
ffiffiffiffiffiffi
Nc

p FðQÞGa
μνG

μν
a Φn; ð64Þ

with a scalar field Φn that describes the Bn;l¼0 bound state,
and a form factor FðQÞ≡ Zn00=Q2, where Q2 ≡ p1 · p2.
The coefficient can be obtained by matching the matrix
element for the two-body decay in the full and effective
description.
Note that the matching does not require the gluons to be

on shell. Accordingly, the effective operator, Eq. (64), can
also be used to compute the 2 → 2 scattering processes of
the form Bq → gq. Implementing the effective operator in
MadGraph5_aMC@NLO [37], we checked that 2 → 2 processes
can only compete with the bound-state decay for very early
times, x≲ 5–10, for which the mediator is still in thermal
equilibrium with the SM plasma. Hence, these processes
are negligible for the dynamics of dark matter freeze-out
considered here.
In contrast, NLO corrections to the two-body decay rate

are potentially relevant since in ionization equilibrium the
impact of bound states on the effective cross section is
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determined predominantly by their decay rate; see the
discussion in Sec. III. Following earlier results in the
context of quarkonium [38–40], the virtual and real
corrections to the B10 → gg decay rate at OðαsÞ have been
computed for the comparable case of stoponium [41],
resulting in

ΓNLO
dec

ΓLO
dec

¼ 1þ αanns

π

�
b0
2
ln

�
μ2
MS

4m2
q̃

�
þ
�
199

18
−
13π2

24

�
CA

þ
�
−
7

2
−
π2

8
þ
�
1

2
−
π2

8

�
δ4q̃

�
CF

þ
�
−
16

9
nf −

1

3
lnð2Þ

�
TF

�
; ð65Þ

where nf is the number of light quarks, TF ¼ 1=2, and
b0 ¼ 11=3CA − ð1=3þ 4=3nfÞTF. The parameter δ4q̃ is
either 1 or 0 depending on whether or not the four-point
interaction of q̃ is introduced. In the simplified model
considered here, δ4q̃ ¼ 0, while in the MSSM, δ4q̃ ¼ 1.
For the scale choice (63), we find that the correction (65)

is reduced to a few percent, rendering the leading-order
(LO) and NLO predictions fully compatible with each other
within scale uncertainties; see Appendix B for a detailed
discussion. For definiteness, we will consider the LO decay
rate in the main results in the following.
The decay of bound states with l > 0 is suppressed

compared to those with l ¼ 0. Nevertheless, due to the
large number of such states, it would be interesting to
include them, which is, however, beyond the scope of this
work. We note that the two-body decay into a pair of gluons
is forbidden for l ¼ 1 states due to the Landau-Yang
theorem. A decay channel that is possible for these states
is into a pair of electrically charged particles, via an
intermediate photon or Z-boson. Note that an analogous
process with an intermediate gluon is forbidden by color
conservation. Furthermore, the decay rate into gq̄q via an
intermediate off-shell gluon also vanishes for l ¼ 1, as can
be checked by expanding the matrix element in Eq. (57)
to first order in the relative momentum q. However, a
decay into three gluons could be mediated by the strong
interactions.

C. Transitions

Since bound states exist only in the color singlet
configuration, transitions between energy levels cannot
proceed via single gluon emission or absorption. In this
work, we do not consider transitions involving two gluons,
which can be mediated by the strong interaction. Instead,
we provide a lower bound on the size of transition rates by
considering the electromagnetic process

Bnl → Bn0l0 þ γ; ð66Þ

which is allowed by color and charge conservation. The
transition matrix element squared obtained from the electric
dipole interaction is given by [36]

jMj2 ¼ 2

3
e2Q2

q̃ω
2jhψnljrjψn0l0 ij2; ð67Þ

where ω ¼ jEnl − En0l0 j is the photon energy. The matrix
element is averaged over m and m0,

jhψnljrjψn0l0 ij2 ¼
X
m;m0

jhψnlmjrjψn0l0m0 ij2
ð2lþ 1Þð2l0 þ 1Þ : ð68Þ

The transition rate from higher to lower energy levels is
given by Fermi’s golden rule

Γnl→n0l0
trans ¼ ω

2π
ð2l0 þ 1ÞjMj2

¼ 4

3
αemQ2

q̃ð2l0 þ 1Þω3jhψnljrjψn0l0 ij2: ð69Þ

The rate of the inverse process of photoabsorption can
be obtained from the detailed balance condition (13).
Using the hydrogenlike wave functions and the generating
function of the Laguerre polynomials (see Appendix A),
we find

jhψnljrjψn0l0 ij2 ¼
l0δl0;lþ1 þ lδl;l0þ1

ð2lþ 1Þð2l0 þ 1Þ jI
trans
R j2; ð70Þ

where

ItransR ¼ NnlðκÞNn0l0 ðκ0Þð3þ lþ l0Þ!
ðn − l − 1Þ!ðn0 − l0 − 1Þ!

�
d
dt

�
n−l−1

×

�
d
dt0

�
n0−l0−1 ð1 − tÞ−2l−2ð1 − t0Þ−2l0−2

ðκn 1þt
1−t þ κ0

n0
1þt0
1−t0 Þ4þlþl0

				
t¼t0¼0

;

ð71Þ

with

NnlðκÞ ¼ κ3=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðn − l − 1Þ!
n4ðnþ lÞ!

s �
2κ

n

�
l
: ð72Þ

Here,

κ ≡ μαeffb jnl; κ0 ≡ μαeffb jn0l0 ; ð73Þ

with effective strong coupling defined as in Eq. (47) and
evaluated for the respective energy level as indicated by the
subscript. They differ only in the scale choice of the strong
coupling constant, related to the typical Bohr momentum of
the two energy levels. We checked agreement with various
explicit expressions given for specific n0 and l;l0 and all n
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as well as for n ¼ n0 in Ref. [36], when translating the
result to the analogous hydrogen transition rates.

D. Effective cross section

Using the ionization, decay, and transition rates dis-
cussed above, we can compute the effective cross section,
Eq. (23), that encapsulates the impact of bound states on the
freeze-out dynamics. The contribution to the effective cross
section, Eq. (23), due to bound states,

hσq̃q̃†viBSeff ≡ hσq̃q̃†vieff − hσq̃q̃†vi; ð74Þ

is shown in Fig. 2 for various approximations as a function
of x ¼ mχ=T. In the left panel, we include bound states up
to n ¼ 6 and for all l ≤ n − 1.
The contributions from individual n;l states to the

effective cross section are indicated by the colored and
gray lines in the left panel of Fig. 2. For small x, the l ¼ 0
states dominate. The reason is that in this limit ionization
equilibrium holds, and the effective cross section is
determined by the decay rate; see Eq. (33). For large x,
the contribution from each n;l level becomes suppressed
due to a combination of two effects: (i) the suppression due
to the repulsive interaction in the scattering state discussed
in Sec. IVA and (ii) Boltzmann suppression for T ≪ EBnl

.
Consequently, each individual contribution features a
maximum. Its position shifts to the right for higher n.
This implies that excited states dominate the effective cross
section for large x. The larger x, the higher n have to be
taken into account to obtain a converged result for the total
effective cross section.
The line labeled “Ri-solution” shows the total result

obtained when including all rates as given above using
the general expression (23) for the effective cross section.

For comparison, we show the limit of efficient transitions,
Eq. (31), as well as the limit of no transitions, Eq. (25). For
small x, that is, large enough temperature, all results agree
and approach the ionization equilibrium result, Eq. (33),
that is also shown. The effective cross section can in this
limit be written as

hσq̃q̃†viBSeff ¼ hσq̃q̃†viBS;nl¼10
eff ×

X
n≥1

eðEBn0
−EB10

Þ=T

n3
; ð75Þ

with the sum approaching ζð3Þ ≃ 1.202 for small x.2 That
is, in ionization equilibrium, excited states lead to a 20%
correction to the effective cross section. The factor in front
of the sum is the ground-state contribution to Eq. (33).
The impact of excited states is much larger for large x,

where they give the dominant contribution. The precise
value depends in this regime on the recombination as well
as transition rates. The efficient transition limit provides an
upper bound on the effective cross section (since all
l orbitals contribute), while the limit of no transitions
provides a lower limit (only the bound states with a size-
able decay rate into SM particles contribute, being l ¼ 0
orbitals in our approximation). The actual effective cross
section is therefore expected to lie in between these two
limits. The Ri-solution result taking into account the
electromagnetic transition rates considered in this work
can only be considered as illustrative since additional
processes mediating further transitions are expected to
play an important role. We therefore conservatively adopt

FIG. 2. Contribution to the effective, thermally averaged mediator annihilation cross section from bound states, hσq̃q̃†viBSeff , for
mχ ¼ 1000 GeV and mq̃ ¼ 1020 GeV, as a function of x ¼ mχ=T. The left panel shows the result, Eq. (23), when including all
recombination, decay, and transition rates discussed in Sec. IV for n ≤ 6 and l ≤ n − 1 (“Ri-solution”). In addition, the limits of
efficient transitions (eff. trans. limit), Eq. (31), no transitions (no trans. limit), Eq. (25), and ionization equilibrium (ion. eq.), Eq. (33), are
shown, in addition to the individual contributions from all n; l levels. The right panel shows the no-transition limit, including bound
states up to n ≤ 1, 3, 6, 10 and 15, respectively.

2Note that this limit is slightly exceeded in our numerical
results since αeffb also depends on n due to the running of the
strong coupling.
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the no-transition limit in our numerical analysis in the
following.
The effective cross section in the no-transition approxi-

mation (25) is shown in the right panel of Fig. 2. We show
the result summed up to some maximum n, for n ¼ 1, 3, 6,
10, 15, respectively. While each individual contribution
becomes suppressed at large x, the summed result con-
tinues to grow with increasing x. The decline at very large x
is due to the restriction to n ≤ 15. For x ≪ 105, we consider
the effective cross section with n ≤ 15 as converged. We
leave an exploration of the full result including transitions
to future work and use the no-transition limit with n ≤ 15
as the default choice in the following. For a discussion of
the impact of a certain class of higher-order corrections
(related to collisional ionization and recombination proc-
esses and the associated virtual contributions) computed in

Refs. [27,30] as well as to bound-state decay, we refer to
Appendix B.

V. VIABLE PARAMETER SPACE

To determine the relic abundance, we solve the coupled
set of Boltzmann equations (2) for Yχ and (3) for Yq̃. We
compute the involved conversion and annihilation cross
sections, σq̃k→χlðsÞ and σχχðsÞ, σχq̃ðsÞ, σq̃q̃†ðsÞ, respectively,
with MadGraph5_aMC@NLO [37]. We take into account the
leading conversions in αs and regularize the soft divergence
occurring in the process q̃g → χb (see the discussion in
Ref. [15]) by introducing a thermal mass for the gluon [42].
To include the impact of bound states, we replace the
annihilation cross section of q̃q̃† pairs by the effective cross
section, Eq. (23). In addition, we include Sommerfeld
enhancement in the contribution from direct mediator
annihilation as described in Ref. [15]. Figure 3 exemplifies
the effective cross section. The long-dashed curve (pert.)
shows the perturbative direct annihilation cross section,
while the short-dashed (Som.), dot-dashed (BS, n ¼ 1), and
solid (BS, n ≤ 15) curves display the effective cross section
after successively including Sommerfeld enhancement,
bound-state formation effects of the ground state, and
excited bound states up to n ¼ 15 (in the no-transition
limit), respectively. In the following, we choose the latter
for our main results. We also show the effective cross
section under the assumption of ionization equilibrium in
the limit of large n as the gray dotted curve (ion-eq).
For two benchmark points in the conversion-driven

freeze-out scenario, the evolution of the abundances is
shown in Fig. 4. Because of the small coupling λχ , the χ
particle cannot annihilate efficiently by itself, and its
abundance is reduced only due to conversions into q̃.
While the colored mediator q̃ starts to depart from
thermal equilibrium at x≳ 25, the χ abundance already
significantly exceeds the equilibrium value at this time.
Subsequently, for x≳ 25, conversion processes—which are

FIG. 3. Effective mediator annihilation cross section, Eq. (23),
including the contribution from direct annihilation without
(“pert.”) and with Sommerfeld enhancement (“Som.”), as well
as with the additional contribution from bound states separately
considering the ground state only (“BS, n ¼ 1”) and including
excited states up to n ¼ 15 (“BS, n ≤ 15”). The gray dotted curve
show the case of ionization equilibrium (“ion-eq”). The param-
eters are mχ ¼ 1000 GeV and mq̃ ¼ 1020 GeV.

FIG. 4. Evolution of the dark matter yield Yχ and the mediator abundance Yq̃ with x ¼ mχ=T for two benchmark points within the
regime of conversion-driven freeze-out and when including Sommerfeld enhancement as well as bound states up to n ¼ 15. Dashed
lines show the equilibrium abundances, and solid lines show the solution of the coupled Boltzmann equations.
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on the edge of being efficient—gradually transform χ into q̃
particles. This leads to a prolonged duration of the freeze-
out dynamics, which can last until x ∼Oð102–103Þ. The
mediator q̃ continues to annihilate and is in addition
depleted due to bound-state formation.
The duration is further enhanced for a small relative mass

splitting Δm=mχ , which implies that the equilibrium abun-
dances of the mediator and χ are comparable until x ∼
mχ=Δm even if the conversion processes were fully efficient,
i.e., in the usual coannihilation scenario. Eventually, the
mediators decay via q̃ → bχ, thereby transferring their
remaining abundance to the population of χ particles. For
the chosen value of the coupling λχ for the two benchmark
points shown in Fig. 4, the amount of conversions is
sufficient to reduce the χ abundance to a final value that
matches the observed relic density, Ωh2 ¼ 0.12 [43].
In Fig. 5, we show the coupling λχ that is required to

achieveΩh2 ¼ 0.12 as a function of the mass splitting,Δm,
for fixed massmχ ¼ 1 TeV (left panel) and as a function of
the dark matter mass, mχ , for fixed Δm ¼ 5 GeV (right
panel). The drastic change in the coupling atΔm ≃ 35 GeV
and mχ ≃ 2850 GeV, respectively, is due to the transition
between the conversion-driven freeze-out (to the left) and
coannihilation regime (to the right); see below for details.
The gray lines in Fig. 5 show the impact on the relic

density for various levels of approximation, relative to our
fiducial choice with Sommerfeld enhancement and bound
states up to n ¼ 15. The relic density differs up to a factor
of order 10 relative to the perturbative leading-order
approximation and for small Δm=mχ . Relative to the
case when including Sommerfeld enhancement, we find
differences of up to a factor of order 5. The gray line labeled
“BS, n ¼ 1” corresponds to the case when including the

ground state. As apparent from the relatively small
deviation of this curve from 1, excited states with n ≤
15 only yield a comparably small correction for most of the
shown parameter space.
The kink at the transition between the conversion-

driven freeze-out and coannihilation regime that can be
seen in most curves arises due to the sudden increase
of the coupling at this point that causes χχ and χq̃
annihilation processes to become relevant. Accordingly,
in the latter regime, not only does the relative impor-
tance of nonperturbative effects on the effective mediator
annihilation change, but also the importance of the
effective mediator annihilation with respect to χχ and
χq̃ annihilation changes. This causes the quicker decrease
of Ωh2=0.12 in the coannihilation regime most promi-
nently seen in the left panel of Fig. 5. Here, we can also
observe that all curves approach unity toward large mass
splittings as both the Boltzmann suppression of the
mediator abundance during freeze-out and the larger
coupling, λχ , diminishes the relative importance of the
mediator annihilation.
In the parameter slice with mχ ¼ 1 TeV, chosen in the

left panel, freeze-out mainly occurs while the system is still
close to ionization equilibrium. This can also be seen from
the gray dotted curve showing the result assuming ioniza-
tion equilibrium (for all n). It only deviates significantly for
low Δm where freeze-out extends to large x. For even
smaller relative mass splittings, Δm=mχ , considered in the
right panel, this effect is even more pronounced as freeze-
out extends to larger x (even in the coannihilation region).
Here, the result for ionization equilibrium differs by orders
of magnitude from the one of our fiducial choice reaching
Ωh2=0.12≲ 10−4 in the considered range of mχ (outside
the displayed range in Fig. 5).

FIG. 5. The two figures show one-dimensional slices of the parameter space, varying the mass splitting Δm ¼ mq̃ −mχ for fixed
mχ ¼ 1 TeV (left panel) as well as varying the mass mχ for fixed Δm ¼ 5 GeV (right panel). Each figure shows two quantities: The
value of the coupling λχ that provides the correct relic abundance when taking into account Sommerfeld enhancement and bound states
up to n ¼ 15 is shown as the green solid curve, with values as given on the axis on the left-hand side. The gray lines show the relic
density (normalized to the observed value 0.12) that is obtained with this coupling in the various other approximation, following the
same convention for the line style and labels as in Fig. 3. The corresponding values are shown on the axis on the right-hand side.
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A. Boundary between coannihilation
and conversion-driven regime

In this section, we determine the part of parameter space of
themodel forwhich conversion-driven freeze-out is relevant.
For small mass splitting Δm≡mq̃ −mχ and mass mχ , the
q̃q̃† annihilation process becomes very efficient, and would
deplete the relic abundance below the observed dark matter
density, if χ and q̃ were in chemical equilibrium during
freeze-out. Within the region of parameter space where this
happens, the correct dark matter abundance can only be
explained if the assumption of chemical equilibrium does not
hold. The dynamics are described by conversion-driven
freeze-out in this regime, and one obtains a viable relic
density for couplings λχ ≪ 1. On the other hand, for points in
parameter space where the q̃q̃† annihilation cross section is
small enough, the standard scenario of coannihilation yields
the observed dark matter abundance, with λχ ∼Oð1Þ. The
division between these regimes can effectively be obtained
with high precision by solving the Boltzmann equation using
the conventional coannihilation approximation in the limit
λχ ≪ 1. The relic density obtained in this limit matches the
observed dark matter abundance along a line in the two-
dimensional parameter space ðmχ ;ΔmÞ, which we refer to as
the boundary line.
Altogether, the correct relic density can be reproduced

for any point within the two-dimensional parameter space
for a suitable value of λχ , via conversion-driven freeze-out
below the boundary line and via conventional coannihila-
tion above the boundary line. Note that the effective q̃q̃†

cross section, Eq. (23), including bound-state effects is
relevant both in the coannihilation as well as the con-
version-driven regimes and therefore also for determining
the boundary between them.
In Fig. 6, we show the boundary line in the ðmχ ;ΔmÞ

plane obtained for various approximations, which succes-
sively include a number of effects. When using the
perturbative tree-level q̃q̃† annihilation cross section only,
one obtains the line labeled “pert.” This is the result one
would obtain when using standard tools for the relic density
computation [44–46] without further modification. The line
labeled “Som.” is obtained when including Sommerfeld
enhancement of q̃q̃† annihilation, and this approximation
has been used in previous works in the context of con-
version-driven freeze-out with colored mediators [12,15].3

The regime of conversion-driven freeze-out extends
significantly when including the bound-state effects con-
sidered in this work. The line labeled “BS, n ¼ 1” in Fig. 6
corresponds to including the contribution from the ground

state only. Finally, adding excited states up to n ¼ 15
within the default approximation discussed in Sec. IV D
yields the thick solid line. We observe that the conversion-
driven freeze-out region reaches to significantly higher
values ofmχ and alsoΔm due to the impact of bound states.
Let us briefly comment on the role of excited states. For

mχ=Δm≲Oð102Þ, freeze-out dominantly takes place in the
regime of ionization equilibrium. In that case, excited states
lead to a correction of the effective cross section of order
20%, due to the additional available decay channels; see
Eq. (75). For mχ=Δm≳Oð102Þ, the freeze-out extends to
lower temperatures. In this regime, a combination of two
effects leads to a significant enhancement of the impact of
excited states. First, since ionization equilibrium breaks
down for the ground state, its contribution to the effective
cross section drops. Second, the bound-state formation rate
for excited states exceeds the one of the ground state by
many orders of magnitude at low temperatures. Hence,
excitations remain in ionization equilibrium toward smaller
temperatures and dominate the effective cross section.4

FIG. 6. Boundary in the model parameter space ðmχ ;Δm ¼
mq̃ −mχÞ between the regime of conversion-driven freeze-out
(bottom left) and conventional coannihilation, when requiring the
coupling λχ to be adjusted such that the relic abundance matches
the observed dark matter density. The various lines correspond to
the boundary obtained when successively including corrections
to the perturbative q̃q̃† cross section (pert.), being Sommerfeld
enhancement (Som.), the contribution from the n ¼ 0 bound state
(BS, n ¼ 1), and excited states up to n ¼ 15 within the default
approximation discussed in Sec. IV D (BS, n ≤ 15). The gray
dotted line shows the result that would be obtained when
assuming ionization equilibrium for all (excited) states.

3Note that the boundary in Ref. [15] slightly exceeds the one
found here including Sommerfeld enhancement only. This is due
to a slightly different choice of the running αs. Here, for
definiteness and for a better comparison of the perturbative
result to previous literature, we use the same αs parametrization
as in Ref. [44].

4While in the considered scenario, very large values ofmχ=Δm
only occur toward the “tail” of the boundary line, very large
values of x can naturally become relevant in the superWIMP
(super-weakly-interacting-massive-particle) scenario where dark
matter is thermally decoupled and only produced through the late
decay of the mediator particle. Indeed, already the effect of n ¼ 1
bound states is sizeable [47] in this scenario, motivating further
studies in the future.
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Potentially, the region of conversion-driven freeze-out
could even become larger when including transitions
between the bound states, which is beyond the scope of
this work. To provide a maximal upper bound, we show the
result that would be obtained when assuming ionization
equilibrium to hold during the entire freeze-out and
including all n using Eq. (75), indicated by the gray dotted
line. The full result when including transitions is expected
to lie significantly below this line and above the solid line,
cf. the respective results for hσq̃q̃†viBSeff in the left panel of
Fig. 2. For the regime where the gray and thick solid lines
differ from each other, ionization equilibrium breaks down
during the freeze-out. The boundary therefore becomes
insensitive to uncertainties from transitions among bound
states where both lines converge, i.e., for mχ ≲ 2 TeV.

B. Coannihilation regime

While the main focus of this work is on the impact of
bound states on conversion-driven freeze-out, we also
assess the relevance in the coannihilation regime. As is
already apparent from Fig. 6, bound states and Sommerfeld
enhancement have a significant impact on the boundary and
therefore on coannihilations as well. In Fig. 7, we show the
contours in the ðmχ ;ΔmÞ plane for which freeze-out in the
coannihilation regime yields the correct dark matter relic
abundance for three values of the coupling, λχ ¼ 0.169,
0.5, 1, respectively. The former choice is motivated by
supersymmetry, for which the χ particle can be viewed as
the bino and the mediator can be viewed as the right-handed
sbottom quark within the MSSM. In this case, the coupling
is fixed by the bottom hypercharge. We note that for large
λχ ≳Oð1Þ, additional annihilation diagrams for q̃q̃† → bb̄

as well as q̃ q̃ → bb contribute, which are modified by
bound-state formation. In this work, we are mainly inter-
ested in the case of small λχ and therefore do not take these
contributions into account, since their cross section scales
as λ4χ and is subleading compared to the QCD contributions
to q̃q̃† annihilation.
The red lines in Fig. 7 correspond to the case with

perturbative leading-order annihilation, and the blue lines
correspond to our fiducial approximation that includes
Sommerfeld enhancement and bound states up to n ¼ 15.
It is apparent that the blue contours allow for significantly
larger masses mχ for a given λχ . For example, for λχ ¼ 0.5
and Δm ¼ 20 GeV, the mass for which the relic density
matches the observed value shifts from mχ ≃ 1.2 to 2 TeV
when including the aforementioned corrections. For the
MSSM value, λχ ¼ 0.169, the contour almost coincides
with the boundary, and the mass shifts from mχ ≃ 0.9 TeV
to 1.8 TeV (for Δm ¼ 20 GeV). In addition, for a very
small mass splitting, including bound states allows for
mediator masses in the multi-TeV regime, around mχ ¼
3 TeV for Δm ¼ 5 GeV. This shift can be expected to be
of major relevance for experimental searches for colored
t-channel mediators within the coannihilation regime. It
reopens part of the parameter space that is constraint by
conventional dark matter searches.

C. Conversion-driven regime and collider limits

In Fig. 8, we show the viable parameter space within the
regime of conversion-driven freeze-out. The value of the

FIG. 7. Contours for which dark matter coannihilation yields a
relic abundance that matches the observed value, for three fixed
values of the coupling λχ . Red lines show the leading-order result,
and blue lines show the result when including bound states up to
n ¼ 15 as well as Sommerfeld enhancement. For the relevance of
individual corrections, we refer to Fig. 6. The boundary to the
conversion-driven regime is also shown.

FIG. 8. Cosmologically allowed parameter space (Ωh2 ¼ 0.12)
for conversion-driven freeze-out when taking bound states with
n ≤ 15 as well as Sommerfeld enhancement into account. Green
dashed lines show contours of the coupling λχ in units of 10−7,
and gray lines show the contours of the mediator decay length.
In addition, LHC bounds from R-hadron searches as well as
disappearing track searches are shown, as are the contours within
the coannihilation regime (see Fig. 7).
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coupling that is required to obtain the measured dark matter
abundance is of order 10−6–10−7 in that case. We show
several contours for λχ=10−7 ¼ 2, 3, 5, 7. The smallness of
the coupling implies that this production mechanism is
compatible with null results from direct and indirect dark
matter detection experiments, while still providing an
explanation of the abundance of dark matter that is
insensitive to the initial conditions.
The decay length cτ of themediator, where τ is its lifetime,

is shownby thegray contour lines inFig. 8. It is of theorder of
a few centimeters to 1 m within most of the parameter space,
going down to 1mmclose to the boundary. For the freeze-out
computation, we limit ourselves to the parameter space
where Δm > mb, such that the two-body decay q̃ → χb is
kinematically allowed. For even smaller mass splitting,
conversions proceed via scatterings, and the mediator would
be stable on detector timescales.
The primary signal of conversion-driven dark matter

production with a colored mediator are searches for heavy,
(meta)stable colored particles at the LHC. For Δm < mb,
the colored mediator becomes detector stable as its decay is
four-body suppressed. We can directly apply the limit from
the 13 TeV ATLAS search [48] derived for an R-hadron
containing a b-squark. It excludes masses below 1250 GeV.
The resulting limit is shown in Fig. 8 as a solid blue curve
(and blue shaded exclusion region). For larger Δm, the
decay length is in the range 1 mm ∼ 1 m such that a
sizeable fraction of decays take place inside the inner
detector. To estimate the reach of the same search for this
case, we employ the reported cross section upper limits
for the muon-system-agnostic analysis for a b-squark
R-hadron. We rescale them by the relative suppression
of the cross section upper limits toward small lifetimes
reported in the similar ATLAS analysis [49] where the case
of a gluino R-hadron has been considered. Note that this
introduces a certain level of approximation. A recasting
of the search is, however, beyond the scope of this work.
We use the cross section predictions from Ref. [50]. The
resulting limit is displayed as the blue, dashed curve in
Fig. 8. Furthermore, we display the limit from the recasting
of the CMS 13 TeV R-hadron search [51] performed in
Ref. [15] as the blue, dot-dashed curve.
Being only sensitive to the fraction of R-hadrons

traversing a significant part of the detector, the sensitivity
of these searches is exponentially suppressed for small
lifetimes. Dedicated analyses exploiting the displaced
nature of the decay are, hence, expected to greatly improve
the sensitivity to this scenario. While several such analyses
have been performed by the collaborations, their target
model differs considerably from the one considered
here, significantly reducing their reach or raising questions
about their applicability as pointed out in Ref. [52]
(contribution 7). For instance, the sensitivity of the dis-
placed jets search [53] considerably suffers from the
imposed cut on the invariant mass of the displaced tracks.

While the respective choice was optimized for the scenario
considered in the search, it reduces the signal of the one
considered here by around 2 orders of magnitude [52]. This
is due to its relatively small mass splittings Δm of order
tens of GeV in our scenario, resulting in softer tracks. The
search has been targeted to mass splittings of the order of
hundreds of GeV.
Another example of a potentially sensitive search is the

one for disappearing tracks. The existing searches are tar-
geted to charginos whose long lifetime arises due to a tiny
mass splitting, Oð100 MeVÞ, to the dark matter particle.
Accordingly, in the decay, an ultrasoft pion is emitted
facilitating the use of a disappearance condition. In our
scenario, the emitted b jet is considerably harder than in
the targeted model. However, the search is estimated to still
provide sensitivity to the model considered here, as shown in
the approximate recasting of Ref. [54] performed inRef. [52].
In this recasting, the probability of the R hadron to cause a
charged track was also taken into account. We overlay the
respective limit as the purple dotted curve in Fig. 8.
We conclude that, after including the impact of bound

states, a wide part of the parameter space for conversion-
driven freeze-out is still viable and provides a clear target
for long-lived particle searches at future LHC runs.

VI. CONCLUSION

In this work, we revisited the computation of the relic
density in the presence of bound-state effects during dark
matter freeze-out. With respect to previous work, we
improved the calculations in various aspects and demon-
strated the respective phenomenological implications on
the cosmologically viable parameter space in the coanni-
hilation and conversion-driven freeze-out scenario.
In the first part of this work, we reformulated the

Boltzmann equations including arbitrary excitations of
bound states and derived a general framework for incor-
porating their effects in terms of an effective annihilation
cross section. While a full treatment of these effects
requires the knowledge of all involved bound-state for-
mation, decay, and transition rates, we introduced mean-
ingful limiting cases when assuming fully efficient or
nonefficient transitions. We provided simple analytical
expressions for the effective cross section in these limits,
in addition to a general result. Furthermore, we showed that
for an arbitrary set of bound states in ionization equilibrium
the effective cross section is independent of bound-state
formation and transition rates and only depends on a
weighted sum of bound-state decay rates.
For the case of a colored coannihilator, we computed the

radiative bound-state formation rates for arbitrary excita-
tions with quantum numbers n;l and estimate the lowest
order transition rates. Furthermore, we investigated the
impact of NLO corrections to bound-state decays. We
further discuss the relevance of NLO effects on bound-state
formation and decay in Appendix B.
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We then solved the coupled Boltzmann equation for the
mediator and the dark matter particle in a t-channel model
and assessed the impact of bound states for coannihila-
tions as well as conversion-driven freeze-out. On the one
hand, in ionization equilibrium, the effective mediator
annihilation cross section is insensitive to the bound-state
formation but directly proportional to the bound-state
decay rates. Including excited states increases the effec-
tive cross section by about 20% in that case. On the other
hand, after the breakdown of ionization equilibrium of
the ground state, higher excitations become increasingly
important. At the same time, a large bound-state formation
rate extends the duration of ionization equilibrium
down to smaller temperatures. Nevertheless, we found
that freeze-out significantly extends beyond the period of
ionization equilibrium for small relative mass splittings
between the mediator and dark matter, phenomenologi-
cally most relevant in the region of high masses,
mχ ≳ 2 TeV. In this region of parameter space, our
fiducial approximation that neglects bound-state transi-
tions is expected to underestimate the effects of excited
bound states, motivating further studies. In addition, we
demonstrated that NLO corrections to the bound-state
formation rate itself play only a moderate role in the setup
considered here.
Evaluating the cosmologically viable parameter space,

we found that the region for which conversion-driven
freeze-out is relevant extends significantly when including
bound-state effects, ranging up to the multi-TeV region.
In addition, our findings imply that significantly higher
dark matter masses are viable also within the coannihilation
region. This has immediate consequences for dark matter
searches. For instance, considering a mass splitting of
20 GeV and a coupling of ∼0.169, as predicted in the
MSSM, the dark matter mass that matches the relic density
is shifted from around 900 GeV to 1.8 TeV by the inclusion
of the discussed effects. On the other hand, when keeping
the masses fixed atmχ ¼ 900 GeV andΔm ¼ 20 GeV, the
coupling would change from 0.169 to around 5 × 10−7 as it
lies in the conversion-driven freeze-out regime.
Dark matter produced via conversion-driven freeze-out is

compatible with (in)direct detection limits due to a very
weak coupling but yields signatures of long-lived particles
at the LHC. We discussed the applicability of existing
searches for R hadrons, disappearing tracks, and displaced
jets, which exclude masses below about 0.6–1.2 TeV.
Because of the increase of the viable parameter space
for conversion-driven freeze-out, extending into the multi-
TeV region, the scenario provides great prospects for long-
lived particle searches at future LHC runs.
The computations considered here can be improved in

future work in several ways, regarding the description of
transitions among bound states, the decay of excited states
with angular momentum, and the inclusion of thermal
corrections.
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Note Added.—Recently, Ref. [55] appeared, and it discusses
the inclusion of a set of multiple bound states and transitions
among them in terms of an effective cross section in analogy
to the material presented in Sec. III in this work.

APPENDIX A: BOUND-STATE FORMATION
CROSS SECTION

In this Appendix, we sketch the derivation of the
recombination cross section, Eq. (49). We use hydrogenlike
wave functions for the scattering and bound states, with
normalizationZ

d3rψ�
prelðrÞψp0rel

ðrÞ ¼ ð2πÞ3δð3Þðprel − p0relÞ;Z
d3rψ�

nlmðrÞψn0l0m0 ðrÞ ¼ δnn0δll0δmm0 : ðA1Þ

The scattering state has an energy eigenvalue p2rel=ð2μÞ,
where μ ¼ mq̃=2 is the reduced mass, and satisfies the
Schrödinger equation with potential V ¼ −αeffs =r. For the
bound state, we assume V ¼ −αeffb =r, with a different
effective coupling, and eigenvalue given by −EBnl

¼
−ðαeffb Þ2μ=ð2n2Þ. We omit labels for the SUðNcÞ represen-
tation, with it being understood that the scattering state is
evaluated for the effective strong coupling of the octet
(singlet) for the gluonic (electromagnetic) recombination
process, while the bound state is always a singlet. The
derivation is general, and the representation enters only via
the effective coupling strengths.
The scattering-state wave function is given by (see, e.g.,

Ref. [56])

ψprelðrÞ ¼ 4π
X
l;m

ileiδl
FlðρÞ
ρ

Ylmðr̂ÞY�
lmðp̂relÞ; ðA2Þ

with ζs ¼ αeffs =vrel and

ρ ¼ prelr;

δl ¼ arg ðΓð1þ l − iζsÞÞ;

FlðρÞ ¼
2leπζs=2jΓð1þ l − iζsÞj

ð2lþ 1Þ! ρlþ1eiρ;

× 1F1ðlþ 1 − iζs; 2lþ 2;−2iρÞ: ðA3Þ
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The bound-state wave function is given by (see, e.g.,
Ref. [26])

ψnlmðrÞ ¼ FnlðrÞYlmðr̂Þ; ðA4Þ

where κ ¼ μαeffb ¼ prelζb, and the radial part is

FnlðrÞ ¼ κ3=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðn − l − 1Þ!
n4ðnþ lÞ!

s �
2κr
n

�
l

× Lð2lþ1Þ
n−l−1

�
2κr
n

�
e−κr=n: ðA5Þ

We are interested in

jhψnljrjψprelij2 ¼
1

2lþ 1

X
m

Z
d3rd3r0r · r0

× ψnlmðrÞψ�
nlmðr0Þψ�

prelðrÞψprelðr0Þ: ðA6Þ

To separate radial and angular parts, we use

r · r0 ¼ rr0
4π

3

X1
m̃¼−1

Y1m̃ðr̂ÞY�
1m̃ðr̂0Þ: ðA7Þ

For the contribution of the partial wave l0m0 to ψ�
p⃗rel

ðr⃗Þ and
l″m″ to ψ p⃗rel

ðr⃗0Þ the angular integral can be computed using
standard relations for Wigner 3j-symbols,

IA ≡ 4π

3

Xl
m¼−l

X1
m̃¼−1

Z
dΩrdΩr0Ylmðr̂ÞY�

lmðr̂0Þ

× Y�
l0m0 ðr̂ÞYl00m00 ðr̂0ÞY1m̃ðr̂ÞY�

1m̃ðr̂0Þ

¼ δl0l00δm0m00
l0δl0;lþ1 þ lδl;l0þ1

2l0 þ 1
: ðA8Þ

This gives

jhψnljrjψprelij2 ¼
4π

p5
rel

X
l0

l0δl0;lþ1 þ lδl;l0þ1

2lþ 1
jIRj2; ðA9Þ

with the radial overlap integral

IR ≡
Z

∞

0

dρρ2fnlðρÞF�
l0 ðρÞ; ðA10Þ

where fnlðρÞ ¼ FnlðrÞ=p3=2
rel is the dimensionless radial

wave function of the bound state.
To compute the radial integral, we use an integral

representation of the hypergeometric function that appears
in the scattering wave function,

1F1ðl0 þ 1 − iζs; 2l0 þ 2;−2iρÞ

¼ ð2l0 þ 1Þ!
jΓð1þ l0 − iζsÞj2

Z
1

0

dssl
0−iζsð1 − sÞl0þiζse−2iρs:

ðA11Þ
Note that by substituting s → 1 − s one finds that Fl0 ðρÞ is
real, such that we can drop the complex conjugate in IR.
In addition, we use the generating function of the Laguerre
polynomials for the bound-state wave function, to write

LðαÞ
n ðxÞ ¼ 1

n!

�
d
dt

�
n e−x

t
1−t

ð1 − tÞ1þα

				
t¼0

: ðA12Þ

The ρ integration can be performed using the definition of
the Γ function, and we obtain

IR ¼ 2ζ3=2b ðlþ l0 þ 3Þ!
n2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðn − l − 1Þ!ðnþ lÞ!p �
2ζb
n

�
l 2l

0
eπζs=2

jΓð1þ l0 − iζsÞj

×
�
d
dt

�
n−l−1 1

ð1 − tÞ2lþ2

×
Z

1

0

ds
sl

0−iζsð1 − sÞl0þiζs

ðζbn 1þt
1−t þ ið2s − 1ÞÞlþl0þ4

				
t¼0

: ðA13Þ

We find, setting a≡ iζs; b≡ i ζbn
1þt
1−t,Z

1

0

ds
sl

0−að1 − sÞl0þa

s − 1
2
− b=2

¼ π

sinðaπÞ
��

b − 1

bþ 1

�
a ð1 − b2Þl0

22l
0 þ

X2l0
r¼0

a2l
0−rbrcr

�
;

ðA14Þ
with some rational coefficients cr, that will be unimportant
in the following. We can generate the required integral by
differentiating lþ l0 þ 3 with respect to b. Because of the
selection rule, lþ l0 þ 3 ≥ 2l0 þ 2 > 2l0, such that the
sum over r in the square bracket drops out, as announced.
Using�

b − 1

bþ 1

�
a
¼ exp

�
−2ζsarccot

ζb
n
1þ t
1 − t

�
; ðA15Þ

setting z≡ ζb
n
1þt
1−t ¼ −ib, and using sinðaπÞ ¼ i sinhðζsπÞ

yield

Z
1

0

ds
sl

0−iζsð1 − sÞl0þiζs

ðzþ ið2s − 1ÞÞlþl0þ4

¼ π

sinhðπζsÞ
ð−1Þlþl0

22l
0þ1ðlþ l0 þ 3Þ!

×

�
d
dz

�
lþl0þ3

ð1þ z2Þl0e−2ζsarccotðzÞ; ðA16Þ
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which allows us to evaluate the radial integral. Using

jΓð1þ l0 − iζsÞj2 ¼
π

ζs sinhðπζsÞ
× ζ2s × ð1þ ζ2sÞ

× ð2þ ζ2sÞ × � � � × ðl02 þ ζ2sÞ ðA17Þ

finally gives the result, Eq. (52), for the radial integral.

APPENDIX B: NLO CORRECTIONS
TO BOUND-STATE FORMATION

Here, we discuss the impact of NLO corrections to the
bound-state formation cross section. In general, there are
various sources of potential higher-order corrections for the
complete effective cross section, Eq. (23), including:
(1) the bound-state decay rate (relevant in ionization

equilibrium), including (i) virtual corrections to the
Bn0 → gg decay; (ii) real corrections, that is, three-
body decays into ggg and gq̄q; (iii) scattering
processes such as qBn0 → qg; and (iv) decays of
l ≠ 0 bound states.

(2) the bound-state formation rate (relevant out of
ionization equilibrium), including (i) transition op-
erators beyond the color-electric dipole term and
(ii) virtual and real corrections to the q̃q̃† → Bnlg
transition, involving 3 → 2 and 2 → 3 processes
(collisional bound-state formation).

(3) the transition rates between bound states (also
relevant out of ionization equilibrium).

A complete treatment of all NLO corrections in αs
would be interesting but is not available at the moment.
In Sec. IV B, we briefly discussed the impact of NLO

corrections to bound-state decay [related to point 1(i/ii)]
and discussed also point 1(iii).
In this Appendix, we investigate the quantitative

impact of NLO corrections to the decay [cf. 1(i/ii)] as
well as the NLO corrections considered in Ref. [30] (see
also Ref. [27]), which are related to point 2(ii).

1. NLO corrections to bound-state formation

The impact of including the vacuum and finite temper-
ature correction as given in Ref. [30] on the effective cross
section, Eq. (23), in the no-transition limit, Eq. (25), is
shown in Fig. 9. In Refs. [27,30], it is pointed out that the
correction to the bound-state formation cross section
becomes very large for small enough x, corresponding
to T ≳ EBnl

. Nevertheless, for these temperatures, ioniza-
tion equilibrium holds to a large extent. In ionization
equilibrium, the effective cross section becomes insensitive
to the bound-state formation cross section. Therefore, the
effect of the NLO corrections considered in Ref. [30] on the
effective cross section is almost negligible for small x (left
part of the left panel in Fig. 9). For large x, on the other
hand, the temperature is so small that the finite-temperature
contribution of the NLO corrections gives a negligible
contribution. In this region, the zero-temperature correction
dominates. This is the reason why the difference between
LO and the NLO correction considered in Ref. [30] is
moderate in the right part of the left panel in Fig. 9.
However, it becomes more relevant for excited states, due
to the larger effective strong coupling, given our scale
choice (47).
To further assess the impact of NLO corrections, we

show the dependence of the effective cross section when

FIG. 9. Impact of the class of NLO corrections presented in Ref. [30] on the contribution to the effective cross section, Eq. (25), from
bound states. The corrections capture collisional bound-state formation processes. The left panel shows the dependence on the
temperature parameter x. The bands show the uncertainty from the scale choice of the strong coupling (increased or decreased by a factor
2 relative to the fiducial choice discussed in the main text) when taking excited states up to n ¼ 15 into account. The right panel shows
the dependence on the renormalization scale for x ¼ 103. We consider the benchmark point mχ ¼ 1 TeV, Δm ¼ 20 GeV.
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changing all scales at which the strong coupling is
evaluated by a factor of 2 or 0.5, respectively, by the
colored bands in Fig. 9. Within the perturbative uncertainty,
both results are consistent with each other. We observe that
including the NLO corrections considered in Ref. [30]
leads only to a small reduction of the scale uncertainty
(right panel of Fig. 9). This indicates that further sources of

higher-order corrections, including those listed above,
would have to be taken into account for a complete
NLO analysis.
The effect of the NLO corrections on the boundary

between the coannihilation and conversion-driven regime is
shown in Fig. 10 and compared to the impact of taking
excited states into account. We find that the latter is
significantly more important.

2. NLO corrections to bound-state decay

Real and virtual correction to the decay B10 → gg have
been computed in Ref. [41]. The relative correction at NLO
in the limit of massless quarks is given by Eq. (65) in the
main text. Note that collinear singularities in the real
correction cancel when including the virtual piece [41],
analogously to heavy quarkonium decay [38–40].
In Fig. 11 (left panel), we show the ratio ΓNLO

dec =ΓLO
dec

versus mq̃ for different choices of the MS renormalization
scale. The central line corresponds to μMS ¼ mq̃, while the
lower and upper boundaries of the red shaded band
correspond to the choices μMS=mq̃ ¼ 1=2 and 2, respec-
tively. We adopted μMS ¼ mq̃ in the main text, while μMS ¼
2mq̃ is used, e.g., in Ref. [41]. We observe that the NLO
correction is significantly smaller for μMS ¼ mq̃, at the level
of a few percent. This justifies using the LO decay rate in
our main analysis for this scale choice.
In Fig. 11 (right panel), we show the dependence of the

decay rate on μMS at LO and at NLO. As expected, the NLO

FIG. 11. Impact of the NLO correction, Eq. (65), to the bound-state decay rate. The left panel shows the NLO correction as a function
of mq̃. The central line corresponds to μMS ¼ mq̃, while the lower and upper boundaries of the red shaded band corresponds to the
choices 1=2mq̃ and 2mq̃, respectively. In the right panel, we display the scale dependence of the LO and NLO decay rates for the
benchmark point with mq̃ ¼ 1020 GeV.

FIG. 10. Impact of the class of NLO corrections presented in
Ref. [30] on the boundary between the coannihilation and
conversion-driven regime (red: with BSF NLO correction; blue:
without). The impact on the boundary is smaller than the
difference that arises when including excited states (n ≤ 15) as
opposed to the ground state only (n ¼ 1), which is shown for
comparison for both cases, respectively.
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result is significantly less sensitive to the scale choice. Note
that for these figures we have set nf ¼ 5 and neglected
the contribution from the top quark since the use of the
massless approximation is in general not well justified in
that case. Using the expressions for the real corrections for
massive quarks obtained in Ref. [41] confirms that the top
quark contribution would amount to a small change of the
already small NLO correction. Note that in Fig. 11 we only
vary αanns while keeping αeffb fixed.
In Fig. 12, we show the impact on the boundary line

between conversion-driven freeze-out and coannihilation
when taking into account NLO corrections to the decay. As
expected, their impact is very small both for the ground
state only and when taking into account excitations. Note
that to obtain the NLO line when taking excited states into
account we have assumed that ΓNLO

dec =ΓLO
dec is identical for all

states with arbitrary n and l ¼ 0.
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