
SCHOOL OF COMPUTATION,
INFORMATION AND TECHNOLOGY —

INFORMATICS
TECHNICAL UNIVERSITY MUNICH

Bachelor’s thesis in Informatics

Development of a Microbenchmarking
Framework for Enhanced Parameter

Selection in AutoPas

Kristin von Milczewski

SCHOOL OF COMPUTATION,
INFORMATION AND TECHNOLOGY —

INFORMATICS
TECHNICAL UNIVERSITY MUNICH

Bachelor’s thesis in Informatics

Development of a Microbenchmarking
Framework for Enhanced Parameter

Selection in AutoPas

Entwicklung eines
Microbenchmarking-Frameworks zur

Verbesserung der Parameterauswahl in
AutoPas

Author: Kristin von Milczewski
Supervisor: Univ.-Prof. Dr. Hans-Joachim Bungartz
Advisor: Samuel Newcome
Submission Date: 15.05.2024

ii

I confirm that this bachelor’s thesis is my own work and I have documented all sources
and material used.

Munich, 15.05.2024 Kristin von Milczewski

Abstract

Molecular dynamics (MD) simulations are becoming increasingly popular and relevant
in various fields. This is mainly due to the fact that they have become faster, more
accurate, and more accessible. To further improve MD simulations, programs like
AutoPas are continuously developed through tuning.

One parameter to be tuned in this thesis is the sortingThreshold, which indicates
at what number of particles it is advisable to generate a sorted view. As described
below, an executable was developed to find the optimal threshold for the ProcessCell
and ProcessCellPair methods. It was found that this threshold depends on the system
or compiler used and is also different for the two functions.

The executable provides a framework to add more tunable parameters and implement
optimization methods, which will be described in more detail at the end of the thesis.

iv

Kurzfassung

Moleküldynamik-Simulationen (MD) werden immer beliebter und relevanter in di-
versen Bereichen. Die liegt vor allem auch daran, dass sie schneller, genauer und
zugänglicher wurden. Um MD Simulationen weiter zu verbessern werden Programme
wie AutoPas durch Tuning immer weiter entwickelt . Ein Parameter, der in dieser
Thesis getunt werden soll, ist der sortingThreshold. Dieser gibt an, ab welcher An-
zahl von Partikeln es sinnvoll ist eine sortedView zu generieren. Wie im Folgenden
beschrieben wurde eine Executable entwickelt um den optimalen Threshold für die
Methoden ProcessCell und ProcessCellPair zu finden. Dabei stellte sich heraus, dass
dieser vom verwendeten System beziehungsweise Compiler abhängig und außerdem
unterschiedlich für die beiden Funktionen ist. Die Executable bietet ein Framework um
weitere tunebare Parameter hinzuzufügen und Optimierungsverfahren zu implemen-
tieren, was am Schluss der Thesis genauer beschrieben wird.

v

Contents

Abstract iv

Kurzfassung v

1 Introduction 1

2 Background 3
2.1 Molecular Dynamics Simulations . 3

2.1.1 Lennard-Jones-Potential . 3
2.1.2 The Cutoff Radius . 4

2.2 AutoPas . 4
2.3 Neighbor Identification Algorithms . 4

2.3.1 Direct Sum . 5
2.3.2 Linked Cells . 6
2.3.3 Verlet Lists . 6
2.3.4 Verlet Cluster Lists . 7
2.3.5 Algorithm selection problem . 7

2.4 Newton’s Third Law . 8
2.5 Data Layouts . 8
2.6 SortingThreshold . 9
2.7 md-flexible . 10

3 Related Work 11
3.1 GPTuner . 11

3.1.1 Large Language Models . 11
3.1.2 Bayesian Optimization . 12
3.1.3 GPTuner in a Nutshell . 13

3.2 Kernel Tuner . 15
3.2.1 Configuration selection strategies 15
3.2.2 Comparison of selection strategies 16

vi

Contents

4 Implementation 17
4.1 The md-flexible-tuner executable . 17

4.1.1 Extension of the Simulation Class 17
4.1.2 Main.cpp . 18

5 Results 20
5.1 Examples used . 20

5.1.1 FallingDrop . 20
5.1.2 Exploding Liquid . 21

5.2 Computation of optimal SortingThresholds 22
5.3 Tests with different sortingThresholds . 24

6 Future Work 28

7 Summary and Clonclusion 29

List of Figures 30

List of Tables 31

Bibliography 32

vii

1 Introduction

Molecular dynamics (MD) simulations are gaining popularity and importance in var-
ious fields. For example, they are widely used in computational chemistry [Gra+19]
or in the approximation of fluids in particle hydrodynamics. Other examples include
biomedical applications. [Gra+22]

The increasing attention to molecular dynamics simulations in molecular biology and
drug discovery is due to two main factors: First, the number of experimental structures
of certain classes of molecules critical to neuroscience has exploded in recent years.
On the other hand, molecular dynamics simulations themselves have become more
powerful and accessible. Until recently, conducting high-impact research with MD sim-
ulations typically required access to supercomputers. However, advances in computer
hardware, particularly GPUs, have made it possible to run powerful simulations locally
at reasonable cost. In addition, MD simulation software has become more user-friendly,
providing better support for non-experts. Furthermore, while MD simulations are
based on physical models that are inherently approximate, their accuracy has improved
significantly over time. [HD18]

While MD simulations serve different purposes, they all share a common principle:
simulating the behavior of particles governed by some form of interaction. These inter-
actions, typically non-bonded pairwise interactions, often dominate the computational
workload of particle simulations and are therefore a key focus for optimization. Several
algorithms, such as Linked Cells or Verlet Lists, have been developed to efficiently
handle these interactions. However, no single algorithm is universally optimal for all
scenarios. To address this challenge, the open-source C++ library AutoPas provides a
variety of algorithm combinations and optimizations to provide a flexible solution for
different simulation needs. [Gra+22]

In Chapter 2, we revisit the fundamentals of Molecular Dynamics Simulations and
provide background information on AutoPas.

The GPTuner and Kernel Tuner systems, which represent methods for parameter
tuning, are described in more detail in Chapter 3. The main focus of this thesis
is the tuning of the SortingThreshold parameter, a process described in detail in

1

1 Introduction

Chapter 4. In Chapter 5, we present the results of our computations regarding the
optimal SortingThresholds, along with tests involving different thresholds. Finally, in
Chapter 6 we discuss ideas and considerations for future work, ending with a short
summary and conclusion in Chapter 7.

2

2 Background

2.1 Molecular Dynamics Simulations

The movements and velocities of the particles in molecular dynamics simulations are
calculated every time step using force terms. They interact with each other using Verlet
integration for Newton’s second law of motion which says that

Fi = mi · ai, ai =
vi

dt
, vi =

xi

dt
(2.1)

with m being the mass of the particle and a being its acceleration. The acceleration is
the derivative of the velocity v and x is the particle’s position [Mic07, p. 39]. The force
that acts on a particle is usually the sum of pairwise forces:

Fi =
N

∑
j=1
j ̸=i

Fij (2.2)

[Mic07, p. 49]

2.1.1 Lennard-Jones-Potential

In molecular dynamics simulations, the commonly used potential is the Lennard-Jones
12-6 potential, denoted as

U
(
rij
)
= 4ϵ

((
σ

rij

)12

−
(

σ

rij

)6
)

(2.3)

In this formula, rij represents the distance between two particles i and j. The parameters
ϵ and σ characterize particle properties and determine the strength and zero-crossing
of the potential. The Lennard-Jones 12-6 potential consists of an attractive part, simulat-
ing Van-der-Waals forces, and a repulsive part representing Pauli repulsion. [All04]
To parallelize particle simulations on distributed systems such as HPC clusters, the
computational domain is divided into sub-domains, with each cluster node storing one.
Data duplication occurs at the borders between sub-domains to ensure accurate force

3

2 Background

calculations. Practically, this means that particles near the boundary of one sub-domain
must also be available in its neighboring domain. These replicated particles are known
as halo particles and are treated as interaction partners during force calculations. How-
ever, in traditional domain decomposition setups, forces are not computed for halo
particles; instead, they are updated based on the sub-domain they belong to. [Gra+22]

2.1.2 The Cutoff Radius

As the distance between particles increases, many force potentials typically decrease
rapidly and converge to zero. To account for this, a cutoff radius is often implemented.
When the distance between particles exceeds this cutoff radius, their interactions are
ignored and assumed to have no effect. These types of potentials are called short-range
potentials. Currently, only these are implemented in AutoPas; long-range potentials are
not yet supported.

2.2 AutoPas

AutoPas is a versatile tool for high-performance short-range molecular dynamics simu-
lations. It integrates various algorithms, parallelization strategies, and optimizations
that are dynamically adjusted through auto-tuning. Because the most effective configu-
ration can vary widely for different simulation scenarios and can evolve during runtime,
AutoPas performs several tuning phases. During these phases, AutoPas evaluates the
runtime of different configurations and selects the most efficient one. From the user’s
perspective, the C++ library acts as a black-box container, abstracting away its internal
workings. [Gra+22]

2.3 Neighbor Identification Algorithms

The core of any particle dynamics simulation is the neighbor idenfication algorithm.
The goal is to find the particles that are within the cutoff radius and thus relevant
for the calculation of the pairwise forces. The chosen algorithm has a direct influence
on the data structures and arrangements used to store the particles. Currently, four
different algorithms are used in AutoPas, which will be introduced below. Along with
the containers that implement the algorithms and variations of them. For this thesis,
Linked Cells is particularly relevant. In Fig. 2.1 the different methods are visualized.
The information in this section is taken from [Gra+22].

4

2 Background

(a) Direct sum (b) Linked Cells (c) Verlet Lists

(d) Verlet Cluster Lists

Figure 2.1: Containers for the neighbor identification algorithms

2.3.1 Direct Sum

Looking at one particle, a simple way to identify particles within the cutoff radius is
to calculate the distances to all the other particles. This is shown in Fig. 2.1a. The
distances between the red particle and all potentially relevant particles are calculated.
The red circle represents the cutoff radius, and the blue particles within it are relevant
for the calculation of the pairwise forces. The gray particles are not included in the
calculation of the force acting on the red particle.

This method is only practical for a small number of particles. But because it is
very simple, it doesn’t require any additional memory or algorithmic overhead, and
therefore doesn’t require any unique data organization. Thus, all standard particles are
kept in a single vector. However, to manage the deletion or separate traversal of halo
particles, a secondary array is maintained specifically for them.

5

2 Background

2.3.2 Linked Cells

To organize the spatial data of the particles and thus improve the scalability of pairwise
computations, the Linked Cells algorithm is introduced. It divides the area into a
grid of cells with a mesh size equal to or larger than the cutoff radius and assigns the
particles to these cells. As can be seen in Fig. 2.1b, the distances between the red particle
and the particles in its own red cell, marked by arrows, are calculated first, followed
by those in the adjacent blue cells. Pairwise forces are then determined for the blue
particles identified within the cutoff radius. At this stage, the white particles outside
the grid are not included in any calculations. An advantage of this algorithm is that it
is independent of the number of particles in terms of memory consumption, since it is
only concerned with maintaining a cell structure. Cache prefetching is feasible, and
vectorization is relatively straightforward because sequentially processed particles are
stored sequentially in memory. The main drawbacks of Linked Cells are the extra effort
required to constantly organize moving particles into their designated cells, and the
excessive distance computations caused by the imperfect match between the spherical
boundary region and the Cartesian cells. While adaptive grid structures are conceivable
to better approximate the cutoff sphere, their implementation would require more
complex cell traversal schemes.

The Linked Cells container consists of a vector of uniform cells, each containing a
vector of its actual particles. Particles that are spatially close to each other and are in
the same cell are also nearby in memory. This facilitates effective traversal of smaller
regions within the domain and allows efficient vectorization of particle computations. A
disadvantage of linked cells is that they model space rather than particle relationships.
This means that even regions of the domain without particles must still be checked
during traversals.

2.3.3 Verlet Lists

Another way to identify neighbors is through Verlet Lists. In this method, for each
particle a neighbor list is created that contains references to all particles within the
cutoff radius, allowing the tracking of a particle’s interaction partners. These lists
are reused in as many iterations as possible, thus including particles slightly outside
the cutoff radius. The so-called Verlet skin is shown as a yellow circle in Fig. 2.1c.
The sum of the Verlet skin and the cutoff radius gives the interaction length, which
is then used to compute neighbors by considering only the distances to the particles
inside it. Comparing the number of distance calculations (arrows) in Fig. 2.1b and
Fig. 2.1c, one can see that Verlet Lists require significantly fewer evaluations. One way
to periodically generate the Verlet Lists is to use Linked Cells. This involves computing

6

2 Background

the distances from a particle to all particles within its own cell and those in adjacent
neighboring cells. In subsequent iterations, the generated neighbor list is then used
for force calculation. A notable drawback is the additional memory required for the
neighbor lists. Furthermore, there is a lack of data locality.

The Verlet Lists container stores its particles inside a Linked Cells container instance.
The neighbor lists are represented as vectors of particle pointers within the Linked
Cells data structure. These lists are aggregated into a map of particle pointers, where
each pointer corresponds to a specific neighbor list.

There are also variations of the Verlet Lists container. One of them is Var Verlet Lists,
which represents a generalization and thus also builds on the Linked Cells container.
This container offers a way to easily replace the implementation of the neighbor lists
and their generation.

Another variant is Verlet Lists Cells. This assigns the neighbor lists to the cell where
the corresponding particle is stored, instead of storing them in a single container vector.

2.3.4 Verlet Cluster Lists

Since neighboring particles have very similar Verlet Lists, a number M of particles are
aggregated into a cluster. In Fig. 2.1c a cluster of size 4 is shown. To construct these
clusters, the 3D domain is divided into a 2D grid along the x/y plane with a grid cell
length of

3

√
M

N/V
(2.4)

where N is the total number of particles and V is the volume of the domain. This
results in a partitioning of the domain into towers, where clusters are formed based
on the order of the particles along the z-axis. Compared to Verlet Lists, this algorithm
requires a higher number of distance computations. The more complex implementation
is another limitation.

The Verlet Lists Cluster container consists of a grid structure arranged in the xy-plane,
forming towers. Inside each tower, particles are stored in a single vector, arranged in
order along the z-axis. Dummy particles are added to the last cluster of a tower if the
number of particles in a tower is not divisible by M. These dummy particles are not
included in the force calculations.

2.3.5 Algorithm selection problem

Although these algorithms appear to be incremental, each of them comes with a trade-
off, such as higher memory consumption, ease of vectorization, or overhead due to a
complicated data structure. There is no ideal method that will outperform all other

7

2 Background

approaches in every simulation scenario. For this reason, AutoPas uses automated
algorithm selection to independently select the optimal configuration for a given
scenario. The Automated Algorithm Problem is the task of selecting an algorithm for a
given problem instance that maximizes an arbitrary performance metric. Such metrics
can include precision, execution speed, memory usage, etc. In AutoPas, considerations
are currently limited to time-to-solution. Depending on whether the selection of the
algorithm is done only once or is re-evaluated repeatedly during runtime, a distinction
is made between static and dynamic algorithm selection. Since the scenarios in particle
simulations can change drastically during the course of a simulation, AutoPas uses
dynamic tuning in periodic intervals.

2.4 Newton’s Third Law

Newton’s third law of motion essentially states that for every action there is an equal
and opposite reaction. In the context of particle simulations, this law means that if
there is a force F between two particles, let’s call them i and j, then the force F exerted
by i on j is equal in magnitude but opposite in direction to the force F exerted by j on i.
So mathematically it’s expressed as

Fij = −Fij (2.5)

Therefore, it becomes possible to reduce by half the computations involved in calculating
the pairwise force by using this equation. However, this adjustment requires direct
updating of both variables that hold the accumulated force for each particle when
calculating Fij, which has significant implications for parallelization strategies.

2.5 Data Layouts

The data layout determines how the particle data is organized in memory. AutoPas
supports two primary methods of storing structured data: Array of Structures (AoS)
and Structure of Arrays (SoA).

In the AoS layout, particles are represented as C++ objects containing properties
such as positions in x, y, and z dimensions, forces, etc. These objects are then stored
consecutively in a

std::vector<Particle>.

In the SoA layout, each property, such as the x position, is stored in a separate

std::vector<double>

8

2 Background

with an entry for each particle. SoAViews can also be created, which are references to a
start and end point within an actual SoA.

AutoPas stores particle data in AoS format. When the SoA layout is selected, the data
needed by the functor is copied to SoAs before the force calculation in each iteration,
and then transferred back to AoS afterward. [Gra+22]

2.6 SortingThreshold

As described in Section 2.3.2, the Linked Cells algorithm segments the domain into
cells. These cells are then traversed by the methods CellFunctor::ProcessCell and
CellFunctor::ProcessCellPair. During this traversal, particle distances can be com-
puted directly, or alternatively, the CellFunctor generates a pre-sorted view using the
x-coordinates of the particles. While this sorted view eliminates unnecessary distance
computations, it does incur a time overhead. Therefore, the optimal sortingThreshold
parameter determines the particle count at which it becomes advantageous to use this
approach.

In the ProcessCell method, the number of particle in a cell is compared to the
sorting threshold. If it falls below the threshold, the sorted view is constructed:

if (cell.size() > _sortingThreshold) {

SortedCellView<ParticleCell> cellSorted(cell,

utils::ArrayMath::normalize(std::array<double, 3>{1.0, 1.0, 1.0}));

...

}

Figure 2.2: The sortingThreshold in ProcessCell.

Subsequently, in the ProcessCellPair methods, the numbers of particles of neigh-
boring cells are aggregated:

if ((cell1.size() + cell2.size() > _sortingThreshold)

and (sortingDirection != std::array<double, 3>{0., 0., 0.})) {

SortedCellView<ParticleCell> cell1Sorted(cell1, sortingDirection);

SortedCellView<ParticleCell> cell2Sorted(cell2, sortingDirection);

...

}

Figure 2.3: The sortingThreshold in ProcessCellPair.

9

2 Background

2.7 md-flexible

To give users a quick overview of AutoPas, the library includes several example codes,
one of which is md-flexible. This simple molecular dynamics simulation framework
is built around AutoPas and supports two types of particle simulations: single-site
and multisite molecular dynamics (MD) simulations. [New+22]. In single-site MD,
md-flexible simulates the Lennard-Jones 12-6 potential on single-site particles using
Störmer-Verlet time integration. On the other hand, multi-site MD supports molecules
composed of fixed rigid bodies of LJ sites. Users can switch between these modes at
compile time, with each mode requiring slightly different input files. md-flexible has
several features, including a thermostat, periodic boundary conditions, support for
multiple particle types, checkpointing functionality, and VTK output for visualization.
While its primary purpose is to introduce AutoPas to first-time users, it also serves as a
tool for developers to test AutoPas in a real simulation code. Exploring md-flexible is
made easy by its user-friendly interface, which exposes every set() function of AutoPas
to user input. In addition, md-flexible provides reasonable defaults for each option,
allowing users to configure only the parameters they are interested in. Combined with
simulation scenario generators, md-flexible facilitates rapid prototyping, benchmarking,
and exploration of AutoPas capabilities. [Gra+22]

10

3 Related Work

To fine-tune specific parameters within an application, several programs are already
available. Two notable examples are GPTuner and Kernel Tuner, both adept at optimiz-
ing continuous as well as multi-dimensional tunable parameters. However, utilizing
these tuners requires some effort, including the incorporation of libraries and supplying
values to them. Given that only a discrete parameter—the sorting threshold—is opti-
mized within the executable for this project, a simpler, custom implementation may be
more suitable. Moreover, adjusting the surroundings is necessary to facilitate the tuning
of this parameter. Nevertheless, there is potential for the GPTuner or KernelTuner to be
applied to AutoPas in the future (see Chapter 6). Hence, they will be further elaborated
on below.

3.1 GPTuner

GPTuner is a manual-reading database tuning system [Lao+23]. It uses the power
of large language models to unify the available tuning knowledge to select the most
relevant knobs to tune, the range of values to consider, and also to suggest promising
starting points for the optimization process. DB-Bert [Tru22] is a similar system that uses
a transformer-based model to predict the performance of a given knob configuration.

In this section we will first give some background on large language models and
Bayesian optimization. Then we will discuss GPTuner in more detail.

3.1.1 Large Language Models

Language models are a type of artificial intelligence that can generate human-like text.
Large language models (LLMs) are a language models that have a large number of
parameters (e.g., the largest version of GPT-3 has 175 billion parameters [Bro+20]).
Examples of large language models are the GPT Series from OpenAI, with models such
as GPT-3 [FC20] and GPT-4 [Ope23], and the Llama model family [Tou+23]. The field of
large language models has grown drastically in popularity since the advent of chatGPT
[Ope22], for instance the number of papers on arXiv mentioning large language models
has increased exponentially since the release of chatGPT [Cha+24].

11

3 Related Work

A crucial component of large language models is the self-attention mechanism
[Vas+17] which comes from the Transformer architecture [Vas+17]. The self-attention
mechanism allows the model to weigh the importance of different words in a sentence,
allowing it to understand the context and relationships between words. Essentially,
self-attention works by Computing a weighted sum of values based on similarities (dot
products) between a query and key vectors, to produce attention scores that indicate
the relevance of each word to the others in the sequence. These scores are then used to
compute weighted sums of the value vectors, resulting in the final output [Vas+17].

Large language models work by using large amounts of data to learn patterns
and relationships within language [FC20]. During training, the model is exposed to
a large corpus of text and learns to predict the next word in a sequence given its
context. This process involves adjusting the parameters of the model to minimize
the difference between its predictions and the actual next words in the training data.
Through this iterative process, the model gradually learns to generate coherent and
contextually relevant text. Reinforcement Learning from Human Feedback (RLHF) is
another important component of LLMs, allowing them to improve their performance
through performance through interaction with human users [Ope23].

Large language models have been applied to a wide range of tasks, including text
generation, translation, summarization, and question answering [FC20]. The application
of large language models to database tuning, as in GPTuner [Lao+23], is discussed in
Section 3.1.3 below.

3.1.2 Bayesian Optimization

Determining the best knob configuration of a DBMS can be described mathematically
as

θ∗ = arg min
θ∈Θ

f (θ),

where θ = (θ1, . . . , θn) describes the knob configuration, Θ = Θ1 × · · · × Θn is the
parameter space, and f is the objective function, for example, throughput or latency
(for the throughput the arg max is used). Classical optimization methods, such as grid
search, random search, or gradient-based methods are not suitable for this problem
due to the high dimensionality and expensive evaluation of the objective function.
Furthermore, the objective function is often noisy, non-convex, and lacks gradient
information. To address these problems, Bayesian Optimization builds a surrogate
model of the objective function and uses an acquisition function to decide which
configuration to evaluate in the next iteration. Typical choices for the surrogate model
are Gaussian Processes or random forests [Hut18]. The purpose of the surrogate model
is to approximate the objective function and optionally add uncertainty estimates.

12

3 Related Work

The acquisition function is used to balance exploration and exploitation and can be
selected from a variety of functions, such as expected improvement, probability of
improvement, or upper confidence bound [Hut18]. After each new function evaluation
the surrogate model is updated and the acquisition function is minimized to find the
next configuration to evaluate. To build the initial surrogate model, a set of initial
configurations is evaluated. A classic choice is to use a Latin hypercube design [McK92].
A disadvantage of Bayesian Optimization is that a large number of evaluations is
needed to find high performing configurations [FSH15]. This problem can be mitigated
by using domain-specific knowledge to guide the initialization [FSH15], as is done in
GPTuner [Lao+23] with a novel coarse-to-fine Bayesian Optimization framework.

3.1.3 GPTuner in a Nutshell

First GPTuner has to structure the available tuning knowledge. The structured tuning
knowledge is then used to guide the Bayesian Optimization process by identifying the
most relevant knobs to tune (and thus reducing the dimension of the search space),
suggesting promising points, and limiting the ranges of the knobs to the relevant
intervals. After its initialization, GPTuner’s Bayesian Optimization process starts with
a coarse search on a discretized grid of the parameter space. After a certain number
of evaluations, the fine search is started using the surrogate model obtained from the
coarse search. The fine search continues until a stopping criterion is met.

GPTuner combines the knowledge from the DBMS documentation, web forums, and
large language models. Using the knowledge from GPT-4 can sometimes give useful
suggestions that are not present in the DBMS documentation, for instance, when a
suggestion is made on a blog that was used in the training data of GPT-4, as in the
example in Fig. 3.1a. The knowledge obtained by the mentioned sources might be noisy
or conflicting. To deal with this, GPTuner uses GPT-4 to compare an offical system
view of a knob with the suggested tuning knowledge and classifies the information as
noisy if these views differ. This process is illustrated in Fig. 3.1b. The different sources
of tuning knowledge can also be inconsistent. To deal with this, GPTuner uses GPT-4 to
check the tuning knowledge for consistency. In case of inconsistencies, the manual has
the highest priority, followed by the DBMS documentation, and large language models
have the lowest priority, as shown in Fig. 3.1c. Finally the tuning knowledge needs to
be summarized. As the summarization can be inconsistent, the summary is checked
for consistency using GPT-4, and repeated until a consistent summary is obtained, as
illustrated in Fig. 3.1d.

The cleaned summary obtained by the above process then needs to be transformed
into a structured format. To avoid the dependency of the output of the large language
model on the input, GPTuner uses several different prompts, each of which produces a

13

3 Related Work

effective_io_concurrency

GPT

Manual

Web
Content

Set the 'effective_io_concurrency'
knob value to around 200 for SSDs
and 2 for HDDs.

 The optimal value depends on
the type of storage and the number
of drives in use.

Train

From

(a) Extraction of knowledge from GPT-4. In
this example, GPT gives a recommendation
while the manual does not.

TASK DESCRTPTION :

Evaluation

EXAMPLES:

OFFICIAL SYSTEM VIEW:

TUNING GUIDANCE:

LLM:

OFFICIAL SYSTEM VIEW

backend_flush_after.json:

{

 "vartype": "integer",

 "boot_val": "0",

 "unit": "8kB",

 "max_val": “256",

 "min_val": "0"……

}

TUNING GUIDANCE

Set the value for

'backend_flush_after'

to a number between

0 and 1, where 0

disables the feature

and any value up to 1

will trigger a flush

after…….
Guidance Filtered

Prompt

Filter

Your task is to

Eg.1

Knob name

Set the value

type
conflict

range
conflict

(b) Detect noisy information

Set the value to
25% of the
RAM, but no
more than 4GB.

Eg. Knob {shared_buffers}

GPT

Conventional
wisdom suggests
25% of the RAM,
vary it based on
your benchmark.

WebManual

It is reasonable to
set`shared_buffers`
to 25% of the
RAM but no more
than 40% .

Consistent
Conflict

Given Prior Rule: Manual>Web>GPT

Summarize Delete GPT Guidance

Set 'shared_buffers' to 25% of the RAM but no more
than 40% of RAM .

(c) Check the knowledge for consistency

Source Content

LLM

Yes

Yes

Regenerate
Summarization

Commpare:
Is the summarization
consisit with the source ?

GPT
Web

Manual
Set `shared_buffers` to 25%
of the RAM but no more
than 40% to allow PostgreSQL
to rely on OS cache.

Set 'shared_buffers' to 25%
of the RAM but no more
than 40% of OS cache.

Initial Summarization (×)

Set 'shared_buffers' to 25%
of the RAM but no more
than 40% of RAM

Final Summarization (√)

No

(d) Check if the summary is consistent

Figure 3.1: The preparation of the tuning knowledge in GPTuner. Figures are taken
from [Lao+23].

JSON object. The results are then aggregated using element-wise majority voting.
The structured tuning knowledge is then used to optimize the search space for the

Bayesian Optimization process. This is done by identifying the most relevant knobs
to be tuned and by restricting the ranges of these knobs. However, before starting the
optimization, the entire search space is first optimized, GPTuner first creates a discrete
grid based on the recommended values. by some factors, since the recommended values
may not be optimal. After initializing the Bayesian Optimization process with Latin
Hypercube Sampling, the surrogate model is updated, by evaluating the acquisition
function over all the grid points of the smaller search space. This is the coarse search
phase. In the following fine search phase, the surrogate model from the is used to
evaluate the acquisition function over the entire search space until a stopping criterion
is met.

GPTuner performs better than DB-BERT and vanilla Bayesian Optimization on the
TPC-H and TCP-C benchmarks. GPTuner also outperforms DB-BERT when BERT is
replaced by GPT-4 in DB-BERT. The individual components of GPTuner were also

14

3 Related Work

evaluated, showing that that space optimization, the use of GPT-4, and the coarse-to-fine
Bayesian Optimization framework all contribute to the performance of GPTuner.

3.2 Kernel Tuner

Kernel Tuner [Wer19] is an auto-tuning system for GPU kernels. A kernel is the code
that is executed on the GPU. Similar to database tuning, kernel tuning is expensive to
evaluate the objective function. Kernel Tuner implements several methods to find a
good configuration for a given kernel. These methods are described in Section 3.2.1.

3.2.1 Configuration selection strategies

The selection strategies are used to find the next configuration to evaluate. Kernel
Tuner’s default strategy is brute force. While this strategy is simple and guarantees to
find the best configuration, it is not feasible for more complex kernels with larger search
spaces. The other strategies are random sample, minimize, basin hopping, differential
evolution, simulated annealing, particle swarm optimization, genetic algorithm, and
firefly algorithm. These strategies are described in more detail in the rest of this section.

Random search just takes a random sample from the search space. The user has to
specify how many configurations to evaluate.

The minize strategy uses a classical optimization methods to finde the next configura-
tion to evaluate and also to check for convergence. A variety of optimization methods
are available, namely Nelder-Mead, Powell, Conjugate Gradient, BFGS, L-BFGS-B, TNC
[DS83], COBYLA, and SLSQP.

The basin hopping strategy [WD97] pertubes the current configuration randomly
and then uses a local optimizer (any solver from the minimize strategy) to find the next
candidate configuration. This candidate configuration is then accepted or rejected as
the new configuration based on the objective function value.

The other strategies are not discussed in more detail here as they are not of direct
relevance to this thesis.

Most of the above methods are restricted to continuous search spaces. To tackle
this problem, Kernel Tuner computes the nearest valid configuration to the result of
the optimization method. Additionally, for each selection strategies except differential
evolution, genetic algorithm, and simulated annealing, each variable is scaled to the
interval [0, 1], or to an even smaller interval for some parameters. To deal with the
problem of measurement errors, previously measured configurations are cached for
consistency.

15

3 Related Work

3.2.2 Comparison of selection strategies

The selection strategies are compared using kernel for 2D convolution, matrix multipli-
cation (GEMM), and Point-in-Polygon.

For 2D Convolution, the evaluation reveals distinct performance distributions among
the strategies. The brute force approach demonstrates a narrow peak, indicating a
limited number of configurations yielding high performance. As the minimize strategy
does not use a strategy to avoid local minima, it is not surprising that no solver is able
reach near-optimal performance. Basin hopping reaches near-optimal performance for
five of the eight solvers. Besides the perfomance of the found configuration, it is also
important to consider the tuning time. For example particle swarm optimization yields
better results than basin hopping (3832.81 GFLOP/s vs. 3705.42 GFLOP/s).

In the case of Matrix Multiplication (GEMM), the comparison portrays a less volatile
distribution landscape compared to 2D Convolution. Differential evolution is capable
of achieving near-optimal performance, but is only slightly better than random search.
Basin hopping is efficiently achieving near-optimal configurations with significantly
reduced tuning times compared to brute force search. The global optimization methods
all outperform random search.

In the Point-in-Polygon application, the evaluation presents a challenging search
space. Besides basin hopping, no selection strategy is able to outperform random
search.

While certain strategies excel in specific applications, no single approach univer-
sally outperforms others across all scenarios. The authors of [WNW21] created an
implementation of Bayesian Optimization specifically for GPU kernel tuning, that
outperforms all existing strategies in the Kernel Tuner framework and also general
Bayesian Optimization implementations that are not tailored to GPU kernel tuning.
This implementation of Bayesian Optimization for GPU kernel tuning was added to
Kernel Tuner.

16

4 Implementation

Below is an overview of the development of an executable that aims to determine
the optimal sorting threshold for the ProcessCell and ProcessCellPair functions, as
discussed in Section 2.6.

4.1 The md-flexible-tuner executable

4.1.1 Extension of the Simulation Class

First, an extension to the Simulation.cpp file from md-flexible is required. To find out
how to do this, code analysis was done using vscode as a C++ debugger. Using CMake
and the Cmake Tools Extensions, a debugging configuration can be set up. Setting
breakpoints on relevant methods such as processCellPair and inspecting the call stack
helps to understand how parameters and context are passed to these methods.

The new class SimulationExtForTuning inherits from Simulation which is the main
class in md-flexible. SimulationExtForTuning thus has access to the configuration
and the CellFunctor. The class is able to construct the parameters needed to call the
methods to be tuned.

The methods SimulationExtForTuning::processCell and SimulationExtForTuning

::processCellPair create suitable ParticleCells by randomly distributing particles
within the given volume. ProcessCell distributes the particles within one cell, while
ProcessCellPair distributes them across two cells.

This is because the CellFunctor::ProcessCellPair methods compare the combined
size of two cells against the sortingThreshold, so it is not advisable to fill both cells
with the given number of particles. You then call the processCell or processCellPair
method using the CellFunctor.

Runtime metrics are taken outside of the SimulationExtForTuning class.
SimulationExtForTuning::applyWithChosenFunctor is an exact copy of the private

method Simulation::applyWithChosenFunctor.
It is a possible optimization to make Simulation::applyWithChosenFunctor pro-

tected.

17

4 Implementation

Below are the functions that call CellFunctor::ProcessCell as well as CellFunctor::
ProcessCellPair.

bool callProcessCell(FunctorType *f,

autopas::FullParticleCell<ParticleType> &cell,

double interactionLength,

autopas::DataLayoutOption dataLayout,

bool useNewton3, size_t sortingThreshold) {

autopas::internal::CellFunctor<autopas::FullParticleCell<ParticleType>,

FunctorType, false> cf(f, interactionLength, dataLayout, useNewton3);

cf.setSortingThreshold(sortingThreshold);

cf.processCell(cell);

return true;

}

bool callProcessCellPair(FunctorType *f,

autopas::FullParticleCell<ParticleType> &cell1,

autopas::FullParticleCell<ParticleType> &cell2,

const std::array<double, 3> &sortingDirection,

double interactionLength,

autopas::DataLayoutOption dataLayout,

bool useNewton3, size_t sortingThreshold) {

autopas::internal::CellFunctor<autopas::FullParticleCell<ParticleType>,

FunctorType, false> cf(f, interactionLength, dataLayout, useNewton3);

cf.setSortingThreshold(sortingThreshold);

cf.processCellPair(cell1, cell2, sortingDirection);

return true;

}

4.1.2 Main.cpp

The main function of the executable is to compute the optimal SortingThreshold for
a simulation. To achieve this, one could iterate over different threshold values and
run the simulation with reduced iteration counts for each value. The iteration with
the shortest runtime would theoretically indicate the best threshold. However, this
approach is inefficient in terms of overall runtime and may produce inaccurate results
due to unintended side effects. Instead, only the relevant parts of the simulation
are considered-specifically, the ProcessCell and ProcessCellPair methods where the
SortingThreshold is applied. As described in Chapter 5, these methods have different
optimal thresholds and are therefore analyzed separately.

18

4 Implementation

For each method, a loop iterates over the number of particles starting at 2. Within
this loop, the ProcessCell/ProcessCellPair method of the Extended Simulation
class is called several times: once with a sortingThreshold of 0 and once with a
sortingThreshold of INT_MAX. The execution time in milliseconds is recorded for each
call. (A sortingThreshold of 0 implies that sorting is performed for any number of
particles, since the cell size always exceeds the threshold, as described in the Background
chapter. Conversely, a sortingThreshold of INT_MAX will not sort for any number of
particles, since the cell size will always be less than the threshold). Since calls to these
methods are computationally fast, typically taking between 0 and 1 milliseconds, each
is called 100000 times to generate reliable comparison data. Then the difference between
the recorded times is calculated:

Difference = DurationThreshold0.count() - DurationThresholdMax.count();

For small particle counts, the difference is consistently positive, indicating that
direct distance calculation without prior sorting is faster. However, as the particle
count increases beyond a certain threshold, this trend reverses and the difference
becomes negative. This threshold represents the optimal sortingThreshold for the
ProcessCell/ProcessCellPair method.

To ensure more stable results, this calculation is repeated three times for each method
and an average value is calculated. The resulting optimal thresholds are then displayed
on the console.

GitHub AutoPas Repository:
The executable for tuning the sortingThresholds has been added to the AutoPas
repository on GitHub under commit ID a1812099c77b2022ff1858f9c98b58f25c103d42.
The results obtained from running this version are detailed in the subsequent chapter. 1

1https://github.com/AutoPas/AutoPas/commit/a1812099c77b2022ff1858f9c98b58f25c103d42

19

https://github.com/AutoPas/AutoPas/commit/a1812099c77b2022ff1858f9c98b58f25c103d42

5 Results

5.1 Examples used

5.1.1 FallingDrop

Figure 5.1: Cross-section of the falling drop scenario colored by particle type.

The primary example used for simulations and testing of the md-flexible tuner is
the Falling Drop scenario, which involves about 18,000 particles. It entails modeling a
cluster of particles forming a sphere that is accelerated by gravity and then falls into
a layer of particles, as shown in Fig. 5.1. The boundaries of the domain constrain the
motion: the top and bottom sides reflect particles through a particle wall of infinite
mass, while the remaining sides have periodic boundary conditions. The impact shock
(Fig. 5.1d) is reflected at the bottom of the domain, causing particles from both the

20

5 Results

initial drop and the bed to scatter back (Fig. 5.1e). Over time, the particles begin to
stabilize at the bottom of the domain due to gravity (Fig. 5.1f). [Gra+22]

5.1.2 Exploding Liquid

Figure 5.2: Exploding liquid scenario at the start (l.) and the end (r.) of the simulation.

Another example scenario involves an exploding liquid, featuring a highly com-
pressed and heated liquid film suddenly exposed to vacuum. This results in the rapid
expansion of the film, leading to its disintegration into filaments and droplets. [Sec+21]

21

5 Results

5.2 Computation of optimal SortingThresholds

Clang-14 GCC-12 GCC-11

ProcessCellPair 15 9 7
ProcessCell 8 5 5

Table 5.1: Different optimal SortingThresholds.

The calculation of optimal sorting thresholds for the ProcessCell and ProcessCellPair
methods was performed on different systems using different compilers. The results
show that both the compiler and the system used can affect the results. However, for a
given system and compiler, the results remain relatively consistent over multiple runs.

The following results were obtained using the FallingDrop simulation described
earlier, and are also presented in Section 5.2. Using the Windows Subsystem for Linux
(GNU/Linux 5.15.146.1-microsoft-standard-WSL2 x86_64) on a Windows 11 Pro System
with 4 cores and Ubuntu 22.04.4 LTS, the two compilers Clang and GCC gave different
results:

With Ubuntu clang version 14.0.0-1ubuntu1.1, the optimal sorting threshold for
ProcessCellPair was consistently found to be 15 across multiple runs. This means that
sorting should ideally be performed for particle counts greater than 15. For ProcessCell,
the optimal threshold was found to be 8. Using gcc version 12.3.0 (Ubuntu 12.3.0-
1ubuntu1 22.04), the optimal sorting threshold for ProcessCellPair was calculated to be
9, while for ProcessCell it was 5.

On a server system with 8 cores and gcc version 11.4.0 (Ubuntu 11.4.0-1ubuntu1 22.04),
the optimal threshold was found to be 7 for ProcessCellPair and 5 for ProcessCell.

Different optimal sorting thresholds for ProcessCell and ProcessCellPair:
The differences in optimal sorting thresholds for ProcessCell and ProcessCellPair can
be attributed to the fact that ProcessCellPair requires the creation of two sortedViews
when the combined size of the two cells exceeds the threshold. Consequently, the point
at which creating these sortedViews becomes advantageous in terms of computation
time is reached later than in ProcessCell, which only requires a single sortedView for
one cell.

22

5 Results

Using a different example:
When the exploding liquid scenario is used instead of FallingDrop, the results remain
consistent. This indicates that the sortingThreshold is influenced by the system or the
compiler and not by the specific simulation. The reason may be that the interaction
computation does not differ a lot between the two scenarios.

Intersection:
As discussed in Chapter 4, the optimal sortingThreshold is identified when the differ-
ence in duration between calling processCell/processCellPair with a sortingThreshold
of 0 and calling it with a threshold of INT_MAX becomes negative. By plotting these
durations on an xy-graph, the intersection point reveals the optimal threshold. Fig. 5.3
illustrates this process by showing the calculation of the optimal threshold for Process-
CellPair using GCC-11 on the server system described earlier.

2 4 6 8 10 12 14 16
0

50

100

150

Number of Particles

Ti
m

e
in

m
s

fo
r

10
00

00
ru

ns

SorthThres 0
SortThres Max

Figure 5.3: Intersection at 7 shows the optimal SortingThreshold calculated for Process-
CellPair using GCC-11.

23

5 Results

5.3 Tests with different sortingThresholds

To evaluate whether using the optimal sortingThreshold really improves runtime,
complete FallingDrops simulations were run with different thresholds. The results are
shown in Fig. 5.4 - Fig. 5.8.

For Fig. 5.4 - Fig. 5.7 violin plots were used. Bootstrapping [Efr79] is used to estimate
the mean performance. Bootstrapping works by repeatedly sampling with replacement
from the original data set and calculating the mean of each sample. To make the
comparison between different thresholds, the sampling is done on the number of runs
and then the corresponding performance values are averaged for each threshold. For
these plots, 1000 runs were performed for each.

First, the FallingDrop simulation was run five times for sortingThresholds ranging
from 0 to 20 using the clang compiler, with time measured in milliseconds. The same
sortingThreshold was used for both processCell and processCellPair. Ideally, a common
optimal sortingThreshold would fall between their respective optimal thresholds. As
shown in Fig. 5.4, simulations with a sortingThreshold around 12 yielded the fastest
results, which actually falls in the middle. However, this point also had the largest
variance, as shown by the distribution of the blue area along the y-axis.

250000

300000

350000

400000

450000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

SortingThreshold

Es
ti

m
at

ed
m

ea
n

pe
rf

or
m

an
ce

(i
n

m
s)

Figure 5.4: Performance by threshold using the clang compiler

24

5 Results

To get more reliable results, additional simulations were performed with GCC-11 on a
server system, where all simulation runs were significantly faster. First, the simulations
were run with the same sortingThreshold for both ProcessCell and ProcessCellPair. As
mentioned above, the optimal sortingThreshold was found to be 5 for ProcessCell and
7 for ProcessCellPair. In Fig. 5.5 the runtimes are shown for thresholds ranging from 0
to 10, with each threshold measurement repeated 20 times. As can be seen, the results
are very close, with no significant improvement from the sortingThreshold.

73000

73250

73500

73750

74000

0 1 2 3 4 5 6 7 8 9 10

SortingThreshold

Es
ti

m
at

ed
m

ea
n

pe
rf

or
m

an
ce

(i
n

m
s)

Figure 5.5: Performance by threshold using the GCC-11 compiler

Since there are two different optimal thresholds, two additional measurements were
performed, each with one of the sortingThresholds set in processCell/processCellPair.
Thirty measurements were taken for each threshold. Fig. 5.6 illustrates the result when
the sortingThreshold is fixed to 5 within the implementation of the processCell method.
Thus, the simulations with thresholds ranging from 0 to 10 show when ProcessCellPair
performs best. Again, no significant differences are observed, especially since the runs
for thresholds 5 to 10 show very similar performance.

In Fig. 5.7, the sortingThreshold in processCellPair was concurrently fixed at 7.
Indeed, there is an improvement in runtime at 5, although once more, with little
deviation from the other measurements.

25

5 Results

73800

74100

74400

74700

0 1 2 3 4 5 6 7 8 9 10
SortingThresholdEs

ti
m

at
ed

m
ea

n
pe

rf
or

m
an

ce
(i

n
m

s)

Figure 5.6: Performance by sortingThreshold for ProcessCellPair with a fixed threshold
of 5 in ProcessCell using the GCC-11 compiler

75000

76000

0 1 2 3 4 5 6 7 8 9 10
SortingThresholdEs

ti
m

at
ed

m
ea

n
pe

rf
or

m
an

ce
(i

n
m

s)

Figure 5.7: Performance by sortingThreshold for ProcessCell with a fixed threshold of 7
in ProcessCellPair using the GCC-11 compiler

26

5 Results

Fig. 5.8 shows the previously described measurement from another perspective. This
shows the variation per run. Except for runs 22 and 23 there are no major deviations.
So the simulations are quite stable.

73500

74500

75500

76500

77500

1 2 3 4 5 6 7 8 9 10 11 12 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Run

Pe
rf

or
m

an
ce

(i
n

m
s)

Threshold
0
1
2
3
4
5
6
7
8
9
10

Figure 5.8: Performance by run using the gcc compiler, fixed sortingThreshold of 7 in
ProcessCellPair

In conclusion, the sorting threshold does not make a significant difference at this low
number of iterations. For larger simulations, it might be useful to assign a separate
threshold to each of the methods, ProcessCell and ProcessCellPair, since their optimal
thresholds are different.

27

6 Future Work

There are various ways to further improve AutoPas in future work. For example,
if additional discrete tunable parameters are identified, they could be added to the
executable described in this thesis. This provides a simpler approach than using one of
the tuners mentioned here.
However, the GPTuner or KernelTuner could also be beneficial if continuous or multi-
dimensional tunable parameters are identified. In that case, AutoPas would need to be
made usable as a kernel for the KernelTuner in the form of an executable. Furthermore,
it would also be an option to directly implement optimization methods such as Bayesian
optimization or basin hopping for AutoPas.
Apart from additional tunable parameters, AutoPas could also be optimized for met-
rics other than runtime. For example memory usage, energy consumption, precision,
complexity.
Understanding compiler optimisations: Since the runtimes of simulations vary sig-
nificantly across different compilers, it might also be advantageous to examine the
differences between Clang and GCC in this regard.
Providing a detailed answer to the following question could also lead to an improve-
ment of AutoPas: What roles do parallelism and or execution on an GPU play?

28

7 Summary and Clonclusion

The optimal sortingThreshold indicates the number of particles from which it is ad-
vantageous to use a sortedView for the cells in the ProcessCell and ProcessCellPair
methods which are particularly relevant when using the Linked Cells algorithm. To
compute these thresholds, an executable was developed, consisting of an extension
of the Simulation class and a Main function. This extension class aims to populate
cells with a specific number of particles and then invoke ProcessCell(Pair). In the Main
function, timing measurements and calculations are conducted.

The optimal sortingThreshold is determined when the difference in duration between
calling processCell/processCellPair with a sortingThreshold of 0 and calling it with
a threshold of INT_MAX becomes negative. Calculating the best thresholds on various
systems with different compilers yielded varying results. Additionally, it was observed
that processCell and processCellPair have different optimal thresholds.

In conclusion, it would be beneficial to assign different thresholds to the two methods
in the implementation. However, the sortingThreshold has no significant effect on
simulations with a smaller number of iterations. Therefore, in future work, it might be
worthwhile to tune other parameters and employ optimization techniques.

29

List of Figures

2.1 Containers for the neighbor identification algorithms 5
2.2 SortingThresholdPC . 9
2.3 SortingThresholdPCP . 9

3.1 The preparation of the tuning knowledge in GPTuner. Figures are taken
from [Lao+23]. 14

5.1 Cross-section of the falling drop scenario colored by particle type. . . . 20
5.2 Exploding liquid scenario at the start (l.) and the end (r.) of the simulation. 21
5.3 Intersection . 23
5.4 Performance by threshold using the clang compiler 24
5.5 Performance by threshold using the GCC-11 compiler 25
5.6 Performance by sortingThreshold for ProcessCellPair with a fixed thresh-

old of 5 in ProcessCell using the GCC-11 compiler 26
5.7 Performance by sortingThreshold for ProcessCell with a fixed threshold

of 7 in ProcessCellPair using the GCC-11 compiler 26
5.8 Performance by run using the gcc compiler, fixed sortingThreshold of 7

in ProcessCellPair . 27

30

List of Tables

5.1 Different SortingThresholds . 22

31

Bibliography

[All04] M. P. Allen. “Introduction to Molecular Dynamics Simulation”. In: Com-
putational Soft Matter: From Synthetic Polymers to Proteins 23 (2004), pp. 1–
28.

[Bro+20] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A.
Neelakantan, P. Shyam, G. Sastry, A. Askell, et al. “Language models are
few-shot learners”. In: Advances in neural information processing systems 33
(2020).

[Cha+24] Y. Chang, X. Wang, J. Wang, Y. Wu, L. Yang, K. Zhu, H. Chen, X. Yi, C.
Wang, Y. Wang, et al. “A survey on evaluation of large language models”.
In: ACM Transactions on Intelligent Systems and Technology 15.3 (2024), pp. 1–
45.

[DS83] R. S. Dembo and T. Steihaug. “Truncated-Newton algorithms for large-scale
unconstrained optimization”. In: Mathematical Programming 26.2 (1983),
pp. 190–212.

[Efr79] B. Efron. “Bootstrap Methods: Another Look at the Jackknife”. In: The
Annals of Statistics (1979), pp. 1–26.

[FC20] L. Floridi and M. Chiriatti. “GPT-3: Its nature, scope, limits, and conse-
quences”. In: Minds and Machines 30 (2020), pp. 681–694.

[FSH15] M. Feurer, J. Springenberg, and F. Hutter. “Initializing bayesian hyper-
parameter optimization via meta-learning”. In: Proceedings of the AAAI
Conference on Artificial Intelligence. Vol. 29. 1. 2015.

[Gra+19] F. Gratl, S. Seckler, N. Tchipev, and H.-J. Bungartz. “AutoPas: Auto-Tuning
for Particle Simulations”. In: 2019 IEEE International Parallel and Distributed
Processing Symposium Workshops (IPDPSW) (2019), pp. 748–757. doi: https:
//doi.org/10.1109/IPDPSW.2019.00125.

[Gra+22] F. A. Gratl, S. Seckler, H.-J. Bungartz, and P. Neumann. “N ways to simulate
short-range particle systems: Automated algorithm selection with the node-
level library AutoPas”. In: Computer Physics Communications 273 (2022),
p. 108262. issn: 0010-4655. doi: https://doi.org/10.1016/j.cpc.2021.
108262.

32

https://doi.org/https://doi.org/10.1109/IPDPSW.2019.00125
https://doi.org/https://doi.org/10.1109/IPDPSW.2019.00125
https://doi.org/https://doi.org/10.1016/j.cpc.2021.108262
https://doi.org/https://doi.org/10.1016/j.cpc.2021.108262

Bibliography

[HD18] S. A. Hollingsworth and R. O. Dror. “Molecular Dynamics Simulation for
All”. In: Neuron 99(6) (2018), pp. 1129–1143. doi: https://doi.org/10.
1016/j.neuron.2018.08.011.

[Hut18] F. Hutter. Automated Machine Learning: Methods, Systems, Challenges. Ed. by
L. Kotthoff and J. Vanschoren. Cham: Springer, 2018. isbn: 9783030053184.

[Lao+23] J. Lao, Y. Wang, Y. Li, J. Wang, Y. Zhang, Z. Cheng, W. Chen, M. Tang, and
J. Wang. GPTuner: A Manual-Reading Database Tuning System via GPT-Guided
Bayesian Optimization. 2023. arXiv: 2311.03157 [cs.DB].

[McK92] M. D. McKay. “Latin hypercube sampling as a tool in uncertainty anal-
ysis of computer models”. In: Proceedings of the 24th conference on Winter
simulation. 1992, pp. 557–564.

[Mic07] G. Z. Michael Griebel Stephan Knapek. Numerical Simulation in Molecular
Dynamics: Numerics, Algorithms, Parallelization, Applications. 5th ed. Berlin:
Springer, 2007. isbn: 978-3-540-68094-9.

[New+22] S. J. Newcome, F. A. Gratl, P. Neumann, and H.-J. Bungartz. “Towards
auto-tuning Multi-Site Molecular Dynamics simulations with AutoPas”. In:
Journal of Computational and Applied Mathematics 433 (2022), p. 115278. issn:
0377-0427. doi: https://doi.org/10.1016/j.cam.2023.115278.

[Ope22] OpenAI. OpenAI: Introducing ChatGPT. 2022. url: https://openai.com/
blog/chatgpt.

[Ope23] OpenAI. GPT-4 Technical Report. 2023. arXiv: 2303.08774 [cs.CL].

[Sec+21] S. Seckler, F. Gratl, M. Heinen, J. Vrabec, H.-J. Bungartz, and P. Neumann.
“AutoPas in ls1 mardyn: Massively Parallel Particle Simulations with Node-
Level Auto-Tuning”. In: Journal of Computational Science 50 (2021), p. 101296.
doi: .https://doi.org/10.1016/j.jocs.2020.101296.

[Tou+23] H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux, T. Lacroix,
B. Rozière, N. Goyal, E. Hambro, F. Azhar, et al. “Llama: Open and efficient
foundation language models (2023)”. In: arXiv preprint arXiv:2302.13971
(2023).

[Tru22] I. Trummer. “DB-BERT: a Database Tuning Tool that" Reads the Manual"”.
In: Proceedings of the 2022 international conference on management of data. 2022,
pp. 190–203.

[Vas+17] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin. “Attention is all you need”. In: Advances in
neural information processing systems 30 (2017).

33

https://doi.org/https://doi.org/10.1016/j.neuron.2018.08.011
https://doi.org/https://doi.org/10.1016/j.neuron.2018.08.011
https://arxiv.org/abs/2311.03157
https://doi.org/https://doi.org/10.1016/j.cam.2023.115278
https://openai.com/blog/chatgpt
https://openai.com/blog/chatgpt
https://arxiv.org/abs/2303.08774
https://doi.org/. https://doi.org/10.1016/j.jocs.2020.101296

Bibliography

[WD97] D. J. Wales and J. P. Doye. “Global Optimization by Basin-Hopping and
the Lowest Energy Structures of Lennard-Jones Clusters Containing up to
110 Atoms”. In: J. Phys. Chem. A 101 (1997), pp. 5111–5116.

[Wer19] B. van Werkhoven. “Kernel Tuner: A search-optimizing GPU code auto-
tuner”. In: Future Generation Computer Systems 90 (2019), pp. 347–358.

[WNW21] F.-J. Willemsen, R. van Nieuwpoort, and B. van Werkhoven. “Bayesian
Optimization for auto-tuning GPU kernels”. In: 2021 International Workshop
on Performance Modeling, Benchmarking and Simulation of High Performance
Computer Systems (PMBS). IEEE. 2021, pp. 106–117.

34

	Abstract
	Kurzfassung
	Contents
	Introduction
	Background
	Molecular Dynamics Simulations
	Lennard-Jones-Potential
	The Cutoff Radius

	AutoPas
	Neighbor Identification Algorithms
	Direct Sum
	Linked Cells
	Verlet Lists
	Verlet Cluster Lists
	Algorithm selection problem

	Newton's Third Law
	Data Layouts
	SortingThreshold
	md-flexible

	Related Work
	GPTuner
	Large Language Models
	Bayesian Optimization
	GPTuner in a Nutshell

	Kernel Tuner
	Configuration selection strategies
	Comparison of selection strategies

	Implementation
	The md-flexible-tuner executable
	Extension of the Simulation Class
	Main.cpp

	Results
	Examples used
	FallingDrop
	Exploding Liquid

	Computation of optimal SortingThresholds
	Tests with different sortingThresholds

	Future Work
	Summary and Clonclusion
	List of Figures
	List of Tables
	Bibliography

