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A B S T R A C T

In metal additive manufacturing (AM), fast and efficient simulation approaches are essential to explore the full
potential of these promising processes, particularly in generating components with tailored microstructures via
laser powder bed fusion (LPBF). Due to the inherent multiscale nature of LPBF, existing approaches often need
to resort to strong simplifications, such as layer-wise heating models, to make part-scale simulations feasible.
In contrast, the present article proposes a scan-resolved approach, which consistently resolves the laser scan
path in a coupled thermo-microstructural model of LPBF. Building on a high-performance computing model
for the thermal problem, we propose a highly efficient implementation of a recently developed microstructure
model for Ti-6Al-4V with three main constituents: stable 𝛼𝑠-phase, martensitic 𝛼𝑚-phase and 𝛽-phase. The
implementation is tailored to modern hardware features using vectorization and fast approximations of
transcendental functions. A performance model and selected numerical examples of LPBF manufacturing of
parts on the centimeter scale are studied to verify the high degree of optimization. Depending on the specific
example, results were obtained with moderate computational resources in a few hours to days. We demonstrate
how the proposed scan-resolved model allows us to predict the correlation between scan strategy and resulting
microstructure composition, an aspect that layer-wise heating models cannot capture. The numerical examples
include scan-resolved thermo-microstructure simulations of the full NIST AM Benchmark cantilever specimen.
It is shown that varying the build plate temperature by only 100K can significantly change the microstructure
composition from 𝛼𝑚- to 𝛼𝑠-dominated.
1. Introduction

Laser powder bed fusion (LPBF) is a prominent additive manufactur-
ing (AM) technique that allows the design and production of parts with
complex geometry in a near-net-shape manner. However, a successful
build can require expensive trial-and-error runs beforehand or the
adoption of overly conservative parameter choices. One crucial aspect
for the quality of produced parts is its material behavior and a critical
insight into this is provided by the microstructure [1]. Understanding
its evolution through numerical simulations offers the opportunity to
significantly reduce the costs measured in time and money and enhance
the physical understanding of the LPBF process. While subsequent heat
treatment often changes the as-built microstructure, the information is
highly relevant during processing, as significant differences in material
behavior can lead to defects and even failure of the part (e.g., due to
cracking) during the process. Ultimately, a great promise lies in the
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local control of the microstructural phase composition as the specific
application desires.

From a numerical modeling point of view, LPBF is a multi-scale
and multi-physics problem [2,3]. In the present contribution, we focus
on the effects on the microscale, specifically the composition and
evolution of microstructure phases for the commonly used alloy Ti-
6Al-4V. The considered microstructure model was proposed in our
previous contribution [4]. Based on the classification in [5], it falls
in the category of phenomenological [6–10] microstructure models,
which rely on equations describing the relation between phase fractions
and process variables. An alternative approach is provided by statis-
tical models [11,12], sometimes called probabilistic models [13]; this
category includes the widely used cellular automaton approach [14–
17]. Finally, there are mechanistic models which are based directly on
fundamental physics, most prominently phase-field [18,19] models. A
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phenomenological microstructure model provides a reasonable trade-
off between the costly evaluation of a phase-field model and the
sometimes limited physical motivation of purely statistical models. A
significant difference between [4] and other phenomenological models
is that the evolution of the microstructural phases by means of dif-
fusive and instantaneous transformations is governed by temperature-
dependent forces driving the phase composition towards an equilibrium
state. From a mathematical perspective, the model consists of coupled
ordinary differential equations (ODEs) for the three phases, which are
the 𝛽-phase, stable 𝛼𝑠-phase, and metastable martensitic 𝛼𝑚-phase. This
model was recently validated with experimental data in [20].

To the best of the authors’ knowledge, no coupled thermo-microstr-
ucture simulation with scan-resolved tracks on the part-scale has been
published before. Nevertheless, some groups have undertaken efforts
in this direction. In [21,22], the authors determined correlations be-
tween experimentally measured microstructural phase compositions
and numerical results for the temperature field of larger parts with-
out an explicit microstructure model. In [23], the authors inform a
high-fidelity phase-field model for microstructure evolution with a
single-track melt pool simulation. Their model includes detailed effects
such as microsegregation and solidification front morphology. These
details are neglected in the cellular automata microstructure model
used in [15], which aims at part-scale predictions by replicating the
thermal information from a few representative layers and tracks over
multiple layers. A similar strategy is used in [24] and combined with
a phase-field model for the sub-grain scale. Many authors integrate
analytical Johnson–Mehl–Avrami–Kolmogorov (JMAK) equations into
thermal or thermo-mechanical models [6,7,9,10], which can be sub-
stantially cheaper to evaluate. In our publication [4], we determined
the microstructure for application-motivated temperature profiles at
selected points and for a quenching example of a large block. In contrast
to all the cited references, the present article presents a fully coupled
thermo-microstructure model that considers the resolved laser scan
track and is not restricted to regular geometries. The microstructure
is determined in the entire domain for all points in time.

An essential aspect of macroscale simulations is the question of the
performance of the implementation in terms of time to solution. For
the coupled thermo-microstructure problem, the thermal history drives
the evolution of the microstructure. Thus, a fast and accurate solution
to the thermal problem is necessary. In our previous work [25], we
presented a highly efficient solution to the thermal problem with a
resolved laser scan track over hundreds of layers. In contrast to many
existing approaches, we can perform scan-resolved simulations of parts
on the centimeter scale in a time frame on the order of hours to days.
The present contribution builds on that work and allows us to predict
the composition of microstructure phases in the same setting with only
marginally increased time to solution. We carefully analyzed the many
conditional branches in the governing equations to achieve high per-
formance for the microstructure model. The implementation approach
is tailored to modern hardware capabilities as it utilizes vectorization
efficiently and considers the need to reduce memory transfer as much
as possible. Efficient approximations of transcendental functions [26–
28], e.g., the exponential function, which can be vectorized efficiently,
are discussed. To demonstrate the degree of optimization, we present a
detailed performance analysis with the help of a roofline performance
model. The proposed efficient vectorized implementation is responsible
for more than a three-fold increase in computational throughput com-
pared to an unvectorized implementation. In total, the microstructure
model only requires about 10% of the time of the well-optimized
thermal model, making large-scale simulations of the coupled problem
possible. Based on selected numerical examples, we demonstrate how
the proposed scan-resolved model allows us to predict the correlation
between scan strategy and resulting microstructure composition. Fre-
quently employed simplified approaches, such as layer-wise heating
models, cannot capture this aspect. The numerical examples include

scan-resolved thermo-microstructure simulations of the full NIST AM
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Benchmark cantilever specimen. As one immediately interesting result
from the application of our proposed novel approach, it is shown that
varying the build plate temperature by only 100K can significantly
change the microstructure composition from 𝛼𝑚- to 𝛼𝑠-dominated.

The article is structured as follows: after briefly reviewing the ther-
mal and microstructure model, we focus on the numerical discretization
and implementation details of the latter. Specifically, we discuss the
implementation tailored to modern hardware and propose efficient
approximations for expensive transcendental functions. We study the
implementation performance on benchmarks and application examples.
The investigated, practically relevant examples demonstrate a wide
range of applicability of the approach and fast solution times.

2. Coupled thermo-microstructure model

This section summarizes the model equations underlying the pro-
posed computational approach. An emphasis is placed on details espe-
cially relevant to the efficient solution strategy presented later in this
article. We refer to our respective publications for the full details of the
thermal [25] and the microstructure [4] model.

2.1. Thermal model

First, we briefly summarize the thermal part of the problem follow-
ing [25] and our previous works [29,30]. The temperature field 𝑇 is
determined in the domain 𝛺 by solving the heat equation:

𝜌𝑐 𝜕𝑇
𝜕𝑡

= −∇ ⋅ 𝒒 + 𝑞vol, 𝒒 = −𝑘(𝑇 )∇𝑇 in 𝛺. (1)

ere, 𝜌 is the density and 𝑐 is the specific heat capacity of the mate-
ial. The temperature and state-dependent heat conductivity 𝑘 can be

computed from the liquid fraction 𝑔(𝑇 ), defined as

(𝑇 ) =

⎧

⎪

⎨

⎪

⎩

0, 𝑇 < 𝑇𝑠,
𝑇−𝑇𝑠
𝑇𝑙−𝑇𝑠

, 𝑇𝑠 ≤ 𝑇 ≤ 𝑇𝑙 ,

1, 𝑇 > 𝑇𝑙 ,

(2)

where 𝑇𝑠 and 𝑇𝑙 are the solidus and liquidus temperature. The time-
dependent consolidated fraction

𝑟𝑐 (𝑡) =

⎧

⎪

⎨

⎪

⎩

1, if 𝑟𝑐 (0) = 1 (initially consolidated),
max
𝑡<𝑡

𝑔(𝑇 (𝑡)), if 𝑟𝑐 (0) = 0 (initially powder), (3)

captures the irreversible powder-to-melt transition and allows setting
the initial material state. From (2) and (3), the actual fractions of
powder (𝑝), melt (𝑚) and solid (𝑠) material are computed as

𝑟𝑝(𝑟𝑐 ) = 1 − 𝑟𝑐 , 𝑟𝑚(𝑇 ) = 𝑔(𝑇 ), 𝑟𝑠(𝑇 , 𝑟𝑐 ) = 𝑟𝑐 − 𝑔(𝑇 ), (4)

and finally, the temperature- and history-dependent heat conductivity
𝑘(𝑇 , 𝑟𝑐 ) is found:

𝑘(𝑇 , 𝑟𝑐 ) = 𝑟𝑝(𝑟𝑐 )𝑘𝑝 + 𝑟𝑚(𝑇 )𝑘𝑚 + 𝑟𝑠(𝑇 , 𝑟𝑐 )𝑘𝑠, (5)

where 𝑘𝑝, 𝑘𝑠 and 𝑘𝑚 are the parameters for a single state. The actual
implementation can also handle temperature-dependent parameters. To
keep the discussion concise and in light of the uncertainty associated
with the measurement of material parameters, especially at high tem-
peratures, this dependency is neglected. A volumetric heat source 𝑞vol
formulated in a local coordinate system (𝑥̂, 𝑦̂, 𝑧̂) models the incident
energy from a moving laser beam:

𝑞vol =

⎧

⎪

⎨

⎪

⎩

2𝑊eff
𝜋𝑅2ℎpowder

exp
(

−2(𝑥̂2+𝑦̂2)
𝑅2

)

, if 0 < 𝑧̂ < −ℎpowder

0, otherwise.
(6)

Here, 𝑅 is the effective beam radius of the incident energy beam,
𝑊eff is the effective power and ℎpowder is the powder layer thickness.
The presented mathematical model for the thermal problem neglects
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Table 1
Thermal model parameters for Ti-6Al-4V.

Symbol Property Value Unit

𝑘𝑚𝑠 Thermal conductivity in melt and solid state 28.6 Wm−1 K−1

𝑘𝑝 Thermal conductivity in powder state 0.286 Wm−1 K−1

𝜌 Density 4090 kgm−3

𝑐 Specific heat capacity 1130 J kg−1 K−1

𝑇𝑠 Solidus temperature 1878 K
𝑇𝑙 Liquidus temperature 1928 K
𝑇∞ Ambient temperature 293 K
𝜖 Emissivity 0.7 –

𝑇𝑣 Boiling temperature 3130 K
𝐶𝑃 Recoil pressure factor 54 kPa
𝐶𝑇 Recoil pressure temperature factor 5.07 × 104 K
𝐶𝑀 Heat loss temperature factor 9.15 × 10−4 K s2 m−2

𝑀 Molar mass 0.0478 kgmol−1

ℎ𝑣 Latent heat of evaporation 8.84 MJkg−1

𝑇ℎ,0 Enthalpy reference temperature 538 K

melt pool hydrodynamics, which would play an important role, e.g., in
determining the orientation of microstructure grains [1,16]. This seems
acceptable as the presented approach aims at a coarser representa-
tion of microstructural phase fractions, which does not resolve such
features.

The necessary initial and boundary conditions for the heat equa-
tion (1) are given as:

𝑇 = 𝑇0 in 𝛺 for 𝑡 = 0, (7)

𝑇 = 𝑇0 on 𝛤𝐷, (8)

𝒒 ⋅ 𝒏 = 0 on 𝛤𝑁 , (9)

𝒒 ⋅ 𝒏 = 𝑞rad + 𝑞evap on 𝛤𝑅𝐸 , (10)

𝑞rad = 𝜖𝜎𝑆 (𝑇 4 − 𝑇 4
∞), (11)

evap = 0.82𝐶𝑃 exp
[

−𝐶𝑇

(

1
[𝑇 ]

− 1
𝑇𝑣

)]

×

√

𝐶𝑀
[𝑇 ]

(ℎ𝑣 + 𝑐([𝑇 ] − 𝑇ℎ,0)), if [𝑇 ] > 𝑇𝑣. (12)

ere, 𝑇0 is the initial temperature. The material parameters required for
he initial boundary value problem are listed in Table 1. In addition, 𝜎𝑆
n (11) is the Stefan–Boltzmann constant governing radiative heat loss.
o avoid numerical challenges arising from the strong nonlinearity in
he evaporation term (12), the temperature [𝑇 ] is limited to a maximum
alue 𝑇max > 𝑇𝑣. In this study, we opt for 𝑇max = 𝑇𝑣 + 1000K, which
nsures numerical stability without affecting the overall results.

.2. Microstructure model

A phenomenological model for the microstructure evolution of Ti-
Al-4V was presented in our previous work [4]. For the details of
his model, the interested reader is referred to this work. The main
odel equations are briefly summarized in the following for better

omprehensibility.
The microstructure model focuses on the three most important

hases,1 𝛽, 𝛼𝑠 and 𝛼𝑚, of the solid state. The equations presented in the
ollowing are only valid for the solid state and, thus, for temperatures
< 𝑇sol. In a first step, we define phase fractions 𝑋𝑖 ∈ [0; 1] for the
icrostructure phases along with elementary continuity constraints:

𝑋𝛼 +𝑋𝛽 = 1, (13)

𝛼𝑠 +𝑋𝛼𝑚 = 𝑋𝛼 . (14)

1 Note that the word ‘phase’ refers to the microstructure phases 𝛼𝑠, 𝛼𝑚, and
. In contrast, when we distinguish material into powder, melt, and solid, we
peak of the ‘state’ of the material.
3 
Before the evolution equations for the phase fractions can be defined,
we introduce (pseudo-) equilibrium phase fractions for the different
phases. Thereto, we consider material cooling down from a molten state
to ambient temperature 𝑇∞. All newly solidified solid material consists
entirely of 𝛽-phase. On further cooling, the 𝛽-phase can transform into
𝛼-phase: either into stable 𝛼𝑠-phase via a diffusion-based transforma-
tion or into metastable 𝛼𝑚-phase via an instantaneous transformation,
depending on the cooling rate. It is assumed that the equilibrium phase
fraction for the total 𝛼-phase, the sum of 𝛼𝑠 and 𝛼𝑚, can be described
by the following exponential Koistinen–Marburger law:

𝑋eq
𝛼 (𝑇 ) =

⎧

⎪

⎨

⎪

⎩

0.9 for 𝑇 < 𝑇𝛼𝑠 ,end,
1 − exp[−𝑘eq

𝛼 (𝑇𝛼𝑠 ,start − 𝑇 )] for 𝑇𝛼𝑠 ,end ≤ 𝑇 ≤ 𝑇𝛼𝑠 ,start,
0 for 𝑇 > 𝑇𝛼𝑠 ,start.

(15)

n our previous work [4], the parameters 𝑘eq
𝛼 , 𝑇𝛼𝑠 ,start and 𝑇𝛼𝑠 ,end have

een inversely identified on basis of experimental data. Their values
re listed in Table 2. Notably, for general cooling conditions, the actual
raction of the total 𝛼-phase 𝑋𝛼 at a given temperature is not identical
o the equilibrium value in (15). Instead, the equilibrium value can be
nterpreted as the long-term solution for 𝑡 → ∞. In the limiting case
f very slow cooling, (15) represents the actual 𝛼-phase fraction. More
recisely, no 𝛼𝑚-phase forms under such thermodynamic equilibrium
onditions, and the temperature-dependent 𝛼𝑠-phase fraction is given
y (15). In the second limiting case of very fast cooling, diffusion-based
ransformations are inhibited, and no stable 𝛼𝑠-phase forms. Instead,
nly metastable martensite 𝛼𝑚-phase arises according to the following,
seudo-equilibrium phase fraction 𝑋eq

𝛼𝑚 ,0
:

eq
𝛼𝑚 ,0

(𝑇 ) =

⎧

⎪

⎨

⎪

⎩

0.9 for 𝑇 < 𝑇∞
1 − exp[−𝑘eq

𝛼𝑚 (𝑇𝛼𝑚 ,start − 𝑇 )] for 𝑇∞ ≤ 𝑇 ≤ 𝑇𝛼𝑚 ,start

0 for 𝑇 > 𝑇𝛼𝑚 ,start.

(16)

gain, the parameters 𝑘eq
𝛼𝑚 and 𝑇𝛼𝑚 ,start are listed in Table 2. Fig. 1

hows a schematic representation of the phase composition resulting
rom the two limiting cases of very slow and very fast cooling. It is
mphasized that the formation of 𝛼𝑚 in the limit of very fast cooling
egins at temperatures 𝑇 < 𝑇𝛼𝑚 ,start, which lie significantly below the
emperature interval 𝑇𝛼𝑠 ,end ≤ 𝑇 ≤ 𝑇𝛼𝑠 ,start where 𝛼𝑠 would form in the
imiting case of very slow cooling. Finally, general cooling conditions
hall be considered between the two aforementioned limiting cases. In
his scenario, the cooling rates are too fast to complete the diffusion-
riven formation of 𝛼𝑠 but too slow to completely inhibit 𝛼𝑠-formation
efore reaching the start temperature 𝑇𝛼𝑚 ,start of martensite formation.
ssuming that a certain amount 𝑋𝛼𝑠 of 𝛼𝑠-phase is already present, (16)

s corrected by postulating an effective pseudo-equilibrium martensite
hase fraction 𝑋eq

𝛼𝑚 (𝑇 ):

eq
𝛼𝑚 (𝑇 ) = 𝑋eq

𝛼𝑚 ,0
(𝑇 ) ⋅

0.9 −𝑋𝛼𝑠
0.9

. (17)

Thus, for general cooling conditions, (17) represents the target value
for the 𝛼𝑚-phase fraction 𝑋𝛼𝑚 , while (15) represents the target value
or the total 𝛼-phase fraction 𝑋𝛼 = 𝑋𝛼𝑠 +𝑋𝛼𝑚 .

Based on these temperature-dependent target values, the time-
ependent formation and dissolution of the three phases 𝛼𝑠, 𝛼𝑚, and

𝛽 will be described below. The balance of the different transformation
contributions is given by the following ordinary differential equations:

𝑋̇𝛼𝑠 = 𝑋̇𝛽→𝛼𝑠 + 𝑋̇𝛼𝑚→𝛼𝑠 − 𝑋̇𝛼𝑠→𝛽 , (18)

𝑋̇𝛼𝑚 = 𝑋̇𝛽→𝛼𝑚 − 𝑋̇𝛼𝑚→𝛼𝑠 − 𝑋̇𝛼𝑚→𝛽 , (19)

𝑋̇𝛽 = 𝑋̇𝛼𝑚→𝛽 + 𝑋̇𝛼𝑠→𝛽 − 𝑋̇𝛽→𝛼𝑚 − 𝑋̇𝛽→𝛼𝑠 , (20)

where 𝑋̇𝑖→𝑗 > 0 is the formation of phase 𝑗 from phase 𝑖 or, equiva-
lently, the dissolution from phase 𝑖 into phase 𝑗. In general, 𝑋̇𝑖→𝑗 ≠ 𝑋̇𝑗→𝑖
holds since the reverse transformation may be governed by different

kinetics or might not even exist (e.g., for the transformation from
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Fig. 1. Phase composition for slow and fast cooling rates. Left: Equilibrium composition of 𝑋𝛼𝑠 and 𝑋𝛽 for slow cooling rates, implying 𝑋𝛼𝑚 = 0. Right: Metastable (pseudo-)
quilibrium composition of 𝑋𝛼𝑚 and 𝑋𝛽 for fast cooling rates, implying 𝑋𝛼𝑠 = 0. Simplified schematic reproduced from [4].
Table 2
Parameters of the microstructure evolution model. A detailed analysis and literature review of all parameters
is given in [4].

Parameter Description Value Unit

𝑇𝑙 Liquidus temperature 1928 K
𝑇𝑠 Solidus temperature 1878 K
𝑇𝛼𝑠 ,start Upper end of temperature range for 𝛽 → 𝛼𝑠 transformation 1273 K
𝑇𝛼𝑠 ,end Lower end of temperature range for 𝛽 → 𝛼𝑠 transformation 935 K
𝑇𝛼𝑚 ,start Upper end of temperature range for 𝛽 → 𝛼𝑚 transformation 848 K
𝑇∞ Ambient temperature 293 K
𝑘eq
𝛼 𝛼𝑠-phase equilibrium concentration constant 0.0068 K−1

𝑘eq
𝛼𝑚 𝛼𝑚-phase equilibrium concentration constant 0.00415 K−1
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Fig. 2. Possible transformation paths between different microstructure phases.

artensite to stable 𝛼𝑠 phase). Note also that the sum of (18)–(20)
yields 𝑋̇𝛼𝑠 + 𝑋̇𝛼𝑚 + 𝑋̇𝛽 = 0, which is consistent with the continuity con-
straints (13) and (14). From these continuity constraints, the 𝛽-phase
raction can directly be determined as

𝛽 = 𝑋sol −𝑋𝛼𝑠 −𝑋𝛼𝑚 , (21)

aking time integration of (20) unnecessary. A graphical overview
f the overall transformation processes is shown in Fig. 2. In the
ollowing, diffusion-based and instantaneous transformations are dis-
inguished. In particular, the transformations between the 𝛽- and the
𝑠-phase as well as the dissolution of 𝛼𝑚- into 𝛼𝑠-phase are considered
o be diffusion-controlled. These diffusion-based transformations are
odeled by logistic differential equations:

𝑋̇𝛽→𝛼𝑠 =

⎧

⎪

⎨

⎪

⎩

𝑘𝛼𝑠 (𝑇 )
(

𝑋𝛼𝑠

)

𝑐𝛼𝑠−1
𝑐𝛼𝑠

(

𝑋eq
𝛼 −𝑋𝛼

)

𝑐𝛼𝑠+1
𝑐𝛼𝑠 if 𝑋𝛼 < 𝑋eq

𝛼 ,

0 otherwise,
(22)

𝑋̇𝛼𝑚→𝛼𝑠 =

⎧

⎪

⎨

⎪

⎩

𝑘𝛼𝑠 (𝑇 )
(

𝑋𝛼𝑠

)

𝑐𝛼𝑠−1
𝑐𝛼𝑠

(

𝑋𝛼𝑚

)

𝑐𝛼𝑠+1
𝑐𝛼𝑠 if 𝑋𝛼𝑚 > 0,

0 otherwise,
(23)

𝑋̇𝛼𝑠→𝛽 =

⎧

⎪

⎨

⎪

⎩

𝑘𝛽 (𝑇 )
(

0.9 −𝑋𝛼
)

𝑐𝛽−1
𝑐𝛽

(

𝑋𝛼 −𝑋eq
𝛼
)

𝑐𝛽+1
𝑐𝛽 if 𝑋𝛼 > 𝑋eq

𝛼 ,
0 otherwise.

(24)
4 
These are completed by the following temperature-dependent diffusion
rates,

𝑘𝛼𝑠 (𝑇 ) =
𝑘1

1 + exp[−𝑘3(𝑇 − 𝑘2)]
and 𝑘𝛽 (𝑇 ) = 𝑓 ⋅ 𝑘𝛼𝑠 (𝑇 ). (25)

n total, this diffusion model contains six parameters, 𝑐𝛼𝑠 , 𝑐𝛽 , 𝑘1, 𝑘2,
3 and 𝑓 . Their values have been inversely identified via experimental
ata (see [4]) and are summarized in Table 3. The formation of 𝛼𝑚
ut of 𝛽 and the dissolution of 𝛼𝑚 into 𝛽 are modeled as instantaneous
ransformations using Karush–Kuhn–Tucker (KKT) conditions:

𝑋𝛼𝑚 −𝑋eq
𝛼𝑚 ≥ 0 ∧

𝑋̇𝛽→𝛼𝑚 ≥ 0 ∧ (𝑋𝛼𝑚 −𝑋eq
𝛼𝑚 ) ⋅ 𝑋̇𝛽→𝛼𝑚 = 0 (26)

f 𝑋𝛼𝑚 > 0 ∶ 𝑋𝛼 −𝑋eq
𝛼 ≤ 0 ∧

𝑋̇𝛼𝑚→𝛽 ≥ 0 ∧ (𝑋𝛼 −𝑋eq
𝛼 ) ⋅ 𝑋̇𝛼𝑚→𝛽 = 0 (27)

hen rapidly cooling the material such that 𝑋𝛼 < 𝑋eq
𝛼 (i.e., increasing

seudo-equilibrium phase fraction 𝑋eq
𝛼𝑚 for 𝑇̇ < 0 ∧ 𝑇 < 𝑇𝛼𝑚 ,start),

onditions (26) ensure that 𝑋𝛼𝑚 exactly follows the effective pseudo-
quilibrium phase fraction 𝑋eq

𝛼𝑚 by means of instantaneous martensite
ormation, i.e., 𝑋𝛼𝑚 will never fall below 𝑋eq

𝛼𝑚 (but can exceed 𝑋eq
𝛼𝑚 ,

.g., when heating the material, since 𝛼𝑚 → 𝛼𝑠 dissolution is modeled
s a time-delayed diffusion process). On the other hand, when heating
he material at high temperatures (i.e., decreasing equilibrium phase
raction 𝑋eq

𝛼 for 𝑇̇ > 0 ∧ 𝑇 > 𝑇𝛼𝑠 ,end), conditions (27) ensure that
𝛼 exactly follows the pseudo-equilibrium phase fraction 𝑋eq

𝛼 through
nstantaneous 𝛼𝑚 → 𝛽 dissolution as long as remaining martensite is
vailable (i.e., 𝑋𝛼𝑚 > 0). Thus, 𝑋𝛼 will not exceed 𝑋eq

𝛼 as long as
𝛼𝑚 > 0 (but can fall below 𝑋eq

𝛼 , e.g., when cooling the material, since
he formation of 𝛼𝑠 out of 𝛽 is modeled as a time-delayed diffusion
rocess).

In our previous work [4], the microstructure model has been vali-
ated for general cooling scenarios from very low to very high cooling
ates. However, the scenario of very rapid heating rates, a specific
haracteristic of LPBF, was not in the focus of this original work.
or very rapid heating at high temperatures 𝑇 > 𝑇𝛼𝑠 ,end, the 𝛼𝑠-
hase fraction cannot follow the decreasing value of 𝑋eq sufficiently
𝛼
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Table 3
Inversely identified parameters of the microstructure evolution model.
A detailed explanation of the calibration process is given in [4].

Parameter Value Unit

𝑐𝛼𝑠 2.51 –
𝑐𝛽 11.0 –
𝑘1 0.294 s−1

𝑘2 850 K
𝑘3 0.0337 K−1

𝑓 3.8 –

fast due to the time-delayed nature of the diffusion-based 𝛼𝑠 → 𝛽
transformation, potentially leading to a remaining 𝛼𝑠-phase fraction

hen reaching 𝑇𝑠 (where melting starts). To avoid the complexity of
odeling the melting of a mixture of two phases and also due to a

ack of experimental data in this high-temperature regime, the original
odel of [4] is extended by the following regularization condition,

nsuring a complete 𝛼𝑠 → 𝛽 transformation before melting is initiated:

𝛼𝑠 ≤ 0.9
𝑇𝛼𝑠 ,reg,2 − 𝑇

𝑇𝛼𝑠 ,reg,2 − 𝑇𝛼𝑠 ,reg,1
, if 𝑇𝛼𝑠 ,reg,1 < 𝑇 < 𝑇𝛼𝑠 ,reg,2. (28)

According to (28), this high temperature 𝛼𝑠 → 𝛽 dissolution is mod-
eled as an instantaneous transformation such that 𝑋𝛼𝑠 is limited by
a maximal value, decreasing linearly to zero within the temperature
interval [𝑇𝛼𝑠 ,reg,1; 𝑇𝛼𝑠 ,reg,2] with 𝑇𝛼𝑠 ,start ≤ 𝑇𝛼𝑠 ,reg,1 ≤ 𝑇𝛼𝑠 ,reg,2 ≤ 𝑇𝑠. This
regularization is justified for the considered application since we are
not interested in exactly resolving these intermediate microstructure
compositions before melting. In this contribution, we choose 𝑇𝛼𝑠 ,reg,1 =
𝑇𝛼𝑠 ,start and 𝑇𝛼𝑠 ,reg,2 = 𝑇𝛼𝑠 ,start + 100K.

For demonstration purposes, an exemplary temperature history and
the resulting phase composition at a single material point are shown in
more detail in Appendix A. All model parameters were identified from
experimental data in [4], and the model was subsequently validated.
Another experimental validation showing good agreement between
predictions and measurements was recently presented in [20]. Thus, we
can confidently ascribe validity to this model and focus on an efficient
implementation for part-scale simulations in the rest of this article.

While the microstructure model is specific to Ti-6Al-4V, analogous
ODEs may be formulated for other classes of microstructure phases
present in different alloys. For instance, transformations between five
phases of Steel 5140 are described via JMAK equations in [10], and
transformation laws for Inconel 718 are used in [31]. Since these
transformations are classifiable as diffusive or instantaneous, the cali-
bration steps for inverse parameter identification discussed in [4] could
be performed on experimental data to obtain similar equations and
equality constraints. Importantly, all insights into the efficient solution
of the equations for Ti-6Al-4V – the focus of the present article – will
transfer seamlessly to these equivalent equations for other alloys.

3. Numerical methods and efficient implementation

The thermal problem is solved with an efficient FEM implemen-
tation [25] based on fast operator evaluation [32]. Implementation
is performed with the deal.II library [33]. Notably, we use an
explicit scheme for the active laser stage where small time step sizes are
necessary to obtain a continuous melt track. In the interlayer cool down
stage after every layer, we use an implicit scheme allowing larger time
step sizes. This approach is extended to the microstructure model where
we introduce a fast explicit and a more accurate and robust implicit
scheme.

The microstructure model is integrated into the existing approach
as a one-way coupled problem that is solved after the thermal model
in every time step. Since the microstructure model does not explicitly
depend on the spatial coordinate or spatial derivatives, the problem
is fully decoupled in space. Thus, the ODEs can be solved indepen-
dently at every point in space. It is convenient to place the degrees
5 
of freedom (DoFs) of the microstructure model (phases 𝑋𝛽 , 𝑋𝛼𝑠 and
𝑋𝛼𝑚 ) at the same spatial positions as the thermal DoFs (temperature 𝑇 ).
This choice has the advantage that no communication and interpolation
is necessary to obtain the temperature to evaluate the microstructure
model.

The spatial discretization is realized as an adaptive mesh. Working
on a powder-filled box geometry that encloses the desired final part
geometry is sufficient, as the final part geometry emerges via the
consolidated fraction due to our three-state material model. When
activating a new layer, more refined cells are placed in the highest
active layer and a few layers beneath. The mesh can be coarsened
at later stages when the material history allows for it. In [25], the
only history variable that needed to be considered for the thermal
model was the consolidated fraction 𝑟𝑐 . In this contribution, the three
microstructure phases also represent a material history that should not
be coarsened inadvertently. Therefore, an octant consisting of eight
sibling cells of equal refinement level will only be coarsened when, for
every microstructure phase, all its values are sufficiently close to each
other. In particular, to be a candidate for coarsening, the average values
of every microstructure phase fraction may only differ by at most 0.02
across the cells in an octant. For more general details of the adaptive
and growing mesh, the reader is referred to [25].

3.1. Time integration of microstructure model

To streamline the notation, the unknown fractions of stable and
martensitic 𝛼-phase are collected in a state vector 𝒎 = [𝑋𝛼𝑠 , 𝑋𝛼𝑚 ]. The
𝛽-phase fractions can be processed for a given state and temperature
as,

𝑋𝛽 (𝒎, 𝑇 ) = 1 −𝑋𝛼𝑠 −𝑋𝛼𝑚 . (29)

The right-hand side of the differential equations (18)–(19) is split into
a diffusion-based and instantaneous contribution:

𝒎̇ =
[

𝑋̇𝛼𝑠
𝑋̇𝛼𝑚

]

=
[

𝑋̇𝛽→𝛼𝑠 + 𝑋̇𝛼𝑚→𝛼𝑠 − 𝑋̇𝛼𝑠→𝛽
−𝑋̇𝛼𝑚→𝛼𝑠

]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=∶𝒎̇diff

+
[

0
𝑋̇𝛽→𝛼𝑚 − 𝑋̇𝛼𝑚→𝛽

]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=∶𝒎̇inst

(30)

ntegrating (30) from a point in time 𝑡𝑛 to a point in time 𝑡𝑛+1 = 𝑡𝑛 +𝛥𝑡
ields,

𝑛+1 = 𝒎𝑛 + ∫

𝑡𝑛+1

𝑡𝑛
𝒎̇diff d𝑡 + ∫

𝑡𝑛+1

𝑡𝑛
𝒎̇inst d𝑡 (31)

where the superscript indicates at which point in time a quantity is
evaluated. The phase fractions 𝒎𝑛 and the temperature 𝑇 𝑛+1 are known.
A numerical time integration scheme will approximate the first integral
over the diffusion-driven contribution. Note that the second integral
over the (non-differentiable) instantaneous change rate yields a finite
value for the absolute change. These instantaneous changes are defined
in (26) and (27).

Explicit time integration. We split (31) into a two-stage process, where
integration of the diffusion-based term is performed with a forward Eu-
ler scheme towards an intermediate state 𝒎̃𝑛+1, followed by a correction
step:

𝒎̃𝑛+1 = 𝒎𝑛 + 𝛥𝑡 𝒎̇diff(𝑇 𝑛,𝒎𝑛), (32)

𝒎𝑛+1 = 𝒉(𝑇 𝑛+1, 𝒎̃𝑛+1). (33)

Here, we define a correction function 𝒉(𝑇 ,𝒎), which contains the
instantaneous changes for the martensite phase as well as corrections
that are necessary to satisfy the continuity constraints (13)–(14). Fur-
thermore, if either 𝑋𝛼𝑠 or 𝑋𝛼𝑚 falls below zero, it is instead set to zero.
If 𝑋𝛼 exceeds the maximum equilibrium fraction of 0.9, both, 𝑋𝛼𝑠 or
𝑋𝛼𝑚 are reduced while maintaining the ratio 𝑋𝛼𝑠∕𝑋𝛼𝑚 .

Two exceptional cases become apparent when examining (22) and
24). Both equations pose a problem for the explicit time integration
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scheme presented so far. Evaluating (22) for 𝑋𝛼𝑠 = 0, 𝑋𝛼𝑚 = 0, 𝑋𝛽 = 1.0
gives a rate of zero, which implies that a solution computed with
the explicit scheme can never evolve out of the initial state. Thus,
we initiate the diffusion process with the help of an approximate
analytical solution described in more detail in [4]. The same strategy
can be applied to (24) which suffers from the same problem for 𝑋𝛼𝑠 =
.9, 𝑋𝛼𝑚 = 0, 𝑋𝛽 = 0.1. Due to the numeric values of the physical
onstants, the second case is prone to cancellation of significant digits.
n appropriate reformulation can be found in Appendix B.

The presented explicit time integration scheme does not come with a
tability limit due to the correction function 𝒉(𝑇 ,𝒎) being applied after

every step. Therefore, the solution cannot grow arbitrarily large, and
classical stability considerations do not apply to the specific scheme
used here. Still, the time step size should be chosen within limits to
obtain a sufficiently accurate solution.

Implicit time integration. We use a Crank–Nicolson time integration
cheme for the diffusion-based term and reuse the same correction
unction 𝒉 as in the explicit case:

̃ 𝑛+1 = 𝒎𝑛 + 1
2
𝛥𝑡

(

𝒎̇diff(𝑇 𝑛+1,𝒎𝑛+1) + 𝒎̇diff(𝑇 𝑛,𝒎𝑛)
)

, (34)

𝒎𝑛+1 = 𝒉(𝑇 𝑛+1, 𝒎̃𝑛+1). (35)

he nonlinear equation (35) is solved employing a fixed-point iteration:

𝑛+1
𝑖+1 = 𝒉

(

𝑇 𝑛+1,𝒎𝑛 + 1
2
𝛥𝑡

(

𝒎̇diff(𝑇 𝑛+1,𝒎𝑛+1
𝑖 ) + 𝒎̇diff(𝑇 𝑛,𝒎𝑛)

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝒎̃𝑛+1
𝑖+1

)

, (36)

𝒎𝑛+1
0 = 𝒎𝑛, (37)

until the weighted root-mean-square (WRMS) norm of the residual

𝒓𝑛+1𝑖+1 = 𝒎̃𝑛+1
𝑖+1 −

(

𝒎𝑛 + 1
2
𝛥𝑡

(

𝒎̇diff(𝑇 𝑛+1,𝒎𝑛+1
𝑖+1 ) + 𝒎̇diff(𝑇 𝑛,𝒎𝑛)

))

(38)

= 𝛥𝑡
2

(

𝒎̇diff(𝑇 𝑛+1,𝒎𝑛+1
𝑖 ) − 𝒎̇diff(𝑇 𝑛+1,𝒎𝑛+1

𝑖+1 )
)

(39)

alls below a threshold of 1. The WRMS norm is defined as

|𝒓𝑛+1𝑖+1 ||WRMS =

√

√

√

√

√

1
𝑁

𝑁
∑

𝑗=1
(𝑟𝑛+1𝑖+1,𝑗𝑤𝑗 )2, where 𝑤𝑗 = (𝜀abs + 𝑚𝑛

𝑗𝜀rel)−1 (40)

ith an absolute tolerance 𝜀abs = 1 × 10−10 and a relative tolerance
rel = 1 × 10−3. This norm ensures that convergence considers the order
f magnitude of different solution components via a weight 𝑤𝑗 scaled
ith the solution component 𝑚𝑛

𝑗 of the last time step.
It can easily be verified that the iteration scheme prescribed in

36) is a contraction on 𝑋𝑖 ∈ (0, 0.9), and thus converges to a unique
olution if the time step size 𝛥𝑡 is sufficiently small. This proof holds
or time step sizes up to around 0.001 s. However, we experimentally
bserve fast and robust convergence for time step sizes up to 1 s. We
se a subcycling scheme to achieve sufficient accuracy, where a large
ime step performed in the thermal model is subdivided into substeps
ot exceeding a maximum size 𝛥𝑡sub = 0.01 s. The temperature values
re linearly interpolated from the solutions at two thermal time steps
nclosing a subcycling step.

.2. Vectorized computation

Modern CPUs support vector operations on specialized execution
nits that perform the same operation on a (small) array of differ-
nt data, an idiom commonly called Single Instruction Multiple Data
SIMD). This small array has 𝑛lanes entries and will be referred to as a
ectorized array. A useful C++ type VectorizedArray overloading
asic arithmetic operations is provided by the deal.II library [32].
imilar data types are available in the experimental C++ standard
mplementation [34] or as stand-alone libraries [35]. The overloaded
perations simultaneously perform the arithmetic operation on all lanes
6 
y calling the respective, hardware-specific intrinsic functions. For
nstance, the latest Intel AVX512 instruction set architecture supports
ight concurrent double-precision operations. This capability promises
o significantly speed up computation-heavy code paths by a factor of
lanes when fully utilized. Using SIMD operations demands contiguous
ata storage in memory for maximum performance benefits. Further-
ore, the concurrently processed data should be independent, i.e., the

omputation in one vector lane may not depend on a computation in
nother lane of the same vector.

The classical and automatic approach to vectorization is to look
t inner loops or plain code and let the compiler identify nearby
perations of the same kind that could go to different lanes. The results
f auto-vectorization are poor if the loop kernel contains code beyond
asic arithmetic, e.g., conditional branches and transcendental function
alls. Therefore, we choose to vectorize the outer loop over all points
n the mesh in batches of size 𝑛lanes and then solve the microstructure
DEs on a batch of points stored in the different lanes. The different
uantities on a batch of points are loaded into the VectorizedArray
ata structure. This approach results in an array-of-struct-of-array lay-
ut, with the inner array being a VectorizedArray, which allows
concise implementation without explicitly writing the inner-most

ectorized loop. However, the numerous conditional branches in the
icrostructure model do not always allow the same operation to be
erformed on all lanes. From an implementation standpoint, three
istinct scenarios for the conditional branches of equations can be
istinguished:

1. All vector lanes require evaluation of an expression. In this case,
the expression is evaluated for all vector lanes using intrinsic
functions.

2. None of the vector lanes require evaluation of an expression. In
this case, the expression is not evaluated.

3. Some but not all of the vector lanes require the evaluation of an
expression. In this case, the expression is evaluated for all vector
lanes, but the result is only stored in some vector lanes that
require it. Note that the unused additional computations do often
not impact the evaluation time compared to an unvectorized
implementation.2

A condition mask is computed for every branch to see which of
he three scenarios is active. In the third case, the results of different
ranches are combined by blending the results with the condition mask.
he general strategy is also visualized in Fig. 3.

The strategy outlined above only makes sense when an efficient
ectorized implementation of every required (mathematical) function is
vailable. Although it is possible to fall back to compute expressions on
he vector lanes sequentially, doing this in the scenario of mixed opera-
ions can, in the worst case, lead to an increase in computation time on
he order of 

(

𝑛lanes
)

compared to an unvectorized implementation.3
Algorithm 1 outlines the overall vectorized solution procedure for

he microstructure model. Starting from the solution variables, 𝑋𝑛
𝛼𝑠

,
𝑛
𝛼𝑚

, 𝑋𝑛
𝛽 and 𝑇 𝑛, at the previous time 𝑡𝑛, the solution after a time

ncrement 𝛥𝑡 with temperature 𝑇 𝑛+1 is sought. We load a contiguous
ata slice from these five global vectors into vectorized arrays. Time
ntegration is then performed on the vectorized arrays. Afterward, the
esults at time 𝑡𝑛+1 are written back from the vectorized arrays into

2 Note that wider vectors might lead to slightly lower clock frequencies
n some hardware and complicated functions, like divisions or square roots,
ight have lower throughput when executed on wider vectors; nonetheless,

he overwhelming share of operations has the same throughput for 1 or 𝑛lanes
results.

3 If every lane requires a different kind of operation, 
(

𝑛lanes
)

operations
are necessary in the unvectorized case. However, when the computation is
vectorized and every kind of operation is unnecessarily performed on all lanes,

(

𝑛2
)

operations are necessary.
lanes
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Fig. 3. Illustration of vectorized microstructure algorithm. The algorithm works simultaneously on a local working copy of 𝑛lanes entries extracted from the five global data vectors.
Time integration and/or fixed-point iteration and (optional) subcycling are all performed locally. All conditional computations are performed by blending the results of different
conditional branches based on the condition mask. When storing data back, the additional temperature vector 𝑇 𝑛 is updated from the current temperature values 𝑇 𝑛+1.
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Algorithm 1: Time integration of microstructure model with
vectorized data.
Data: 𝛥𝑡, Global vectors 𝑋𝑛

𝛼𝑠
, 𝑋𝑛

𝛼𝑚
, 𝑋𝑛

𝛽 , 𝑇 𝑛, 𝑇 𝑛+1

Result: Global vectors 𝑋𝑛+1
𝛼𝑠

, 𝑋𝑛+1
𝛼𝑚

, 𝑋𝑛+1
𝛽 , 𝑇 𝑛+1

← 0
hile 𝑖 < size(𝑇 𝑛) do
// Load into vectorized array
𝑋̌𝑛

𝛼𝑠
← 𝑋𝑛

𝛼𝑠
[𝑖 ∶ 𝑖 + 𝑛lanes]

𝑋̌𝑛
𝛼𝑚

← 𝑋𝑛
𝛼𝑚
[𝑖 ∶ 𝑖 + 𝑛lanes]

𝑋̌𝑛
𝛽 ← 𝑋𝑛

𝛽 [𝑖 ∶ 𝑖 + 𝑛lanes]

𝑇̌ 𝑛 ← 𝑇 𝑛[𝑖 ∶ 𝑖 + 𝑛lanes]

𝑇̌ 𝑛+1 ← 𝑇 𝑛+1[𝑖 ∶ 𝑖 + 𝑛lanes]
// Solve local time integration problem
𝑋̌𝑛+1

𝛼𝑠
, 𝑋̌𝑛+1

𝛼𝑚
, 𝑋̌𝑛+1

𝛽 ← time_integration(𝑋̌𝑛
𝛼𝑠
, 𝑋̌𝑛

𝛼𝑚
, 𝑋̌𝑛

𝛽 ,
𝑇̌ 𝑛, 𝑇̌ 𝑛+1, 𝛥𝑡)
// Store from vectorized array
𝑋𝑛+1

𝛼𝑠
[𝑖 ∶ 𝑖 + 𝑛lanes] ← 𝑋̌𝑛+1

𝛼𝑠

𝑋𝑛+1
𝛼𝑚

[𝑖 ∶ 𝑖 + 𝑛lanes] ← 𝑋̌𝑛+1
𝛼𝑚

𝑋𝑛+1
𝛽 [𝑖 ∶ 𝑖 + 𝑛lanes] ← 𝑋̌𝑛+1

𝛽

𝑇 𝑛[𝑖 ∶ 𝑖 + 𝑛lanes] ← 𝑇̌ 𝑛+1

𝑖 ← 𝑖 + 𝑛lanes
end

Algorithm 2: Local explicit time integration of microstructure
model on vectorized data.
Data: 𝒎̌𝑛 = [𝑋̌𝑛

𝛼𝑠
, 𝑋̌𝑛

𝛼𝑚
], 𝑋̌𝑛

𝛽 , 𝑇̌ 𝑛, 𝛥𝑡
Result: 𝑋̌𝑛+1

𝛼𝑠
, 𝑋̌𝑛+1

𝛼𝑚
, 𝑋̌𝑛+1

𝛽
̇̌𝒎𝑛 ← compute_rates(𝒎̌𝑛,𝑇̌ 𝑛)
𝒎̌𝑛+1 ← 𝒎̌𝑛 + 𝛥𝑡 ̇̌𝒎
𝒎̌𝑛+1, 𝑋̌𝑛+1

𝛽 ← instantaneous_corrections(𝒎̌𝑛+1, 𝑋̌𝑛
𝛽 , 𝑇̌

𝑛)
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Algorithm 3: Local implicit time integration of microstructure
model on vectorized data.
Data: 𝒎̌𝑛 = [𝑋̌𝑛

𝛼𝑠
, 𝑋̌𝑛

𝛼𝑚
], 𝑋̌𝑛

𝛽 , 𝑇̌ 𝑛, 𝑇̌ 𝑛+1, 𝛥𝑡
esult: 𝑋̌𝑛+1

𝛼𝑠
, 𝑋̌𝑛+1

𝛼𝑚
, 𝑋̌𝑛+1

𝛽
̇̌ 𝑛 ← compute_rates(𝒎̌𝑛,𝑇̌ 𝑛)
̌ 𝑛+10 , 𝑋̌𝑛+1

𝛽,0 ← instantaneous_corrections(𝒎̌𝑛, 𝑋̌𝑛
𝛽 , 𝑇̌

𝑛+1)
̇̌ 𝑛+1
0 ← compute_rates(𝒎̌𝑛+1

0 , 𝑇̌ 𝑛+1)
← 0
epeat

𝒎̌𝑛+1
𝑖+1 ← 𝒎̌𝑛 + 𝛥𝑡

2 (
̇̌𝒎𝑛+1
𝑖 + ̇̌𝒎𝑛)

𝒎̌𝑛+1
𝑖+1 , 𝑋̌

𝑛+1
𝛽,𝑖+1 ←instantaneous_corrections(𝒎̌𝑛+1

𝑖+1 , 𝑋̌
𝑛+1
𝛽,𝑖 ,

𝑇̌ 𝑛+1)
̇̌𝒎𝑛+1
𝑖+1 ← compute_rates(𝒎̌𝑛+1

𝑖+1 , 𝑇̌
𝑛+1)

𝑒 ← weighted_root_mean_square( 𝛥𝑡
2 (

̇̌𝒎𝑛+1
𝑖+1 − ̇̌𝒎𝑛+1

𝑖 ))
𝑖 ← 𝑖 + 1

until 𝑒 < 1.0

the respective global vectors. Note that the update of the temperature
vector 𝑇 𝑛 ← 𝑇 𝑛+1 is also performed in this loop since the data is already
loaded. Five load and four store operations must be performed for every
evaluation point, totaling 72 bytes of memory transfer per evaluation
oint or 24 bytes per DoF (3 DoFs per evaluation point).

The explicit time stepping is outlined in Algorithm 2. The function
compute_rates evaluates the diffusion-based rates (22)–(24), and
the function instantaneuous_corrections evaluates instanta-
neous transformations between 𝛼𝑚- and 𝛽-phase. Only a few arithmetic
operations are needed for every set of vectorized arrays. In contrast,
the implicit solution procedure shown in Algorithm 3 usually requires
fixed-point iteration and, thus, at least twice as many arithmetic oper-
ations as the explicit step. However, the amount of loaded and stored
data is equal. As we will demonstrate in the examples, this typically
leads to the explicit time integration scheme being memory-bound and
the implicit scheme being compute-bound.
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3.3. Efficient approximation of transcendental functions

The evolution equations of the microstructure model contain a few
terms that necessitate the computation of a (non-integer) power or
exponential function. Note that the power of a positive number can
equivalently be written as

𝑎𝑥 = exp(𝑥 ln 𝑎), 𝑎 > 0, (41)

hich allows to compute the power of a number via a natural logarithm
nd an exponential function. At the time of writing, the C++ standard
id not offer an implementation of these functions that could leverage
IMD hardware support. While copying and adapting the sophisticated
mplementations from the standard library or wrapping an existing
ibrary supporting vectorized data types would, in theory, be possible,
e want to follow a different strategy here. The C++ standard imple-
entation and most other libraries [36] must deal with a wide range

f applications and consequently are implemented to be accurate up
o machine precision. However, in the context of a numerical method,
e accept a much less accurate result than machine precision. The

hosen strategy embeds this fact by allowing the definition of an
pproximation that is accurate enough while minimizing the number
f arithmetic operations.

The strategy employed in this work assumes the ubiquitous IEEE-
54 standard [37] to represent floating point numbers. In this standard,
real number is represented as

−1)𝑠2𝑝−𝑏(1 + 𝑚). (42)

or a 64-bit representation, i.e., the double data type in C/C++, the
ias is set to 𝑏 = 1023, the sign 𝑠 consumes a single bit, the exponent
(an integer) consumes 11 bit, and the mantissa 𝑚 (a binary fraction)

onsumes 52 bit. The idea of directly computing and manipulating the
itwise representation was initially brought up in [28]. Here, we follow
he refined implementation discussed in [26,27]. Let us first find an
pproximation to the exponential function 𝑧exp by rewriting,

exp ∶= exp(𝑥) = 2𝑥 log2(𝑒) = 2𝑦 = 2𝑦𝑖2𝑦𝑓 , (43)

here 𝑦𝑖 = ⌊𝑥 log2(𝑒)⌋ is an integer,4 and 𝑦𝑓 = 𝑥 log2(𝑒) − 𝑦𝑖 ∈ [0, 1) is a
rational number. By comparing (43) to (42), we find that

𝑠 = 0, (44)

2𝑦𝑖 = 2𝑝−𝑏, (45)

2𝑦𝑓 = 1 + 𝑚. (46)

The sign bit is always zero, as expected for exponentiation. The expo-
nent 𝑝 can directly be computed from (45) as

𝑝 = 𝑦𝑖 + 𝑏. (47)

By rearranging (46) and introducing a correction function exp(𝑦𝑓 ), we
rite:
𝑦𝑓 = 1 + 𝑚 = 1 + 𝑦𝑓 −exp(𝑦𝑓 ), with exp(𝑦𝑓 ) = 1 + 𝑦𝑓 − 2𝑦𝑓 , (48)

which leads to the mantissa

𝑚 = 𝑦𝑓 −exp(𝑦𝑓 ). (49)

The correction function exp(𝑦𝑓 ) is replaced with a polynomial approx-
imation to circumvent the need to compute a (non-integer) power of 2.
Note that this is the only approximation that is performed for the com-
putation of the exponential function. The polynomial approximation
can be tailored to the required accuracy by polynomial interpolation
or regression. In this contribution, we use a least-squares fit of a
polynomial of degree 7 to data sampled on 1000 equidistant points in
[0, 1). The resulting coefficients are listed in Table 4. Tests revealed

4 The floor function ⌊𝑥⌋ returns the largest integer not exceeding 𝑥.
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Table 4
Polynomial coefficients for the approximated correction functions exp(𝑦𝑓 ) and ln(𝑦𝑓 )

𝑖 𝑎𝑖 in exp(𝑦𝑓 ) =
∑𝑛

𝑖=0 𝑎𝑖𝑦
𝑖
𝑓 𝑏𝑖 in ln(𝑦𝑓 ) =

∑𝑛
𝑖=0 𝑏𝑖𝑦

𝑖
𝑓

0 1.213 071 811 889 × 10−10 1.847 756 720 962 93 × 10−10

1 3.068 528 102 657 × 10−1 1.442 695 040 841 32
2 −2.402 263 423 993 59 × 10−1 −0.721 347 520 143 005
3 −5.550 533 134 149 54 × 10−2 0.480 898 345 526 187
4 −9.613 524 328 848 3 × 10−3 −0.360 675 000 332 004
5 −1.342 884 759 630 84 × 10−3 0.288 048 466 919 235
6 −1.431 317 444 835 89 × 10−4 −0.235 306 287 368 882
7 −2.159 565 612 634 9 × 10−5 0.183 102 904 829 435
8 −0.120 996 268 979 3
9 0.059 150 381 159 211 3

10 −0.018 114 949 248 998 9
11 0.002 544 886 756 057 43

that adding more sample points does not increase the accuracy of
the approximation in a relevant manner for our application. In con-
trast to [27], we do not consider the derivatives of exp(𝑦𝑓 ) in the
computation of the coefficients as we found their impact negligible.

Since we determined the sign bit 𝑠 = 0, the exact exponent 𝑝 =
𝑦𝑖 + 𝑏, and the approximate mantissa 𝑚 = 𝑦𝑓 − exp(𝑦𝑓 ) of 𝑧exp in
(43), all that remains to be done is filling their bitwise representations
into the IEEE754 conforming layout. An elegant way to achieve this
can be derived by filling a 64-bit integer (int64) with the values
of 𝑠, 𝑝, and 𝑚 and then interpreting the result as a (64-bit) double
value. A graphical depiction of the approach is shown in Fig. 4. The
exponent 𝑝 – an integer stored inside a double representation – is
converted into the equivalent int64 format and then multiplied with
252, shifting it 52 bits to the left. Multiplying the mantissa 𝑚 < 1
by 252 shifts the decimal point behind the last (binary) digit, thus
making it an integer, which is then converted into the equivalent
int64 format. In C++, the conversion from double to int64 is
achieved by a static_cast<int64> operation. The two int64
numbers derived from 𝑝 and 𝑚 have no overlapping non-zero bits.
They are added together to yield a combined int64 with the bit-
wise representation of 𝑧exp when reinterpreted as a double number
(using reinterpret_cast<double> in C++). Programmatically
speaking, this algorithm can be written as:

𝑧exp ← 𝚛𝚎𝚒𝚗𝚝𝚎𝚛𝚙𝚛𝚎𝚝_𝚌𝚊𝚜𝚝⟨𝚍𝚘𝚞𝚋𝚕𝚎⟩(252

× 𝚜𝚝𝚊𝚝𝚒𝚌_𝚌𝚊𝚜𝚝⟨𝚒𝚗𝚝𝟼𝟺⟩(𝑝) + 𝚜𝚝𝚊𝚝𝚒𝚌_𝚌𝚊𝚜𝚝⟨𝚒𝚗𝚝𝟼𝟺⟩(252 × 𝑚)) (50)

or an integer stored inside a double representation, we may flip the
rdering of multiplication with another integer and a
tatic_cast<int64> to integer format. Thus, we can rewrite (50)
s,

exp ← 𝚛𝚎𝚒𝚗𝚝𝚎𝚛𝚙𝚛𝚎𝚝_𝚌𝚊𝚜𝚝⟨𝚍𝚘𝚞𝚋𝚕𝚎⟩(𝚜𝚝𝚊𝚝𝚒𝚌_𝚌𝚊𝚜𝚝⟨𝚒𝚗𝚝𝟼𝟺⟩(252 × (𝑝 + 𝑚))),

(51)

nd with (47) and (49) after rearranging as

𝑦 ← 𝑥 log2(𝑒) (52)

𝑦𝑓 ← 𝑦 − ⌊𝑦⌋ (53)

exp ← 𝚛𝚎𝚒𝚗𝚝𝚎𝚛𝚙𝚛𝚎𝚝_𝚌𝚊𝚜𝚝⟨𝚍𝚘𝚞𝚋𝚕𝚎⟩(𝚜𝚝𝚊𝚝𝚒𝚌_𝚌𝚊𝚜𝚝⟨𝚒𝚗𝚝𝟼𝟺⟩(𝐴

× (𝑦 −exp(𝑦𝑓 )) + 𝐵)) (54)

he coefficients 𝐴 = 252, 𝐵 = 252 ⋅1023 and log2(𝑒) can be precomputed.
he operations required in (52)–(54) are multiplication, addition, floor-

ng, and type conversions. All of these are typically available in an
nstruction set for vector extensions. Thus, it is straightforward to
mplement (52)–(54) using SIMD in a given instruction set architecture.

The same ideas can be applied to derive a fast, vectorized approx-
mation of the natural logarithm ln(𝑥). We perform a change of basis
nd insert the IEEE754 double representation (42) to obtain:

= ln(𝑥) = ln(2) log (𝑥) = ln(2) log
[

2𝑝−𝑏(1 + 𝑚)
]

ln 2 2
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Fig. 4. Following the arrows from top to bottom illustrates how to synthesize an IEEE754 double representation from a separate exponent 𝑝 (blue) and mantissa 𝑚 (red).
ollowing the arrows from bottom to top shows the inverse operation, namely a decomposition of a double representation into exponent and mantissa. (For interpretation of the
eferences to color in this figure legend, the reader is referred to the web version of this article.)
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= ln(2)[(𝑝 − 𝑏)
⏟⏟⏟

𝑙𝑖

+ log2(1 + 𝑚)
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

𝑙𝑓

]. (55)

Again, we identify an integer part 𝑙𝑖 and a fractional part 𝑙𝑓 . The
nteger part 𝑙𝑖 is the exponent in the double representation of 𝑥.
he fractional part 𝑙𝑓 is once more replaced by a correction function
ln(𝑚) ≈ log2(1+𝑚) which takes the mantissa 𝑚 of 𝑥 as an argument. The

xact form is replaced with an approximated polynomial of degree 11
etermined via a least-squares fit of 1000 sample points in the relevant
nterval 𝑚 ∈ [0, 1). The coefficients are given in Table 4. The exponent
− 𝑏 and the mantissa 𝑚 are extracted from 𝑥 by bit manipulations.
ote that these operations are the inverse of the operations performed

o synthesize a double, as shown in Fig. 4 when following the arrows
rom the bottom to the top. Again, (55) is straightforward to implement
ith SIMD instructions.

To evaluate polynomials exp of degree 7 and ln of degree 11, we
ake use of Estrin’s scheme [38]. Although this scheme requires more

loating point operations than the classical Horner scheme, it is better
uited for the two separate fused multiply-add (FMA) units typically
vailable on modern hardware since it allows independent computation
f terms, thus shortening dependency chains. Applying this technique
o the polynomial approximation of the correction function exp yields,

exp(𝑦𝑓 ) = (((𝑎7𝑦𝑓 +𝑎6)𝑦2𝑓 +(𝑎5𝑦𝑓 +𝑎4))𝑦4𝑓 +((𝑎3𝑦𝑓 +𝑎2)𝑦2𝑓 +(𝑎1𝑦𝑓 +𝑎0))),

(56)

here pairs of parentheses group expressions that can be computed by
n FMA instruction.

. Numerical examples

The numerical examples are run on compute nodes consisting of two
ntel Xeon Gold 6230 CPUs (total of 40 cores per compute node) run-
ing at 2.1GHz with a measured peak performance of 2.5 TFlops∕s and
DAXPY memory bandwidth of 162 GByte∕s. The DAXPY benchmark

pdates a vector 𝒚 in place according to 𝒚 ← 𝒚+𝛼𝒙, which, from a mem-
ry access perspective, is close to the microstructure model. A second
etup consists of compute nodes with two AMD EPYC 9354 CPUs (total
f 64 cores per compute node) running at 3.25GHz with a measured
eak performance of 3.75 TFlops∕s and a DAXPY memory bandwidth
f 617 GByte∕s. All performance measurements are conducted and

nalyzed with the LIKWID suite [39]. w

9 
.1. Performance analysis

As a first numerical study, we investigate the microstructural model
mplementation in isolation. A significant challenge for a vectorized
mplementation of the microstructure equations lies in the conditional
ranches. As outlined above, we rely on the fact that spatially close
aterial points (in the physical domain) likely need the same treat-
ent. Such points are often located next to each other in a global

ector of unknowns arising from spatial discretization. Three different
ynthetic sets of test data are used. The first test layout consists of
lternating data, so neighboring entries in global vectors require dif-
erent conditional branches in the microstructure model. The second
onsists of contiguous blocks of 10 entries, and the third consists
f contiguous blocks of 100 entries. The throughput, defined as the
umber of DoFs divided by the solution time, is shown for these three
lock sizes and the explicit and implicit time integration scheme in
ig. 5. Most importantly, the throughput increases for all block sizes
hen increasing the vectorization width 𝑛lanes. This holds for explicit
nd implicit time integration schemes. This behavior is achieved by
mplementing the expensive exponential and power functions to exploit
IMD instructions. Without this implementation, one would observe in-
reased computation times and lower throughput for high vectorization
idths at small block sizes. Due to unavoidable conditional computa-

ions in the case of block size 1, the performance improvement when
ncreasing the vectorization width cannot scale perfectly here. For the
ntel hardware, the flattening of the curve above 6 GDoF∕s is in good
greement with the maximum theoretically possible throughput of
162GByte∕s)∕(24Byte∕DoF) = 6.75GDoF∕s for a fully memory-bound
ode.

Fig. 6 shows a roofline plot of the tested data layouts. For increasing
ectorization width, data points move upwards and thus closer to the
ardware limits. The explicit scheme quickly saturates the maximum
emory bandwidth for larger block sizes. This explains why no speedup

s visible when increasing the vectorization width from four to eight in
ig. 5: the implementation is memory-bound, and higher vectorization
idths cannot speed up the computation if memory transfer is the
ottleneck. An improvement can only be expected if data transfer is
inimized further or more work is performed for loaded data. One
ay to achieve this is subcycling, which performs multiple time steps
n the same loaded data in place and only stores the result of the last
ubcycle. However, in a practical setting, the microstructure model al-
eady outperforms the thermal model by a significant factor, so further
ptimization in that direction is not investigated here. For block size 1,

e observe a growing arithmetic intensity for increasing vectorization
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Fig. 5. Impact of vectorization width on throughput of the microstructure model solved with an explicit or implicit scheme on Intel and AMD hardware.
Fig. 6. Roofline plot of a single time step performed in the microstructure model with an explicit or implicit scheme at different data block sizes. Data points move upwards
along the dashed lines for increasing vectorization widths.
s
t
s
m

width. In this case, multiple branches must be computed in all lanes,
although the result is only stored in some lanes. For larger block sizes,
it becomes less likely to require different branch evaluations on a
vectorized array, and thus, the number of (unproductive) arithmetic
operations decreases.

Furthermore, we analyzed the generated machine code for the im-
plicit scheme with the machine code analyzer of the LLVM project [40].
Analyzing the instruction mix reveals that the achievable performance
is limited by dependency chains and expensive instructions that occupy
the same execution ports as the productive floating point operations.
In particular, executing the necessary instructions to compute diffusion
from 𝛽- to 𝛼𝑠-phase without any branching or load/store instructions
reveals that only 43% of the work performed on the two relevant
execution ports of the Intel hardware contributes to the floating point
operation metric. For the AMD hardware, the equivalent factor is
57%. Therefore, we introduce an application-specific roofline into the
roofline plots, where the (unrealistic) peak performance is scaled down
by the respective factor for the instruction mix. Fig. 6 shows that the ac-
tual implementation achieves 58% of the instruction mix performance
on Intel Gold hardware and 82% on AMD EPYC.

4.2. Cube geometry

In this example, we simulate manufacturing a 1 × 1 × 1 cm3 cube

from 200 powder layers with thickness 0.05mm, which is placed on t

10 
Table 5
Processing parameters of cube example.

Parameter Description Value Unit

𝑣scan Laser scan speed 960 mms−1

𝑑ℎ Hatch spacing 0.08 mm
𝑊eff Effective laser power 180 W
𝑅 Laser beam radius 0.06 mm
ℎ𝑝 Powder layer thickness 0.05 mm

a base plate of dimensions 1.2 × 1.2 × 1 cm3 (see also Fig. 9). This is
discretized as a cuboid geometry of dimensions 1.2 × 1.2 × 2 cm3, where
the lower half constitutes the base plate, and the upper half initially
consists of powder into which the cube geometry is scanned. Thus, a
thin 0.1 cm powder band will remain around the final cube geometry.
The origin of the coordinate system is located at the corner of the
manufactured cube such that the cube lies fully in the positive octant.
The processing parameters are summarized in Table 5. A time step size
of 𝛥𝑡active = 2 × 10−5 s is used in the active laser stage taking around
1.3 s of physical time. After every layer, a cool down stage of 1 s is
imulated. The first 2000 steps of this stage are simulated with the same
ime step size as the active stage. Afterward, the macroscopic time step
ize is doubled after every ten time steps for the thermal model up to a
aximum step size of 0.1 s. The microstructure model uses the identical

ime step size as the thermal model if the step size is less than or equal
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Fig. 7. Phase fractions and residual temperature after processing and cooling of layers 190, 195, 200, and after a final cool down of the cube geometry. Results are depicted in
a vertical slice at 𝑦 = 5mm and the base plate is cropped.
to 1 × 10−2 s and, otherwise, uses the subcycling technique described
earlier. After processing the last layer, the geometry is cooled to room
temperature over 100 s. Overall, this numerical example requires the
solution of 13 million time steps. The vectorization width is 𝑛lanes = 8.

As a first variant of this example, every layer is processed as a single
island consisting of a continuous serpentine track, where the laser beam
moves in 𝑦-direction and hatching proceeds in 𝑥-direction. The three
phases and the residual temperature after layers 190, 195, and 200 have
been processed are shown in Fig. 7. A noticeable asymmetry can be
seen in the higher layers. Due to the long and continuous serpentine
track, heat accumulates as the track hatches progress in positive 𝑥-
direction. This leads to lower cooling rates and decreased martensite
formation and, instead, to the formation of a band of stable 𝛼𝑠 phase
in layers 170 to 190. This happens because the residual temperature
lies barely below the martensite start temperature in higher layers. The
material is held at elevated temperatures, giving enough time for the
diffusion-driven formation of stable 𝛼𝑠-phase. Due to the time required
for the underlying diffusion process, this 𝛼𝑠-phase formation happens
a few layers below the currently processed layer. The observed band
structure of the 𝛼𝑠-phase distribution agrees well with results reported
in [41]. Note that the final cool down stage is essential to obtain the
actual phase composition close to room temperature. During this stage,
the already formed stable 𝛼𝑠-phase remains. In the highest layers, the
cooling rate is now large enough because no heat is added above layer
11 
200. Consequently, most of the 𝛽-phase remaining after processing of
layer 200 transforms into 𝛼𝑚-phase. At room temperature, the 𝛽-phase
fraction reaches its equilibrium value of 10%.

The cube test geometry is well-suited to study the effects of different
scan strategies on the resulting microstructural composition. In addition
to the single island scan track consisting of a continuous serpentine
track, we investigate a scan track split into four disjoint islands, each
consisting of a serpentine track. The tracks are shown in Fig. 8 along
with the stable 𝛼𝑠- and martensite 𝛼𝑚-phase fractions after the final
cool down in a horizontal slice at 𝑧 = 8mm. A strong asymmetry is
visible in the in-plane distribution of the 𝛼𝑠- and 𝛼𝑚-phase fractions
for the single-island scan strategy. On the other hand, the four-island
scan strategy produces a more homogeneous distribution with a higher
average martensite fraction than the single-island scan. The different
phase distribution is caused exclusively by the scan strategy, as all other
parameters are identical. This observation again shows the need for
scan-resolved models, such as the one presented in this work.

To get a better idea of the different scales involved in a resolved
part-scale simulation, a view of the adaptive mesh is shown in Fig. 9.
The heights of the smallest cells correspond to one powder layer
thickness. To capture the geometry, the mesh must stay more refined
close to the surface of the cube. Alternatively, one could employ a
boundary-fitted mesh instead of the unfitted powder box mesh for this
simple geometry to save DoFs, as done in our previous work [25].
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Fig. 8. Final phase fraction of stable 𝛼𝑠 and martensite 𝛼𝑚 for cube example in a horizontal slice at 𝑧 = 8mm. Two different scan strategies are used to manufacture the cube:
the first row shows the results for a continuous serpentine track extending over the cross-section. The second row shows the results for a scan path split into four islands, each
containing a serpentine track.
Fig. 9. Final phase fraction of martensite 𝛼𝑚 for cube example with single island scan
track. An octant is cut out to show the asymmetric distribution of martensite induced
by the asymmetric scan track. An adaptively refined mesh, here shown in the last time
step, captures the built geometry.

Finally, we also want to judge the performance of our implementa-
tion in this more practical example. The scenario with the single-island
scan strategy is simulated in a strong scaling study on 1, 2, 4, and
8 nodes of the Intel Gold hardware mentioned in the introduction to
this section connected by an Infiniband FDR (56 Gbit/s) interconnect.
The resulting average time per time step, throughput, and parallel
12 
Table 6
Processing parameters of cantilever example.

Parameter Description Value Unit

𝑣scan Laser scan speed 960 mms−1

𝑑ℎ (Approximate) hatch spacing 0.11 mm
𝑊eff Effective laser power 180 W
𝑅 Laser beam radius 0.06 mm
ℎ𝑝 Powder layer thickness 0.04 mm

efficiency are shown in Fig. 10 for the thermal and microstructure
models separately. Here, parallel efficiency is defined as:

parallel efficiency

=
reference compute time × reference number of cores

scaled compute time × scaled number of cores (57)

Overall, the explicit and implicit solution of the microstructure equa-
tions requires around 10% of the time of the respective thermal model,
details depending on the exact number of CPU cores used. Note that the
microstructure problem carries three times the number of DoFs as the
thermal problem; thus, the throughput is further increased compared
to the thermal problem. The microstructure implementation exhibits
excellent parallel scalability, even in the first layer. This result is to be
expected since no communication between processes is involved. The
total wall time when running the example on eight Intel Gold nodes is
2.32 h.

4.3. Cantilever

As a last example, we investigate the well-known NIST AMBench
cantilever geometry [42]. The geometry, shown in Fig. 11, features
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Fig. 10. Strong scaling study of cuboid example with adaptive mesh coarsening. The first row shows the average solution time per step, the throughput, and the parallel efficiency
in the active laser stage; the second row shows the same metrics in the cool down stage. Note that the reported time per step includes subcycling for the microstructure model
in the later cool down steps. The number of DoFs is given for the thermal problem; the microstructure problem carries three times this number.
Fig. 11. NIST AMBench 2022 cantilever geometry.
thin-walled legs and overhang regions, leading to different local cool-
ing rates. The geometry is built on a 10.56mm high base plate sec-
tion. To investigate the effect of different pre-heating temperatures,
the bottom of the base plate is constrained to a fixed temperature
𝑇̂ ∈ {293K, 500K, 550K, 600K}. The scan strategy is directly taken
from [42]. On average, processing a layer takes 2.8 s of physical time.
The active scan stage in every layer is followed by a cool down stage
of 1s, which uses identical time step sizes as described for the cube
example. After simulating all 312 layers, a final cool down of 100 s is
simulated, during which the temperature on the bottom of the baseplate
is set to 293K room temperature. The scan parameters are given in
Table 6. In total, around 45 million time steps need to be solved. The
vectorization width is 𝑛lanes = 8.

The case of 𝑇̂ = 293K leads to a fully martensitic microstructure
and is not shown in more detail. Instead, we focus on the results for
higher pre-heating temperatures. Fig. 12 shows the phase fractions
and residual temperatures at various points in time for a pre-heating
temperature 𝑇̂ = 600K. In the overhang regions and above the legs,
a substantial amount of 𝛼𝑠-phase forms over time due to the reduced
cooling rates resulting from the powder regions between the thin-
walled legs. Again, the phase fraction 𝛼 increases visibly a few layers
𝑠

13 
after initial processing. It keeps growing until reaching 90% stable 𝛼𝑠-
phase, the equilibrium value. The highest layers are not held at an
elevated temperature for a sufficient time, so almost no 𝛼𝑠-phase forms
here, and the microstructure is fully martensitic after the final cooling
step.

While we varied the scan pattern in the last example, we now vary
the pre-heating temperature and show the evolution of 𝛼𝑠-phase for
𝑇̂ ∈ {500K, 550K, 600K} in Fig. 13. The results reveal that the final
microstructure composition is very sensitive to the pre-heating temper-
ature within this temperature range. A change of only 100K leads to a
drastically different phase composition. The dynamic evolution of the
𝛼𝑠-phase is shown in more detail in the supplementary video 1.

The full simulation of the case with 𝑇̂ = 293K takes 52.3 h on
four AMD Epyc nodes. It is emphasized that further reduction of the
time to solution is still possible by employing more computational
resources since the computational throughput is not yet limited by
parallel communication overhead. Fig. 14 breaks down the total so-
lution time into active and cool down stage and the thermal and
microstructure problem. Due to the high degree of optimization of
the microstructure implementation, the coupled thermo-microstructure
problem is obtained at only marginally increased computation time
compared to the thermal problem alone.
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Fig. 12. Phase fractions and residual temperature after processing and cooling of layers 188, 234, and 312 (including final cool down time) for 𝑇̂ = 600K. Results are depicted
in the symmetry 𝑥𝑧-plane of the cantilever geometry.

Fig. 13. Detailed view of 𝛼𝑠-phase fractions for different preheating temperatures after processing and cooling of layers 188 and 200. Results are depicted in the symmetry 𝑥𝑧-plane
of the cantilever geometry near the hollow leg structure. The adaptive mesh is more refined close to the boundaries and in regions of strong gradients in the microstructural
composition.

Fig. 14. Distribution of total solution time over different parts of the solution procedure.
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5. Conclusion

We presented a highly efficient implementation of a coupled
thermal-microstructure model for laser powder bed fusion (LPBF) of
Ti-6Al-4V. The proposed approach enables simulations on the scale
of realistic part sizes while consistently resolving the laser beam scan
track. As demonstrated in the numerical examples, considering the
physical scan track, which is not done by frequently employed sim-
plified approaches such as layer-wise heat source models, is vital
to capture variations in the microstructural composition caused by
the scan strategy rather than the geometry. While the investigated
geometries are of a relevant scale, the presented methodology may
be combined with layer-wise heating approaches in areas where this
simplification is applicable to tackle scales beyond decimeters in future
research. Currently, simulations with hundreds of layers are possible in
a few hours to days, depending on the build volume. Among others,
the numerical examples include scan-resolved thermo-microstructure
simulations of the full NIST AM Benchmark cantilever specimen. It is
shown that variation of the build plate temperature by only 100K can
result in a significantly changed microstructure composition from 𝛼𝑚-
to 𝛼𝑠-dominated.

The microstructure model equations contain conditional branches
and computationally expensive mathematical functions. Through spe-
cial approximations and a careful data layout, the proposed methodol-
ogy can utilize modern hardware capabilities efficiently. The evaluation
of the thermo-microstructure model comes with less than a 10% in-
crease in run time compared to the thermal model. A crucial ingredient
is the vectorized evaluation of the microstructure model, which speeds
up the calculation by more than a factor of three. The coupled thermo-
microstructural model exhibits a high degree of parallel efficiency and
shows excellent strong scalability.

In our future research, the current model may be refined to include
homogenized information on the anisotropic orientation of microstruc-
tural grains as typically induced by the very high thermal gradients
in LPBF. The model can then serve as the basis for microstructure-
informed material laws utilized in solid mechanics simulations of the
LPBF process.
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Appendix A. Evolution of microstructural phases for exemplary
temperature history

To illustrate the evolution of the microstructure phases in the
presented model, we show two variations of a temperature profile.
Material with equilibrium phase composition is heated from room
temperature up to 2000K. When reaching a temperature of 1200K,
the temperature is held for either 8 s (short hold) or 40 s (long hold)
before heating continues. After reaching the peak temperature, the
material is cooled down to room temperature. The absolute heating
or cooling rate equals 25K s−1. The short and long hold results are
hown in Figs. 15 and 16, respectively. The duration of the short
old is chosen such that the diffusion 𝛼𝑠 → 𝛽 initially decreases
he 𝛼𝑠–phase fraction. However, the continued heating above 𝑇𝛼𝑠 ,start
riggers the regularization in (28), which reduces the 𝛼𝑠–phase fraction
o zero faster than the natural diffusion process. For the long hold,
here is enough time for the diffusion process to reduce the 𝛼𝑠–phase
o the equilibrium value (15) at the hold temperature of 1200K and
he fractions reach a stationary plateau. Once the material is heated
urther, diffusion continues, and the remaining 𝛼𝑠–phase transforms
nto 𝛽–phase. The material becomes liquid upon further heating. Only
–phase is present after resolidification. Once the temperature falls
elow 𝑇𝛼𝑠 ,start, the diffusion process 𝛽 → 𝛼𝑠 starts. The cooling rate is
o high that the diffusion is too slow to reach the 𝛼𝑠–phase equilibrium
15) before the temperature drops below 𝑇𝛼𝑚 ,start and martensite forms
ccording to (17).

ppendix B. Analytical solution for initiating diffusion-based
ransformations

When initiating the diffusion process 𝛼𝑠 → 𝛽 from an initial state
𝛼𝑠 = 0.9, 𝑋𝛽 = 0.1, the rate form (24) cannot be used in combination
ith an explicit scheme since it always yields zero for the initial values.

nstead, an approximate solution is used for the initial time steps when
iffusion starts.

The Crank–Nicolson integration scheme with a fixed point iteration
ould not face this issue if one were to perturb the initial guess.
owever, for a unified implementation, the analytical solution is also
sed to initiate diffusion when using the Crank–Nicolson scheme.

To derive the approximate analytical solution, we rewrite (24), with
he help of (13) and the relations 𝑋eq

𝛽 = 1 − 𝑋eq
𝛼 , 𝑋̃𝛽 ∶= 𝑋𝛽 − 0.1 and

̃ eq
𝛽 ∶= 𝑋eq

𝛽 − 0.1 as

̇ 𝛽 = 𝑘𝛽 (𝑇 )(0.9 −𝑋𝛼)
𝑐𝛽−1
𝑐𝛽 (𝑋𝛼 −𝑋eq

𝛼 )
𝑐𝛽+1
𝑐𝛽

= 𝑘𝛽 (𝑇 )(𝑋̃𝛽 )
𝑐𝛽−1
𝑐𝛽 (𝑋̃eq

𝛽 − 𝑋̃𝛽 )
𝑐𝛽+1
𝑐𝛽 . (58)

We perform the substitution 𝜉 ∶= 𝑋̃𝛽∕𝑋̃
eq
𝛽 and obtain

𝜉̇ = 𝑋̃eq
𝛽 𝑘𝛽 (𝑇 )

⏟⏞⏞⏟⏞⏞⏟
𝑘̃

(𝜉)
𝑐𝛽−1
𝑐𝛽 (1 − 𝜉)

𝑐𝛽+1
𝑐𝛽 , (59)

which, assuming that 𝑘̃ = const., has a known solution given in [43].
For an initial value 𝜉 at 𝑡 , the solution in the next step 𝑡 + 𝛥𝑡 can be
𝑛 𝑛 𝑛
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Fig. 15. Evolution of microstructure phases for a temperature history with an absolute heating/cooling rate of 25K s−1 and a short hold of 8 s at 𝑇 = 1200K.

Fig. 16. Evolution of microstructure phases for a temperature history with an absolute heating/cooling rate of 25K s−1 and a long hold of 40 s at 𝑇 = 1200K.

Fig. 17. Comparison of analytical solution for transformation 𝛽 → 𝛼𝑠 to explicit and Crank–Nicolson time integration. The solution is computed for a constant temperature
𝑇 = 1200K and initial values 𝑋𝛼𝑠 = 0.9 and 𝑋𝛽 = 0.1.

Additive Manufacturing 92 (2024) 104380 

16 



S.D. Proell et al.

F
𝑋
t
s
p
s

a
m

Additive Manufacturing 92 (2024) 104380 
found as:

𝑋̃𝑛+1
𝛽 = 𝑋̃eq

𝛽

⎡

⎢

⎢

⎢

⎢

⎣

1 +

⎛

⎜

⎜

⎜

⎜

⎝

𝑐𝛽

𝑋̃eq
𝛽 𝑘𝛽 (𝑇 )𝛥𝑡 + 𝑐𝛽

(

𝜉𝑛
1−𝜉𝑛

)
1
𝑐𝛽

⎞

⎟

⎟

⎟

⎟

⎠

𝑐𝛽
⎤

⎥

⎥

⎥

⎥

⎦

−1

(60)

or numerical reasons, this solution is computed using a shifted fraction
̃𝛽 , which has an equilibrium value of zero at room temperature. Due
o the careful formulation of (60), it is possible to accurately work on a
mall number below machine precision 𝜀(1) ≈ 1 × 10−16 without losing
recision by adding to a numeric value on the order of 1. The analytical
olution (60) is evaluated in subsequent time steps until 𝑋̇𝑛+1

𝛽 𝛥𝑡 >
1 × 10−15 which is the decrement in 𝛼𝑠-fraction according to (24). This
criterion ensures a sufficient change is noticeable in the 𝛼-fraction and
llows to continue the evolution with (24). While using the approxi-
ate analytical solution, the fraction 𝑋̃𝛽 is tracked independently and

not computed from the continuity constraint (29). The applicability of
this strategy has been verified for a constant temperature 𝑇 = 1200K
as shown in Fig. 17. The analytical approximation (60) is exact in the
case of a constant temperature.

An analytical approximation for the initial diffusion step from 𝛽 →

𝛼𝑠 has already been discussed in [4]. In this case, the values obtained
from the analytical expression are large enough so that significant digits
are not absorbed.

Appendix C. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.addma.2024.104380.
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