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Abstract

Computer vision algorithms have come a long way in recent years, from the simple classi-
fication of objects in 2D images to digitizing and understanding entire 3D environments.
This has already enabled autonomous agents to confidently navigate in and interact with
their surroundings. Building on this progress, the next challenge is to share the same
space with humans while offering assistance and meaningful interactions. This will allow
for truly autonomous assistive robotics, content creation, and mixed-reality applications.
For example, a robotic surgical assistant could predict in advance where best to place a
utensil to assist the surgeon’s next action, and an animation tool could suggest plausible
future human motion based on captured sequences, enabling rapid prototyping.

At the core of any such method is a comprehensive understanding of human behavior.
Learning to forecast future human behavior in an analysis-by-synthesis manner is a
promising direction for current research in this area: Realistic forecasting implies a high
level of understanding of human actions and interactions with their environment.

Existing works on human motion forecasting are often insufficient for modeling long-
term human behavior as well as realistic interactions between humans and their envi-
ronment: They model human motion only in the immediate future, while human actions
often last for multiple minutes. This observation is especially true for complex multi-
step behavior (e.g., cooking), where the lack of training data is an additional constraint.
Also, existing methods only consider interactions with environments on the human side
– the generated human behavior is affected by its environment but not vice versa.

This dissertation aims to address such shortcomings: First, we introduce the notion
of Characteristic 3D Poses. Instead of predicting a human pose sequence with poses at
fixed time intervals, we observe that human motion is goal-oriented. Thus, we propose
to forecast a single semantically meaningful characteristic action pose from an observed
human motion sequence in a probabilistic manner.

Building on this notion, we present a method to forecast complex sequences of action
labels and corresponding Characteristic 3D Poses. This approach allows for modeling
complex composite human actions such as cooking or furniture assembly. As 3D data for
such approaches is hard to acquire, we train our method on widely available 2D action
datasets and an uncorrelated 3D pose database. This way, we can generate long-term
human action sequences of 3D poses and actions from only 2D observations.

As humans usually interact with an environment, we present an approach to generate
human-object interactions from input object geometry and a text prompt. In these
sequences, both the human and the object are in motion. Using a contact-based human-
object interaction representation allows for generating physically plausible sequences.

Finally, a discussion of potential research avenues aims to encourage future progress
in the domain of 3D human behavior forecasting, generation, and understanding.
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Zusammenfassung

Computer Vision Algorithmen sind in den letzten Jahren weit gekommen, angefangen
bei der einfachen Klassifizierung von Objekten in 2D-Bildern bis hin zur Digitalisierung
und zum Verstehen ganzer 3D-Umgebungen. Dies hat es autonomen Systemen bere-
its ermöglicht, sich sicher in ihrer Umgebung zu bewegen und mit ihr zu interagieren.
Aufbauend auf diesen Fortschritten besteht die nächste Herausforderung darin, sich
einen gemeinsamen Raum mit Menschen zu teilen und dabei Unterstützung und sin-
nvolle Interaktionen anzubieten. Dies wird autonome Assistenzroboter, die Erstellung
von 3D-Inhalten und Mixed-Reality-Anwendungen ermöglichen. So könnte beispiel-
sweise ein chirurgischer Assistenzroboter im Voraus vorhersagen, wo ein Werkzeug am
besten platziert werden sollte, um den Chirurgen bei seiner nächsten Aktion zu un-
terstützen, und ein Animationstool könnte auf der Grundlage erfasster Sequenzen plau-
sible zukünftige menschliche Bewegungen vorschlagen, was ein schnelles Prototyping
ermöglicht.

Der Kern einer jeden solchen Methode ist ein umfassendes Verständnis menschlichen
Verhaltens. Das Erlernen der Vorhersage zukünftigen menschlichen Verhaltens mittels
Analyse-durch-Synthese ist eine vielversprechende Richtung in der aktuellen Forschung:
Realistische Vorhersagen setzen ein umfassendes Verständnis menschlicher Handlungen
und Interaktionen mit ihrer Umgebung voraus.

Bestehende Arbeiten zur Generierung menschlicher Bewegungen sind oft unzureichend,
um langfristiges menschliches Verhalten sowie realistische Interaktionen zwischen Men-
schen und ihrer Umwelt zu modellieren: Sie generieren menschliche Bewegungen nur für
die unmittelbare Zukunft, während menschliche Handlungen oft mehrere Minuten lang
andauern. Diese Beobachtung gilt insbesondere für komplexes mehrschrittiges Verhalten
(z. B. Kochen), bei dem der Mangel an Trainingsdaten eine zusätzliche Einschränkung
darstellt. Außerdem berücksichtigen bestehende Methoden nur die Interaktionen mit
der Umgebung auf der menschlichen Seite - das generierte menschliche Verhalten wird
von seiner Umgebung beeinflusst, aber nicht umgekehrt.

Das Ziel dieser Dissertation ist, diese Schwächen anzugehen: Zunächst führen wir
den Begriff der charakteristischen 3D-Posen ein. Anstatt eine menschliche Posenfolge
mit Posen in festen Zeitintervallen vorherzusagen, stellen wir fest, dass die menschliche
Bewegung zielorientiert ist. Daher schlagen wir vor, eine einzelne semantisch sinnvolle
charakteristische Aktionspose aus einer beobachteten menschlichen Bewegungssequenz
auf probabilistische Weise vorherzusagen.

Aufbauend auf diesem Konzept stellen wir eine Methode zur Vorhersage komplexer Se-
quenzen von Handlungsbezeichnungen und entsprechenden charakteristischen 3D-Posen
vor. Dieser Ansatz ermöglicht die Modellierung komplexer, zusammengesetzter men-
schlicher Handlungen wie Kochen oder Möbelmontage. Da 3D-Daten für solche Ansätze
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Zusammenfassung

schwer zu beschaffen sind, trainieren wir unsere Methode auf weithin verfügbaren 2D-
Aktionsdatensätzen und einer unkorrelierten 3D-Posendatenbank. Auf diese Weise können
wir langfristige menschliche Aktionssequenzen mit 3D-Posen und Aktionen aus nur 2D-
Beobachtungen generieren.

Menschen interagieren normalerweise mit ihrer Umgebung. Wir stellen daher einen
Ansatz vor, um Mensch-Objekt-Interaktionen aus einer Objektgeometrie und einem
Textprompt zu generieren. In diesen Sequenzen sind sowohl der Mensch als auch das
Objekt in Bewegung. Die Verwendung einer kontaktbasierten Darstellung der Mensch-
Objekt-Interaktion ermöglicht die Generierung physikalisch plausibler Sequenzen.

Abschließend werden potenzielle Forschungsmöglichkeiten erörtert, um künftige Fortschritte
auf dem Gebiet der Vorhersage und Generierung menschlichen Verhaltens in 3D zu
fördern.
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1 Introduction

Over the past several decades, technological advances have led to unprecedented trans-
formations, reshaping our capabilities to automatically capture, reconstruct, model, and
understand the world around us. While this journey of innovation began early on with
the first computers, the advent of fast and massively parallel compute capabilities en-
abled an efficient way to design, train, and deploy machine learning at scale in the form
of neural networks. These advances soon led to a revolution in the area of computer
vision, a discipline that tries to understand the world around us from vision, starting
with 2D images and later expanding to more involved capturing methods such as 3D
scanners. In 2D, neural networks allow for more accurate image classification, detection,
and segmentation. Methods for modeling and synthesizing parts of the real world soon
followed, generating photo-realistic images and digital assets. All these relatively recent
advances allow for popular applications such as self-driving vehicles, photo-realistic VR
teleconferencing, advanced assistive robotics, digital content creation for entertainment
and simulation purposes, and more.

However, these methods and technologies were initially constrained to capturing 2D
images, projections of the real world onto a flat image plane, and learning from this rep-
resentation. The world around us is three-dimensional, and modeling a realistic version
of it requires a solid understanding of 3D primitives and structures. With more widely
available sensors and novel techniques for capturing, the field of 3D computer vision
has recently emerged to work directly in 3D, from capture to generation. Nowadays,
capturing the world in 3D is possible with hand-held sensors and advanced reconstruc-
tion algorithms. Operating directly in 3D without the limitations of 2D images has
several advantages, such as no scale ambiguity, no occlusions, and independence from
a pre-defined camera viewpoint. Consequently, many methods have been proposed to
address understanding in 3D: Classification and segmentation of 3D objects and whole
scenes, detection and localization of objects and object parts in larger structures, and
how humans interact with 3D environments. On the other side, generative approaches
have also emerged to automatically and directly generate 3D assets, being able to pro-
duce object and scene geometry from text conditioning and, more recently, realistic 3D
human motion and interactions between humans and their environment (Fig. 1.1).

This last task in particular, understanding and modeling human behavior, is fun-
damental for applications such as autonomous robotics, assistive systems, and realistic
animation creation. Being able to generatively model and forecast plays a significant role
and is a foundational part of intelligence [4, 5, 6]. Consider the challenges for autonomous
assistive systems: They need to be able to understand their environment in terms of the
types of surrounding objects, their properties, and possible ways to interact with them.
This allows assistive systems to perform actions in isolation, i.e., without sharing the
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1 Introduction

Figure 1.1: The task of modeling human actions and interactions in 3D. Left: Generating 3D
human sequences in isolation from text (“kick with left leg”) [1]. Middle: Forecasting future
human motion (colored) from past observations (gray) [2]. Right: Generating dynamic human-
object interactions from text and geometry conditioning [3].

space with human actors. However, to actively assist humans in a shared space, their
understanding must extend to human behavior. This includes forecasting the next likely
movements a human will perform, based on previous observations, to be able to move
out of the way or to hand over objects in time. It also requires modeling how humans
affect the shared environment, e.g., by moving a chair when sitting down or by changing
the geometry of closets when opening them. This modeling of human behavior in terms
of future actions and motion in 3D can be approached from different viewpoints: Consid-
ering only coarse high-level representations such as action class labels [7, 8, 9, 10, 11, 12],
fine-grained representations like 3D human pose sequences [13, 14, 15, 16, 17], or inter-
actions between humans and their environment [18, 19, 20, 21, 22, 23, 24, 25, 26].

Forecasting human poses in 3D lays the basis for a more fine-grained structural un-
derstanding of human behavior instead of purely relying on semantics, as is done when
predicting action labels. With 3D poses, anticipatory action can be taken by an assistive
robotic system; for example, a surgical robotic assistant should predict where best to
put a tool to assist a surgeon’s next action, which viewpoint to take to reduce obstruc-
tions, and where to position itself to be out of the way for future motion. Previously,
there has been notable progress in the field of 3D human motion forecasting, addressing
the specific task of predicting future human motion, given a short observation sequence
[13, 27, 28, 29, 14, 30, 31, 15]. These existing approaches all take a temporal approach,
predicting human poses at fixed time intervals, following the frame rate of camera cap-
ture. This makes it challenging to predict longer-term (multiple seconds) sequences,
limiting the expressiveness of generated behavior. Instead, in this dissertation, we aim
to focus on the high-level goal of the future action, decouple temporal and intentional
behavior, and forecast one future characteristic 3D pose for a given short sequence ob-
servation. This characteristic pose depicts the human in an action-defining, semantically
meaningful moment. Focusing on this moment enables many potential applications, in-
cluding human-robot interactions, surveillance, visualization, simulation, and content
creation. Specifically, the characteristic pose can be used to predict the exact hand-off
point when a robot is passing an object to a person; to detect and display future poses
worthy of alerts in a safety monitoring system; to coordinate grasps when assisting a
person lifting a heavy object; to assist tracking through occlusions; or to predict future
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keyframes, as is done in video generation [32, 33]. Future characteristic 3D poses usually
occur a longer time into the future (more than 1 second). Thus, an inherent ambiguity
exists, and we aim to capture this multi-modality in our forecasting. Instead of deter-
ministically predicting one future characteristic pose, we develop a method to generate
a diverse set of plausible poses for a given short-sequence observation.

Forecasting a single characteristic 3D pose already allows for efficiently modeling hu-
man behavior but is limited to a single action. Realistic human behavior, such as when
preparing a meal or assembling furniture, consists of multiple sub-actions that must be
taken in a well-defined order. Thus, we propose to model such sequences in 3D with one
characteristic pose per sub-action and its corresponding action label. We observe that
these two tasks are coupled in nature. As opposed to previous work either predicting
high-level action labels only [7, 8, 9, 10, 11, 12] or 3D pose sequences limited to short
time frames [13, 14, 15, 16, 17], we show that the synergy between both allows for richer
feature learning and ultimately, improved robustness and forecasting quality. This allows
us to model multi-step composite human action sequences.

There are two significant challenges we address along the way. The first one arises
from limited training data. As we aim to forecast future poses in 3D, having a dataset
with ground-truth 3D pose and action annotations of complex action sequences would
be ideal. However, no such dataset exists, and capturing one poses significant challenges
due to occlusions and the required scale of the capturing setup. With only 3D datasets
of single actions per sequence and 2D datasets of complex actions available, we instead
aim to leverage these 2D datasets as input and supervision, with added weak supervision
from an adversarial loss to ensure valid 3D pose predictions. The second challenge is
the difficulty of predicting long (up to multiple minutes) action sequences. We propose
the previously introduced characteristic pose representation to decouple actions and
time, forecasting one semantically meaningful pose for each predicted action step. We
formulate this approach autoregressively and are thus able to generate long composite
action sequences of human behavior.

Finally, we observe that human behavior rarely happens in isolation. Meaningful
motion arises from interaction with other humans in the vicinity or with the surround-
ing environment, using and manipulating objects in indoor and outdoor scenes. Exist-
ing works focus solely on generating dynamic humans, disregarding their surroundings
[34, 35, 36, 37, 38, 39], or grounding interactions in a completely static environment that
remains unchanged throughout the interaction [18, 19, 20, 21, 22, 23, 24, 25, 26]. How-
ever, real-world human interactions affect the environment, e.g. sitting down on a chair
typically moves that chair, either to adjust it before sitting down or to move it away
from other objects such as a table. Thus, we propose an approach to jointly generate
human and object motion in 3D to generate realistic interactions between humans and
objects. The key to our approach is to model both motions separately and bridge them
by explicitly modeling contact. This helps encourage human and object motion to be
semantically coherent and provides a constraint indicating physical plausibility (i.e., to
discourage object floating and intersection). We additionally employ a contact weighting
scheme based on the insight that object motion, when manipulated by a human, is most
defined by the motion of the body part in closest contact.
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1 Introduction

In this dissertation, we present approaches focused on efficiently generating future
human behavior in single-action and complex composite multi-action sequences. In an
additional approach, we explore how to generate realistic human-object interactions,
bridging the gap from isolated human behavior to interactions with an environment. In
summary, we provide these contributions to the field of 3D human motion forecasting
and generation:

• A probabilistic approach to forecasting future human behavior in an intent-driven
manner, using the novel representation of characteristic 3D poses, efficiently mod-
eling the multi-modality of long-term future human behavior.

• A method for forecasting complex sequences of human behavior, consisting of ac-
tion labels and corresponding characteristic poses in 3D, while being trained on
2D action data and a database of uncorrelated 3D human poses.

• An approach to generate realistic, diverse, and physically plausible whole-body
human-object interaction sequences, utilizing a contact formulation bridging hu-
man and object motion.

1.1 Dissertation Overview

This dissertation contains seven chapters across three parts, which are structured as
follows:

• Part I: Introduction (Chapters 1-2)

– Chapter 1 introduces the topic of 3D human behavior modeling and forecast-
ing in terms of recent developments and the significance of our contributions
to the research community

– Chapter 2 explains fundaments concepts in 3D static geometry and 3D dy-
namic human representation, capture thereof, and modeling of human motion

• Part II: 3D Human Behavior Understanding (Chapters 3-5)

– Chapter 3 introduces our work on forecasting characteristic 3D poses of hu-
man actions from a short input sequence

– Chapter 4 introduces our work on complex long-term 3D human behavior
forecasting from 2D video observations

– Chapter 5 introduces our work on generating contact-guided 3D human-object
interactions from object geometry and text description input

• Part III: Conclusion & Outlook

– Chapter 6 summarizes our proposed methods and provides an overall conclu-
sion

– Chapter 7 discusses remaining limitations and gives an outlook for possible
future research directions

6



1.2 Contributions

1.2 Contributions

This dissertation proposes three novel approaches, each addressing one important aspect
of human behavior modeling. We first introduce the notion of Characteristic 3D Poses,
a more suitable representation for goal-directed human action sequences. By forecasting
a single semantically meaningful 3D human action pose in a probabilistic manner, the
inherent multi-modality of multiple-second human actions can be modeled efficiently and
expressively. We then extend this 3D human pose representation to complex composite
human action sequences, achieving long-term human action forecasting that was not
possible with previous methods. Combined with its ability to jointly forecast actions and
characteristic poses in 3D from only 2D observations, this method is highly applicable
to easy-to-capture video observations. Finally, we propose a method to generate human-
object interactions from text and object geometry to model more realistic human motion.
Our contact-based representation of interactions between humans and objects in motion
allows for generating realistic full-body human motion sequences without constraining
an environment to remain static throughout the sequence. In summary, the contribution
of this dissertation, structured by publication, are:

• We propose “Forecasting Characteristic 3D Poses of Human Actions” and intro-
duce the task of forecasting characteristic 3D poses: from a short sequence observa-
tion of a person, predict a future 3D pose of that person in a likely action-defining,
characteristic pose. Prior work estimates future poses at fixed time intervals. This
frame-by-frame formulation confounds temporal and intentional aspects of human
action. Instead, we define a semantically meaningful pose prediction task that de-
couples the predicted pose from time. To predict characteristic poses, we propose
a probabilistic approach that models the possible multi-modality in the distribu-
tion of likely characteristic poses. We then sample future pose hypotheses from
the predicted distribution in an autoregressive fashion to model dependencies be-
tween joints. The method development and implementation were done by the first
author. Discussions with co-authors led to the final publication [40].

• We propose “FutureHuman3D: Forecasting Complex Long-Term 3D Human Be-
havior from Video Observations” and present a generative approach to forecast
long-term future human behavior in 3D, requiring only weak supervision from
readily available 2D human action data. We design our method to only require
2D RGB data while being able to generate 3D human motion sequences. We use a
differentiable 2D projection scheme in an autoregressive manner for weak supervi-
sion and an adversarial loss for 3D regularization. Our method predicts long and
complex behavior sequences (e.g., cooking, assembly) consisting of multiple sub-
actions. We tackle this in a semantically hierarchical manner, jointly predicting
high-level coarse action labels together with their low-level fine-grained realizations
as characteristic 3D human poses. We observe that these two action representa-
tions are coupled in nature, and joint prediction benefits both action and pose
forecasting. The method development and implementation were done by the first
author. Discussions with co-authors led to the final publication [41].
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1 Introduction

• We propose “CG-HOI: Contact-Guided 3D Human-Object Interactions”, the first
method to address the task of generating dynamic 3D human-object interactions
(HOIs) from text. We model the motion of humans and objects in an interde-
pendent fashion, as semantically rich human motion rarely happens in isolation
without any interactions. Our key insight is that explicitly modeling contact be-
tween the human body surface and object geometry can be used as strong proxy
guidance, both during training and inference. Using this guidance to bridge hu-
man and object motion enables the generation of more realistic and physically
plausible interaction sequences, where the human body and corresponding object
move coherently. Our method first learns to model human motion, object motion,
and contact in a joint diffusion process, inter-correlated through cross-attention.
We then leverage this learned contact for guidance during inference synthesis of
realistic, coherent HOIs. The method development and implementation were done
by the first author. Discussions with co-authors led to the final publication [3].

1.3 List of Publications

Authored

• Christian Diller, Thomas Funkhouser, and Angela Dai. “Forecasting Charac-
teristic 3D Poses of Human Actions” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), 2022, pp. 15914-15923

• Christian Diller, Thomas Funkhouser, and Angela Dai. “FutureHuman3D: Fore-
casting Complex Long-Term 3D Human Behavior from Video Observations” in
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition (CVPR), 2024

• Christian Diller and Angela Dai. “CG-HOI: Contact-Guided 3D Human-Object
Interactions” in Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), 2024

Co-Authored

• Angela Dai, Christian Diller, and Matthias Niessner, “SG-NN: Sparse Gener-
ative Neural Networks for Self-Supervised Scene Completion of RGB-D Scans”
in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2020, pp. 849-858
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2 Fundamentals and Methods

Over the past few decades, there has been tremendous work toward understanding and
modeling three-dimensional environments, both in computer graphics and computer vi-
sion. While these works were initially focused on static 3D geometry, recently, there has
been increasing interest in representing dynamic human bodies and their interactions
with object and scene geometry. This chapter provides a broad overview of widely used
methods for representing, capturing, and modeling geometry, human bodies, interactions
between the two, and approaches to modeling human dynamics.

Section 2.1 introduces and discusses common ways to represent 3D geometry, specifi-
cally for objects and scene environments. How to represent humans in 3D is discussed in
section 2.2. Section 2.3 then explains techniques for capturing such geometry and human
body motion from real-world observations. Finally, section 2.4 discusses fundamental
methods used to model and forecast human motion in 3D.

2.1 Representing 3D Geometry

In computer graphics and computer vision, choosing a suitable representation for 3D
geometry is crucial. This is a major differentiating factor between 2D and 3D represen-
tations of reality: In the 2D domain, a sensor projects points in 3D space to a regular
2D grid of cells, called pixels, each of which representing the light intensity across differ-
ent color channels. On the contrary, when working directly with 3D objects, no single
representation fits all use cases.

This chapter explores the three most-used representations of 3D geometry: triangle
meshes, point clouds, and voxel grids. Each representation has its own advantages and
disadvantages, and each method has to weigh positive against negative properties, mainly
in terms of memory consumption, flexibility, regularity, and level of detail.

2.1.1 Polygon Meshes

Polygon meshes are the most common and versatile representation of 3D geometry.
Formally, a polygon mesh is a graph structure containing a set of vertices V and edges
E. Polygons are formed between groups of N adjacent points connected by edges from
E and act as a piecewise approximation of the actual geometry. Most commonly, the
polygons are triangles, and as such, N = 3.

Meshes can be efficiently and compactly stored with two lists. First, a list of vertices,
storing locations along x, y, and z axes in 3D space. Thus, in its most basic form, vertices
are defined as vi ∈ R3. Second, an index list for storing the edges of triangles between
vertices. These triangles (or “faces”) contain a triple of vertex indices (i, j, k), with each
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2 Fundamentals and Methods

index referring to a vertex stored in the vertex list. Figure 2.1 shows an example of a
triangle mesh.

Meshes are widely used in computer graphics for rendering and modeling objects due
to their flexibility and ability to efficiently approximate complex surfaces. They are also
utilized in computer-aided design (CAD), animation, and simulation applications.

Figure 2.1: Stanford bunny in tri-
angle mesh representation. Visualized
are vertices, edges, and faces

As such, their most significant advantage is the
applicability to downstream tasks and graphics
pipelines for integration into existing workflows.
In addition, they provide an efficient way to store
and exchange geometric data due to their compact
requirement of only storing two lists. Moreover,
meshes support texture mapping and surface at-
tributes, allowing for realistic material representa-
tions and visual effects. Their simplicity also allows
for accelerated geometry operations (e.g., trans-
forming a triangle’s position in space by matrix-
vector multiplication), which is exploited in mod-
ern graphics hardware by embedding specialized
geometry instructions directly in hardware circuits.

However, triangle meshes have several limita-
tions, preventing their widespread use in geometry
generation and reconstruction. Representing smooth surfaces accurately with triangle
meshes can be challenging, especially for highly curved or organic shapes. Meshes may
require high tessellation levels to capture fine details accurately, leading to increased
memory and computational costs. Furthermore, mesh data structures may lack explicit
topological information, complicating boundary detection and mesh editing operations.
Finally, processing meshes with neural networks is challenging due to the difficulty of
computing gradients with respect to the geometry, which is often required for computer
vision applications.

2.1.2 Point Clouds

Point clouds represent 3D surfaces as an unordered set of discrete points sampled on the
geometry surface. Each point P ∈ R3 in the cloud typically contains spatial coordinates
(x, y, z) and optionally additional attributes such as color or surface normals. As such,
they can be efficiently stored as a single list of 3D points. Point clouds are generated using
3D scanning technologies such as LiDAR (Light Detection and Ranging) and structured
light scanning, discussed in detail in section 2.3. From an existing mesh, a point cloud
can be generated by uniformly sampling the surface, taking the area of faces into account.
Figure 2.2 shows the result of uniformly sampling the mesh in figure 2.1.

Point clouds offer several advantages over other representations. Firstly, they directly
represent object surfaces with high fidelity, capturing fine details and surface irregulari-
ties accurately.
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2.1 Representing 3D Geometry

Figure 2.2: Stanford bunny in point
cloud representation. Visualized are
uniformly sampled surface points

They are flexible in terms of data acquisition,
allowing for the integration of data from various
sensing modalities and scanning techniques. More-
over, point clouds are suitable for capturing com-
plex geometries and intricate structures that may
be challenging to represent using other methods.

However, point clouds suffer from several limita-
tions. One challenge is noise, which can arise from
sensor inaccuracies, environmental factors, and im-
perfections in the scanning process. Cleaning and
processing noisy point cloud data can be time-
consuming and may require advanced filtering and
reconstruction techniques. Additionally, neighbor-
hood operations are more expensive since they are
inherently just an unordered collection of points.

Finally, they only offer a pointwise approximation of a surface without information in
between, meaning that their usefulness highly depends on their quality and sparsity.

2.1.3 Voxel Grids

Voxel grids represent 3D shapes by discretizing 3D space into a regular grid of voxels,
analogous to pixels in 2D space. Each voxel encodes information about the geometry
(and, optionally, the color) at the voxel’s location.

Figure 2.3: Stanford bunny in occu-
pancy grid representation. Visualized
are occupied voxels

The two most commonly used representations
in voxel grids are occupancy and distance fields.
Occupancy grids encode if a given voxel is occu-
pied by the underlying geometry or not. Figure 2.3
shows the result of encoding a shape in this man-
ner. Alternatively, implicit representations such as
distance fields can be used. Here, each voxel en-
codes the distance to the closest surface, implicitly
defining the geometry’s surface as the zero-level set
of a scalar function f : R3 → R defined over the
entire space. This way, surfaces can be represented
continuously and smoothly, as opposed to binary
occupancy grids. By using signed distance fields,
the inside and outside of a shape can be defined, re-
solving ambiguities that arise from alternative rep-
resentations. Finally, they allow for the use of con-
structive solid geometry operations, enabling the synthesis of complex shapes from simple
primitives.

Voxel grids offer several advantages. Firstly, their regular structure makes spatial
queries and neighborhood operations efficient and easy to perform. Secondly, they are
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2 Fundamentals and Methods

easy to process and generate, especially in the domain of deep learning, where 3D con-
volutions can exploit cheap neighborhood operations.

Due to their grid structure, voxel grids suffer from several disadvantages. One chal-
lenge is the high memory consumption associated with fine resolutions and large grid
sizes. Storing and processing voxel grid data can require significant computational re-
sources due to their cubic growth, particularly for high-resolution volumetric datasets.
Additionally, voxel grids may lack geometric detail compared to triangle meshes, espe-
cially for complex surfaces and fine structures. Finally, downstream applications often
require an explicit geometry representation, such as meshes or point clouds, requiring a
conversion step from regular voxel grids. The most common method is Marching Cubes
[42], using a lookup table of triangles and vertex interpolation to extract a mesh from a
voxel grid.

2.1.4 Neural Geometry Representations

Figure 2.4: Stanford bunny as generated by
DeepSDF [43]. Left: Visualization of points
sampled inside and outside the shape, with the
decision boundary. Right: The final shape

Implicit representations, such as occu-
pancy grids and signed distance fields
mentioned above, are a way to encode 3D
geometry in a voxel grid of any fixed size
or resolution. However, they are simply
functions mapping a point P ∈ R3 in 3D
space to a scalar value representing occu-
pancy or distance. Consequently, they are
not limited to being stored in a grid. Sev-
eral recent methods explored this aspect
and proposed using a deep network to pro-
duce values corresponding to a given point
P . This not only alleviates the need for a
memory-intensive grid structure to store
the values but also allows for shape repre-
sentation at arbitrary scales, as networks
can be queried at any continuous point in three-dimensional space.

Figure 2.4 shows a shape generated by the popular approach DeepSDF [43]. It op-
timizes the parameters of the neural network to minimize the discrepancy between the
predicted and actual SDF values for a set of training shapes. Its formulation enables
it to learn complex geometries from sparse and irregular samples signed distance fields
in a neural network and to reconstruct the original shape by querying the network at
arbitrary locations during test time.

Such neural implicit representations combine the advantages of implicit fields men-
tioned above without being limited to storing values in a pre-defined voxel grid.
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2.2 Representing Dynamic 3D Humans

While the above representations of 3D geometry can, in principle, also be applied for
modeling human bodies, specialized representations are needed for efficiently represent-
ing dynamic 3D humans. When considering human motion and interaction, the focus
lies less on a high-fidelity reconstruction of the human body surface but more on effi-
ciently representing key elements of the human skeleton most affected by motion. This
chapter explores skeleton-based and full-body representations of the human body in 3D,
commonly used in 3D motion understanding and synthesis.

2.2.1 Skeleton-Based Representations

Figure 2.5: Surface point cloud of a human body from the GRAB [44] dataset and the cor-
responding extracted skeleton joints overlaid (left); native 17-joint skeleton from the Hu-
man3.6M [45] (right). Skeletons offer a simplified and easy-to-parse representation of the hu-
man body but suffer from strong simplification (e.g., not taking into account human body
shape or disregarding body parts such as feet) and various assumptions (e.g., number of joints
or anatomically incorrect placement of joints like the hip).

While a holistic, skinned model of the human body is crucial to applications like
photorealistic rendering or human-object interaction, a simplified version is often desir-
able when modeling human motion. Here, the human body is often represented as an
abstract version of the underlying skeleton by only considering the body joints and im-
plicitly modeling the bones connecting pairs of joints. This abstraction makes it possible
to efficiently represent, recognize, and forecast human motion in 3D. The exact amount
of body joints and their topology depends on a given dataset’s conventions – figure 2.5
shows two different examples from the GRAB [44] and Human3.6M [45] datasets – but
representations typically contain the most salient body joints such as hands, shoulders,
hips, and feet.
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Another defining property of skeletal human body models is the representation of
individual joints. The most obvious option is to assign 3D coordinates to each joint J .
This can be done in global world space coordinates, allowing for more global reasoning
of joint positions for understanding human motion within an environment or in local
coordinates with respect to a root joint JR. In the latter case, the 3D coordinates
describe an offset of the current joint J to the root joint JR, usually represented by a
central joint in the human body such as the hip joint in Human3.6M [45].

Beyond simple 3D coordinate representation, joint angles offer a nuanced way to de-
scribe body posture through the orientation and rotation of skeleton bones. These angles,
which can be expressed as Euler angles, quaternions, or exponential maps, represent the
angle between the two adjacent bones. Euler angles, though straightforward, are prone
to gimbal lock, leading to position ambiguities. Quaternions circumvent this issue and
are computationally favorable for smooth animations, while exponential maps use a vec-
tor to denote rotation axis and magnitude, which is ideal for differential calculations
in physics simulations. The transition from angular representations to precise joint lo-
cations in 3D employs forward kinematics. This technique calculates the position and
orientation of each chain part, like a limb, given the joint angles, starting from the root of
the skeleton, to sequentially apply rotations and compute the positions of all subsequent
joints. This allows for the reconstruction of the body’s posture from angular data. One
major advantage of using joint angles instead of 3D coordinates is their invariance to
body parameters such as height or width. When reconstructing spatial coordinates from
angles, a template of bone lengths can be used. This simplifying assumption benefits
many approaches for motion generation, allowing them to focus on the motion without
the need to model differences in body shape.

Recent advancements have led to more sophisticated skeleton-based models like Hu-
manML3D [46], which surpass earlier methods by incorporating features crucial for re-
alistic human motion simulation. These models add elements such as foot contact flags
and modeling joints in local space in terms of 3D coordinates and joint angles. Foot
contact flags are vital for simulating actions like walking or running, where an accurate
depiction of foot-ground interaction impacts motion realism.

2.2.2 Full-Body Representations

While a simplified abstraction of the human body is often desirable and sufficient for
generating dynamic humans in 3D, as mentioned above, several applications can benefit
from considering the whole human body, including skinned surface geometry, in their
methodology. The most prominent examples are methods that aim to model interactions
of humans with their environment, containing actions such as grasping a cup or sitting
on a chair. For a realistic interaction, the internal skeleton of a human is not sufficient
– it is the human body surface that is interacting with these objects. However, directly
modeling the human body surface as a point cloud or polygon mesh has some serious
drawbacks. For the necessary level of detail, such a mesh would require > 1000 individual
vertices, which are orders of magnitude larger than the ≈ 20 joints typically modeled
with skeleton representations. Additionally, this would not take topological properties
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Figure 2.6: Visualization of the skinning procedure from the original SMPL [47] paper: (a)
Template mesh T and colored blend weights W; (2) Addition of identity-dependent blend

shapes BS with shape vector β, also affecting regressed joint positions J ; (c) Addition of pose-
dependent blend shapes BP ; (d) Final reposed deformed vertices

into account: The topology of the human body cannot change by nature, and directly
enforcing such a constraint would negatively impact any approach to generating human
motion.

Several approaches have been developed over the years to tackle these issues. The
most widely used one is SMPL (short for “Skinned Multi-Person Linear Model”) [47].
It is a data-driven approach that utilizes linear blend shapes for an anatomically correct
statistical model of the human body surface based on shape identity and pose parameters.
Figure 2.6 shows an overview of their methodology. At its core, SMPL is a parametric
model that defines the human body through a set of shape and pose parameters. The
shape parameters β capture individual body variations, such as height, weight, and
body proportions, while the pose parameters θ (represented by joint angles) control the
articulations of the body joints. SMPL utilizes a learned model of vertex displacements,
applied to a template mesh T, producing the final body surface geometry. This approach
allows for the realistic modeling of muscle deformations and skin stretching, providing a
highly accurate representation of human anatomy and motion. SMPL uses linear blend
skinning (LBS) and corrective blend shapes BS(β) for the shape and BP (θ) for the pose.
LBS is a technique that uses transformations of the skeletal joints to deform the mesh,
with each mesh vertex being influenced by one or more joints, as defined by a weight
matrix W. However, LBS alone can lead to unrealistic deformations, particularly around
joint areas, e.g., visible soft tissue deformations when bending the knee. SMPL addresses
this issue by incorporating corrective blend shapes based on the pose parameters. These
blend shapes adjust the mesh deformations to mimic the natural movement of muscles
and skin, resulting in significantly improved visual fidelity.

Figure 2.7 shows the influence of shape and pose parameters, with shape parameters
encoding different identities. Note that varying the shape parameters does not alter the
underlying skeleton of the body pose but influences the final body surface geometry.

In practice, a human body can be represented using SMPL with a tuple of vectors
(θ,β, R, t) with pose parameters θ ∈ R21×3 in joint angle form, shape parameters β ∈ R16,
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Figure 2.7: Exploring the SMPL [47] shape space vs. pose space. From top to bottom: Dif-
ferent poses, same identity. Left to right: Same pose, different identities. By compactly rep-
resenting the human body surface in terms of identity and pose, SMPL is useful for many ap-
proaches aiming to model realistic human motion and interactions.

and global rotation R ∈ R3 as well as global translation t ∈ R3. This compact and
fully differentiable representation is highly desirable for motion generation applications,
making it possible to optimize for realistic human motion while generating holistic 3D
human body geometry.

Following the success of SMPL, several extensions and improvements have been pro-
posed, each designed to address specific limitations or to extend the model’s capabilities.
SMPL-H [48], for example, adds articulated hands to the SMPL model, providing a more
comprehensive representation of human gestures and hand interactions. SMPL-X [49]
further extends this by including facial expressions, resulting in a full-body model ca-
pable of conveying a wide range of human emotions. The STAR [50] (“Sparse Trained
Articulated Human Body Regressor”) model introduces improvements in the perfor-
mance and generalizability of SMPL, offering better quality with fewer parameters, with
learned sparse spatially local corrective blend shapes. Lastly, SUPR [51] (“Sparse Uni-
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fied Part-Based Human Representation”) offers a factorized representation of the human
body, which can be separated into individual body part models for head, hands, and
feet (visualized in figure 2.8).

Figure 2.8: The SUPR [51] model for human body surface representation. Its part-based ap-
proach allows for the separate usage of heads, hands, and feet models as well as unifying them
into one holistic human body representation.

2.2.3 Implicit Neural Representations

Parametric models such as SMPL [47] discussed above, while playing a crucial role in
modeling human bodies and motion, have several limitations that more recent methods
aim to address with neural representations. First, they usually require domain-specific
annotations, such as the number of parts or the exact kinematic chain. Additionally,
complex surface features such as wrinkles of clothing are often hard to represent with
parametric vertex-based methods like SMPL.

Recent approaches like NPMs [52] (“Neural Parametric Models for 3D Deformable
Shapes”) and SPAMs [53] (“Structured Implicit Parametric Models”) can be learned
without manual annotation or expert knowledge in a specific domain by leveraging im-
plicit functions, similar to methods for static 3D geometry (see section 2.1), while cap-
turing more intricate surface detail. They first learn a latent space of shape identities
in canonical pose by conditioning a shape MLP on a shape code. Afterward, a learned
deformation field maps points from the shape’s canonical space into a posed shape ver-
sion. This deformation field is represented by another MLP conditioned on the shape
and corresponding latent pose code to predict an offset vector for any given query point
sampled in the canonical pose.

While still an active area of research, such neural representations promise more flex-
ibility than traditional methods such as SMPL and are an exciting direction for future
work on human motion generation.
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2.3 Capturing Static Geometry and Dynamic Humans in 3D

Understanding and modeling realistic human motion and human interactions with their
environment requires capturing real-world observations and datasets of such behavior.
While it is possible to create synthetic data for static 3D geometry and dynamic humans,
such generated data is often lacking in diversity and realism.

Thus, it is essential to devise methods to capture datasets of real-world behavior. This
chapter will give an overview of fundamental computer vision approaches to capture both
static 3D geometry and dynamic 3D human motion.

2.3.1 Image Formation Process

The image formation process is the most fundamental concept in computer vision, de-
scribing the behavior of light as it interacts with objects and optical systems. Among
various models describing this interaction, the pinhole camera model is often used to
understand the essential geometric aspects of image formation. This simplified model
(visualized in figure 2.9) describes how light rays originating from a scene pass through a
small aperture (the pinhole) to form an inverted image on the opposite side. The benefit
of this model lies in its ability to provide a geometrically accurate representation of a
scene without the complexity introduced by lens systems.

Figure 2.9: Pinhole camera model: The 3D model (right) is projected onto the image sensor
(left), centered at principal point c, through the pinhole, which is a distance f away from the
sensor plane. In many applications, a virtual image plane is considered to be in front of the
pinhole at the same distance f, in which case the projection is not flipped.

Mathematically, the pinhole camera model is described by the equation p = K[I|0]P,
where p represents the homogeneous coordinates of a point in the image plane, P denotes
the homogeneous coordinates of the corresponding point in the 3D scene, and K is the
intrinsic camera matrix. The matrix K contains the parameters intrinsic to a given
camera, namely focal length f and principal point (cx, cy), typically represented as

K =




f 0 cx
0 f cy
0 0 1



 (2.1)

The focal length f quantifies the distance between the pinhole and the image plane,
essentially controlling the scale of the projected image, while the 2D principal point
(cx, cy) signifies the intersection of the optical axis with the image plane, serving as a
reference for image coordinates.
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In practical imaging systems, lenses are usually used to gather more light instead of
a pure pinhole camera. Calibrated lens camera models then account for the refractive
properties of the lens materials, which bend the light rays to focus them onto the image
sensor. This mechanism enables the capturing of sharp images of objects at various
distances which is inherently missing in the pinhole model due to its infinite depth of
field. However, lenses introduce additional complexities that must be accounted for
with additional parameters in the camera model. Thus, lens-based models are often
simplified back to the pinhole model for many applications, reducing the computational
complexity of image analysis and reconstruction tasks. This is possible in cases where the
pinhole model provides a sufficiently accurate approximation, i.e., when lens distortions
are minimal or can be corrected through post-processing.

While a single camera is usually used in 2D computer vision to project object and
scene geometry into 2D images, there are several approaches, such as Structure from
Motion (section 2.3.2) or multi-camera setups for human motion capture (section 2.3.4)
which require the notion of a shared world coordinate system as well as individual
camera coordinate systems. Thus, in addition to the intrinsic camera parameters above,
camera models usually also contain extrinsic camera parameters, defining the position
and orientation of the camera frame relative to a world coordinate system. Typically
represented by a rotation matrix R ∈ R3×3 and a translation vector t ∈ R3, these
parameters are crucial for mapping a point Pw in the world coordinates to a point Pc

in the camera coordinates, following the equation

Pc = RPw + t (2.2)

The rotation matrix R encodes the camera’s orientation, while the translation vector t
specifies its position in space. Together, they form the rigid transformation that aligns
the world and camera coordinate systems, enabling the projection of three-dimensional
real-world points onto the two-dimensional image plane of a given camera while main-
taining a shared world coordinate system between cameras.

2.3.2 Reconstructing Static 3D from 2D RGB Data

Reconstructing 3D data from RGB images is a foundational challenge in computer vi-
sion, primarily addressed through Structure from Motion (SfM) and Multi-View Stereo
(MVS) approaches. These methodologies leverage the spatial and temporal variance in
2D images to infer the depth and structure of the scene, allowing for reconstructing
volumetric 3D models from a collection of 2D images.

The fundamental principle behind SfM lies in the observation that the relative motion
between the observer and the scene across multiple images can be used to infer the 3D
structure of the scene. Mathematically, this is achieved by estimating each camera’s ex-
trinsic parameters (rotation matrix R and translation vector t) and the scene’s geometry
in terms of 3D points {Pi} simultaneously. The process begins with feature detection
and matching across images, using algorithms such as SIFT [54] or ORB [55], to identify
distinctive and salient key points in all images. A descriptor is computed for each key
point, which can then be used to match corresponding points across images. Figure 2.10
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Figure 2.10: Salient feature point detection and matching across different views as part of a
structure-from-motion pipeline. For optimal results, these feature points must be distinctive
and detectable across views, and their descriptors sufficiently expressive to be matched to the
corresponding point in different views.

visualizes this keypoint detection and matching process. Point correspondences are used
to estimate the camera poses and a sparse 3D point cloud of the scene.

This estimation problem is inherently non-linear and is typically approached through
iterative optimization techniques such as bundle adjustment, which refines the camera
parameters and 3D point positions to minimize the reprojection error – the discrepancy
between the observed feature positions in the images and the projected positions of the
estimated 3D points. The reprojection error E for a point i in image j can be expressed
as:

Eij = pij − π(K,Rj, tj,Xi) (2.3)

where pij is the observed position of point i in image j, π denotes the projection func-
tion, K is the camera’s intrinsic matrix, Rj and tj are the camera’s extrinsic parameters
consisting of rotation and translation for image j, and Xi is the 3D position of point i.

Following the establishment of a sparse 3D model via SfM, MVS techniques can then
be used to densify this model by exploiting the texture and appearance information
across the images. MVS assumes that the scene’s geometric structure can be further
detailed by examining the photometric consistency of multiple views. This is achieved
by evaluating the similarity of image patches around the corresponding points across
different images, considering variations in viewpoint and illumination. The core idea is
to generate a depth map for each image by comparing its view with other images and
then merge these depth maps into a dense 3D model.

The quality of both SfM and MVS decreases in the presence of occlusions, textureless
surfaces, and varying lighting conditions, which significantly impact the accuracy of the
final 3D reconstruction. Advanced implementations incorporate robust outlier detection
mechanisms and global optimization frameworks to mitigate these issues.

Despite these challenges, reconstructing 3D data from 2D images has the advantage
of not requiring special hardware since any digital camera can be used to capture data.
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These reconstruction methods are thus most suitable in real-world environments where
building a dedicated capture setup is impossible or would interfere with its naturalness,
e.g., a confined kitchen setting where human actions are to be captured.

2.3.3 Reconstructing Static 3D from Monocular Depth Data

With the increased availability of specialized hardware sensors, directly capturing depth
information alongside 2D RGB images (i.e., capturing RGB-D data) has recently become
an alternative approach to Structure from Motion for 3D geometry reconstruction.

Capturing RGB-D data involves the acquisition of color (RGB) information along with
depth (D) values for each pixel in an image. The depth, which indicates the distance of
geometric surfaces from the sensor, can be acquired using various sensing technologies.
Among the most popular are structured light sensors, time-of-flight (ToF) cameras, and
stereo vision systems.

Structured light sensors project a known pattern of light onto the scene and observe the
deformation of this pattern on surfaces. The sensor can infer the depth of objects in the
scene by analyzing these deformations. The depth d at each pixel can be computed using
triangulation between the known pattern, its deformation, and the angle of projection
and observation. This method is sensitive to ambient light and may have difficulties
with surfaces that are either too reflective or too absorbent.

On the other hand, time-of-flight cameras measure the time it takes for a light signal
(often infrared) to travel from the camera to the objects in the scene and back. The
depth d is calculated as

d =
c ·∆t

2
(2.4)

where c is the speed of light and ∆t is the measured time difference. ToF cameras
can quickly acquire depth information over large areas but are limited by lower spatial
resolution and potential inaccuracies due to multiple reflections or interference.

Stereo vision systems use two or more cameras spaced apart to simulate human binoc-
ular vision. The system computes the depth of points in the scene by matching features
between the different camera views and using triangulation. The depth calculation relies
on the disparity between corresponding points in the images, where

d =
f ·B
D

(2.5)

with f being the focal length, B the baseline distance between cameras, and D the
disparity. Stereo vision systems are versatile and can be used in scenarios where other
sensors might fail (e.g., in outdoor settings) but require complex and computationally
intensive image processing to resolve depth accurately.

Once RGB-D data is captured, reconstructing 3D data from these inputs typically
involves volumetric integration techniques. A fundamental approach in this domain is
using a Truncated Signed Distance Function (TSDF) to represent the scene. As outlined
in section 2.1, a TSDF encodes the distance of a point in space to the nearest surface
boundary; distances are negative if the point is inside the surface and positive if outside,
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with the function truncated at a certain threshold away from the surface to focus on
near-surface regions.

The volumetric integration process accumulates depth measurements from multiple
viewpoints into a unified 3D model. The corresponding TSDF value in a volumetric grid
is updated for each depth measurement, effectively blending the information from all
observed angles. The integration can be formalized as an iterative update of the TSDF
values S(x) at each voxel x in the grid, based on the new measurement d and the camera
parameters. This iterative process is mathematically expressed as

Snew(x) = αSold(x) + (1− α)S(D(x)) (2.6)

where α is a weighting factor determining the influence of new vs. existing data.

The resulting volumetric representation captures the continuous nature of the surfaces
in the scene, allowing for the extraction of a mesh or surface model through techniques
such as Marching Cubes [42].

Figure 2.11: Human motion capture using monocular depth data, as used in the NTU RGB-
D dataset [56, 57]. From left to right: RGB color image, overlaid detected poses in 2D, depth
as captured by the sensor, joint detections from RGB transformed and overlaid on top of the
depth image, and the infrared image captured by the sensor.

This technique is widely used for capturing and reconstructing static 3D geometry,
and 3D datasets have been created using hand-held depth sensors and advanced re-
construction algorithms. Similar approaches have also been utilized for human motion
capture. In SMPL [47], depth sensors were used for scanning human geometries to build
their statistical human model. Figure 2.11 shows how the sensors can be used for mo-
tion capture specifically: From the 2D RGB image, a 2D skeleton can be detected using
robust methods such as OpenPose [58] or AlphaPose [59]. Using the depth information
captured for the same frame, these 2D joint detections can then be back-projected into
3D space. This way, human motion and even interactions with the environment can be
efficiently captured in 3D.

2.3.4 3D Human Motion Capture

Realistic and accurate human motion capture is of interest in many domains, from
creating realistic assets for movies and games to creating a baseline for human simulation
and ground-truth data for human motion generation methods. The capturing itself poses
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multiple challenges, such as how to deal with occlusions, fast motion, and interactions
with an environment.

As mentioned in section 2.3.3, it is possible to use commodity sensors for this pur-
pose. However, these are limited in quality due to noise in the depth measurements
and ambiguities in the 2D human pose estimation step. Thus, specialized setups exist
with specific trade-offs between necessary tracking accuracy, cost, and applicability (i.e.,
the size of the captured area and the possibility of interacting with the environment).
On a high level, the capturing methods employed can be categorized into marker-based
systems and markerless systems, each with its distinct advantages, challenges, and com-
putational frameworks.

Marker-based systems rely on physical markers placed at salient points on the human
body. The positions of these markers are tracked using multiple calibrated cameras po-
sitioned around the subject. The 3D position of each marker is reconstructed through
triangulation. The key challenge in marker-based systems is accurately tracking mark-
ers across frames, which is typically addressed through optimization algorithms that
minimize the error between the observed marker positions and their predicted positions
based on prior movements.

Figure 2.12: Specialized multi-camera setup for capturing human motion, e.g., the human
motion capture dome for the CMU Panoptic Dataset [60].

On the other hand, Markerless systems do not require physical markers but instead
utilize sophisticated image processing and machine learning algorithms to identify and
track body parts directly from video data. These systems leverage techniques such as
deep learning-based pose estimation, where a neural network model is trained to predict
the 3D coordinates of body joints from 2D images. The complexity of markerless systems
lies in their need for large amounts of training data and the computational power required
to process video frames in real time.
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Additionally, some approaches use Inertial Measurement Units (IMUs), small, wear-
able devices equipped with accelerometers, gyroscopes, and sometimes magnetometers.
These devices measure linear acceleration, angular velocity, and magnetic fields, respec-
tively, allowing for the calculation of orientation and displacement over time. IMUs are
particularly valued for their portability and the ability to capture motion outside lab-
oratory settings. However, cumulative errors, known as drift, can affect their accuracy
over time.

Data from several different sensors can be combined using special sensor fusion meth-
ods for more robust and accurate measurements. Temporal filters like the Kalman Filter
further improve accuracy by minimizing the difference between predicted and observed
values.

Figure 2.13: The capture setup of
Human3.6M [45] uses multiple fixed
cameras installed around an empty,
pre-defined capture area.

Figure 2.12 and 2.13 show examples of differ-
ent motion capture systems. The motion capture
dome used for the CMU Panoptic Dataset [60]
(figure 2.12) is a highly complex system with 480
VGA camera views, 30+ HD views, 10 RGB-D
sensors, hardware-based time synchronization and
consistent calibration. It is a marker-based sys-
tem and can capture multiple different people in-
teracting with each other as well as with objects
such as musical instruments. Human3.6M [45], on
the other hand, followed a more straightforward
approach and used four calibrated and synchro-
nized HD cameras in a defined capture space. This
dataset is focused on single human actions without human-object interactions.

2.4 Modeling 3D Human Motion

3D Human motion modeling is a problem at the intersection of computer graphics and
vision that has gained increased attention in recent years. Following successes of deep
learning in several computer vision tasks such as image classification and segmentation as
well as machine learning problems such as time series forecasting, initial works focused
on modeling human motion using recurrent neural network formulations [28]. These
early experiments were followed by exploiting inherent dependencies of human motion,
such as the human kinematic chain and interdependent joint movements, by modeling
them with graph networks and attention mechanisms [14, 15, 61]. Finally, transformer-
based methods and diffusion approaches have revolutionized the domain, allowing for
longer and more natural human motion generation [62, 1].

This chapter focuses on these fundamental techniques used for human motion modeling
and lays the groundwork for the methods presented in part II.
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2.4.1 Recurrent Neural Networks

Figure 2.14: The basic idea of a recurrent
neural network, comprised of an input, hidden,
and output layer. Right: Unrolled along the
temporal axis. Visualization from [63].

Recurrent Neural Networks (RNNs) are
a class of neural networks tailored for
processing sequences, be it natural lan-
guage texts, time-series data, or any other
form of sequential information. Unlike
feedforward neural networks, where the
flow of information is unidirectional and
does not retain any memory of past in-
puts, RNNs incorporate a mechanism to
hold onto information from previous steps.
This memory feature is achieved through
loops within the network architecture, up-
dating a hidden state with each step.

In the simplest form, an RNN can be mathematically described at each time step t as
follows: Let xt denote the input vector at time step t, ht the hidden state, which acts
as the network’s memory, and yt the output. The hidden state ht, is updated with all
input states up to time step t as:

ht = f(Whhht−1 +Wxhxt + bh) (2.7)

where f is a non-linear activation function, typically tanh or ReLU. Whh and Wxh

represent the learned weight matrices from the previous hidden and current input state,
and bh is the bias. The output at each time step t can be calculated as:

yt = g(Whyht + by) (2.8)

Figure 2.15: LSTM cells better cap-
ture long-term dependencies using ex-
plicit input, forget, and output gates.
Visualization from [63].

where g is the activation function for the output
layer, Why the weight matrix from the hidden
state, and by the bias. Figure 2.14 shows a vi-
sualization of this concept.

Despite their ability to model sequences, RNNs
suffer from significant limitations, notably the dif-
ficulties in learning long-term dependencies. Long-
Short-Term Memory (LSTM) [64] networks and
Gated Recurrent Units (GRUs) [65] are two popu-
lar architectures that mitigate these issues.

LSTMs’ [64] design goal is to capture long-term
dependencies. This is achieved through a more so-
phisticated cell structure, including several gates:
the input gate, the forget gate, and the output gate.
These gates regulate the flow of information into
and out of the cell and the retention of information
across time steps, allowing the network to learn
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when to forget previous information and when to update the hidden state based on new
information. The LSTM updates for time step t are mathematically defined as:

Forget gate: ft = σ(Wf [ht−1,xt] + bf )

Input gate: it = σ(Wi[ht−1,xt] + bi)

Output gate: ot = σ(Wo[ht−1,xt] + bo)

Cell state update: C̃t = tanh(WC [ht−1,xt] + bC)

Final cell state: Ct = ft ∗Ct−1 + it ∗ C̃t

Hidden state update: ht = ot ∗ tanh(Ct)

(2.9)

Figure 2.16: GRUs simplify the
RNN architecture compared to
LSTMs and only use reset and up-
date gates. Visualization from [63].

Here, σ denotes the sigmoid activation function,
and ∗ denotes element-wise multiplication. W and
b represent each gate’s weight matrices and bias
vectors, respectively. Figure 2.15 visualizes the
gates in red as well as cell state updates.

The advantages of LSTMs over traditional RNNs
lie in their ability to capture longer-range depen-
dencies, making them more effective for various
applications such as language modeling and ma-
chine translation. However, LSTMs come with in-
creased computational complexity and parameter
count, making them impractical for large models.

GRUs [65] offer a more streamlined alternative
to LSTMs, with fewer parameters and gates, by
combining the forget and input gates into a sin-
gle ”update gate” and merging the cell state and
hidden state, thus reducing the complexity of the
model without a significant drop in performance.
Thus, their update rules look like this:

Update gate: zt = σ(Wz[ht−1,xt] + bz)

Reset gate: rt = σ(Wr[ht−1,xt] + br)

Candidate hidden state: h̃t = tanh(Wh[rt ∗ ht−1,xt] + bh)

Final hidden state: ht = (1− zt) ∗ ht−1 + zt ∗ h̃t

(2.10)

with σ the sigmoid activation function, and ∗ element-wise multiplication. Analogous
to LSTMs, learned weight matrices W and biases b exist for each gate. Note the
decreased complexity in figure 2.16 as compared to LSTMs’ architecture.

The introduction of LSTMs and GRUs has significantly advanced the fields of time-
series analysis and natural language processing. For 3D human motion forecasting and
generation, these advances enabled realistic and plausible results [13, 27, 28].
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Figure 2.17: Using RNN architectures for forecasting 3D human pose sequences (blue) from
ground-truth sequences (blue). Left: Three-layer LSTM architecture proposed in [13]. Right:
Improved residual architecture based on GRUs proposed by [28]. Visualization from [28].

Human motion generation is inherently time-based, usually predicting a fixed number
of human poses, given a condition such as text or past motion observation. Early works
focused on representing the human body in its simplified skeleton representation, as
detailed in section 2.2. One of the earliest works using RNNs [13] showed that LSTMs
can be used to regress locations of joints in the human skeleton. Martinez et al. [28]
later showed that simple combinations of RNN blocks are often outperformed by simple
statistical baselines and proposed an alternative architecture based on GRU blocks for
improved human motion forecasting, shown in figure 2.17. Despite the applicability of
RNNs for human motion generation, limitations around long-term memory remain, and
subsequent research has focused on alternative approaches, as discussed in section 2.4.2.

2.4.2 Graph Networks

Graph neural networks (GNNs) are a class of neural networks for learning representations
on graphs, capturing the dependencies among nodes through the graph’s structural
information. This approach effectively models complex systems across various domains,
including social networks, biological networks, and knowledge graphs. The foundational
principle of GNNs lies in aggregating feature information from a node’s neighborhood,
facilitating the learning of node representations that incorporate local structure and
feature information.

The node-edge update strategy forms the core of traditional GNN architectures. Con-
sider a graph G = (V,E), where V denotes the set of vertices or nodes and E represents
the set of edges. Each node v ∈ V is associated with a feature vector xv. The GNN
iteratively updates the representation of each node by aggregating features from its
neighbors, followed by a transformation through a neural network. The update rule for
a node v in the k-th iteration is given by:

xk
v = σ


Wk ·AGG


{xk−1

u : u ∈ N (v)}

+ bk


(2.11)
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where xk
v is the feature representation of node v at the k-th iteration, N (v) denotes

the set of neighbors of v, Wk and bk are the weight matrix and bias vector, respectively,
σ is a non-linear activation function, and AGG is an aggregation function, such as sum,
mean, or max, which combines the feature vectors of the neighboring nodes.

Graph convolutional networks (GCNs) [66, 67], a variant of GNNs, extend this concept
by leveraging the convolution operation defined in the spectral domain. GCNs assume
that graph structure can be captured by learning a function on the graph Laplacian,
enabling filtering signals (node features) on the graph. The convolution operation in
GCNs for a single layer can be expressed as:

Hk = σ

D̂− 1

2 ÂD̂− 1
2Hk−1Wk−1


(2.12)

where Hk is the matrix of node features in the k-th iteration, Â = A + IN is the
adjacency matrix of the graph G with added self-connections represented by the identity
matrix IN , D̂ is the diagonal node degree matrix of Â, and Wk is the weight matrix
at the k-th layer. This formulation enables the operation to scale with the size of the
graph, making it computationally efficient.

Both graph update variants show how GNNs can use graph structure to learn node
representations. The key difference lies in their approach to aggregating neighborhood
information; while traditional GNNs rely on direct aggregation from spatial neighbors,
GCNs implement a form of spectral convolution that leverages the graph’s Laplacian.
This allows GCNs to capture global graph properties through local operations, offering
a powerful mechanism for learning representations in graph-structured data. Through
iterative updates and the integration of neighborhood information, GNNs consider both
the topological structure and feature information of graphs.

Figure 2.18: Forecasting human motion with graph convolution networks, as proposed by
[14]. The location of joints in 3D space is first encoded with discrete cosine transforms before
being processed with multiple blocks of residual graph convolutions over the human skeleton.
This method can exploit not only explicit but also implicit connections between joints.

This property also makes GNNs useful for 3D human motion generation: The human
skeleton exhibits an inherent graph structure, both through the explicit bone connections
(e.g., the motion of the hand depends on the motion of joints along the arm and torso)
as well as through implicit connections (e.g., when walking, the left hand moves forward
when the right foot moves forward).
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Mao et al. [14] proposed to use GCNs for human motion forecasting. Their architec-
ture is depicted in figure 2.18. By learning the adjacency matrix A during training, not
only explicit connections along the kinematic chain of the human body are utilized but
also semantic ones, i.e., how different body joints influence each other for different ac-
tion categories. This works well on a per-frame basis; however, one major disadvantage
of graph structures is the quadratic memory requirement with large numbers of nodes
(joints over time in this case). Thus, research has shifted towards alternative attention
approaches in recent years, as detailed in section 2.4.3.

2.4.3 Attention Mechanisms

Figure 2.19: Left: Scaled Dot-Product At-
tention [68] based on query, key, and value
representations. Right: Multi-head attention,
consisting of multiple parallel attention layers.

The concept of attention is used in many
neural network architectures nowadays,
significantly enhancing the capability of
models to focus selectively on parts of the
input data that are most important for
performing a given task, allowing for more
efficient allocation of computational re-
sources. First formalized for natural lan-
guage processing (NLP) tasks [68], this
mechanism is now widely used in many
machine learning and computer vision
tasks.

Formally, attention can be described as
a function that computes a weighted sum
of values V , based on a set of queries Q,
and keys K. The attention weights are
obtained by computing the dot product of
each pair of query and key, typically followed by a softmax function to ensure that the
weights sum to one. This process can be mathematically represented as follows:

Attention(Q,K,V) = softmax


QKT

√
dk


V (2.13)

where dk is the dimensionality of the keys, which is used to scale the dot product, im-
proving gradient stability during training. This equation shows the most fundamental
version of scaled dot-product attention. Multi-head attention was initially proposed for
improved performance in [68]. It aims to capture information from different represen-
tation subspaces at different positions. In multi-head attention, the queries, keys, and
values are linearly projected multiple times with different, learned linear projections to
dk, dk, and dv dimensions. Then, the attention function is applied in parallel to each set
of projections, yielding multiple output vectors that are subsequently concatenated and
linearly transformed. This process can be represented as:
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MultiHead(Q,K,V) = Concat(head1, . . . , headh)W
O

where headi = Attention(QWQ
i ,KWK

i ,VWV
i )

(2.14)

where WQ
i , W

K
i , WV

i , and WO are weight matrices for the i-th head. Using multi-
head attention allows a neural network to focus on multiple aspects of the input data
instead of modeling everything with just one attention map, improving overall model
performance. Figure 2.19 shows both single and multi-head attention visualizations.

Generating 3D human motion can benefit from these mechanisms similarly to the
originally intended domain of natural language processing. Analogous to approaches
using graph networks detailed above, attention can be used to process dependencies
within the human body skeleton [40, 31] or even to attend to the most salient parts of
a given motion sequence, applying attention along the temporal axis [15]. While these
methods integrate the original attention formulation of [68], most recent approaches
focus on using the more powerful Transformer models presented in section 2.4.4.

2.4.4 Transformer-Based Methods

Figure 2.20: The full transformer
architecture, as proposed by [68]. It
consists of an encoder (left) using
self-attention and a decoder (right)
using both masked self-attention and
cross-attention, additionally attend-
ing to features from the encoder.

The Transformer network architecture, introduced
alongside and designed around Scaled Dot-Product
Attention in [68] (section 2.4.3), can capture long-
range dependencies and handle sequential data in
parallel, a significant advantage over traditional
RNN-based models.

In generative settings, Transformers have paved
the way for models capable of producing high-
fidelity images, music, and text. Models like
DALL-E [69] and GPT (Generative Pre-trained
Transformer) [70] leverage variations of the Trans-
former architecture to understand and generate
content that is not only coherent but also cre-
ative. These models benefit from the scalability
of Transformers, allowing them to be trained on
vast datasets and capture a wide range of styles
and patterns. The original Transformer architec-
ture is visualized in figure 2.20; it consists of an
encoder that uses self-attention among inputs to
process incoming data and a decoder using mask
self-attention as well as cross-attention to incorpo-
rate features generated by the encoder.

This original architecture was shown to exhibit
high performance on NLP-based tasks. Later adap-
tations to different domains also explored purely
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encoder-based and purely decoder-based architectures. Encoder-only architectures like
BERT (Bidirectional Encoder Representations from Transformers) [71] excel at tasks
that require understanding and interpreting input data due to their ability to encode
the input into a rich, contextualized representation. This makes them suitable for tasks
like classification, where the goal is to understand the input rather than generate new
content. Decoder-only architectures, by contrast, are designed to generate sequences
based on some given context. They shine in tasks that require creativity and extrapo-
lation from given data, such as text generation and image synthesis. The absence of an
encoder means these models typically operate by conditioning on an encoded represen-
tation of the input provided externally or by leveraging a pre-trained encoder model in
a two-step process.

Transformer architectures started being widely used for computer vision tasks after
the introduction of Vision Transformers (ViTs) [72]. ViTs treat an image as a sequence
of patches and apply self-attention mechanisms across these patches to capture spatial
hierarchies and relationships, analogous to how words in a sentence are treated in NLP
applications. This approach has shown competitive performance with convolutional
neural networks on various computer vision tasks, including image classification, object
detection, and segmentation, by enabling the model to focus on the most informative
parts of an image.

In 3D human behavior generation, transformers have been increasingly used to pro-
duce semantically and physically plausible human motion [61, 73, 74, 62, 75, 12, 3].
Especially for denoising diffusion approaches (section 2.4.5), Transformer architectures
are nowadays often used as a drop-in replacement for U-Net models. The architecture
of one such approach, Human Motion Diffusion, is shown in figure 2.22.

2.4.5 Denoising Diffusion Approaches

Denoising diffusion probabilistic models [76, 77] have emerged as a powerful class of
generative models, drawing significant attention for their capability to produce high-
quality samples, originally in the domain of image generation. The fundamental idea
behind denoising diffusion models involves gradually adding noise to an image or data
sample until it closely approximates Gaussian noise and then learning to reverse this
process to generate new data samples directly from noise.

Figure 2.21: The denoising diffusion process as a directed graph: From Gaussian noise xT at
time step T , a reverse process pθ us used to iteratively denoise towards valid representation x0

(here, an image of a face) at time step 0. Visualization from [78].
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The process of diffusion in these models is divided into two main phases: the forward
process (also known as the noising phase) and the reverse process (the denoising phase).
The forward process is modeled as a Markov chain that incrementally adds Gaussian
noise to the data over a series of time steps, T , effectively transforming the data into an
isotropic Gaussian distribution. This can be formalized as:

xt =


1− βtxt−1 +


βtt (2.15)

where xt represents the data at time step t, βt is a variance schedule that controls
the amount of noise added at each step, and t is sampled from a standard Gaussian
distribution. The forward process is known to be Markovian, as each step depends only
on the previous state.

The reverse process aims to learn the conditional distribution p(xt−1|xt) to gradually
denoise the data, eventually reconstructing the original data distribution from pure
noise. This is achieved by training a neural network (usually a U-Net or Transformer
architecture) to predict the noise t added at each step of the forward process, effectively
learning to reverse the diffusion process. This process can be described as:

xt−1 =
1√

1− βt
(xt −

βt√
1− βt

θ(xt, t)) (2.16)

where θ(xt, t) is the noise predicted by the neural network parameterized by θ. Figure
2.21 visualizes both processes as directed graphs for the task of image generation.

A critical aspect of denoising diffusion models is the choice of the variance schedule βt,
which significantly influences the quality of the generated samples. The schedule must
be carefully designed to ensure the forward process creates a smooth transformation
from data to noise and vice versa for the reverse process.

Figure 2.22: Human motion diffusion model [1] overview. Left: Network architecture, using
a transformer encoder conditioned on text and the current time step. Right: Using this model
during inference to iteratively sample human motion sequences from noise.

Recent advancements in denoising diffusion models have shown remarkable success
in image generation tasks. These models have been able to generate images of un-
precedented quality and diversity, outperforming previous generative models in many
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benchmarks. The success of diffusion models in image generation can be attributed to
their ability to model complex, high-dimensional data distributions and their robustness
to mode collapse. Recent research has also explored extensions to conditional generation
tasks, where the model generates images based on specific attributes or text conditioning.

In the domain of 3D human motion generation, diffusion approaches have been used
for a wide variety of applications, from the pure generation of human motion sequences
to interactions with objects and whole scenes [3, 34, 35, 36, 37, 38, 39, 1, 75, 79, 80, 81,
82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92]. Analogous to the setting of image generation,
diffusion models make it possible to generate human motion sequences from noise, both
unconditionally and conditioned on signals such as text or the surrounding objects and
scenes. Figure 2.22 shows the architecture of the popular approach Human Motion
Diffusion Model [1]. Here, a short text description is first encoded as the condition,
and the motion sequence is subsequently generated from noise by a transformer encoder
network.

2.4.6 Adversarial Regularization

Adversarial regularization leverages the concept inherent in Generative Adversarial Net-
works (GANs) [93], where two neural networks, namely the generator G and the discrim-
inator D, are working against each other in a game-theoretic scenario. The generator
aims to produce data indistinguishable from real data, while the discriminator evalu-
ates the authenticity of the samples, thus engaging in a min-max optimization problem
formalized as

min
G

max
D

V (D,G) (2.17)

where V (D,G) represents the value function indicating the discriminator’s ability to
distinguish real from generated data.

This framework is extended to adversarial regularization by applying the adversar-
ial principle to enforce constraints or regularize models in supervised and unsupervised
learning tasks beyond generating synthetic data. This is especially important in do-
mains with limited data where the aim is to perform unsupervised or weakly supervised
learning, e.g., to generate sequences of realistic 3D human motion with only 2D datasets
for supervision available.

In this case, learning methods aim to minimize the objective

Ltotal = Ltask + λLadv (2.18)

where Ltask is the primary task loss, Ladv is the adversarial loss that penalizes the
model for producing unrealistic samples of the target domain, and λ is a regularization
coefficient. Using this training objective, it is possible to perform weakly supervised
learning with an unseen target domain. For 3D human behavior forecasting, this has
been shown to be effective for generating sequences of realistic 3D poses with only 2D
action data and an uncorrelated database of 3D poses available [41].
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3 Characteristic 3D Poses of Human
Actions

This chapter introduces the following paper:

Christian Diller, Thomas Funkhouser, and Angela Dai. “Forecasting Characteristic
3D Poses of Human Actions” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 2022, pp. 15914-15923

Abstract of Paper We propose the task of forecasting characteristic 3D poses: from
a short sequence observation of a person, predict a future 3D pose of that person in a
likely action-defining, characteristic pose – for instance, from observing a person picking
up an apple, predict the pose of the person eating the apple. Prior work on human mo-
tion prediction estimates future poses at fixed time intervals. Although easy to define,
this frame-by-frame formulation confounds temporal and intentional aspects of human
action. Instead, we define a semantically meaningful pose prediction task that decou-
ples the predicted pose from time, taking inspiration from goal-directed behavior. To
predict characteristic poses, we propose a probabilistic approach that models the pos-
sible multi-modality in the distribution of likely characteristic poses. We then sample
future pose hypotheses from the predicted distribution in an autoregressive fashion to
model dependencies between joints. To evaluate our method, we construct a dataset of
manually annotated characteristic 3D poses. Our experiments with this dataset suggest
that our proposed probabilistic approach outperforms state-of-the-art methods by 26%
on average.

Contribution The method development and implementation was done by the first au-
thor. Discussions with the co-authors led to the final paper.
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3 Characteristic 3D Poses of Human Actions

3.1 Introduction

Future human pose forecasting is fundamental towards a comprehensive understanding of
human behavior, and consequently towards achieving higher-level perception in machine
interactions with humans, such as autonomous robots or vehicles. In fact, prediction is
considered to play a foundational part in intelligence [4, 5, 6]. In particular, predicting
the 3D pose of a human in the future lays a basis for both structural and semantic
understanding of human behavior, and for an agent to take fine-grained anticipatory
action towards the forecasted future. For example, a robotic surgical assistant should
predict in advance where best to place a tool to assist the surgeon’s next action, what
sensor viewpoints will be best to observe the surgeon’s next manipulation, and how to
position itself to be out of the way at critical future moments.
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Figure 3.1: For a real-world 3D skeleton sequence of a human performing an action, we pro-
pose to forecast the semantically meaningful characteristic 3d pose, representing the action
goal for this sequence. As input, we take a short observation of a sequence of consecutive
poses leading up to the target characteristic pose. Thus, we propose to take a goal-oriented
approach, predicting the key moments characterizing future behavior, instead of predicting
continuous motion, which can occur at varying speeds with predictions more easily diverging
for longer-term (>1s) predictions. We develop an attention-driven probabilistic approach to
capture the most likely modes of possible future characteristic poses.

Recently, we have seen notable progress in the task of future 3D human motion predic-
tion – from an initial observation of a person, forecasting the 3D behavior of that person
up to ≈ 1 second in the future [13, 27, 28, 14, 15]. Various methods have been devel-
oped, leveraging RNNs [13, 27, 28, 29], graph convolutional neural networks [14, 30], and
attention [31, 15]. However, these approaches all take a temporal approach towards fore-
casting future 3D human poses, and predict poses at fixed time intervals to imitate the
fixed frame rate of camera capture. This makes it difficult to predict longer-term (several
seconds) behavior, which requires predicting both the time-based speed of movement as
well as the higher-level goal of the future action.
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Figure 3.2: These plots show the salient difference between our new task (left) and the tra-
ditional one (right). The orange curve depicts the motion of one joint (e.g., hand position as a
person drinks from a glass). It represents a typical piecewise continuous motion, which has dis-
crete action-defining characteristic poses at cusps of the motion curves (e.g., grasping the glass
on the table, putting it to ones mouth, etc.) separating smooth trajectories connecting them
(e.g., raising or lowering the glass). Our task is to predict future characteristic poses (blue dots
on left) rather than in-between poses at regular time intervals (red points on right).

Thus, we propose to decouple the temporal and intentional behavior, and introduce
a new task of forecasting characteristic 3D poses of a person’s future action: from
a short pose sequence observation of a human, the goal is to predict a future pose
of the person in a characteristic, action-defining moment. This has many potential
applications, including HRI, surveillance, visualization, simulation, and content creation.
It could be used to predict the hand-off point when a robot is passing an object to a
person; to detect and display future poses worthy of alerts in a safety monitoring system;
to coordinate grasps when assisting a person lifting a heavy object; to assist tracking
through occlusions; or to predict future keyframes, as is done in video generation [32, 33].

Fig. 3.2 visualizes the difference between this new task and the traditional, time-based
approach: our task is to predict a next characteristic pose at action-defining moments
(blue dots) rather than at fixed time-intervals (red dots). As shown in Fig. 3.1, the
characteristic 3D poses are more semantically meaningful and rarely occur at exactly
the same times in the future. We believe that predicting possible future characteristic 3D
poses takes an important step towards forecasting human action, by understanding the
objectives underlying a future action or movement separately from the speed at which
they occur.

Since future characteristic 3D poses often occur at longer-term intervals (> 1s) in
the future, there may be multiple likely modes of the characteristic poses, and we must
capture this multi-modality in our forecasting. Rather than deterministic forecasting, as
is an approach in many 3D human pose forecasting approaches [14, 15, 30], we develop an
attention-driven prediction of probability heatmaps representing the likelihood of each
human pose joint in its future location. This enables generation of multiple, diverse
hypotheses for the future pose. To generate a coherent pose prediction across all pose
joints’ potentially multi-modal futures, we make autoregressive predictions for the end
effectors of the actions (e.g., predicting the right hand, then the left hand conditioned
on the predicted right hand location) – this enables a tractable modeling of the joint
distribution of the human pose joints.
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3 Characteristic 3D Poses of Human Actions

To demonstrate our proposed approach, we introduce a new benchmark on charac-
teristic 3d pose prediction. We annotate characteristic keyframes in sequences from the
GRAB [44] and Human3.6M [45] datasets. Experiments on this benchmark show that
our probabilistic approach outperforms time-based state of the art by 26% on average.

In summary, we present the following contributions:

• We propose the task of forecasting characteristic 3D poses: predicting likely next
action-defining future moments from a sequence observation of a person, towards
goal-oriented understanding of pose forecasting.

• We introduce an attention-driven, probabilistic approach to tackle this problem
and model the most likely modes for the next characteristic pose, and show that
it outperforms state of the art.

• We autoregressively model the multi-modal distribution of future pose joint lo-
cations, casting pose prediction as a product of conditional distributions of end
effector locations (e.g., hands), and the rest of the body.

• We introduce a dataset and benchmark on our characteristic 3D pose prediction,
comprising 1535 annotated characteristic pose frames from the GRAB [44] and
Human3.6M [45] datasets.

3.2 Related Work

Deterministic Human Motion Forecasting. Many works have focused on human mo-
tion forecasting, cast as a sequential task to predict a sequence of human poses according
to the fixed frame rate capture of a camera. For this sequential task, recurrent neural
networks have been widely used for human motion forecasting [13, 27, 28, 94, 95, 96, 97].
Such approaches have achieved impressive success in shorter-term prediction (up to ≈ 1s,
occasionally several seconds for longer term predictions), but the RNN summarization of
history into a fixed-size representation struggles to maintain the long-term dependencies
needed for forecasting further into the future.

To address some of the drawbacks of RNNs, non-recurrent models have also been
adopted, encoding temporal history with convolutional or fully connected networks [98,
99, 14], or attention [31, 15]. Li et al. [100] proposed an auto-conditioned approach
enabling synthesizing pose sequences up to 300 seconds of periodic-like motions (walking,
dancing). However, these works all focus on frame-by-frame synthesis, with benchmark
evaluation of up to 1000 milliseconds. Instead of a frame-by-frame synthesis, we propose
a goal-directed task to capture perception of longer-term human action, which not only
lends itself towards forecasting more semantically meaningful key moments, but enables
a more predictable evaluation: as seen in Fig. 3.1, there can be significant ambiguity in
the number of pose frames to predict towards a key or goal pose, making frame-based
evaluation difficult in longer-term forecasting.
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3.3 Method Overview

Multi-Modal Human Motion Forecasting. While 3D human motion forecasting has
typically been addressed in a deterministic fashion, several recent works have introduced
multi-modal future pose sequence predictions. These approaches leverage well-studied
approaches for multi-modal predictions, such as generative adversarial networks [101] and
variational autoencoders [102, 16, 103]. For instance, Aliakbarian et al. [103] stochasti-
cally combines random noise with previous pose observations, leading to more diverse
sequence predictions. Yuan et al. [16] learns a set of mapping functions which are then
used for sampling from a trained VAE, leading to increased diversity in the sequence
predictions than simple random sampling. In contrast to these time-based approaches,
we consider goal-oriented prediction of characteristic poses, and model multi-modality
explicitly as predicted heatmaps for body joints in an autoregressive fashion to capture
inter-joint dependencies.

Goal-oriented Forecasting. While a time-based, frame-by-frame prediction is the pre-
dominant approach towards future forecasting tasks, several works have proposed to
tackle goal-oriented forecasting. Recently, Jayaraman et al. [32] proposed to predict
“predictable” future video frames in a time-agnostic fashion, and represent the pre-
dictions as subgoals for a robotic tasks. Pertsch et al. [33] predict future keyframes
representing a future video sequence of events. Cao et al. [104] plan human trajectories
from an image and 2d pose history, first predicting 2d goal locations for a person to walk
to in order to synthesize the path. Inspired by such goal-based abstractions, we aim to
represent 3D human actions as its key, characteristic poses.

3.3 Method Overview
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Figure 3.3: Overview of our approach for characteristic 3D pose prediction. From an input
observed pose sequence, as well as any prior joint predictions, we leverage attention to learn
inter-joint dependencies, and decode a 3D volumetric heatmap representing the probability dis-
tribution for the next joint to be predicted as well as a per-voxel offset field of same size for
improved joint placement. This enables autoregressive sampling to obtain final pose hypothe-
ses characterizing likely characteristic 3D poses.

Given a sequence of N 3D pose observations X1:N = [x1,x2, ...,xN ] of a person, our
aim is to estimate a characteristic 3D pose of that person, characterizing the intent of the
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3 Characteristic 3D Poses of Human Actions

person’s future action. We take J joint locations (represented as their 3D coordinates)
for each pose of the input sequence, i.e. xi ∈ RJ×3. From this input sequence, we
predict a joint distribution of J probability heatmaps Hj and finally, sample K output
pose hypotheses Y1:K , characterized by their J 3D joints: yi ∈ RJ×3. By representing
probability heatmaps for the joint predictions, we can capture multiple different modes
in likely characteristic poses, enabling more diverse future pose prediction. We note that
we are the first to propose using volumetric heatmaps for future human pose forecasting,
to the best of our knowledge, while previous work used them for the more deterministic
task of pose estimation from multiple images [105, 106].

From the input sequence, we develop a neural network architecture to predict a prob-
ability heatmap over a volumetric 3D grid for each joint, corresponding to likely future
positions of that joint. This enables effective modeling of multi-modality, but remains
tied to a discrete grid, so we also regress a corresponding volume of per-voxel offsets,
allowing for precise locations to be sampled. Fig. 3.3 shows an overview of our learned
probabilistic predictions.

We model these predictions conditionally in an autoregressive fashion in order to
tractably model the joint distribution over all pose joint locations. This enables a con-
sistent pose prediction over the set of pose joints, as a set of joints may have likely modes
that are unlikely to be seen all together (e.g., right hand moving forward while the right
elbow moves to the side – both are valid independently but not together). To sequen-
tialize the pose joint prediction autoregressively, we first predict probability heatmaps
for the end effectors in our dataset – right hand first, then left hand conditioned on the
right hand prediction, followed by the rest of the body joints.

3.4 Capturing Multi-Modality with Heatmap Predictions

Left Hand 
Prediction

Right Hand
Prediction

Body
Prediction

Pose
Refinement

Figure 3.4: To model joint dependencies within the human skeleton, we sample joints in an
autoregressive manner by first predicting the end-effectors (right and left hand), then the rest
of the body; pose refinement then improves skeleton consistency.

We aim to learn to predict likely future locations for an output pose joint j, char-
acterized by a probability heatmap Hj over a volumetric grid of possible pose joint
locations. From the input sequence of N pose observations of J joints, and conditioned
on any already predicted joints, we construct an attention-driven neural network to learn
the different dependencies between human skeleton joints to inform the final heatmap
prediction.
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3.4 Capturing Multi-Modality with Heatmap Predictions

Attention-Driven Sequence Encoding. We represent the body joints of the input se-
quence X1:N = [x1,x2, ...,xN ] as an N ×J × 3 (N = 10 as well as J = 25 for the GRAB
dataset and J = 17 for Human 3.6M, respectively) concatenation of the joint locations
over time. Features are first extracted with a single-layer GRU [65]. We then compute
an attention map from these features, representing dependencies to the input set of pose
joints. This way, the network learns not only how different joints in the skeleton affect
each other directly (e.g., kinematic relationships) but also learns to exploit more subtle
correlations such as likely positions of one hand with respect to the other. Following the
formalism of Scaled Dot-Product Attention [68], popularized in natural language pro-
cessing, our attention maps are computed from a query Q and a set of key-value pairs K
and V . During training, representations for Q, K, and V are learned which are shared
between all joints. This allows us to project all joints into the same embedding space
where we can then compare the joint of interest (represented by Q) with all other joints
(K) to inform which parts of V (the learned latent representation for all joints which
will be passed to the decoder) are relevant for this joint of interest.

Attn(Q,K,V ) = softmax


QKT

√
D


V = AV , (3.1)

Intuitively, the similarity between key and query defines which parts of a learned pose
skeleton representation are important for the desired prediction. Formally, this is defined
in Eq. 3.1: The value representation V is weighed per-element by the result of the dot-
product between Q and K (scaled by the dimension of the embedding vector D and a
softmax operation). In our case, the attention map A has a dimensionality of J ′ × N
with J ′ indicating the number of joints to be predicted. Any prior joint predictions for
autoregressive prediction are considered as an additional node to our attention map,
giving the attention map dimension J ′ × (N + np) for np prior joints.

Heatmap Prediction. Based on the attention scoring, we then use a series of nine 3D
convolutions to decode an output probability heatmap Hj for each body joint j. The
grids are centered at the skeleton’s hip joint; we use a grid size of 163 voxels, spanning
2m3. A value in the grid of Hj at location Hj(x, y, z) corresponds to a probability of
joint j being at location (x, y, z) in the future characteristic pose. Instead of directly
regressing the probability values, we predict Hj(x, y, z) as a classification problem by
discretizing the output values into ndiscr = 10 bins in the [0, 1] space. We then use a
cross entropy loss with the discretized target heatmap to train our heatmap predictions.
In our experiments, we found that this classification formulation for Hj produced better
results than an ℓ2 or ℓ1 regression loss, as it mitigated tending towards the average or
median.

Offset Prediction. Since predicting joint locations in a discrete grid inherently leads
to grid artifacts in sampled output poses, we additionally learn an offset field Oj over
the same volumetric grid. Here, each voxel Oj(x, y, z) ∈ R3 represents the shift to be
added after sampling a joint from the heatmap at Hj(x, y, z). We predict these offsets
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3 Characteristic 3D Poses of Human Actions

similarly to the heatmap volume, with a series of nine 3D convolutions, and clamp each
offset vector Oj(x, y, z) to move the joint at most one voxel length. Output poses are
then estimated by sampling the heatmap, followed by refinement using the corresponding
predicted offset.

3.4.1 Training Details

Note that for real-world data captured of human movement, we do not have a full ground
truth probability distribution for the future characteristic pose, but rather a set of paired
observations of input pose to the target pose. Thus, we generate target heatmap data
from a single future observation in the training data by applying a Gaussian kernel (size
5, σ = 2) over the target joint location. At test time, we apply softmax scaling to
the predicted heatmaps with a temperature of 0.025 and from there, sample our final
joint locations. We learn multi-modality by generalizing across train set observations
which results in seeing multiple possibilities for similar inputs (e.g., right vs. forward
pass), encouraging learned heatmaps to represent multiple modes. We show that our
formulation can effectively model multi-modal heatmaps in Section 3.7.

We train our models on a single NVIDIA GeForce RTX 2080Ti. We use an ADAM
optimizer with a weight decay of 0.001 and a linear warmup schedule for 1000 steps;
learning rate is then kept at 0.001. We use a batch size of 100, as a larger batch
size helps with training our attention mechanism. Our model trains for up to 8 hours
until convergence. During training, we apply teacher forcing, i.e. pose joint predictions
conditioned on prior joint predictions are trained using the ground truth locations of the
prior joints. For a detailed specification of our network architecture, please refer to the
appendix.

3.5 Autoregressive Joint Prediction

Given a set of heatmaps for each pose joint location, the next step is to predict spe-
cific joint locations. Since they are not independent of one another, we cannot simply
sample joint locations from each heatmap independently. Instead, we must model the
interdependencies between pose joints.

To do this, we model the joint distribution of pose joints autoregressively, as visualized
in Fig. 3.4: we first predict end effector joints, followed by other body joints. For our
experiments, we find that the right and left hands tend to have a large variability, so we
first predict the right hand, then the left hand conditioned on the right hand location,
followed by the rest of the body joints. Empirically, we found that the hands tended
to define the body pose, while the order of the rest has little impact. To sample from
a joint heatmap, we use temperature scaling to concentrate the heatmap near its local
maxima, followed by random sampling.

Pose Refinement. While our autoregressive pose joint prediction encourages a coherent
pose prediction with respect to coarse global structure, pose joints may still be slightly
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3.6 Characteristic 3D Pose Dataset

offset from natural skeleton structures. Thus, we employ a pose refinement optimization
to encourage the predicted pose to follow inherent skeleton bone length and angle con-
straints while keeping all joints in areas of high probability and the end-effectors close
to their original prediction, as formulated in the objective function:

ER(x, e,b,x0, θ, H) = wexe − e2 + wbbonelengths(x)− b1
+ waangles(x)− θ1 + wcx− x01 + wh


j(1−Hj)

(3.2)

where x the raw predicted pose skeleton as a vector of N 3D joint locations; b and θ the
bone lengths and joint angles, respectively, of the initially observed pose skeleton; x0 the
joint locations of the last skeleton in the input sequence; Hj the heatmap probability
for each joint; e the sampled end effector locations; and we, wb, wa, wh, wc weighting
parameters (in all our experiments, we use we = 0.2, wb = 1.0, wa = 0.4, wh = 0.1, wc =
0.1). We then optimize for x under this objective to obtain our final pose prediction.

3.6 Characteristic 3D Pose Dataset
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Figure 3.5: Example input observations and target characteristic 3D poses from our anno-
tated datasets, based on GRAB (top) and Human3.6M (bottom).

To train and evaluate the task of characteristic 3D pose forecasting, we introduce a
dataset of annotated characteristic poses, built on GRAB [44] and Human3.6M [45].

• Human3.6M is a commonly used dataset for human pose forecasting, compris-
ing 210 actions performed by 11 professional actors in 17 scenarios for a total of
3.6 million frames. 3D locations are obtained for 32 joints via a high-speed mo-
tion capture system; we use a reduced 17-joint layout in our method, removing
redundant and unused joints, following [16].

• GRAB is a recent dataset with over 1 million frames in 1334 sequences of 10
different actors performing a total of 29 actions with various objects. Each actor
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3 Characteristic 3D Poses of Human Actions

starts in a T-Pose, moves towards a table with an object, performs an action with
the object, and then steps back to the T-Pose. The human motions are captured
using modern motion capture techniques, with an accuracy in the range of a few
millimeters. GRAB provides SMPL-X [49] parameters from which we extract the
25 most defining body joints. For more details, we refer to the appendix.

We then annotate the timesteps of the captured sequences corresponding to character-
istic poses. Input sequence start frames are randomly sampled, up until the characteristic
pose frame. Several example input sequence-characteristic pose pairs are visualized in
Fig. 3.5. Annotations were performed by the authors, within a time span of one day.
This is the total time for annotating more that 1000 sequences across two datasets, with
each annotation taking 10-30 seconds; this annotation efficiency enables quick and easy
adoption of new datasets in the future. We define a characteristic pose as the point in
time when the action is most articulated, i.e. right before the actor starts returning
back to another pose (e.g., when the hand is furthest from the person when passing,
most tilted when pouring, etc.). For sequences containing multiple occurrences of the
same action, like lifting, we chose the repetition with most articulation, e.g. when the
object is lifted highest. In the case of Human3.6M, where there are sometimes multiple
possible options for characteristic poses, we pick the first one that is representative of
the action, e.g., the first sitting pose.

Characteristic 3D Pose Prediction. For the task of characteristic 3D pose prediction,
we consider an input sequence of N = 10 3D pose observations of a person, represented
as J = 25 3D joint locations for the GRAB dataset and J = 17 for the Human3.6M
dataset (in their native joint layouts; for more details we refer to the appendix). From
this observation, the next characteristic pose is predicted as J 3D joint locations. All
poses are considered in their hip-centered coordinate systems. Note that while we have
action labels in the annotated dataset, we do not use them for this task.

The N input pose observations can occur at any time, so methods are trained with
random input sequences up to the characteristic 3D pose. At test time, five input points
are evaluated for each method, with the five input points selected to evenly distribute
between the beginning of the sequence to N frames before the characteristic pose.

Evaluation. We use a train/val/test split by actor in each dataset. For GRAB we
have 8/1/1 train/val/test actors, resulting in 992/197/136 train/val/test sequences. For
Human3.6M, we follow the split of [15]: 5/1/1 and 150/30/30 train/val/test actors and
sequences, respectively.

To evaluate our task of characteristic 3D pose prediction, we aim to consider the multi-
modal nature of the task. Since we do not have ground truth probability distributions
available, and only a single observed characteristic pose for each input pose observation,
we follow previous work on multi-modal human pose sequence predictions [102, 101, 16,
103]: At test time, we consider k = 10 hypotheses from each method. To characterize
these hypotheses holistically, we consider several metrics to assess accuracy, diversity,
and quality of predictions.
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3.7 Experimental Evaluation

Accuracy. First, we evaluate the sampling error using the mean per-joint position
error (MPJPE) [45] by comparing the most similar prediction p′ to the ground-truth
pose p:

EMPJPE =
1

N

N

j=1

||p′j − pj ||22 (3.3)

This evaluates whether the predicted hypotheses capture the target well and allows for
comparison with deterministic baselines (where all hypotheses are identical).

Diversity. We evaluate the diversity as the MPJPE between all sampled poses for the
same sequence. This evaluates the multi-modality of predicted distributions.

Quality. Finally, we evaluate quality of our multi-modal predictions with the Inception
Score [107] (IS) over the set of predicted hypotheses for all test sequences. The Inception
Score is widely used to measure the quality generative model outputs. More specifically,
we use the conditional formulation first introduced in [108]. Similar to [103], we adapt
this idea to our use case by training a simple skeleton-based action classifier on ground-
truth samples from our datasets. Overall, this metric estimates how well the predictions
capture an action while still producing diverse poses.

3.7 Experimental Evaluation

We evaluate the task of characteristic 3D pose prediction, using our annotated dataset
built from the real-world GRAB [44] and Human3.6M [45] datasets.

GRAB Human3.6m

Method MPJPE ↓ Diversity ↑ IS ↑ MPJPE ↓ Diversity ↑ IS ↑

S
ta
ti
st
ic
a
l

Random Sampling 1.018 - - 1.159 - -
Average Train Pose 0.146 - - 0.179 - -
Zero Velocity 0.063 - - 0.166 - -

A
lg
o
ri
th
m
ic Learning Trajectory Dependencies [14] 0.077 - - 0.165 - -

History Repeats Itself [15] 0.071 - - 0.116 - -
DLow [16] 0.071 0.089 1.257 ±0.02 0.119 0.104 1.623 ±0.08

Ours 0.054 0.105 4.153 ±0.87 0.092 0.189 3.139 ±0.32

Table 3.1: Characteristic 3D pose performance, in comparison with state of the art and sta-
tistical baselines. We evaluate MPJPE for all methods and additionally, the diversity of multi-
modal methods in terms of MPJPE between samples as well as their quality with the Incep-
tion Score, similar to [103].

Comparison to time-based state-of-the-art forecasting. In Tab. 3.1, we compare to
state-of-the-art multi-modal sequence forecasting approach DLow [16], which is based on
a conditional VAE, as well as to recent deterministic approaches for frame-based future
human motion prediction, Learning Trajectory Dependencies [14] and History Repeats
Itself [15], which use a graph neural network and an attention-based model, respectively,
to predict human pose sequences. We train all of these sequential approaches on our
datasets, given the input sequence of N frames, to predict an output No-frame pose

47



3 Characteristic 3D Poses of Human Actions

sequence, with No = 100 frames to ensure that the characteristic pose falls within each
target sequence. Since these sequence-based approaches each predict output sequences,
we additionally allow them to predict the time step of the characteristic pose with an
MLP to obtain the final characteristic pose prediction (see the appendix for additional
detail).

Since we aim to predict a characteristic 3D pose given an arbitrary sequence observa-
tion, we sample different start points for the input sequence, and analyze performance
across varying distance from the goal pose.

Method GRAB Human3.6m

MPJPE ↓ IS ↑ MPJPE ↓ IS ↑

L. T. D. [14] 0.075 - 0.156 -

H. R. I. [15] 0.066 - 0.116 -

DLow [16] 0.059 1.567 ±0.02 0.108 1.418 ±0.14

Ours 0.054 4.153 ±0.87 0.092 3.139 ±0.32

Table 3.2: Characteristic 3D pose performance comparison. In contrast to Tab 3.1, baselines
are provided with ground-truth characteristic time step information.

We report the MPJPE, Diversity, and IS metrics in Tab. 3.1; we first measure the
performance for each of the five input sequence start times mentioned above and av-
erage over those for the final result. Our approach more accurately characterizes the
future characteristic poses while also producing improved diversity and quality. For
comparison, we also report baseline performance when given an oracle providing the
ground-truth characteristic time step in Tab. 3.2. Even with this additional informa-
tion, our characteristic pose formulation achieves improved results. Qualitative results
are shown in Fig. 3.6; our probabilistic approach more effectively captures a realistic set
of characteristic modes.

In Fig. 3.7, we visualize the diversity of our predictions in comparison with multi-
modal baselines. Our predicted pose hypotheses show more diversity in both joint place-
ment and action representation, while still capturing the target pose.

Comparison to statistical baselines. We also compare with three statistical baselines:
full random sampling from an evenly distributed heatmap, the average target train pose
over the entire dataset, and a zero-velocity baseline (i.e., the error of simply using the last
input pose as prediction), which was shown by Martinez et al. [28] to be competitive with
and sometimes outperform state of the art. Our approach outperforms these statistical
baselines, indicating learning of strong characteristic pose patterns.

3.8 Ablation Studies

Does a probabilistic prediction help? In addition to comparing to state-of-the-art
alternative approaches which make deterministic predictions, we compare in Tab. 3.3
with our model backbone with a deterministic output head (an MLP) replacing the
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Input

Learning 
Trajectory 

Dependencies 
(Mao et al. 19)

History 
Repeats 

Itself
(Mao et al. 20)

Ours

Target

“Pass” “Peel” “Take 
Picture”

“Eat” “Sit”

DLow
(Yuan

et al. 20)

Figure 3.6: Qualitative results on characteristic 3D pose prediction. In comparison to deter-
ministic [14, 15] (rows 2 and 3) and probabilistic [16] (row 4) approaches, our method more
effectively predicts likely intended action poses. Note that action labels are only shown for vi-
sualization purposes.

volumetric heatmap decoder which regresses offset positions for each pose joint relative
to the input positions. Removing our heatmap predictions similarly fails to effectively
capture the characteristic modes; our probabilistic, heatmap-based predictions notably
improve performance.

Does per-voxel offset prediction help? We analyze the effect of per-voxel offset pre-
diction in Tab. 3.3, showing that they notably improve pose predictions. Applying pose
refinement without offset prediction fails to achieve the same level of improvement.

Does autoregressive pose joint sampling help? We analyze the effect of our autore-
gressive pose joint sampling in Tab. 3.3. We compare against a version of our model
trained to predict each pose joint heatmap independently, with pose joints sampled inde-
pendently, which often results in valid individual pose joint predictions that are globally
inconsistent with the other pose joints. In contrast, our autoregressive sampling helps
to generate a likely, consistent pose.
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3 Characteristic 3D Poses of Human Actions

GRAB Human3.6m

Ablation MPJPE ↓ IS ↑ MPJPE ↓ IS ↑

L
o
ss ℓ1 loss 0.132 1.132 ±0.01 0.198 2.246 ±0.24

ℓ2 loss 0.130 1.146 ±0.01 0.206 1.976 ±0.08

M
o
d
el Deterministic 0.064 - 0.108 -

Not autoreg. 0.077 1.583 ±0.15 0.109 1.929 ±0.09

S
a
m
p
li
n
g No offsets 0.132 1.328 ±0.02 0.172 2.537 ±0.07

↩→ refined 0.127 1.509 ±0.03 0.163 2.978 ±0.14

k = 50 0.049 1.222 ±0.02 0.082 1.845 ±0.19

Not refined 0.057 3.989 ±0.95 0.098 2.418 ±0.11

Ours 0.054 4.153 ±0.87 0.092 3.139 ±0.32

Table 3.3: Ablation study over varying heatmap losses, deterministic and non-autoregressive
pose sampling, no offset prediction (with and without pose refinement), number of samples
taken for the evaluation, and without pose refinement.

DLow (Yuan et al. 2020) OursInput Target

“Inspect”

“Take
Picture”

“Sit”

Figure 3.7: Qualitative results on characteristic 3D pose prediction, showing the diversity of
our predictions in comparison with DLow [16].

How diverse are the sampled poses? We show qualitative examples of our multi-modal
predictions in Fig. 3.7, outlining the diversity of both heatmap predictions and sampled
skeletons. We also evaluate our prediction diversity as MPJPE between our sampled
outputs as part of Tab. 3.1.

What is the effect of the number of pose samples? If we take more pose samples
from our predicted joint distribution (from 10 to 50), we can, as expected, better predict
the potential target characteristic pose, as seen in Tab. 3.1.

Do different heatmap losses matter? We evaluate our formulation for heatmap pre-
diction as a discretized heatmap with a cross entropy loss against regressing heatmaps
with an ℓ1 or ℓ2 loss, and find that our discretized formulation much more effectively
models the relevant modes.

Limitations. Several limitations remain for our approach of characteristic 3D action
pose forecasting. For instance, while our offset predictions help alleviate the ties to a
volumetric heatmap grid, more precise modeling of smaller-scale behavior (e.g., detailed
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3.9 Conclusion

hand movement) would require more efficient representations such as sparse grids. In ad-
dition, our method relies on manually annotated characteristic 3D poses for supervision;
while characteristic pose annotation is very efficient for new datasets, self-supervised
formulations would also be an interesting future direction.

3.9 Conclusion

In this paper, we introduced a new task: predicting future characteristic 3D poses of
human activities from short sequences of pose observations. We introduce a probabilistic
approach to capturing the most likely modes in these characteristic poses, coupled with
an autoregressive formulation for pose joint prediction to sample consistent 3D poses
from a predicted joint distribution. We trained and evaluated our approach on a new
annotated dataset for characteristic 3D pose prediction, outperforming deterministic and
multi-modal state-of-the-art approaches. We believe that this opens up many possibil-
ities towards goal-oriented 3D human pose forecasting and understanding anticipation
of human movements.

3.10 Appendix

In this appendix, we show additional qualitative results, additional quantitative analysis,
detail our network architecture specification, provide additional details regarding the
dataset as well as our training setup, and discuss potential negative societal impacts of
our method.

3.10.1 Additional Qualitative Results.

We show additional qualitative results of our method in Fig. 3.8, which demonstrate
the diversity of our characteristic pose predictions for a given input sequence. Our
approach not only effectively models the multi-modal nature of characteristic poses, but
also captures the final target action pose (highlighted pose prediction).

In cases where the time between input sequence and target pose is longer, such as in
‘sit’ or ‘greet’, our approach produces a more diverse set of action poses, capturing the
ambiguity in the future characteristic pose. When the input sequence is close to the
target pose, our approach converges to a small set of probable poses (for example, in
‘drink’), reflecting the reduced ambiguity.

3.10.2 Additional Quantitative Results.

MPJPE baseline comparison, by goal-normalized input time Fig. 3.9 shows MPJPE
for varying input sequence start times in comparison with state of the art, goal-normalized
from the start of each sequence (0) to N frames before the characteristic pose (1), with
three steps inbetween.

51



3 Characteristic 3D Poses of Human Actions

Figure 3.8: Additional qualitative results, showing the for each action sequence the inputs
(left), our diverse set of predictions (middle) and the target action pose (right). Our final pose
prediction is highlighted for each action sequence.
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3.10 Appendix

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
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M
PJ

PE

Goal-Normalized Evaluation Time Step

(a) Learning Trajectory Dep. (b) History Repeats Itself
(d) DLow (e) Ours

Figure 3.9: MPJPE comparison to baselines, evaluating with the input sequence at different
points in time: from the start of the sequence (0) to N frames before the target characteristic
pose (1).

Autoregressive Joint Order. We determined the order of the joints for the autoregres-
sive prediction empirically; most ambiguity occurred in active end-effectors (i.e. right
and left hands), whereas the rest of the body tended to have lower variability. In Tab. 3.4,
we compare our original approach of (right hand, left hand, rest) with two alternatives:
(left hand, right hand, rest), and (full autoregressive from human kinematic chain fol-
lowing left/right hands). Our method is robust to these orderings (though diversity of
the rest of the body except hands decreases with autoregression through the kinematic
chain).

Order MPJPE ↓ Div. ↑ IS ↑

right hand → left hand → rest 0.054 0.105 4.15 ±0.9

left hand → right hand → rest 0.057 0.049 4.09 ±1.6

following the kinematic chain 0.058 0.018 4.02 ±0.9

Table 3.4: Ablation analysis on autoregressive order on GRAB data.

Grid Resolution and Offset Prediction. We show additional ablations on the effect
of grid resolution and offset prediction in Tab 3.5 on GRAB data; A resolution of 163

performs better than 83 or 323. Our offset prediction helps mitigate grid artifacts even
at 323.

Per-Bodypart MPJPE. In Tab. 3.9, we show our final pose prediction performance in
MPJPE, broken down per bodypart, as compared to sequential baselines.

Characteristic Pose Forecasting with Ground Truth Action Labels. In Tab. 3.6, we
additionally evaluate our approach using ground truth action labels as input to provide
additional contextual information.
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3 Characteristic 3D Poses of Human Actions

Resolution Offsets MPJPE ↓ Diversity ↑ IS ↑

83 × 0.242 0.189 1.40 ±0.3

83  0.092 0.068 1.71 ±0.1

163 × 0.127 0.081 1.51 ±0.1

163  0.054 0.105 4.15 ±0.9

323 × 0.118 0.122 2.39 ±0.2

323  0.066 0.058 1.91 ±0.2

Table 3.5: Ablation analysis on heatmap grid size and offset prediction on GRAB data.

The ground truth action label is processed as an additional attention node alongside
input and previously predicted joint locations. This action label information reduces
ambiguity in the possible set of output poses, resulting in reduced diversity, as is reflected
in the diversity metric and inception score (as this directly considers diversity).

In our original action-agnostic scenario, our approach predicts plausible and diverse
characteristic poses across all actions.

GRAB Human3.6M

MPJPE ↓ Div. ↑ IS ↑ MPJPE ↓ Div. ↑ IS ↑
× 0.054 0.105 4.153 ±0.87 0.092 0.189 3.139 ±0.32

 0.051 0.026 1.085 ±0.02 0.094 0.044 1.700 ±0.06

Table 3.6: Comparison of ours to an ablation with ground truth action labels as additional
input.

3.10.3 Architecture Details

Fig. 3.10 details our network specification from input (left) to heatmap and offsets
output (right). For each GRU layer, we provide the hidden dimension and number of
layers in parentheses, for normalization layers the dimension to be normalized over, for
dropout layers the dropout probability p, and for convolutions the number of input and
output channels as well as kernel size (ks), stride (str), and padding (pad). We apply
cross-entropy (CE) losses at a heatmap resolution of 83 and at the final resolution of
163; for the offsets prediction, we concatenate the offsets volume generated from the last
input skeleton after 5 convolution blocks and supervise the final predictions with an ℓ1
loss.

We take as input 25 joints in the case of GRAB and 17 joints for Human3.6M
(#in joints). The number of output joints (#out joints) depends on whether the right
or left hand is being predicted (#out joints=1) or the rest of the body (#out joints=23
for GRAB, #out joints=15 for Human3.6M). In all our experiments, we use 10 as the
number of probability bins.
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Figure 3.10: Our network architecture with details for encoder, scaled dot-product attention,
as well as heatmap and offsets decoders.

3.10.4 Dataset

GRAB Pose Layout. Since GRAB [44] not only provides a human skeleton representa-
tion but full body shape parameters, we preprocess all pose sequences by first extracting
relevant joints for our approach. For this, we chose the 3D OpenPose [58] layout as it de-
scribes the prevalent body joints and is widely used for representing 3D poses. Note that
we do not apply the OpenPose method on 2d data; we only use their joint definitions in
3D. We extract 25 body joints from the SMPL-X body given by the GRAB dataset [44]
using the correspondences shown in Tab. 3.8. Additionally, we denote in Tab. 3.8 the
correspondences of joints to body parts, for the body part analysis in Tab. 3.9. Fig. 3.11
(left) visualizes our joint selection, overlaying the body shape given in GRAB as a point
cloud over the 25-joint skeleton.

Human3.6M Pose Layout. For all our experiments on Human3.6M [45], we use 17
pose joints, visualized in Fig. 3.11 (right). Tab. 3.7 describes the exact joints used as
well as the correspondences of joints to body parts, as used in Tab. 3.9.

Visualization Details. While our approach is agnostic to context or action, we visualize
the context provided by GRAB [44, 109] (of the table and object) and action label pro-
vided by both GRAB and Human3.6M to help contextualize the pose visualizations. The
context and action labels are not taken into account by the network or the evaluation,
meaning that our approach infers plausible human action poses while being agnostic
towards action and context.
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3 Characteristic 3D Poses of Human Actions

Ours (17-Joint) Base (Human3.6M)

Idx Label Label Idx

R
.
L
eg 1 R. Hip R. Hip 1

2 R. Knee R. Knee 2
3 R. Foot R. Heel 3

L
.
L
eg

4 L. Hip L. Hip 6
5 L. Knee L. Knee 7
6 L. Foot L. Heel 8

R
.
A
rm

14 R. Shoulder R. Shoulder 25
15 R. Elbow R. Elbow 26
16 R. Hand R. Hand 27

L
.
A
rm

11 L. Shoulder L. Shoulder 17
12 L. Elbow L. Elbow 18
13 L. Hand L. Hand 19

S
p
in
e 7 Spine Spine 12

0 Hip Hip 0

H
ea
d 9 Nose Nose 14

10 Head Head 15
8 Thorax Thorax 13

Table 3.7: Joint Correspondences for Human3.6M

Additional Characteristic 3D Pose Details. We show additional characteristic 3D
poses in their original sequences in Fig. 3.12, and note the strong time differences at
which the characteristic poses occur.

Furthermore, Fig. 3.13 and Fig. 3.14 show the times during the sequences at which the
characteristic 3D poses are annotated for GRAB and Human3.6M; these characteristic
poses are distributed across a wide range (0-12 seconds and 0-40 seconds, respectively)
of time.

3.10.5 Additional Training Details

Cross Entropy Loss. Since our approach learns to predict the probabilities of a Gaussian-
smoothed target point during training, we observe a very large class imbalance between
the no-probability bin (bin 0) and the rest of the bins. We thus weigh the classes in the
cross entropy loss to account for the class imbalances, by the inverse of their log-scaled
occurrence, and a weight of 0.1 for the no-probability bin.

State-of-the-art comparisons. We use the official code with default settings of the
methods we compare to ([14], [15], and [16]). We train all methods from scratch on
our characteristic 3D pose dataset, setting the number of input frames to 10 and the
number of output frames to 100. From the predicted sequence, we evaluate the pose at
a timestep predicted by the baselines themselves as characteristic pose and compare it
to the target. This scenario is the closest to our approach, as predicting characteristic
3D poses involves which pose is the characteristic pose.
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3.10 Appendix

Ours (OpenPose [58]) Base (SMPL-X [49])

Idx Label Label Idx

R
.
A
rm

2 Right Shoulder Right Shoulder 17
3 Right Elbow Right Elbow 19
4 Right Finger Right Index 3 42

L
.
A
rm

5 Left Shoulder Left Shoulder 16
6 Left Elbow Left Elbow 18
7 Left Finger Left Index 3 27

R
ig
h
t
L
eg

9 Right Hip Right Hip 2
10 Right Knee Right Knee 5
11 Right Ankle Right Ankle 8
22 Right Big Toe Right Big Toe 63
23 Right Small Toe Right Small Toe 64
24 Right Heel Right Heel 65

L
ef
t
L
eg

12 Left Hip Left Hip 1
13 Left Knee Left Knee 4
14 Left Ankle Left Ankle 7
19 Left Big Toe Left Big Toe 60
20 Left Small Toe Left Small Toe 61
21 Left Heel Left Heel 62

H
ea
d

0 Nose Nose 55
1 Neck Neck 12
15 Right Eye Right Eye 24
16 Left Eye Left Eye 23
17 Right Ear Right Ear 58
18 Left Ear Left Ear 59

8 Mid-Hip Pelvis 0

Table 3.8: Joint Correspondences for GRAB

Therefore, we modified each baseline with a small prediction head to predict the
characteristic pose frame within all 100 frames of the predicted sequence. In all cases,
we supervise this prediction as a classification problem with a cross entropy loss and
train the additional head together with the rest of the model.

For DLow [16], we add one linear layer to the final feature output of each of the 100
steps, followed by a ReLU, reducing each step’s output dimension to 10. Then, one
additional linear layer summarizes the combined output of all steps (100 ∗ 10) down to
a vector of size 100.

In the case of History Repeats Itself [15], we add a classification head consisting
of one linear layer, a 1d batch norm, a ReLU, and one additional linear layer to the
output of their last Graph Convolution Block (GCN). While the first linear layer keeps
the original dimensionality of 100, the second linear layer reduces the dimension from
#graph nodes ∗ 100 down to 100.

Finally, for Learning Trajectory Dependencies [14], we apply the same architecture and
add a linear layer, a 1d batch norm, a ReLU, and a second linear layer after the final
GCN. Here, we first reduce the per-node feature dimension from 256 to 100 and combine
the features of all nodes with the second linear layer, going from #graph nodes ∗ 100
down to 100.
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3 Characteristic 3D Poses of Human Actions

Figure 3.11: GRAB [44] body and our extracted skeleton joints overlaid (left); 17-joint skele-
ton based on Human3.6M [45] (right).

GRAB H3.6M
Method R. Arm ↓ L. Arm ↓ R. Leg ↓ L. Leg ↓ Spine ↓ Head ↓ R. Arm ↓ L. Arm ↓ R. Leg ↓ L. Leg ↓ Spine ↓ Head ↓
L. T. D. [14] 0.165 0.115 0.058 0.057 0.028 0.085 0.225 0.225 0.135 0.146 0.108 0.123
H. R. I. [15] 0.160 0.113 0.056 0.055 0.026 0.079 0.199 0.191 0.079 0.088 0.040 0.089
DLow [16] 0.146 0.109 0.052 0.050 0.024 0.068 0.174 0.169 0.108 0.112 0.044 0.096
Ours 0.105 0.084 0.045 0.045 0.020 0.057 0.147 0.122 0.091 0.085 0.033 0.066

Table 3.9: Characteristic 3D pose prediction performance comparison to baselines, broken
down by body part MPJPE.

In the main paper, we additionally evaluated against these baseline approaches when
given ground-truth time steps instead; in this scenario, our predictions also outperform
the baselines given ground truth times for characteristic poses.

To evaluate the diversity and quality of multi-modal outputs, 10 samples are taken
from a probabilistic method for each input sequence, and we report diversity in terms
of MPJPE between samples as well as the Inception Score, following [103].

3.10.6 Potential Negative Societal Impacts

As we aim to study human pose behavior, we must take care to ensure that datasets
used represent notable diversity in those represented. Our approach currently operates
on skeleton abstractions that do not characterize finer-scale appearance differences; in
possible future studies that may aim to characterize fine-scale interactions, diversity in
body shape representations which must be taken into account for data collection and
analysis.

In particular, in our scenario of forecasting probable future human behavior, we must
also ensure that this possibility cannot be easily used for generating fraudulent motion
video of a person. Such usage is currently severely limited in our proposed approach, as
it does not target individual people, and does not model photo-realistic characteristics
of people.
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3.10 Appendix

Figure 3.12: Sample input-target pairs (colored) for our characteristic 3D pose forecasting
task, with temporal snapshots along the sequence (grayscale). Each snapshot is half a second
apart. Depicted as input is the last frame of the respective input sequence.

Another concern might arise with the possibility of surveillance, in the context of
predicting specific actions from only a short and possibly ambiguous observation of a
person. The types of actions are currently limited by the training data to everyday
activities such as eating or walking. With modified datasets, the prediction of various
specific action sub-categories might be possible (e.g., forecasting possible malicious ac-
tions). While simpler methods may be more suitable for this kind of task, here we look
to efforts in data transparency; we will provide our annotations and various statistics to
characterize the everyday activities in our considered data.

Another axis to consider is that of environmental impact, in the cost of training
deep neural networks. Our training time is relatively short with only a few hours until
convergence and a moderately sized neural network. Additionally, adversarial attacks
are a possibility to disrupt future predictions, but do not induce security concerns for
our approach directly.
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3 Characteristic 3D Poses of Human Actions
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Figure 3.13: Times at which characteristic poses occur for GRAB.
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4 Complex Long-Term 3D Human Behavior
from Video Observations

This chapter introduces the following paper:

Christian Diller, Thomas Funkhouser, and Angela Dai. ”FutureHuman3D: Forecast-
ing Complex Long-Term 3D Human Behavior from Video Observations.” Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2024.

Abstract of Paper We present a generative approach to forecast long-term future hu-
man behavior in 3D, requiring only weak supervision from readily available 2D human
action data. This is a fundamental task enabling many downstream applications. The
required ground-truth data is hard to capture in 3D (mocap suits, expensive setups)
but easy to acquire in 2D (simple RGB cameras). Thus, we design our method to only
require 2D RGB data at inference time while being able to generate 3D human motion
sequences. We use a differentiable 2D projection scheme in an autoregressive manner for
weak supervision, and an adversarial loss for 3D regularization. Our method predicts
long and complex human behavior sequences (e.g., cooking, assembly) consisting of mul-
tiple sub-actions. We tackle this in a semantically hierarchical manner, jointly predicting
high-level coarse action labels together with their low-level fine-grained realizations as
characteristic 3D human poses. We observe that these two action representations are
coupled in nature, and joint prediction benefits both action and pose forecasting. Our
experiments demonstrate the complementary nature of joint action and 3D pose pre-
diction: our joint approach outperforms each task treated individually, enables robust
longer-term sequence prediction, and improves over alternative approaches to forecast
actions and characteristic 3D poses.

Contribution The method development and implementation was done by the first au-
thor. Discussions with the co-authors led to the final paper.
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4 Complex Long-Term 3D Human Behavior from Video Observations

4.1 Introduction

Predicting future human behavior is fundamental to machine intelligence, with many
applications in content creation, robotics, mixed reality, and more. For instance, a
monitoring system might issue early warnings of potentially dangerous behaviour, and a
robotic assistant can use forecasting to place tools at the right place and time they will
be needed in the future. Consider the specific scenario of an assembly line monitoring
system deployed to issue early warnings of behavior that could be harmful in the near
future: The system needs to have a long-term understanding of the future, enabling
it to forecast multiple action steps ahead so that it can act in time before a harmful
action occurs. However, simply understanding the next action steps on a high level is
not sufficient: it must also reason about where the action will occur. Actions such as
“grab a tool” are likely harmless when performed in a toolbox; they become dangerous
when done next to an active table saw or moving robot arm. The monitoring system
thus also needs to be able to reason about spatial relations in 3D – for both the location
and body pose of involved humans.
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Figure 4.1: We propose a novel generative approach to model long-term future human behav-
ior by jointly forecasting a sequence of coarse action labels and their concrete realizations as
3D body poses. For broad applicability, our autoregressive method only requires weak super-
vision and past observations in the form of 2D RGB video data, together with a database of
uncorrelated 3D human poses.

To support these types of applications, we must address two tasks: 1) forecasting
long-term action sequences, and 2) predicting future 3D human poses. Prior work has
focused on each of these tasks separately: activity forecasting predicts future action
labels without considering the 3D poses [7, 8, 9, 10, 11, 12], while 3D pose forecasting
focuses on fixed frame rate sequence prediction limited to single actions in short-term
time frames without considering longer-term action sequences [13, 14, 15, 16, 17].

We propose that these two tasks are coupled in nature: predicting action labels with
realized 3D poses helps to encourage richer feature learning and can materialize sub-
category level differences in actions for predicting future activities, and grounding 3D
poses with actions provides global structure for longer-term forecasting.
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4.1 Introduction

Leveraging this insight, we design a method that takes in a sequence of recent RGB
image observations and their action labels, and jointly predicts a sequence of future 3D
characteristic poses and action labels (Fig. 4.1). In our design, we had to address two
significant research challenges: 1) forecasting 3D poses from 2D images without any
paired 3D training data, and 2) forecasting long sequences of actions comprising several
discrete action steps.

The first challenge arises from limited training data. It would be ideal to have a dataset
with ground truth 3D pose and action annotations for complex sequences of actions.
Unfortunately, no such dataset exists. There are RGB video datasets with tracked 3D
poses for limited types of actions (e.g., walking or waving); and there are video datasets
with action labels for complex sequences of actions (e.g., cooking or assembly). However,
there is no single dataset that has both types of annotations, and capturing one would
be difficult due to the challenges of setting up 3D pose trackers in settings where people
typically perform complex sequences of actions (e.g., cooking in a kitchen). Instead,
we have to learn to use 2D video observations for 3D pose and action label forecasting
without paired data. We achieve this by weakly supervising our pose forecasting in 2D
using readily available 2D action datasets [110, 111] and formulate an adversarial loss
encouraging likely 3D characteristic poses with respect to a distribution learned from 3D
pose datasets [45, 112, 44]. Crucially, this does not require any correspondence between
the 2D video and 3D pose data.

The second challenge arises from the difficulties of predicting long sequences of discrete
events. One option would be to train a model to output a multi-step sequence of actions
and poses all at once – however, this is impossible given the exponential growth of
multi-step sequences and the limited amount of available training data. Another option
would be to train a model that predicts the next future poses and actions at fixed
time points in the future (e.g., 1s in advance) and then recurrently make long-term
predictions – however, this time-based forecasting approach produces sequences that
tend to “drift” over the long-term, since the intermediate poses at fixed time steps
are usually “in between” semantically meaningful actions and thus do not provide a
distinctive input representation for the next prediction. To address this issue, we train
our autoregressive approach to iteratively generate the next discrete action label along
with the 3D characteristic pose for that action. A 3D characteristic pose [40] is the set
of 3D joint positions corresponding to the most distinctive moment a semantic action
is being performed (e.g., when a hand grasps an object, when two objects are first
brought together, etc.). By training our method to produce these poses as intermediate
outputs (and inputs to the next step), we are able to generate more semantically plausible
forecasts over longer action sequences.

Our experiments with two RGB video datasets demonstrate that our approach for
joint prediction of action behaviors and 3D poses outperforms state-of-the-art methods
applied separately to each task. Additionally, we find that predicting actions and their
3D characteristic poses enables more robust autoregressive prediction for longer-term
forecasting. Overall, our contributions are:

63



4 Complex Long-Term 3D Human Behavior from Video Observations

• The first method to learn forecasting of future 3D poses from datasets with only
2D RGB video and action label data (i.e., without any paired 3D data).

• The first method to forecast future 3D poses jointly with action labels from com-
monly available video input.

• The first method to forecast future characteristic 3D poses and action labels for
long-term and complex behaviors.

4.2 Related Work

3D Human Pose Forecasting. Forecasting 3D human poses has been studied in many
previous works and is commonly formulated as a 3D sequential motion prediction task,
taking an input 3D sequence of poses and generating an output 3D sequence of poses.
For short-term future prediction (up to ≈ 1 second), RNN-based approaches have
achieved impressive performance [13, 27, 28, 94, 95, 96, 97, 29, 113]. As RNNs tend
to struggle to capture longer-term dependencies with a fixed-size history, graph-based
[14, 114, 115, 30, 116, 117, 118, 119, 120, 17] and attention-based [31, 15, 61, 121, 73]
approaches have been proposed to encode temporal history. Some methods also ex-
plored the applicability of temporal convolutions [99, 122] and MLP-only architectures
[123, 124] to the task of human motion forecasting. Additionally, various approaches
have been proposed to model future human motion stochastically to produce diverse
future sequence predictions, either with adversarial GAN formulations [101, 125], con-
ditional variational autoencoders (VAEs) [102, 126, 103, 17, 127, 128, 129, 130, 131], or
diverse sampling [16, 132]. More recently, diffusion methods [76, 77] have been used for
human motion generation and forecasting [133, 2, 134, 84, 1, 135, 37, 91]. These meth-
ods require 3D ground truth sequences for training, limiting applicability to scenarios
where 3D inputs and ground-truth are not available. Ours requires only 2D training data
for the action sequences, which is far more plentiful and easier to obtain. We generate
valid 3D poses by leveraging an adversarial loss formulation, operating on a database of
uncorrelated 3D poses.

Human Action Forecasting. Action forecasting has been studied by many approaches
to predict future actions from a sequence of observed actions [136, 137, 138, 139] or
directly from an input video sequence [140, 141, 142, 143, 11, 144, 141, 145]. Various
methods have been developed to learn effective representations, including Hidden Markov
Models [8], RNNs [137, 146, 147, 140, 141, 136, 137, 142], transformer-based networks
[11, 12, 74], and self-supervised feature learning [148, 149]. There are approaches that
focus on the short-term future [139, 142, 143, 11, 144, 74, 141, 145] or on longer-term
actions [12, 136, 137, 138, 139, 140, 141, 142, 143, 11, 144, 145]. Such method focus
on characterizing anticipation with action labels only, while we aim to predict a richer
characterization of the anticipated future by leveraging characteristic 3D poses, repre-
sentative of future action goals in a sequence of action-pose predictions. Forecasting
actions alongside human poses in 2D only has been studied in a few works, for 2D hand
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4.3 Method Overview

placement [150] or full-body 2D human poses at most 1 second into the future [151]. Our
approach addresses the benefits of 3D reasoning in human motion forecasting, without
requiring full 3D sequences for supervision.

Goal-Driven Future Prediction. Goal-driven forecasting has previously been explored
beyond action label forecasting, and has been leveraged to predict goal locations for
future human walking trajectories [104] and for future video sequences by predicting
keyframes [32, 152, 33, 153]. Diller et al. [40] introduced the task of forecasting charac-
teristic 3D poses, salient keyframe poses representing the next action. These goal-based
poses are more semantically meaningful and consistent across different action sequences
than time-based ones, and thus are better suited for long-term forecasting. We build
upon these ideas by introducing a new goal-driven method for joint action anticipation
and characteristic 3D pose forecasting in an auto-regressive system that can predict
complex, long-term behavior sequences.

4.3 Method Overview
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Figure 4.2: Our approach takes as input a sequence of RGB images, from which 2D poses are
extracted, as well as their corresponding action label and initial set of objects. Each input is
encoded into a joint latent space to jointly predict the next action label and characteristic 3D
pose. While action labels are directly supervised, the 3D pose decoder is trained to match the
next 2D action pose using differentiable projection, and an adversarial 3D loss encourages valid
3D pose prediction.

Our method aims to learn to jointly model future human actions along with the
characteristic 3D poses representative of those actions. From a sequence of RGB image
observations of a person performing a series of actions and the corresponding action
labels, we predict a sequence of future action labels and 3D poses characteristic of these
actions. This enables joint reasoning of not only global semantic behavior but also the
physical manifestation thereof.

In the absence of 3D pose data of complex human actions, we weakly supervise fore-
casted 3D poses to align to future poses in 2D, and constrain the poses to be valid in
3D using an adversarial loss with a database of 3D poses. This does not require any
correspondence between 3D pose data and 2D video, enabling action sequence supervi-
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4 Complex Long-Term 3D Human Behavior from Video Observations

sion on commonly available 2D human action data together with carefully captured but
unrelated human poses in 3D.

An overview of this approach is shown in Fig. 4.2. For an input sequence S =
{(Ii, ai, oi)} of N RGB images {Ii} with corresponding actions {ai} and initially in-
volved objects {oi}, we aim to predict the future M actions {âk} that will be taken
along with their characteristic poses in 3D {Ŷk}. We define the human pose as a collec-
tion of J body joints at salient locations, so each output pose Ŷk is predicted as a set of
J 3D coordinates. We first extract information about the observed 2D pose movement
by detecting 2D poses {Xi}, each with J 2D joints, with a state-of-the-art 2D pose
estimator that seamlessly integrates into our pipeline in a pre-trained and frozen form.

Next, we encode this information along with previously observed action and object
labels to predict the next future action label âk and characteristic 3D pose Ŷk. We
can then forecast a future sequence by autoregressively predicting a series, considering
the 2D projections of the previously predicted 3D poses along with previously predicted
actions as input to a new prediction.

4.4 Joint Forecasting of Actions and Characteristic 3D Poses

Our network takes as input the previous 2D observations {Xi} extracted from the {Ii}
images, as well as action and object labels {ai} and {oi} as one-hot vectors. Since we only
predict action labels, object labels are given from the objects seen at the beginning of the
sequence, and subsequently re-used for the entire sequence. Each of these are encoded
in parallel with three separate encoders; the actions and objects with MLPs while the
poses are projected into latent space with a single linear layer and then processed with a
stack of three residual blocks. These encoded features are then all concatenated together
in latent space, and processed jointly with an MLP to produce a common latent code z.
Finally, we decode both poses and actions in parallel based on z using an MLP decoder
each, yielding the next action label class as a vector âk ∈ RNa and 3D characteristic
pose Ŷk ∈ RJ×3, with Na the number of action classes. For a more detailed architecture
specification, we refer to the appendix.

We jointly learn future action labels and characteristic 3D poses by supervising âk
and Ŷk to match the observed future 2D video, and constrain Ŷk to form a valid 3D pose
by an adversarial loss, optimizing for the overall loss:

L = λactionLaction + λpose2dLpose2d + λadv3dLadv3d (4.1)

where Laction denotes the action loss, as described in Sec. 4.4.1, Lpose2d and Ladv3d

constraining the predicted pose, as described in Sec. 4.4.2, and the λ weighting each
loss.

4.4.1 Action Forecasting

Predicted future actions are decoded from the latent code z by an MLP decoder to
predict the action class âk, supervised by cross entropy with the ground truth future
action: Laction = CE(âk, a

gt
k ).
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4.4 Joint Forecasting of Actions and Characteristic 3D Poses

4.4.2 Characteristic Pose Forecasting

Our goal is to forecast complex action behavior not only in terms of action labels, but
also manifested as a sequence of characteristic poses in 3D. Since we only have 2D pose
annotations available, we first constrain these poses to represent future actions in 2D and
make use of an adversarial regularization in 3D. This does not require any correspondence
between 2D and 3D data, only a collection of valid 3D poses, which are readily available.

Differentiable 2D Projection Our generator network predicts the next characteristic
action pose Ŷk as a set of 3D joints. To constrain Ŷk based on the target future 2D pose
Xgt extracted from the ground truth future image, we differentiably project Ŷk into the
2D image with intrinsic parameters K and extrinsic rotation and translation R, t:

X̂ = K(RŶk + t) (4.2)

Since we learn from third-person video with a fixed camera, we can use the same
camera parameters for all sequences used for training. We can then define the 2D pose
loss as the mean squared error between the projected pose prediction and the ground
truth:

Lpose2d = ||Xgt −Xk||22 (4.3)

Note that we only predict the J joints that have been observed in the video data
(excluding any joints that remain occluded in the observed video data), so this loss can
be applied to all predicted joints.

Adversarial 3D Pose Regularization While the action and pose prediction losses pro-
vide effective predictions when considered in the 2D projections, the {Ŷk} remain under-
constrained in 3D and thus tend to exhibit large distortions and implausible bone lengths
and angles, when trained with only 2D supervision. We thus constrain the predicted
poses to form valid 3D poses by formulating an adversarial 3D loss from a critic network
which is simultaneously trained to distinguish predicted poses from a database of real
3D skeleton samples. Note that there is no correspondence between these skeletons and
the 2D poses extracted from the action video sequences – any database of 3D skeletons
can be used. We can thus train our approach with an entirely uncorrelated 3D pose
dataset without requiring 3D action pose correlations.

We then formulate Ladv3d as a Wasserstein loss [154], training the critic network in
an alternating fashion with the generator. This enables effective forecasting of future
3D characteristic poses for predicted future action labels, without requiring any 3D
observations as input.

In order to enable the critic network to learn effectively about likely intrinsic pose
constraints (e.g., lengths, kinematic chains, or valid joint angles), the critic takes as
input not only the 3D joint locations of Ŷk but also their kinematic statistics as a matrix
Ψ, following [155, 156].

Ψ encodes joint angles and bone lengths as Ψ = BTB, where B = (b1, b2, . . . , bb) is
a matrix with columns bi = jk − jl representing the vectors between each joint jk and
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jl. Ψ then contains bone lengths l2i on its diagonal, and angular representations on the
off-diagonal entries.

4.4.3 Sequence Prediction

In order to forecast longer-term future behavior, our 3D pose predictions enable a natural
autoregressive sequence prediction by taking the predictions X̂t, ât at time step t as part
of the input for time step t + 1. We can thus predict a sequence of M future action
labels {âk} and characteristic 3D poses {Ŷk}; we use M = 10 for MPII Cooking II [110]
and M = 5 for IKEA-ASM [111], respectively.

4.4.4 Training Details

We train our approach for the J = 9 joints commonly seen across the input ob-
served video data, characterizing the upper body in MPII Cooking II [110] and IKEA-
ASM [111].

Additionally, we use loss weights λaction = 1e6, λpose = 1, and λadv3d = 1, empirically
chosen to numerically balance each individual loss with the others.

We train our approach on a single NVIDIA GeForce RTX 2080TI for ≈ 12 hours until
convergence. We use ADAM with batch size 4096, weight decay 0.001, and a constant
learning rate of 0.0001 for both generator and discriminator.

4.4.5 Datasets

We train and evaluate our approach on two datasets: MPII Cooking II [110] and IKEA-
ASM [111]. Both datasets contain sequences of human actors performing complex, un-
scripted actions, and provide annotations of fine-grained sub-action steps. MPII Cooking
II [110] is an action recognition dataset with 272 complex cooking sequences and an aver-
age sequence time of 182s (35 annotated sub-actions, each 5.2s on average). IKEA-ASM
contains 370 sequences of actors assembling IKEA furniture, with an average of 74s per
sequence (15 annotated sub-actions, each 4.9s on average).

In both datasets, each action sequence has been filmed from a fixed camera setup;
the third-person point of view enables extraction of 2D poses with an off-the-shelf 2D
pose estimator. We use OpenPose [58] in our experiments and note that our approach
is agnostic to the concrete method of 2D pose detection. We provide more in-depth
discussion and additional experiments in the supplemental material.

We consider the 9 upper-body joints of the OpenPose skeletons, as the other joints
are almost always occluded in the video observations, and remove global translation by
centering each 2D pose at the neck joint.

Characteristic poses, in contrast to an arbitrary pose within a labeled action range,
are the most representative pose of that action, and are annotated for all sub-actions
in each sequence as the most articulated pose of that sub-action, following the anno-
tation protocol of [40]. Annotation can be done efficiently and was performed by the
authors within just 32 hours, yielding a total of ≈18,000 characteristic poses (≈12,000
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for MPII Cooking II and ≈6,000 for IKEA-ASM). These poses are indicative of the ac-
tion they represent as demonstrated in Tab. 4.3: Using such poses significantly improves
performance, validating our annotation protocol.

For the 3D adversarial loss, we use ≈800,000 human poses from popular 3D pose
datasets: Human3.6m [45], AMASS [112], and GRAB [44]. Note that none of these 3D
poses have any correspondence with the 2D posed actions from the MPII Cooking II
dataset, instead depicting various human skeletons in natural and diverse poses.

4.5 Results

We evaluate sequence forecasting of action labels and characteristic 3D poses on the
MPI Cooking II [110] and IKEA-ASM [111] datasets, and 3D pose quality by comparing
to our database of high-fidelity 3D poses.

4.5.1 Evaluation Metrics

2D Pose Error. Since we only have 2D ground-truth data available for complex action
sequences, we first project predicted 3D poses back into 2D, and evaluate the 2D mean
per-joint position error (MPJPE) [45], in comparison with 2D poses extracted from
ground-truth future frames using [58]: EMPJPE = 1

M
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Figure 4.3: Action accuracy over time. Our joint action-characteristic pose forecasting en-
ables more robust autoregressive action forecasting than action prediction without considering
pose.

3D Pose Quality. In the absence of annotated ground truth 3D poses for the action
video sequences, we measure the quality of predicted 3D poses as how distinguishable
they are in comparison to a set of real 3D poses. We follow [103] and evaluate quality by
training a binary classifier on 50,000 human poses generated at different training steps
(representing examples of unrealistic 3D poses) and 50,000 real 3D pose samples. For
classification accuracy a of this classifier, quality is measured as 1− a, with a quality of
1 indicating full indistinguishability from real poses. We refer to the supplemental for
more details on this quality metric.
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Action Accuracy. We report the action accuracy of the predicted sequences, as the
mean over all sequences in the test set. We evaluate the top-n accuracy based on
whether the ground truth action is among the n highest scoring predictions, for n = 1
and n = 3.

4.5.2 Comparison to Human Pose Forecasting

Tab. 4.1 compares our method to state-of-the-art 3D pose forecasting methods DLow [16],
GSPS [127], STARS [17], and EqMotion [157]. These methods expect sequences of ob-
served 3D human poses as input; we thus first apply a state-of-the-art weakly supervised
3D pose estimator [156] on our 2D input poses, producing inputs and supervision in 3D.
This method estimates 3D poses using an adversarial formulation, requiring a database
of 3D poses not correlated with the 2D pose inputs. To ensure a fair comparison, this
database is exactly the same as the one our method uses.

MPII Cooking II IKEA ASM

2d 3d Action Accuracy 2d 3d Action Accuracy

Approach MPJPE [px] ↓ Quality ↑ top-1 ↑ top-3 ↑ MPJPE [px] ↓ Quality ↑ top-1 ↑ top-3 ↑
Zero Velocity 118 – – – 74 – – –
Train Average 166 – – – 91 – – –

AVT [11] RGB – – 19% 42% – – 22% 49%
AVT [11] RGB+Skeleton – – 20% 40% – – 23% 47%
FUTR [12] RGB – – 27% 48% – – 19% 45%
FUTR [12] RGB+Skeleton – – 27% 49% – – 20% 46%

RepNet [156] + DLow (min-10) [16] 72 0.72 – – 45 0.31 – –
RepNet [156] + GSPS (min-10) [127] 59 0.66 – – 51 0.15 – –
RepNet [156] + STARS (det.) [17] 70 0.62 – – 54 0.27 – –
RepNet [156] + EqMotion [157] 68 0.66 – – 55 0.23 – –

Joint 2D Pose & Action [151] 55 - 27% 43% 44 - 22% 46%

Ours 50 0.55 29% 51% 40 0.31 29% 50%

Table 4.1: Quantitative comparison with state-of-the-art action label and 3D pose forecast-
ing. Our joint approach enables more accurate future action and pose predictions, compared to
approaching both tasks separately, and outperforms joint action and 2D pose forecasting.

We chose the 3D pose estimator of [156] since its weakly supervised formulation is most
comparable to our approach. An additional comparison to a fully supervised approach
for 3D pose lifting (SPIN [158]) is provided in the supplemental.

We then train the 3D pose prediction methods from scratch on this generated data,
using their original parameter settings. Stochastic methods DLow and GSPS are set to
predict 10 possible future sequences; we report the minimum error across these. We use
STARS in the method’s deterministic mode. Each method takes as input a pose history
of M poses and outputs a sequence of M poses, analogous to our setup where each pose
is a characteristic pose corresponding to an action step (M = 10 for MPII Cooking II
and M = 5 for IKEA-ASM). Our approach to lift 2D to future 3D poses and actions in
an end-to-end fashion enables more effective pose forecasting than these state-of-the-art
3D pose forecasting approaches on both datasets.

In addition, we compare to the joint 2D action and pose forecasting approach of Zhu et
al. [151]. Our approach of forecasting long-term sequences of 3D poses alongside actions
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is able to outperform their 2D MPJPE pose prediction and action accuracy performance,
due to improved spatial reasoning when forecasting 3D poses.

Statistical 2D Baselines. We additionally compare with two statistical baselines in
2D, following [40]: the average target train pose, and a zero-velocity baseline which was
introduced by Martinez et al. [28] as competitive with state of the art. We outperform
both baselines, indicating that our method learns a strong action pose representation.

4.5.3 Comparison to Action Label Forecasting

We compare the action accuracy of our joint action-pose forecasting to AVT [11] and
FUTR [12], two state-of-the-art action anticipation methods, in Tab. 4.1. We train and
evaluate both AVT and FUTR on input RGB frames and their action and object labels,
equal to our training setup, and use their original training settings initialized with a
pre-trained vision transformer [72] for AVT and extracted I3D features [159] from our
datasets for FUTR. Additionally, as we consider extracted 2D poses from the input
RGB images, we also evaluate a variant that is trained and evaluated on RGB images
overlaid with 2D poses (“+Skeleton”). Our approach outperforms these baselines in
both scenarios, by jointly predicting future actions and characteristic 3D poses.

4.5.4 Ablation Studies

What is the effect of pose forecasting on long-term action understanding? Tab. 4.2
shows that there is a notable improvement in action accuracy between training only with
an action loss vs. training action and 2D pose loss jointly. This becomes more apparent
when training action only vs action and full pose prediction (2D and 3D losses). In
addition, Fig. 4.3 shows the correspondence between autoregressive prediction length and
action accuracy: jointly forecasting poses and actions enables more robust autoregressive
forecasting over time. We conclude that pose forecasting is beneficial for long-term action
understanding.

MPII Cooking II IKEA ASM

Losses During Training 2D 3D Action Accuracy 2D 3D Action Accuracy

Action 2D Proj. 3D Adv. MPJPE [px] ↓ Quality ↑ top-1 ↑ top-3 ↑ MPJPE [px] ↓ Quality ↑ top-1 ↑ top-3 ↑
 × × – – 21% 41% – – 24% 45%
  × 62 0.10 26% 49% 46 0.05 27% 49%

×  × 54 0.21 – – 44 0.09 – –
×   58 0.53 – – 43 0.29 – –

   50 0.55 29% 51% 40 0.31 29% 50%

Table 4.2: Ablation on the effect of the action, 2D projection, and 3D adversarial losses.
Combining all together for joint forecasting enables complementary learning to produce the
best performance.
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How does action forecasting affect pose prediction performance? Tab. 4.2 demon-
strates that pose forecasting trained jointly with action prediction is complementary and
enables more accurate pose prediction.

What is the effect of characteristic pose forecasting? Since state-of-the-art pose fore-
casting focuses on fixed frame rate predictions independent of actions, we compare with
such joint forecasting of action and pose where predicted poses are sampled at equally
spaced points in time in Tab. 4.3 (uncoupled). Additionally, we consider alternative
poses to forecast for each action rather than a characteristic 3D pose (middle of the
annotated action range, and randomly selected within the action range). We keep the
same pose representation for training and testing (i.e., evaluate on middle poses when
trained on them, etc.), for a fair comparison. We observe the best performance when
forecasting characteristic 3D poses along with action labels, showing their usefulness for
forecasting long sequences of 3D poses and actions.

Poses 2D 3D Action Accuracy

Train Test MPJPE [px] ↓ Quality ↑ top-1 ↑ top-3 ↑
Uncoupled Uncoupled 75 0.29 28% 48%

Middle Middle 58 0.45 26% 43%
Random Random 67 0.37 22% 42%

Characteristic Characteristic 50 0.55 29% 51%

Table 4.3: Ablation on pose forecasting on MPII Cooking II [110]. Our characteristic pose
representation maximizes MPJPE and action performance: We consider pose prediction fol-
lowing state-of-the-art pose forecasting as decoupled from actions (uncoupled), as well as poses
coupled to actions but in the middle of an action range, or at a random time therein, and our
characteristic pose prediction. The same pose type is used for both train and evaluation.

4.5.5 Qualitative Results

Qualitative evaluations for the predicted poses are shown in Fig. 4.5 on data from MPII
Cooking II [110] and in Fig. 4.4 on data from IKEA-ASM [111]. We compare our
approach with state-of-the-art 3D pose forecasting of DLow [16], GSPS [127], and STARS
[17]. For each method, we show a 3D body mesh in addition to the predicted 3D pose
joints, to more comprehensively show the 3D structure of the forecasting results; we
obtain body meshes by fitting SMPL [47] to each methods’ predicted 3D body joints.

As there is no 3D ground truth available, we show the camera perspective with back-
ground for context as well as without background for a 3D pose only version. The two
views demonstrate the fit to the ground truth 2D along with the quality of the 3D pose,
respectively. Our approach leads to poses that better follow the ground-truth action
poses in 2D compared to both previous methods while still maintaining a valid pose
structure in 3D. Notably, this is true for both datasets, as our approach effectively fore-
casts the different data characteristics of both cooking as well as furniture assembly. In
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4.6 Conclusion

particular, our joint action-3D pose forecasting enables more accurate forecasting with
diverse and accurate 3D pose structures.
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Figure 4.4: Qualitative comparison between DLow [16], GSPS [127], STARS [17], and our
method on two sequences (left and right) from MPII Cooking II [110]. For each method, we
show the 3D predicted pose projected into 2D, without background (small) and with back-
ground for context (full size). By considering both 3D pose and action forecasting together, we
more effectively forecast the longer-term behavior.

4.5.6 Limitations

While we have demonstrated the potential of joint action and 3D pose forecasting, several
limitations remain. For instance, our method leverages a separate 2D pose extraction
as input to training, while an end-to-end formulation could potentially better leverage
other useful signal in the input frames. Additionally, a more holistic body representation
than pose joints would be important for finer-grained interactions that involve reasoning
over small limbs (e.g., hands) and body surface contact.

4.6 Conclusion

In this paper, we proposed to forecast future human behavior by jointly predicting
future actions alongside characteristic 3D poses. We do not require any 3D annotated
action sequences, or 3D input data; instead, we learn complex action sequences from
2D action video data, and regularize predicted poses with an adversarial formulation
against uncorrelated 3D pose data. Experiments demonstrate that our joint forecasting
enables complementary feature learning, outperforming each individual task considered
separately.
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Figure 4.5: Qualitative comparison between DLow [16], GSPS [127], STARS [17], and our
method on two sequences (left and right) from MPII Cooking II [110]. For each method, we
show the 3D predicted pose projected into 2D, without background (small) and with back-
ground for context (full size). By considering both 3D pose and action forecasting together, we
more effectively forecast the longer-term behavior.
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4.7 Appendix

4.7 Appendix

We show in this appendix additional qualitative and quantitative results, detail our
baseline evaluation protocol, elaborate on the 3D quality metric, demonstrate the ability
of our method to generalize to multi-actor scenarios, verify our method’s robustness to
2D detection results, show the architecture used in our approach, and provide additional
details regarding the data.

4.7.1 Additional Quantitative Results

Characteristic Poses Analogous to Tab. 2 in the main paper, Tab. 4.4 shows an abla-
tion on pose timings and compares our approach of using characteristic poses to poses
taken at regular time intervals (“uncoupled”) as well as in the middle or at a random
time of an action, on IKEA-ASM [111] data. To further illustrate this point, Tab. 4.5
shows additional ablations: Poses predicted at random points in the sequence, but at
most 1s from the closest characteristic pose (“centered on the characteristic pose”) and
predicting characteristic poses but evaluating interpolated regularly spaced poses. Both
demonstrate that the usage of characteristic poses improves performance compared to
other approaches while still being outperformed by directly predicting characteristic
poses.

2D 3D Action Accuracy

Poses MPJPE [px] ↓ Quality ↑ top-1 ↑ top-3 ↑
Uncoupled 64 0.30 28% 48%

Middle 47 0.35 28% 47%
Random 49 0.24 28% 49%

Characteristic 41 0.35 29% 50%

Table 4.4: Ablation on pose forecasting, on the IKEA-ASM [111] dataset. We consider pre-
dicting poses following state-of-the-art pose forecasting in a decoupled fashion from actions
(uncoupled), as well as poses coupled to actions in various fashions: middle (the middle pose
of an action range), random (a random pose of the action), and our characteristic pose predic-
tion, which benefits action prediction the most.

Input Noise Ablation Tab. 4.6 shows the effect using a noise vector as additional input
to our method. It encourages more diversity in predictions, which benefits pose and
action forecasting.

Input Objects Ablation Inputting initially observed objects slightly improves results
(Tab. 4.6), due to added context for broad actions like “add,” e.g.“add ingredient” vs.
“add water to pot.”.
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2D 3D Action Accuracy

Poses MPJPE [px] ↓ Quality ↑ top-1 ↑ top-3 ↑
Uncoupled 75 0.29 28% 48%

Middle 58 0.45 26% 43%
Random 67 0.37 22% 42%

Centered on Char. Poses 69 0.33 28% 50%
Interp. from Char. Poses 62 0.13 29% 51%

Characteristic 50 0.55 29% 51%

Table 4.5: Ablation on pose forecasting on MPII Cooking II [110]. We consider pose predic-
tion following state-of-the-art pose forecasting as decoupled from actions (uncoupled), as well
as poses coupled to actions in various fashions: middle (the middle pose of an action range),
random (a random pose of the action), random but at most 1s from the closest characteristic
pose (centered), regularly spaced poses interpolated from characteristic pose prediction, and
our characteristic pose prediction.

MPII Cooking II IKEA ASM

2d 3d Action Accuracy 2d 3d Action Accuracy

Approach MPJPE [px] ↓ Quality ↑ top-1 ↑ top-3 ↑ MPJPE [px] ↓ Quality ↑ top-1 ↑ top-3 ↑
No Objects 61 0.52 28% 51% 42 0.30 29% 50%
No Noise 55 0.49 29% 50% 48 0.29 30% 51%

Ours 50 0.55 29% 51% 40 0.31 29% 50%

Table 4.6: Ablations studies with no object input and no noise input.

4.7.2 Additional Qualitative Results

Fig. 4.6 shows additional qualitative results of our method, on both MPII Cooking
2 [110] (left column) and IKEA-ASM [111] (right column), as compared to pose baselines
DLow [16], GSPS [127], and STARS [17].

4.7.3 Lifting 2D Predictions to 3D

In Tab. 4.1, we compare to first lifting input poses into 3D, then performing 3D motion
prediction. Tab. 4.7 evaluates the other way around: Predicting 2D poses and action
labels jointly with [151], then lifting the predicted 2D poses into 3D with RepNet [156]
for evaluation. Our method outperforms both approaches.

MPII Cooking II IKEA ASM

2d 3d Action Accuracy 2d 3d Action Accuracy

Approach MPJPE [px] ↓ Quality ↑ top-1 ↑ top-3 ↑ MPJPE [px] ↓ Quality ↑ top-1 ↑ top-3 ↑
[151] + [156] 63 0.50 27% 43% 53 0.21 22% 46%
Ours 50 0.55 29% 51% 40 0.31 29% 50%

Table 4.7: Our approach of jointly forecasting 3D poses and actions achieves better perfor-
mance compared to 2D pose + action forecasting [151] and then lifting forecasted 2D poses
into 3D using [156].
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Figure 4.6: Additional qualitative comparison between DLow [16], GSPS [127], STARS [17],
and our method on two sequences (left on MPII Cooking 2 [110], right on IKEA-ASM [111]).
For each method, we show a the 3D predicted pose projected into the 2D target view, without
background for a pose only version (small) as well as with background for context (full size).
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4.7.4 Statistical Action Baselines

We additionally evaluate “Zero Velocity” and “Train Average” for action labels, anal-
ogous to forecasted poses, i.e. repeating the last action label and repeating the most
frequent train action label, in Tab. 4.8. These baselines perform particularly poorly since
actions are rarely repeated or fixed for entire sequences.

MPII Cooking II IKEA ASM

Approach top-1 ↑ top-3 ↑ top-1 ↑ top-3 ↑
Repeat Last Input 9% 43% 8% 35%
Most Common in Train 6% 10% 7% 26%

Ours 29% 51% 29% 50%

Table 4.8: Statistical action baselines: (1) Repeat the last input action label (2) Using the
most common action label of the train set.

4.7.5 Baseline Evaluation Details

State-of-the-Art Pose Forecasting We evaluate the performance of our baselines us-
ing the same input data that is available to our method. Pose forecasting baselines
DLow [16], GSPS [127], and STARS [17] are trained and evaluated on sequences of our
manually annotated characteristic poses. Since there is no ground-truth 3D pose data
available, we first use RepNet [156], a state-of-the-art 3D pose estimation method, to re-
trieve 3D skeletons from our 2D characteristic poses. We train this method from scratch
using the same database of valid 3D poses that is available to our method, allowing for
a fair comparison.

State-of-the-Art Action Label Forecasting We train action baselines AVT [11] and
FUTR [12] using sequences of our characteristic pose frames together with the corre-
sponding action labels as input. For AVT, we use their default parameters used by the
original authors for their ablation on third-person dataset 50Salads/Breakfast, inputting
our RGB frames instead. For a fair comparison, we also supply the action and object
history for each step by encoding both label sequences with a small encoder (a single
linear layer) each and fuse these features with the image features generated by the AVT
encoder. For FUTR, we first generate I3D features [159] from our RGB frames and
concatenate them with action and object history after encoding these in the same way
as for AVT.

We then train two variants of both methods: One with the raw RGB frames, action
history, and object history as input (“AVT RGB” and “FUTR RGB” in the main results
figure), and one with additional 2D skeleton input (skeletons rendered on top of the RGB
frames) from the skeletons that we extract with OpenPose [58] (“AVT RGB+Skeleton”
and “FUTR RGB+Skeleton”).
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4.7.6 Supervised 3D Pose Lifting

For better comparability, we used weakly supervised approach [156] for pose lifting.
This is important, since there is no ground-truth coupling between 2D and corresponding
3D action poses in our setting.

MPII Cooking II IKEA ASM

2d 3d 2d 3d

Approach MPJPE [px] ↓ Quality ↑ MPJPE [px] ↓ Quality ↑
SPIN [158] + DLow [16] 81 0.89 43 0.43
SPIN [158] + GSPS [127] 74 0.66 45 0.29
SPIN [158] + STARS [17] 66 0.80 41 0.40

Ours 50 0.55 40 0.31

Table 4.9: Comparison to pose baselines using fully-supervised pre-trained 3D pose estima-
tion method SPIN [158]. In our main experiments, we instead compare to weakly supervised
baseline RepNet [156] for a fair comparison.

Nevertheless, we compare to baselines [16, 127, 17] in Tab. 4.9 with poses lifted using
fully supervised pre-trained SPIN [158]; our approach outperforms even these improved
baselines in terms of 2D MPJPE.

4.7.7 3D Quality Metric Details

For our pose quality metric, we use a 3-layer MLP binary classifier of 3D poses. Train-
ing poses are randomly sampled from ground-truth (real) and predicted (fake) collected
during the training process of our method and all baselines, producing a total of 100k
real and fake poses each. Fake poses exhibit a range of small to large unrealistic deforma-
tions, depending on when they were sampled, ranging from random joint placements to
widely inconsistent bone lengths to unnatural joint angles to only minor inconsistencies
in the bone lengths. The classifier is trained once and then used to evaluate all methods,
to ensure a fair comparison.

As an additional intuitive metric we show the mean absolute bone length difference
of right and left body in 3D in Tab. 4.10. We observe that this metric correlates with
our classifier-based quality.

MPII Cooking II IKEA ASM

Approach Symm. [mm] ↓ Quality ↑ Symm. [mm] ↓ Quality ↑
RepNet [156] + DLow [16] 13 0.72 45 0.31
RepNet [156] + GSPS [127] 18 0.66 56 0.15
RepNet [156] + STARS [17] 16 0.62 46 0.27

No 3D Adversarial Loss 75 0.10 66 0.05
2D Projection Loss Only 57 0.21 61 0.09

No Action Loss 22 0.53 39 0.29

Ours 22 0.55 39 0.31

Table 4.10: Additional quality metric and its correlation to our classifier-based metric: Abso-
lute bone length difference btw. right and left body, compared to pose baselines and ablations.
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4.7.8 Multi-Actor Interaction Scenario

In addition to our experiments with single human actors in the main paper, we show
here that our approach is able to generalize to multi-actor scenarios, with minor modi-
fications. We show this in Tab. 4.11 with additional dataset TICaM [160] where driver
and passenger are interacting in an in-car driving scenario (actions include “talking”,
various handoffs). Our modifications are: (1) Additional encoder and decoder for the
second person (2) Interaction pooling introduced in Social GAN [161]. Our modified
method outperforms simple combinations of previous works, with and without interac-
tion modelling, demonstrating the wide applicability of our method.

2d 3d Action Accuracy

Approach MPJPE [px] ↓ Quality ↑ top-1 ↑ top-3 ↑
FUTR RGB + Skeleton - - 38% 64%

RepNet + STARS 89 0.34 - -

Ours (No Interactions) 68 0.40 40% 67%
Ours (Interaction Modeling) 58 0.41 48% 73%

Table 4.11: Our approach can also be applied to multi-actor scenarios: We demonstrate im-
proved performance on suitable dataset TICaM [160], with and without explicit interaction
modeling.

4.7.9 2D Input Pose Quality

In Fig. 4.12, we replace OpenPose with AlphaPose [59] and Detectron2 [162], both
only slightly changing the final results, indicating that our method does not depend on
a specific 2D pose detector. We also experiment with added random noise to OpenPose:
our method remains relatively robust. The coupled changes in pose and action accuracy
further demonstrate the effectiveness of our joint feature learning.

MPII Cooking II 2d 3d Action Accuracy

Approach MPJPE [px] ↓ Quality ↑ top-1 ↑ top-3 ↑
OpenPose + max. 20px noise 59 0.45 26% 47%
OpenPose + max. 10px noise 57 0.47 26% 46%

Ours (using Detectron2) 47 0.54 28% 55%
Ours (using AlphaPose) 46 0.57 28% 56%

Ours (using OpenPose) 50 0.55 29% 51%

Table 4.12: Robustness of our method to different 2D pose detectors Detectron2 [162] and
AlphaPose [59] as well as randomly added 2D noise. This only slightly affects our pose and
action accuracy, further demonstrating the effectiveness of our joint feature learning.

4.7.10 Architecture Details

Generator Network Fig. 4.7 shows our generator architecture in detail with input and
output dimensions for linear layers, and the slope for leaky ReLU layers.
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Figure 4.7: Network architecture specification.

Critic Network Our adversarial critic network processes generator outputs with 4 linear
layers and 3 kinematic chain layers which are designed to encourage correct bone lengths
(as shown in [156]), in parallel. 2 linear layers then combine both outputs and produce
the final critic score.

4.7.11 Data Details

Camera Parameters While intrinsic camera parameters are often available in captured
image data, the camera parameters for captured video were not available from the MPII
Cooking 2 [110] dataset to use for pose projection. We thus optimized for intrinsic camera
parameters from the video sequence data in correspondence with the 3D scene recon-
struction of the empty kitchen environment, as given by [163]. For IKEA-ASM [111],
we use the provided intrinsic camera parameters directly. Note that camera parameters
are only required to be fixed within a sequence (i.e. no moving camera) but can change
between sequences.

3D Pose Database Alignment We use popular 3D pose datasets Human3.6m [45],
AMASS [112], and GRAB [44] for our database of uncorrelated valid 3D poses. All poses
are pre-processed to follow the OpenGL coordinate system and aligned with respect to
the neck joint.

Pose Joint Layout We use the 9 upper-body joints of the native OpenPose [58] joint
layout for skeletons in 2D, and adapt skeletons in our 3D database to use the same
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4 Complex Long-Term 3D Human Behavior from Video Observations

Ours OpenPose Human3.6m SMPL-X

Idx Name Idx Name Idx Name Idx Name

0 head 0 nose 15 head 15 head
1 neck 1 neck 13 thorax 12 neck
2 right shoulder 2 right shoulder 25 right shoulder 17 right shoulder
3 right elbow 3 right elbow 26 right elbow 19 right elbow
4 right hand 4 right hand 27 right wrist 42 right index 3
5 left shoulder 5 left shoulder 17 left shoulder 16 left shoulder
6 left elbow 6 left elbow 18 left elbow 18 left elbow
7 left hand 7 left wrist 19 left wrist 27 left index 3
8 hip 8 mid-hip 0 hip 0 pelvis

Table 4.13: Human skeleton joint layout used in our experiments, for both 2D and 3D skele-
tons.

format. Tab. 4.13 shows the correspondence between our joint layout, OpenPose [58],
Human3.6m [45], and SMPL-X [49]. 3D datasets AMASS [112] and GRAB [44] pro-
vide human bodies in SMPL-X format; we first extract their skeleton joints using their
publicly available code and then convert it into our layout using the correspondences in
Tab. 4.13.

MPII Cooking 2 Details We use action labels as annotated in the 2D cooking action
dataset MPII Cooking 2 [110]. These annotations provide action labels (87 classes) for
frame ranges in each sequence as well as the involved objects (187 classes). We first
cluster similar actions together, yielding a total of 37 action clusters, which we then use
as action classes in our experiments.

In addition, since our goal is to forecast upper-body actions with objects in the fore-
ground, we remove instances of poses and corresponding actions that occur in the back-
ground - e.g., when taking out objects from the cupboard, or from the fridge.

In total, there are 272 cooking action sequences; we create a random train/val/test
split along sequences with a ratio of 70% / 15% / 15%, yielding 190, 40, 40 sequences
for each set.

IKEA-ASM Details We use action labels as annotated in the IKEA furniture assembly
dataset IKEA-ASM [111]. These annotations provide action labels (31 classes) for frame
ranges in each sequence; we use them without explicit object information since each
action already encodes its associated object.

In total, there are 370 furniture assembly action sequences; we create a random train/-
val/test split along sequences with a ratio of 70% / 15% / 15%, yielding 227, 48, 48
sequences for each set.
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5 Contact-Guided 3D Human-Object
Interactions

This chapter introduces the following paper:

Christian Diller, and Angela Dai. ”CG-HOI: Contact-Guided 3D Human-Object In-
teractions.” Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 2024.

Abstract of Paper We propose CG-HOI, the first method to address the task of gener-
ating dynamic 3D human-object interactions (HOIs) from text. We model the motion of
both human and object in an interdependent fashion, as semantically rich human motion
rarely happens in isolation without any interactions. Our key insight is that explicitly
modeling contact between the human body surface and object geometry can be used
as strong proxy guidance, both during training and inference. Using this guidance to
bridge human and object motion enables generating more realistic and physically plau-
sible interaction sequences, where the human body and corresponding object move in a
coherent manner. Our method first learns to model human motion, object motion, and
contact in a joint diffusion process, inter-correlated through cross-attention. We then
leverage this learned contact for guidance during inference to synthesize realistic and
coherent HOIs. Extensive evaluation shows that our joint contact-based human-object
interaction approach generates realistic and physically plausible sequences, and we show
two applications highlighting the capabilities of our method. Conditioned on a given
object trajectory, we can generate the corresponding human motion without re-training,
demonstrating strong human-object interdependency learning. Our approach is also
flexible, and can be applied to static real-world 3D scene scans.

Contribution The method development and implementation was done by the first au-
thor. Discussions with the co-authors led to the final paper.
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5.1 Introduction

Generating human motion sequences in 3D is important for many real-world applica-
tions, e.g. efficient realistic character animation, assistive robotic systems, room layout
planning, or human behavior simulation. Crucially, human interaction is interdepen-
dent with the object(s) being interacted with; the object structure of a chair or ball, for
instance, constrains the possible human motions with the object (e.g., sitting, lifting),
and the human action often impacts the object motion (e.g., sitting on a swivel chair,
carrying a backpack).

Contact-Guided 3D Human-Object Interaction Synthesis from Text

Conditioning on Object Trajectory Without Re-Training

Application to Objects in Static 3D Scene Scans

Carry a 
plastic 

container

Play with a 
yoga ball

Lift a 
small table

Carry a 
large box

Move the chair 
sideways

Figure 5.1: We present an approach to generate realistic 3D human-object interactions
(HOIs), from a text description and given static object geometry to be interacted with (left).
Our main insight is to explicitly model contact (visualized as colors on the body mesh, closer
contact in red), in tandem with human and object sequences, in a joint diffusion process. In
addition to synthesizing HOIs from text, we can also synthesize human motions conditioned
on given object trajectories (top right), and generate interactions in static scene scans (bottom
right).

Existing works typically focus solely on generating dynamic humans, and thereby
disregarding their surroundings [34, 35, 36, 37, 38, 39], or grounding such motion gener-
ations in a static environment that remains unchanged throughout the entire sequence
[18, 19, 20, 21, 22, 79, 24, 25, 26]. However, real-world human interactions affect the
environment. For instance, even when simply sitting down on a chair, the chair is typi-
cally moved: to adjust it to the needs of the interacting human, or to move it away from
other objects such as a table. Thus, for realistic modeling of human-object interactions,
we must consider the interdependency of object and human motions.

We present CG-HOI, the first approach to address the task of generating realistic
3D human-object interactions from text descriptions, by jointly predicting a sequence
of 3D human body motion along with the object motion. Key to our approach is to
not only model human and object motion, but to also explicitly model contact as a
bridge between human and object. In particular, we model contact by predicting contact
distances from the human body surface to the closest point on the surface of the object
being interacted with. This explicit modeling of contact helps to encourage human and
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object motion to be semantically coherent, as well as to provide a constraint indicating
physical plausibility (e.g., discouraging objects to float without support).

CG-HOI jointly models human, object, and contact together in a denoising diffusion
process. Our joint diffusion model is designed to encourage information exchange be-
tween all three modalities through cross-attention blocks. Additionally, we employ a
contact weighting scheme, based on the insight that object motion, when being manip-
ulated by a human, is most defined by the motion of the body part in closest contact
(Fig. 5.3). We make use of this by generating separate object motion hypotheses for mul-
tiple parts of the human body and aggregating them based on that part’s predicted con-
tact. During inference, we leverage the predicted contact distances to refine synthesized
sequences through our contact-based diffusion guidance, which penalizes synthesizing
sequences with human-object contact far from the predicted contact distances.

Our method is able to generate realistic and physically plausible human-object in-
teractions, and we evaluate our approach on two widely-used interaction datasets, BE-
HAVE [164] and CHAIRS [165]. In addition, we also demonstrate the usefulness of our
model with two related applications: First, generating human motion given a specific
object trajectory without any retraining, which demonstrates our learned human-object
motion interdependencies. Second, populating a static 3D scene scan with human-object
interactions of segmented object instances, showing the applicability of our method to
general real-world 3D scans.

In summary, our contributions are three-fold:

• We propose an approach to generate realistic, diverse, and physically plausible
human-object interaction sequences by jointly modeling human motion, object
motion, and contact through cross-attention in a diffusion process.

• We formulate a holistic contact representation: Object motion hypotheses are
generated for multiple pre-defined points on the surface of the human body and
aggregated based on predicted contact distances, enabling comprehensive body
influence on contact while focusing on the body parts in closer contact to the
object.

• We propose a contact-based guidance during synthesis of human-object interac-
tions, leveraging predicted contacts to refine generated interactions, leading to
more physically plausible results.

5.2 Related Work

3D Human Motion Generation. Generating sequences of 3D humans in motion is a
task which evolved noticeably over the last few years. Traditionally, many methods used
recurrent approaches [13, 94, 95, 97, 27, 28] and, improving both fidelity and predicted
sequence length, graph- and attention-based frameworks [14, 15, 31]. Notably, generation
can either happen deterministically, predicting one likely future human pose sequence
[13, 28, 14, 15, 41], or stochastically, thereby also modeling the uncertainty inherent to
future human motion [103, 101, 127, 102, 16, 40, 166, 167].
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Recently, denoising diffusion models [76, 77] showed impressive results in 2D image
generation, producing high fidelity and diverse images [78, 77]. Diffusion models allow
for guidance during inference, with classifier-free guidance [168, 169] widely used to
trade off between generation quality and diversity. Inspired by these advances, various
methods have been proposed to model 3D human motion through diffusion, using U-
Nets [34, 35, 36, 37, 38, 39], transformers [1, 75, 79, 35, 80, 81, 82, 83, 84, 85, 86, 87],
or custom architectures [88, 89, 90, 91, 92]. Custom diffusion guidance has also been
shown to aid controllability [170, 171, 172] and physical plausibility [173].

In addition to unconditional motion generation, conditioning on text descriptions al-
lows for more control over the generation result [1, 82, 84, 87, 36, 38]. In fact, generating
plausible and corresponding motion from textual descriptions has been an area of interest
well before the popularity of diffusion models [46, 39, 174, 175, 176, 177, 178].

These methods show strong potential for 3D human motion generation, but focus
on a skeleton representation of the human body, and only consider human motion in
isolation, without naturally occurring interactions. To generate realistic human-object
interactions, we must consider the surface of the human body and its motion with respect
to object motion, which we characterize as contact.

3D Human Motion in Scenes. As human motion typically occurs not in isolation but
in the context of an object or surrounding environment, various methods have explored
learning plausible placement of humans into scenes, both physically and semantically,
[179, 180, 181, 182, 183, 184], forecasting future motion given context [104, 185], or gen-
erating plausible walking and sitting animations [18, 19, 20, 186, 187, 21, 22, 23, 24, 25,
26, 188]. This enables more natural modeling of human reactions to their environment;
however, the generated interactions remain limited due to the assumption of a static
scene environment, resulting in a focus on walking or sitting movements.

Recent methods have also focused on more fine-grained interactions by generating hu-
man motion given a single static object [189, 190, 191, 192, 193, 194, 195]. While these
methods only focus on human motion generation for a static object, [196] generates
human motion conditioned on object motion and [2, 197] generate full human-object
interaction sequences directly from an initial sequence observation. Our approach also
models both human and object motion, but we formulate a flexible text-conditioned
generative model for dynamic human and object motion, modeling the interdependency
between human, object, and contact to synthesize more realistic interactions under var-
ious application settings.

Contact Prediction for Human-Object Interactions. While there is a large corpus
of related work for human motion prediction, only few works focus on object motion
generation [198, 199, 200, 201]. Notably, these methods predict object movement in
isolation, making interactions limited, as they typically involve interdependency with
human motion.

Contact prediction has been most studied in recent years for the task of fine-grained
hand-object interaction [202, 203, 204, 205, 206, 207, 208]. It is defined either as bi-
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nary labels on the surface [202, 203, 204, 205, 207, 208] or as the signed distance to a
corresponding geometry point [206]. In these works, predicting object and hand states
without correct contact leads to noticeable artifacts. Contact prediction itself has also
been the focus of several works [192, 209, 210, 211], either predicting contact areas or
optimizing for them.

Applied to the task of generating whole-body human-object interactions, this requires
access to the full surface geometry of both object and human. Only few recent motion
generation works focus on generating full-body geometric representations of humans
[24, 212, 62, 176, 213, 167, 214] instead of simplified skeletons which is a first step
towards physically correct interaction generation. However, while several of these works
acknowledge that contact modeling would be essential for more plausible interactions
[62, 176, 24], they do not model full-body contact.

We approach the task of generating plausible human-object motion from only the
object geometry and a textual description as a joint task and show that considering the
joint behavior of full-body human, object, and contact between the two benefits output
synthesis to generate realistic human-object interaction sequences.

5.3 Method Overview
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Figure 5.2: Method Overview. Given a text description and object geometry, CG-HOI pro-
duces a human-object interaction (HOI) sequence, modeling both human and object motion.
To produce realistic HOIs, we additionally model contact to bridge the interdependent mo-
tions. Our method jointly generates all three during training (left), using a U-Net-based diffu-
sion with cross-attention across human, object, and contact. During inference (right), we drive
synthesis under guidance of estimated contact to sample more physically plausible interactions.

CG-HOI jointly generates sequences of human body and object representations, along-
side contact on the human body surface. Reasoning jointly about all three modalities in
both training and inference enables generation of semantically meaningful human-object
interaction sequences.

Fig. 5.2 shows a high-level overview of our approach: We consider as condition a brief
text description T of the action to be performed, along with the static geometry G of the
object to be interacted with, and generate a sequence of F frames x = [x1,x2, ...,xF ]
where each frame xi consists of representations for the object transformation oi, for
the human body surface hi, and for the contact ci between human and object geom-
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etry. We denote as H = {hi} the human body representations, O = {oi} the object
transformations, and C = {ci} the contact representations.

We first train a denoising diffusion process to generate H, O, and C, using a U-
Net architecture with per-modality residual blocks and cross-attention modules. Using
cross-attention between human, object motion, and contact allows for effectively learning
interdependencies and and feature sharing (Sec. 5.4). We use the generated contact to
guide both training and inference: Instead of predicting one object motion hypothesis
per sequence, we generate multiple, and aggregate them based on predicted contacts,
such that body parts in closer contact with the object have a stronger correlation with
the final object motion (Sec. 5.4.3). During inference, the trained model generates H, O,
and C. For each step of the diffusion inference, we use predicted contact C to guide the
generation of H and O, by encouraging closeness of recomputed contact and predicted
contact, producing more refined and realistic interactions overall (Sec. 5.5).

5.4 Human-Object Interaction Diffusion

5.4.1 Probabilistic Denoising Diffusion

Our approach uses a diffusion process to jointly generate a sequence of human poses,
object transformations, and contact distances in a motion sequence from isotropic Gaus-
sian noise in an iterative process, removing more noise at each step. More specifically,
during training we add noise depending on the time step (“forward process”) and train
a neural network to reverse this process, by directly predicting the clean sample from
noisy input. Mathematically, the forward process follows a Markov chain with T steps,
yielding a series of time-dependent distributions q(zt|zt−1) with noise being injected at
each time step until the final distribution zT is close to N (0, I). Formally,

q(zt|zt−1) = N (


βtzt−1 + (1− βt)I) (5.1)

with the variance of the Gaussian noise at time t denoted as βt, and β0 = 0.
Since we adopt the Denoising Diffusion Probabilistic Model [215], we can sample zt

directly from z0 as

zt =
√
αtz0 +

√
1− αt (5.2)

with αt =
t

t′=0(1− βt), and  ∼ N (0, I).
For the reverse process, we follow [1, 2, 35], directly recovering the original signal z̃

instead of the added noise.

Human-Object Interactions To model human-object interactions with diffusion, we
employ our neural network formulation F . F operates on the noised vector of concate-
nated human, object, and contact representations, together with the current time step
t, and a condition consisting of object point cloud G, encoded by an encoder EG, and
text information T , encoded by encoder ET . Formally,

z̃ = F(zt, t, EG(G)⊕ ET (T )) (5.3)
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More specifically, in our scenario ET extracts text features with a pre-trained CLIP
[216] encoder. Encoder EG processes object geometry G as a uniformly sampled point
cloud in world coordinate space with a PointNet [217] pre-trained on object parts seg-
mentation.

Object transformations oi are represented as global translation and rotation using
continuous 6D rotation representation [218]. In contrast to prior work [16, 40, 1, 82,
84, 194, 195] which focused on representing human motion in a simplified manner as a
collection of J human joints, disregarding both identity-specific and pose-specific body
shape, we model physically plausible human-object contacts between body surface and
geometry. Thus, we represent the human body hi in SMPL [47] parameters: hi =
{hpi , hbi , hri , hti} with pose parameters hpi ∈ R63, shape parameters hbi ∈ R10, as well as
global rotation hri ∈ R3 and translation hti ∈ R3. These body parameters can then be
converted back into a valid human body surface mesh in a differentiable manner using
the SMPL [47] model. This allows us to reason about the contact between human body
surface and object geometry. We represent contact ci on the human body as the distance
between a set of M = 128 uniformly distributed motion markers on the body surface
to the closest point of the object geometry, for each marker. Specifically, we represent
contact for frame xi and j-th contact marker (j ∈ {0..M−1}) cji as its distance from the
human body surface to the closest point on the same frame’s object geometry surface.

5.4.2 Human-Object-Contact Cross-Attention

We jointly predict human body sequences H = {hi}, object transformations O = {oi},
and corresponding contact distances C = {ci} in our diffusion approach. We employ
a U-Net backbone for diffusion across these outputs, with separate residual blocks for
human, object, and contact representations, building modality-specific latent feature
representations. As we aim to model the inter-dependency across human, object, and
contact, we introduce custom human-object-contact cross-attention modules after every
residual block where each modality attends to the other two.

We follow the formulation of Scaled Dot-Product Attention [68], computing the up-
dated latent human body feature:

hi = softmax


QKT

√
d


V , (5.4)

with query Q = H, and key and value K = V = O ⊙C (⊙ denotes concatenation), i.e.
Q ∈ RF×d and K,V ∈ R2F×d. As in [68], d denotes the dimensionality of query and key.
Applying this similarly to O and C yields the final features after each cross-attention
module.

5.4.3 Contact-Based Object Transform Weighting

As visualized in Fig. 5.3, object motion is naturally most influenced by parts of the hu-
man body in very close contact to the object (as they are often the cause of that motion),
and less impacted (if at all) by body parts further away. For instance, if a person moves
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an object with their hands, the object follows the hands but not necessarily other body
parts (e.g., body and feet may remain static or walk in a different direction). Thus, in-
stead of directly generating one object motion hypothesis oi alongside the corresponding
human motion hi, we couple oi to the M body contact points j ∈ {0..M − 1} and their
predicted distances {cji} between human body surface and object geometry.

Formally, we predict object transformation hypotheses oji for each contact point on

the human body, and weigh them with the inverse of their predicted contact distance cji :

oi =
1


j max(|ci|)− |cji |

M−1

j=0

(max(|ci|)− |cji |)o
j
i (5.5)

5.4.4 Loss Formulation

During training, the input is a noised vector z, containing F frames {xi}, each a con-
catenation of human body representation hi, object transformation oi, and contact pa-
rameters ci. As condition C, we additionally input encoded object geometry G and text
description T . The training process is then supervised with the ground-truth sequence
containing ĥi, ôi, ĉi, minimizing a common objective:

L = λh||hi − ĥi||1 + λo||oi − ôi||1 + λc||ci − ĉi||2, (5.6)

with λh = 1.0,λo = 0.9,λc = 0.9. We use classifier-free guidance [168] for improved
fidelity during inference, thus masking out the conditioning signal with 10% probability.

5.5 Interaction Generation

Figure 5.3: An object’s trajectory is largely defined by the motion of the region of the body
in close contact with the object, e.g. the hand(s) when carrying an object (left, middle) or the
lower body when moving with an object while sitting (right). This informs our contact-based
approach to generating object motion.

Using our trained network model, we can generate novel human-object interaction
sequences for a given object geometry and a short text description using our weighting
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scheme for generating object transformations, and a custom guidance function on top of
classifier-free guidance to generate physically plausible sequences.

Specifically, we use our trained model to reverse the forward diffusion process of
Eq. 5.2: Starting with noised sample zT ∼ N (0, I), we iteratively use our trained network
model F to estimate cleaned sample z0:

zt−1 =
√
αtz̃+

√
1− αt. (5.7)

5.5.1 Contact-Based Diffusion Guidance

While our joint human-object-contact training already leads to plausible motions, gen-
erated sequences are not explicitly constrained to respect contact estimates during in-
ference, which can lead to inconsistent contact between human and object motion (e.g.,
floating objects). Thus, we introduce a contact-based guidance during inference to refine
predictions, using a cost function G(zt) = ||ct − ct||22 which takes as input the denoised
human, object, and contact predictions zt = [ht, ot, ct] at diffusion step t and compares
predicted ct and actual contact distances ct for each contact point. Based on this, we
then calculate the gradient ∇ztG(zt).

We use this gradient for diffusion guidance, following [170], by re-calculating the mean
prediction µt at each time t:

µ̂t = µt + s


t

∇xtG(xt), (5.8)

for a scaling factor s. This guidance is indirect but dense in time, and is able to correct
physical contact inconsistencies in the predicted sequences during inference time, without
requiring any explicit post-processing steps.

5.5.2 Conditioning on Object Trajectory

While our model has been trained with text and static object geometry as condition, we
can also apply the same trained model for conditional generation of a human sequence
given an object sequence and text description. Note that this does not require any
re-training, as our model has learned a strong correlation between human and object
motion. Instead, we use a replacement-based approach, and inject the given object
motion O′ into the diffusion process during inference at every step. Following Eq. 5.7,
we obtain:

zt−1 =
√
αtz̃′t +

√
1− αt, (5.9)

with z̃′ = [ht, o
′
t, ct], concatenating human motion ht, contact distances ct, and injected

given object motion o′t.
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5.6 Results

We evaluate our approach using two commonly used human-object interaction datasets
BEHAVE [164] and CHAIRS [165] on a range of metrics, measuring motion fidelity and
diversity. We show that our approach is able to generate realistic and diverse motion on
both datasets, across a variety of objects and types of interactions.

BEHAVE CHAIRS

Task Approach R-Prec. (top-3) ↑ FID ↓ Diversity → MModality → R-Prec. (top-3) ↑ FID ↓ Diversity → MModality →
Real (human) 0.73 0.09 4.23 4.55 0.83 0.01 7.34 3.00

Text-Cond. MDM [1] 0.52 4.54 5.44 5.12 0.72 5.99 6.83 3.45
Human InterDiff [2] 0.49 5.36 3.98 3.98 0.63 6.76 5.24 2.44
Only Ours 0.60 4.26 4.92 4.10 0.78 5.24 7.90 3.22

Real 0.81 0.17 6.80 6.24 0.87 0.02 9.91 6.12

Motion- InterDiff [2] 0.68 3.86 5.62 5.90 0.67 4.83 7.49 4.87
Cond. HOI Ours 0.71 3.52 6.89 6.43 0.79 4.01 8.42 6.29

Text- MDM [1] 0.49 9.21 6.51 8.19 0.53 9.23 6.23 7.44
Cond. InterDiff [2] 0.53 8.70 3.85 4.23 0.69 7.53 5.23 4.63
HOI Ours 0.62 6.31 6.63 5.47 0.74 6.45 8.91 5.94

Table 5.1: Quantitative comparison with state-of-the-art approaches MDM [1] and Inter-
Diff [2]. Human Only results are evaluated only on the human pose sequence, and motion-
cond. denotes predictions additionally conditioned on past observations of both human and
object behavior. For metrics with →, results closer to the real distribution are better. Our ap-
proach outperforms these baselines in all three settings, indicating a strong learned correlation
between human and object motion.

5.6.1 Experimental Setup

Datasets We conduct our experiments on two datasets containing interactions between
whole-body 3D humans and corresponding objects. CHAIRS [165] captures 46 subjects
as their SMPL-X [49] bodies interacting with 81 different types of chairs and sofas. We
extract sequences in which both human and object are in motion, yielding ≈ 1300 HOI
sequences, each labeled with a text description. We use a random 80/10/10 split along
object classes, ensuring that test objects are not seen during training. BEHAVE [164]
captures 8 participants as their SMPL-H [48] parameters alongside 20 different objects.
This yields ≈ 520 sequences with corresponding text descriptions. We use their original
train/test split. We sample both datasets at 20 frames per second, and generate 32
frames for CHAIRS and 64 for BEHAVE, leading to generated motion that lasts up to
3 seconds.

Implementation Details We train our model with batch size 64 for 600k steps (≈24
hours), after which we choose the checkpoint that minimizes validation FID, following
[2]. Our attention uses 4 heads and a latent dimension of 256. Input text is encoded using
a frozen CLIP-ViT-B/32 model. For classifier-free guidance during inference time, we
use a guidance scale of 2.5, which empirically provides a good trade-off between diversity
and fidelity. For our inference-time contact-based guidance, we use scale s = 100.0.
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Condition MDM [71] InterDiff [84] Ours

Move a 
chair with 
the hand

Play with a 
yoga ball

Move a 
small table

Figure 5.4: Qualitative comparison to state-of-the-art methods MDM [1] and InterDiff [2].
Our approach generates high-quality HOIs by jointly modeling contact (closer contact in red),
reducing penetration and floating artifacts (black highlight boxes).

5.6.2 Evaluation Metrics

We measure realism and diversity of combined human and object motion, alongside
closeness to the text description, following established practices [1, 46, 219]. We first
train a joint human-object motion feature extractor and separate text feature extractor
using a contrastive loss to produce geometrically close feature vectors {vi} for matched
text-motion pairs, and report the following metrics:

R-Precision measures the closeness of the text condition and generated HOI in latent
feature space, and reports whether the correct match falls in the top 3 closest feature
vectors.

Frechet Inception Distance (FID) is commonly used to evaluate the similarity between
generated and ground-truth distribution in encoded feature space.

Diversity and MultiModality. Diversity measures the motion variance across all text
descriptions and is defined as 1

N

N
i=1 ||vi − v′i||2 between two randomly drawn subsets

{vi} and {v′i}. MultiModality (MModality) measures the average such variance intra-
class, for each text description.

Perceptual User Study. The exact perceptual quality of human-object interactions is
difficult to capture with any single metric; thus, we additionally conduct a user study
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with 32 participants to evaluate our method in comparison to baseline approaches. Par-
ticipants are shown 10 baseline vs. ours pairs each in side-by side views of sequences
with the same geometry and text conditioning, and asked to choose 1) Which one follows
the given text better and 2) Which one looks more realistic overall.

Figure 5.5: Perceptual User Study. Participants significantly favor our method over baselines,
for overall realism and text coherence.

BEHAVE CHAIRS

Approach R-Prec. (top-3) ↑ FID ↓ Diversity → MModality → R-Prec. (top-3) ↑ FID ↓ Diversity → MModality →
Real 0.81 0.17 6.80 6.24 0.87 0.02 9.91 6.12

No cross-attention 0.35 10.44 8.23 7.40 0.49 10.84 12.22 10.64
No contact prediction 0.41 9.64 10.10 6.89 0.41 8.53 11.56 9.15
Separate contact pred. 0.47 8.01 5.12 5.12 0.52 9.34 7.65 4.62
No contact weighting 0.55 8.54 6.52 5.29 0.64 7.55 8.56 5.45
No contact guidance 0.59 7.22 7.84 5.30 0.70 7.41 8.05 5.76

Ours 0.62 6.31 6.63 5.47 0.74 6.74 8.91 5.94

Table 5.2: Ablation on our design choices. Joint contact prediction with cross-attention en-
courages the generation of more natural HOIs, and our weighting scheme and inference-time
contact guidance together enable the best generation performance.

5.6.3 Comparison to Baselines

As our method is the first to enable generating human and object motion from text,
there are no baselines available for direct comparison. InterDiff [2] is closest to our ap-
proach, performing forecasting from observed human and object motion as input and
predicting a plausible continuation. In Tab. 5.1, we compare to ours first in their setting,
using observed motion as condition (motion-cond.), for a fair comparison. Additionally,
we modify their approach by replacing observed motion encoders with our text encoder,
allowing for a comparison in our setting (text-cond.). We also compare with MDM [1],
a state-of-the-art method for human-only sequence generation from text, both in their
original setting, only predicting human sequences, and extending theirs to also gener-
ate object sequences, by adding additional tokens and geometry conditioning to their
transformer encoder formulation. For more details of baseline setup, we refer to the
supplemental. We evaluate the quality of generated human-object interactions as well
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as human-only generation, only evaluating the human sequence for our method, as com-
pared to the generated sequences of MDM.

Both Tab. 5.1 and the user study in Fig. 5.5 show that our approach is able to generate
more realistic and physically plausible human-object interaction sequences than base-
lines. In Fig. 5.4, we see that our approach synthesizes more meaningful human-object
interaction with respect to contact and mitigating independent object floating.

5.6.4 Ablation Studies

OursNo Contact Guidance

Move a yogamat

No Contact WeightingSeparate Contact Prediction

No Contact PredictionNo Cross-Attention

Condition

Figure 5.6: Visualization of ablations of our method design: Generation, weighting, and
inference-time guidance work together to enable realistic interactions in our method, resolv-
ing artifacts such as object floating.

Cross-attention enables learning human-object interdependencies. Tab. 5.2 shows
that our human-object-contact cross-attention (Sec. 5.4.2) significantly improves perfor-
mance by effectively sharing information between human, contact, and object sequence
modalities. In Fig. 5.6, we see this encourages realistic contact between human and
object.
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Contact prediction improves HOI generation performance. Predicting contact (Sec. 5.5)
is crucial to generating more realistic human-object sequences, resulting in more realistic
interactions between human and object (Fig. 5.6), and improved fidelity (Tab. 5.2). No-
tably, learning contact jointly with human and object motion improves overall quality,
compared to a separately trained contact model used for inference guidance (“Separate
contact pred.”, Tab. 5.2).

Contact-based object transformation weighting improves generation performance.
Weighting predicted object motion hypotheses with predicted contact (Sec. 5.4.3) im-
proves HOI generation over naive object sequence prediction, both quantitatively in
Tab. 5.2 (“No contact weighting”) and visually as realistic human-object interactions in
Fig. 5.6.

Contact-based guidance during inference helps produce physically plausible inter-
actions. As shown in Fig. 5.6 and Tab. 5.2, using our guidance based on predicted
contacts leads to a higher degree of fidelity and physical plausibility.

Move a 
trashbin

Play with 
a yoga ball

Figure 5.7: Given an object trajectory at inference time, our method can generate corre-
sponding human motion without re-training.

Sit on 
the chair

Move 
the chair

Figure 5.8: Application to static scene scans. Our method can generate HOIs from seg-
mented objects in such environments.
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5.6.5 Applications

Human motion generation given object trajectory. Our approach can be directly
applied to conditionally generate human sequences given object sequences as condition,
as shown in Fig. 5.7. As our model learns a strong correspondence between object
and human motion, facilitated by contact distance predictions, we are able to condition
without any additional training.

Populating 3D scans. Fig. 5.8 shows that we can also apply our method to generate
human-object interactions in static scene scans. Here, we use a scene from the Scan-
Net++ dataset [220], with their existing semantic object segmentation. This enables
the potential to generate realistic human motion sequences only given a static scene
environment.

5.6.6 Limitations

While we have demonstrated the usefulness of joint contact prediction in 3D HOI gen-
eration, several limitations remain. For instance, our method focuses on realistic in-
teractions with a single object. We show that this can be applied to objects in static
3D scans; however, we do not model multiple objects together, which could have the
potential to model more complex long-term human behavior (e.g. cooking sequences).
Additionally, our method requires expensive 3D HOI captures for training; a weakly
supervised approach leveraging further supervision from 2D action data might be able
to represent more diverse scenarios. Similarly, our method depends on manual text
annotations; more specific prompts might lead to more control over generated HOIs.

5.7 Conclusion

We propose an approach to generating realistic, dynamic human-object interactions
based on contact modeling. Our diffusion model effectively learns interdependencies be-
tween human, object, and contact through cross-attention along with our contact-based
object transformation weighting. Our predicted contacts further facilitate refinement
using custom diffusion guidance, generating diverse, realistic interactions based on text
descriptions. Since our model learns a strong correlation between human and object
sequences, we can use it to conditionally generate human motion from given object se-
quences. Extensive experimental evaluation confirms both fidelity and diversity of our
generated sequences and shows improved performance compared to baselines.
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5.8 Appendix

We show in this appendix additional qualitative and quantitative results, detail our
baseline evaluation protocol, elaborate on the metrics used in the main paper, show the
architecture used in our approach, and provide additional details regarding the data.

5.8.1 Additional Qualitative Results

Additional Interactions We show additional generated 3D human-object interactions
of our method in Fig. 5.10, with object geometry and text condition on the left, and our
generated sequence on the right.

Same Prompt, Different Interactions We evaluate the ability of our method to gen-
erate diverse interactions for a fixed text condition visually in Fig. 5.9, for text prompt
“Move a stool” and “Sit on a stool”. In the ground truth training data, move is only
done with one or two hands, and feet; moving with the butt sometimes occurs for the
text description “Sit on a stool”.

Figure 5.9: Our method is able to generate diverse human-object interactions for the same
prompts.

5.8.2 Additional Quantitative Results

Evaluating Penetrations and Floating Our method discourages penetration and float-
ing implicitly, by enforcing correct contact distances as a soft constraint at train and
test time. However, the exact fidelity and diversity of our results is hard to capture
with any single metric. Thus, we evaluate multiple such metrics in the main paper (R-
Precision, FID, Diversity, MultiModality), and conduct a perceptual user study to verify
the metrics’ expressiveness.

Here, we provide an additional evaluation based on intuitive physics-based metrics:
Tab. 5.3 evaluates the mean ratio of frames with some penetration as well as the ratio
of penetrating vertices overall, showing that penetrations typically happens with small
body parts (e.g., hands, which also occurs in the ground-truth data). We also evaluate
the ratio of frames and vertices with human and object not in contact, including floating
and stationary objects, which is expected to be close to the dataset ratio.

Results show similar penetration and floating between our generations and ground-
truth training data.
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Figure 5.10: Additional qualitative evaluation. Our method produces diverse and realistic
3D human-object interaction sequences, given object geometry and short text description of
the action. The sequences depict high-quality human-object interactions by modeling contact,
mitigating floating and penetration artifacts.
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BEHAVE CHAIRS

Penetration Non-Contact Penetration Non-Contact

Frames Vertices Frames Vertices Frames Vertices Frames Vertices

Dataset 32.9% 4.1% 21.4% 86.2% 26.9% 1.1% 11.9% 70.4%
Ours 31.3% 3.0% 17.8% 93.3% 35.8% 4.2% 14.1% 74.3%

Table 5.3: Penetration and non-contact (including floating) ratios in terms of frames as well
as overall vertices vs ground-truth data.

Evaluating Contact Tab. 5.4 evaluates our contact predictions using precision/recall
and distance metrics. We follow [182, 179, 181] to define contact if ≤5cm from object.
We also report mean ℓ1 error in contact distance predictions. All metrics are reported for
body parts ≤1m of the object, to focus on contact scenarios. Better contact prediction
corresponds with better HOI generations. Note that none of our baselines predict contact
distances.

BEHAVE CHAIRS

Approach Precision ↑ Recall ↑ Distance ↓ Precision ↑ Recall ↑ Distance ↓
Separate contact pred. 23.4% 25.6% 0.53 58.6% 49.1% 0.24
No contact weighting 29.5% 33.5% 0.34 60.6% 63.4% 0.10
No contact guidance 46.3% 39.2% 0.31 64.2% 70.2% 0.12

Ours 63.6% 59.5% 0.07 78.3% 84.5% 0.04

Table 5.4: Evaluation of predicted contact distances, in terms on precision and recall (≤ 5cm
distance), as well as mean contact ℓ1 error in meters.

Novelty of Generated Interactions We perform an additional interaction novelty anal-
ysis to verify that our method does not simply retrieve memorized train sequences but
is indeed able to generate novel human-object interactions. To do so, we generate ≈ 500
sequences from both datasets and retrieve the top-3 most similar train sequences, as
measured by the l2 distance in human body and object transformation parameter space.

Fig. 5.11 shows the top-3 closest train sequences, along with a histogram of l2 distances
computed on our test set of≈ 500 generated sequences. In red, we mark the intra-trainset
distance between samples in the train set. We observe that the distance between our
generated sequences and the closest train sequence is mostly larger than the intra-train
distance. Thus, our method is able to produce samples that are novel and not simply
retrieved train sequences.

SMPL Bodies vs. HumanML3D Skeletons We observe slight pose jitter and foot
skating in our ground-truth training data (especially BEHAVE, captured with Kinect
sensors). As a result, our model reflects some of these effects. Skeleton representations
such as HumanML3D [46] could tackle these artifacts, but do not work with contact as
effectively as SMPL bodies. Nevertheless, we train ours with HumanML3D parameters
for comparison in Tab. 5.5 (fitting SMPL after for comparable evaluation) which leads
to degraded performance due to less effective contact guidance.
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Generated Most similar in train set by !! Generated Most similar in train set by !!

20th Percentile

traingenerated

80th Percentile

traingenerated

20th Percentile

traingenerated

80th Percentile

traingenerated

Figure 5.11: Human-Object Interaction Sequence Novelty Analysis. Performed on BE-
HAVE [164] (left) and CHAIRS [165] (right). We retrieve top-3 most similar sequences from
the train set, and plot a histogram of distances to the closest train sample. While sequences
at the 20th percentile still resemble the generated interactions, there is a large gap in the 80th
percentile. We show the intra-trainset distance in red. Our approach generates novel shapes,
not simply retrieving memorized train samples.

5.8.3 Baseline Evaluation Setup

There is no previous approach to modeling 3D human-object interactions from text and
object geometry for direct comparison. Thus, we compare to the two closest methods,
and compare to them in multiple settings, for a fair comparison.

The most related approach is InterDiff [2]. Their setting is to generate a short se-
quence of human-object interactions, from an observed such sequence as condition, with
geometry but no text input. Their goal is to generate one, the most likely, sequence
continuing the observation. We use their full approach, including the main diffusion
training together with the post-processing refinement step. We compare in two different
settings: First, in their native setup, running their method unchanged and modifying
ours to take in geometry and past sequence observation instead of text (Motion-Cond.
HOI in Tab. 1 main). Then, we modify their approach to take in geometry and text,

BEHAVE CHAIRS

Representation R-Prec. (top-3) ↑ FID ↓ Diversity → MModality → R-Prec. (top-3) ↑ FID ↓ Diversity → MModality →
Ours (HumanML3D) 0.33 11.94 2.15 3.75 0.48 12.83 4.39 5.11
Ours 0.62 6.31 6.63 5.47 0.74 6.45 8.91 5.94

Table 5.5: Ours (using SMPL bodies) vs. using HumanML3D [46] skeletons and fitting SMPL
bodies afterwards. While HumanML3D is designed to reduce jitter and foot skating, it leads to
degraded performance in our scenario due to less effective contact guidance.
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replacing their past motion encoder with our CLIP-based text encoder (Text-Cond. HOI
in Tab. 1 main). We observe that our method is able to outperform InterDiff in both
scenarios, for both datasets.

We additionally compare to MDM [1], a recent diffusion-based state-of-the-art hu-
man motion generation approach. Their approach is based on a transformer encoder
formulation, using each human body as a token in the attention. We run their method
on SMPL parameters and first compare in their native setting, only predicting human
motion. We compare to the human motion generated by our method which is trained
to generate full human-object interactions (Text-Cond. Human Only in Tab. 1 main).
We also compare to human motion sequences generated by InterDiff in this setting. We
see that our method is able to outperform both baselines even in this setting, demon-
strating the added benefit of learning interdependencies of human and object motion.
For the comparison in our setting, we modify MDM by adding additional tokens for the
objects to the attention formulation. Our approach performs more realistic and diverse
sequences in both settings which better follow the text condition.

5.8.4 Fidelity and Diversity Metrics

We base our fidelity and diversity metrics R-Precision, FID score, Diversity, and Mul-
tiModality on practices established for human motion generation [1, 46, 219], with minor
modifications: We use the same networks used by these previous approaches, and adapt
the input dimensions to fit our feature lengths, F = 79 when evaluating human body
motion only, and F = 79 + 128 + 9 = 216 (SMPL parameters, contact distances, object
transformations) for full evaluation in the human-object interaction scenario.

5.8.5 Architecture Details

Fig. 5.12 shows our detailed network architecture, including encoder, bottleneck, and
decoder formulations.
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Figure 5.12: Network architecture specification.
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5.8.6 Data Details

CHAIRS [165] captures 46 subjects as their SMPL-X [49] parameters using a mocap
suit, in various settings interacting with a total of 81 different types of chairs and sofas,
from office chairs over simple wooden chairs to more complex models like suspended
seating structures. Each captured sequence consists of 6 actions and a given script; the
exact separation into corresponding textual descriptions was manually annotated by the
authors of this paper. In total, this yields ≈ 1300 sequences of human and object motion,
together with a textual description. Every object geometry is provided as their canonical
mesh; we additionally generate ground-truth contact and distance labels based on posed
human and object meshes per-frame for each sequence. We use a random 80/10/10 split
along object types, making sure that test objects are not seen during training.

BEHAVE [164] captures 8 participants as their SMPL-H [48] parameters captured in a
multi-Kinect setup, along with the per-frame transformations and canonical geometries
of 20 different object with a wide range, including yoga mats and tables. This yields
≈ 130 longer sequences. We use their original train/test split.

Object Geometry Representation We represent object geometry as a point cloud, to
be processed by a PointNet [217] encoder. For this, we sample N = 256 points uniformly
at random on the surface of an object mesh. Each object category is sampled once as a
pre-processing step and kept same for train and inference.
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6 Conclusion

This dissertation investigates how to approach human behavior understanding from an
action and interaction generation perspective. We mainly focus on three problems: Gen-
erating long-term goal-based characteristic 3D human action poses, forecasting complex
long-term behavior based on 2D RGB observations, and generating human-object inter-
action sequences, modeling motion of both the human and the object interdependently.
Each of these problems were introduced in detail in Part II, and we present concluding
remarks in the following.

Forecasting Characteristic 3D Poses of Human Actions. In chapter 3, we introduce
the new task of predicting future characteristic 3D poses of human activities from short
sequences of pose observations. We introduce a probabilistic approach to capturing the
most likely modes in these characteristic poses, coupled with an autoregressive formu-
lation for pose joint prediction to sample consistent 3D poses from a predicted joint
distribution. We trained and evaluated our approach on a new annotated dataset for
characteristic 3D pose prediction, outperforming deterministic and multi-modal state-
of-the-art approaches. We believe this opens up many possibilities for goal-oriented 3D
human pose forecasting and understanding anticipation of human movements.

FutureHuman3D: Forecasting Complex Long-Term 3D Human Behavior from Video
Observations. In chapter 4, we propose to forecast future human behavior by jointly
predicting future actions alongside characteristic 3D poses. We do not require any 3D
annotated action sequences or 3D input data; instead, we learn complex action sequences
from 2D action video data and regularize predicted poses with an adversarial formulation
against uncorrelated 3D pose data. Experiments demonstrate that our joint forecasting
enables complementary feature learning, outperforming each individual task considered
separately.

CG-HOI: Contact-Guided 3D Human-Object Interactions. In chapter 5, we propose
an approach to generating realistic, dynamic human-object interactions based on con-
tact modeling. Our diffusion model effectively learns interdependencies between human,
object, and contact through cross-attention along with our contact-based object trans-
formation weighting. Our predicted contacts further facilitate refinement using custom
diffusion guidance, generating diverse, realistic interactions based on text descriptions.
Since our model learns a strong correlation between human and object sequences, we can
use it to conditionally generate human motion from given object sequences. Extensive
experimental evaluation confirms both fidelity and diversity of our generated sequences
and shows improved performance compared to baselines.
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7 Limitations & Future Work

If you believe too much you’ll never notice the flaws; if you doubt too much you
won’t get started. It requires a lovely balance.

– Richard Hamming, You and Your Research (1986)

Forecasting Characteristic 3D Poses of Human Actions. In this work, we introduced
the new task of predicting future characteristic 3D poses. A probabilistic approach
to capturing the most likely modes in these characteristic poses, coupled with an au-
toregressive formulation for pose joint prediction, enables goal-oriented 3D human pose
forecasting. However, several limitations remain for our approach. For instance, while
our offset predictions help alleviate the ties to a volumetric heatmap grid, more precise
modeling of smaller-scale behavior (e.g., detailed hand movement) would require more
efficient representations such as sparse grids. In addition, our method relies on manually
annotated characteristic 3D poses for supervision; while characteristic pose annotation is
very efficient for new datasets, self-supervised formulations would also be an interesting
future direction.

FutureHuman3D: Forecasting Complex Long-Term 3D Human Behavior from Video
Observations. In FutureHuman3D, we proposed forecasting future human behavior by
jointly predicting future actions alongside characteristic 3D poses. We do not require
any 3D annotated action sequences or 3D input data; instead, we learn complex action
sequences from 2D action video data and regularize predicted poses with an adversarial
formulation against uncorrelated 3D pose data. We demonstrated the potential of this
approach, but several limitations remain. For instance, our method leverages a sep-
arate 2D pose extraction as input to training, while an end-to-end formulation could
potentially better leverage other useful signals in the input frames. Additionally, a more
holistic body representation than pose joints would be necessary for finer-grained inter-
actions that involve reasoning over small limbs (e.g., hands) and body surface contact.

CG-HOI: Contact-Guided 3D Human-Object Interactions. CG-HOI is an approach to
generating realistic, dynamic human-object interactions based on contact modeling. Our
diffusion model effectively learns interdependencies between human, object, and contact
through cross-attention along with our contact-based object transformation weighting.
Our predicted contacts further facilitate refinement using custom diffusion guidance, gen-
erating diverse, realistic interactions based on text descriptions. Since our model learns
a strong correlation between human and object sequences, we can use it to conditionally
generate human motion from given object sequences.
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7 Limitations & Future Work

While we demonstrated the usefulness of this method, several limitations remain. For
instance, our method focuses on realistic interactions with a single object. We show that
this can be applied to objects in static 3D scans; however, we do not model multiple ob-
jects together, which could have the potential to model more complex long-term human
behavior (e.g., cooking sequences). Additionally, our method requires expensive 3D HOI
captures for training; a weakly supervised approach leveraging further supervision from
2D action data might be able to represent more diverse scenarios. Similarly, our method
depends on manual text annotations; more specific prompts might lead to more control
over generated HOIs.
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Figure 1. For a real-world 3d skeleton sequence of a human performing an action, we propose to forecast the semantically meaningful
characteristic 3d pose, representing the action goal for this sequence. As input, we take a short observation of a sequence of consecu-
tive poses leading up to the target characteristic pose. Thus, we propose to take a goal-oriented approach, predicting the key moments
characterizing future behavior, instead of predicting continuous motion, which can occur at varying speeds with predictions more easily
diverging for longer-term (>1s) predictions. We develop an attention-driven probabilistic approach to capture the most likely modes of
possible future characteristic poses.

Abstract

We propose the task of forecasting characteristic 3d
poses: from a short sequence observation of a person,
predict a future 3d pose of that person in a likely action-
defining, characteristic pose – for instance, from observing
a person picking up an apple, predict the pose of the per-
son eating the apple. Prior work on human motion predic-
tion estimates future poses at fixed time intervals. Although
easy to define, this frame-by-frame formulation confounds
temporal and intentional aspects of human action. Instead,
we define a semantically meaningful pose prediction task
that decouples the predicted pose from time, taking inspira-
tion from goal-directed behavior. To predict characteristic
poses, we propose a probabilistic approach that models the
possible multi-modality in the distribution of likely char-
acteristic poses. We then sample future pose hypotheses
from the predicted distribution in an autoregressive fash-
ion to model dependencies between joints. To evaluate our

method, we construct a dataset of manually annotated char-
acteristic 3d poses. Our experiments with this dataset sug-
gest that our proposed probabilistic approach outperforms
state-of-the-art methods by 26% on average.

1. Introduction
Future human pose forecasting is fundamental towards a

comprehensive understanding of human behavior, and con-
sequently towards achieving higher-level perception in ma-
chine interactions with humans, such as autonomous robots
or vehicles. In fact, prediction is considered to play a foun-
dational part in intelligence [3, 11, 15]. In particular, pre-
dicting the 3d pose of a human in the future lays a basis
for both structural and semantic understanding of human
behavior, and for an agent to take fine-grained anticipatory
action towards the forecasted future. For example, a robotic
surgical assistant should predict in advance where best to
place a tool to assist the surgeon’s next action, what sensor

1



viewpoints will be best to observe the surgeon’s next ma-
nipulation, and how to position itself to be out of the way at
critical future moments.

Recently, we have seen notable progress in the task of fu-
ture 3D human motion prediction – from an initial observa-
tion of a person, forecasting the 3D behavior of that person
up to → 1 second in the future [12,19,23–25]. Various meth-
ods have been developed, leveraging RNNs [12, 14, 19, 25],
graph convolutional neural networks [22, 24], and atten-
tion [23, 30]. However, these approaches all take a tem-
poral approach towards forecasting future 3D human poses,
and predict poses at fixed time intervals to imitate the fixed
frame rate of camera capture. This makes it difficult to pre-
dict longer-term (several seconds) behavior, which requires
predicting both the time-based speed of movement as well
as the higher-level goal of the future action.

Thus, we propose to decouple the temporal and inten-
tional behavior, and introduce a new task of forecasting
characteristic 3d poses of a person’s future action: from
a short pose sequence observation of a human, the goal is to
predict a future pose of the person in a characteristic, action-
defining moment. This has many potential applications,
including HRI, surveillance, visualization, simulation, and
content creation. It could be used to predict the hand-off
point when a robot is passing an object to a person; to de-
tect and display future poses worthy of alerts in a safety
monitoring system; to coordinate grasps when assisting a
person lifting a heavy object; to assist tracking through oc-
clusions; or to predict future keyframes, as is done in video
generation [20, 27].

Fig. 2 visualizes the difference between this new task and
the traditional, time-based approach: our task is to predict
a next characteristic pose at action-defining moments (blue
dots) rather than at fixed time-intervals (red dots). As shown
in Fig. 1, the characteristic 3d poses are more semantically
meaningful and rarely occur at exactly the same times in the
future. We believe that predicting possible future character-
istic 3d poses takes an important step towards forecasting
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Figure 2. These plots show the salient difference between our
new task (left) and the traditional one (right). The orange curve
depicts the motion of one joint (e.g., hand position as a person
drinks from a glass). It represents a typical piecewise continuous
motion, which has discrete action-defining characteristic poses at
cusps of the motion curves (e.g., grasping the glass on the table,
putting it to ones mouth, etc.) separating smooth trajectories con-
necting them (e.g., raising or lowering the glass). Our task is to
predict future characteristic poses (blue dots on left) rather than
in-between poses at regular time intervals (red points on right).

human action, by understanding the objectives underlying
a future action or movement separately from the speed at
which they occur.

Since future characteristic 3d poses often occur at
longer-term intervals (> 1s) in the future, there may be mul-
tiple likely modes of the characteristic poses, and we must
capture this multi-modality in our forecasting. Rather than
deterministic forecasting, as is an approach in many 3D hu-
man pose forecasting approaches [22–24], we develop an
attention-driven prediction of probability heatmaps repre-
senting the likelihood of each human pose joint in its future
location. This enables generation of multiple, diverse hy-
potheses for the future pose. To generate a coherent pose
prediction across all pose joints’ potentially multi-modal fu-
tures, we make autoregressive predictions for the end effec-
tors of the actions (e.g., predicting the right hand, then the
left hand conditioned on the predicted right hand location)
– this enables a tractable modeling of the joint distribution
of the human pose joints.

To demonstrate our proposed approach, we introduce a
new benchmark on characteristic 3D Pose prediction. We
annotate characteristic keyframes in sequences from the
GRAB [29] and Human3.6M [17] datasets. Experiments on
this benchmark show that our probabilistic approach outper-
forms time-based state of the art by 26% on average.

In summary, we present the following contributions:

• We propose the task of forecasting characteristic 3D
Poses: predicting likely next action-defining future
moments from a sequence observation of a person, to-
wards goal-oriented understanding of pose forecasting.

• We introduce an attention-driven, probabilistic ap-
proach to tackle this problem and model the most
likely modes for the next characteristic pose, and show
that it outperforms state of the art.

• We autoregressively model the multi-modal distribu-
tion of future pose joint locations, casting pose predic-
tion as a product of conditional distributions of end ef-
fector locations (e.g., hands), and the rest of the body.

• We introduce a dataset and benchmark on our char-
acteristic 3D Pose prediction, comprising 1535 anno-
tated characteristic pose frames from the GRAB [29]
and Human3.6M [17] datasets.

2. Related Work
Deterministic Human Motion Forecasting. Many
works have focused on human motion forecasting, cast as
a sequential task to predict a sequence of human poses ac-
cording to the fixed frame rate capture of a camera. For this
sequential task, recurrent neural networks have been widely
used for human motion forecasting [1, 9, 12, 13, 19, 25, 33].
Such approaches have achieved impressive success in
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Figure 3. Overview of our approach for characteristic 3d pose prediction. From an input observed pose sequence, as well as any prior
joint predictions, we leverage attention to learn inter-joint dependencies, and decode a 3d volumetric heatmap representing the probability
distribution for the next joint to be predicted as well as a per-voxel offset field of same size for improved joint placement. This enables
autoregressive sampling to obtain final pose hypotheses characterizing likely characteristic 3d poses.

shorter-term prediction (up to → 1s, occasionally sev-
eral seconds for longer term predictions), but the RNN
summarization of history into a fixed-size representation
struggles to maintain the long-term dependencies needed
for forecasting further into the future.

To address some of the drawbacks of RNNs, non-
recurrent models have also been adopted, encoding tempo-
ral history with convolutional or fully connected networks
[6, 21, 24], or attention [23, 30]. Li et al. [36] proposed an
auto-conditioned approach enabling synthesizing pose se-
quences up to 300 seconds of periodic-like motions (walk-
ing, dancing). However, these works all focus on frame-by-
frame synthesis, with benchmark evaluation of up to 1000
milliseconds. Instead of a frame-by-frame synthesis, we
propose a goal-directed task to capture perception of longer-
term human action, which not only lends itself towards fore-
casting more semantically meaningful key moments, but en-
ables a more predictable evaluation: as seen in Fig. 1, there
can be significant ambiguity in the number of pose frames
to predict towards a key or goal pose, making frame-based
evaluation difficult in longer-term forecasting.

Multi-Modal Human Motion Forecasting. While 3d
human motion forecasting has typically been addressed in a
deterministic fashion, several recent works have introduced
multi-modal future pose sequence predictions. These ap-
proaches leverage well-studied approaches for multi-modal
predictions, such as generative adversarial networks [4] and
variational autoencoders [2, 34, 35]. For instance, Aliakbar-
ian et al. [2] stochastically combines random noise with pre-
vious pose observations, leading to more diverse sequence
predictions. Yuan et al. [35] learns a set of mapping func-
tions which are then used for sampling from a trained VAE,
leading to increased diversity in the sequence predictions
than simple random sampling. In contrast to these time-
based approaches, we consider goal-oriented prediction of
characteristic poses, and model multi-modality explicitly
as predicted heatmaps for body joints in an autoregressive

fashion to capture inter-joint dependencies.

Goal-oriented Forecasting. While a time-based, frame-
by-frame prediction is the predominant approach towards
future forecasting tasks, several works have proposed to
tackle goal-oriented forecasting. Recently, Jayaraman et
al. [20] proposed to predict “predictable” future video
frames in a time-agnostic fashion, and represent the predic-
tions as subgoals for a robotic tasks. Pertsch et al. [27] pre-
dict future keyframes representing a future video sequence
of events. Cao et al. [7] plan human trajectories from an
image and 2d pose history, first predicting 2d goal locations
for a person to walk to in order to synthesize the path. In-
spired by such goal-based abstractions, we aim to represent
3d human actions as its key, characteristic poses.

3. Method Overview
Given a sequence of N 3d pose observations X1:N =

[x1,x2, ...,xN ] of a person, our aim is to estimate a charac-
teristic 3d pose of that person, characterizing the intent of
the person’s future action. We take J joint locations (rep-
resented as their 3d coordinates) for each pose of the input
sequence, i.e. xi ↑ RJ→3. From this input sequence, we
predict a joint distribution of J probability heatmaps Hj

and finally, sample K output pose hypotheses Y1:K , char-
acterized by their J 3d joints: yi ↑ RJ→3. By representing
probability heatmaps for the joint predictions, we can cap-
ture multiple different modes in likely characteristic poses,
enabling more diverse future pose prediction. We note that
we are the first to propose using volumetric heatmaps for fu-
ture human pose forecasting, to the best of our knowledge,
while previous work used them for the more deterministic
task of pose estimation from multiple images [18, 31].

From the input sequence, we develop a neural network
architecture to predict a probability heatmap over a volu-
metric 3d grid for each joint, corresponding to likely future
positions of that joint. This enables effective modeling of
multi-modality, but remains tied to a discrete grid, so we
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Figure 4. To model joint dependencies within the human skeleton, we sample joints in an autoregressive manner by first predicting the
end-effectors (right and left hand), then the rest of the body; pose refinement then improves skeleton consistency.

also regress a corresponding volume of per-voxel offsets,
allowing for precise locations to be sampled. Fig. 3 shows
an overview of our learned probabilistic predictions.

We model these predictions conditionally in an autore-
gressive fashion in order to tractably model the joint distri-
bution over all pose joint locations. This enables a consis-
tent pose prediction over the set of pose joints, as a set of
joints may have likely modes that are unlikely to be seen
all together (e.g., right hand moving forward while the right
elbow moves to the side – both are valid independently but
not together). To sequentialize the pose joint prediction au-
toregressively, we first predict probability heatmaps for the
end effectors in our dataset – right hand first, then left hand
conditioned on the right hand prediction, followed by the
rest of the body joints.

4. Capturing Multi-Modality with Heatmap
Predictions

We aim to learn to predict likely future locations for an
output pose joint j, characterized by a probability heatmap
Hj over a volumetric grid of possible pose joint locations.
From the input sequence of N pose observations of J joints,
and conditioned on any already predicted joints, we con-
struct an attention-driven neural network to learn the differ-
ent dependencies between human skeleton joints to inform
the final heatmap prediction.

Attention-Driven Sequence Encoding. We represent the
body joints of the input sequence X1:N = [x1,x2, ...,xN ]
as an N ↓ J ↓ 3 (N = 10 as well as J = 25 for the
GRAB dataset and J = 17 for Human 3.6M, respectively)
concatenation of the joint locations over time. Features are
first extracted with a single-layer GRU [10]. We then com-
pute an attention map from these features, representing de-
pendencies to the input set of pose joints. This way, the
network learns not only how different joints in the skeleton
affect each other directly (e.g., kinematic relationships) but
also learns to exploit more subtle correlations such as likely
positions of one hand with respect to the other. Following
the formalism of Scaled Dot-Product Attention [32], popu-
larized in natural language processing, our attention maps
are computed from a query Q and a set of key-value pairs
K and V . During training, representations for Q, K, and
V are learned which are shared between all joints. This al-
lows us to project all joints into the same embedding space
where we can then compare the joint of interest (represented

by Q) with all other joints (K) to inform which parts of V
(the learned latent representation for all joints which will be
passed to the decoder) are relevant for this joint of interest.

Attn(Q,K,V ) = softmax

(
QKT

↔
D

)
V = AV , (1)

Intuitively, the similarity between key and query defines
which parts of a learned pose skeleton representation are
important for the desired prediction. Formally, this is de-
fined in Eq. 1: The value representation V is weighed per-
element by the result of the dot-product between Q and K
(scaled by the dimension of the embedding vector D and a
softmax operation). In our case, the attention map A has
a dimensionality of J ↑ ↓ N with J

↑ indicating the number
of joints to be predicted. Any prior joint predictions for au-
toregressive prediction are considered as an additional node
to our attention map, giving the attention map dimension
J
↑ ↓ (N + np) for np prior joints.

Heatmap Prediction. Based on the attention scoring, we
then use a series of nine 3D convolutions to decode an out-
put probability heatmap Hj for each body joint j. The grids
are centered at the skeleton’s hip joint; we use a grid size of
163 voxels, spanning 2m3. A value in the grid of Hj at
location Hj(x, y, z) corresponds to a probability of joint j
being at location (x, y, z) in the future characteristic pose.
Instead of directly regressing the probability values, we pre-
dict Hj(x, y, z) as a classification problem by discretizing
the output values into ndiscr = 10 bins in the [0, 1] space.
We then use a cross entropy loss with the discretized target
heatmap to train our heatmap predictions. In our experi-
ments, we found that this classification formulation for Hj

produced better results than an ω2 or ω1 regression loss, as it
mitigated tending towards the average or median.

Offset Prediction. Since predicting joint locations in a
discrete grid inherently leads to grid artifacts in sampled
output poses, we additionally learn an offset field Oj over
the same volumetric grid. Here, each voxel Oj(x, y, z) ↑
R3 represents the shift to be added after sampling a joint
from the heatmap at Hj(x, y, z). We predict these offsets
similarly to the heatmap volume, with a series of nine 3D
convolutions, and clamp each offset vector Oj(x, y, z) to
move the joint at most one voxel length. Output poses are
then estimated by sampling the heatmap, followed by re-
finement using the corresponding predicted offset.
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4.1. Training Details
Note that for real-world data captured of human move-

ment, we do not have a full ground truth probability distri-
bution for the future characteristic pose, but rather a set of
paired observations of input pose to the target pose. Thus,
we generate target heatmap data from a single future ob-
servation in the training data by applying a Gaussian kernel
(size 5, ε = 2) over the target joint location. At test time,
we apply softmax scaling to the predicted heatmaps with a
temperature of 0.025 and from there, sample our final joint
locations. We learn multi-modality by generalizing across
train set observations which results in seeing multiple pos-
sibilities for similar inputs (e.g., right vs. forward pass),
encouraging learned heatmaps to represent multiple modes.
We show that our formulation can effectively model multi-
modal heatmaps in Section 7.

We train our models on a single NVIDIA GeForce RTX
2080Ti. We use an ADAM optimizer with a weight de-
cay of 0.001 and a linear warmup schedule for 1000 steps;
learning rate is then kept at 0.001. We use a batch size of
100, as a larger batch size helps with training our atten-
tion mechanism. Our model trains for up to 8 hours un-
til convergence. During training, we apply teacher forcing,
i.e. pose joint predictions conditioned on prior joint predic-
tions are trained using the ground truth locations of the prior
joints. For a detailed specification of our network architec-
ture, please refer to the appendix.

5. Autoregressive Joint Prediction
Given a set of heatmaps for each pose joint location, the

next step is to predict specific joint locations. Since they are
not independent of one another, we cannot simply sample
joint locations from each heatmap independently. Instead,
we must model the interdependencies between pose joints.

To do this, we model the joint distribution of pose joints
autoregressively, as visualized in Fig. 4: we first predict end
effector joints, followed by other body joints. For our exper-
iments, we find that the right and left hands tend to have a
large variability, so we first predict the right hand, then the
left hand conditioned on the right hand location, followed
by the rest of the body joints. Empirically, we found that
the hands tended to define the body pose, while the order of
the rest has little impact. To sample from a joint heatmap,
we use temperature scaling to concentrate the heatmap near
its local maxima, followed by random sampling.

Pose Refinement. While our autoregressive pose joint
prediction encourages a coherent pose prediction with re-
spect to coarse global structure, pose joints may still be
slightly offset from natural skeleton structures. Thus, we
employ a pose refinement optimization to encourage the
predicted pose to follow inherent skeleton bone length and
angle constraints while keeping all joints in areas of high

probability and the end-effectors close to their original pre-
diction, as formulated in the objective function:

ER(x, e,b,x0, ϑ, H) =

we↗xe ↘ e↗2 + wb↗bonelengths(x)↘ b↗1
+ wa↗angles(x)↘ ϑ↗1 + wc↗x↘ x0↗1
+ wh

∑
j(1↘Hj)

(2)

where x the raw predicted pose skeleton as a vector of N
3D joint locations; b and ϑ the bone lengths and joint an-
gles, respectively, of the initially observed pose skeleton; x0

the joint locations of the last skeleton in the input sequence;
Hj the heatmap probability for each joint; e the sampled
end effector locations; and we, wb, wa, wh, wc weighting
parameters (in all our experiments, we use we = 0.2, wb =
1.0, wa = 0.4, wh = 0.1, wc = 0.1). We then optimize for
x under this objective to obtain our final pose prediction.

6. Characteristic 3D Pose Dataset
To train and evaluate the task of characteristic 3d pose

forecasting, we introduce a dataset of annotated character-
istic poses, built on GRAB [29] and Human3.6M [17].

• Human3.6M is a commonly used dataset for human
pose forecasting, comprising 210 actions performed by
11 professional actors in 17 scenarios for a total of 3.6
million frames. 3d locations are obtained for 32 joints
via a high-speed motion capture system; we use a re-
duced 17-joint layout in our method, removing redun-
dant and unused joints, following [35].

• GRAB is a recent dataset with over 1 million frames
in 1334 sequences of 10 different actors performing a
total of 29 actions with various objects. Each actor

“Pour”“Pass”

“Walk”
“Take 

Picture”

Figure 5. Example input observations and target characteristic
3d poses from our annotated datasets, based on GRAB (top) and
Human3.6M (bottom).
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starts in a T-Pose, moves towards a table with an ob-
ject, performs an action with the object, and then steps
back to the T-Pose. The human motions are captured
using modern motion capture techniques, with an ac-
curacy in the range of a few millimeters. GRAB pro-
vides SMPL-X [26] parameters from which we extract
the 25 most defining body joints. For more details, we
refer to the appendix.

We then annotate the timesteps of the captured sequences
corresponding to characteristic poses. Input sequence start
frames are randomly sampled, up until the characteristic
pose frame. Several example input sequence-characteristic
pose pairs are visualized in Fig. 5. Annotations were per-
formed by the authors, within a time span of one day. This
is the total time for annotating more that 1000 sequences
across two datasets, with each annotation taking 10-30 sec-
onds; this annotation efficiency enables quick and easy
adoption of new datasets in the future. We define a char-
acteristic pose as the point in time when the action is most
articulated, i.e. right before the actor starts returning back
to another pose (e.g., when the hand is furthest from the
person when passing, most tilted when pouring, etc.). For
sequences containing multiple occurrences of the same ac-
tion, like lifting, we chose the repetition with most articu-
lation, e.g. when the object is lifted highest. In the case of
Human3.6M, where there are sometimes multiple possible
options for characteristic poses, we pick the first one that is
representative of the action, e.g., the first sitting pose.

Characteristic 3D Pose Prediction. For the task of char-
acteristic 3d pose prediction, we consider an input sequence
of N = 10 3d pose observations of a person, represented as
J = 25 3d joint locations for the GRAB dataset and J = 17
for the Human3.6M dataset (in their native joint layouts; for
more details we refer to the appendix). From this observa-
tion, the next characteristic pose is predicted as J 3d joint
locations. All poses are considered in their hip-centered co-
ordinate systems. Note that while we have action labels in
the annotated dataset, we do not use them for this task.

The N input pose observations can occur at any time,
so methods are trained with random input sequences up to
the characteristic 3d pose. At test time, five input points
are evaluated for each method, with the five input points
selected to evenly distribute between the beginning of the
sequence to N frames before the characteristic pose.

Evaluation. We use a train/val/test split by actor in each
dataset. For GRAB we have 8/1/1 train/val/test actors, re-
sulting in 992/197/136 train/val/test sequences. For Hu-
man3.6M, we follow the split of [23]: 5/1/1 and 150/30/30
train/val/test actors and sequences, respectively.

To evaluate our task of characteristic 3d pose predic-
tion, we aim to consider the multi-modal nature of the task.
Since we do not have ground truth probability distributions

available, and only a single observed characteristic pose for
each input pose observation, we follow previous work on
multi-modal human pose sequence predictions [2,4,34,35]:
At test time, we consider k = 10 hypotheses from each
method. To characterize these hypotheses holistically, we
consider several metrics to assess accuracy, diversity, and
quality of predictions.

Accuracy. First, we evaluate the sampling error using the
mean per-joint position error (MPJPE) [17] by comparing
the most similar prediction p

↑ to the ground-truth pose p:

EMPJPE =
1

N

N∑

j=1

||p↑j ↘ pj ||22 (3)

This evaluates whether the predicted hypotheses capture the
target well and allows for comparison with deterministic
baselines (where all hypotheses are identical).

Diversity. We evaluate the diversity as the MPJPE be-
tween all sampled poses for the same sequence. This evalu-
ates the multi-modality of predicted distributions.

Quality. Finally, we evaluate quality of our multi-modal
predictions with the Inception Score [28] (IS) over the set
of predicted hypotheses for all test sequences. The Incep-
tion Score is widely used to measure the quality generative
model outputs. More specifically, we use the conditional
formulation first introduced in [16]. Similar to [2], we adapt
this idea to our use case by training a simple skeleton-based
action classifier on ground-truth samples from our datasets.
Overall, this metric estimates how well the predictions cap-
ture an action while still producing diverse poses.

7. Experimental Evaluation
We evaluate the task of characteristic 3d pose predic-

tion, using our annotated dataset built from the real-world
GRAB [29] and Human3.6M [17] datasets.

Comparison to time-based state-of-the-art forecasting.
In Tab. 1, we compare to state-of-the-art multi-modal se-
quence forecasting approach DLow [35], which is based
on a conditional VAE, as well as to recent determinis-
tic approaches for frame-based future human motion pre-
diction, Learning Trajectory Dependencies [24] and His-
tory Repeats Itself [23], which use a graph neural network
and an attention-based model, respectively, to predict hu-
man pose sequences. We train all of these sequential ap-
proaches on our datasets, given the input sequence of N

frames, to predict an output No-frame pose sequence, with
No = 100 frames to ensure that the characteristic pose falls
within each target sequence. Since these sequence-based
approaches each predict output sequences, we additionally
allow them to predict the time step of the characteristic pose
with an MLP to obtain the final characteristic pose predic-
tion (see the appendix for additional detail).
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GRAB Human3.6m
Method MPJPE → Diversity ↑ IS ↑ MPJPE → Diversity ↑ IS ↑

St
at

is
tic

al Random Sampling 1.018 - - 1.159 - -
Average Train Pose 0.146 - - 0.179 - -
Zero Velocity 0.063 - - 0.166 - -

A
lg

or
ith

m
ic Learning Trajectory Dependencies [24] 0.077 - - 0.165 - -

History Repeats Itself [23] 0.071 - - 0.116 - -
DLow [35] 0.071 0.089 1.257 ±0.02 0.119 0.104 1.623 ±0.08

Ours 0.054 0.105 4.153 ±0.87 0.092 0.189 3.139 ±0.32

Table 1. Characteristic 3d pose performance, in comparison with state of the art and statistical baselines. We evaluate MPJPE for all
methods and additionally, the diversity of multi-modal methods in terms of MPJPE between samples as well as their quality with the
Inception Score, similar to [2].

Since we aim to predict a characteristic 3d pose given
an arbitrary sequence observation, we sample different start
points for the input sequence, and analyze performance
across varying distance from the goal pose.

We report the MPJPE, Diversity, and IS metrics in Tab.
1; we first measure the performance for each of the five in-
put sequence start times mentioned above and average over
those for the final result. Our approach more accurately
characterizes the future characteristic poses while also pro-
ducing improved diversity and quality. For comparison,
we also report baseline performance when given an oracle
providing the ground-truth characteristic time step in Tab.
2. Even with this additional information, our characteristic
pose formulation achieves improved results. Qualitative re-
sults are shown in Fig. 6; our probabilistic approach more
effectively captures a realistic set of characteristic modes.

In Fig. 7, we visualize the diversity of our predictions in
comparison with multi-modal baselines. Our predicted pose
hypotheses show more diversity in both joint placement and
action representation, while still capturing the target pose.

Comparison to statistical baselines. We also compare
with three statistical baselines: full random sampling from
an evenly distributed heatmap, the average target train pose
over the entire dataset, and a zero-velocity baseline (i.e.,
the error of simply using the last input pose as prediction),
which was shown by Martinez et al. [25] to be competi-
tive with and sometimes outperform state of the art. Our
approach outperforms these statistical baselines, indicating
learning of strong characteristic pose patterns.

Method GRAB Human3.6m

MPJPE → IS ↑ MPJPE → IS ↑

L. T. D. [24] 0.075 - 0.156 -
H. R. I. [23] 0.066 - 0.116 -
DLow [35] 0.059 1.567 ±0.02 0.108 1.418 ±0.14

Ours 0.054 4.153 ±0.87 0.092 3.139 ±0.32

Table 2. Characteristic 3d pose performance comparison. In con-
trast to Tab 1, baselines are provided with ground-truth character-
istic time step information.

8. Ablation Studies
Does a probabilistic prediction help? In addition to
comparing to state-of-the-art alternative approaches which
make deterministic predictions, we compare in Tab. 3 with
our model backbone with a deterministic output head (an
MLP) replacing the volumetric heatmap decoder which re-

Input

Learning 
Trajectory 

Dependencies 
(Mao et al. 19)

History 
Repeats 

Itself
(Mao et al. 20)

Ours

Target

“Pass” “Peel” “Take 
Picture”

“Eat” “Sit”

DLow
(Yuan

et al. 20)

Figure 6. Qualitative results on characteristic 3d pose prediction.
In comparison to deterministic [23, 24] (rows 2 and 3) and proba-
bilistic [35] (row 4) approaches, our method more effectively pre-
dicts likely intended action poses. Note that action labels are only
shown for visualization purposes.
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“Take
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Figure 7. Qualitative results on characteristic 3d pose prediction, showing the diversity of our predictions in comparison with DLow [35].

gresses offset positions for each pose joint relative to the
input positions. Removing our heatmap predictions sim-
ilarly fails to effectively capture the characteristic modes;
our probabilistic, heatmap-based predictions notably im-
prove performance.

Does per-voxel offset prediction help? We analyze the
effect of per-voxel offset prediction in Tab. 3, showing that
they notably improve pose predictions. Applying pose re-
finement without offset prediction fails to achieve the same
level of improvement.

Does autoregressive pose joint sampling help? We ana-
lyze the effect of our autoregressive pose joint sampling in
Tab. 3. We compare against a version of our model trained
to predict each pose joint heatmap independently, with pose
joints sampled independently, which often results in valid
individual pose joint predictions that are globally inconsis-
tent with the other pose joints. In contrast, our autoregres-
sive sampling helps to generate a likely, consistent pose.

How diverse are the sampled poses? We show qualita-
tive examples of our multi-modal predictions in Fig. 7, out-
lining the diversity of both heatmap predictions and sam-
pled skeletons. We also evaluate our prediction diversity as
MPJPE between our sampled outputs as part of Tab. 1.

GRAB Human3.6m

Ablation MPJPE → IS ↑ MPJPE → IS ↑

Lo
ss ω1 loss 0.132 1.132 ±0.01 0.198 2.246 ±0.24

ω2 loss 0.130 1.146 ±0.01 0.206 1.976 ±0.08

M
od

el Deterministic 0.064 - 0.108 -
Not autoreg. 0.077 1.583 ±0.15 0.109 1.929 ±0.09

Sa
m

pl
in

g No offsets 0.132 1.328 ±0.02 0.172 2.537 ±0.07

ϖ≃ refined 0.127 1.509 ±0.03 0.163 2.978 ±0.14

k = 50 0.049 1.222 ±0.02 0.082 1.845 ±0.19

Not refined 0.057 3.989 ±0.95 0.098 2.418 ±0.11

Ours 0.054 4.153 ±0.87 0.092 3.139 ±0.32

Table 3. Ablation study over varying heatmap losses, determin-
istic and non-autoregressive pose sampling, no offset prediction
(with and without pose refinement), number of samples taken for
the evaluation, and without pose refinement.

What is the effect of the number of pose samples? If
we take more pose samples from our predicted joint distri-
bution (from 10 to 50), we can, as expected, better predict
the potential target characteristic pose, as seen in Tab. 1.

Do different heatmap losses matter? We evaluate our
formulation for heatmap prediction as a discretized heatmap
with a cross entropy loss against regressing heatmaps with
an ω1 or ω2 loss, and find that our discretized formulation
much more effectively models the relevant modes.

Limitations. Several limitations remain for our approach
of characteristic 3d action pose forecasting. For instance,
while our offset predictions help alleviate the ties to a vol-
umetric heatmap grid, more precise modeling of smaller-
scale behavior (e.g., detailed hand movement) would re-
quire more efficient representations such as sparse grids. In
addition, our method relies on manually annotated charac-
teristic 3d poses for supervision; while characteristic pose
annotation is very efficient for new datasets, self-supervised
formulations would also be an interesting future direction.

9. Conclusion
In this paper, we introduced a new task: predicting fu-

ture characteristic 3d poses of human activities from short
sequences of pose observations. We introduce a probabilis-
tic approach to capturing the most likely modes in these
characteristic poses, coupled with an autoregressive formu-
lation for pose joint prediction to sample consistent 3d poses
from a predicted joint distribution. We trained and evalu-
ated our approach on a new annotated dataset for charac-
teristic 3d pose prediction, outperforming deterministic and
multi-modal state-of-the-art approaches. We believe that
this opens up many possibilities towards goal-oriented 3d
human pose forecasting and understanding anticipation of
human movements.
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Appendix

In this appendix, we show additional qualitative results
(Sec. A), additional quantitative analysis (Sec. B), detail our
network architecture specification (Sec. C), provide addi-
tional details regarding the dataset (Sec. D) as well as our
training setup (Sec. E), and discuss potential negative soci-
etal impacts of our method (Sec. F).

A. Additional Qualitative Results.
We show additional qualitative results of our method in

Fig. 9, which demonstrate the diversity of our characteristic
pose predictions for a given input sequence. Our approach
not only effectively models the multi-modal nature of char-
acteristic poses, but also captures the final target action pose
(highlighted pose prediction).

In cases where the time between input sequence and tar-
get pose is longer, such as in ‘sit’ or ‘greet’, our approach
produces a more diverse set of action poses, capturing the
ambiguity in the future characteristic pose. When the input
sequence is close to the target pose, our approach converges
to a small set of probable poses (for example, in ‘drink’),
reflecting the reduced ambiguity.

B. Additional Quantitative Results.
MPJPE baseline comparison, by goal-normalized input
time Fig. 8 shows MPJPE for varying input sequence start
times in comparison with state of the art, goal-normalized
from the start of each sequence (0) to N frames before the
characteristic pose (1), with three steps inbetween.

Autoregressive Joint Order. We determined the order
of the joints for the autoregressive prediction empirically;
most ambiguity occurred in active end-effectors (i.e. right
and left hands), whereas the rest of the body tended to have
lower variability. In Tab. 4, we compare our original ap-
proach of (right hand, left hand, rest) with two alternatives:
(left hand, right hand, rest), and (full autoregressive from

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14

0 1/3 1/2 2/3 1

M
PJ

PE

Goal-Normalized Evaluation Time Step

(a) Learning Trajectory Dep. (b) History Repeats Itself
(d) DLow (e) Ours

Figure 8. MPJPE comparison to baselines, evaluating with the
input sequence at different points in time: from the start of the
sequence (0) to N frames before the target characteristic pose (1).

Order MPJPE → Div. ↑ IS ↑

right hand ≃ left hand ≃ rest 0.054 0.105 4.15 ±0.9

left hand ≃ right hand ≃ rest 0.057 0.049 4.09 ±1.6

following the kinematic chain 0.058 0.018 4.02 ±0.9

Table 4. Ablation analysis on autoregressive order on GRAB data.

human kinematic chain following left/right hands). Our
method is robust to these orderings (though diversity of the
rest of the body except hands decreases with autoregression
through the kinematic chain).

Grid Resolution and Offset Prediction. We show addi-
tional ablations on the effect of grid resolution and offset
prediction in Tab 5 on GRAB data; A resolution of 163 per-
forms better than 83 or 323. Our offset prediction helps
mitigate grid artifacts even at 323.

Resolution Offsets MPJPE → Diversity ↑ IS ↑

83 ↓ 0.242 0.189 1.40 ±0.3

83 ↭ 0.092 0.068 1.71 ±0.1

163 ↓ 0.127 0.081 1.51 ±0.1

163 ↭ 0.054 0.105 4.15 ±0.9

323 ↓ 0.118 0.122 2.39 ±0.2

323 ↭ 0.066 0.058 1.91 ±0.2

Table 5. Ablation analysis on heatmap grid size and offset predic-
tion on GRAB data.

Per-Bodypart MPJPE. In Tab. 9, we show our final pose
prediction performance in MPJPE, broken down per body-
part, as compared to sequential baselines.

Characteristic Pose Forecasting with Ground Truth Ac-
tion Labels. In Tab. 6, we additionally evaluate our ap-
proach using ground truth action labels as input to provide
additional contextual information.

The ground truth action label is processed as an addi-
tional attention node alongside input and previously pre-
dicted joint locations. This action label information reduces
ambiguity in the possible set of output poses, resulting in
reduced diversity, as is reflected in the diversity metric and
inception score (as this directly considers diversity).

In our original action-agnostic scenario, our approach
predicts plausible and diverse characteristic poses across all
actions.

GRAB Human3.6M
MPJPE ⇐ Div. ⇒ IS ⇒ MPJPE ⇐ Div. ⇒ IS ⇒

↓ 0.054 0.105 4.153 ±0.87 0.092 0.189 3.139 ±0.32

↭ 0.051 0.026 1.085 ±0.02 0.094 0.044 1.700 ±0.06

Table 6. Comparison of ours to an ablation with ground truth
action labels as additional input.
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Figure 9. Additional qualitative results, showing the for each action sequence the inputs (left), our diverse set of predictions (middle) and
the target action pose (right). Our final pose prediction is highlighted for each action sequence.
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Figure 10. Times at which characteristic poses occur for GRAB.
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Figure 11. Times at which char. poses occur for Human3.6M.

C. Architecture Details
Fig. 13 details our network specification from input (left)

to heatmap and offsets output (right). For each GRU layer,
we provide the hidden dimension and number of layers in
parentheses, for normalization layers the dimension to be
normalized over, for dropout layers the dropout probabil-
ity p, and for convolutions the number of input and output
channels as well as kernel size (ks), stride (str), and padding
(pad). We apply cross-entropy (CE) losses at a heatmap res-
olution of 83 and at the final resolution of 163; for the off-
sets prediction, we concatenate the offsets volume gener-
ated from the last input skeleton after 5 convolution blocks
and supervise the final predictions with an ω1 loss.

We take as input 25 joints in the case of GRAB and
17 joints for Human3.6M (#in joints). The number of out-
put joints (#out joints) depends on whether the right or left
hand is being predicted (#out joints=1) or the rest of the
body (#out joints=23 for GRAB, #out joints=15 for Hu-
man3.6M). In all our experiments, we use 10 as the number
of probability bins.

D. Dataset
GRAB Pose Layout. Since GRAB [29] not only provides
a human skeleton representation but full body shape param-
eters, we preprocess all pose sequences by first extracting
relevant joints for our approach. For this, we chose the 3d

Figure 12. GRAB [29] body and our extracted skeleton joints
overlaid (left); 17-joint skeleton based on Human3.6M [17]
(right).

OpenPose [8] layout as it describes the prevalent body joints
and is widely used for representing 3d poses. Note that we
do not apply the OpenPose method on 2d data; we only use
their joint definitions in 3d. We extract 25 body joints from
the SMPL-X body given by the GRAB dataset [29] using
the correspondences shown in Tab. 8. Additionally, we de-
note in Tab. 8 the correspondences of joints to body parts,
for the body part analysis in Tab. 9. Fig. 12 (left) visual-
izes our joint selection, overlaying the body shape given in
GRAB as a point cloud over the 25-joint skeleton.

Human3.6M Pose Layout. For all our experiments on
Human3.6M [17], we use 17 pose joints, visualized in
Fig. 12 (right). Tab. 7 describes the exact joints used as
well as the correspondences of joints to body parts, as used
in Tab. 9.

Visualization Details. While our approach is agnostic to
context or action, we visualize the context provided by
GRAB [5,29] (of the table and object) and action label pro-
vided by both GRAB and Human3.6M to help contextual-
ize the pose visualizations. The context and action labels
are not taken into account by the network or the evaluation,
meaning that our approach infers plausible human action
poses while being agnostic towards action and context.

Additional Characteristic 3D Pose Details. We show
additional characteristic 3d poses in their original sequences
in Fig. 14, and note the strong time differences at which
the characteristic poses occur. Furthermore, Fig. 10 and
Fig. 11 show the times during the sequences at which the
characteristic 3d poses are annotated for GRAB and Hu-
man3.6M; these characteristic poses are distributed across
a wide range (0-12 seconds and 0-40 seconds, respectively)
of time.

E. Additional Training Details
Cross Entropy Loss. Since our approach learns to predict
the probabilities of a Gaussian-smoothed target point during
training, we observe a very large class imbalance between
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the no-probability bin (bin 0) and the rest of the bins. We
thus weigh the classes in the cross entropy loss to account
for the class imbalances, by the inverse of their log-scaled
occurrence, and a weight of 0.1 for the no-probability bin.

Ours (17-Joint) Base (Human3.6M)
Idx Label Label Idx

R
.L

eg 1 R. Hip R. Hip 1
2 R. Knee R. Knee 2
3 R. Foot R. Heel 3

L.
Le

g 4 L. Hip L. Hip 6
5 L. Knee L. Knee 7
6 L. Foot L. Heel 8

R
.A

rm 14 R. Shoulder R. Shoulder 25
15 R. Elbow R. Elbow 26
16 R. Hand R. Hand 27

L.
A

rm 11 L. Shoulder L. Shoulder 17
12 L. Elbow L. Elbow 18
13 L. Hand L. Hand 19

Sp
in

e 7 Spine Spine 12
0 Hip Hip 0

H
ea

d 9 Nose Nose 14
10 Head Head 15
8 Thorax Thorax 13

Table 7. Joint Correspondences for Human3.6M

Ours (OpenPose [8]) Base (SMPL-X [26])
Idx Label Label Idx

R
.A

rm 2 Right Shoulder Right Shoulder 17
3 Right Elbow Right Elbow 19
4 Right Finger Right Index 3 42

L.
A

rm 5 Left Shoulder Left Shoulder 16
6 Left Elbow Left Elbow 18
7 Left Finger Left Index 3 27

R
ig

ht
Le

g

9 Right Hip Right Hip 2
10 Right Knee Right Knee 5
11 Right Ankle Right Ankle 8
22 Right Big Toe Right Big Toe 63
23 Right Small Toe Right Small Toe 64
24 Right Heel Right Heel 65

Le
ft

Le
g

12 Left Hip Left Hip 1
13 Left Knee Left Knee 4
14 Left Ankle Left Ankle 7
19 Left Big Toe Left Big Toe 60
20 Left Small Toe Left Small Toe 61
21 Left Heel Left Heel 62

H
ea

d
0 Nose Nose 55
1 Neck Neck 12
15 Right Eye Right Eye 24
16 Left Eye Left Eye 23
17 Right Ear Right Ear 58
18 Left Ear Left Ear 59
8 Mid-Hip Pelvis 0

Table 8. Joint Correspondences for GRAB
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GRAB H3.6M
Method R. Arm → L. Arm → R. Leg → L. Leg → Spine → Head → R. Arm → L. Arm → R. Leg → L. Leg → Spine → Head →
L. T. D. [24] 0.165 0.115 0.058 0.057 0.028 0.085 0.225 0.225 0.135 0.146 0.108 0.123
H. R. I. [23] 0.160 0.113 0.056 0.055 0.026 0.079 0.199 0.191 0.079 0.088 0.040 0.089
DLow [35] 0.146 0.109 0.052 0.050 0.024 0.068 0.174 0.169 0.108 0.112 0.044 0.096
Ours 0.105 0.084 0.045 0.045 0.020 0.057 0.147 0.122 0.091 0.085 0.033 0.066

Table 9. Characteristic 3d pose prediction performance comparison to baselines, broken down by body part MPJPE.

State-of-the-art comparisons. We use the official code
with default settings of the methods we compare to ( [24],
[23], and [35]). We train all methods from scratch on our
characteristic 3d pose dataset, setting the number of input
frames to 10 and the number of output frames to 100. From
the predicted sequence, we evaluate the pose at a timestep
predicted by the baselines themselves as characteristic pose
and compare it to the target. This scenario is the closest to
our approach, as predicting characteristic 3d poses involves
which pose is the characteristic pose.

Therefore, we modified each baseline with a small pre-
diction head to predict the characteristic pose frame within
all 100 frames of the predicted sequence. In all cases, we
supervise this prediction as a classification problem with
a cross entropy loss and train the additional head together
with the rest of the model.

For DLow [35], we add one linear layer to the final fea-
ture output of each of the 100 steps, followed by a ReLU,
reducing each step’s output dimension to 10. Then, one ad-
ditional linear layer summarizes the combined output of all
steps (100 ⇑ 10) down to a vector of size 100.

In the case of History Repeats Itself [23], we add a classi-
fication head consisting of one linear layer, a 1d batch norm,
a ReLU, and one additional linear layer to the output of their
last Graph Convolution Block (GCN). While the first linear
layer keeps the original dimensionality of 100, the second
linear layer reduces the dimension from #graph nodes⇑100
down to 100.

Finally, for Learning Trajectory Dependencies [24], we
apply the same architecture and add a linear layer, a 1d
batch norm, a ReLU, and a second linear layer after the fi-
nal GCN. Here, we first reduce the per-node feature dimen-
sion from 256 to 100 and combine the features of all nodes
with the second linear layer, going from #graph nodes⇑100
down to 100.

In the main paper, we additionally evaluated against
these baseline approaches when given ground-truth time
steps instead; in this scenario, our predictions also outper-
form the baselines given ground truth times for characteris-
tic poses.

To evaluate the diversity and quality of multi-modal out-
puts, 10 samples are taken from a probabilistic method for
each input sequence, and we report diversity in terms of
MPJPE between samples as well as the Inception Score, fol-
lowing [2].

F. Potential Negative Societal Impacts
As we aim to study human pose behavior, we must take

care to ensure that datasets used represent notable diver-
sity in those represented. Our approach currently operates
on skeleton abstractions that do not characterize finer-scale
appearance differences; in possible future studies that may
aim to characterize fine-scale interactions, diversity in body
shape representations which must be taken into account for
data collection and analysis.

In particular, in our scenario of forecasting probable fu-
ture human behavior, we must also ensure that this possibil-
ity cannot be easily used for generating fraudulent motion
video of a person. Such usage is currently severely limited
in our proposed approach, as it does not target individual
people, and does not model photo-realistic characteristics
of people.

Another concern might arise with the possibility of
surveillance, in the context of predicting specific actions
from only a short and possibly ambiguous observation of
a person. The types of actions are currently limited by
the training data to everyday activities such as eating or
walking. With modified datasets, the prediction of various
specific action sub-categories might be possible (e.g., fore-
casting possible malicious actions). While simpler methods
may be more suitable for this kind of task, here we look to
efforts in data transparency; we will provide our annotations
and various statistics to characterize the everyday activities
in our considered data.

Another axis to consider is that of environmental impact,
in the cost of training deep neural networks. Our training
time is relatively short with only a few hours until conver-
gence and a moderately sized neural network. Additionally,
adversarial attacks are a possibility to disrupt future predic-
tions, but do not induce security concerns for our approach
directly.

15



Figure 14. Sample input-target pairs (colored) for our characteristic 3d pose forecasting task, with temporal snapshots along the sequence
(grayscale). Each snapshot is half a second apart. Depicted as input is the last frame of the respective input sequence.
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Figure 1. We propose a novel generative approach to model long-term future human behavior by jointly forecasting a sequence of coarse
action labels and their concrete realizations as 3D body poses. For broad applicability, our autoregressive method only requires weak
supervision and past observations in the form of 2D RGB video data, together with a database of uncorrelated 3D human poses.

Abstract
We present a generative approach to forecast long-term

future human behavior in 3D, requiring only weak super-
vision from readily available 2D human action data. This
is a fundamental task enabling many downstream applica-
tions. The required ground-truth data is hard to capture in
3D (mocap suits, expensive setups) but easy to acquire in
2D (simple RGB cameras). Thus, we design our method
to only require 2D RGB data at inference time while being
able to generate 3D human motion sequences. We use a
differentiable 2D projection scheme in an autoregressive
manner for weak supervision, and an adversarial loss for
3D regularization. Our method predicts long and complex
human behavior sequences (e.g., cooking, assembly) consist-
ing of multiple sub-actions. We tackle this in a semantically
hierarchical manner, jointly predicting high-level coarse
action labels together with their low-level fine-grained real-
izations as characteristic 3D human poses. We observe that
these two action representations are coupled in nature, and
joint prediction benefits both action and pose forecasting.
Our experiments demonstrate the complementary nature of
joint action and 3D pose prediction: our joint approach
outperforms each task treated individually, enables robust
longer-term sequence prediction, and improves over alter-
native approaches to forecast actions and characteristic 3D
poses.

1. Introduction
Predicting future human behavior is fundamental to ma-
chine intelligence, with many applications in content cre-
ation, robotics, mixed reality, and more. For instance, a
monitoring system might issue early warnings of potentially
dangerous behaviour, and a robotic assistant can use fore-
casting to place tools at the right place and time they will
be needed in the future. Consider the specific scenario of
an assembly line monitoring system deployed to issue early
warnings of behavior that could be harmful in the near future:
The system needs to have a long-term understanding of the
future, enabling it to forecast multiple action steps ahead so
that it can act in time before a harmful action occurs. How-
ever, simply understanding the next action steps on a high
level is not sufficient: it must also reason about where the
action will occur. Actions such as “grab a tool” are likely
harmless when performed in a toolbox; they become danger-
ous when done next to an active table saw or moving robot
arm. The monitoring system thus also needs to be able to
reason about spatial relations in 3D – for both the location
and body pose of involved humans.

To support these types of applications, we must address
two tasks: 1) forecasting long-term action sequences, and 2)
predicting future 3D human poses. Prior work has focused on
each of these tasks separately: activity forecasting predicts
future action labels without considering the 3D poses [33,
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35, 36, 49, 51, 71], while 3D pose forecasting focuses on
fixed frame rate sequence prediction limited to single actions
in short-term time frames without considering longer-term
action sequences [31, 61, 62, 94, 97].

We propose that these two tasks are coupled in nature:
predicting action labels with realized 3D poses helps to
encourage richer feature learning and can materialize sub-
category level differences in actions for predicting future
activities, and grounding 3D poses with actions provides
global structure for longer-term forecasting.

Leveraging this insight, we design a method that takes
in a sequence of recent RGB image observations and their
action labels, and jointly predicts a sequence of future 3D
characteristic poses and action labels (Fig. 1). In our design,
we had to address two significant research challenges: 1)
forecasting 3D poses from 2D images without any paired 3D
training data, and 2) forecasting long sequences of actions
comprising several discrete action steps.

The first challenge arises from limited training data. It
would be ideal to have a dataset with ground truth 3D pose
and action annotations for complex sequences of actions.
Unfortunately, no such dataset exists. There are RGB video
datasets with tracked 3D poses for limited types of actions
(e.g., walking or waving); and there are video datasets with
action labels for complex sequences of actions (e.g., cook-
ing or assembly). However, there is no single dataset that
has both types of annotations, and capturing one would be
difficult due to the challenges of setting up 3D pose track-
ers in settings where people typically perform complex se-
quences of actions (e.g., cooking in a kitchen). Instead, we
have to learn to use 2D video observations for 3D pose and
action label forecasting without paired data. We achieve
this by weakly supervising our pose forecasting in 2D us-
ing readily available 2D action datasets [8, 72] and formu-
late an adversarial loss encouraging likely 3D characteristic
poses with respect to a distribution learned from 3D pose
datasets [42, 60, 82]. Crucially, this does not require any
correspondence between the 2D video and 3D pose data.

The second challenge arises from the difficulties of pre-
dicting long sequences of discrete events. One option would
be to train a model to output a multi-step sequence of ac-
tions and poses all at once – however, this is impossible
given the exponential growth of multi-step sequences and
the limited amount of available training data. Another op-
tion would be to train a model that predicts the next future
poses and actions at fixed time points in the future (e.g., 1s
in advance) and then recurrently make long-term predictions
– however, this time-based forecasting approach produces
sequences that tend to “drift” over the long-term, since the in-
termediate poses at fixed time steps are usually “in between”
semantically meaningful actions and thus do not provide a
distinctive input representation for the next prediction. To
address this issue, we train our autoregressive approach to

iteratively generate the next discrete action label along with
the 3D characteristic pose for that action. A 3D characteris-
tic pose [22] is the set of 3D joint positions corresponding
to the most distinctive moment a semantic action is being
performed (e.g., when a hand grasps an object, when two ob-
jects are first brought together, etc.). By training our method
to produce these poses as intermediate outputs (and inputs
to the next step), we are able to generate more semantically
plausible forecasts over longer action sequences.

Our experiments with two RGB video datasets demon-
strate that our approach for joint prediction of action be-
haviors and 3D poses outperforms state-of-the-art methods
applied separately to each task. Additionally, we find that
predicting actions and their 3D characteristic poses enables
more robust autoregressive prediction for longer-term fore-
casting. Overall, our contributions are:
• The first method to learn forecasting of future 3D poses

from datasets with only 2D RGB video and action label
data (i.e., without any paired 3D data).

• The first method to forecast future 3D poses jointly with
action labels from commonly available video input.

• The first method to forecast future characteristic 3D poses
and action labels for long-term and complex behaviors.

2. Related Work
3D Human Pose Forecasting. Forecasting 3D human
poses has been studied in many previous works and is com-
monly formulated as a 3D sequential motion prediction task,
taking an input 3D sequence of poses and generating an
output 3D sequence of poses. For short-term future pre-
diction (up to → 1 second), RNN-based approaches have
achieved impressive performance [1, 16, 30, 37, 38, 44,
64, 69, 90]. As RNNs tend to struggle to capture longer-
term dependencies with a fixed-size history, graph-based
[17, 18, 20, 53, 55, 56, 61, 77, 94, 99] and attention-based
[2, 11, 62, 65, 83] approaches have been proposed to encode
temporal history. Some methods also explored the appli-
cability of temporal convolutions [54, 66] and MLP-only
architectures [10, 39] to the task of human motion forecast-
ing. Additionally, various approaches have been proposed to
model future human motion stochastically to produce diverse
future sequence predictions, either with adversarial GAN
formulations [7, 52], conditional variational autoencoders
(VAEs) [3, 9, 12, 59, 63, 74, 87, 94, 96], or diverse sam-
pling [21, 97]. More recently, diffusion methods [78, 79]
have been used for human motion generation and forecasting
[6, 19, 46, 84, 85, 95, 98, 100]. These methods require 3D
ground truth sequences for training, limiting applicability to
scenarios where 3D inputs and ground-truth are not available.
Ours requires only 2D training data for the action sequences,
which is far more plentiful and easier to obtain. We generate
valid 3D poses by leveraging an adversarial loss formulation,
operating on a database of uncorrelated 3D poses.
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Figure 2. Our approach takes as input a sequence of RGB images, from which 2D poses are extracted, as well as their corresponding action
label and initial set of objects. Each input is encoded into a joint latent space to jointly predict the next action label and characteristic 3D
pose. While action labels are directly supervised, the 3D pose decoder is trained to match the next 2D action pose using differentiable
projection, and an adversarial 3D loss encourages valid 3D pose prediction.

Human Action Forecasting. Action forecasting has been
studied by many approaches to predict future actions from
a sequence of observed actions [25, 26, 29, 48] or directly
from an input video sequence [28, 32, 34, 35, 67, 75, 76, 76].
Various methods have been developed to learn effective
representations, including Hidden Markov Models [51],
RNNs [25–28, 32, 43, 76, 92], transformer-based networks
[35, 36, 73], and self-supervised feature learning [41, 86].
There are approaches that focus on the short-term future
[29, 32, 34, 35, 67, 73, 75, 76] or on longer-term actions
[25, 26, 28, 29, 32, 34–36, 48, 67, 75, 76, 76]. Such method
focus on characterizing anticipation with action labels only,
while we aim to predict a richer characterization of the an-
ticipated future by leveraging characteristic 3D poses, repre-
sentative of future action goals in a sequence of action-pose
predictions. Forecasting actions alongside human poses in
2D only has been studied in a few works, for 2D hand place-
ment [57] or full-body 2D human poses at most 1 second into
the future [101]. Our approach addresses the benefits of 3D
reasoning in human motion forecasting, without requiring
full 3D sequences for supervision.

Goal-Driven Future Prediction. Goal-driven forecasting
has previously been explored beyond action label forecast-
ing, and has been leveraged to predict goal locations for
future human walking trajectories [14] and for future video
sequences by predicting keyframes [5, 45, 70, 80]. Diller
et al. [22] introduced the task of forecasting characteris-
tic 3D poses, salient keyframe poses representing the next
action. These goal-based poses are more semantically mean-
ingful and consistent across different action sequences than
time-based ones, and thus are better suited for long-term
forecasting. We build upon these ideas by introducing a new
goal-driven method for joint action anticipation and charac-
teristic 3D pose forecasting in an auto-regressive system that
can predict complex, long-term behavior sequences.

3. Method Overview
Our method aims to learn to jointly model future human
actions along with the characteristic 3D poses representative
of those actions. From a sequence of RGB image obser-
vations of a person performing a series of actions and the
corresponding action labels, we predict a sequence of future
action labels and 3D poses characteristic of these actions.
This enables joint reasoning of not only global semantic
behavior but also the physical manifestation thereof.

In the absence of 3D pose data of complex human ac-
tions, we weakly supervise forecasted 3D poses to align to
future poses in 2D, and constrain the poses to be valid in
3D using an adversarial loss with a database of 3D poses.
This does not require any correspondence between 3D pose
data and 2D video, enabling action sequence supervision
on commonly available 2D human action data together with
carefully captured but unrelated human poses in 3D.

An overview of this approach is shown in Fig. 2. For
an input sequence S = {(Ii, ai, oi)} of N RGB images
{Ii} with corresponding actions {ai} and initially involved
objects {oi}, we aim to predict the future M actions {âk}
that will be taken along with their characteristic poses in 3D
{Ŷk}. We define the human pose as a collection of J body
joints at salient locations, so each output pose Ŷk is predicted
as a set of J 3D coordinates. We first extract information
about the observed 2D pose movement by detecting 2D poses
{Xi}, each with J 2D joints, with a state-of-the-art 2D pose
estimator that seamlessly integrates into our pipeline in a
pre-trained and frozen form.

Next, we encode this information along with previously
observed action and object labels to predict the next future
action label âk and characteristic 3D pose Ŷk. We can then
forecast a future sequence by autoregressively predicting
a series, considering the 2D projections of the previously
predicted 3D poses along with previously predicted actions
as input to a new prediction.
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4. Joint Forecasting of Actions and Character-
istic 3D Poses

Our network takes as input the previous 2D observations
{Xi} extracted from the {Ii} images, as well as action and
object labels {ai} and {oi} as one-hot vectors. Since we only
predict action labels, object labels are given from the objects
seen at the beginning of the sequence, and subsequently re-
used for the entire sequence. Each of these are encoded in
parallel with three separate encoders; the actions and objects
with MLPs while the poses are projected into latent space
with a single linear layer and then processed with a stack of
three residual blocks. These encoded features are then all
concatenated together in latent space, and processed jointly
with an MLP to produce a common latent code z. Finally, we
decode both poses and actions in parallel based on z using
an MLP decoder each, yielding the next action label class as
a vector âk ↑ RNa and 3D characteristic pose Ŷk ↑ RJ→3,
with Na the number of action classes. For a more detailed
architecture specification, we refer to the appendix.

We jointly learn future action labels and characteristic 3D
poses by supervising âk and Ŷk to match the observed future
2D video, and constrain Ŷk to form a valid 3D pose by an
adversarial loss, optimizing for the overall loss:

L = ωactionLaction+ωpose2dLpose2d+ωadv3dLadv3d (1)

where Laction denotes the action loss, as described in
Sec. 4.1, Lpose2d and Ladv3d constraining the predicted pose,
as described in Sec. 4.2, and the ω weighting each loss.

4.1. Action Forecasting
Predicted future actions are decoded from the latent code
z by an MLP decoder to predict the action class âk, super-
vised by cross entropy with the ground truth future action:
Laction = CE(âk, a

gt
k ).

4.2. Characteristic Pose Forecasting
Our goal is to forecast complex action behavior not only in
terms of action labels, but also manifested as a sequence
of characteristic poses in 3D. Since we only have 2D pose
annotations available, we first constrain these poses to rep-
resent future actions in 2D and make use of an adversarial
regularization in 3D. This does not require any correspon-
dence between 2D and 3D data, only a collection of valid
3D poses, which are readily available.
Differentiable 2D Projection Our generator network pre-
dicts the next characteristic action pose Ŷk as a set of 3D
joints. To constrain Ŷk based on the target future 2D pose
Xgt extracted from the ground truth future image, we differ-
entiably project Ŷk into the 2D image with intrinsic parame-
ters K and extrinsic rotation and translation R, t:

X̂ = K(RŶk + t) (2)

Since we learn from third-person video with a fixed cam-
era, we can use the same camera parameters for all sequences
used for training. We can then define the 2D pose loss as the
mean squared error between the projected pose prediction
and the ground truth:

Lpose2d = ||Xgt ↓Xk||22 (3)

Note that we only predict the J joints that have been
observed in the video data (excluding any joints that remain
occluded in the observed video data), so this loss can be
applied to all predicted joints.
Adversarial 3D Pose Regularization. While the action and
pose prediction losses provide effective predictions when
considered in the 2D projections, the {Ŷk} remain undercon-
strained in 3D and thus tend to exhibit large distortions and
implausible bone lengths and angles, when trained with only
2D supervision. We thus constrain the predicted poses to
form valid 3D poses by formulating an adversarial 3D loss
from a critic network which is simultaneously trained to dis-
tinguish predicted poses from a database of real 3D skeleton
samples. Note that there is no correspondence between these
skeletons and the 2D poses extracted from the action video
sequences – any database of 3D skeletons can be used. We
can thus train our approach with an entirely uncorrelated 3D
pose dataset without requiring 3D action pose correlations.

We then formulate Ladv3d as a Wasserstein loss [4], train-
ing the critic network in an alternating fashion with the
generator. This enables effective forecasting of future 3D
characteristic poses for predicted future action labels, with-
out requiring any 3D observations as input.

In order to enable the critic network to learn effectively
about likely intrinsic pose constraints (e.g., lengths, kine-
matic chains, or valid joint angles), the critic takes as input
not only the 3D joint locations of Ŷk but also their kinematic
statistics as a matrix !, following [88, 89].

! encodes joint angles and bone lengths as ! = BTB,
where B = (b1, b2, . . . , bb) is a matrix with columns bi =
jk ↓ jl representing the vectors between each joint jk and jl.
! then contains bone lengths l2i on its diagonal, and angular
representations on the off-diagonal entries.

4.3. Sequence Prediction
In order to forecast longer-term future behavior, our 3D
pose predictions enable a natural autoregressive sequence
prediction by taking the predictions X̂t, ât at time step t as
part of the input for time step t+ 1. We can thus predict a
sequence of M future action labels {âk} and characteristic
3D poses {Ŷk}; we use M = 10 for MPII Cooking II [72]
and M = 5 for IKEA-ASM [8], respectively.

4.4. Training Details
We train our approach for the J = 9 joints commonly seen
across the input observed video data, characterizing the up-
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MPII Cooking II IKEA ASM
2d 3d Action Accuracy 2d 3d Action Accuracy

Approach MPJPE [px] ↔ Quality ↗ top-1 ↗ top-3 ↗ MPJPE [px] ↔ Quality ↗ top-1 ↗ top-3 ↗
Zero Velocity 118 – – – 74 – – –
Train Average 166 – – – 91 – – –
AVT [35] RGB – – 19% 42% – – 22% 49%
AVT [35] RGB+Skeleton – – 20% 40% – – 23% 47%
FUTR [36] RGB – – 27% 48% – – 19% 45%
FUTR [36] RGB+Skeleton – – 27% 49% – – 20% 46%
RepNet [88] + DLow (min-10) [97] 72 0.72 – – 45 0.31 – –
RepNet [88] + GSPS (min-10) [63] 59 0.66 – – 51 0.15 – –
RepNet [88] + STARS (det.) [94] 70 0.62 – – 54 0.27 – –
RepNet [88] + EqMotion [93] 68 0.66 – – 55 0.23 – –
Joint 2D Pose & Action [101] 55 - 27% 43% 44 - 22% 46%
Ours 50 0.55 29% 51% 40 0.31 29% 50%

Table 1. Quantitative comparison with state-of-the-art action label and 3D pose forecasting. Our joint approach enables more accurate future
action and pose predictions, compared to approaching both tasks separately, and outperforms joint action and 2D pose forecasting.

per body in MPII Cooking II [72] and IKEA-ASM [8].
Additionally, we use loss weights ωaction = 1e6, ωpose =

1, and ωadv3d = 1, empirically chosen to numerically bal-
ance each individual loss with the others.

We train our approach on a single NVIDIA GeForce RTX
2080TI for → 12 hours until convergence. We use ADAM
with batch size 4096, weight decay 0.001, and a constant
learning rate of 0.0001 for both generator and discriminator.

4.5. Datasets
We train and evaluate our approach on two datasets: MPII
Cooking II [72] and IKEA-ASM [8]. Both datasets contain
sequences of human actors performing complex, unscripted
actions, and provide annotations of fine-grained sub-action
steps. MPII Cooking II [72] is an action recognition dataset
with 272 complex cooking sequences and an average se-
quence time of 182s (35 annotated sub-actions, each 5.2s
on average). IKEA-ASM contains 370 sequences of actors
assembling IKEA furniture, with an average of 74s per se-
quence (15 annotated sub-actions, each 4.9s on average).

In both datasets, each action sequence has been filmed
from a fixed camera setup; the third-person point of view
enables extraction of 2D poses with an off-the-shelf 2D pose
estimator. We use OpenPose [13] in our experiments and
note that our approach is agnostic to the concrete method
of 2D pose detection. We provide more in-depth discussion
and additional experiments in the appendix.

We consider the 9 upper-body joints of the OpenPose
skeletons, as the other joints are almost always occluded
in the video observations, and remove global translation by
centering each 2D pose at the neck joint.

Characteristic poses, in contrast to an arbitrary pose
within a labeled action range, are the most representative
pose of that action, and are annotated for all sub-actions in
each sequence as the most articulated pose of that sub-action,
following the annotation protocol of [22]. Annotation can be
done efficiently and was performed by the authors within just
32 hours, yielding a total of →18,000 characteristic poses

(→12,000 for MPII Cooking II and →6,000 for IKEA-ASM).
These poses are indicative of the action they represent as
demonstrated in Tab. 2: Using such poses significantly im-
proves performance, validating our annotation protocol.

For the 3D adversarial loss, we use →800,000 human
poses from popular 3D pose datasets: Human3.6m [42],
AMASS [60], and GRAB [82]. Note that none of these 3D
poses have any correspondence with the 2D posed actions
from the MPII Cooking II dataset, instead depicting various
human skeletons in natural and diverse poses.

5. Results
We evaluate sequence forecasting of action labels and char-
acteristic 3D poses on the MPI Cooking II [72] and IKEA-
ASM [8] datasets, and 3D pose quality by comparing to our
database of high-fidelity 3D poses.

5.1. Evaluation Metrics
2D Pose Error. Since we only have 2D ground-truth data
available for complex action sequences, we first project pre-
dicted 3D poses back into 2D, and evaluate the 2D mean
per-joint position error (MPJPE) [42], in comparison with
2D poses extracted from ground-truth future frames using
[13]: EMPJPE = 1

M

∑M
j=1 ||X̂ ↓Xgt||2.

3D Pose Quality. In the absence of annotated ground truth
3D poses for the action video sequences, we measure the
quality of predicted 3D poses as how distinguishable they
are in comparison to a set of real 3D poses. We follow
[3] and evaluate quality by training a binary classifier on
50,000 human poses generated at different training steps
(representing examples of unrealistic 3D poses) and 50,000
real 3D pose samples. For classification accuracy a of this
classifier, quality is measured as 1 ↓ a, with a quality of 1
indicating full indistinguishability from real poses. We refer
to the appendix for more details on this quality metric.
Action Accuracy. We report the action accuracy of the pre-
dicted sequences, as the mean over all sequences in the test
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Figure 3. Action accuracy over time. Our joint action-characteristic
pose forecasting enables more robust autoregressive action fore-
casting than action prediction without considering pose.

set. We evaluate the top-n accuracy based on whether the
ground truth action is among the n highest scoring predic-
tions, for n = 1 and n = 3.

5.2. Comparison to Human Pose Forecasting

Tab. 1 compares our method to state-of-the-art 3D pose fore-
casting methods DLow [97], GSPS [63], STARS [94], and
EqMotion [93]. These methods expect sequences of ob-
served 3D human poses as input; we thus first apply a state-
of-the-art weakly supervised 3D pose estimator [88] on our
2D input poses, producing inputs and supervision in 3D. This
method estimates 3D poses using an adversarial formulation,
requiring a database of 3D poses not correlated with the 2D
pose inputs. To ensure a fair comparison, this database is
exactly the same as the one our method uses.

We chose the 3D pose estimator of [88] since its weakly
supervised formulation is most comparable to our approach.
An additional comparison to a fully supervised approach for
3D pose lifting (SPIN [50]) is provided in the appendix.

We then train the 3D pose prediction methods from
scratch on this generated data, using their original parameter
settings. Stochastic methods DLow and GSPS are set to pre-
dict 10 possible future sequences; we report the minimum
error across these. We use STARS in the method’s deter-
ministic mode. Each method takes as input a pose history
of M poses and outputs a sequence of M poses, analogous
to our setup where each pose is a characteristic pose corre-
sponding to an action step (M = 10 for MPII Cooking II
and M = 5 for IKEA-ASM). Our approach to lift 2D to
future 3D poses and actions in an end-to-end fashion enables
more effective pose forecasting than these state-of-the-art
3D pose forecasting approaches on both datasets.

In addition, we compare to the joint 2D action and pose
forecasting approach of Zhu et al. [101]. Our approach
of forecasting long-term sequences of 3D poses alongside
actions is able to outperform their 2D MPJPE pose prediction
and action accuracy performance, due to improved spatial
reasoning when forecasting 3D poses.

Statistical 2D Baselines. We additionally compare with
two statistical baselines in 2D, following [22]: the average
target train pose, and a zero-velocity baseline which was
introduced by Martinez et al. [64] as competitive with state
of the art. We outperform both baselines, indicating that our
method learns a strong action pose representation.

5.3. Comparison to Action Label Forecasting
We compare the action accuracy of our joint action-pose
forecasting to AVT [35] and FUTR [36], two state-of-the-
art action anticipation methods, in Tab. 1. We train and
evaluate both AVT and FUTR on input RGB frames and
their action and object labels, equal to our training setup,
and use their original training settings initialized with a pre-
trained vision transformer [23] for AVT and extracted I3D
features [15] from our datasets for FUTR. Additionally, as
we consider extracted 2D poses from the input RGB images,
we also evaluate a variant that is trained and evaluated on
RGB images overlaid with 2D poses (“+Skeleton”). Our
approach outperforms these baselines in both scenarios, by
jointly predicting future actions and characteristic 3D poses.

5.4. Ablation Studies
What is the effect of pose forecasting on long-term action
understanding? Tab. 3 shows that there is a notable im-
provement in action accuracy between training only with an
action loss vs. training action and 2D pose loss jointly. This
becomes more apparent when training action only vs action
and full pose prediction (2D and 3D losses). In addition,
Fig. 3 shows the correspondence between autoregressive pre-
diction length and action accuracy: jointly forecasting poses
and actions enables more robust autoregressive forecasting
over time. We conclude that pose forecasting is beneficial
for long-term action understanding.
How does action forecasting affect pose prediction per-
formance? Tab. 3 demonstrates that pose forecasting trained
jointly with action prediction is complementary and enables
more accurate pose prediction.
What is the effect of characteristic pose forecasting?
Since state-of-the-art pose forecasting focuses on fixed frame
rate predictions independent of actions, we compare with

Poses 2D 3D Action Accuracy
Train Test MPJPE [px] ↔ Quality ↗ top-1 ↗ top-3 ↗

Uncoupled Uncoupled 75 0.29 28% 48%
Middle Middle 58 0.45 26% 43%

Random Random 67 0.37 22% 42%
Characteristic Characteristic 50 0.55 29% 51%

Table 2. Ablation on pose forecasting on MPII Cooking II [72]. Our
characteristic pose representation maximizes MPJPE and action
performance: We consider pose prediction following state-of-the-
art pose forecasting as decoupled from actions (uncoupled), as well
as poses coupled to actions but in the middle of an action range,
or at a random time therein, and our characteristic pose prediction.
The same pose type is used for both train and evaluation.
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MPII Cooking II IKEA ASM
Losses During Training 2D 3D Action Accuracy 2D 3D Action Accuracy

Action 2D Proj. 3D Adv. MPJPE [px] ↔ Quality ↗ top-1 ↗ top-3 ↗ MPJPE [px] ↔ Quality ↗ top-1 ↗ top-3 ↗
↭ ↘ ↘ – – 21% 41% – – 24% 45%
↭ ↭ ↘ 62 0.10 26% 49% 46 0.05 27% 49%
↘ ↭ ↘ 54 0.21 – – 44 0.09 – –
↘ ↭ ↭ 58 0.53 – – 43 0.29 – –
↭ ↭ ↭ 50 0.55 29% 51% 40 0.31 29% 50%

Table 3. Ablation on the effect of the action, 2D projection, and 3D adversarial losses. Combining all together for joint forecasting enables
complementary learning to produce the best performance.

such joint forecasting of action and pose where predicted
poses are sampled at equally spaced points in time in Tab. 2
(uncoupled). Additionally, we consider alternative poses to
forecast for each action rather than a characteristic 3D pose
(middle of the annotated action range, and randomly selected
within the action range). We keep the same pose representa-
tion for training and testing (i.e., evaluate on middle poses
when trained on them, etc.), for a fair comparison. We ob-
serve the best performance when forecasting characteristic
3D poses along with action labels, showing their usefulness
for forecasting long sequences of 3D poses and actions.

5.5. Qualitative Results

Qualitative evaluations for the predicted poses are shown in
Fig. 5 on data from MPII Cooking II [72] and in Fig. 4 on
data from IKEA-ASM [8]. We compare our approach with
state-of-the-art 3D pose forecasting of DLow [97], GSPS
[63], and STARS [94]. For each method, we show a 3D body
mesh in addition to the predicted 3D pose joints, to more
comprehensively show the 3D structure of the forecasting
results; we obtain body meshes by fitting SMPL [58] to each

methods’ predicted 3D body joints.
As there is no 3D ground truth available, we show the

camera perspective with background for context as well
as without background for a 3D pose only version. The
two views demonstrate the fit to the ground truth 2D along
with the quality of the 3D pose, respectively. Our approach
leads to poses that better follow the ground-truth action
poses in 2D compared to both previous methods while still
maintaining a valid pose structure in 3D. Notably, this is
true for both datasets, as our approach effectively forecasts
the different data characteristics of both cooking as well as
furniture assembly. In particular, our joint action-3D pose
forecasting enables more accurate forecasting with diverse
and accurate 3D pose structures.

5.6. Limitations
While we have demonstrated the potential of joint action
and 3D pose forecasting, several limitations remain. For
instance, our method leverages a separate 2D pose extraction
as input to training, while an end-to-end formulation could
potentially better leverage other useful signal in the input
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frames. Additionally, a more holistic body representation
than pose joints would be important for finer-grained inter-
actions that involve reasoning over small limbs (e.g., hands)
and body surface contact.

6. Conclusion
In this paper, we proposed to forecast future human behavior
by jointly predicting future actions alongside characteris-
tic 3D poses. We do not require any 3D annotated action
sequences, or 3D input data; instead, we learn complex ac-
tion sequences from 2D action video data, and regularize

predicted poses with an adversarial formulation against un-
correlated 3D pose data. Experiments demonstrate that our
joint forecasting enables complementary feature learning,
outperforming each individual task considered separately.
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Appendix

We show in this appendix additional qualitative (Sec. A) and
quantitative (Sec. B) results, detail our baseline evaluation
protocol (Sec. C), elaborate on the 3D quality metric (Sec. D),
demonstrate the ability of our method to generalize to multi-
actor scenarios (Sec. E), verify our method’s robustness to
2D detection results (Sec. F), show the architecture used
in our approach (Sec. G), and provide additional details
regarding the data (Sec. H).

A. Additional Qualitative Results

Fig. 6 shows additional qualitative results of our method, on
both MPII Cooking 2 [72] (left column) and IKEA-ASM [8]
(right column), as compared to pose baselines DLow [97],
GSPS [63], and STARS [94].

B. Additional Quantitative Results

B.1. Characteristic Poses

Analogous to Tab. 2 in the main paper, Tab. 8 shows an ab-
lation on pose timings and compares our approach of using
characteristic poses to poses taken at regular time intervals
(“uncoupled”) as well as in the middle or at a random time
of an action, on IKEA-ASM [8] data. To further illustrate
this point, Tab. 4 shows additional ablations: Poses predicted
at random points in the sequence, but at most 1s from the
closest characteristic pose (“centered on the characteristic
pose”) and predicting characteristic poses but evaluating in-
terpolated regularly spaced poses. Both demonstrate that
the usage of characteristic poses improves performance com-
pared to other approaches while still being outperformed by
directly predicting characteristic poses.

2D 3D Action Accuracy
Poses MPJPE [px] ↔ Quality ↗ top-1 ↗ top-3 ↗

Uncoupled 75 0.29 28% 48%
Middle 58 0.45 26% 43%

Random 67 0.37 22% 42%
Centered on Char. Poses 69 0.33 28% 50%
Interp. from Char. Poses 62 0.13 29% 51%

Characteristic 50 0.55 29% 51%

Table 4. Ablation on pose forecasting on MPII Cooking II [72]. We
consider pose prediction following state-of-the-art pose forecasting
as decoupled from actions (uncoupled), as well as poses coupled to
actions in various fashions: middle (the middle pose of an action
range), random (a random pose of the action), random but at most
1s from the closest characteristic pose (centered), regularly spaced
poses interpolated from characteristic pose prediction, and our
characteristic pose prediction.

B.2. Lifting 2D Predictions to 3D
In Tab. 1 in the main paper, we compare to first lifting input
poses into 3D, then performing 3D motion prediction. Tab. 5
evaluates the other way around: Predicting 2D poses and
action labels jointly with [101], then lifting the predicted 2D
poses into 3D with RepNet [88] for evaluation. Our method
outperforms both approaches.

MPII Cooking II IKEA ASM
2d 3d Action Accuracy 2d 3d Action Accuracy

Approach MPJPE [px] ↔ Quality ↗ top-1 ↗ top-3 ↗ MPJPE [px] ↔ Quality ↗ top-1 ↗ top-3 ↗
[101] + [88] 63 0.50 27% 43% 53 0.21 22% 46%
Ours 50 0.55 29% 51% 40 0.31 29% 50%

Table 5. Our approach of jointly forecasting 3D poses and actions
achieves better performance compared to 2D pose + action fore-
casting [101] and then lifting forecasted 2D poses into 3D using
[88].

B.3. Input Noise Ablation
Tab. 6 shows the effect using a noise vector as additional
input to our method. It encourages more diversity in predic-
tions, which benefits pose and action forecasting.

B.4. Input Objects Ablation
Inputting initially observed objects slightly improves results
(Tab. 6), due to added context for broad actions like “add,”
e.g.“add ingredient” vs. “add water to pot.”.

MPII Cooking II IKEA ASM
2d 3d Action Accuracy 2d 3d Action Accuracy

Approach MPJPE [px] ↔ Quality ↗ top-1 ↗ top-3 ↗ MPJPE [px] ↔ Quality ↗ top-1 ↗ top-3 ↗
No Objects 61 0.52 28% 51% 42 0.30 29% 50%
No Noise 55 0.49 29% 50% 48 0.29 30% 51%
Ours 50 0.55 29% 51% 40 0.31 29% 50%

Table 6. Ablations studies with no object input and no noise input.

B.5. Statistical Action Baselines
We additionally evaluate “Zero Velocity” and “Train Aver-
age” for action labels, analogous to forecasted poses, i.e.
repeating the last action label and repeating the most fre-
quent train action label, in Tab. 7. These baselines perform
particularly poorly since actions are rarely repeated or fixed
for entire sequences.

MPII Cooking II IKEA ASM
Approach top-1 ↗ top-3 ↗ top-1 ↗ top-3 ↗
Repeat Last Input 9% 43% 8% 35%
Most Common in Train 6% 10% 7% 26%
Ours 29% 51% 29% 50%

Table 7. Statistical action baselines: (1) Repeat the last input action
label (2) Using the most common action label of the train set.

C. Baseline Evaluation Details
C.1. State-of-the-Art Pose Forecasting
We evaluate the performance of our baselines using the same
input data that is available to our method. Pose forecast-
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Figure 6. Additional qualitative comparison between DLow [97], GSPS [63], STARS [94], and our method on two sequences (left on MPII
Cooking 2 [72], right on IKEA-ASM [8]). For each method, we show a the 3D predicted pose projected into the 2D target view, without
background for a pose only version (small) as well as with background for context (full size).

ing baselines DLow [97], GSPS [63], and STARS [94] are
trained and evaluated on sequences of our manually anno-
tated characteristic poses. Since there is no ground-truth
3D pose data available, we first use RepNet [88], a state-of-
the-art 3D pose estimation method, to retrieve 3D skeletons
from our 2D characteristic poses. We train this method from
scratch using the same database of valid 3D poses that is

available to our method, allowing for a fair comparison.

C.2. State-of-the-Art Action Label Forecasting

We train action baselines AVT [35] and FUTR [36] using
sequences of our characteristic pose frames together with
the corresponding action labels as input. For AVT, we use
their default parameters used by the original authors for
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2D 3D Action Accuracy
Poses MPJPE [px] ↔ Quality ↗ top-1 ↗ top-3 ↗

Uncoupled 64 0.30 28% 48%
Middle 47 0.35 28% 47%

Random 49 0.24 28% 49%
Characteristic 41 0.35 29% 50%

Table 8. Ablation on pose forecasting, on the IKEA-ASM [8]
dataset. We consider predicting poses following state-of-the-art
pose forecasting in a decoupled fashion from actions (uncoupled),
as well as poses coupled to actions in various fashions: middle
(the middle pose of an action range), random (a random pose of
the action), and our characteristic pose prediction, which benefits
action prediction the most.

their ablation on third-person dataset 50Salads/Breakfast,
inputting our RGB frames instead. For a fair comparison,
we also supply the action and object history for each step
by encoding both label sequences with a small encoder (a
single linear layer) each and fuse these features with the
image features generated by the AVT encoder. For FUTR,
we first generate I3D features [15] from our RGB frames
and concatenate them with action and object history after
encoding these in the same way as for AVT.

We then train two variants of both methods: One with
the raw RGB frames, action history, and object history as
input (“AVT RGB” and “FUTR RGB” in the main results
figure), and one with additional 2D skeleton input (skeletons
rendered on top of the RGB frames) from the skeletons that
we extract with OpenPose [13] (“AVT RGB+Skeleton” and
“FUTR RGB+Skeleton”).

C.3. Supervised 3D Pose Lifting
For better comparability, we used weakly supervised ap-
proach [88] for pose lifting. This is important, since there
is no ground-truth coupling between 2D and corresponding
3D action poses in our setting. Nevertheless, we compare to
baselines [63, 94, 97] in Tab. 9 with poses lifted using fully
supervised pre-trained SPIN [50]; our approach outperforms
even these improved baselines in terms of 2D MPJPE.

MPII Cooking II IKEA ASM
2d 3d 2d 3d

Approach MPJPE [px] ↔ Quality ↗ MPJPE [px] ↔ Quality ↗
SPIN [50] + DLow [97] 81 0.89 43 0.43
SPIN [50] + GSPS [63] 74 0.66 45 0.29
SPIN [50] + STARS [94] 66 0.80 41 0.40
Ours 50 0.55 40 0.31

Table 9. Comparison to pose baselines using fully-supervised
pre-trained 3D pose estimation method SPIN [50]. In our main
experiments, we instead compare to weakly supervised baseline
RepNet [88] for a fair comparison.

D. 3D Quality Metric Details
For our pose quality metric, we use a 3-layer MLP binary
classifier of 3D poses. Training poses are randomly sam-

pled from ground-truth (real) and predicted (fake) collected
during the training process of our method and all baselines,
producing a total of 100k real and fake poses each. Fake
poses exhibit a range of small to large unrealistic deforma-
tions, depending on when they were sampled, ranging from
random joint placements to widely inconsistent bone lengths
to unnatural joint angles to only minor inconsistencies in the
bone lengths. The classifier is trained once and then used to
evaluate all methods, to ensure a fair comparison.

As an additional intuitive metric we show the mean ab-
solute bone length difference of right and left body in 3D
in Tab. 10. We observe that this metric correlates with our
classifier-based quality.

MPII Cooking II IKEA ASM
Approach Symm. [mm] ↔ Quality ↗ Symm. [mm] ↔ Quality ↗

RepNet [88] + DLow [97] 13 0.72 45 0.31
RepNet [88] + GSPS [63] 18 0.66 56 0.15

RepNet [88] + STARS [94] 16 0.62 46 0.27
No 3D Adversarial Loss 75 0.10 66 0.05
2D Projection Loss Only 57 0.21 61 0.09

No Action Loss 22 0.53 39 0.29
Ours 22 0.55 39 0.31

Table 10. Additional quality metric and its correlation to our
classifier-based metric: Absolute bone length difference between
right and left body, compared to pose baselines and ablations.

E. Multi-Actor Interaction Scenario
In addition to our experiments with single human actors in
the main paper, we show here that our approach is able to
generalize to multi-actor scenarios, with minor modifications.
We show this in Tab. 11 with additional dataset TICaM
[47] where driver and passenger are interacting in an in-car
driving scenario (actions include “talking”, various handoffs).
Our modifications are: (1) Additional encoder and decoder
for the second person (2) Interaction pooling introduced
in Social GAN [40]. Our modified method outperforms
simple combinations of previous works, with and without
interaction modelling, demonstrating the wide applicability
of our method.

2d 3d Action Accuracy
Approach MPJPE [px] ↔ Quality ↗ top-1 ↗ top-3 ↗
FUTR RGB + Skeleton - - 38% 64%
RepNet + STARS 89 0.34 - -
Ours (No Interactions) 68 0.40 40% 67%
Ours (Interaction Modeling) 58 0.41 48% 73%

Setting

Table 11. Our approach can also be applied to multi-actor scenarios:
We demonstrate improved performance on suitable dataset TICaM
[47], with and without explicit interaction modeling.
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F. 2D Input Pose Quality
In Fig. 12, we replace OpenPose with AlphaPose [24] and
Detectron2 [91], both only slightly changing the final results,
indicating that our method does not depend on a specific
2D pose detector. We also experiment with added random
noise to OpenPose: our method remains relatively robust.
The coupled changes in pose and action accuracy further
demonstrate the effectiveness of our joint feature learning.

MPII Cooking II 2d 3d Action Accuracy
Approach MPJPE [px] ↔ Quality ↗ top-1 ↗ top-3 ↗
OpenPose + max. 20px noise 59 0.45 26% 47%
OpenPose + max. 10px noise 57 0.47 26% 46%
Ours (using Detectron2) 47 0.54 28% 55%
Ours (using AlphaPose) 46 0.57 28% 56%
Ours (using OpenPose) 50 0.55 29% 51%

Table 12. Robustness of our method to different 2D pose detectors
Detectron2 [91] and AlphaPose [24] as well as randomly added
2D noise. This only slightly affects our pose and action accuracy,
further demonstrating the effectiveness of our joint feature learning.

G. Architecture Details
Generator Network Fig. 7 shows our generator architecture
in detail with input and output dimensions for linear layers,
and the slope for leaky ReLU layers.
Critic Network Our adversarial critic network processes
generator outputs with 4 linear layers and 3 kinematic chain
layers which are designed to encourage correct bone lengths
(as shown in [88]), in parallel. 2 linear layers then combine
both outputs and produce the final critic score.

H. Data Details
H.1. Camera Parameters
While intrinsic camera parameters are often available in
captured image data, the camera parameters for captured
video were not available from the MPII Cooking 2 [72]
dataset to use for pose projection. We thus optimized for
intrinsic camera parameters from the video sequence data
in correspondence with the 3D scene reconstruction of the
empty kitchen environment, as given by [81]. For IKEA-
ASM [8], we use the provided intrinsic camera parameters
directly. Note that camera parameters are only required to
be fixed within a sequence (i.e. no moving camera) but can
change between sequences.

H.2. 3D Pose Database Alignment
We use popular 3D pose datasets Human3.6m [42],
AMASS [60], and GRAB [82] for our database of uncorre-
lated valid 3D poses. All poses are pre-processed to follow
the OpenGL coordinate system and aligned with respect to
the neck joint.

Ours OpenPose Human3.6m SMPL-X
Idx Name Idx Name Idx Name Idx Name
0 head 0 nose 15 head 15 head
1 neck 1 neck 13 thorax 12 neck
2 right shoulder 2 right shoulder 25 right shoulder 17 right shoulder
3 right elbow 3 right elbow 26 right elbow 19 right elbow
4 right hand 4 right hand 27 right wrist 42 right index 3
5 left shoulder 5 left shoulder 17 left shoulder 16 left shoulder
6 left elbow 6 left elbow 18 left elbow 18 left elbow
7 left hand 7 left wrist 19 left wrist 27 left index 3
8 hip 8 mid-hip 0 hip 0 pelvis

Table 13. Human skeleton joint layout used in our experiments, for
both 2D and 3D skeletons.

H.3. Pose Joint Layout
We use the 9 upper-body joints of the native OpenPose [13]
joint layout for skeletons in 2D, and adapt skeletons in our
3D database to use the same format. Tab. 13 shows the
correspondence between our joint layout, OpenPose [13],
Human3.6m [42], and SMPL-X [68]. 3D datasets AMASS
[60] and GRAB [82] provide human bodies in SMPL-X for-
mat; we first extract their skeleton joints using their publicly
available code and then convert it into our layout using the
correspondences in Tab. 13.

H.4. MPII Cooking 2 Details
We use action labels as annotated in the 2D cooking action
dataset MPII Cooking 2 [72]. These annotations provide
action labels (87 classes) for frame ranges in each sequence
as well as the involved objects (187 classes). We first cluster
similar actions together, yielding a total of 37 action clusters,
which we then use as action classes in our experiments.

In addition, since our goal is to forecast upper-body ac-
tions with objects in the foreground, we remove instances
of poses and corresponding actions that occur in the back-
ground - e.g., when taking out objects from the cupboard, or
from the fridge.

In total, there are 272 cooking action sequences; we create
a random train/val/test split along sequences with a ratio of
70% / 15% / 15%, yielding 190, 40, 40 sequences for each
set.

H.5. IKEA-ASM Details
We use action labels as annotated in the IKEA furniture
assembly dataset IKEA-ASM [8]. These annotations provide
action labels (31 classes) for frame ranges in each sequence;
we use them without explicit object information since each
action already encodes its associated object.

In total, there are 370 furniture assembly action se-
quences; we create a random train/val/test split along se-
quences with a ratio of 70% / 15% / 15%, yielding 227, 48,
48 sequences for each set.
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Contact-Guided 3D Human-Object Interaction Synthesis from Text

Conditioning on Object Trajectory Without Re-Training

Application to Objects in Static 3D Scene Scans
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Figure 1. We present an approach to generate realistic 3D human-object interactions (HOIs), from a text description and given static object
geometry to be interacted with (left). Our main insight is to explicitly model contact (visualized as colors on the body mesh, closer contact
in red), in tandem with human and object sequences, in a joint diffusion process. In addition to synthesizing HOIs from text, we can also
synthesize human motions conditioned on given object trajectories (top right), and generate interactions in static scene scans (bottom right).

Abstract

We propose CG-HOI, the first method to address the task
of generating dynamic 3D human-object interactions (HOIs)
from text. We model the motion of both human and object
in an interdependent fashion, as semantically rich human
motion rarely happens in isolation without any interactions.
Our key insight is that explicitly modeling contact between
the human body surface and object geometry can be used as
strong proxy guidance, both during training and inference.
Using this guidance to bridge human and object motion
enables generating more realistic and physically plausible
interaction sequences, where the human body and corre-
sponding object move in a coherent manner. Our method
first learns to model human motion, object motion, and con-
tact in a joint diffusion process, inter-correlated through
cross-attention. We then leverage this learned contact for
guidance during inference to synthesize realistic and co-
herent HOIs. Extensive evaluation shows that our joint
contact-based human-object interaction approach generates
realistic and physically plausible sequences, and we show

two applications highlighting the capabilities of our method.
Conditioned on a given object trajectory, we can generate
the corresponding human motion without re-training, demon-
strating strong human-object interdependency learning. Our
approach is also flexible, and can be applied to static real-
world 3D scene scans.

1. Introduction
Generating human motion sequences in 3D is important for
many real-world applications, e.g. efficient realistic charac-
ter animation, assistive robotic systems, room layout plan-
ning, or human behavior simulation. Crucially, human inter-
action is interdependent with the object(s) being interacted
with; the object structure of a chair or ball, for instance, con-
strains the possible human motions with the object (e.g., sit-
ting, lifting), and the human action often impacts the object
motion (e.g., sitting on a swivel chair, carrying a backpack).

Existing works typically focus solely on generating dy-
namic humans, and thereby disregarding their surroundings
[14, 17, 59, 63, 106, 109], or grounding such motion gen-
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erations in a static environment that remains unchanged
throughout the entire sequence [32, 37, 80, 82, 86, 103, 107,
108, 111]. However, real-world human interactions affect
the environment. For instance, even when simply sitting
down on a chair, the chair is typically moved: to adjust it
to the needs of the interacting human, or to move it away
from other objects such as a table. Thus, for realistic mod-
eling of human-object interactions, we must consider the
interdependency of object and human motions.

We present CG-HOI, the first approach to address the task
of generating realistic 3D human-object interactions from
text descriptions, by jointly predicting a sequence of 3D
human body motion along with the object motion. Key to our
approach is to not only model human and object motion, but
to also explicitly model contact as a bridge between human
and object. In particular, we model contact by predicting
contact distances from the human body surface to the closest
point on the surface of the object being interacted with. This
explicit modeling of contact helps to encourage human and
object motion to be semantically coherent, as well as to
provide a constraint indicating physical plausibility (e.g.,
discouraging objects to float without support).

CG-HOI jointly models human, object, and contact to-
gether in a denoising diffusion process. Our joint diffusion
model is designed to encourage information exchange be-
tween all three modalities through cross-attention blocks.
Additionally, we employ a contact weighting scheme, based
on the insight that object motion, when being manipulated
by a human, is most defined by the motion of the body part
in closest contact (Fig. 3). We make use of this by generating
separate object motion hypotheses for multiple parts of the
human body and aggregating them based on that part’s pre-
dicted contact. During inference, we leverage the predicted
contact distances to refine synthesized sequences through
our contact-based diffusion guidance, which penalizes syn-
thesizing sequences with human-object contact far from the
predicted contact distances.

Our method is able to generate realistic and physically
plausible human-object interactions, and we evaluate our
approach on two widely-used interaction datasets, BE-
HAVE [9] and CHAIRS [36]. In addition, we also demon-
strate the usefulness of our model with two related appli-
cations: First, generating human motion given a specific
object trajectory without any retraining, which demonstrates
our learned human-object motion interdependencies. Sec-
ond, populating a static 3D scene scan with human-object
interactions of segmented object instances, showing the ap-
plicability of our method to general real-world 3D scans.

In summary, our contributions are three-fold:
• We propose an approach to generate realistic, diverse, and

physically plausible human-object interaction sequences
by jointly modeling human motion, object motion, and
contact through cross-attention in a diffusion process.

• We formulate a holistic contact representation: Object
motion hypotheses are generated for multiple pre-defined
points on the surface of the human body and aggregated
based on predicted contact distances, enabling comprehen-
sive body influence on contact while focusing on the body
parts in closer contact to the object.

• We propose a contact-based guidance during synthesis of
human-object interactions, leveraging predicted contacts
to refine generated interactions, leading to more physically
plausible results.

2. Related Work
3D Human Motion Generation. Generating sequences of
3D humans in motion is a task which evolved noticeably over
the last few years. Traditionally, many methods used recur-
rent approaches [2, 15, 21, 23, 33, 52] and, improving both
fidelity and predicted sequence length, graph- and attention-
based frameworks [47, 48, 70]. Notably, generation can
either happen deterministically, predicting one likely future
human pose sequence [19, 21, 47, 48, 52], or stochastically,
thereby also modelling the uncertainty inherent to future
human motion [4, 7, 10, 18, 49, 89, 90, 95].

Recently, denoising diffusion models [66, 67] showed
impressive results in 2D image generation, producing high
fidelity and diverse images [31, 67]. Diffusion models allow
for guidance during inference, with classifier-free guidance
[8, 54] widely used to trade off between generation quality
and diversity. Inspired by these advances, various methods
have been proposed to model 3D human motion through dif-
fusion, using U-Nets [14, 17, 59, 63, 106, 109], transformers
[1, 59, 65, 68, 73, 74, 81, 83, 84, 91, 92, 98], or custom ar-
chitectures [3, 6, 13, 16, 99]. Custom diffusion guidance
has also been shown to aid controllability [34, 39, 62] and
physical plausibility [96].

In addition to unconditional motion generation, condi-
tioning on text descriptions allows for more control over
the generation result [63, 73, 81, 84, 98, 109]. In fact, gen-
erating plausible and corresponding motion from textual
descriptions has been an area of interest well before the
popularity of diffusion models [5, 14, 26, 38, 40, 57, 97].

These methods show strong potential for 3D human mo-
tion generation, but focus on a skeleton representation of
the human body, and only consider human motion in isola-
tion, without naturally occurring interactions. To generate
realistic human-object interactions, we must consider the
surface of the human body and its motion with respect to
object motion, which we characterize as contact.
3D Human Motion in Scenes. As human motion typically
occurs not in isolation but in the context of an object or
surrounding environment, various methods have explored
learning plausible placement of humans into scenes, both
physically and semantically, [27, 29, 30, 87, 100, 104], fore-
casting future motion given context [12, 50], or generating
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Figure 2. Method Overview. Given a text description and object geometry, CG-HOI produces a human-object interaction (HOI) sequence,
modeling both human and object motion. To produce realistic HOIs, we additionally model contact to bridge the interdependent motions.
Our method jointly generates all three during training (left), using a U-Net-based diffusion with cross-attention across human, object, and
contact. During inference (right), we drive synthesis under guidance of estimated contact to sample more physically plausible interactions.

plausible walking and sitting animations [28, 32, 37, 78–
80, 82, 86, 103, 107, 108, 111]. This enables more natural
modeling of human reactions to their environment; however,
the generated interactions remain limited due to the assump-
tion of a static scene environment, resulting in a focus on
walking or sitting movements.

Recent methods have also focused on more fine-grained
interactions by generating human motion given a single static
object [42, 43, 69, 71, 85, 101, 102]. While these methods
only focus on human motion generation for a static object,
[44] generates human motion conditioned on object mo-
tion and [77, 88] generate full human-object interaction se-
quences directly from an initial sequence observation. Our
approach also models both human and object motion, but
we formulate a flexible text-conditioned generative model
for dynamic human and object motion, modeling the interde-
pendency between human, object, and contact to synthesize
more realistic interactions under various application settings.

Contact Prediction for Human-Object Interactions.
While there is a large corpus of related work for human
motion prediction, only few works focus on object motion
generation [20, 53, 61, 114]. Notably, these methods predict
object movement in isolation, making interactions limited, as
they typically involve interdependency with human motion.

Contact prediction has been most studied in recent years
for the task of fine-grained hand-object interaction [11, 22,
41, 45, 93, 110, 112]. It is defined either as binary labels on
the surface [11, 22, 41, 45, 93, 110] or as the signed distance
to a corresponding geometry point [112]. In these works,
predicting object and hand states without correct contact
leads to noticeable artifacts. Contact prediction itself has
also been the focus of several works [24, 35, 75, 85], either
predicting contact areas or optimizing for them.

Applied to the task of generating whole-body human-
object interactions, this requires access to the full surface
geometry of both object and human. Only few recent motion
generation works focus on generating full-body geometric

representations of humans [51, 56, 57, 72, 89, 103, 105]
instead of simplified skeletons which is a first step towards
physically correct interaction generation. However, while
several of these works acknowledge that contact modeling
would be essential for more plausible interactions [56, 57,
103], they do not model full-body contact.

We approach the task of generating plausible human-
object motion from only the object geometry and a textual
description as a joint task and show that considering the joint
behavior of full-body human, object, and contact between
the two benefits output synthesis to generate realistic human-
object interaction sequences.

3. Method Overview
CG-HOI jointly generates sequences of human body and
object representations, alongside contact on the human body
surface. Reasoning jointly about all three modalities in both
training and inference enables generation of semantically
meaningful human-object interaction sequences.

Fig. 2 shows a high-level overview of our approach: We
consider as condition a brief text description T of the action
to be performed, along with the static geometry G of the
object to be interacted with, and generate a sequence of F
frames x = [x1,x2, ...,xF ] where each frame xi consists of
representations for the object transformation oi, for the hu-
man body surface hi, and for the contact ci between human
and object geometry. We denote as H = {hi} the human
body representations, O = {oi} the object transformations,
and C = {ci} the contact representations.

We first train a denoising diffusion process to generate
H , O, and C, using a U-Net architecture with per-modality
residual blocks and cross-attention modules. Using cross-
attention between human, object motion, and contact allows
for effectively learning interdependencies and and feature
sharing (Sec. 4). We use the generated contact to guide
both training and inference: Instead of predicting one object
motion hypothesis per sequence, we generate multiple, and
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aggregate them based on predicted contacts, such that body
parts in closer contact with the object have a stronger correla-
tion with the final object motion (Sec. 4.3). During inference,
the trained model generates H , O, and C. For each step of
the diffusion inference, we use predicted contact C to guide
the generation of H and O, by encouraging closeness of
recomputed contact and predicted contact, producing more
refined and realistic interactions overall (Sec. 5).

4. Human-Object Interaction Diffusion
4.1. Probabilistic Denoising Diffusion
Our approach uses a diffusion process to jointly generate a
sequence of human poses, object transformations, and con-
tact distances in a motion sequence from isotropic Gaussian
noise in an iterative process, removing more noise at each
step. More specifically, during training we add noise depend-
ing on the time step (“forward process”) and train a neural
network to reverse this process, by directly predicting the
clean sample from noisy input. Mathematically, the forward
process follows a Markov chain with T steps, yielding a
series of time-dependent distributions q(zt|zt→1) with noise
being injected at each time step until the final distribution
zT is close to N (0, I). Formally,

q(zt|zt→1) = N (
√

ωtzt→1 + (1→ ωt)I) (1)

with the variance of the Gaussian noise at time t denoted as
ωt, and ω0 = 0.

Since we adopt the Denoising Diffusion Probabilistic
Model [31], we can sample zt directly from z0 as

zt =
↑
εtz0 +

↑
1→ εtϑ (2)

with εt =
∏t

t→=0(1→ ωt), and ϑ ↓ N (0, I).
For the reverse process, we follow [59, 73, 88], directly

recovering the original signal z̃ instead of the added noise.
Human-Object Interactions To model human-object in-
teractions with diffusion, we employ our neural network
formulation F . F operates on the noised vector of concate-
nated human, object, and contact representations, together
with the current time step t, and a condition consisting of
object point cloud G, encoded by an encoder EG, and text
information T , encoded by encoder ET . Formally,

z̃ = F(zt, t, EG(G)↔ ET (T )) (3)

More specifically, in our scenario ET extracts text fea-
tures with a pre-trained CLIP [60] encoder. Encoder EG

processes object geometry G as a uniformly sampled point
cloud in world coordinate space with a PointNet [58] pre-
trained on object parts segmentation.

Object transformations oi are represented as global trans-
lation and rotation using continuous 6D rotation representa-
tion [113]. In contrast to prior work [18, 42, 73, 81, 95, 98,

101] which focused on representing human motion in a sim-
plified manner as a collection of J human joints, disregard-
ing both identity-specific and pose-specific body shape, we
model physically plausible human-object contacts between
body surface and geometry. Thus, we represent the human
body hi in SMPL [46] parameters: hi = {hp

i , h
b
i , h

r
i , h

t
i}

with pose parameters hp
i ↗ R63, shape parameters hb

i ↗ R10,
as well as global rotation hr

i ↗ R3 and translation ht
i ↗ R3.

These body parameters can then be converted back into a
valid human body surface mesh in a differentiable manner us-
ing the SMPL [46] model. This allows us to reason about the
contact between human body surface and object geometry.
We represent contact ci on the human body as the distance
between a set of M = 128 uniformly distributed motion
markers on the body surface to the closest point of the object
geometry, for each marker. Specifically, we represent contact
for frame xi and j-th contact marker (j ↗ {0..M → 1}) cji
as its distance from the human body surface to the closest
point on the same frame’s object geometry surface.

4.2. Human-Object-Contact Cross-Attention
We jointly predict human body sequences H = {hi}, ob-
ject transformations O = {oi}, and corresponding contact
distances C = {ci} in our diffusion approach. We em-
ploy a U-Net backbone for diffusion across these outputs,
with separate residual blocks for human, object, and con-
tact representations, building modality-specific latent feature
representations. As we aim to model the inter-dependency
across human, object, and contact, we introduce custom
human-object-contact cross-attention modules after every
residual block where each modality attends to the other two.

We follow the formulation of Scaled Dot-Product Atten-
tion [76], computing the updated latent human body feature:

hi = softmax

(
QKT

↑
d

)
V , (4)

with query Q = H , and key and value K = V = O ↘ C
(↘ denotes concatenation), i.e. Q ↗ RF↑d and K,V ↗
R2F↑d. As in [76], d denotes the dimensionality of query
and key. Applying this similarly to O and C yields the final
features after each cross-attention module.

4.3. Contact-Based Object Transform Weighting
As visualized in Fig. 3, object motion is naturally most
influenced by parts of the human body in very close contact
to the object (as they are often the cause of that motion),
and less impacted (if at all) by body parts further away.
For instance, if a person moves an object with their hands,
the object follows the hands but not necessarily other body
parts (e.g., body and feet may remain static or walk in a
different direction). Thus, instead of directly generating
one object motion hypothesis oi alongside the corresponding
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Figure 3. An object’s trajectory is largely defined by the motion
of the region of the body in close contact with the object, e.g. the
hand(s) when carrying an object (left, middle) or the lower body
when moving with an object while sitting (right). This informs our
contact-based approach to generating object motion.

human motion hi, we couple oi to the M body contact points
j ↗ {0..M → 1} and their predicted distances {cji} between
human body surface and object geometry.

Formally, we predict object transformation hypotheses oji
for each contact point on the human body, and weigh them
with the inverse of their predicted contact distance cji :

oi =
1

∑
j max(|ci|)→ |cji |

M→1∑

j=0

(max(|ci|)→ |cji |)o
j
i (5)

4.4. Loss Formulation
During training, the input is a noised vector z, containing F
frames {xi}, each a concatenation of human body represen-
tation hi, object transformation oi, and contact parameters
ci. As condition C, we additionally input encoded object
geometry G and text description T . The training process is
then supervised with the ground-truth sequence containing
ĥi, ôi, ĉi, minimizing a common objective:

L = ϖh||hi → ĥi||1 + ϖo||oi → ôi||1 + ϖc||ci → ĉi||2, (6)

with ϖh = 1.0,ϖo = 0.9,ϖc = 0.9. We use classifier-free
guidance [8] for improved fidelity during inference, thus
masking out the conditioning signal with 10% probability.

5. Interaction Generation
Using our trained network model, we can generate novel
human-object interaction sequences for a given object geom-
etry and a short text description using our weighting scheme
for generating object transformations, and a custom guid-
ance function on top of classifier-free guidance to generate
physically plausible sequences.

Specifically, we use our trained model to reverse the for-
ward diffusion process of Eq. 2: Starting with noised sample
zT ↓ N (0, I), we iteratively use our trained network model
F to estimate cleaned sample z0:

zt→1 =
↑
εtz̃+

↑
1→ εtϑ. (7)

5.1. Contact-Based Diffusion Guidance
While our joint human-object-contact training already leads
to plausible motions, generated sequences are not explicitly
constrained to respect contact estimates during inference,
which can lead to inconsistent contact between human and
object motion (e.g., floating objects). Thus, we introduce
a contact-based guidance during inference to refine predic-
tions, using a cost function G(zt) = ||ct → ct||22 which takes
as input the denoised human, object, and contact predictions
zt = [ht, ot, ct] at diffusion step t and compares predicted ct
and actual contact distances ct for each contact point. Based
on this, we then calculate the gradient ≃ztG(zt).

We use this gradient for diffusion guidance, following
[39], by re-calculating the mean prediction µt at each time t:

µ̂t = µt + s
∑

t

≃xtG(xt), (8)

for a scaling factor s. This guidance is indirect but dense in
time, and is able to correct physical contact inconsistencies
in the predicted sequences during inference time, without
requiring any explicit post-processing steps.

5.2. Conditioning on Object Trajectory
While our model has been trained with text and static object
geometry as condition, we can also apply the same trained
model for conditional generation of a human sequence given
an object sequence and text description. Note that this does
not require any re-training, as our model has learned a strong
correlation between human and object motion. Instead, we
use a replacement-based approach, and inject the given ob-
ject motion O↓ into the diffusion process during inference at
every step. Following Eq. 7, we obtain:

zt→1 =
↑
εtz̃↓t +

↑
1→ εtϑ, (9)

with z̃↓ = [ht, o↓t, ct], concatenating human motion ht, con-
tact distances ct, and injected given object motion o↓t.

6. Results
We evaluate our approach using two commonly used human-
object interaction datasets BEHAVE [9] and CHAIRS [36]
on a range of metrics, measuring motion fidelity and diversity.
We show that our approach is able to generate realistic and
diverse motion on both datasets, across a variety of objects
and types of interactions.

6.1. Experimental Setup
Datasets We conduct our experiments on two datasets con-
taining interactions between whole-body 3D humans and
corresponding objects. CHAIRS [36] captures 46 subjects
as their SMPL-X [55] bodies interacting with 81 different
types of chairs and sofas. We extract sequences in which
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BEHAVE CHAIRS
Task Approach R-Prec. (top-3) ⇐ FID ⇒ Diversity ⇑ MModality ⇑ R-Prec. (top-3) ⇐ FID ⇒ Diversity ⇑ MModality ⇑

Real (human) 0.73 0.09 4.23 4.55 0.83 0.01 7.34 3.00
Text-Cond. MDM [73] 0.52 4.54 5.44 5.12 0.72 5.99 6.83 3.45
Human InterDiff [88] 0.49 5.36 3.98 3.98 0.63 6.76 5.24 2.44
Only Ours 0.60 4.26 4.92 4.10 0.78 5.24 7.90 3.22

Real 0.81 0.17 6.80 6.24 0.87 0.02 9.91 6.12
Motion- InterDiff [88] 0.68 3.86 5.62 5.90 0.67 4.83 7.49 4.87
Cond. HOI Ours 0.71 3.52 6.89 6.43 0.79 4.01 8.42 6.29
Text- MDM [73] 0.49 9.21 6.51 8.19 0.53 9.23 6.23 7.44
Cond. InterDiff [88] 0.53 8.70 3.85 4.23 0.69 7.53 5.23 4.63
HOI Ours 0.62 6.31 6.63 5.47 0.74 6.45 8.91 5.94

Table 1. Quantitative comparison with state-of-the-art approaches MDM [73] and InterDiff [88]. Human Only results are evaluated only on
the human pose sequence, and motion-cond. denotes predictions additionally conditioned on past observations of both human and object
behavior. For metrics with →, results closer to the real distribution are better. Our approach outperforms these baselines in all three settings,
indicating a strong learned correlation between human and object motion.

both human and object are in motion, yielding ⇓ 1300 HOI
sequences, each labeled with a text description. We use a
random 80/10/10 split along object classes, ensuring that test
objects are not seen during training. BEHAVE [9] captures
8 participants as their SMPL-H [64] parameters alongside
20 different objects. This yields ⇓ 520 sequences with cor-
responding text descriptions. We use their original train/test
split. We sample both datasets at 20 frames per second,
and generate 32 frames for CHAIRS and 64 for BEHAVE,
leading to generated motion that lasts up to 3 seconds.

Implementation Details We train our model with batch size
64 for 600k steps (⇓24 hours), after which we choose the
checkpoint that minimizes validation FID, following [88].
Our attention uses 4 heads and a latent dimension of 256.
Input text is encoded using a frozen CLIP-ViT-B/32 model.
For classifier-free guidance during inference time, we use
a guidance scale of 2.5, which empirically provides a good
trade-off between diversity and fidelity. For our inference-
time contact-based guidance, we use scale s = 100.0.

6.2. Evaluation Metrics
We measure realism and diversity of combined human and
object motion, alongside closeness to the text description,
following established practices [25, 26, 73]. We first train
a joint human-object motion feature extractor and separate
text feature extractor using a contrastive loss to produce
geometrically close feature vectors {vi} for matched text-
motion pairs, and report the following metrics:
R-Precision measures the closeness of the text condition and
generated HOI in latent feature space, and reports whether
the correct match falls in the top 3 closest feature vectors.
Frechet Inception Distance (FID) is commonly used to
evaluate the similarity between generated and ground-truth
distribution in encoded feature space.
Diversity and MultiModality. Diversity measures the mo-
tion variance across all text descriptions and is defined as
1
N

∑N
i=1 ||vi → v↓i||2 between two randomly drawn subsets

{vi} and {v↓i}. MultiModality (MModality) measures the

average such variance intra-class, for each text description.
Perceptual User Study. The exact perceptual quality of
human-object interactions is difficult to capture with any
single metric; thus, we additionally conduct a user study
with 32 participants to evaluate our method in comparison to
baseline approaches. Participants are shown 10 baseline vs.
ours pairs each in side-by side views of sequences with the
same geometry and text conditioning, and asked to choose
1) Which one follows the given text better and 2) Which one
looks more realistic overall.

6.3. Comparison to Baselines

As our method is the first to enable generating human and
object motion from text, there are no baselines available
for direct comparison. InterDiff [88] is closest to our ap-
proach, performing forecasting from observed human and
object motion as input and predicting a plausible continu-
ation. In Tab. 1, we compare to ours first in their setting,
using observed motion as condition (motion-cond.), for a
fair comparison. Additionally, we modify their approach by
replacing observed motion encoders with our text encoder,
allowing for a comparison in our setting (text-cond.). We
also compare with MDM [73], a state-of-the-art method for
human-only sequence generation from text, both in their
original setting, only predicting human sequences, and ex-
tending theirs to also generate object sequences, by adding
additional tokens and geometry conditioning to their trans-
former encoder formulation. For more details of baseline
setup, we refer to the appendix. We evaluate the quality
of generated human-object interactions as well as human-
only generation, only evaluating the human sequence for our
method, as compared to the generated sequences of MDM.

Both Tab. 1 and the user study in Fig. 5 show that our
approach is able to generate more realistic and physically
plausible human-object interaction sequences than baselines.
In Fig. 4, we see that our approach synthesizes more mean-
ingful human-object interaction with respect to contact and
mitigating independent object floating.
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Condition MDM [71] InterDiff [84] Ours

Move a 
chair with 
the hand

Play with a 
yoga ball

Move a 
small table

Figure 4. Qualitative comparison to state-of-the-art methods MDM [73] and InterDiff [88]. Our approach generates high-quality HOIs by
jointly modeling contact (closer contact in red), reducing penetration and floating artifacts (black highlight boxes).

6.4. Ablation Studies

Cross-attention enables learning human-object interde-
pendencies. Tab. 2 shows that our human-object-contact
cross-attention (Sec. 4.2) significantly improves performance
by effectively sharing information between human, contact,
and object sequence modalities. In Fig. 6, we see this en-
courages realistic contact between human and object.

Figure 5. Perceptual User Study. Participants significantly favor
our method over baselines, for overall realism and text coherence.

Contact prediction improves HOI generation perfor-
mance. Predicting contact (Sec. 5) is crucial to generating
more realistic human-object sequences, resulting in more
realistic interactions between human and object (Fig. 6),
and improved fidelity (Tab. 2). Notably, learning contact
jointly with human and object motion improves overall qual-
ity, compared to a separately trained contact model used for
inference guidance (“Separate contact pred.”, Tab. 2).

Contact-based object transformation weighting improves
generation performance. Weighting predicted object mo-
tion hypotheses with predicted contact (Sec. 4.3) improves
HOI generation over naive object sequence prediction, both
quantitatively in Tab. 2 (“No contact weighting”) and visu-
ally as realistic human-object interactions in Fig. 6.

Contact-based guidance during inference helps produce
physically plausible interactions. As shown in Fig. 6 and
Tab. 2, using our guidance based on predicted contacts leads
to a higher degree of fidelity and physical plausibility.

BEHAVE CHAIRS
Approach R-Prec. (top-3) ⇐ FID ⇒ Diversity ⇑ MModality ⇑ R-Prec. (top-3) ⇐ FID ⇒ Diversity ⇑ MModality ⇑
Real 0.81 0.17 6.80 6.24 0.87 0.02 9.91 6.12
No cross-attention 0.35 10.44 8.23 7.40 0.49 10.84 12.22 10.64
No contact prediction 0.41 9.64 10.10 6.89 0.41 8.53 11.56 9.15
Separate contact pred. 0.47 8.01 5.12 5.12 0.52 9.34 7.65 4.62
No contact weighting 0.55 8.54 6.52 5.29 0.64 7.55 8.56 5.45
No contact guidance 0.59 7.22 7.84 5.30 0.70 7.41 8.05 5.76
Ours 0.62 6.31 6.63 5.47 0.74 6.74 8.91 5.94

Table 2. Ablation on our design choices. Joint contact prediction with cross-attention encourages the generation of more natural HOIs, and
our weighting scheme and inference-time contact guidance together enable the best generation performance.
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OursNo Contact Guidance

Move a yogamat

No Contact WeightingSeparate Contact Prediction

No Contact PredictionNo Cross-Attention

Condition

Figure 6. Visualization of ablations of our method design: Gen-
eration, weighting, and inference-time guidance work together to
enable realistic interactions in our method, resolving artifacts such
as object floating.

6.5. Applications

Human motion generation given object trajectory. Our
approach can be directly applied to conditionally generate
human sequences given object sequences as condition, as
shown in Fig. 7. As our model learns a strong correspon-
dence between object and human motion, facilitated by con-
tact distance predictions, we are able to condition without
any additional training.

Move a 
trashbin

Play with 
a yoga ball

Figure 7. Given an object trajectory at inference time, our method
can generate corresponding human motion without re-training.

Populating 3D scans. Fig. 8 shows that we can also apply
our method to generate human-object interactions in static

scene scans. Here, we use a scene from the ScanNet++
dataset [94], with their existing semantic object segmenta-
tion. This enables the potential to generate realistic human
motion sequences only given a static scene environment.

Sit on 
the chair

Move 
the chair

Figure 8. Application to static 3D scene scans. Our method can
generate HOIs from segmented objects in such environments.

6.6. Limitations
While we have demonstrated the usefulness of joint contact
prediction in 3D HOI generation, several limitations remain.
For instance, our method focuses on realistic interactions
with a single object. We show that this can be applied to ob-
jects in static 3D scans; however, we do not model multiple
objects together, which could have the potential to model
more complex long-term human behavior (e.g. cooking se-
quences). Additionally, our method requires expensive 3D
HOI captures for training; a weakly supervised approach
leveraging further supervision from 2D action data might
be able to represent more diverse scenarios. Similarly, our
method depends on manual text annotations; more specific
prompts might lead to more control over generated HOIs.

7. Conclusion
We propose an approach to generating realistic, dynamic
human-object interactions based on contact modeling. Our
diffusion model effectively learns interdependencies be-
tween human, object, and contact through cross-attention
along with our contact-based object transformation weight-
ing. Our predicted contacts further facilitate refinement using
custom diffusion guidance, generating diverse, realistic inter-
actions based on text descriptions. Since our model learns a
strong correlation between human and object sequences, we
can use it to conditionally generate human motion from given
object sequences. Extensive experimental evaluation con-
firms both fidelity and diversity of our generated sequences
and shows improved performance compared to baselines.
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pages 8813–8824, 2018. 3

[54] Alexander Quinn Nichol, Prafulla Dhariwal, Aditya Ramesh,
Pranav Shyam, Pamela Mishkin, Bob McGrew, Ilya
Sutskever, and Mark Chen. GLIDE: towards photoreal-
istic image generation and editing with text-guided diffusion
models. In International Conference on Machine Learning,

ICML 2022, 17-23 July 2022, Baltimore, Maryland, USA,
pages 16784–16804. PMLR, 2022. 2

[55] Georgios Pavlakos, Vasileios Choutas, Nima Ghorbani,
Timo Bolkart, Ahmed A. A. Osman, Dimitrios Tzionas, and
Michael J. Black. Expressive body capture: 3d hands, face,
and body from a single image. In IEEE Conference on Com-
puter Vision and Pattern Recognition, CVPR 2019, Long
Beach, CA, USA, June 16-20, 2019, pages 10975–10985.
Computer Vision Foundation / IEEE, 2019. 5, 18

[56] Mathis Petrovich, Michael J. Black, and Gül Varol. Action-
conditioned 3d human motion synthesis with transformer
VAE. In 2021 IEEE/CVF International Conference on Com-
puter Vision, ICCV 2021, Montreal, QC, Canada, October
10-17, 2021, pages 10965–10975. IEEE, 2021. 3

[57] Mathis Petrovich, Michael J. Black, and Gül Varol. TEMOS:
generating diverse human motions from textual descriptions.
In Computer Vision - ECCV 2022 - 17th European Confer-
ence, Tel Aviv, Israel, October 23-27, 2022, Proceedings,
Part XXII, pages 480–497. Springer, 2022. 2, 3

[58] Charles Ruizhongtai Qi, Hao Su, Kaichun Mo, and
Leonidas J. Guibas. Pointnet: Deep learning on point sets
for 3d classification and segmentation. In 2017 IEEE Con-
ference on Computer Vision and Pattern Recognition, CVPR
2017, Honolulu, HI, USA, July 21-26, 2017, pages 77–85.
IEEE Computer Society, 2017. 4, 18

[59] Sigal Raab, Inbal Leibovitch, Guy Tevet, Moab Arar,
Amit H. Bermano, and Daniel Cohen-Or. Single motion
diffusion. CoRR, abs/2302.05905, 2023. 1, 2, 4

[60] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen
Krueger, and Ilya Sutskever. Learning transferable visual
models from natural language supervision. In Proceedings
of the 38th International Conference on Machine Learning,
ICML 2021, 18-24 July 2021, Virtual Event, pages 8748–
8763. PMLR, 2021. 4

[61] Davis Rempe, Srinath Sridhar, He Wang, and Leonidas J.
Guibas. Predicting the physical dynamics of unseen 3d
objects. In IEEE Winter Conference on Applications of
Computer Vision, WACV 2020, Snowmass Village, CO, USA,
March 1-5, 2020, pages 2823–2832. IEEE, 2020. 3

[62] Davis Rempe, Zhengyi Luo, Xue Bin Peng, Ye Yuan, Kris
Kitani, Karsten Kreis, Sanja Fidler, and Or Litany. Trace
and pace: Controllable pedestrian animation via guided
trajectory diffusion. In IEEE/CVF Conference on Computer
Vision and Pattern Recognition, CVPR 2023, Vancouver, BC,
Canada, June 17-24, 2023, pages 13756–13766. IEEE, 2023.
2

[63] Zhiyuan Ren, Zhihong Pan, Xin Zhou, and Le Kang. Diffu-
sion motion: Generate text-guided 3d human motion by dif-
fusion model. In IEEE International Conference on Acous-
tics, Speech and Signal Processing ICASSP 2023, Rhodes
Island, Greece, June 4-10, 2023, pages 1–5. IEEE, 2023. 1,
2

[64] Javier Romero, Dimitrios Tzionas, and Michael J. Black.
Embodied hands: modeling and capturing hands and bodies
together. ACM Trans. Graph., 36(6):245:1–245:17, 2017. 6,
18

11



[65] Yonatan Shafir, Guy Tevet, Roy Kapon, and Amit H.
Bermano. Human motion diffusion as a generative prior.
CoRR, abs/2303.01418, 2023. 2

[66] Jascha Sohl-Dickstein, Eric A. Weiss, Niru Mah-
eswaranathan, and Surya Ganguli. Deep unsupervised learn-
ing using nonequilibrium thermodynamics. In Proceedings
of the 32nd International Conference on Machine Learning,
ICML 2015, Lille, France, 6-11 July 2015, pages 2256–2265.
JMLR.org, 2015. 2

[67] Jiaming Song, Chenlin Meng, and Stefano Ermon. Denois-
ing diffusion implicit models. In 9th International Con-
ference on Learning Representations, ICLR 2021, Virtual
Event, Austria, May 3-7, 2021. OpenReview.net, 2021. 2

[68] Jiarui Sun and Girish Chowdhary. Towards globally consis-
tent stochastic human motion prediction via motion diffu-
sion. CoRR, abs/2305.12554, 2023. 2

[69] Omid Taheri, Vasileios Choutas, Michael J. Black, and Dim-
itrios Tzionas. GOAL: generating 4d whole-body motion
for hand-object grasping. In IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, CVPR 2022, New
Orleans, LA, USA, June 18-24, 2022, pages 13253–13263.
IEEE, 2022. 3

[70] Yongyi Tang, Lin Ma, Wei Liu, and Wei-Shi Zheng. Long-
term human motion prediction by modeling motion context
and enhancing motion dynamics. In Proceedings of the
Twenty-Seventh International Joint Conference on Artificial
Intelligence, IJCAI 2018, July 13-19, 2018, Stockholm, Swe-
den, pages 935–941. ijcai.org, 2018. 2

[71] Purva Tendulkar, Dı́dac Surı́s, and Carl Vondrick. FLEX:
full-body grasping without full-body grasps. In IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
CVPR 2023, Vancouver, BC, Canada, June 17-24, 2023,
pages 21179–21189. IEEE, 2023. 3

[72] Guy Tevet, Brian Gordon, Amir Hertz, Amit H. Bermano,
and Daniel Cohen-Or. Motionclip: Exposing human motion
generation to CLIP space. In Computer Vision - ECCV 2022
- 17th European Conference, Tel Aviv, Israel, October 23-
27, 2022, Proceedings, Part XXII, pages 358–374. Springer,
2022. 3

[73] Guy Tevet, Sigal Raab, Brian Gordon, Yonatan Shafir,
Daniel Cohen-Or, and Amit Haim Bermano. Human motion
diffusion model. In The Eleventh International Conference
on Learning Representations, ICLR 2023, Kigali, Rwanda,
May 1-5, 2023. OpenReview.net, 2023. 2, 4, 6, 7, 17, 18

[74] Sibo Tian, Minghui Zheng, and Xiao Liang. Transfusion:
A practical and effective transformer-based diffusion model
for 3d human motion prediction. CoRR, abs/2307.16106,
2023. 2

[75] Tze Ho Elden Tse, Zhongqun Zhang, Kwang In Kim, Ales
Leonardis, Feng Zheng, and Hyung Jin Chang. S2contact:
Graph-based network for 3d hand-object contact estimation
with semi-supervised learning. In Computer Vision - ECCV
2022 - 17th European Conference, Tel Aviv, Israel, October
23-27, 2022, Proceedings, Part I, pages 568–584. Springer,
2022. 3

[76] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia

Polosukhin. Attention is all you need. In Advances in Neu-
ral Information Processing Systems 30: Annual Conference
on Neural Information Processing Systems 2017, December
4-9, 2017, Long Beach, CA, USA, pages 5998–6008, 2017.
4

[77] Weilin Wan, Lei Yang, Lingjie Liu, Zhuoying Zhang, Ruix-
ing Jia, Yi-King Choi, Jia Pan, Christian Theobalt, Taku
Komura, and Wenping Wang. Learn to predict how hu-
mans manipulate large-sized objects from interactive mo-
tions. IEEE Robotics Autom. Lett., 7(2):4702–4709, 2022.
3

[78] Jiashun Wang, Huazhe Xu, Jingwei Xu, Sifei Liu, and Xiao-
long Wang. Synthesizing long-term 3d human motion and
interaction in 3d scenes. In IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2021, virtual, June
19-25, 2021, pages 9401–9411. Computer Vision Founda-
tion / IEEE, 2021. 3

[79] Jingbo Wang, Sijie Yan, Bo Dai, and Dahua Lin. Scene-
aware generative network for human motion synthesis. In
IEEE Conference on Computer Vision and Pattern Recogni-
tion, CVPR 2021, virtual, June 19-25, 2021, pages 12206–
12215. Computer Vision Foundation / IEEE, 2021.

[80] Jingbo Wang, Yu Rong, Jingyuan Liu, Sijie Yan, Dahua
Lin, and Bo Dai. Towards diverse and natural scene-aware
3d human motion synthesis. In IEEE/CVF Conference on
Computer Vision and Pattern Recognition, CVPR 2022, New
Orleans, LA, USA, June 18-24, 2022, pages 20428–20437.
IEEE, 2022. 2, 3

[81] Yin Wang, Zhiying Leng, Frederick W. B. Li, Shun-Cheng
Wu, and Xiaohui Liang. Fg-t2m: Fine-grained text-driven
human motion generation via diffusion model. In IEEE/CVF
International Conference on Computer Vision, ICCV 2023,
Paris, France, October 1-6, 2023, pages 21978–21987.
IEEE, 2023. 2, 4

[82] Zan Wang, Yixin Chen, Tengyu Liu, Yixin Zhu, Wei Liang,
and Siyuan Huang. HUMANISE: language-conditioned hu-
man motion generation in 3d scenes. In Advances in Neural
Information Processing Systems 35: Annual Conference on
Neural Information Processing Systems 2022, NeurIPS 2022,
New Orleans, LA, USA, November 28 - December 9, 2022,
2022. 2, 3

[83] Dong Wei, Huaijiang Sun, Bin Li, Jianfeng Lu, Weiqing Li,
Xiaoning Sun, and Shengxiang Hu. Human joint kinematics
diffusion-refinement for stochastic motion prediction. In
Thirty-Seventh AAAI Conference on Artificial Intelligence,
AAAI 2023, Thirty-Fifth Conference on Innovative Applica-
tions of Artificial Intelligence, IAAI 2023, Thirteenth Sym-
posium on Educational Advances in Artificial Intelligence,
EAAI 2023, Washington, DC, USA, February 7-14, 2023,
pages 6110–6118. AAAI Press, 2023. 2

[84] Dong Wei, Xiaoning Sun, Huaijiang Sun, Bin Li, Shengxi-
ang Hu, Weiqing Li, and Jianfeng Lu. Understanding text-
driven motion synthesis with keyframe collaboration via
diffusion models. CoRR, abs/2305.13773, 2023. 2

[85] Yan Wu, Jiahao Wang, Yan Zhang, Siwei Zhang, Otmar
Hilliges, Fisher Yu, and Siyu Tang. SAGA: stochastic whole-
body grasping with contact. In Computer Vision - ECCV
2022 - 17th European Conference, Tel Aviv, Israel, October

12



23-27, 2022, Proceedings, Part VI, pages 257–274. Springer,
2022. 3

[86] Zeqi Xiao, Tai Wang, Jingbo Wang, Jinkun Cao, Wenwei
Zhang, Bo Dai, Dahua Lin, and Jiangmiao Pang. Unified
human-scene interaction via prompted chain-of-contacts.
CoRR, abs/2309.07918, 2023. 2, 3

[87] Zhaoming Xie, Jonathan Tseng, Sebastian Starke, Michiel
van de Panne, and C. Karen Liu. Hierarchical planning
and control for box loco-manipulation. Proc. ACM Comput.
Graph. Interact. Tech., 6(3):31:1–31:18, 2023. 2

[88] Sirui Xu, Zhengyuan Li, Yu-Xiong Wang, and Liang-Yan
Gui. Interdiff: Generating 3d human-object interactions
with physics-informed diffusion. In Proceedings of the
IEEE/CVF International Conference on Computer Vision
(ICCV), pages 14928–14940, 2023. 3, 4, 6, 7, 17

[89] Sirui Xu, Yu-Xiong Wang, and Liangyan Gui. Stochastic
multi-person 3d motion forecasting. In The Eleventh Interna-
tional Conference on Learning Representations, ICLR 2023,
Kigali, Rwanda, May 1-5, 2023. OpenReview.net, 2023. 2,
3

[90] Xinchen Yan, Akash Rastogi, Ruben Villegas, Kalyan
Sunkavalli, Eli Shechtman, Sunil Hadap, Ersin Yumer, and
Honglak Lee. MT-VAE: learning motion transformations to
generate multimodal human dynamics. In Computer Vision -
ECCV 2018 - 15th European Conference, Munich, Germany,
September 8-14, 2018, Proceedings, Part V, pages 276–293.
Springer, 2018. 2

[91] Siqi Yang, Zejun Yang, and Zhisheng Wang. Longdanced-
iff: Long-term dance generation with conditional diffusion
model. CoRR, abs/2308.11945, 2023. 2

[92] Zhao Yang, Bing Su, and Ji-Rong Wen. Synthesizing long-
term human motions with diffusion models via coherent sam-
pling. In Proceedings of the 31st ACM International Con-
ference on Multimedia, MM 2023, Ottawa, ON, Canada, 29
October 2023- 3 November 2023, pages 3954–3964. ACM,
2023. 2

[93] Yufei Ye, Xueting Li, Abhinav Gupta, Shalini De Mello,
Stan Birchfield, Jiaming Song, Shubham Tulsiani, and Sifei
Liu. Affordance diffusion: Synthesizing hand-object inter-
actions. In IEEE/CVF Conference on Computer Vision and
Pattern Recognition, CVPR 2023, Vancouver, BC, Canada,
June 17-24, 2023, pages 22479–22489. IEEE, 2023. 3

[94] Chandan Yeshwanth, Yueh-Cheng Liu, Matthias Nießner,
and Angela Dai. Scannet++: A high-fidelity dataset of 3d in-
door scenes. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 12–22, 2023. 8

[95] Ye Yuan and Kris Kitani. Dlow: Diversifying latent flows
for diverse human motion prediction. In Computer Vision
- ECCV 2020 - 16th European Conference, Glasgow, UK,
August 23-28, 2020, Proceedings, Part IX, pages 346–364.
Springer, 2020. 2, 4

[96] Ye Yuan, Jiaming Song, Umar Iqbal, Arash Vahdat, and Jan
Kautz. Physdiff: Physics-guided human motion diffusion
model. In Proceedings of the IEEE/CVF International Con-
ference on Computer Vision (ICCV), pages 16010–16021,
2023. 2

[97] Jianrong Zhang, Yangsong Zhang, Xiaodong Cun, Shaoli
Huang, Yong Zhang, Hongwei Zhao, Hongtao Lu, and

Xi Shen. T2M-GPT: generating human motion from tex-
tual descriptions with discrete representations. CoRR,
abs/2301.06052, 2023. 2

[98] Mingyuan Zhang, Zhongang Cai, Liang Pan, Fangzhou
Hong, Xinying Guo, Lei Yang, and Ziwei Liu. Motiondif-
fuse: Text-driven human motion generation with diffusion
model. CoRR, abs/2208.15001, 2022. 2, 4

[99] Mingyuan Zhang, Xinying Guo, Liang Pan, Zhongang Cai,
Fangzhou Hong, Huirong Li, Lei Yang, and Ziwei Liu. Re-
modiffuse: Retrieval-augmented motion diffusion model.
In IEEE/CVF International Conference on Computer Vi-
sion, ICCV 2023, Paris, France, October 1-6, 2023, pages
364–373. IEEE, 2023. 2

[100] Siwei Zhang, Yan Zhang, Qianli Ma, Michael J. Black, and
Siyu Tang. PLACE: proximity learning of articulation and
contact in 3d environments. In 8th International Conference
on 3D Vision, 3DV 2020, Virtual Event, Japan, November
25-28, 2020, pages 642–651. IEEE, 2020. 2, 15

[101] Wanyue Zhang, Rishabh Dabral, Thomas Leimkühler,
Vladislav Golyanik, Marc Habermann, and Christian
Theobalt. ROAM: robust and object-aware motion genera-
tion using neural pose descriptors. CoRR, abs/2308.12969,
2023. 3, 4

[102] Xiaohan Zhang, Bharat Lal Bhatnagar, Sebastian Starke,
Vladimir Guzov, and Gerard Pons-Moll. COUCH: towards
controllable human-chair interactions. In Computer Vision
- ECCV 2022 - 17th European Conference, Tel Aviv, Israel,
October 23-27, 2022, Proceedings, Part V, pages 518–535.
Springer, 2022. 3

[103] Yan Zhang and Siyu Tang. The wanderings of odysseus in
3d scenes. In IEEE/CVF Conference on Computer Vision
and Pattern Recognition, CVPR 2022, New Orleans, LA,
USA, June 18-24, 2022, pages 20449–20459. IEEE, 2022. 2,
3

[104] Yan Zhang, Mohamed Hassan, Heiko Neumann, Michael J
Black, and Siyu Tang. Generating 3d people in scenes
without people. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pages 6194–
6204, 2020. 2, 15

[105] Yan Zhang, Michael J. Black, and Siyu Tang. We are more
than our joints: Predicting how 3d bodies move. In IEEE
Conference on Computer Vision and Pattern Recognition,
CVPR 2021, virtual, June 19-25, 2021, pages 3372–3382.
Computer Vision Foundation / IEEE, 2021. 3

[106] Zihan Zhang, Richard Liu, Kfir Aberman, and Rana
Hanocka. Tedi: Temporally-entangled diffusion for long-
term motion synthesis. CoRR, abs/2307.15042, 2023. 1,
2

[107] Kaifeng Zhao, Shaofei Wang, Yan Zhang, Thabo Beeler,
and Siyu Tang. Compositional human-scene interaction
synthesis with semantic control. In Computer Vision - ECCV
2022 - 17th European Conference, Tel Aviv, Israel, October
23-27, 2022, Proceedings, Part VI, pages 311–327. Springer,
2022. 2, 3

[108] Kaifeng Zhao, Yan Zhang, Shaofei Wang, Thabo Beeler,
and Siyu Tang. Synthesizing diverse human motions in 3d
indoor scenes. In IEEE/CVF International Conference on

13



Computer Vision, ICCV 2023, Paris, France, October 1-6,
2023, pages 14692–14703. IEEE, 2023. 2, 3

[109] Mengyi Zhao, Mengyuan Liu, Bin Ren, Shuling Dai, and
Nicu Sebe. Modiff: Action-conditioned 3d motion genera-
tion with denoising diffusion probabilistic models. CoRR,
abs/2301.03949, 2023. 1, 2

[110] Juntian Zheng, Qingyuan Zheng, Lixing Fang, Yun Liu,
and Li Yi. CAMS: canonicalized manipulation spaces for
category-level functional hand-object manipulation synthe-
sis. In IEEE/CVF Conference on Computer Vision and
Pattern Recognition, CVPR 2023, Vancouver, BC, Canada,
June 17-24, 2023, pages 585–594. IEEE, 2023. 3

[111] Yang Zheng, Yanchao Yang, Kaichun Mo, Jiaman Li, Tao
Yu, Yebin Liu, C. Karen Liu, and Leonidas J. Guibas. GIMO:
gaze-informed human motion prediction in context. In Com-
puter Vision - ECCV 2022 - 17th European Conference, Tel
Aviv, Israel, October 23-27, 2022, Proceedings, Part XIII,
pages 676–694. Springer, 2022. 2, 3

[112] Keyang Zhou, Bharat Lal Bhatnagar, Jan Eric Lenssen, and
Gerard Pons-Moll. TOCH: spatio-temporal object-to-hand
correspondence for motion refinement. In Computer Vision
- ECCV 2022 - 17th European Conference, Tel Aviv, Israel,
October 23-27, 2022, Proceedings, Part III, pages 1–19.
Springer, 2022. 3

[113] Yi Zhou, Connelly Barnes, Jingwan Lu, Jimei Yang, and
Hao Li. On the continuity of rotation representations in
neural networks. In IEEE Conference on Computer Vision
and Pattern Recognition, CVPR 2019, Long Beach, CA,
USA, June 16-20, 2019, pages 5745–5753. Computer Vision
Foundation / IEEE, 2019. 4

[114] Guangxiang Zhu, Zhiao Huang, and Chongjie Zhang.
Object-oriented dynamics predictor. In Advances in Neural
Information Processing Systems 31: Annual Conference on
Neural Information Processing Systems 2018, NeurIPS 2018,
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Appendix

We show in this appendix additional qualitative (Sec. A) and
quantitative (Sec. B) results, detail our baseline evaluation
protocol (Sec. C), elaborate on the metrics used in the main
paper (Sec. D), show the architecture used in our approach
(Sec. E), and provide additional details regarding the data
(Sec. F).

A. Additional Qualitative Results
A.1. Additional Interactions
We show additional generated 3D human-object interactions
of our method in Fig. 10, with object geometry and text
condition on the left, and our generated sequence on the
right.

A.2. Same Prompt, Different Interactions
We evaluate the ability of our method to generate diverse
interactions for a fixed text condition visually in Fig. 9, for
text prompt “Move a stool” and “Sit on a stool”. In the
ground truth training data, move is only done with one or
two hands, and feet; moving with the butt sometimes occurs
for the text description “Sit on a stool”.

Figure 9. Our method is able to generate diverse human-object
interactions for the same prompts.

B. Additional Quantitative Results
B.1. Evaluating Penetrations and Floating
Our method discourages penetration and floating implicitly,
by enforcing correct contact distances as a soft constraint at
train and test time. However, the exact fidelity and diversity
of our results is hard to capture with any single metric. Thus,
we evaluate multiple such metrics in the main paper (R-
Precision, FID, Diversity, MultiModality), and conduct a
perceptual user study to verify the metrics’ expressiveness.

Here, we provide an additional evaluation based on in-
tuitive physics-based metrics: Tab. 3 evaluates the mean
ratio of frames with some penetration as well as the ratio
of penetrating vertices overall, showing that penetrations
typically happens with small body parts (e.g., hands, which
also occurs in the ground-truth data). We also evaluate the
ratio of frames and vertices with human and object not in
contact, including floating and stationary objects, which is
expected to be close to the dataset ratio.

Results show similar penetration and floating between
our generations and ground-truth training data.

BEHAVE CHAIRS
Penetration Non-Contact Penetration Non-Contact

Frames Vertices Frames Vertices Frames Vertices Frames Vertices
Dataset 32.9% 4.1% 21.4% 86.2% 26.9% 1.1% 11.9% 70.4%
Ours 31.3% 3.0% 17.8% 93.3% 35.8% 4.2% 14.1% 74.3%

Table 3. Penetration and non-contact (including floating) ratios in
terms of frames as well as overall vertices vs ground-truth data.

B.2. Evaluating Contact
Tab. 4 evaluates our contact predictions using precision/recall
and distance metrics. We follow [29, 100, 104] to define con-
tact if ⇔5cm from object. We also report mean ϱ1 error in
contact distance predictions. All metrics are reported for
body parts ⇔1m of the object, to focus on contact scenar-
ios. Better contact prediction corresponds with better HOI
generations. Note that none of our baselines predict contact
distances.

BEHAVE CHAIRS
Approach Precision ⇐ Recall ⇐ Distance ⇒ Precision ⇐ Recall ⇐ Distance ⇒
Separate contact pred. 23.4% 25.6% 0.53 58.6% 49.1% 0.24
No contact weighting 29.5% 33.5% 0.34 60.6% 63.4% 0.10
No contact guidance 46.3% 39.2% 0.31 64.2% 70.2% 0.12
Ours 63.6% 59.5% 0.07 78.3% 84.5% 0.04

Table 4. Evaluation of predicted contact distances, in terms on
precision and recall (↑ 5cm distance), as well as mean contact ω1
error in meters.

B.3. Novelty of Generated Interactions
We perform an additional interaction novelty analysis to
verify that our method does not simply retrieve memorized
train sequences but is indeed able to generate novel human-
object interactions. To do so, we generate ⇓ 500 sequences
from both datasets and retrieve the top-3 most similar train
sequences, as measured by the l2 distance in human body
and object transformation parameter space.

Fig. 11 shows the top-3 closest train sequences, along
with a histogram of l2 distances computed on our test set of ⇓
500 generated sequences. In red, we mark the intra-trainset
distance between samples in the train set. We observe that
the distance between our generated sequences and the closest
train sequence is mostly larger than the intra-train distance.
Thus, our method is able to produce samples that are novel
and not simply retrieved train sequences.

B.4. SMPL Bodies vs. HumanML3D Skeletons
We observe slight pose jitter and foot skating in our ground-
truth training data (especially BEHAVE, captured with
Kinect sensors). As a result, our model reflects some of these
effects. Skeleton representations such as HumanML3D [26]
could tackle these artifacts, but do not work with contact
as effectively as SMPL bodies. Nevertheless, we train ours
with HumanML3D parameters for comparison in Tab. 5 (fit-
ting SMPL after for comparable evaluation) which leads to
degraded performance due to less effective contact guidance.
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Figure 10. Additional qualitative evaluation. Our method produces diverse and realistic 3D human-object interaction sequences, given
object geometry and short text description of the action. The sequences depict high-quality human-object interactions by modeling contact,
mitigating floating and penetration artifacts.
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Figure 11. Human-Object Interaction Sequence Novelty Analysis. Performed on BEHAVE [9] (left) and CHAIRS [36] (right). We retrieve
top-3 most similar sequences from the train set, and plot a histogram of distances to the closest train sample. While sequences at the 20th
percentile still resemble the generated interactions, there is a large gap in the 80th percentile. We show the intra-trainset distance in red. Our
approach generates novel shapes, not simply retrieving memorized train samples.

C. Baseline Evaluation Setup
There is no previous approach to modeling 3D human-object
interactions from text and object geometry for direct com-
parison. Thus, we compare to the two closest methods, and
compare to them in multiple settings, for a fair comparison.

The most related approach is InterDiff [88]. Their setting
is to generate a short sequence of human-object interactions,
from an observed such sequence as condition, with geometry
but no text input. Their goal is to generate one, the most
likely, sequence continuing the observation. We use their
full approach, including the main diffusion training together
with the post-processing refinement step. We compare in two
different settings: First, in their native setup, running their
method unchanged and modifying ours to take in geometry
and past sequence observation instead of text (Motion-Cond.
HOI in Tab. 1 main). Then, we modify their approach to take
in geometry and text, replacing their past motion encoder
with our CLIP-based text encoder (Text-Cond. HOI in Tab. 1
main). We observe that our method is able to outperform

InterDiff in both scenarios, for both datasets.

We additionally compare to MDM [73], a recent diffusion-
based state-of-the-art human motion generation approach.
Their approach is based on a transformer encoder formu-
lation, using each human body as a token in the attention.
We run their method on SMPL parameters and first com-
pare in their native setting, only predicting human motion.
We compare to the human motion generated by our method
which is trained to generate full human-object interactions
(Text-Cond. Human Only in Tab. 1 main). We also com-
pare to human motion sequences generated by InterDiff in
this setting. We see that our method is able to outperform
both baselines even in this setting, demonstrating the added
benefit of learning interdependencies of human and object
motion. For the comparison in our setting, we modify MDM
by adding additional tokens for the objects to the attention
formulation. Our approach performs more realistic and di-
verse sequences in both settings which better follow the text
condition.

BEHAVE CHAIRS
Representation R-Prec. (top-3) ⇐ FID ⇒ Diversity ⇑ MModality ⇑ R-Prec. (top-3) ⇐ FID ⇒ Diversity ⇑ MModality ⇑
Ours (HumanML3D) 0.33 11.94 2.15 3.75 0.48 12.83 4.39 5.11
Ours 0.62 6.31 6.63 5.47 0.74 6.45 8.91 5.94

Table 5. Ours (using SMPL bodies) vs. using HumanML3D [26] skeletons and fitting SMPL bodies afterwards. While HumanML3D is
designed to reduce jitter and foot skating, it leads to degraded performance in our scenario due to less effective contact guidance.
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D. Fidelity and Diversity Metrics

We base our fidelity and diversity metrics R-Precision, FID
score, Diversity, and MultiModality on practices established
for human motion generation [25, 26, 73], with minor modi-
fications: We use the same networks used by these previous
approaches, and adapt the input dimensions to fit our feature
lengths, F = 79 when evaluating human body motion only,
and F = 79 + 128 + 9 = 216 (SMPL parameters, contact
distances, object transformations) for full evaluation in the
human-object interaction scenario.

E. Architecture Details

Fig. 12 shows our detailed network architecture, including
encoder, bottleneck, and decoder formulations.

F. Data Details

F.1. Datasets

CHAIRS [36] captures 46 subjects as their SMPL-X [55]
parameters using a mocap suit, in various settings interacting
with a total of 81 different types of chairs and sofas, from
office chairs over simple wooden chairs to more complex
models like suspended seating structures. Each captured
sequence consists of 6 actions and a given script; the ex-
act separation into corresponding textual descriptions was
manually annotated by the authors of this paper. In total,
this yields ⇓ 1300 sequences of human and object motion,
together with a textual description. Every object geometry
is provided as their canonical mesh; we additionally gener-
ate ground-truth contact and distance labels based on posed
human and object meshes per-frame for each sequence. We
use a random 80/10/10 split along object types, making sure
that test objects are not seen during training.

BEHAVE [9] captures 8 participants as their SMPL-H
[64] parameters captured in a multi-Kinect setup, along with
the per-frame transformations and canonical geometries of
20 different object with a wide range, including yoga mats
and tables. This yields ⇓ 130 longer sequences. We use
their original train/test split.

F.2. Object Geometry Representation
We represent object geometry as a point cloud, to be pro-
cessed by a PointNet [58] encoder. For this, we sample
N = 256 points uniformly at random on the surface of an
object mesh. Each object category is sampled once as a
pre-processing step and kept same for train and inference.
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