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Kurzfassung

Die Intensität und die Häufigkeit von Naturkatastrophen, wie Lawinen, Muren
und Hangrutschungen, haben durch den Klimawandel stark zugenommen. Um
die katastrophalen Auswirkungen dieser Ereignisse zu begrenzen, ist es essenti-
ell, geeignete Schutzstrukturen in gefährdeten Gebieten zu errichten. Um diese
jedoch entsprechend dimensionieren zu können, sind neben geeigneten Experi-
menten numerische Simulationsmethoden von entscheidender Bedeutung.
In dieser Arbeit werden partitionierte Kopplungsstrategien entwickelt, um die
komplexe Interaktion zwischen gravitationsgetriebenen Massenströmen und fle-
xiblen Schutzstrukturen zu simulieren. Die Aufbringung robuster Randbedin-
gungen in den einzelnen Teilmodellen ist für dieses Kopplungsverfahren essen-
tiell, da die Interaktion durch den Austausch von Randbedingungen am gemein-
samen Interface stattfindet.
Zur Modellierung des granularen Massenflusses wird die Materiel Point Methode
(MPM) als Diskretisierungsmethode verwendet, da das fließende Material durch
Lagrange-Partikel repräsentiert wird, während die Gleichgewichtsgleichungen am
Euler-Hintergrundnetz gelöst werden. Die spezielle Diskretisierung ermöglicht
die Abbildung der im granularen Massenfluss auftretenden großen Dehnungen,
welche ansonsten bei Lagrange-basierten Berechnungsmethoden zu schlechten
Netzqualitäten und rechenintensiven Neuvernetzungsalgorithmen führen wür-
de. Dadurch jedoch, dass das Material lediglich über einzelne Partikel repräsen-
tiert wird, die sich durch das Hintergrundnetz bewegen, müssen Strategien ent-
wickelt werden, um das Interface in MPM während der Berechnung zu definie-
ren. Des Weiteren ist eine schwache Aufbringung der Randbedingungen erfor-
derlich, da sich die Position des Interfaces während der Berechnung durch die
Interaktion mit den gekoppelten Teilmodellen verändert.
Aus diesem Grund werden massenlose Randpartikel eingeführt, welche die Po-
sition des Interfaces während der Simulation bestimmen und anhand derer die
Randbedingungen auf das MPM-Modell aufgebracht werden. Für die partitio-
nierte Kopplung mit der Diskreten Elemente Methode (DEM) wird eine Neu-
mann Interfacebedingung für MPM entwickelt, welche die Kontaktkräfte von DEM
als diskrete Punktlasten auf das MPM-Teilmodell aufbringt. Die daraus resul-
tierenden Kinematiken des Interfaces, die durch das anschließende Lösen des
MPM-Modells entstehen, werden an das DEM-Modell zurückgegeben, sodass
damit aktualisierte Kontaktkräfte bestimmt werden können. Die Kopplung ba-
siert auf dem Gauss-Seidel Kommunikationsschema und es wird eine schwache
Kopplungsstrategie angewandt. Die Kombination dieser beiden numerischen Me-
thoden ermöglicht die numerische Simulation von Stützwandsystemen, beste-
hend aus mehreren gestapelten Blöcken, in Interaktion mit granularen Massen-
strömen. Insbesondere kann auch der Versagensprozess der Stützwand durch die
entwickelte Methode numerisch abgebildet werden, was im Vergleich mit expe-
rimentellen Ergebnissen validiert wird.
Darüber hinaus werden in dieser Arbeit auch hochflexible Schutznetze betrach-
tet und deren Verhalten während eines Füllprozesses mit einem granularen Mas-
senstrom numerisch simuliert. Hierfür wird eine Kopplungsstrategie von MPM
und der Finite Elemente Methode (FEM) entwickelt, sodass die komplexen Struk-
turen mit FEM modelliert werden können, während weiterhin MPM für die flie-
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ßenden Massenströme verwendet wird. Voraussetzung für diesen Kopplungsal-
gorithmus sind Dirichlet Randbedingungen im MPM-Modell, welche schwach
aufgebracht werden müssen. Im Rahmen dieser Arbeit werden daher verschiede-
ne Methoden für den impliziten Lösungsalgorithmus von MPM entwickelt und
die jeweilige Robustheit in Bezug auf den Kopplungsalgorithmus bewertet.
Neben der Penalty Methode, die insbesondere aufgrund ihrer numerischen Effi-
zienz eingesetzt wird, wird eine Methode entwickelt, die auf Lagrange-Multiplikatoren
basiert und für MPM verwendet werden kann. Da die Randbedingungen direkt
im Gleichungssystem enthalten sind, ergibt sich hieraus ein Sattelpunktproblem,
welches gelöst werden muss. Im Rahmen dieser Arbeit wird eine neue Methodik
entwickelt, welche die einfachen elementweisen Interpolationsfunktionen, die
klassischerweise in MPM zur Approximation des Verschiebungsfeldes verwendet
werden, mit elementweisen konstanten Lagrange Multiplikatoren kombiniert. In
Verbindung mit einem mechanisch motivierten Eliminierungsprozess können
Randbedingungen robust, effizient und vor allem auch benutzerfreundlich auf-
gebracht werden, da die umständliche Kalibrierung des Penaltyfaktors entfällt.
Ergänzend wird die Perturbed Lagrange Methode für MPM formuliert, welche
sich aus einer Kombination der oben genannten Randbedingungen ergibt und
als Interface Randbedingung in die systematische Bewertung mit einbezogen
wird.
Basierend auf diesen Entwicklungen wird der partitionierte Kopplungsalgorith-
mus von FEM und MPM hergeleitet und verschiedene Beispiele mit steigender
Komplexität systematisch ausgewertet. Diese Beispiele verifizieren die entwickel-
te Methodik und demonstrieren gleichzeitig das breite Anwendungsspektrum,
das sich durch die Kombination dieser beiden Diskretisierungsmethoden ergibt.
Als abschließendes Beispiel wird eine hochflexible Schutzstruktur berechnet, wel-
che mit gravitationsgetriebenem granularem Material gefüllt wird.
Diese Dissertation ermöglicht somit eine allgemeine Interfacebeschreibung für
MPM, anhand wessen Neumann und Dirichlet Randbedingungen im implizi-
ten Lösungsalgorithmus von MPM schwach aufgebracht werden können. Diese
Entwicklungen vergrößern auch das Anwendungsspektrum von MPM, da Rand-
bedingungen unabhängig vom Hintergrundnetz definiert werden können und
für die Dirichletbedingungen auch die Erweiterungen für verschiebliche und ge-
neigte Auflager- sowie Kontaktbedingungen eingeführt werden.
Darauf aufbauend werden partitionierte Kopplungsalgorithmen mit DEM und
FEM entwickelt, um komplexe ingenieurtechnische Probleme zu lösen, wobei
der Schwerpunkt dieser Arbeit auf der Interaktion von granularem Material mit
Schutzstrukturen liegt.



Abstract

The frequency and intensity of natural disasters, including avalanches, mud-
flows, and landslides, have increased significantly in recent years due to climate
change and global warming. In order to mitigate the catastrophic effects of these
events, it is essential to construct suitable protective structures in areas at risk.
However, the design and dimensioning of protective structures is a complex task
that requires advanced numerical simulation techniques in addition to physical
experiments.
In this work, partitioned coupling strategies are developed to simulate the com-
plex interaction of gravity-driven mass flows impacting protective structures. Due
to the large strains developed in the granular mass flow, the Material Point Method
(MPM) is used to discretize the physical problem. Thus, the flowing material is
represented by Lagrangian particles, while the governing equations are solved
on the computational background grid. However, due to this discretization, the
imposition of boundary conditions is a complex task.
In particular, moving boundaries, which are required for partitioned coupling
with other numerical methods, are crucial since they cannot be imposed at the
nodes of the computational background grid. Moreover, an interface descrip-
tion is required for the coupling strategies. For this purpose, boundary particles
are introduced, which provide an adequate description of the boundary position
during the computation and are used to weakly enforce boundary conditions on
the MPM model. In case of an interface condition they receive and send the nec-
essary data to solve the interface equations.
For the partitioned coupling with the Discrete Element Method (DEM), a Neu-
mann interface condition is developed for the MPM submodel, which allows the
imposition of point load conditions along the shared interface, while a wall con-
dition is defined at the DEM submodel, which enforces a Dirichlet constraint.
Based on this the partitioned MPM-DEM coupling strategy is derived, which com-
bines the capability of DEM to compute accurate contact forces for rigid bodies
with the continuum-based approach of MPM to model large-scale mass flows.
This coupling strategy is successfully applied to simulate the failure process of
retaining wall systems consisting of multiple stacked massive blocks impacted
by granular mass flows.
In addition, highly flexible protective structures being impacted by gravity-driven
mass flows are also investigated in this work. For this purpose, a partitioned cou-
pling strategy of the Finite Element Method (FEM) and MPM is derived, which al-
lows to combine the strengths of FEM for accurate and efficient modeling of the
complex structures, while MPM is advantageous for simulating the large strain
event of flowing masses. For this coupling strategy, a Neumann condition is in-
troduced in the FEM partition, while in MPM the weak imposition of essential
boundary conditions along the shared interface is required. Since the robust im-
position of these boundary conditions and the calculation of the corresponding
reaction forces are crucial for the stability of the coupled problem, a main part of
this work focuses on these developments.
The penalty method can be used to weakly impose the essential boundary con-
ditions, providing a computationally efficient method. However, the calibration
of the penalty factors is a tedious task, and numerical instabilities are easily in-
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troduced with increasing factors, which negatively affects the accuracy of the re-
sulting reaction forces and thus the robustness of the coupled simulation.
As an alternative method to weakly impose essential boundary conditions, the
Lagrange multiplier method for implicit MPM is developed. To cope with the
challenges in MPM of Lagrangian moving material points through an Eulerian
background grid, which causes the active background grid elements to change
within each time step, a constant element-wise approximation of the Lagrange
multipliers within constrained elements, combined with a methodology to elim-
inate superfluous constraints is developed. This provides a suitable Lagrange
multiplier discretization in combination with the simple element-wise interpo-
lation functions used in MPM to approximate the displacement field. These de-
velopments provide a robust, efficient, and user-friendly boundary condition im-
position method that avoids the cumbersome calibration of the penalty factor.
In addition, the perturbed Lagrangian method, which is a combination of the
aforementioned types of boundary condition imposition methods, is derived for
implicit MPM and is included in the systematic assessment of the boundary con-
dition methods as interface conditions in a partitioned coupling scheme.
Based on these developments, the partitioned coupling of MPM with FEM is
made possible. Various examples of increasing complexity are systematically
evaluated to assess the accuracy of the developed methodology and to demon-
strate its wide and flexible application range due to the modular coupling of
MPM and FEM. Finally, the coupling strategy is successfully applied to model the
impact of a gravity-driven mass flow into a highly flexible protective structure.
In conclusion, this dissertation introduces a general interface description for MPM,
which allows to weakly impose Dirichlet or Neumann conditions in implicit MPM.
In addition these developments are an enhancement for MPM, allowing the im-
position of non-conforming boundary conditions and providing the extension to
slip and releasing contact conditions for essential boundary conditions. Based
on these advances, partitioned coupling strategies with DEM and FEM are de-
veloped to simulate complex engineering problems. In this thesis, these cou-
pling strategies are applied to simulate the collapse of retaining wall systems im-
pacted by granular mass flows using the MPM-DEM coupling strategy. In addi-
tion, highly flexible protective structures impacted by gravity-driven mass flows
are investigated employing the MPM-FEM coupling strategy.
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1

CHAPTER 1

Introduction

1.1 Motivation

In recent decades, the frequency and intensity of natural hazards have increased
significantly due to climate change and global warming. Among the wide variety
of natural hazards, the current work focuses on gravity-driven natural hazards
involving large moving masses. These include landslides, where soil and debris
move downhill as well as snow avalanches in mountainous regions. Additionally,
rockfall events are included in this category, but are not the primary focus of the
current work.
These catastrophic events often cause extensive damage to buildings, roads, and
other critical infrastructure systems, resulting in enormous economic costs, with
billions of dollars spent each year to rebuild and recover. Furthermore, the social
impact of these disasters is profound, with people losing their homes, suffering
psychological trauma in the aftermath of such events, and tragically, many losing
their lives.
Therefore, in the long term, climate change mitigation measures, such as reduc-
ing greenhouse gas emissions and transitioning to renewable energy sources, are
essential to reduce the frequency and severity of these disasters. In addition,
adaptation measures are indispensable to mitigate the impacts of gravity-driven
natural hazards in the short term. In this context, the design and construction of
protective structures in areas at high risk of natural disasters is of central impor-
tance.
The selection of protective structures depends on the topography of the area in
which the structure is to be installed and the expected impact scenario. Depend-
ing on these factors, different types of structures may be appropriate.
For instance, in areas where slopes need to be stabilized, particularly along roads
or near buildings, retaining walls are often installed. These walls are designed to
resist the lateral pressure of soil or rock masses and prevent them from collaps-
ing. They typically consist of stacked massive blocks and are usually constructed
of concrete or gabions (wire mesh baskets filled with rock). Figure 1.1a) shows
an example of a gabion wall installed along a road, while 1.1b) shows stacked
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massive concrete blocks used to stabilize the gravel pile.

a) Gabions in Sonthofen, Germany b) Stacked concrete blocks in Buchloe, Germany

Figure 1.1: Examples of installed retaining wall systems.

While rigid structures such as retaining walls are primarily installed for slope sta-
bilization, flexible protective structures are required for highly dynamic impact
masses due to their enormous energy absorption capacity. Hence, these struc-
tures are often installed in rockfall prone areas and are becoming increasingly
popular for protecting vulnerable areas from snow avalanches or landslides. Fig-
ure 1.2 shows an example of a flexible protective structure installed to protect a
nearby village from mudflows.

Figure 1.2: Flexible protective structure installed in Altstätten, Switzerland.

Typically, these structures consist of a net spanned between steel profiles. To
enable the structure to undergo significant deformation upon impact, a hinged
support is usually incorporated at the base of the profiles. This allows them to ro-
tate around their support point upon impact, activating the stiffness of the cables
attached at the top. These cables are spanned uphill and are usually equipped
with braking elements to absorb energy through plastic deformation. Also, the
cables spanning in the transverse direction are usually equipped with braking el-
ements. Due to this flexible design, the braking distance of the impacting mass
flow is increased and consequently the peak impact forces are significantly re-
duced compared to a rigid structure.
However, the design and dimensioning of protective structures is a complex task
that requires advanced numerical simulation techniques in addition to physical
experiments.
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First, each type of structure has unique characteristics that need to be repre-
sented in the numerical model. For instance, in the case of retaining wall sys-
tems as shown in Figure 1.1, the mutual contact of the rigid blocks is critical to
the design. On the other hand, flexible structures as exemplified in Figure 1.2
require careful modeling of stress distribution, deformation pattern and energy
absorption as these factors are interdependent and critical to the design.
Second, various types of natural hazards need to be modeled. This involves the
simulation of soil or debris flow in a landslide, the behavior of snow in an avalanche,
or the characteristics of rock in case of rockfall impacts.
Finally, the interaction between the protective structure and the natural hazard
needs to be modeled to predict the impact and loading scenarios and the sub-
sequent behavior of the structure. The simulation of this interaction provides a
deeper understanding of real-world physics and is necessary for the effective and
efficient design of protective structures.
Therefore, to accurately simulate these complex problems involving protective
structures and natural hazards, it is necessary to divide the modeling process
into three key components: the structural modeling, the natural hazard model,
and the simulation of the close interaction during the impact.

Among the numerical methods developed to simulate engineering problems, the
Finite Element Method (FEM) is the most popular and established numerical
method. FEM has earned this distinction due to its versatility, accuracy, and ap-
plicability to a wide spectrum of engineering disciplines, making it the primary
choice for modeling the complex behavior of flexible protective structures.
Different types of elements can be used to represent various components of the
protective structure. For instance, cable elements are used to model the ten-
sioned cables spanned uphill, while truss or beam elements represent the steel
profiles. However, the structural modeling of the net spanned between the pro-
files is more complex, and within the last decades, several approaches have been
developed for that (see e.g. [58, 48, 127]). The challenge is to develop computa-
tionally efficient methods that still capture the net’s main characteristics and the
load-carrying behavior for the anticipated impact scenarios.
Recently, [101] introduced a more efficient modeling approach to capture the
main characteristics of the complex net structure in the case of rockfall impact.
This innovative approach avoids computationally expensive micro-level formu-
lations, but globally resolves the complex structural behavior of the net using
surrogate membrane elements. This modeling approach has been extensively in-
vestigated to model the impact of rocks on highly flexible protective structures.
While these structures were modeled with FEM, the Discrete Element Method
(DEM) was used to calculate the rock movement. Bringing together the differ-
ent physics, a partitioned coupling scheme of DEM and FEM was developed (see
e.g. [101, 105, 103]) to model the impact of the rock and the subsequent struc-
tural response. The comparison of the numerical results with physical experi-
ments demonstrated a good agreement, confirming the appropriateness of both
the simplified structural model and the coupling approach used.
The structural modeling of flexible protective structures within this work builds
on the findings and modeling approaches developed in [101] using FEM. How-
ever, instead of rockfall events, the anticipated impact scenarios on protective
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structures in this work are gravity-driven masses such as landslides or avalanches
flowing down a mountainous region. Moreover, various types of protective struc-
tures are investigated. While the flexible protective structures, as shown in Fig-
ure 1.2, have similarities to rockfall barriers, the retaining wall blocks, exempli-
fied in Figure 1.1 require a completely different modeling approach.
For the latter structure, the mutual contact conditions of the individual blocks
and their overall movement are decisive for the proper design of these struc-
tures, whereas the strains of the individual blocks are negligible. For this rea-
son, it is common practice to simplify the individual blocks as rigid bodies inter-
acting with each other. Furthermore, understanding the failure process of these
structures is critical to a thorough understanding of these structures and there-
fore needs to be captured by the numerical model. Consequently, DEM serves as
an effective and computationally efficient framework for their numerical simu-
lation.
Therefore, for the structural modeling in this thesis, DEM is chosen for the cal-
culation of retaining walls consisting of individual blocks, while Lagrangian FEM
is used for the modeling of highly flexible protective structures. Since the failure
process of retaining wall blocks is to be incorporated in the numerical models,
both types of protective structures are classified as flexible.
However, these numerical methods are limited for modeling gravity-driven nat-
ural hazards involving large flowing masses, such as landslides and avalanches.
For these large-scale events, the discrete approach has its limitations because of
the need to model the individual grains of the large-scale flows and their inter-
actions. A continuum-based technique is therefore more appropriate. However,
classical FEM or other Lagrangian mesh-based methods are likely to suffer from
mesh entanglement and distortion to model these large strain events, requiring
computationally expensive re-meshing schemes to model these masses flowing
down a mountainous region.
Therefore, continuum-based particle methods are the natural alternative to sim-
ulate these mass flows, including huge topological changes of the material. Among
them, the Material Point Method (MPM) is particularly suitable as it combines
the advantages of both meshless and mesh-based numerical techniques. As orig-
inally proposed by Sulsky et al. [120], the physical domain is discretized by La-
grangian moving particles called material points. Each represents a discrete part
of the physical domain and carries the history dependent variables during the
computation. In addition to the material points, which represent the contin-
uum body B, an Eulerian computational background grid is introduced in MPM,
which is used to solve the governing equations. Thus, MPM inherently has many
similarities to the well-established updated Lagrangian FEM.
Another layer of complexity is added to the numerical modeling when gravity-
driven masses and protective structures, each of which requires an appropriate
numerical method to model its individual characteristics, are in close interac-
tion and therefore interdependent. Figure 1.3 demonstrates this close interac-
tion showing examples of flexible protective structures in their deformed state
after restrained mass flows. Therefore, these problems involve several physical
phenomena and are referred to as multi-physics in the following.
There are either monolithic or partitioned coupling approaches to model the
interaction between different physics. While the monolithic approach, which
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a) Debris-flow event in Japan b) Mud-flow experiments in Switzerland

Figure 1.3: Examples for restrained mass flows by flexible protec-
tive structures. All photographs are property of Geobrugg
(https://www.geobrugg.com)

solves all the physics involved simultaneously, usually provides higher accuracy,
it is very limited in its application to different multi-physics problems, as new
monolithic formulations incorporating the coupling have to be developed for
each type of problem. The partitioned approach, on the other hand, is more flex-
ible in this regard, since it solves the physics involved independently, allowing
the reuse of solvers and tools that have been thoroughly developed over many
years. The involved solvers can be used as black-box solvers, while the interac-
tion between them is shifted to their shared interface. Various techniques have
been developed to transfer the interface data while maintaining the accuracy and
stability of the partitioned approach. The developments for the partitioned cou-
pling approach are often driven by Fluid-Structure Interaction (FSI) problems,
just to mention [138, 130, 136, 135, 108], but are also adapted to various physics.
Therefore, in this work, the partitioned approach is adapted to model the interac-
tion of gravity-driven masses impacting different types of protective structures.
Thus, this approach preserves the modularity of the involved solvers and simul-
taneously provides the possibility to couple different numerical methods.
A key component of the partitioned coupling approach is the definition of bound-
ary conditions along the shared interface required for data exchange. For La-
grangian mesh-based methods, such as FEM, the nodal deformations of the mesh
always follow the movement of the structure. Therefore, the boundary condi-
tions can be straightforwardly imposed at the nodes of the shared interface (see
also Figure 1.4, left). These conditions comply naturally with the Kronecker delta
property and will be referred to as conforming boundary conditions in the fol-
lowing.
For particle based methods, however, the imposition of boundary conditions
along the shared interface is more complex. In DEM, this is solved by introducing
a wall condition at the shared interface. This approach, which defines a Dirichlet
boundary condition in the DEM partition, was initially developed by [99] to cou-
ple DEM with FEM in a partitioned scheme and further used by [101] to model
the impact of rocks on highly flexible protective structures. Therefore, the cur-
rent work builds on these developments by using the wall condition within the
DEM solver to impose the boundary conditions required for partitioned coupling
with MPM.
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However, imposing boundary conditions in MPM is a challenging task as the
continuum body B is discretized by Lagrangian moving particles while the gov-
erning equations are solved on the computational background grid. Therefore,
in contrast to classical FEM, the boundary conditions can rarely be imposed di-
rectly on the nodes of the background grid, which is also illustrated in Figure 1.4,
showing the discretization of a continuum body B using either Lagrangian FEM
or MPM.

continuum body B

FEM model MPM model

Figure 1.4: Discretization of the continuum body B by Lagrangian FEM (left)
and by MPM (right). The blue dots represent the material points.

Hence, incorporating MPM into a partitioned coupling scheme first requires a
methodology to track the shape and topology of the shared interface over time.
Second, the boundary conditions need to be weakly imposed, since the bound-
ary definition generally does not coincide with the nodes of the computational
background grid. In the following, they will be referred to as non-conforming
boundary conditions.
For this purpose, boundary particles are introduced along the shared interface,
which follow its topology and shape over time. These mass-less particles are used
to weakly impose either Neumann or Dirichlet conditions on the MPM model.
While the imposition of Neumann conditions is comparatively easy, the weak im-
position of Dirichlet conditions is a more challenging task and different methods
are developed in this thesis.
The penalty method, which is also known from other immersed methods (e.g., [7]
for FEM, e.g., [76] for FCM, e.g., [27, 122] for IBRA), is a numerical approach to im-
pose non-conforming essential boundary conditions. It is particularly attractive
since the conditions are imposed numerically without adding additional degrees
of freedom (dofs) to the system of equations. As part of a master’s thesis super-
vised by the author [33], this numerical approach was adapted to implicit MPM.
The results and verification examples are published in [34].
However, the penalty factor needs to be carefully calibrated to the system being
solved. While factors that are too low result in material penetration through the
boundary, factors that are too high result in numerical instabilities. This is par-
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ticularly problematic when the boundary imposition method is used in a parti-
tioned scheme, and therefore the reaction forces are also important for the sta-
bility of the coupled problem.
As an alternative, a method to robustly impose essential boundary conditions
in MPM with Lagrange multipliers is developed in this work. The great advan-
tage of this method is that the constraint equations are included in the system
of equations, yet requiring the need of additional dofs. However, since a saddle
point problem has to be solved, the design of a stable Lagrange multiplier solu-
tion is non-trivial. This topic has been studied intensively, especially for FEM and
other numerical methods to weakly impose essential boundary conditions [11,
16]. Specifically for the imposition of boundary conditions, Babuška [9] showed
that equal order of interpolation of the respective fields demands two different
mesh sizes for the displacements and Lagrange multipliers. Following this ap-
proach leads to a complicated and computationally expensive construction of
the Lagrange multiplier discretization, as proposed for example by Béchet et al.
[16] and extended to 3D by Hautefeuille et al. [63] for the extended finite element
method.
However, these approaches are not suitable for MPM as the set of active back-
ground grid elements can vary at each time step due to the Lagrangian moving
particles within the Eulerian background grid. Moreover, the boundary condi-
tions are not necessarily aligned with the body contour, but can be arbitrarily
positioned within the background grid, leading to different interactions between
the material and the boundary at each time step.
To cope with these challenges, a novel element-wise formulation is introduced to
weakly impose non-conforming Dirichlet conditions using Lagrange multipliers.
The proposed formulation uses a constant Lagrange multiplier approximation
within constrained elements in combination with a methodology to eliminate
superfluous constraints. Thus, a suitable Lagrange multiplier discretization is
obtained in combination with simple element-wise interpolation functions clas-
sically used in MPM to approximate the displacement field. In this way, a robust,
efficient, and user-friendly boundary imposition method for immersed methods
specified here for implicit MPM is obtained. The developments are published by
the author in [117] and are summarized in this thesis.
In addition, the perturbed Lagrangian method is introduced as a combination of
the aforementioned two methods. Similar to the Lagrange multiplier approach,
the constraint equations are included in the system of equations, assuming a
constant Lagrange multiplier approximation. In addition, however, the penalty
term is added for stabilization to avoid the elimination procedure of unnecessary
constraints. Therefore, this method shows similarities to both the Lagrange mul-
tiplier and the penalty approach. Furthermore, it is demonstrated that through
static condensation, this approach is consistent with the penalty formulation.
Nonetheless, although it results in the penalty formulation, the additional dofs
considering the constraint equations reduce to some extent the numerical in-
stabilities introduced by the penalty factor. This effect is demonstrated by the
numerical examples in section 3.5, which compare the different methods of im-
posing boundary conditions. In particular, the performance of these boundary
imposition methods is systematically assessed with respect to their application
as interface conditions in a partitioned coupling scheme.
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The definition of appropriate interface conditions in the numerical methods al-
lows their combination in a partitioned coupling scheme. Thus, depending on
the physical problem to be solved, the best suited solvers can be selected for the
physics involved, while their interaction is shifted to their shared interface.
However, partitioning introduces additional interface equations which must be
solved to compute the overall problem. For this reason, a general framework that
provides a systematic exchange of the interface data to solve the interface equi-
librium is advantageous. Within this work the CoSimulation Application [77],
mainly developed by Bucher [31], is used as a general framework to couple the
involved solvers and to manage the required data exchange.
Therefore, bringing together all aspects to finally model the challenging physi-
cal problem of flowing masses, such as landslides or avalanches, in interaction
with different types of protective structures, the MPM-DEM (presented in chap-
ter 5) and the MPM-FEM coupling methodology (presented in chapter 6) are in-
troduced and verified in this thesis. Starting with academic validation examples,
their accuracy with physical experiments is also demonstrated.
Due to the modular treatment of the individual solvers within the partitioned
coupling scheme, in combination with the developed interface definition in MPM,
which allows to impose either Dirichlet or Neumann conditions at the shared
interface, the developments can be easily extended to couple MPM with other
numerical methods.
The boundary imposition methods for the MPM model as well as the presented
coupling methodologies, are all implemented in the open source multi-physics
software KRATOS [43, 42, 52]. This software is mainly written in C++ and provides
a Python interface. The current version is available on [77].

1.2 Contributions of this Work

The current work focuses on the numerical simulation of gravity-driven mass
flows, such as avalanches and landslides, in interaction with protective struc-
tures. Two specific types of protective structures are investigated, each requiring
distinct numerical methods to adequately capture their individual characteris-
tics. An additional numerical method, MPM, is employed to simulate the flowing
masses. In order to model the interaction of these masses with these types of
protective structures, partitioned coupling schemes are developed, which allow
the combination of the numerical methods involved in a modular fashion. A
crucial aspect of these schemes is the imposition of boundary conditions along
the shared interface within each involved solver. This task becomes particularly
challenging in the context of MPM, necessitating the development of methods to
weakly impose these boundary conditions.
Therefore, the following contributions and advances have been made in this work:

• Starting with the supervision of a master’s thesis [33], the penalty method
was developed to weakly enforce boundary conditions in MPM. This in-
volved representing the boundary with boundary particles and enforcing
the Dirichlet conditions by penalty augmentation. In collaboration, the
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developed methodology to impose non-conforming boundary conditions
in implicit MPM by means of penalty augmentation was published in [34].

• To circumvent the numerical errors introduced by the penalty factor, a
methodology for weakly imposing the essential boundary conditions in
MPM using Lagrange multipliers is developed. This approach introduces a
constant Lagrange multiplier approximation within constrained elements
in combination with a methodology to eliminate superfluous constraints.
Thus, in combination with simple element-wise interpolation functions
classically used in MPM to approximate the displacement field, a suitable
Lagrange multiplier discretization is obtained. The results are published
in [117] by the author and provide a robust, efficient, and user-friendly
boundary imposition method for immersed methods specified for implicit
MPM.

• As a combination of the aforementioned boundary imposition methods,
the perturbed Lagrangian method is formulated for MPM. In this approach,
the constraint equations remain part of the system of equations, but are
regularized (relaxed) by an additional penalty term. Consequently, the pro-
cedure to eliminate superfluous constraints is circumvented, while the char-
acteristics of the penalty approach are introduced.

• The performance of these boundary imposition methods, especially with
respect to their use as interface conditions in a partitioned coupling scheme,
is systematically assessed.

• In addition to the Dirichlet conditions, a particle point load condition, in-
spired by the theory introduced by [72], is incorporated. In this work, the
point load condition is extended to serve as an interface condition in a par-
titioned coupling scheme. For this purpose, Lagrangian moving boundary
particles are introduced at the shared interface, which receive forces from
the coupled counterpart and impose them as point load conditions on the
MPM model.

• Based on these developments and in combination with the knowledge of
FEM-DEM coupling provided in [105, 103], a partitioned MPM-DEM cou-
pling scheme is developed, which combines the advantages of both nu-
merical methods in a generalized way. The theory as well as verification
and validation examples are published in [115] by the author. Another ex-
ample is given in [114], which demonstrates the applicability of the pro-
posed methodology to model retaining wall blocks and their failure pat-
terns when interacting with gravity-driven mass flows.

• In order to expend the numerical simulation capabilities to highly flexible
protective structures affected by gravity-driven mass flows, a partitioned
MPM-FEM coupling scheme is developed and presented in chapter 6. Im-
portant requirements for this coupling methodology are the prior devel-
opments of boundary imposition methods for non-conforming Dirichlet
conditions in MPM. Therefore, the performance of the penalty, Lagrange,
and perturbed Lagrangian method to weakly impose the conditions on
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the MPM sub-solver is also included in the verification of the coupling
methodology. Furthermore, various examples of increasing complexity are
systematically evaluated, providing the basis for solving complex physical
problems. Finally, the application of the MPM-FEM coupling methodology
to numerically simulate the impact of gravity-driven mass flows on highly
flexible protective structures is demonstrated.

1.3 Outline

The work is subdivided into seven chapters and the respective contents are sum-
marized in the following.

• Chapter 1: provides the motivation including a summary of the contents
as well as an overview of the contributions of the current work.

• Chapter 2: introduces the necessary fundamentals starting with a contin-
uum description of a body, introducing the strong and weak forms of the
governing equation, and finally deriving the discretized equations to solve
the physical problem numerically.
In addition, the specifications for Lagrangian FEM are introduced and the
element formulations for membrane, truss, and cable elements are de-
rived. This provides the foundations for the numerical examples presented
in chapter 6, using the partitioned MPM-FEM coupling scheme.
Finally, based on the rigid body simplification, the governing equations for
DEM are derived. Thus, the DEM calculation procedure is introduced and
the calculation of contact forces is discussed. This provides the founda-
tions for the numerical examples presented in chapter 5, using the parti-
tioned MPM-DEM coupling scheme.

• Chapter 3: specifies the fundamentals described in chapter 2 for MPM
and introduces the basic theory of the method. It includes the inter- and
extrapolation procedures used to transfer information between the com-
putational background grid and material points, the particle integration
scheme, and the time integration used.
Additionally, the definition of the interface conditions in MPM are dis-
cussed. Due to the Lagrangian moving particles in combination with an
Eulerian background grid, the weak imposition of boundary conditions
is essential for the partitioned coupling schemes developed in chapter 5
and chapter 6. Thus, the particle representation of the boundary is in-
troduced and non-conforming point load conditions required for the cou-
pling scheme with DEM are presented.

The main part of this chapter focuses on the development of non-conforming
Dirichlet conditions to weakly enforce the constraints in the MPM method-
ology, which is essential for partitioned coupling with FEM. Therefore, the
penalty method, the Lagrange multiplier method, and the perturbed La-
grangian method formulated for implicit MPM are derived. Their perfor-
mance in terms of their applicability as interface conditions in a parti-
tioned scheme is systematically evaluated.
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• Chapter 4: introduces the fundamentals and notations for partitioned cou-
pling schemes in general. Starting with the black-box solver notation and
the interface transmission conditions, the iteration schemes for solving
the interface equations are derived. Finally, interpolation-based mapping
techniques are presented, which are required to transfer the interface data
of the involved solvers.

• Chapter 5: specifies the fundamentals provided in chapter 4 for the parti-
tioned MPM-DEM coupling scheme. It provides a comprehensive descrip-
tion of the coupling scheme, including specifications on the discretization
that are essential for the coupling scheme. The chapter concludes with
several verification and validation examples, starting with an academic
example and proceeding to the numerical simulation of a gravity-driven
mass flow impacting retaining wall blocks. The flow process and the subse-
quent failure pattern of the discrete solids are compared with experimental
results from the literature.

• Chapter 6: provides a comprehensive description of the partitioned MPM-
FEM coupling scheme, which is derived based on the fundamentals intro-
duced in chapter 4. Both the weak and strong coupling schemes are in-
troduced, and the sequence of the solvers to solve the coupled problem is
thoroughly discussed and evaluated in the verification examples. Further-
more, the accuracy and robustness of the coupled methodology are evalu-
ated in detail for different discretizations and the different types of bound-
ary imposition methods in the MPM sub-solver. The coupling scheme is
applied to various examples of increasing complexity to verify its applica-
tion in static and dynamic cases, incorporating highly flexible structures.
After verification, the coupling methodology is validated against experi-
mental results from the literature. Finally, the chapter concludes with a
complex example of gravity-driven mass flow that impacts a highly flexible
protective structure.

• Chapter 7: gives conclusions and an outlook for future research.
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CHAPTER 2

Fundamentals

This section provides the mechanics for a continuum body B occupying a do-
main Ω with a regular boundary Γ in a three-dimensional Euclidean space E .
Based on the kinematics, strains and stresses for different constitutive laws, the
governing equations are derived in strong and weak form. The discretization in
space and time integration methods are introduced and specified for FEM. In
addition, the rigid body specifications are derived and the fundamentals of DEM
are provided.

2.1 Differential Geometry

The position vector of each point within a geometry is defined by X = X j e j where

X j are the respective coordinates and e j are the global Cartesian base vectors
with j = {1,2,3} in three-dimensional space*.
A more general expression is obtained by a parametric description, where a set of
curvilinear coordinates θi describes the geometric entity. The number of these
parameter lines depends on the dimension of the geometric object. While a
curve is described by one parameter, two are required for surfaces, while three
are for volumes. Thus, for volumetric geometries, the position vector can be ex-
pressed by

X(θ1,θ2,θ3) = X j (θ1,θ2,θ3)e j . (2.1)

With this parametric description, a local coordinate system with covariant base
vectors Gi can be defined at each point, which is beneficial for describing local
properties of the geometry. These base vectors are tangential to the curvilinear
coordinates θi and are therefore given by

Gi =
∂X

∂θi
. (2.2)

* Einstein’s summation convention is applied.
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Therefore, the position vector of a point inside the body B can be expressed in
general by

X = X j e j = θi Gi = θi Gi , (2.3)

while Gi are the contravariant base vectors being reciprocal to the covariant base
vectors Gi .
The metric coefficients are used to transform the co- and contravariant bases
into the respective other coordinate system by

Gi =Gi j G j with Gi j = Gi ·G j (2.4)

Gi =G i j G j with G i j = Gi ·G j (2.5)

while the contravariant metric coefficients can also be obtained from the covari-
ant coefficients by [

G i j
]
=

[
Gi j

]−1
. (2.6)

More details on differential geometry can be found e.g., in [14, 74, 64, 18].

2.2 Kinematics

For the Lagrangian kinematic description, the deformation process of an arbi-
trary point within the body B is observed. As visualized in Figure 2.1 the current
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reference configuration current configuration

x(θ1, θ2, θ3, t)

X(θ1, θ2, θ3)

u(θ1, θ2, θ3, t)
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θ3
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θ1

θ3
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Figure 2.1: Kinematic description of the body B.
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deformed configuration x at time t is compared to the undeformed reference
configuration X at time t = 0 which defines the deformation

u
(
θ1,θ2,θ3, t

)
= x

(
θ1,θ2,θ3, t

)
−X

(
θ1,θ2,θ3

)
. (2.7)

The position vector x in the current configuration is defined by

x = x j e j = θi gi = θi gi (2.8)

and can be described in analogy to the reference configuration by the co- and
contravariant base vectors gi , gi . Consequently, the metric coefficients gi j , g i j

in the current configuration are obtained according to equations 2.4-2.6 using
instead the base vectors defined in the current configuration. As commonly ap-
plied, uppercase letters are used for all quantities in the reference configuration,
while lowercase letters are used for those referring to the current configuration.
The deformation gradient

F = ∂x

∂X
= gi ⊗Gi (2.9)

links the reference to the deformed configuration and is an important measure to
describe strain. Due to the one-to-one mapping between the two configurations,
the determinant of F, often called Jacobian, must be non-zero

det[F] = dΩ

dΩ0
̸= 0. (2.10)

It links the volumes dΩ and dΩ0 of an infinitesimal element in the respective
configurations.
Since the deformation gradient describes the movement of the body, including
rigid body motions, it cannot be used directly for the strain measurement. In-
stead, there exist different strain measures to relate local deformations to certain
reference lengths. Among them, the Green-Lagrange strains E and the Euler-
Almansi strains e are used to describe elastic materials. They are defined as fol-
lows

E = 1

2

(
FT F− I

)
= 1

2

(
gi j −Gi j

)
Gi ⊗G j = Ei j Gi ⊗G j (2.11)

e = 1

2

(
I−F−T F−1

)
= 1

2

(
gi j −Gi j

)
gi ⊗g j = ei j gi ⊗g j (2.12)

where I is the identity tensor. While the Green-Lagrange strains express the dis-
tortions with respect to the reference configuration, the Euler-Almansi strains are
related to the current configuration. The coefficients Ei j = ei j are determined by
half the difference between the metrics gi j and Gi j .
An important property for element derivation is the transformation rule of the
components Ei j and ei j to another coordinate system [64]. For example, the

transformation to an orthonormal local coordinate system with the bases G̃k⊗G̃l

and g̃k ⊗ g̃l respectively can therefore be performed by

Ẽkl = Ei j (G̃k ·Gi )(G j · G̃l ) (2.13)

ẽkl = ei j (g̃k ·gi )(g j · g̃l ) (2.14)
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which is especially useful for material laws referring to physical quantities.
With the push-forward operation

e = F−T EF−1 (2.15)

the Green-Lagrange strain can be transformed to the current configuration, re-
sulting in the Euler-Almansi strain. The pull-back is the inverse operation and is
defined by

E = FT eF, (2.16)

transforming the quantity based on the current configuration to the reference
configuration.
For the description of elastic-plastic materials, which are introduced in section 2.4.2,
the Hencky strain measurements are employed which are defined by

EH = ln(U) and eH = ln(v) (2.17)

in the reference and current configuration, respectively. The push-forward and
pull-back operations can be applied analogously using the equations 2.15 and 2.16
for the Hencky strains.
U and v in equation 2.17 are the right (material) and left (spatial) stretch tensor
defining the polar decomposition of the deformation gradient

F = RU = vR with RT R = I. (2.18)

The Hencky strain measure is beneficial for the Mohr-Coulomb constitutive equa-
tions used since the principal stretches need to be calculated in the current con-
figuration. They are required to evaluate the yield function (see section 2.4.2),
which determines the stress states at which the material response changes from
elastic to elastic-plastic.
The principal stretches in the current configuration are the eigenvalues λ of the
tensor v. They can be computed by a spectral decomposition of the right Cauchy-
Green tensor

b = v2 = FFT =
3∑

a=1
λ2

a n̂a ⊗ n̂a (2.19)

defining the squares of the principal stretches, while n̂a are the normalized eigen-
vectors in the current configuration. Thus, the principal Hencky strain tensor ẽH
is defined by

ẽH =
3∑

a=1
ln(λa )n̂a ⊗ n̂a . (2.20)

2.3 Stresses

According to Cauchy’s stress theorem, the traction vector p in the current config-
uration is given by

p =σn (2.21)
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where n is the unit normal vector and σ denotes the Cauchy stress tensor

σ=σi j gi ⊗g j . (2.22)

It is defined in the deformed configuration and is therefore related to the Euler-
Almansi strain e (equation 2.12) and the Hencky strain eH (equation 2.17). Be-
sides the Cauchy stress tensor, the Kirchhoff stress tensor τ is often introduced,
which is related by

τ= det[F]σ (2.23)

to the Cauchy stress σ.
It is advantageous for the evaluation of the internal work (see section 2.5) to de-
fine contravariant stress components because in combination with the covariant
strain the dependence of the bases can thus be eliminated*.
Referring the physical stresses to an undeformed area in the reference configura-
tion leads to the definition of the 1st Piola-Kirchhoff stress tensor

P = det[F]σF−T = det[F]σi j gi ⊗G j = P i j gi ⊗G j , (2.24)

which is based on the current and reference configuration.
More advantageous, however, is the 2nd Piola-Kirchhoff stress tensor S, which is
defined only in the reference configuration and is therefore work conjugate to the
Green-Lagrange strain tensor E (equation 2.11). It is linked to the Cauchy stress
σ by

S = det[F]F−1σF−T = det[F]σi j Gi ⊗G j = Si j Gi ⊗G j . (2.25)

This equation defines an important relation for calculating the components of
the 2nd Piola-Kirchhoff stress tensor by

Si j = det[F]σi j , (2.26)

which allows to switch between current and reference configuration.

2.4 Constitutive Equations

The relation between stresses and strains is defined by constitutive equations.
These equations describe the response of the material to receive the resulting
stresses as a function of the deformation history. Various mathematical models,
commonly validated against experimental results, are available in literature to
describe different material behaviors. In this thesis, the basic theory for the ho-
mogeneous isotropic elastic and elastic-plastic material models that will be used
in the later sections is introduced.
First, the basic theory of elastic materials is introduced and then, in section 2.4.2,
it is extended to elastic-plastic materials, which are needed to describe the flow
behavior of granular materials.

* let tensor A = Ai j Gi ⊗G j and tensor B = Bkl Gk ⊗Gl :

A : B = Ai j Bkl
(
Gi ⊗G j

)
:
(
Gk ⊗Gl

)= Ai j Bkl δi
k
δ

j
l
= Ai j B i j
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2.4.1 Elasticity

A fundamental property of elastic materials is that the stress depends only on
the current level of strain, implying that the original shape is recovered upon
unloading. Since the stress response of hyperelastic materials is derived from a
strain-energy functionΨ that exists for each hyperelastic material, the 2nd Piola-
Kirchhoff stress can be obtained by

S = ∂Ψ(E)

∂E
. (2.27)

Since the constitutive equations are invariant with respect to rigid body motions,
the strain energy function can be described equivalently by the deformation gra-
dient F, the Green-Lagrange strain tensor E or the right Cauchy Green tensor
C = FT F, yielding

Ψ(F) =Ψ(C) =Ψ(E). (2.28)

According to equation 2.27, the stress is a function of the strain and therefore de-
pends on the deformations of the body. To solve the governing equations for the
continuum body B, which are generally non-linear, an iterative solution tech-
nique is applied (see section 2.8.2), which requires the linearized constitutive
equation.
The linearization of the constitutive equations yields the elasticity tensor

C= ∂S

∂E
= ∂2Ψ

∂E∂E
, (2.29)

which relates the work conjugate increments of stress and strain by [64]

dS =C : dE. (2.30)

The elasticity tensor C, often called tangent material modulus, is a tensor of 4th

order defined in the reference configuration and can be expressed by

C=C i j kl Gi ⊗G j ⊗Gk ⊗Gl (2.31)

using curvilinear coordinates. In general, it has 34 independent coefficients,
which can be reduced due to symmetry conditions. Assuming further isotropic
material, only Young’s modulus E and Poisson’s ratio ν are needed as indepen-
dent parameters to describe the material behavior. In mathematics-based liter-
ature these material constants are typically expressed by Lamé operators, which
are defined by

λ= Eν

(1+ν)(1−2ν)
and µ= E

2(1+ν)
. (2.32)

Based on this, the material laws used in this thesis can be formulated.
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2.4.1.1 St. Venant-Kirchhoff

For many engineering applications, the St. Venant-Kirchhoff material law can be
applied to model the structural behavior. This model is an extension of Hooke’s
law for large deformations, but with a limitation to small strains. It assumes a
linear relation between stress and strain, simplifying equation 2.30 to

S =C : E (2.33)

and therefore resulting in a constant material tensor. However, especially in the
case of compressive strains, the limitation to small strains is crucial, which is
described in detail in [137, 104].
The strain-energy function for the St. Venant-Kirchhoff material is defined by [64]

ΨSV = 1

2
λ (trE)2 +µtrE2 (2.34)

where tr(•) is the trace operator*.
The subsequent derivation of this strain-energy function according to equation 2.29
finally results in the material tensor CSV. Typically it is formulated in the lo-
cal Cartesian coordinate system, which allows to express the 4th order tensor
in Voigt notation (•̃) following [17]. This results in the constitutive matrix

C̃SV =


λ+2µ λ λ 0 0 0

λ+2µ λ 0 0 0
λ+2µ 0 0 0

µ 0 0
sym. µ 0

µ

 (2.35)

defining the St. Venant-Kirchhoff material in 3D.
Especially for the implementation of the constitutive equations, the Voigt nota-
tion is advantageous because it allows to express the stresses in a matrix-vector
product

S̃ = C̃SVẼ (2.36)

assuming that S̃ and Ẽ are defined in the local Cartesian coordinate system and
are reformulated according to (see e.g. [17])

Ẽ = [
Ẽ11 Ẽ22 Ẽ33 2Ẽ23 2Ẽ13 2Ẽ12

]T (2.37)

S̃ = [
S̃11 S̃22 S̃33 S̃23 S̃13 S̃12 ]T

. (2.38)

For two-dimensional problems, the condensed constitutive matrices can be de-
rived for the plane strain state, assuming

Ẽ33 = Ẽ23 = Ẽ13 = 0 (2.39)

or plane stress state forcing

S̃33 = S̃23 = S̃13 = 0 (2.40)

for G̃3 being the out-of-plane vector of the local Cartesian coordinate system.

* trA = Ai i = A11 + A22 + A33
trA2 = Ai j Ai j
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2.4.1.2 Neo-Hookean

For hyperelastic materials, the Neo-Hookean material model is used, which is
derived from the following strain energy function [93]

Ψ(C) = 1

2
λ (ln(det[F]))2 −µln(det[F])+ 1

2
µ(trC−3), (2.41)

formulated as a function of the right Cauchy Green tensor C, which is related to
the Green-Lagrange strain by

E = 1

2
(C− I) . (2.42)

Therefore, according to equation 2.27, the stress response is derived by

S = ∂Ψ(C)

∂C

∂C

∂E
= 2

∂Ψ(C)

∂C
=λln(det[F])C−1 +µ

(
I−C−1

)
(2.43)

with the identity

∂(det[F])

∂C
= ∂(det[F])

∂F

∂F

∂C
= 1

2
det[F]C−1. (2.44)

Finally, the elasticity tensor C in Cartesian coordinates is obtained by

C= 4
∂2Ψ(C)

∂C∂C
=λC−1 ⊗C−1 +2

(
µ−λln(det[F])

)
IC−1 (2.45)

while

IC−1 =−∂C−1

∂C
(2.46)

is a fourth-order tensor, given in component form by [64](
IC−1

)
i j kl =

1

2

(
C−1

i k C−1
l j +C−1

i l C−1
k j

)
(2.47)

since C is a symmetric tensor. A detailed description of this material law can be
found e.g., in [17, 20, 137, 67].

2.4.2 Mohr-Coulomb Plastic Law

This section summarizes the main hypothesis on which the elastic-plastic con-
stitutive framework is based. Hyperelastic-plastic materials are assumed, which
are based on the multiplicative decomposition of the total deformation gradient
F into an elastic (indicated with superscript e) and a plastic (indicated with su-
perscript p) component of the form

F = Fe Fp . (2.48)

This decomposition, first introduced by [80], introduces an intermediate config-
urationΩ as depicted in Figure 2.2, which describes a local stress-free configura-
tion defined by the plastic deformation gradient Fp . However, this configuration
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Figure 2.2: Multiplicative decomposition of the deformation gradient and def-
inition of intermediate configurationΩ.

is not obtained by a continuous map, but describes a virtual configuration that
can be recovered by a purely elastic loading from the fully deformed configura-
tion. Therefore, Fe is used for pull-backs to describe this intermediate configu-
ration, only used to represent the constitutive response.
Due to the multiplicative decomposition of the deformation gradient, finite strains
can be considered within the constitutive model, while the elastic strain is calcu-
lated through a hyperelastic potential. In order to determine the state of stress
at which the material response changes from elastic to elastic-plastic behavior, a
yield criterion needs to be defined.
In this work, the Mohr-Coulomb plastic law, which incorporates pressure depen-
dence into its yield criterion, is employed to characterize the material properties
of the granular material. It is based on the concept that yielding occurs when the
stress state on a specific plane exceeds the shear strength

τ= c −σtan(Φ), (2.49)

which is a function of the normal stress σ and the material constants - the cohe-
sion c and the internal friction angle Φ. It is thus based on a phenomenological
model that assumes that the macroscopic constitutive behavior arises from the
frictional sliding of individual grains at the microscopic level.
In Figure 2.3, the limit line defining the Mohr-Coulomb failure criterion is visual-
ized. Furthermore, a stress state at yield is depicted, assuming that the principal
stresses are rearranged as follows

σ1 ≥σ2 ≥σ3. (2.50)
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Figure 2.3: Mohr-Coulomb yield behavior.

Consequently, yielding occurs if Mohr’s circle, constructed with the principal
stresses σ1 and σ3 at a current stress state, is tangential to the limit line. The
corresponding mean stress σm can be calculated by

σm = 1

2
(σ1 +σ3) (2.51)

while the maximum shear stress maxτ, which defines the radius of Mohr’s circle,
is defined by

σd = maxτ= 1

2
|σ1 −σ3|. (2.52)

So by using the relationship

sin(Φ) = σd

c/tan(Φ)−σm
(2.53)

the yield criterion can be reformulated to

f (σ) = |σ1 −σ3|+ (σ1 +σ3)sin(Φ)−2ccos(Φ) ≤ 0 (2.54)

describing it in principal stress space. However, the yield surface is a hexagonal
pyramid about the σ1 = σ2 = σ3 axis in the principal stress space, which intro-
duces difficulties to determine the direction of plastic flow. More details can be
found in [67], where different types of stress return and the corresponding con-
stitutive matrices are introduced.
The constitutive matrices are derived following the idea of [111, 110] using the
principal stresses to model the elastic response. This allows to extend the small
strain return mapping in stress space to the finite deformation regime.
Therefore, to compute the material response of a granular material in the im-
plicit workflow of MPM, which is detailed in chapter 3, first an elastic trial step
(indicated by (•)e,tr) is performed calculating the elastic left Cauchy Green tensor
be,tr defined in equation 2.19. Performing a spectral decomposition, the prin-
cipal stretches are determined, which allows to calculate the principal Hencky
strain ẽe,tr

H according to equation 2.20.
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Based on the strain energy function [111, 110]

Ψ(ẽe,tr
H ) = 1

2
λ(ee,tr

1 +ee,tr
2 +ee,tr

3 )2 +µ
(
(ee,tr

1 )2 + (ee,tr
2 )2 + (ee,tr

3 )2
)

, (2.55)

which is formulated in terms of the principal Hencky strain tensor ẽe,tr
H with com-

ponents ee,tr
1 ,ee,tr

2 ,ee,tr
3 , the principal Kirchhoff stresses of the elastic trial step τ̃tr

within the Newton iteration can be determined by

τ̃tr = c
e ẽe,tr

H . (2.56)

Here ce =λI⊗I+2µI is the Hencky elasticity tensor, assuming an isotropic elastic
response. λ and µ are the Lamé operators defined by equation 2.32, while the
Kirchoff stresses τ are related to the Cauchy stresses σ by equation 2.23. Further
details and a comprehensive derivation can be found in [67, 111, 110, 64].
Once the principal trial stresses have been calculated, the Mohr-Coulomb yield
criterion defined by equation 2.54 is evaluated in a subsequent step. If the trial
stresses satisfy the criterion, no plastic loading occurs. However, if the stresses
exceed the criterion, they are adjusted to return to the yield surface. In the case of
non-associated plastic flow, the stress return is governed by the plastic potential,
which in the case of Mohr-Coulomb plasticity is defined by

g (σ) = (σ1 −σ3)+ (σ1 +σ3)sin(ψ) (2.57)

where ψ is the dilation angle. For isochoric plastic flow, the dilation angle is set
to zero to preserve the volume during plastic flow.
This allows to apply the return stress and to calculate the corrected values for the
stress and the elastic strain, which is detailed in [67] for the Mohr-Coulomb yield
criterion applied for implicit MPM.

2.5 Equilibrium

Considering the Lagrangian moving body B, which occupies the domainΩwith
regular boundary Γ, the conservation of linear momentum

L =
∫
Ω
ρu̇dΩ (2.58)

needs to be satisfied, while ρ is the spatial mass density and u̇ the velocity. Fur-
thermore, from the conservation of angular momentum the symmetry of the
Cauchy stress tensor σ=σT is derived (see [64]).
The material time derivative of the linear momentum leads to the resulting force,
which has to be in equilibrium with the body forces (with volume acceleration b)
and the external traction p along the boundary ΓN resulting in∫

Ω
ρüdΩ=

∫
ΓN

pdΓN +
∫
Ω
ρbdΩ. (2.59)
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The left side of this equation postulates the conservation of mass, defined by

ρ = ρ0

det[F]
, (2.60)

while the complete derivation can be found e.g., in [64]. Inserting equation 2.21
and converting the surface integral into a volume integral by the divergence the-
orem* ∫

ΓN

σndΓN =
∫
Ω

divσdΩ (2.61)

equation 2.59 transforms to Cauchy’s first equation of motion in global form.
Since this equation holds for arbitrary volumes, the volume integral can be elim-
inated, resulting in the local form of Cauchy’s first equation

ρü = divσ+ρb, (2.62)

which holds for each point x ∈Ω and for all times t . This second-order differen-
tial equation, which is the governing equation for the given problem assuming an
isothermal environment, is determined by the Dirichlet and Neumann boundary
conditions

u = u on dΓD (2.63)

p =σn = p on dΓN (2.64)

where (•) denotes the prescribed values. Furthermore, the initial conditions at
time t = 0

u(t = 0) = u0 and u̇(t = 0) = u̇0 (2.65)

need to be considered. Together with equations 2.62-2.64 they are describing the
initial boundary-value problem.
Since in general no closed-form solution can be found for the given problem,
a Galerkin method is applied [142, 53]. Cauchy’s first equation of motion (see
equation 2.62) is multiplied by a weighting function η and integrated over the
current volume Ω. By using the variation of the displacements as the weighting
function η= δu the weak form of the balance equation is obtained∫

Ω
(−divσ−ρb+ρü) ·δudΩ= 0, (2.66)

which requires that δu vanishes on the boundary ΓD . The first term of this equa-
tion, multiplied by the the variation of the displacements, can be rewritten ap-
plying the product rule†

−divσ ·δu =σ : gradδu−div(σδu) (2.67)

* [64](eq: 1.296):
∫

s And s = ∫
v divAdv

† [64](eq: 1.290): div(AT u) = divA ·u+A : gradu
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with σ = σT . Additionally, using the divergence theorem* the volume integral
can then be transformed into a surface integral by∫

Ω
div(σδu)dΩ=

∫
ΓN

σn ·δudΓN =
∫
ΓN

p ·δudΓN . (2.68)

Considering the consequent variation of the Euler-Almansi strain tensorδe = gradδu,
the equilibrium can be formulated through the Principle of Virtual Work [129] in
the spatial description

δW =−
∫
Ω
σ : δedΩ︸ ︷︷ ︸
δWint

+
∫
Ω
ρb ·δudΩ+

∫
ΓN

p ·δudΓN︸ ︷︷ ︸
δWext

−
∫
Ω
ρü ·δudΩ︸ ︷︷ ︸
δWkin

= 0 (2.69)

which is called the updated Lagrangian formulation.
Alternatively, this equation can be expressed in the reference configuration, which
is called the Lagrangian formulation. By inserting the push-forward relation for
the Euler-Almansi strain (see equation 2.15) and transforming the volume inte-
gral into the reference configuration (see equation 2.10), the virtual internal work
can be transferred into the current configuration by

−δWint =
∫
Ω
σ : δedΩ=

∫
Ω0

σ : (F−T δEF−1)det[F]dΩ0 =∫
Ω0

(det[F]F−1σF−T ) : δEdΩ0 =
∫
Ω0

S : δEdΩ0 (2.70)

using the formula for the pull-back operation of the 2nd Piola-Kirchhoff stress
tensor (see equation 2.25). The remaining volume integrals in equation 2.69 are
also transformed by equation 2.10 and due to the conservation of mass (see equa-
tion 2.60) the resulting virtual work in the reference configuration reads

δW =−
∫
Ω0

S : δEdΩ0︸ ︷︷ ︸
δWint

+
∫
Ω0

ρ0B ·δudΩ0 +
∫
ΓN0

T ·δudΓN0︸ ︷︷ ︸
δWext

−
∫
Ω0

ρ0ü ·δudΩ0︸ ︷︷ ︸
δWkin

= 0,

(2.71)

where B is the volume acceleration in the reference configuration and T the re-
spective traction vector acting on the undeformed Neumann boundary ΓN0 .
Generically, equations 2.71 and 2.69 can be written as the variation of the inter-
nal, external and kinetic work with respect to δu

δW = ∂W

∂u
δu = δWint +δWext −δWkin = 0 (2.72)

while the internal work is usually defined negative.
In general, a closed solution for the equilibrium equation 2.72 cannot be found
as the number of unknowns would be infinite. Therefore, the problem has to be
transformed into a discrete one introducing a discretization in space and time.

* [64](eq: 1.301):
∫

s u ·Ands = ∫
v div(AT u)d v
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2.6 Rigid Body Specifications

Although in theory all materials are deformable and generally deform, when forces
are applied it may be convenient to ignore the strains of the materials and con-
sider only the motion of a rigid body. This assumption brings along many sim-
plifications, since the kinematics are usually evaluated at the center of the body,
while the integration over the volume can be pre-calculated since it does not
change with time.
Performing a pre-integration of equation 2.59 over the volume results in

Fi = mi üi (2.73)

where Fi is obtained by summing all forces, which are acting on the rigid body i .
Additionally, the angular momentum needs to be considered. Thus, the material
time derivative of the angular momentum results in the equation for the torque
T, which is defined by

Ti = Ii ω̈i + ω̇i ×
(
Ii ω̇i

)
. (2.74)

In this equation, Ii is the inertia tensor and ω̇i and ω̈i the rotational velocity and
acceleration, respectively.
The calculation of the inertia tensor highly depends on the choice of the refer-
ence frame. Further details can be found e.g., in [70].
A great simplification can be obtained by considering spherical elements with a
completely symmetric shape. In this particular case, the torque calculation can
be simplified to

Ti = Ii ω̈i =
2

5
mi R2

i ω̈i (2.75)

where Ri is the radius of the spherical rigid body i . This results in a constant
inertia tensor, which simplifies the calculation of discrete spherical particles in
DEM as described in section 2.10.

2.7 Spatial Discretization

Spatial discretization is the fundamental concept in numerical analysis and the
core of FEM [66, 15, 17, 142] to solve the equilibrium equation 2.72. For this
purpose, the continuous spatial domain is subdivided into non-overlapping el-
ements, which are connected at the nodes. This concept reduces the set of un-
knowns to a finite number and allows to approximate the spatial fields by inter-
polating the discrete nodal quantities using locally defined basis functions. For
example, the displacement field is approximated by

u ≈ uh = Nû, (2.76)

where N is the shape function matrix and û is the vector containing the discrete
displacement values defined by

N = [
N1 N2 ... Nnn

]
û = [

û1 û2 ... ûnn

]T . (2.77)
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In this context, nn represents the total number of nodes considering the total do-
main. However, when elemental contributions are evaluated, nn can be reduced
to the number of nodes of the element (e.g., in equations 2.104 to 2.106). The
same principle is applied to all occurring fields, including the virtual displace-
ment field.
Also the geometry description described by the global curvilinear coordinates θi ,
θi (see section 2.2) in the continuum is approximated by discrete nodal positions
X̂, x̂ in the reference and current configuration and local basis functions defined
by parametric coordinates ξi = {ξ,η,ζ}. Following the isoparametric approach,
the same shape functions are utilized to approximate the geometry and the solu-
tion field.
Consequently, the discrete base vectors in the reference and current configura-
tion are defined as follows

Gh
i = ∂Xh

∂ξi
= ∂N

∂ξi
X̂ gh

i = ∂xh

∂ξi
= ∂N

∂ξi
x̂ = ∂N

∂ξi
(X̂+ û). (2.78)

Based on this, the discrete forms of the strains according to equations 2.12 and 2.11,
respectively can be derived and subsequently lead as well to the definition of the
discrete stresses following equation 2.30, which relates the stresses to the strain
via the constitutive equations.

Remark 1: Proceeding notation

In order to maintain clarity in the notation, no distinction is made be-
tween approximated and exact material tensors in the following. The
material tensors utilized in the proceeding derivation are now to be re-
garded in their discrete form and thus approximated.

Inserting the spatial discretization into equation 2.72 leads to the semi-discrete
equilibrium equation

δW h =
(
∂Wint

∂uh
+ ∂Wext

∂uh
− ∂Wkin

∂uh

)
δuh

= δûT (−Fint(û)+Fext −M ˆ̈u
)= δûT (−R) = 0, (2.79)

where ˆ̈u are the discrete nodal accelerations and R is the residual vector. The
components of the internal force vector Fint are obtained from the variation of
the internal virtual work with respect to each dof ur by

Fint,r =
∫
Ω0

S :
∂E

∂ur
dΩ0 =

∫
Ω
σ :

∂e

∂ur
dΩ, (2.80)

while the vector of external forces arises from the external virtual work contribu-
tion is defined by

Fext =
∫
Ω0

ρ0NT BdΩ0 +
∫
ΓN0

NT TdΓN0 =
∫
Ω
ρNT bdΩ+

∫
ΓN

NT pdΓN . (2.81)
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In this thesis, conservative loads are assumed, which are independent of the de-
formation û.
From the variation of the virtual kinetic work, expressed either in the reference
or current configuration, the inertia term is obtained by

M ˆ̈u =
∫
Ω0

ρ0NT NdΩ0 ˆ̈u =
∫
Ω
ρNT NdΩ ˆ̈u (2.82)

where M is the mass matrix. Especially for the explicit solution, the mass matrix
is often diagonalized, resulting in the lumped mass matrix. Within the scope of
this thesis, the lumped mass matrix is computed by summing all entries in each
row to the diagonal entry.
Since the virtual nodal displacements δû are arbitrary, the residual R has to van-
ish for each dof, resulting in an ordinary differential equation each.

Remark 2: Rayleigh damping

To consistently consider the damping forces, the equilibrium equa-
tion 2.72 needs to be extended to include the inertial and stiffness
proportional terms [66]. Within the scope of this thesis, the well-
established Rayleigh damping is considered, which approximates the
complex damping influence by an additional term added to the semi-
discrete equilibrium equation 2.79

R = M ˆ̈u+D ˆ̇u+Fint(û)−Fext = 0 (2.83)

employing the damping matrix D and the discrete nodal velocities ˆ̇u.
The damping matrix approximates the complex influence of the damp-
ing on the stiffness and intertia by a linear combination of the stiffness
and mass matrix

D =αd M+βd K. (2.84)

The variables αd , βd are the damping coefficients which depend on the
user-defined damping ratios and the eigenfrequencies [36]. A more de-
tailed introduction to damping can be found in [38, 2].

It should be noted here that the double contraction in the internal force vector
can be replaced by a single contraction if the strains and stresses are written in
Voigt notation following [17]. Therefore, Fint can be simplified to

Fint,r =
∫
Ω0

S̃ · ∂Ẽ

∂ur
dΩ0 =

∫
Ω
σ̃ · ∂ẽ

∂ur
dΩ (2.85)

while (•̃) indicates the quantities expressed in Voigt notation.
A crucial part, to determine the components of the internal force vector is the
calculation of the partial derivative of the strain with respect to the dof ur . While
the variation of the Green-Lagrange strain E, defined by equation 2.11, can be
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calculated straight forward, using the discretized base vectors defined by equa-
tion 2.78, the variation of the Euler-Almansi strain, defined by equation 2.12, also
affects its bases. Therefore, in this case, the variation δE is calculated and then a
push-forward operation (see equation 2.15) is performed to obtain

δe = F−T δEF−1 (2.86)

which is known as Lie Time derivative [64].

2.8 Time Discretization

For the numerical solution of the semi-discrete system of equations (see equa-
tions 2.79, 2.83), the continuous time domain needs to be discretized by dividing
it into discrete time steps t n with constant time step size ∆t = t n+1 − t n . There-
fore, the time derivatives of the displacement need to be approximated to obtain
the velocity ˆ̇u and acceleration ˆ̈u. For this purpose, time integration methods are
used, which approximate the variables of the next time step by integrating their
derivatives over the time step length.
Widely-used is the Newmark time integration [90], which approximates the ve-
locity and displacement by

ˆ̇ut+∆t = ˆ̇ut +∆t
(
(1−γ) ˆ̈ut +γ ˆ̈ut+∆t

)
(2.87)

ût+∆t = ût + ˆ̇ut∆t +∆t 2
(
(0.5−β) ˆ̈ut +β ˆ̈ut+∆t

)
(2.88)

where γ and β are the Newmark constants specified for the applied integration
scheme.

2.8.1 Explicit Time Integration

When high frequencies dominate the solution of the physical problem, small
time steps are required for the numerical solution. In such cases, the most ef-
ficient way to integrate equation 2.79 is provided by an explicit method. In this
case, equation 2.79 is solved for the acceleration, which results in

ˆ̈u = M−1 (
Fext −Fint(û)

)
(2.89)

while the lumped mass matrix is usually used to avoid the time-consuming solu-
tion of a system of equations. Among different schemes to progress in time, the
central difference scheme [17] is very prominent. Within this scheme, the dis-
placements are updated according to equation 2.88, assuming β= 0 and γ= 0.5,
while the velocity update is performed in two steps. Before updating the acceler-
ation ˆ̈ut+∆t according to equation 2.89, the velocity is updated by

ˆ̇ut+ ∆t
2 = ˆ̇ut + ∆t

2
ˆ̈ut . (2.90)
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Finally, with the updated acceleration, the velocity is updated by equation 2.87,
which is equal to

ˆ̇ut+∆t = ˆ̇ut+ ∆t
2 + ∆t

2
ˆ̈ut+∆t . (2.91)

This scheme is also known as Velocity-Verlet scheme [88] and provides second-
order accuracy for both displacements and velocity.
However, explicit methods are not unconditionally stable and the choice of a
suitable time step ∆t is essential. Further information are provided e.g., in [17,
137].

2.8.2 Implicit Time Integration

In contrast to explicit time integration an unconditional stable solution can be
obtained with the implicit time integration, allowing the use of larger time steps
∆t . However, it requires an iterative solution procedure and is therefore espe-
cially advantageous for problems with lower frequencies.
Since the nodal displacements are the unknown variables, equations 2.87 and 2.88
are reformulated to express the nodal velocity and acceleration from the kine-
matic values obtained in the previous time step by

ˆ̇ut+∆t = γ

β∆t

[
ût+∆t − ût

]
− γ−β

β
ˆ̇ut − γ−2β

2β
∆t ˆ̈ut (2.92)

and

ˆ̈ut+∆t = 1

β(∆t )2

[
ût+∆t − ût

]
− 1

β∆t
ˆ̇ut − 1−2β

2β
ˆ̈ut , (2.93)

whileβ= 0.25 andγ= 0.5 are assumed corresponding to the implicit Newmark [90]
time integration.
A more general approach is the Generalized-αmethod [37], which introduces ad-
ditional shift parameters to approximate the solution by midpoint interpolation.
This integration scheme is detailed e.g., in [37, 138].
Substituting the equation 2.93 into the semi-discrete equilibrium equation 2.79
yields the discrete residual vector

R(ût+∆t ) = 1

β(∆t )2
Mût+∆t +Fint(ût+∆t )−Fext

−M
[

1

β(∆t )2
ût + 1

β∆t
ˆ̇ut + 1−2β

2β
ˆ̈ut

]
= 0 (2.94)

which is a function of the unknown displacement ût+∆t . The damping term is
not explicitly considered here, but can be derived straightforwardly by inserting
equations 2.92 and 2.93 into equation 2.83.
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Linearization and Iterative Solution

The expression of the residual force vector in equation 2.94 turns out to be non-
linear for the general case, hence necessitating an iterative solution approach
like the Newton-Raphson algorithm to solve the system at each time step. Sub-
sequently employing the iterative scheme, which corresponds to a Taylor series
expansion neglecting higher order terms, leads to the linearized equation system

R(ût+∆t
k+1 ) = R(ût+∆t

k )+
∂R(ût+∆t

k )

∂ût+∆t
∆ûk = R(ût+∆t

k )+K(ût+∆t
k )∆ûk = 0 (2.95)

for each iteration step k, introducing the effective stiffness matrix

K = 1

β(∆t )2
M+

∂Fint(ût+∆t
k )

∂ût+∆t
(2.96)

as the linearization of the residual force vector. The derivative of the internal
force vector is also known as the tangential stiffness matrix.
Equation 2.95 is solved for the incremental displacement

∆ûk =
(
K(ût+∆t

k )
)−1 (

−R(ût+∆t
k )

)
, (2.97)

which then leads to an update of the displacement, calculated by

ût+∆t
k+1 = ût+∆t

k +∆ûk . (2.98)

The velocity ˆ̇ut+∆t and acceleration ˆ̈ut+∆t are updated according to equations 2.92
and 2.93 before the obtained solution is re-substituted into equation 2.95, in-
creasing the iteration counter k until the residual equation is fulfilled with a cer-
tain accuracy.

Tangent Stiffness Matrix

To obtain the tangent stiffness matrix, the components of the internal force vec-
tor defined by equation 2.80 are derived with respect to each dof ûs , resulting in
the entries

Kr s =
∫
Ω0

∂S

∂ûs
:
∂E

∂ûr
+S :

∂2E

∂ûr ∂ûs
dΩ0 =

∫
Ω0

C :
∂E

∂ûs
:
∂E

∂ûr
+S :

∂2E

∂ûr ∂ûs
dΩ0

(2.99)
where C is the elasticity tensor defined by equation 2.29. This expression is for-
mulated in the material description, which generally simplifies the element deriva-
tion. Alternatively, the same tangent stiffness matrix can be obtained from the
formulation in the spatial description yielding

Kr s =
∫
Ω

∂σ

∂ûs
:
∂e

∂ûr
+σ :

∂2e

∂ûr ∂ûs
dΩ=

∫
Ω
ccc :

∂e

∂ûs
:
∂e

∂ûr
+σ :

∂2e

∂ûr ∂ûs
dΩ (2.100)

where ccc is the constitutive tensor defined in the current configuration.
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The pull-back and push-forward operations for strains and stresses can be used
to transfer quantities between spatial and material description.

Remark 3: Pre-stresses

In addition to stresses resulting from deformation, pre-stresses S0 can
be considered. In this case, S0 is added to the 2nd Piola-Kirchhoff stress,
and thus the components of the internal force vector are calculated by

Fint,r =
∫
Ω0

(S+S0) :
∂E

∂ûr
dΩ0, (2.101)

while the entries of the stiffness matrix are defined by

Kr s =
∫
Ω0

C :
∂E

∂ûs
:
∂E

∂ûr
+ (S+S0) :

∂2E

∂ûr ∂ûs
dΩ0. (2.102)

2.9 Finite Element Method (FEM)

In classical FEM, the spatial discretization, as introduced in section 2.7, is de-
fined such that the continuous body B is subdivided into non-overlapping finite
elements defining the FE-mesh, as illustrated in Figure 1.4(left). Therefore, the
continuous body B is approximated by

B ≈Bh =
ne⋃

e=1
Ωe (2.103)

where ne is the total number of elements.
Therefore, assuming a local approximation of the geometry and the field quan-
tities (see section 2.7), the virtual work of each finite element can be evaluated
separately and the local contributions are assembled to obtain the global contri-
bution. Thus, the governing equation defined by equation 2.79 can be rewritten
considering the assembly of the elemental contributions. Indicating the elemen-
tal contributions with superscript e yields

Fint,r =
ne⋃

e=1

∫
Ωe

0

S :
∂E

∂ur
dΩe

0 =
ne⋃

e=1

∫
Ωe
σ :

∂e

∂ur
dΩe (2.104)

and

Fext =
ne⋃

e=1

(∫
Ωe

0

ρ0NT BdΩe
0 +

∫
Γe

N0

NT TdΓe
N0

)
=

ne⋃
e=1

(∫
Ωe
ρNT bdΩ+

∫
Γe

N

NT pdΓe
N

)
(2.105)

for the internal and external force vector, while the inertia term reads

M ˆ̈u =
ne⋃

e=1

∫
Ωe

0

ρ0NT NdΩe
0

ˆ̈u =
ne⋃

e=1

∫
Ωe
ρNT NdΩe ˆ̈u. (2.106)
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To evaluate the integrals in these equations, Gauss integration is typically used,
which is detailed e.g., in [66, 17, 137].
To solve the resulting equilibrium equation, an implicit time integration is em-
ployed, as described in section 2.8.2, and the non-linear equations are solved
iteratively according to equation 2.95.

Due to the Lagrangian description of motion, the FE-mesh deforms as the body
deforms. Therefore, for large strains, mesh distortion may occur, requiring com-
putationally expensive re-meshing schemes. To circumvent these issues associ-
ated with Lagrangian FEM, alternative discretization methods have been devel-
oped. In this work, MPM is employed for this purpose, as it combines Lagrangian
moving particles with an Eulerian background grid. Further details are provided
chapter 3.
However, for structural modeling, Lagrangian FEM is the primary choice and
should be preferred due to its accuracy and efficiency. Therefore, to combine
the advantages of these distinct discretization methods, the partitioned coupling
strategy of MPM and FEM is developed in section 6.
This coupling strategy requires the imposition of boundary conditions along the
shared interface, which is straightforward in classical FEM. Due to the Lagrangian
moving FE-mesh, the conditions can be imposed directly at the nodes along the
boundary.

Real structures are always volumes and could therefore be described by volu-
metric finite elements, called solid elements. However, to reduce the dofs and
the computational cost, a reduction of the dimensions is typically performed for
surface- and curve-like structures. Due to geometric assumptions made for the
reduced dimensions, the description of these elements can be reduced to their
mid-surface or centerline. In the following, the basic assumptions for geometri-
cally non-linear structural element formulations used in this work are presented.

2.9.1 Membrane Elements

The description of surface-like structures, where the thickness direction is signif-
icantly smaller than the other two dimensions, can be reduced to their mid-plane
in combination with a vector in the thickness direction. The latter base vector
depends on the parametric description of the mid-plane and the assumptions
applied to it are the basis for different element formulations.
While element formulations based on the Reissner-Mindlin theory assume a con-
stant thickness t and that the cross-section remains straight, the element formu-
lations based on the Kirchhoff-Love theory also postulate that the cross-section
remains perpendicular to the mid-surface. Thus, in the latter theory, the third
base vector coincides with the normalized normal vector, defined by

G̃3 = G1 ×G2

∥G1 ×G2∥
, (2.107)

which allows the shell to be described by its mid-surface only. Mechanically, the
assumption that the cross-section remains normal to the mid-surface means that
the transverse shear stress is neglected, and therefore this theory applies to thin
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shells. However, due to the kinematic constraint, this shell formulation requires
C1 continuity between the elements. Therefore, the first derivatives of the shape
functions, which approximate the continuous fields in the discretized problem,
need to be equal at the joint nodes, which can be realized by e.g. higher order
shape functions or an isogeometric approach [73].
Membrane elements are a further simplification of the Kirchhoff-Love shell ele-
ment formulations, assuming that the in-plane stresses of the structure are con-
stant. Therefore, the resistance to bending moments is neglected and the re-
quired continuity reduces to C0. Thus, these elements provide an efficient mod-
eling approach for thin structures mainly carrying the loads by tensile forces.

In this work, membrane elements are used to model the complex structural be-
havior of the nets stretched along flexible protective structures. This model-
ing approach follows the efficient and innovative approach of [101, 103, 105].
Therein, rockfall protection structures under extreme loading conditions were
intensively studied and the complex structural behavior of the nets stretched
along the structures was globally resolved using surrogate membrane elements.
Since the flexible protective structures designed for mass flow events, such as
mudflows, debris flows or avalanches show similarities to these highly flexible
rockfall barriers, the homogenized modeling assumptions are adapted for the
flexible barriers studied in this work. Due to the initially plane geometry of the
structure, a negligible pre-stress is applied to the elements to avoid a singular
stiffness matrix in this configuration.

2.9.2 Truss and Cable Elements

For structural components where one dimension of the structure is significantly
larger than the other two, one-dimensional models such as beam, truss, or cable
element formulations are used. Hence, these elements are described by a spatial
curve, while the assumptions applied to the remaining base vectors are the basis
for different element formulations.
Similar to the shell element formulation, the derivation of beam elements dif-
fers in that the Timoshenko beam formulation assumes a straight cross-section,
while the Bernoulli beam theory additionally postulates that the cross-section
remains perpendicular to the centerline.
Truss elements are a further simplification of the latter beam element formu-
lation, assuming a constant stress distribution across the cross-section. There-
fore, bending effects are neglected and the continuity between the elements is re-
duced to C0. Thus, these assumptions allow for an efficient and simplified model
approach, since only translational dofs at the nodes of the truss elements need
to be considered. Therefore, the equation 2.104 of the internal force reduces to
one dimension, yielding

Fint,r =
ne⋃

e=1

∫
Ωe

0

(S̃11 + S̃0)
∂Ẽ11

∂ur
dΩe

0 (2.108)

in the total Lagrangian description, while ne is the number of truss elements
in this case. In addition, a pre-stress S̃0 can be considered according to equa-
tion 2.101.
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However, this element formulation can only be used for structural components
where bending and shear effects are negligible. For the flexible protective struc-
ture considered in section 6.2.8, these model assumptions apply to the steel pro-
files between which the net is spanned (see Figure 6.41, highlighted in orange).
Due to the hinged support of these pillars, the bending effects can be neglected
in this particular case.
In addition to trusses, cable elements play an important role in the modeling of
flexible protective structures. Unlike truss elements, they can only carry tensile
forces. Therefore, an additional check for compressive stresses is added to the
element formulation

if S̃11 + S̃0 < 0.0 : Fe
int = 0, (2.109)

resulting in a zero tangent stiffness matrix in the case of compression.
For the protective structure evaluated in section 6.2.8, this modeling assumption
is applied for the cables, which are spanned uphill and are connecting the tip
of the steel profiles with the ground (see Figure 6.41, highlighted with dashed
gray lines). In the numerical model, each cable is represented by a single geo-
metric non-linear cable element. Also in section 6.2.4 to section 6.2.6 this ele-
ment formulation is applied to model the flexible structures. Therein however,
the structures are discretized by multiple cable elements in order to approximate
the deformed geometry of the flexible structures. Due to the initial plane geome-
try of the respective structures, a pre-stress S̃0 is additionally considered in order
to avoid a singular stiffness matrix.

2.10 Discrete Element Method (DEM)

DEM is a discrete particle method that considers the motion and interaction of
individual particles. These particles are approximated as rigid objects and there-
fore the simplifications introduced in section 2.6 apply to them.
Since its first mention and derivation in [41], DEM has become increasingly pop-
ular and is now used in both industrial applications and science. It is often used
to model granular materials by representing the individual grains of the material
as discrete particles. However, as the number of particles increases, the compu-
tational effort increases dramatically, and at some point, continuum-based de-
scriptions such as MPM are required to model larger scale mass flows.
For moderate numbers of particles, however, DEM is a highly efficient computa-
tional method. It is particularly useful for simulating the interaction of individual
objects that are assumed to be rigid. Therefore, provided the numerical model is
calibrated, contact forces can be accurately evaluated.
For this reason, this method has been applied in [103, 102, 105] to model rockfall
events. Due to the precise contact force calculation in combination with a parti-
tioned coupling scheme with FEM, the complex interaction of discrete rocks with
highly flexible protective structures was successfully modeled.
In this work, DEM is used to model the retaining wall systems composed of sev-
eral massive blocks stacked on top of each other. These blocks can be simplified
as rigid bodies. However, the interaction and contact forces between the blocks
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are critical, particularly since the failure patterns of these protective structures
are included in the numerical models.
The motion of these rigid bodies is determined by the governing equations 2.73
to 2.74. To facilitate the calculation of torques and in particular the contact al-
gorithms used to detect contacts between particles as well as to determine their
interactions with boundaries, spherical particles are considered. This allows a
very efficient computation of the model.
However, it is often the shape of the discrete objects that is decisive for their mo-
tion and the resulting contact forces in the case of mutual interaction. Therefore,
clustering of DEM particles, which was investigated in [75], is applied herein to
model arbitrarily shaped particles. The creation of such clusters is discussed ex-
tensively in [25, 26] and they provide a free-to-use online tool [24]. However,
in contrast to spherical particles where the torque is defined by equation 2.75,
the inertia tensor I is no longer constant for clusters of spheres and a more de-
tailed analysis is required according to [70]. Nonetheless, since spherical par-
ticles are glued together to form clusters, this approach still provides efficient
contact computation.
In addition to the discrete particles, boundaries must also be included in the
numerical model, which is particularly important for partitioned coupling with
other discretization methods. Analogous to [99], a wall condition is used to im-
pose the Dirichlet conditions. The geometry of this wall condition can be created
similarly to a FE-mesh, consisting of vertices, edges, and faces in 3D requiring the
contact detection between spherical particles and geometric entities. This wall
condition has been successfully utilized in [99, 101] for partitioned coupling with
FEM and is consequently used in this work to couple DEM with MPM in a parti-
tioned strategy, which is detailed in chapter 5.

The DEM in this work uses a penalty-based approach to compute contact forces
by considering the overlap of interacting entities. Consequently, the contact part-
ners must first be found before the contact forces are evaluated depending on
their overlaps.
For spheres or clusters of spheres, only the sphere-sphere contacts and, near the
wall condition, in addition the sphere-line, sphere-vertex, and sphere-surface
contacts need to be considered. These are simple operations in which only the
shortest distance and the respective sphere radius are compared. This has been
investigated in [99, 100], which additionally describes an efficient way to handle
various contact partners at the same time, applying the so-called Double Hierar-
chy Method. A sphere with center Ci and corresponding radius Ri is in contact
with an arbitrary geometric object as soon as the shortest distance di from the
surface of the object to the center of the sphere Ci is smaller than the radius,
that is di < Ri . In [100] a detailed description of how to calculate di for different
geometric entities such as vertices, lines, and surfaces can be found.
After detecting the contact, which is the first step in a DEM calculation proce-
dure, the contact forces are evaluated. For this purpose, a variety of different
contact laws can be applied, while a Hertz-Mindlin spring-dashpot (HM+D) [40]
model is used in this work. This model is based on a penalty approach and was
developed for rigid and perfectly spherical particles. In Figure 2.4 a) the rheolog-
ical model for interacting spheres is visualized, while in Figure 2.4 b) the model
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for a sphere in contact with a geometric entity is displayed.

a) b)

Ci CiC j

kn

kt

cn

ct

µµ

kn

kt

cn

ct

Figure 2.4: Rheological model a) for sphere-sphere contact. b) for sphere-
vertex/line/surface contact. Adapted from [99].

Hence, the contact force evaluation based on the HM+D model needs the defini-
tion of the following DEM parameters

• kn ,kt : normal and tangential spring stiffness,

• cn ,ct : normal and tangential damping coefficients,

• µ: (sliding) friction coefficient, restricted to Coulomb’s friction limit [40],

which need to be measured and calibrated for the considered physical problem.
Based on these parameters, the contact forces can be evaluated, which is detailed
in [40, 106, 123, 107, 100, 99].
All interacting forces are then assembled to derive the forces Fi and torques Ti
on each particle i . Following [100, 94, 105], they can be calculated by

Fi = Fext ,i +Fd ,i +
n∑

j=1
Fi j , (2.110)

Ti = Text ,i +Td ,i +
n∑

j=1

(
r

i j
c ×Fi j

)
(2.111)

while the symbols are defined in Table 2.1.
Finally, after the contact force evaluation, the DEM solution process proceeds
to the integration of motion to solve the governing equations 2.73-2.74. Differ-
ent time integration schemes can be applied, ranging from a first-order forward
Euler to arbitrarily high-order schemes with an increasing level of complexity.
For the simulations in this thesis, a second-order Velocity-Verlet [88] (central dif-
ference) scheme is used to integrate the translational degrees of freedom. In
contrast to the classical Verlet method [126], the Velocity-Verlet provides second-
order accuracy for both displacement and velocity. Furthermore, to provide a ro-
bust time integration of the rotations [70] proposes a time integration that works
with quaternions [60], which is used in the following examples.
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symbol explanation
n, j total number n of contact partners j
Fext ,i ,Text ,i external loads and external torques
Fi j interaction contact forces between sphere i and sphere j or

between sphere i and a geometric entity of the boundary j
resulting in the contact force Fi ,Contact

Fd ,i ,Td ,i external damping loads / boundaries

r
i j
c connection vector between sphere i and the contact point to

the neighbor j

Table 2.1: Explanation of the symbols in equations (2.110) and (2.111),
adapted from [99, 100]

After the time integration, the particle positions are updated and a new loop of
the DEM calculation cycle starts. For a more detailed discussion of DEM please
refer to [88, 100, 94, 99, 106, 40, 123, 107, 101].
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CHAPTER 3

Material Point Method (MPM)

MPM is an established and powerful numerical method particularly well suited
for simulating significant and rapid soil deformations. It originated from the
Particle-in-Cell (PIC) method [61, 62], developed for fluid mechanics, and its en-
hancement the Fluid Implicit Particle (FLIP) [22, 23], before Sulsky et al. [120,
121] extended it to solid mechanics problems incorporating history dependent
material laws.

It combines the advantages of both mesh-free and mesh-based methods, as the
physical domain is discretized by Lagrangian moving particles carrying the his-
tory dependent variables, while the governing equations are solved on the Eu-
lerian background grid. Thus, it can be interpreted as a modified updated La-
grangian finite element technique with moving integration points, called mate-
rial points, while the background grid is reset at the end of each time step.

Consequently, in contrast to standard FEM or any other Lagrangian mesh-based
method, the problem of mesh entanglement and the computational expense of
re-meshing during the simulation of large strain problems is circumvented in
MPM by systematically resetting the computational background grid.

MPM has been successfully applied to a wide range of challenges during the pre-
vious decades, such as hypervelocity impact [87, 141, 132], landslide simulation
[4, 91] or avalanches [56, 82, 83], multi-phase geomechanical problems [139, 10,
39], or in computer graphics [119, 59], just to mention a few examples.

In addition, much research has been done to reduce the numerical noise that
arises from the transition of material points from one background grid element to
another, e.g., the Generalized Interpolation Material Point (GIMP) method [13],
the Convected Particle Domain Interpolation (CPDI) [97, 98], the PQMPM [134],
or the usage of B-Spline basis functions [54]. Detailed reviews of MPM can be
found in [118, 45]. The books published by Zhang et al. [140], Fern et al. [51], and
Nguyen et al. [92] provide further examples and a detailed introduction to the
theory of MPM.
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3.1 Spatial Discretization in MPM

For spatial discretization, a computational background grid is introduced in MPM.
It covers the entire computational domain as depicted in Figure 3.1, including
empty spaces where the material is expected to move during the computation. It
is very similar to a conventional FE-mesh and the governing equations are solved
at the nodes of this computational background grid.

background grid element

grid nodes

body mesh

material point domain Ωp

material point

Figure 3.1: Discretization of a continuum body B into material points, using a
body mesh to initialize them and the background grid to discretize
the spatial fields.

However, in contrast to Lagrangian FEM where the body B is approximated by
finite elements (see equation 2.103), in MPM Lagrangian moving particles called
material points are introduced to represent the body. Each material point repre-
sents a finite volumeΩp of the body

B ≈Bh =
np⋃

p=1
Ωp , (3.1)

while the complete body is represented by np material points. Each material
point is assigned a mass mp , which is calculated from the represented finite
volume Ωp of the body and the initial material density ρ0. The mass remains
constant during the simulation time, so the conservation of mass is automati-
cally satisfied, whereas the particle volume Ωp is updated depending on mate-
rial compression or expansion. In this work, an additional mesh, the body mesh,
which subdivides the body B into elements, is used to initialize the material
points at the beginning of the simulation. Within each element of the body mesh,
a predefined number of material points can be initialized while being positioned
at the respective Gauss point positions. Thus, the initial positions Xp of the ma-
terial points as well as their respective volumes and the resulting mass mp can
be assigned. However, this body mesh is only used to initialize the problem and
is not considered in the subsequent calculation.
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Furthermore, the classical MPM approach of a Dirac delta density function [120]

ρp (x) = mpδ(x−xp ) (3.2)

is applied, which considers the mass to be concentrated at the corresponding
material point.

Remark 4: Consequences of Dirac delta density function

Due to the Dirac delta density function (see equation 3.2), which is
assumed for the material points representing the body Bh (see equa-
tion 3.1), the volume integral of any spatially varying quantity, in general
indicated byΦ(x), multiplied by the density ρ, is approximated by∫

Ω
ρ ·Φ(x)dΩ≈

np∑
p=1

mp ·Φ(xp). (3.3)

Hence, the volume integrals of the virtual work equation 2.69 are trans-
ferred to a summation of particles. The spatial quantities need to be
evaluated at the position of the material point xp, whereas these quanti-
ties are approximated by the background grid discretization.

3.2 Solution of the Governing Equations

Due to this discretization of Lagrangian moving material points discretizing the
body B in combination with an Eulerian background grid to approximate the
spatial fields, the semi-discrete equilibrium equation 2.79 can be adapted to the
MPM discretization. Consequently, the internal force vector yields

Fint,r =
np⋃

p=1
σ̃p · ∂ẽp

∂ur
Ωp , (3.4)

assuming that the strains and stresses are written in Voigt notation and therefore
the double contraction reduces to a single contraction (see equation 2.85). The
external force vector is reformulated as

Fext =
np⋃

p=1
mp NT bp +

∫
ΓN

NT pdΓN , (3.5)

keeping the traction surface integral unchanged at this point, as the boundary
discretization is discussed in section 3.4.1. The shape functions contained in N
are evaluated at the material point position xp , which is also the case for the
inertia term defined by

M ˆ̈u =
np⋃

p=1
mp NT N ˆ̈u. (3.6)
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In these equations, the operator
⋃

is used instead of the
∑

symbol to denote the
required assembly procedure of the elemental contributions. Furthermore, the
updated Lagrangian formulation is used, which is the basis of the subsequent
MPM formulation.
Inserting these equations into equation 2.79 finally defines the governing equi-
librium equations. As a consequence, one equation is obtained for each dof ur ,
since the virtual displacements δû at each node are arbitrary and therefore the
term in brackets must vanish for each individual δûr .
Hence, each material point represents an element to which the corresponding
nodes of the computational background grid need to be assigned, depending on
its current position xp . Thus, for each material point, a search is required that
determines the background grid element containing the material point and thus
defines its connectivity.
To solve the system of equations, implicit time integration is used as described
in section 2.8.2, and the nonlinear equations are solved iteratively according to
equation 2.95, which requires the calculation of the effective stiffness matrix K
according to equation 2.96. Consequently, the solution scheme of these equa-
tions is very similar to an updated Lagrangian FEM scheme, differing only in the
type of numerical integration. While particle integration is used here, FEM typi-
cally uses Gauss integration (see 2.9).
However, due to the dual description of Lagrangian moving material points on
the one hand and the computational background grid on the other hand, only the
material points carry the information to approximate the spatial fields, whereas
no permanent variables are stored at the nodes of the Eulerian background grid.
Consequently, in addition to solving the governing equations at each time step,
it is necessary to interpolate and extrapolate information between background
grid nodes and material points, which consequently results in the MPM update
scheme described below.

3.3 MPM Update Scheme

The MPM procedure per time step t can be categorized into the following three
phases, which are also visualized in Figure 3.2.

(I) Initialization phase: At the beginning of each time step the connectivity
of each material point is defined, i.e. the background grid element con-
taining the respective material point is searched for, so that the required
shape function values N can be evaluated at the current position of the
material point xt

p . The kinematic variables u̇t
p and üt

p are then mapped
via mass projection to the corresponding nodes of the background grid as
initial conditions. In order to keep the proceeding notation comprehensi-
ble, the values for each background grid node I are provided.

First, the nodal mass mt
I is calculated by

mt
I =

np∑
p=1

NI mp . (3.7)
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(I) Initialization phase:
Map material point
information to the grid
nodes

(II) Lagrangian phase:
Solve governing
equation

(III) Convective phase:
Update material points
and reset grid

grid nodes material points material point update

Figure 3.2: MPM update scheme: (I) Initialization phase, (II) Lagrangian
phase and (III) Convective phase. Adapted from [115].

Based on this, the nodal velocity ˆ̇ut
I can be calculated by

ˆ̇ut
I =

∑np

p=1 mp u̇t
p NI

mt
I

. (3.8)

whereas the nodal acceleration ˆ̈ut
I is obtained from

ˆ̈ut
I =

∑np

p=1 mp üt
p NI

mt
I

. (3.9)

(II) Lagrangian phase: After the extrapolation of the material point informa-
tion to the nodes of the computational background grid, the governing
equations can be solved as described in section 3.2. Further details are
also provided e.g.,in [67, 68, 20, 17, 137], since this step is very similar to
the classical finite element updated Lagrangian calculation procedure.

As a result, temporally nodal displacements ût+∆t are obtained, which
cause a deformation of the background grid and the nodal velocity ˆ̇ut+∆t

and acceleration ˆ̈ut+∆t are updated accordingly.

At this point, it is important to note that solely those nodes of the com-
putational background grid that are assigned a mass mI contribute to the
final system of equations.

(III) Convective phase: Finally, the solution obtained at the nodes of the com-
putational background grid is interpolated to the material points. There-
fore, the position and acceleration of the material points are updated by

xt+∆t
p = xt

p +Nût+∆t (3.10)

and
üt+∆t

p = N ˆ̈ut+∆t , (3.11)
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whereas the material point velocity is updated via the trapezoidal rule by

u̇t+∆t
p = u̇t

p + 1

2
∆t (üt

p + üt+∆t
p ). (3.12)

Finally, the background grid is reset, an important feature to simulate large
strain events without the issues of mesh entanglement and distortion.

Further details of the presented scheme as well as an extension to mixed formu-
lations can be found in [68, 69, 67].

3.4 Boundary Conditions

For the solution of the governing equations, the definition of the boundary con-
ditions according to equations 2.63 to 2.65 is essential. The stress boundary de-
fined by equation 2.64 is included in the external force vector and therefore this
kind of boundary condition is often referred to as natural boundary condition.
The Dirichlet constraint, however, needs to be prescribed over the discretized
boundary Γh

D and is therefore often called essential boundary condition.
Since in MPM the governing equations are solved on the computational back-
ground grid, boundary conditions can be applied directly in a FEM fashion. How-
ever, this is only possible if the boundaries coincide with the background grid
discretization, referred to as conforming boundaries.
However, the conforming imposition type is not generally applicable in MPM.
Since the material moves independently of the computational background grid,
the boundaries are typically not aligned with the grid nodes. Therefore, alter-
native procedures are required that enforce the boundary conditions in a weak
form, which is referred to as non-conforming boundary conditions.
In particular, with regard to the partitioned coupling approaches introduced in
chapter 4, the imposition of non-conforming boundary conditions is an essential
requirement. In this approach, the interaction of the involved solvers is shifted
to their shared interface, along which boundary conditions are imposed within
each solver. However, due to the flexible counterpart, the position of the inter-
face and also the contact zone is likely to change during the computation. There-
fore, the weak imposition of boundary conditions in MPM is required, since the
background grid is reset after each time step and only the material points move
according to the body deformation. Moreover, a methodology is required to track
the interface during the computation.
For this reason, a major part of this dissertation deals with the weak imposition
of boundary conditions in MPM, which is the basis for the partitioned coupling
strategies presented in chapter 5 and chapter 6. Some of the proceeding con-
tents were published by the author in [115, 117, 34]. The content is reviewed in
the context of this thesis, whereby some parts of the following sections are taken
directly from these publications* and are to be interpreted as quotations.

* Whose main author and copyright holder is the author of this dissertation
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3.4.1 Particle Representation of the Boundary

Similar to the discretization of the body by material points, the continuous bound-
ary Γ in MPM is subdivided into nbp non-overlapping subdomains, while each
subdomain is represented by a boundary particle bp with a corresponding cur-
rent area Γbp. This approach is applied to both Neumann and Dirichlet bound-
aries, yielding

Γ≈ Γh =
nbp⋃

bp=1
Γbp. (3.13)

These boundary particles can be interpreted as mass-less particles carrying the
necessary information for the boundary imposition and tracking its spatial po-
sition. This method is mature compared to other boundary tracking methods
because it does not require the computationally expensive calculation of the in-
tersections of the boundary entities with the elements of the computational grid.
Instead, the search algorithms inherent in any MPM scheme can be employed
also for the boundary particles, thereby enabling the efficient handling of mov-
ing boundaries.
For initialization, these boundary particles are positioned within the respective
primitives, e.g., polylines in 2D or meshes in 3D, that define the interface in the
geometric model. A user-defined number of boundary particles are placed either
evenly distributed or at Gauss point positions of the respective primitive and are
assigned the corresponding weights according to the representative area Γbp. In
a two-dimensional case, the individual weight has to be multiplied by the cor-
responding thickness of the model to obtain the resulting subdomain of each
boundary particle.
Due to this boundary particle discretization, the integrals along the boundary
segment Γh within a background grid element can be approximated by∫

Γe
(...)dΓe ≈

nbp∑
bp=1

(...)Γbp . (3.14)

In this case, the boundary segment inside an intersected background grid ele-
ment is approximated by summing the respective boundary particle areas lo-
cated within the respective background grid element. Consequently, a fine dis-
cretization of the boundary by mass-less particles leads to a good approximation
of the boundary segments.

3.4.2 Non-conforming Point Load Conditions

Following from equation 3.5 and considering the particle discretization of sec-
tion 3.4.1, the traction surface integral can be rewritten as∫

ΓN

NT pdΓN ≈
nbp⋃

bp=1
NT pΓbp (3.15)

assuming that the boundary ΓN is represented by nbp boundary particles.
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For point load conditions, equation 3.15 can be further simplified to

nbp⋃
bp=1

NT pΓbp =
nbp⋃

bp=1
NT FM (3.16)

where FM is the respective resulting point load at each boundary particle intro-
duced.
In order to incorporate them into the MPM calculation scheme as described in
section 3.3, first a search for each boundary particle is performed during the ini-
tialization phase. Based on its spatial position xt

bp at time step t , the background

grid element containing it can be determined, thus defining the connectivity and
the shape functions, which are evaluated at the boundary particle position.
Subsequently, the Lagrangian phase can be executed, solving the governing equa-
tions taking into account the boundary particles with their respective shape func-
tions N and the applied point loads FM according to equation 3.16. This equa-
tion can be interpreted such, that the point loads are mapped by the nodal shape
functions NI to the corresponding node I of the computational background grid.
Finally, in the convective phase, the position as well as the kinematic variables of
the boundary particles are updated, following the concept of material points (see
equation 3.10 to equation 3.12). Consequently, the boundary particles move ac-
cording to the deformation of the body represented by the material points. This
is an important feature for tracking the body contour and especially for track-
ing the spatial position of the shared interface within the MPM domain, which is
essential for partitioned coupling with other numerical methods.
However, special consideration is necessary for background grid elements that
contain boundary particles but no material points. In order to apply all loads
to the body, the point load values are mapped exclusively to those nodes I of
the background grid element that are assigned a mass mI and are therefore con-
nected to the body. This is achieved by modifying all nodal basis functions NI of
the respective background grid element according to

N̄I =
N∗

I∑nn
I N∗

I

where : N∗
I =

{
0.0, if mI ≤ ϵ
NI , otherwise

(3.17)

where nn is the total number of nodes of the respective background grid element,
while ϵ is usually considered numeric zero. Due to the weighting procedure, the
partition of unity is guaranteed and thus the complete point load value is applied
to the material.

3.4.3 Non-conforming Dirichlet Boundary Conditions

In contrast to natural boundary conditions, the weak imposition of essential bound-
ary conditions is a crucial task. It is a typical problem in immersed methods and
common approaches in other FEM and immersed FEM methods are the penalty
approach ([7] for FEM, e.g., [76] for FCM, e.g., [27, 122] for IBRA, the Nitsche
method (e.g., [79] for FCM, e.g., [5] for IGA), Mortar-based methods (e.g., [133]
for FEM, e.g., [65] for FCM, [30] for IGA), or the Lagrange multiplier approach ([9]
for FEM, e.g., [5, 122] for IGA/IBRA).
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In MPM, however, one has to deal with the challenges of Lagrangian moving ma-
terial points through an Eulerian background grid. Consequently, the set of ac-
tive nodes, i.e. background grid nodes assigned a mass mI , may vary at each
time step. Moreover, the boundary or interface may be initialized at a position
in space that is not necessarily along the contour of the body. Consequently, the
boundary imposition method must also address the issue that material points
approach the boundary from apart, contact the boundary, and possibly release
again.
In the following sections, the penalty approach (section 3.4.3.1), the Lagrange
multiplier method (section 3.4.3.2) and the perturbed Lagrangian method (sec-
tion 3.4.3.3) are derived to weakly impose essential boundary conditions starting
from a continuum formulation and specifying it for implicit MPM using bound-
ary particles. Furthermore, their ability to serve as interface condition in a parti-
tioned coupling strategy is thoroughly discussed.

3.4.3.1 Penalty Method

To enforce Dirichlet conditions with the penalty method, the governing equa-
tion 2.72 is extended by an additional term

δWP =β
∫
ΓD

(
u−u

) ·δudΓD (3.18)

where β is the penalty factor and u is the imposed displacement field. This im-
poses the Dirichlet constraint given by equation 2.63, which is reformulated as
constraint equation

g (u) = u−u = 0. (3.19)

Introducing the space discretization for the displacement fields according to equa-
tion 2.76, the term due to the penalty augmentation RP is obtained

δW h
P = δûT

(
β

∫
ΓD

NT NdΓD û−β
∫
ΓD

NdΓD u
)
= δûT (−RP

)
, (3.20)

which is added to the virtual work δW h defined by equation 2.79.
For the implicit time integration, the additional residual term RP needs to be lin-
earized with respect to the nodal displacements, yielding

KP =β
∫
ΓD

NT NdΓD. (3.21)

which defines the contribution of the penalty augmentation to the stiffness ma-
trix K defined by equation (2.96). Hence, the resulting equations can be written
as (

K+KP
)
∆ûk+1 =−(

R+RP
)

, (3.22)

while R is defined by equation 2.94 and k is the iterator of the Newton-Raphson
iteration.
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Since the boundary ΓD is discretized by nbp boundary particles, the surface inte-
grals in equations 3.20 and 3.21 are evaluated according to equation 3.14, yielding

−RP =β
nbp⋃

bp=1
NT NΓbpût+∆t

k −β
nbp⋃

bp=1
NΓbpuM (3.23)

KP =β
nbp⋃

bp=1
NT NΓbp. (3.24)

The shape functions N are evaluated at the current position of the boundary par-
ticles. The respective imposed displacements ubp at the boundary particles are
assembled in the vector uM . This distinction is made because in the partitioned
coupling strategy introduced in section 6, uM represents the imposed displace-
ments at the MPM interface.

Slip Conditions

The boundary particles carry the geometric information such as the current po-
sition and the assigned area, as well as the kinematic variables needed for the
imposed displacements. Furthermore, at the beginning of each simulation, the
unit normal vectors n̂bp defined in the outward direction of the imposed bound-
ary are initialized on each boundary particle, which is an important value for
inclined slip or contact conditions. To impose these boundary conditions, the
normal vectors n̂I at the nodes I of the computational background grid are re-
quired. Following [34], they are approximated within each time step by

n̂I =
∑nbp

bp=1 n̂bpΓbpNI∥∥∥∑nbp

bp=1 n̂bpΓbpNI

∥∥∥ . (3.25)

Hence, the nodal normal vectors need to be approximated within each time step,
depending on the current position of the boundary particles. Furthermore, since
the calculation is performed in the current configuration, the unit normal vectors
at the boundary particles need to be updated during the calculation procedure
according to the boundary particle movement.
For the imposition of slip conditions, movement in the normal direction to the
support is restricted, whereas the body is free to move in tangential directions.
Therefore, all globally oriented matrices and vectors are rotated with an orthog-
onal rotation matrix, which is defined for each background grid node I as

QI =
n̂x n̂y n̂z

t̂x t̂y t̂z
q̂x q̂y q̂z

 , (3.26)

where n̂I is the resulting normal unit vector of the background grid node I and
t̂I , and q̂I are the normalized tangent vectors. For a global imposition, it is nec-
essary that the rotation is applied locally to those nodes affected by the rotation.
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Therefore, the rotation matrix results in a block matrix

Q̂ =
[

I 0
0 Q

]
, (3.27)

where I represents the identity matrix for those nodes, which are not affected by
the rotation and Q includes all nodal rotation matrices. Applying the modified
rotation matrix leads to the partially rotated system(

Q̂
[
K+KP

]
Q̂T

)(
Q̂

[
∆ûk+1

])=−(
Q̂

[
R+RP

])
. (3.28)

To impose the roller condition, the penalty contribution in tangential directions
to the support are set to zero. This can be achieved by setting the respective en-
tries of the rotated penalty stiffness matrix and the corresponding penalty resid-
ual vector to zero, which enables the system to move in tangential directions
without restriction.

Calculation of Reaction Forces

An essential requirement for partitioned coupling with other numerical methods
is the calculation of the reaction forces due to the boundary imposition. Since
equation 3.23 defines the additional force vector, which is added to the equilib-
rium equation due to the boundary imposition, it defines the reaction force RP
at the nodes of the computational background grid due to the penalty augmen-
tation. Hence, at each node I the reaction force can be calculated by

RI ,P =β
nbp⋃

bp=1
NI NΓbpût+∆t

k −β
nbp⋃

bp=1
NIΓbpubp. (3.29)

These nodal reaction forces are interpolated to the boundary particles to obtain
the resulting reaction force at each boundary particle by

Rbp =
nn∑
I=1

γI,bpNI RI ,P , (3.30)

where nn is the total number of nodes of the background grid element containing
the boundary particle and γI,bp is the interpolation weighting factor to maintain
the sum of forces. It is defined by the ratio of the boundary particle area Γbp and
the nodal area AI :

γI,bp =
Γbp

AI
, where AI =

nbp∑
bp=1

NIΓbp . (3.31)

This applied weighting procedure, a classical MPM approach, provides the re-
sulting reaction forces Rbp at each boundary particle, which are assembled to
the vector FM. This vector is required in chapter 6 for the partitioned coupling
strategy with FEM.
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Material and Boundary Interaction

The Dirichlet boundary conditions in the MPM model can be arbitrarily defined
within the computational background grid and thus independent of the body
contour. Therefore, unlike classical FEM where the conditions are defined along
the body contour, in MPM it is not necessarily the case that both boundary par-
ticles and material points lie within the same background grid element. Instead,
it is possible for the material to move without being influenced by the bound-
ary condition if there is at least one empty background grid element between
them, preventing mutual interaction via the nodes of the computational back-
ground grid. Thus, for the imposition of weak boundary conditions, different
configurations of material points interacting with the boundary particles have to
be considered, which are visualized in Figure 3.3. In the configuration visual-

boundary particles
material points

a)

Γh
D Γh

D Γh
D

b) c)

Figure 3.3: Configurations of the boundary and the material. Adapted
from [117].

ized in Figure 3.3a), where material points and boundary particles are inside the
same background grid element, the imposition of the non-conforming boundary
is straightforward as described above. However, configurations b) and c) need
to be considered carefully because the boundary particles are located within a
background grid element that contains no material points and therefore the stiff-
ness of the respective element is zero. For configuration c) and setups where the
material is even further apart, the respective dofs of elements containing mate-
rial points and those containing the boundary particles are decoupled. There-
fore, the material movement is not affected by the respective boundary imposi-
tion. Consequently, the corresponding element containing the boundary parti-
cles does not need to be considered in the final system of equations.

However, in configurations such as shown in Figure 3.3b), where material points
are located in neighboring elements of those being intersected by the boundary,
the boundary condition already affects the material movement. Therefore, in this
case, the penalty enhancement is only applied to those nodes that are assigned a
mass and therefore connected to the body.
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Contact Conditions

For contact conditions, the constraint equation 3.19 is reformulated as an in-
equality condition

gN (u) = (u−u) ·n ≥ 0 (3.32)

in the continuum formulation, which considers the normal direction defined by
the outward unit normal vector n.
Consequently, in the discrete formulation, the penalty contributions in equa-
tion 3.22 of a boundary particle are considered if

g h
N (ût+∆t

k ) =
(
Nût+∆t

k −ubp

)
n̂bp < 0 (3.33)

otherwise they are set to zero. Herein, n̂bp is the outward unit vector at the
boundary particle bp.
For contact conditions, it is also useful to deactivate the boundary particle impo-
sition if no material point is located within the same background grid element.
This allows the material to move closer to the boundary. However, this option
should be selected with care, as it may lead to material penetration, depending
on the discretization of the problem.

3.4.3.2 Lagrange Multiplier Method

As an alternative to the penalty augmentation, the Lagrange multiplier method is
developed within this work to weakly enforce the essential boundary conditions
in MPM. This approach avoids the cumbersome calibration of the penalty factor,
but introduces additional dofs into the system, leading to a modified principle of
virtual work equation

δW (u,λ,δu,δλ) = δW (u,δu)+δWLM (u,λ,δu)+δWLM (u,λ,δλ) = 0 (3.34)

where λ is the Lagrange multiplier, while the displacement u is the primal vari-
able. In this equation, δW (u,δu) represents the virtual work given by equation 2.72,
while the additional terms arising from the Lagrange multiplier imposition are
defined by

δWLM (u,λ,δu) =
∫
ΓD

λT δudΓD (3.35)

δWLM (u,λ,δλ) =
∫
ΓD

δλT (
u−u

)
dΓD . (3.36)

To solve the modified virtual work equation numerically, the continuous fields u
and λ need to be approximated by locally defined basis functions and discrete
values at the nodes. This discretization, however, has to be chosen carefully to
satisfy the inf-sup condition of Ladyzhenskaya, Babuška [8, 9] and Brezzi [28,
29]. At this point, the notation is kept general by using the shape function matrix
N to approximate the displacement field (see equation 2.76) and by introducing
the shape function matrix Nλ to approximate the Lagrange multiplier field by

λ≈λh = Nλλ̂ (3.37)
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while λ̂ are the values at the Lagrange multiplier dofs. Hence, the discretized
version of equations 3.35 to 3.36 are obtained by

δW h
LM (uh ,λh ,δuh ) = δûT

∫
ΓD

NT NλdΓD λ̂ , (3.38)

δW h
LM (uh ,λh ,δλh ) = δλ̂T

(∫
ΓD

NT
λNdΓD û−

∫
ΓD

NλdΓD u
)

. (3.39)

For the solution of the spatially discretized system, the implicit time integration
is utilized and therefore the Newton-Raphson iteration is required to solve the
nonlinear equations. This consequently leads to solving the saddle point prob-
lem [

K (+KLM ) ΛT

Λ 0

][
∆ûk+1
∆λ̂k+1

]
=−

[
R+ΛT λ̂

t+∆t
k

Λût+∆t
k −Λu

]
, (3.40)

with

Λ=
∫
ΓD

NT
λNdΓD and Λ=

∫
ΓD

NλdΓD . (3.41)

K and R are defined by equations 2.96 and 2.94 respectively, while KLM is the lin-
earization of equation 3.38 with respect to the displacements. As the constraints
are linear in uh , this term vanishes and is therefore written in parentheses.
The integrals in equation 3.41 are evaluated according to equation 3.14, since the
boundary ΓD is discretized by nbp boundary particles, yielding

Λ=
nbp⋃

bp=1
NT
λNΓbp and Λ=

nbp⋃
bp=1

NλΓbp. (3.42)

Due to this boundary discretization, the imposed displacements are evaluated at
each boundary particle, replacing u by ubp in equation 3.40. In preparation for
the partitioned coupling introduced in chapter 6, these values are assembled to
the vector uM .

Suitable Lagrange Multiplier Field

The saddle point problem given by equation 3.40, which results in a minimum
of the primal variables and a maximum for the Lagrange multipliers, can only be
solved if the inf-sup condition of Ladyzhenskaya, Babuška [8, 9] and Brezzi [28,
29] is satisfied. Hence, also in the discretization of the involved fields the sad-
dle point characteristics must be considered. While in MPM the classical simple
element-wise basis functions are chosen for the displacement field, the Lagrange
multiplier discretization has to be selected according to this field approximation.
As described in detail by the author in [117], a constant element-wise approxi-
mation of the Lagrange multipliers is selected, which introduces an additional
dof λ in spatial direction for the Lagrange multiplier within each background
grid element intersected by the boundary. This allows a local definition of the
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boundaries at the element level, which is an essential feature for general and ro-
bust imposition within MPM. Especially, for the numerical investigation of flow
events with large strains as well as a changing interface topology for partitioned
coupling approaches, this locality is an essential requirement, since the set of
active background grid elements may change in each time step.
However, it is also demonstrated in [117] that the approach of simple element-
wise basis functions for the primal variables in combination with the constant
approximation of the dual variables does not soundly satisfy the inf-sub condi-
tion. Depending on the background grid element type and the topology of the
elements intersected by the boundary, this approach may result in a Lagrange
multiplier discretization that is locally over-constrained. This consequently leads
to spurious oscillations of the resulting Lagrange multipliers.
This effect is also referred to as boundary locking (see e.g., Hughes [66]) with an
adverse influence on the convergence behavior of the primal variable. Therefore,
the Lagrange multiplier discretization has to be appointed consciously depend-
ing on the background grid to ensure that conditions are not imposed twice.
The locking effect can be mechanically explained by the possible deformations
of an intersected background grid element. Due to the chosen basis functions for
the primal variables, the displacement along the element edges is approximated
linearly between the corresponding nodes. However, for the edges intersected
by a Dirichlet boundary, this linear interpolation leads to a dependence on the
adjacent node deformations to satisfy the constraint within these edges.
Consequently, if a triangular element has common edges with two neighboring
constrained elements, the nodal deformations of that element are already deter-
mined. Therefore, the constraint imposition within this element is superfluous
and needs to be eliminated to avoid spurious oscillations in the Lagrange mul-
tiplier solution. In Figure 3.4, such particular elements, whose nodal deforma-

ΓD

deactivated
boundary
imposition

ΓD

prevent
rotational
movement

boundary
imposition

Figure 3.4: The boundary condition should be imposed within the white ele-
ments, whereas the Lagrange multiplier dofs should be deactivated
in the green highlighted elements. Adapted from [117].

tions and thus the resulting strains are already determined by the neighboring
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constrained elements, are highlighted in green. The elimination of these super-
fluous constraint conditions can be easily achieved by temporarily deactivating
the corresponding dofs of the Lagrange multipliers within these elements.
Due to the constant distribution of the Lagrange multiplier within the elements
resulting in a single force that constrains the corresponding movement, two ad-
jacent elements intersected by the Dirichlet condition need to be set active once
within the boundary geometry definition to prevent the rotational movement of
the constrained elements. In Figure 3.4, these elements are graphically high-
lighted with an orange outline and are defined at the starting point of the line
that defines the boundary geometry.
Although there are often several possibilities to select the elements for the bound-
ary imposition, the solution of the primal variable is not affected by this decision
as long as the boundary imposition determines all nodal deformations of the in-
tersected elements. However, the resulting values of the Lagrange multipliers
may change slightly to satisfy the equilibrium.
For quadrilateral background grid elements, this reasoning holds as well. How-
ever, superfluous constraints can only occur if three neighboring elements shar-
ing each an edge with the considered element are also constrained, which rarely
happens when imposing boundary conditions.
For 3D space, this theory can be extended accordingly, distinguishing between
neighboring elements sharing a surface or an edge. Therefore, three constrained
neighboring edge elements are sufficient to describe the nodal deformations of
a tetrahedral element, as long as the edges pass through every node of the geom-
etry. All other constraints within the remaining neighboring elements, as well as
the constraint within the considered element itself, are superfluous in this case.
For hexahedral elements, where bi-linear functions describe the interpolation of
the fields at the element surfaces, while only at the sharing edges a linear inter-
polation is present, superfluous constraints only occur if one surface has more
than two constrained edges.
From a computational point of view, the proposed elimination procedure of elim-
inating superfluous Lagrange multiplier dofs to obtain a suitable Lagrange mul-
tiplier distribution is also attractive. Since the computational background grid
does not change its topology, the neighboring elements sharing a common edge
or surface need to be found only once for each element being intersected by the
boundary. Consequently, within each time step, superfluous constraints are effi-
ciently detected and the corresponding Lagrange multiplier dofs are temporally
deactivated.

Slip Boundary Condition

Similar to the penalty augmentation, the boundary particles to impose the La-
grange multiplier condition carry the information about the unit normal vectors
n̂bp defined in the outward direction of the imposed boundary. Therefore, to
consider slip conditions using Lagrange multipliers, the unit normal vector n̂I at
the node I of the computational background grid is approximated according to
equation 3.25. With this information the rotation matrix Q (see equation 3.26) as
well as the block matrix Q̂ (see equation 3.27) to locally rotate the the matrices
and vectors can be calculated. Hence, the partially rotated system of equations
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is defined by(
Q̂

[
K ΛT

Λ 0

]
Q̂T

)(
Q̂

[
∆ûk+1
∆λ̂k+1

])
=−

(
Q̂

[
R+ΛT λ̂

t+∆t
k

Λût+∆t
k −ΛuM

])
. (3.43)

To impose the roller condition, the Lagrange multipliers in the directions tangen-
tial to the support are set to zero. This is achieved by setting the corresponding
entries of the rotated stiffness matrix to zero, except for the entry on the main
diagonal, which is set to one. Since the entries in the residual vector are also set
to zero, the resulting Lagrange multipliers in tangential directions, which can be
interpreted as reaction forces, are set to zero. The system is then free to move in
tangential directions.

Calculation of Reaction Forces

Another advantage of the Lagrange multiplier method is that the resulting reac-
tion forces that enforce the Dirichlet condition can be calculated directly. From
equation 3.40, one can derive the additional force acting on the nodes of the com-
putational background grid due to the boundary imposition

RLM =ΛT λ̂
t+∆t
k . (3.44)

Therefore, the resulting reaction forces RI ,LM at node I of the computational
background grid element in spatial directions are defined by

RI ,LM =
nbp⋃

bp=1
NIΓbpλ̂

t+∆t
k , (3.45)

assuming a constant Lagrange multiplier distribution within the element. The
reaction forces at the boundary particles are obtained by interpolating the dis-
crete nodal reaction forces with the corresponding shape functions

Rbp =
nn∑
I=1

γI,bpNI RI ,LM , (3.46)

whereγI,bp is the interpolation weighting factor defined by equation 3.31 to main-
tain the sum of forces analogous to the penalty approach.

Material and Boundary Interaction

Analogous to the penalty augmentation, different configurations of the material
points interacting with the boundary particles need to be considered, as depicted
in Figure 3.3. Again, only the configuration depicted in Figure 3.3b) is critical and
needs to be consciously considered. Therefore, for those elements that contain
only boundary particles but are still connected to the body, an additional stiffness
is assigned to the diagonal of the respective elemental stiffness matrix. As a con-
sequence, the material points of neighboring elements are already influenced by
the boundary condition, which decelerates the movement of the body to prevent
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the material from penetrating the boundary, but still allows the movement to-
wards the boundary itself. From the author’s experience, the Young’s modulus of
the considered material multiplied by the volume of the respective element can
be set as artificial stiffness.

Contact Conditions

In the Lagrange multiplier approach, the contact conditions are defined by the
Karush-Kuhn-Tucker (KKT) condition, which in the continuum is defined by

gN (u) ≥ 0, λN ≤ 0, gN (u)λN = 0 (3.47)

assuming the outwards pointing unit normal vector n. gN (u) is defined by equa-
tion 3.32, whereasλN is the normal direction of the Lagrange multiplierλ, which
represents the reaction force.
The equality constraint 3.19 is part of the system of equations (see equation 3.36),
which implies after solving the system, that the first and third KKT condition are
equal to zero as soon as the material and the boundary are in contact. As a con-
sequence of the contact, reaction forces λN result.
Consequently, the contact condition can be incorporated into the solution of the
discrete problem by evaluating whether

λ̂N ≤ 0 (3.48)

is satisfied. Herein, λ̂N is the discrete Lagrange multiplier within a constrained
background grid element. If this condition is satisfied, the condition is applied.
Otherwise, the dofs of the corresponding Lagrange multiplier are temporarily de-
activated, resulting in zero reaction forces and thus satisfying the KKT condition.

3.4.3.3 Perturbed Lagrangian Method

The advantage of the Lagrange multiplier method is that the imposed conditions
are exactly fulfilled by introducing additional dofs into the system of equations,
which enforce the Dirichlet conditions. However, the solution of the resulting
saddle point problem requires an inf-sub stable discretization of the involved
fields. For this purpose, in section 3.4.3.2 a constant Lagrange multiplier ap-
proximation within constrained elements in combination with a methodology
for eliminating superfluous constraints is introduced, which can be combined
with the simple element-wise interpolation functions classically used in MPM to
approximate the displacement field.
However, the elimination procedure comes at the cost of additional computa-
tional effort. To avoid this problem, the Lagrange multiplier formulation can be
stabilized by adding another term to the modified principle of virtual work equa-
tion 3.34. As proposed by Simo et al. [112] for the solution of contact problems, a
penalty stabilization term defined by

δWPL =− 1

β

∫
ΓD

λT δλdΓD (3.49)
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is added to the modified principle of virtual work equation 3.34, resulting in a
perturbed Lagrangian formulation. This additional term, depending on β, has
the form of a penalty term and serves the purpose of regularizing the saddle point
problem. Obviously, only in the limit case, if β → ∞, the regularized problem
fulfills the imposed conditions exactly, otherwise analogous to the penalty ap-
proach, an approximation is obtained.
By discretizing the displacement (see equation 2.76) and the Lagrange multiplier
field (see equation 3.37) and rewriting the equations using implicit time integra-
tion and the Newton-Raphson iteration, yieldsK (+KLM ) ΛT

Λ − 1

β
ΛP

[
∆ûk+1
∆λ̂k+1

]
=−

 R+ΛT λ̂
t+∆t
k

Λût+∆t
k −Λu− 1

β
ΛPλ̂

t+∆t
k

 . (3.50)

In addition to equation 3.40, the penalty stabilization term is considered, while
ΛP is defined by

ΛP =
∫
ΓD

NT
λNλdΓD . (3.51)

Analogous to the previous approaches, the integrals in equation (3.50) are evalu-
ated according to equation (3.14), since the boundary is discretized by nbp bound-
ary particles. Furthermore, the constant element-wise approximation ofλ is uti-
lized for this approach as well, reducing the stabilization term in the matrix to a
diagonal matrix.
Applying static condensation to the modified system of equations 3.50 for the
displacements∆ûk+1 being the remaining unknowns, this problem results in the
penalty approach as presented in section 3.4.3.1.
However, compared to the classical penalty approach, the system conditioning of
the perturbed Lagrangian form is less sensitive to the value of the penalty factor
β, allowing a larger value to be used for the boundary imposition. This effect is
demonstrated in section 3.5.
Except for the additional stabilization term added to the system of equations,
the boundary conditions can be imposed analogously to the Lagrange multiplier
approach described in section 3.4.3.2. The extension for slip conditions, the cal-
culation of reaction forces and the contact conditions are therefore also valid for
the perturbed Lagrangian imposition.

3.4.3.4 Small Cut Instability

In immersed methods, the small cut instabilities are well-known problems and
have been addressed by several authors just mentioning [79]. This issue is also
crucial in MPM for the weak imposition of boundary conditions. If a boundary
cuts an element very closely, the shape function value of the corresponding node
may be very small, resulting in ill-conditioned stiffness matrices. Therefore, the
most trivial approach to overcome this problem is to modify the shape function
values NI evaluated at the location of the corresponding boundary particle so
that the minimum value is larger than a user-defined threshold ε. This leads to
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the following equation

N̄I =
N∗

I∑nn
I N∗

I

where N∗
I =

{
ε, if NI ≤ ε
NI otherwise

(3.52)

where N̄I is the modified shape function value and nn the total number of nodes
of the considered background grid element. Yet, the partition of unity is ensured
by the weighting procedure. Within this work the stabilization tolerance is set to
ε= 0.01.

3.5 Verification of Boundary Imposition Types as Interface
Condition

The validation of the penalty augmentation in implicit MPM can be found in [34],
while the Lagrange multiplier imposition is detailed and validated in [117]. The
perturbed Lagrangian method, which theoretically results in the penalty method,
approaches the Lagrange multiplier method for large penalty factors and there-
fore shows similarities to both boundary imposition methods. This will be exem-
plified and discussed in the following. Furthermore, this section focuses on the
comparison of the different boundary imposition methods and discusses their
application in partitioned coupling strategies.

3.5.1 Tension Beam

The first example, visualized in Figure 3.5 considers a linear elastic cantilever

L = 8m
x

z

point A

detail

detail:

c) rotated quad.b) struct. tri. d) unstruct. tri.a) struct. quad.

Figure 3.5: System of linear elastic cantilever beam and a detailed view of the
non-conforming boundary condition and the particle discretiza-
tion within four different background grid types (a) - d)). Adapted
from [117].

beam under tension loading. The beam has a length of L = 8m, a cross-section of
A = 1×1m2 and a density of ρ = 1000kg/m3. The numerical models are created in
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a) Structured quadrilateral background grid
(struct. quad.)

b) Structured triangular background grid
(struct. tri.)

c) Rotated quadrilateral background grid
(rotated quad.)

d) Unstructured triangular background grid
(unstruct. tri.)

Table 3.1: Background grid types for the numerical models.

2D assuming a St. Venant Kirchhoff material with Young’s modulus of E = 90MPa
and a Poisson’s ratio of ν = 0.0 for the constitutive equation. To apply a pure
tensile load, a horizontal gravitational force of 9.81m/s2 is considered acting in
the global x-direction. As a reference solution, the analytic beam solution of the
horizontal displacement at point A at the tip of the cantilever is considered.
The clamped support on the left side of the beam is modeled as a non-conforming
boundary, imposing the Dirichlet condition weakly either by penalty augmenta-
tion (see section 3.4.3.1), the perturbed Lagrangian method (see section 3.4.3.3),
or Lagrange multiplier imposition (see section 3.4.3.2). While for the latter ap-
proach the numerical solution is obtained directly, the other models require care-
ful calibration of the penalty factor. If this factor is chosen too small, the material
will penetrate through the boundary, while large factors may introduce numer-
ical instabilities into the numerical model. Therefore, the solution obtained is
hardly dependent on the chosen penalty factor, which is the main disadvantage
of these boundary imposition methods.
The penalty factor β is varied in the range β = 1010 to β = 1030 to demonstrate
this effect and to quantify the impact of different penalty factors on the resulting
displacement solution. Furthermore, the influence of the chosen penalty factor
on the reaction forces is investigated, which is particularly important when using
the weak boundary imposition method for partitioned coupling schemes.
The study is performed for quadrilateral and triangular background grid elements,
distinguishing for each a uniform and non-uniform intersection with the back-
ground grid elements. Consequently this results in four different numerical mod-
els, which are summarized in Table 3.1 and depicted in Figure 3.5 a) - d). The
background grid element size is set to 0.04m each, while further details on the
discretization can be found in [117].
In the Diagrams 3.6 a) to d), the relative errors of the horizontal displacement
at point A compared to the analytical solution are plotted against the varying
penalty factor using the penalty or the perturbed Lagrangian approach for bound-
ary imposition. Additionally, the solution obtained by the Lagrange multiplier
imposition is shown in the plots.
As expected, the relative errors of the horizontal displacement at point A de-
crease with increasing penalty factors until they approach the solution obtained
with the Lagrange multiplier method. This behavior can be observed for all types
of background grids and for both the penalty augmentation and the perturbed
Lagrangian method.
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d) unstructured triangular background grid

Figure 3.6: Comparison of penalty, perturbed Lagrangian and Lagrange mul-
tiplier method. Adapted from [117].
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However, a further increase of the penalty factor shows a different pattern for the
relative error depending on the background grid element type and the selected
boundary imposition method. While the perturbed Lagrangian solution agrees
with the Lagrange multiplier solution for all types of background grids, the de-
formations computed with penalty augmentation converge to a smaller nodal
deformation once the penalty factor exceeds a certain value. Thus, the resulting
beam deformation converges to the solution that could have been obtained by
spatially fixing all nodes of the background grid elements containing boundary
particles. Therefore, the system behavior changes from a weaker to a stiffer sys-
tem compared to the analytical solution by increasing the penalty factor. Never-
theless, certain values closer to the analytical solution can be observed. However,
this is a consequence of plotting the absolute values in the Diagrams 3.6.
Moreover, for the structured background grids (see Table 3.1a) and b)), where
the boundary uniformly intersects the background grid elements, a wide range
of penalty factors can be applied, whereas a non-uniform intersection of the
boundaries with the elements significantly reduces the range of well-fitting penalty
factors to obtain similar results compared to the Lagrange multiplier method.
Thus, the difficulty of choosing an appropriate penalty factor can be demon-
strated even for this academic example.
The results obtained with the perturbed Lagrangian method, on the other hand,
converge to the solution obtained with the Lagrange multiplier method by in-
creasing the penalty factor. This is because the stability term added to regularize
the saddle point problem tends to zero with increasing β.
Nonetheless, even with high penalty factors, the structural deformation can still
be approximated quite well with the penalty method, taking into account that the
computed system behavior is slightly stiffer than expected. This in turn depends
directly on the size of the intersected background grid elements.
However, the penalty method artificially increases the stiffness of the intersected
elements to satisfy the Dirichlet constraints. This has a detrimental effect on the
conditioning of the matrix and thus on the calculation of reaction forces. As the
numerical solution obtained with penalty augmentation begins to transition to
a stiffer system behavior, the conditioning of the matrix becomes worse, with a
negative impact on the calculation of reaction forces. This effect is demonstrated
in Figure 3.7. Herein the resulting reaction forces are plotted for a) a structured
quadrilateral and b) a structured triangular background grid considering two dif-
ferent values of the penalty factor. The upper figures show the intermediate par-
ticle reaction force R

p
P , derived from equation 3.23, which is calculated by

−R
p
P =β

nn∑
I

NI NΓbpût+∆t
k −β

nn∑
I

NIΓbpubp (3.53)

at each boundary particle. The lower figures show the final reaction forces at the
boundary particles after the weighting procedure, which are calculated accord-
ing to equation 3.30.
It is observed that for both background grid types, the obtained forces are in per-
fect agreement with the expected theoretical solution by choosing β = 1e20 for
the penalty factor, which in accordance with Diagrams 3.6a) and b), is below
the critical values leading to a stiffer system behavior. However, increasing the
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β = 1e20

a) structured quadrilateral background grid b) structured triangular background grid

β = 1e30 β = 1e20 β = 1e30

Figure 3.7: Contact forces of penalty method for a) struc. quad. and b) struc.
tri. background grid. The reaction forces before the weighting pro-
cedure are displayed in the upper figures while the resulting reac-
tion forces after the weighting are displayed in the lower figures.

penalty factor beyond the range of well-fitting penalty factors leads to numerical
instabilities and oscillations of the forces, resulting in non-physical values for the
forces. This is illustrated in Figure 3.7 for both background grid types considering
a penalty factor of β= 1e30 as an example.
This example emphasizes the need to choose the penalty factor carefully, espe-
cially when the penalty method is used to calculate the reaction forces at the
boundary in addition to the structural deformations. Selecting an appropriate
penalty factor is even more problematic when non-uniform intersections of the
boundary with the background grid elements must be taken into account. As
shown in the Diagrams 3.6c) and d), the range of admissible penalty factors de-
creases even further for the rotated quadrilateral and unstructured triangular
background grids. Thus, calibration of the system-dependent penalty factor is
generally a challenging task, often requiring trial-and-error estimation.
Attractive alternatives to the weak imposition of the Dirichlet condition are the
Lagrange multiplier method and the perturbed Lagrangian method. As the penalty
factor increases, the latter technique converges to the Lagrange multiplier ap-
proach. Hence, assuming a penalty factor that is sufficiently large, the structural
deformations and the resulting reaction forces converge to the Lagrange multi-
plier approach, allowing both options to be used interchangeably.
However, the increase of the penalty factor in the perturbed Lagrangian method
transforms the considered problem into a saddle-point problem, which requires
an inf-sub stable discretization of the involved fields. The applied approach of
a constant element-wise approximation of the Lagrange multiplier field in com-
bination with simple element-wise shape functions for the displacement field
leads locally to over-constrained systems, which consequently results in bound-
ary locking. However, for the beam loaded in tension only, this locking does not
occur. Therefore, bending is included in the subsequent example to discuss this
effect and to evaluate the results for the different types of boundary imposition
methods.
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3.5.2 Bending Beam

In order to investigate the effect of boundary locking for the different types of
boundary imposition methods, the tension beam from the previous example,
which is illustrated in Figure 3.5, is loaded in the global z-direction with dead load
replacing the tension load and thus causing bending in the beam. The study is
performed for the structured quadrilateral and structured triangular background
grid depicted in Figure 3.5a) and b) with a mesh size of 0.04m and a uniform cut
of the boundary with the background grid elements.
It is known from the Lagrange multiplier method that the imposition of the bound-
ary conditions within all intersected elements can lead to boundary locking, re-
sulting in oscillations of the reaction forces. To avoid this effect, a mechanical
based elimination procedure is developed, described in section 3.4.3.2, which
temporarily deactivates superfluous constraints and thus eliminates the bound-
ary locking effect. For the types of background grids which are investigated here,
the elimination procedure has to be performed for the triangular background
grid, while the considered quadrilateral background grid has no superfluous con-
straints.
The perturbed Lagrangian method eliminates the need for the computationally
expensive process of eliminating superfluous constraints due to the stabilization
term included to solve the saddle point problem. Therefore, the boundary condi-
tions are imposed on each intersected background grid element the same way as
in the penalty method. However, since the perturbed Lagrangian boundary im-
position approach converges to the Lagrangian multiplier method as the penalty
factor increases, the effect of boundary locking needs to be evaluated.
In Diagrams 3.8 a) and b) the relative error of the vertical displacement of point A
at the tip of the cantilever is plotted against the varying penalty factor consider-
ing either the penalty, perturbed Lagrangian, or the Lagrange multiplier method
for imposing the non-conforming boundary condition. Similar to the previous
example, the perturbed Lagrangian and penalty approaches converge to the so-
lution obtained with the Lagrange multiplier method as the penalty factor in-
creases.
Since the structured quadrilateral background grid does not exhibit boundary
locking, the perturbed Lagrangian solution converges perfectly to the results ob-
tained with the Lagrange multiplier method. The penalty augmentation, how-
ever, leads to a stiffer system behavior if the penalty factor exceeds a certain
value. This observation is consistent with the results obtained for the tension
beam.
A similar pattern is observed for the structured triangular background grid dis-
played in Diagram 3.8b), but demonstrating that the range of well-fitting penalty
factors for the penalty augmentation is rather small. Furthermore, the results
obtained with the perturbed Lagrangian method are slightly stiffer than the La-
grange multiplier solution due to the boundary locking effect.
To support the previous results, the study is repeated with a smaller background
grid element size, which increases the boundary locking effects. Thus, the back-
ground grid element size is reduced by half to 0.02m and the results obtained
with the different types of boundary imposition are plotted in Diagrams 3.9a)
and b).
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Figure 3.8: Comparison of Penalty, perturbed Lagrangian and Lagrange mul-
tiplier method for bending beam with mesh 0.04m.

While the results for the quadrilateral background grid show the same pattern
with a smaller relative error compared to the coarser mesh, the effect of the bound-
ary locking in the perturbed Lagrangian method can be distinctly observed for
the triangular background grid.
The effect of boundary locking also influences the calculation of the reaction
forces, which will be investigated in the following. Particularly in the context
of partitioned coupling approaches, the reaction forces at the boundary are of
significant importance in addition to the structural deformations. Therefore, the
effect of the penalty factor on the resulting forces is discussed in the following,
considering the background grid element size of 0.02m and the different types of
boundary imposition methods.
To identify the source of error, the resulting reaction force plots include the inter-
mediate particle reaction forces, shown in the upper figures, and the resulting re-
action forces at the boundary particles after the weighting procedure, which are
shown in the lower figures. For penalty augmentation, the intermediate particle
reaction forces are calculated according to equation 3.53, while the final reaction
forces are obtained by equation 3.30. In case of perturbed Lagrangian and La-
grange multiplier methods, the intermediate boundary particle reaction forces
are the resulting values of the Lagrange multipliers λ̂. This results in one value
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Figure 3.9: Comparison of penalty, perturbed Lagrangian and Lagrange mul-
tiplier method for bending beam with mesh 0.02.

per intersected background grid element. However, for visualization purposes
only, it is displayed at each boundary particle within the element. The final reac-
tion forces at the boundary particles are calculated by equation 3.46.
In Figure 3.10, the resulting reaction forces exemplified forβ= 1e15 andβ= 1e30
are displayed in a) for the penalty augmentation and in b) for the perturbed La-
grangian method. Analogous to the tension beam, numerical instabilities occur
once the penalty factor exceeds the range of well-fitting parameters using the
penalty augmentation, whereas the reaction forces obtained with the perturbed
Lagrangian imposition method are very similar to those of the Lagrange multi-
plier imposition method (see Figure3.11a)). They are in very good agreement
with the physical expectations, whereas inabilities occur in the penalty augmen-
tation in the case of the large penalty factors.
In the next step, the boundary imposition types are investigated for the struc-
tured triangular background grid, which is prone to locking phenomena. Hence,
the forces obtained by penalty augmentation for β = {1e11,1e15,1e30} are dis-
played in Figure 3.12, while the results for the perturbed Lagrangian method are
shown in Figure 3.13.
By choosing a penalty factor of β= 1e11, which is in the range of suitable penalty
factors according to Diagram 3.9b), a smooth distribution of the resulting forces
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β = 1e15

a) Penalty

β = 1e30 β = 1e15 β = 1e30

b) Perturbed Lagrangian

Figure 3.10: Contact forces for structured quadrilateral background grid us-
ing a) penalty augmentation or b) perturbed Lagrange multiplier
method.

a) structured quadrilateral background grid b) structured triangular background grid

Figure 3.11: Contact forces Lagrange multiplier method for a) struc. quad. and
b) struc. tri. background grid.

for both types of boundary imposition is obtained. However, as the penalty factor
increases, the intermediate reaction forces shown in the top figures, respectively,
start to oscillate due to the local violation of the inf-sub condition. Nonetheless,
due to the weighting process to obtain the final boundary particle reaction forces
depicted in the lower figures, this effect is largely smoothed out, resulting in a
reasonable force distribution for β= 1e22 for both types of boundary imposition
methods.
However, in the case of penalty augmentation (see Figure 3.12), some instabilities
can be observed in the lower part of the structure already for β = 1e22. These
instabilities become more severe with increasing penalty factors, as evidenced by
the non-physical resulting forces obtained with a penalty factor of β= 1e30. This
issue is not present in the perturbed Lagrangian method, where an oscillation of
the intermediate reaction forces is observed, but is smoothed by the weighting
procedure even in the case of β= 1e30.
In contrast to the perturbed Lagrangian method, superfluous constraints are elim-
inated if the boundary condition is imposed by Lagrange multiplier method. Con-
sequently, the occurrence of spurious oscillations in the Lagrange multiplier so-
lution representing the intermediate reaction forces is successfully prevented, as
illustrated in Figure 3.11b) (left). However, as a result of the elimination pro-
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β = 1e11 β = 1e22 β = 1e30

Figure 3.12: Contact forces for structured triangular background grid using
penalty method with varying penalty factor.

β = 1e11 β = 1e22 β = 1e30

Figure 3.13: Contact forces for structured triangular background grid using
perturbed Lagrange multiplier method with varying penalty fac-
tor.

cedure, the intermediate reaction forces are present only in certain background
grid elements, while no reaction forces are present in the others. This effect is
smoothed by to the applied weighting procedure, and the corresponding reac-
tion forces at the boundary particles show the expected physical distribution (see
Figure 3.11b) (right)).
In conclusion, it is crucial to carefully consider the choice of penalty factor, es-
pecially when using penalty augmentation to weakly impose essential boundary
conditions and additionally evaluate reaction forces at the boundary. The per-
turbed Lagrangian method is more effective in this respect, but at the cost of ad-
ditional dofs and thus a larger system of equations. However, as the penalty fac-
tors increase, this method converges to the Lagrange multiplier method, which
can lead to boundary locking and force oscillations depending on the model dis-
cretization. Although the applied weighting method used to calculate the reac-
tion forces at the boundary particles largely mitigates the force oscillations, the
structural deformations are still underestimated (see Diagram 3.9).
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Young’s modulus Poisson’s ratio density

E = 21.6MPa ν= 0.0 ρ = 1379
kg
m3

Table 3.2: Material properties of the elastic body

Consequently, the most accurate technique is the Lagrange multiplier imposition
method, incorporating the elimination procedure of superfluous constraints. It
allows a user-friendly and robust imposition of weak boundary conditions with-
out the need to calibrate the penalty factor by trial and error. However, in 3D
space, the elimination of superfluous constraints can be computationally rather
expensive. Thus, the perturbed Lagrangian method serves as an attractive alter-
native, and the penalty method also has its advantages since it does not require
additional dofs for boundary imposition.

3.5.3 Impact Force Evaluation of Elastic Cylinder

While the previous examples evaluated the boundary imposition methods for the
specific case where the boundary is defined along the body contour, the following
examples examine the consequences of a boundary definition in space that gets
in contact with the material during computation.
Therefore, this example considers an elastic cylinder with a radius of r = 0.5m
and a thickness of t = 0.3m, which moves downwards in global z-direction due
to an imposed velocity of u̇ = 1m/s until it hits a rigid wall, causing the elastic
body to rebound. The setup of the considered system is depicted in Figure 3.14.

detail:
r = 0.5m

u̇ = 1 m
s

material points

background grid

boundary particles

Figure 3.14: System and discretization of the elastic body.

In the Table 3.2 the material properties of the elastic body are summarized and
for the 2D models a plane stress behavior is assumed.
The objective of this example is to evaluate the impact forces that occur when the
elastic body rebounds at the rigid wall. The wall is modeled as a non-conforming
boundary condition that enforces the Dirichlet constraint by penalty augmen-
tation, perturbed Lagrangian method, or the Lagrange multiplier method with
varying penalty factor β and changing model discretization. In the following,
several studies are conducted to extract individual effects and discuss their im-
plications for the solution.
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Influence of Penalty Factor Variation

In the first study, the influence of the penalty factor value is evaluated to calculate
the rebound of the elastic body. For the numerical model, a structured quadri-
lateral background grid with an element size of 0.05m is selected, while for the
material point initialization, an unstructured triangular body mesh with a size of
0.02m is chosen, initializing 6 particles each. The non-conforming boundary is
positioned in the center of the background grid elements as depicted in the de-
tail of Figure 3.14, and boundary particles are initialized with a distance of 0.01m.
These boundary particles impose the Dirichlet condition either by penalty aug-
mentation or by the perturbed Lagrangian method, assuming a value of β= 1e15
for the penalty factor. Alternatively, the condition is imposed by the Lagrange
multiplier method.
The simulation is run for 0.1s with a time step of ∆t = 2e − 4s to simulate the
impact and the subsequent rebound of the elastic body.
In Figure 3.15, the resulting impact forces during the simulation time are plot-
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Figure 3.15: Impact forces, obtained with β = 1e15, for the penalty and per-
turbed Lagrangian augmentation, in comparison to the imposi-
tion of the constraint by Lagrange multiplier method.

ted for the different boundary imposition methods. The resulting force at each
time step is calculated by summing the reaction forces at the boundary particles.
The obtained results demonstrate that the non-conforming boundary imposi-
tion methods can be used interchangeably to predict the impact force distribu-
tion over time.
Furthermore, the conservation of the energy is measured and the results are plot-
ted in Figure 3.16. For the different methods of boundary condition imposition,
the kinetic energy decreases due to the impact while the strain energy increases
until it reaches its maximum when the kinetic energy reaches zero. In addition,
some energy is stored in the boundary, which is also released after the impact,
so that after the rebound, the kinetic energy of the elastic body is fully recovered,
while the strain energy disappears.
For this model, an appropriate penalty factor was selected that allows to use the
boundary imposition methods interchangeably. However, this factor must be
calibrated and is often not known for the numerical model. Frequently, a safe fac-
tor is chosen to avoid numerical instabilities in the model caused by large penalty
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Figure 3.16: Energy plot, obtained with β = 1e15, for the penalty and per-
turbed Lagrangian augmentation, in comparison to the imposi-
tion of the constraint by Lagrange multiplier method. The total
energy is the sum of kinetic and strain energy while the energy
stored in the boundary during the impact is not explicitly stated.

factors. However, this also has a negative impact on the numerical results, as the
following example illustrates.
Therefore, the calculation of the numerical model is repeated, but assuming a re-
duced penalty factor ofβ= 1e10 for the penalty augmentation and the perturbed
Lagrangian method. The resulting force distribution is shown in Figure 3.17 and
is compared to the force distribution obtained by Lagrange multiplier imposi-
tion, which is independent of any user-defined factor.
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Figure 3.17: Impact forces, obtained with β = 1e10, for the penalty and per-
turbed Lagrangian augmentation, in comparison to the imposi-
tion of the constraint by Lagrange multiplier method.

It is observed that the influence of the penalty factor on the resulting force peak
and its distribution is significant. When the penalty factor is reduced, the peak
forces obtained by penalty augmentation are significantly underestimated. The
perturbed Lagrangian method performs slightly better, but still underestimates
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the peak force compared to the solution obtained by Lagrange multiplier impo-
sition.
Furthermore, when the elastic body is released from the boundary, oscillations
of the impact forces are observed when using penalty augmentation with the
reduced penalty factor. This is due to the fact that the penalty factor is rela-
tively low, resulting in energy absorption as shown in Figure 3.18. This effect,
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Figure 3.18: Energy plot, obtained with reduced penalty factor of β= 1e10, for
the penalty and perturbed Lagrangian augmentation, in compar-
ison to the imposition of the constraint by Lagrange multiplier
method. The total energy is the sum of kinetic and strain energy
while the energy stored in the boundary during the impact is not
explicitly stated.

which causes the elastic body to have difficulty rebounding from the rigid wall,
is more pronounced in the penalty augmentation method than in the perturbed
Lagrangian method.
During the impact, the kinetic energy is converted to strain energy and energy
stored in the boundary. However, due to the reduced penalty factor, the stored
strain energy is much lower compared to the reference solution and this loss of
energy is not recovered when the elastic body rebounds.
This again emphasizes the importance of selecting an appropriate penalty fac-
tor. Too low a factor leads to energy dissipation and underestimation of the im-
pact force, while higher factors lead to numerical instability (see section 3.5.1 and
section 3.5.2). Even though the consequences are not as pronounced in the per-
turbed Lagrangian method, the factor β still has to be carefully adapted to the
numerical model.
The influence of an insufficient penalty factor is also present when comparing
the analytical impulse with the results obtained from the numerical simulation.
Since the elastic body rebounds at the rigid wall with an imposed velocity of
u̇ = 1m/s, the analytical impulse is given by

p = r 2 ·π · t ·ρ ·2u̇ = (0.5m)2 ·π ·0.3m ·1379
kg

m3
·2

m

s
= 649.84Ns (3.54)
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Lagrange Perturbed Lagrange Penalty
β= 1e10 β= 1e15 β= 1e10 β= 1e15

er = 0.26% er = 9.4% er = 0.26% er = 15.68% er = 0.02%

Table 3.3: Relative error er of the impulse p due to the impact of the elastic
body.

while the numerical solution is obtained by integrating the impact forces over
time. In Table 3.3 the relative error of the impulse is summarized for the dif-
ferent boundary imposition methods and the varying penalty factor. While a
very good agreement is obtained for the Lagrange multiplier imposition and the
penalty and perturbed Lagrangian method with β= 1e15, the error increases sig-
nificantly for the reduced factor β= 1e10.

Influence of the Time Step Size

In this example, the influence of the selected time step size on the resulting im-
pact forces is examined. For this purpose, the numerical model is recalculated
with a time step size of ∆t = 1e −3s and the resulting force distribution over time
is plotted in Diagram 3.19. The results confirm that the time step size has minor
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Figure 3.19: Impact forces on non-conforming boundary condition imposed
either by penalty with β = 1e15, Perturbed Lagrangian with β =
1e15 or Lagrange multiplier method with time step size∆t = 1e−3
in comparison to the impact force obtained with a time step size
of ∆t = 2e −4 which is the reference solution.

impact on the numerical results, provided that the time discretization is small
enough to accurately describe the force distribution during the impact. Both the
peak force and the force distribution are well predicted even for the larger time
step.

Influence of the Background Grid Element Size

Since the contact in MPM is solved via the background grid, the next study in-
vestigates the dependence of the impact force on the size of the background grid
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elements. For this purpose, several numerical models with structured quadri-
lateral background grids are created and the impact forces are calculated. For
all numerical models, the body mesh used to initialize the material points is
chosen to be half the size of the background grid element, using triangular el-
ements and placing 6 particles each. For each model, the rigid wall, modeled as
a non-conforming boundary condition using either penalty augmentation with
β = 1e15 or Lagrange multiplier imposition, is positioned in the center of the
background grid elements as depicted in Figure 3.14.
Diagram 3.20 shows the peak impact force in relation to the background grid el-
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Figure 3.20: Impact force peaks and the impact duration time in dependency
with the background grid element size for Lagrange imposition
and penalty augmentation with β= 1e15.

ement size. In addition, the corresponding impact duration time, plotted on the
right axis, is added to the plots. The plotted results show that for coarse back-
ground grids, the peak forces are tremendously underestimated and the impact
duration is far too long. Thus, the conservation of linear momentum is still sat-
isfied for coarse discretizations, but the peak forces and impact duration are not
well predicted by the numerical model.
This effect is caused by the fact that the impact duration starts as soon as the ma-
terial points enter the background grid elements containing the boundary parti-
cles. From this moment on, the boundary significantly influences the motion of
the material. Therefore, the background grid elements, which weakly impose the
boundary conditions, behave like a crumple zone. By refining the background
grid, this effect is reduced and the impact forces and the corresponding impact
duration converge to a constant value.
Alternatively, the numerical results are also improved if the boundary is not ini-
tialized at the centerline of the elements, but is shifted towards the element bor-
der to reduce the crumple zone. In Figure 3.21 two alternative discretizations are
visualized, while in a) the boundary is initialized at the centerline of the element,
in b) the boundary is shifted close to the element border. For both models, a very
coarse discretization of the background grid is selected using structured quadri-
lateral elements of size 0.2m.
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material points

background grid

boundary particles

a) Boundary at element center b) Boundary at element border

Figure 3.21: Impact force for coarse structured background grid elements ini-
tializing the condition either at a) the element center or b) at the
element border.

Diagram 3.22a) shows the impact force for the model with the boundary initial-
ized at the centerline of the element. As also demonstrated in the Diagram 3.20,
both penalty augmentation with β = 1e15 and Lagrange multiplier imposition
methods result in the same solution, which underestimates the peak forces but
predicts a longer impact duration time due to the weak imposition of the bound-
ary conditions.
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Figure 3.22: Impact force for coarse structured background grid elements ini-
tializing the condition either at a) the element center or b) at the
element border. The reference solution is the impact force from
Diagram 3.22.

Additionally, the reference solution plotted in Diagram 3.15 is added to the Di-
agram 3.22 to highlight the different force distribution. The reference solution
is shifted in time so that the impact starts at the same time. There are two rea-
sons for the timing difference. First, the material is initialized at a different po-
sition using the coarse discretization compared to the reference solution, and
second, the start of the impact also depends on the background grid discretiza-
tion. Comparing the start of the impact in Diagram 3.22a) and Diagram 3.22b),
a significant difference in the timing is observed even though the material is ini-
tialized at the same position. This difference is caused by the background grid
discretization and the effect that the impact starts as soon as the material points
enter the background grid elements containing boundary particles. Hence, the
distance between the initialized material points and the upper element border of
the background grid elements containing boundary particles is smaller in con-
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figuration a) compared to configuration b), resulting in an earlier start of the im-
pact.
However, concluding from the results depicted in Diagram 3.22b), the force dis-
tribution obtained by shifting the boundary initialization close to the element
border agrees well with the reference solution. Since the crumple zone is re-
duced due to the special discretization of the model, the peak force is predicted
very well. However, this adjustment only applies to certain examples, while in
general the size of the background grid elements must be adjusted. In addition,
numerical instabilities may occur when the boundary initialization is shifted to-
wards the element due to the small cut introduced. These numerical instabilities
are slightly present close-by the peak force in the solution with penalty augmen-
tation in Diagram 3.22b). Hence, in general, the size of the background grid el-
ement must be adapted to the problem at hand in order to calculate reasonable
contact forces.

Influence of the Background Grid Element Geometry

For the quadrilateral background grid elements used in the numerical examples
so far, there are no oscillations in the solution of the reaction forces. However,
if the background grid is discretized with triangular elements, this effect needs
to be taken into account, as already demonstrated for the bending beam in sec-
tion 3.5.2. While an elimination procedure is applied for the Lagrangian multi-
plier imposition (see section 3.4.3.2) to temporarily deactivate superfluous con-
straints, the boundary conditions in the penalty and perturbed Lagrangian meth-
ods are always set to active. Therefore, increasing the penalty factor will result in
partially overconstrained systems, which will adversely affect the resulting im-
pact forces and cause reaction force oscillations.
In Diagram 3.23, the force distribution at the non-conforming boundary during
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Figure 3.23: Impact force for triangular background grid elements imposing
the condition either by penalty with β = 1e15 and β = 1e10, per-
turbed Lagrangian with β= 1e15 or Lagrange multiplier method.

the impact is plotted over time considering a triangular background grid with an
element size of 0.05m. The other model parameters are kept as before.
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The results demonstrate that due to the developed elimination procedure for the
Lagrange multiplier imposition, the force distribution as well as the peak force
are computed equivalently independent of the background grid element type.
Furthermore, the perturbed Lagrangian method with β = 1e15 also calculates
the same solution. Due to the introduced stabilization term, the problem can
be solved even though superfluous constraints are not eliminated. The penalty
augmentation, however, shows difficulties in finding a converged solution when
a penalty factor of β= 1e15 is assumed. This leads to non-physical forces at cer-
tain time steps, which are highlighted by dashed lines in Diagram 3.23. By re-
ducing the factor to β = 1e10, convergence is achieved and a solution is found
at each time step. However, due to the relatively low factor, some energy is ab-
sorbed and the peak contact force is underestimated. The similar behavior is ob-
served for quadrilateral elements using a reduced penalty factor (see Figure 3.17).
Therefore, calibration of the penalty factor is more difficult for triangular than for
quadrilateral background grid elements.

Finally, the performance of the different boundary imposition methods in 3D is
evaluated considering hexahedral and tetrahedral elements for the background
grid as depicted in Figure 3.24.

material points
background grid

boundary particles

a) hexahedral elements b) tetrahedral elements

Figure 3.24: Details of the 3D model discretization while a) depicts the hexa-
hedral background grid element and b) the tetrahedral one.

The discretization of the 3D model is selected to be similar to the 2D models, us-
ing an element size of 0.05m for both the structured hexahedral and the tetrahe-
dral background grid. The material points are also initialized in a similar manner,
creating an unstructured tetrahedral body mesh and placing 6 particles each.
The resulting contact forces for the hexahedral background grid are depicted in
Diagram 3.25 considering the three different boundary imposition types. Simi-
lar to the triangular background grid in the two-dimensional model, the penalty
augmentation withβ= 1e15 introduces convergence difficulties, resulting in non-
physical forces at certain time steps. On the other hand, the choice of β = 1e10
results in a boundary condition that is not stiff enough, leading to energy dissi-
pation and an underestimation of the contact force.
The perturbed Lagrangian method with β= 1e15 and Lagrange multiplier impo-
sition perform well, computing the same force distribution as obtained for the
corresponding 2D models.
Very similar results are obtained for the tetrahedral background grid elements, as
depicted in Diagram 3.26.
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Figure 3.25: Impact force for hexahedral background grid elements for penalty
augmentation with β= 1e15 and β= 1e10, perturbed Lagrangian
with β= 1e15 and Lagrange multiplier imposition in comparison
to the 2D Lagrange solution plotted in Diagram 3.15
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Figure 3.26: Impact force for tetrahedral background grid elements for penalty
augmentation with β= 1e15 and β= 1e10, perturbed Lagrangian
with β= 1e15 and Lagrange multiplier imposition.

In summary, this example demonstrates again that selecting an appropriate penalty
factor can be difficult. Larger values can introduce numerical difficulties, while
lower values can lead to energy dissipation and an underestimation of the con-
tact forces. An improvement is obtained with the perturbed Lagrangian method,
which robustly calculates the contact forces for a larger range of possible factors
β. However, the computational effort increases as additional dofs are added to
the global equation system. The Lagrange multiplier approach is the most at-
tractive imposition method in this regard, since it does not require the user to
select any problem-dependent parameters. However, it requires a longer com-
putation time. In addition to the additional dofs, the elimination methodology
of superfluous constraints must also be accessed at each time step.
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Young’s modulus Poisson’s ratio density friction angle

E = 21.6MPa ν= 0.3 ρ = 1379
kg
m3 Φ= 35◦

Table 3.4: Material properties of the granular material.

In addition to the penalty factor, the size of the background grid elements also
has a significant impact on the calculated peak forces and the corresponding
contact duration time. This dependence results from the contact detection in
MPM via the computational background grid.
In contrast to that, the time step size is of secondary importance and only needs
to be adjusted to represent the impact force profile.

3.5.4 Impact Force Evaluation of Granular Material

In the final example, the verification of the types of boundary imposition meth-
ods is extended to granular materials. To simulate the flow of these elastic-plastic
materials is the reason why MPM is selected as discretization method. Therefore,
the elastic body of the previous example is replaced by granular material. The ge-
ometry and the system setup can be found in Figure 3.14, while the considered
material parameters for the granular material law are listed in Table 3.4. The
same density and Young’s modulus are considered as for the elastic body in the
previous example. A Mohr-Coulomb yield criterion is assumed, while the cohe-
sion and the internal dilatancy angle are set to zero.
The calculated impact forces are plotted in Diagram 3.27 considering a struc-
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Figure 3.27: Impact forces at the boundary due to the impact of the granular
material imposing the boundary condition by penalty with β =
1e15, perturbed Lagrangian with β= 1e15 or Lagrange multiplier
method.

tured quadrilateral background grid with size 0.05m. The other model parame-
ters are chosen according to the previous example. To capture the short impact
peak, a time step of ∆t = 1e −5s is selected for the numerical simulation.
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Lagrange Perturbed Lagrange Penalty
er = 0.63% er = 0.55% er = 0.71%

Table 3.5: Relative error er of the impulse force p for the granular impact.

The computed force distribution shows a significant impact force when the ma-
terial points come into contact. After the peak, the force decreases and then fluc-
tuates in smaller waves until it converges to zero over time. Due to the impact
on the rigid wall, a shock wave propagates through the material, which can be
visualized by plotting the material accelerations during the first impact peak as
illustrated in Figure 3.28. This wave causes the impact force to decrease after the

t = 0.047s t = 0.050s t = 0.053s t = 0.056s

Figure 3.28: Material point acceleration at the first impact showing the shock
wave due to the impact.

initial contact and initiates the plastic deformation of the material. Consequently
the material moves laterally and the impact force converges to zero, since only an
imposed velocity was initially applied.
Therefore, the impulse p is halved compared to the previous example (see equa-
tion 3.54) and the relative error for the different boundary imposition types are
summarized in Table 3.5 after 4s of simulation time. All are in good agreement
with the expected results.

3.6 Conclusions

Due to the Lagrangian moving particles in combination with the Eulerian back-
ground grid, the interface description required for partitioned coupling strate-
gies is complex. First, an adequate description of the boundary condition is
necessary, which tracks the position of the condition in time. For this purpose,
boundary particles are introduced, which impose the boundary conditions in the
MPM model and also serve as interface conditions in the partitioned strategy, re-
ceiving and sending the necessary data.
In addition, a weak imposition of boundary conditions is required. Many prob-
lems solved monolithically with MPM also often require weak boundary condi-
tions. However, in particular for the partitioned coupling strategy, the weak im-
position of boundary conditions is essential since the position of the shared in-
terface changes during the computation.
For this purpose, the penalty method, the Lagrange multiplier method and the
perturbed Lagrangian method are developed to weakly impose essential bound-
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ary conditions. While the penalty method shows its limitations in the selection
of appropriate, problem-dependent penalty factors, it outperforms the Lagrange
multiplier method as well as the perturbed Lagrangian method in terms of com-
putational efficiency. For the latter methods, additional dofs are required to en-
force the conditions, and the developed Lagrange multiplier method additionally
involves an elimination procedure for superfluous constraints.
The different types of boundary imposition methods are evaluated in terms of
their accuracy as interface condition. Provided that the penalty factor is well cal-
ibrated, all methodologies can be applied interchangeably. However, the calibra-
tion of the penalty factor is often tedious and, depending on the problem to be
solved, only a small range of admissible factors provide an accurate solution of
the results. An improvement is obtained with the perturbed Lagrangian method,
which robustly calculates the contact forces for a larger range of possible fac-
tors β. Analogous to the Lagrange multiplier approach, however, the computa-
tional effort increases as additional dofs are added to the global equation sys-
tem, while still an appropriate penalty factor has to be selected. In this regards,
the Lagrange multiplier method provides the most attractive boundary imposi-
tion method since it does not require the user to select any problem-dependent
parameters.
In addition to the methodology, which weakly enforces the Dirichlet constraints,
the size of the background grid elements is crucial for the calculation of the re-
action forces, which in turn are required for the partitioned coupling strategies.
This dependence results from the contact detection via the computational back-
ground grid. On the one hand, it is important to be aware of this dependency
when discretizing the problem. On the other hand, contact detection is an in-
herent part of the MPM computational scheme, providing a computationally ef-
ficient method for modeling a wide variety of applications. Moreover, it is an es-
sential requirement for the partitioned coupling strategies detailed in chapter 5
and chapter 6.



80 4 . Partitioned Coupling

CHAPTER 4

Partitioned Coupling

Complex engineering problems often include several physics interacting with
each other. However, the numerical simulation of such multi-physics problems
is a complex task that requires the coupling of several numerical solution tech-
niques. Among the existing coupling schemes, the partitioned or alternatively
called staggered coupling approach is the most generic one, as each involved
physics is solved in its preferred environment by using the numerical method
that is able to describe the physical behavior best, while the interaction is shifted
to the shared interface.

4.1 Black-box Solvers

Assuming two involved partitions, generally denoted by subscripts o and d, their
shared interface is defined by

Γod = Γo ∩Γd. (4.1)

Along this interface, either Dirichlet or Neumann boundary conditions are ap-
plied to the individual subsystems. In general, mixed methods that result in
Robin type decomposition would also be possible, but are of minor importance
and are therefore not considered. Following this approach, each partition is treated
as a black-box solver and is solved individually considering the respective bound-
ary conditions at the shared interface.
There exist different ways to combine Dirichlet and Neumann conditions at the
interface level, which are presented in [109] for a simple example. Furthermore, it
is demonstrated, that the choice of the decomposition is highly problem-dependent.
In this work, a Dirichlet-Neumann decomposition is chosen, which is also the
classical choice of fluid-structure interaction (FSI) problems [130, 78, 135] and
closely follows the real physical problem.
Consequently, introducing a Dirichlet condition at one subsystem, which pre-
scribes the displacements uΓod

at the shared interface, leads to the black-box
system SD solving for the traction field

pΓod
=SD (uΓod

). (4.2)



4.2. Interface Transmission Conditions 81

Taking the Neumann condition as an input for the solver SN , the updated dis-
placements uΓod

at the shared interface are obtained. In general, this can be
written as

uΓod
=SN (pΓod

). (4.3)

From this partitioning an additional equation system enforcing the interface trans-
mission conditions arises, which has to be solved.

4.2 Interface Transmission Conditions

Enforcing a consistent deformation of the involved sub-solver interfaces without
gaps and overlaps the kinematic constraint defined by

uo(x) = ud(x) = uΓod
(x) (x ∈ Γod) (4.4)

needs to be fulfilled. Herein, uo and ud are the interface displacement fields of
the involved partitions. Additionally, the first and second time derivatives of the
displacement, which correspond to the interface velocity and acceleration, need
to be equivalent at both interfaces to fulfill the kinematic constraint.
Furthermore, the dynamic interface transmission condition arising from the load
balance at the interface needs to be satisfied. It is defined by

po(x) = pd(x) = pΓod
(x) (x ∈ Γod) (4.5)

where po, pd are the traction fields at the respective interface, defined with re-
spect to the corresponding outward normal vectors.
It should be noted that in case of a total Lagrangian formulation, the interface
Γod is defined in the initial reference configuration, requiring a transformation
of the traction before applying the dynamic coupling condition.

4.3 Fixed-point Iteration

Classical solution schemes are fixed-point iterations to solve the non-linear in-
terface equations. For example, the Picard iteration with iteration counter k can
be formulated as

uk+1
Γod

=SN ◦SD (uk
Γod

) (4.6)

which means that the black-box solver SD advances first in time with given inter-
face displacements uk

Γod
as input, solving equation 4.2. As a result, the updated

traction field pΓod
is obtained. This result then serves as input for the subse-

quent solver SN (see equation 4.3) solving for the updated interface displace-
ments uk+1

Γod
.

Hence, the entire sequence must be solved iteratively until the convergence cri-
teria defined by

∥rk∥ < ϵ (4.7)
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is reached. In this equation, ϵ is a user-defined breaking tolerance and rk is the
residual in the current iteration. For the considered fixed-point iteration defined
by equation 4.6, the residual is defined by

rk
u =SN ◦SD (uk

Γod
)−uk

Γod
= uk+1

Γod
−uk

Γod
(4.8)

while the subscript u indicates the residual for the interface displacements.
To accelerate the interface iteration, convergence accelerators can be utilized,
which modify the interface displacements uk+1

Γod
before feeding them back as in-

put to the black-box solver SD in the subsequent iteration. In section 4.3.2 con-
vergence accelerators via relaxation are presented, while in section 4.4 quasi-
Newton schemes are introduced which can be applied alternatively to acceler-
ate the iterative solution of the interface equilibrium. For a general notation, the
operator ACC is introduced, representing the utilized convergence accelerator. It
is frequently the case that these convergence accelerators are also necessary to
increase the robustness of the coupled problem.
In Figure 4.1, the resulting flowchart of the coupling scheme based on equa-
tion 4.6 is illustrated.

uk
Γod

SD SNpk+1
Γod

uk+1
Γod

uk+1
Γod

k 7→ k+1

ACC

Figure 4.1: Flow chart of Gauss-Seidel strong coupling scheme described by
equation 4.6.

Alternatively, formulating the Picard iteration using the traction field as a variable
yields

pk+1
Γod

=SD ◦SN (pk
Γod

) (4.9)

which results in

rk
p =SD ◦SN (pk

Γod
)−pk

Γod
= pk+1

Γod
−pk

Γod
(4.10)

for the residual equation. Herein, the subscript p indicates the residual for the
interface traction forces.
Hence, the black-box solver SN is solved first, while SD is the subsequent solver
which solves for the updated traction forces pk+1

Γod
as illustrated in Figure 4.2. Also

in this coupling sequence, convergence accelerators are often utilized to modify
the input for the subsequent iteration loop. However, in contrast to the previ-
ous coupling sequence described by equation 4.6, the traction forces pk+1

Γod
are

modified within this coupling iteration described by equation 4.9.
These introduced fixed-point iterations strictly infer the sequential execution
of both solvers, resulting in the Gauss-Seidel communication pattern. Conse-
quently, it can only be applied to Dirichlet-Neumann decomposition, which re-
quires a serial computation of the involved solvers.
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Figure 4.2: Flow chart of Gauss-Seidel strong coupling scheme described by
equation 4.9.

An alternative approach is to reformulate the fixed-point equations as a Jacobi
system, so that the individual outputs are fed back to each solver iteratively (see
e.g. [109, 125]). Besides the advantage that the decomposition type is not re-
stricted to a Dirichlet-Neumann partition, the flexibility to run the involved solvers
in parallel may increase the efficiency. However, a better convergence rate is of-
ten obtained for the sequential approach, since the subsequent solver already
receives the updated variables as input. Therefore, within this work, the Gauss-
Seidel communication pattern is considered.

4.3.1 Weak Coupling and Strong Coupling

In general, there are weak and strong coupling algorithms to solve the coupled
problem. The former, also known as the explicit or loose coupling approach, per-
forms only one fixed-point iteration, while the latter iterates to fulfill the residual
equation defined by equation 4.7. Therefore, it is also known as the implicit ap-
proach.
The principles of the weak and strong coupling algorithms are illustrated in Fig-
ure 4.3, exemplified for the fixed-point iteration described by equation 4.6.
For many applications, the weak coupling scheme is sufficient and is therefore
applied due to its efficiency. However, it is obvious that this approach will lead
to instabilities if the input variables differ significantly from the output values, as
the interface residual is not converged. Some improvements may be obtained by
computing an initial guess for the input variable utilizing the information from
previous time steps. This approach is frequently applied for FSI problems, and
extrapolation algorithms for this purpose can be found e.g., in [96, 95, 47]. How-
ever, the interface transmission conditions are still not fulfilled, which may lead
to instabilities in the coupled simulation.
This inaccuracy is not present in the strong coupling approach as the fixed-point
problem is solved multiple times within one time step until the interface trans-
mission conditions are fulfilled. Hence, it converges to the same solution as the
monolithic approach.
Nevertheless, instabilities can still occur in the strong coupling scheme as the
black-box solvers are receiving the interface data as boundary conditions without
knowledge of the flexible counterpart. As a result, non-physical interface values
may be present within a sub-solver and cause the subsequent solver to overshoot
after mapping. This obviously has a negative effect on the convergence behav-
ior and, in the worst case, can lead to instability of the coupled simulation. As
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Figure 4.3: Illustration of a) the weak coupling and b) the strong coupling al-
gorithm for the fixed-point iteration defined by equation (4.6).

a remedy, either relaxation as introduced below or a Newton-Raphson iteration
(see section 4.4) can be applied to accelerate the interface convergence and in-
crease the robustness.

4.3.2 Convergence Acceleration via Relaxation

The fixed-point iteration can be modified so that the transferred data is applied
gradually. This typically allows for faster interface convergence and increased
stability of the coupled simulation. Applying this scheme to the interface dis-
placements, the relaxed values at the iteration k +1 are obtained by

uk+1
Γod

= uk
Γod

+αk rk
u =αk uk+1

Γod
+ (1−αk )uk

Γod
(4.11)

where αk is the relaxation parameter at iteration k. Similarly, the relaxation for
the traction forces is obtained by

pk+1
Γod

= pk
Γod

+αk rk
p =αk pk+1

Γod
+ (1−αk )pk

Γod
. (4.12)

For some exceptional cases, a constant user-defined relaxation factor can be cho-
sen or pre-computed [109]. In general, however, the Aitken method [1] is utilized
as it optimizes the scaling factor in each iteration with respect to the current
residual rk and the previous residual rk−1 by

αk (r) =−αk−1 rk−1 · (rk − rk−1)

∥rk − rk−1∥2
. (4.13)

Therefore, a user-defined relaxation factor is applied only in the first iteration,
otherwise it is dynamically calculated as proposed by [78].
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For the relaxation of the displacement by equation 4.11, the residual equation 4.8
is used to compute the relaxation parameter, while for the relaxation of the trac-
tion by equation 4.12, the residual equation 4.10 is utilized.
In this thesis, either the Aitken scheme is applied, which is derived from the fixed-
point iteration and relaxes the input variables for the subsequent interface itera-
tion loop. Alternatively, convergence accelerators based on the Newton-Raphson
iteration are applied. They are introduced in the following section and can alter-
natively be applied to the coupling scheme to modify the input values for the
subsequent iteration loop.

4.4 Newton-Raphson Iteration

As an alternative to the fixed-point iterations, commonly enhanced by a relax-
ation scheme, a Newton-Raphson iteration can be utilized to accelerate the so-
lution of the strong coupled partitioned system. Formulating the iteration in a
Gauss-Seidel way, the equation can be written as

drk
u

duΓod

∆uk
Γod

=−rk
u with

drk
u

duΓod

= dSN

dpΓod

dSD

duΓod

− I (4.14)

while rk
u is defined by equation 4.8. Alternatively, it can be formulated by

drk
p

dpΓod

∆pk
Γod

=−rk
p with

drk
p

dpΓod

= dSD

duΓod

dSN

dpΓod

− I (4.15)

with rk
p defined by equation 4.10.

Similar to the fixed-point iteration, the Newton-Raphson iteration may also be
formulated in a Jacobi way, which is presented e.g., in [131, 109] however, not
considered herein.
The crucial part for this iteration scheme is the determination of the black-box
solver derivatives with respect to the interface variables, which are the Jacobian
matrices of the subsystems and their inverse. Usually, this information is not
available at the interface level.
Instead, most commonly quasi-Newton schemes are applied, which approxi-
mate the interface Jacobian or its inverse using the results of multiple iteration
loops. Among these, particularly the Interface Quasi-Newton with Interface Ja-
cobian Least-Squares approximation (IQN-ILS) [46] and the Multi-Vector Quasi-
Newton (MVQN) method [19] are considered within this work.
Hence, with these approximations, equations 4.14 and 4.15 can be solved for the
increments ∆pk

Γod
and ∆uk

Γod
to update the interface variables

uk+1
Γod

= uk
Γod

+∆uk
Γod

and pk+1
Γod

= pk
Γod

+∆pk
Γod

, (4.16)

respectively.
Therefore, the quasi-Newton schemes also modify the displacements uk+1

Γod
and

the traction field pk+1
Γod

obtained by the solvers SN and SD, resulting in updated
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input values for the subsequent iteration loop. Hence, they are an alternative way
to accelerate the interface convergence and thus belong to the group of conver-
gence accelerators, which are generally abbreviated by the operator ACC in this
work.

4.5 Mapping

For the numerical solution of the partitioned problem, the involved subsystems
are discretized individually, resulting in discrete displacements ûo, ûd at the re-
spective interfaces. Therefore, the kinematic constraint defined by equation 4.4
can be rewritten in the discrete form as

ûd = Hdoûo (4.17)

introducing the direct mapping matrix Hdo that arises from the applied mapping
technique [44, 131]. This approach assumes that the discrete displacements at
the shared interface of the origin (indicated with subscript o) are mapped to the
corresponding interface nodes at the destination (indicated with subscript d).
Within the scope of this thesis, either

• the nearest neighbor mapper,
As exemplified in Figure 4.4a), the concept of this mapper is very simple.
Each node of the destination interface searches for its geometrically clos-
est neighbor on the original interface. Once these relationships are estab-
lished, the destination nodes are assigned the values of the original nodes.
Therefore, the mapping matrix becomes a Boolean matrix with a single
one in each row. Due to its efficiency, it is often applied. However, es-
pecially for non-matching discretization with varying coarseness at both
partitions, oscillations may occur.

• the nearest element mapper,
As illustrated in Figure 4.4b), each node of the destination interface is pro-
jected orthogonally to the closest element at the interface of the origin. The
origin values are then interpolated using the shape function values and are
assigned to the destination nodes. Therefore, this approach is more suit-
able for non-matching discretization, however, it requires the definition of
elements between the interface nodes of the origin, which is not the case
for MPM.

• or the barycentric mapper
This approach is very similar to the nearest element mapper, however, it
does not require the definition of elements at the interface of the origin.
Instead, the two or three closest nodes in 2D and 3D, respectively, are se-
lected, and then the original values are interpolated between them by con-
structing shape functions between these closest nodes, as illustrated in
Figure 4.4c). Therefore, this mapping approach is very useful, especially
for sub-solver discretizations where the interface nodes are not connected
by elements as in MPM.
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Figure 4.4: Illustration of a) the nearest neighbor, b) the nearest element, and
c) the barycentric mapping concept.

are utilized, belonging to the group of interpolation-based mapping algorithms.
As a consequence of the discretization, the traction forces po and pd within the
partitions result in discrete forces Fo and Fd at the interface nodes, representing
the distributed traction forces at discrete locations.
Similar to the displacement mapping matrix, a separate direct mapping matrix
can be constructed to map the forces between the sub-solver discretizations, re-
sulting in a consistent mapping approach.
Alternatively, a conservative mapping matrix can be derived from the continuum
interface energy conservation equation defined by∫

Γod

uo(x)po(x)dΓod =
∫
Γod

ud(x)pd(x)dΓod. (4.18)

Reformulating this equation in the discrete form

ûT
d Fd = ûT

o Fo (4.19)

and inserting equation 4.17 finally results in

Fo = HT
doFd (4.20)

using the transposed displacement mapping matrix to map the forces. This ap-
proach is called conservative mapping [49, 44] and has the great benefit that the
mapping matrix needs to be constructed only once, while the transpose can be
reused to map the forces.

4.6 Conclusions

As presented in this chapter, one of the significant advantages of the partitioned
approach lies in treating the involved solvers as black-box solvers, while the inter-
action is shifted to their shared interface. This allows the reuse of well-established
solvers and tools that have been developed over many years to solve various
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physical problems. Additionally, it offers flexibility by allowing the coupling of
different numerical methods to solve the respective problems. For a more de-
tailed discussion of partitioned coupling approaches see e.g. [31, 125, 50, 131,
55].
Within this work the partitioned approach is applied to couple the particle meth-
ods DEM and MPM, which is detailed in chapter 5, and to couple MPM with FEM,
which is detailed in chapter 6. These different numerical methods are combined
to solve the complex interaction of gravity-driven mass flows with different kinds
of protective structures.
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CHAPTER 5

MPM-DEM Coupling

To stabilize slopes, particularly along roads or nearby buildings, retaining walls
are often installed. These walls commonly consist of stacked massive blocks
and are designed to resist the lateral pressure of soil or rock. In the numeri-
cal simulation, these blocks can usually be approximated as rigid bodies. How-
ever, for more detailed simulations, the failure process needs to be taken into
account. Therefore, DEM, which allows to carefully consider the contact con-
ditions among the blocks is the best-suited numerical method to model these
blocks and their interaction.

However, to model the mechanical behavior of the flowing masses, a continuum-
based approach is more appropriate and computationally efficient. Therefore,
MPM is the preferred numerical method to discretize this physical event due to
its ability to handle large strains in gravity-driven flows.

To capture the interaction of the gravity-driven mass flows and protective struc-
tures consisting of stacked massive blocks, the partitioned coupling scheme, in-
troduced in general in chapter 4, is adapted for MPM and DEM. This allows to
exploit the advantages of both methods and to perform complex numerical sim-
ulations of flowing masses interacting with discrete blocks. Moreover, due to
the partitioning, the best-suited solution strategies can be selected for each sub-
problem without the necessity to develop individual coupling strategies, which
makes it very attractive compared to the monolithic coupling schemes of MPM
and DEM, just mentioning [86, 71, 3].

In this chapter, the partitioned coupling scheme of MPM and DEM is introduced
and several examples of increasing complexity are presented to verify the ap-
proach and to compare the numerical solutions with experimental results from
the literature. Main parts of this chapter were published by the author in [115],
while the content is discussed below in the context of this thesis. Furthermore,
parts of the final example were published by the author in [116]. Some of the fol-
lowing text passages are directly taken from these publications and therefore are
to be interpreted as quotations.
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5.1 MPM-DEM Coupling Scheme

In the partitioned coupling scheme, the sub-solvers MPM and DEM are treated as
black-box solvers, while the interaction is shifted to their shared interface. Adapt-
ing the notation introduced in chapter 4, all quantities related to the MPM solver
are denoted from hereon with subscript M (instead of o in chapter 4), while for
the DEM partition the subscript P (instead of d in chapter 4) is utilized. Hence,
the shared interface between the MPM domain ΩM and the DEM domain ΩP is
defined by

ΓMP = ΓM ∩ΓP, (5.1)

while within each partition, a boundary is introduced along this interface to en-
sure the communication among them.
As mentioned before, the main advantage of DEM is the accurate calculation of
contact forces. Therefore, it is the natural choice to define a Dirichlet condition
within the DEM partition to take advantage of this. Hence, a wall condition, orig-
inally proposed by [99] for partitioned coupling with FEM, is introduced within
the DEM domain. In the discretized model, the geometry of this wall condition is
represented similarly to an FE-mesh, comprising vertices, edges and faces in 3D.
This wall condition, which represents the shared interface in the DEM partition,
needs to represent the characteristics of the coupled counterpart. Furthermore,
the spatial position and its velocity need to be updated according to the kinemat-
ics of the coupled counterpart.
Based on this, contact forces can be calculated between the spherical particles
themselves as well as between the particles and geometric entities of the wall
condition. Within the scope of this work, the HM+D contact model introduced
in section 2.10 is applied to calculate these forces, whereas the Double Hierarchy
Method [100] is used to efficiently detect the contacts.
Therefore, the DEM back-box solver requires the interface displacement and ve-
locity as input, which are provided by the coupled counterpart. Hence, in the
discretized model, the nodal displacement ûP and nodal velocity ˆ̇uP of the dis-
cretized wall condition Γh

P are prescribed values and serve as input for the subse-
quent solution of the DEM partition. In case of contact between a DEM particle i
and the discretized wall condition, a resulting contact force Fi ,Contact is calcu-
lated at the DEM particle i . The associated reaction force at the wall condition
is interpolated by linear shape functions to the corresponding nodes of the wall
condition entity, resulting in discrete forces FP after completing one time step of
the DEM calculation. Further details of the DEM solution scheme are provided
in section 2.10.
Consequently, the DEM black-box solver with the Dirichlet interface SD=̂SDEM
can be expressed as

FP =SDEM(ûP, ˆ̇uP) (5.2)

representing the discrete subproblem.
In the MPM counterpart, a Neumann condition is introduced along the shared
interface, which allows to solve the partitioned problem sequentially with a fixed-
point iteration as introduced in section 4.3. This boundary Γh

M is discretized by
boundary particles that can receive external point loads FM. These mass-less
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particles apply the external point loads to the MPM partition and their kinemat-
ics are updated analogously to the material points. Hence, they track the spatial
position of the shared interface and carry the displacement and velocity infor-
mation, ûM and ˆ̇uM, at the boundary particle location.
Therefore, the expression for the MPM black-box solver with the Neumann inter-
face SN=̂SMPM can be written as〈

ûM, ˆ̇uM
〉=SMPM(FM) (5.3)

in the discrete form.
Consequently, to solve the multi-physics problem with the partitioned approach,
the DEM and the MPM model are discretized separately. Within each model, the
respective boundary conditions along the shared interface need to be defined.
Typically, the spatial position of this interface is initialized along the contour of
the MPM body and then follows its motion. In addition, it is advantageous to
initialize the boundary particles in the MPM model at the same spatial positions
as the nodes of the discretized DEM wall in order to avoid errors due to data
mapping at the interface.
The non-linear interface equations, which arise due to the partitioning, are solved
by a fixed-point iteration that sequentially executes the solvers, as introduced in
section 4.3. Furthermore, a weak coupling scheme, as illustrated in Figure 4.3a),
is applied. Due to the explicit time integration used to solve the DEM model
and the resulting small time step size for the overall problem, the weak coupling
scheme is sufficient for the considered problems and is therefore used for its ef-
ficiency.
Hence, the partitioned weak MPM-DEM coupling scheme, which is summarized
by Algorithm 1 and illustrated in Figure 5.1, works as follows:

Algorithm 1 Weak MPM-DEM Coupling Scheme

while time < tend do
(1). DEM Solver: FP =SDEM(ûP, ˆ̇uP) ▷ (equation 5.2)
(2). Mapper: FM = HT

PMFP ▷ (equation 5.4)

(3). MPM Solver:
〈

ûM, ˆ̇uM
〉=SMPM(FM) ▷ (equation 5.3)

(4). Mapper: ûP = HPSûM and ˆ̇uP = HPM ˆ̇uM ▷ (equation 5.5)

First, the DEM partition is solved with given displacements ûP and velocities ˆ̇uP
at the nodes of the discretized wall condition, possibly leading to some contact
between the DEM particles and the wall condition. The resulting contact forces
at Γh

P are then transferred to the interface of the MPM partition as external forces
FM.
For this transfer process, a mapping technique as introduced in 4.5 is needed to
map the data between the sub-solvers. For the forces, the conservative mapping
approach (see equation 4.20) is utilized resulting in

FM = HT
PMFP (5.4)

and thus reuse the transpose of the direct mapping matrix HPM. This matrix is
defined by the mapping process of the nodal displacement and velocity values
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Figure 5.1: Partitioned MPM-DEM coupling scheme: In each time step, DEM
is solved first (1). The resulting forces are mapped to MPM as exter-
nal forces (2). Then MPM is solved leading to a kinematic update
of the MPM interface (3), which is mapped back to DEM interface
(4). Due to weak coupling, the steps are repeated for the next time
steps. Adapted from [115].

from the MPM to the DEM partition by

ûP = HPMûM, ˆ̇uP = HPM ˆ̇uM (5.5)

according to equation 4.17.
Herein, the nearest neighbor interpolation technique [44] is used for the data
transfer between the interfaces, resulting in a copy operation in most of the cases.
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This is because the boundary particles are usually located at the same spatial
positions as the nodes of the discretized wall condition in DEM to reduce errors
arising from the mapping.
Due to the mapping process described by equation 5.4, the boundary particles
in the MPM model that discretize the shared interface receive the contact forces
from the DEM solver as external point loads FM. Hence, within the MPM calcu-
lation, these boundary particles are treated as non-conforming Neumann con-
ditions, as described in section 3.4.2. Thus, the solution of the MPM partition,
taking into account the applied forces, leads to a kinematic update at the nodes
of the computational background grid (see section 3.3). Therefore, in the con-
vective phase of the MPM calculation procedure, the boundary particles are up-
dated analogously to the material points, resulting in boundary particle displace-
ments ûM and velocities ˆ̇uM.
Finally, this kinematic update is mapped by equation 5.5 to the DEM partition,
updating the nodal displacements ûP and velocities ˆ̇uP of the DEM wall condi-
tion.
Applying a weak coupling scheme, the DEM solver advances in time and solves
the DEM model with the updated wall condition. These steps are repeated within
each time step until the end of the simulation tend.

It is important to note that a DEM particle i calculates one resulting contact force
Fi ,Contact, depending on the shortest distance between the interacting object and
the center of the particle. This can lead to difficulties during the coupled simula-
tion, especially when considering solid or granular material in the MPM partition
that interacts with obstacles that are relatively large compared to the background
grid element size.
As illustrated in Figure 5.2a) the DEM particle i calculates a single contact force
Fi ,Contact with the wall condition in each time step. This consequently results in
forces FP at the corresponding nodes of the discretized wall condition.
Assuming a two-dimensional case and a DEM particle interacting with a line seg-
ment as depicted in Figure 5.2a), this results in two forces at the correspond-
ing nodes of this segment. Mapping these forces to the MPM partition results
in point loads at the boundary particles. Since a matching discretization of the
interface is usually used, this results in two point loads in this case.
Depending on the location of the boundary particles within the background grid
and the element size of this grid, only a certain area of the MPM domain is af-
fected by the interface forces in each time step. As a result, this could lead to
an insufficient representation of the shared interface. This is especially true for
granular materials modeled with MPM that interact with relatively larger DEM
particles compared to the background grid element size of the MPM model. Due
to the singular forces applied to the MPM model within each time step, the gran-
ular material can penetrate into the DEM particle and thus negatively affect the
results of the coupled simulation.
To resolve this issue, clustering of DEM particles [75] can be applied. Besides the
advantage that arbitrarily shaped obstacles can be modeled efficiently by cluster-
ing DEM particles, each DEM particle within the cluster can calculate a contact
force. This leads to a more accurate representation of the interface as depicted
in Figure 5.2b). Therefore, the clustering method should be applied when the
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Figure 5.2: Calculation of contact forces in DEM and influence of the MPM
partition. a) One DEM particle calculates one resulting contact
force, affecting only a limited number of background grid nodes in
the MPM partition. b) By clustering the DEM particles, also suited
for arbitrarily shaped particles, the contact forces are distributed
over the interface, leading to an accurate interface representation.
Adapted from [115].

particle shape is to be accurately considered and/or a detailed interface repre-
sentation is required in the MPM model.
In the following chapter, several examples for the partitioned coupling of MPM
and DEM are presented, validating the novel approach and demonstrating the
broad application range.

5.2 Verification and Validation

A series of tests is conducted to demonstrate the application of the proposed par-
titioned MPM-DEM coupling scheme and its accuracy. First of all, the results are
compared to an example with an analytical solution from the literature for two-
and three-dimensional problems. An extension of the first example to a more
challenging impact scenario can be found in [115]*. In addition, the application
of the proposed scheme to soil-particle interaction is demonstrated by compar-
ing the numerical solution to experimental data from the literature. The first ex-
ample considers a granular flow, which after release flows down due to gravity

* published by the author of this dissertation
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Young’s modulus Poisson’s ratio density
beam/particle 215.82GPa 0.289 7960kg/m3

Table 5.1: Material properties of the hinged beam and the spherical particle.

and then impacts on stacked wooden obstacles. In the second system, the failure
of a retaining wall due to soil pressure is modeled and compared to experimental
results.

5.2.1 Particle Impact on Simply Supported Beam

For the validation of the proposed algorithm, an academic particle-structure in-
teraction example is chosen, which was first proposed by Timoshenko [124] in
1951, reviewed in detail by Meijaard [89] and performed as a benchmark test
for partitioned coupling of FEM and DEM in [99, 101]. It consists of a simply
supported beam with a total length of 15.35cm and a square cross-section of
1×1cm2. This elastic beam, modeled with MPM, is impacted at its center by
a sphere, which in turn is modeled with a discrete DEM particle. The system
setup is visualized in Figure 5.3, while the material parameters taken from [89]
are summarized in Table 5.1.

R = 1cm

u̇0 = 1cm/su̇0 = 1cm/s

15.35 cm
1cm

1c
m

R = 1cm

I) front view II) side view

x
y

y
z

material points

background grid

detail:

detail: 2D detail: 3D

Figure 5.3: Single spanned beam hit at its center by a sphere. Adapted
from [115].

The benchmark test is performed for both 2D and 3D models. As visualized in
the details in Figure 5.3, a quadrilateral background grid is chosen for the 2D
MPM model, while a structured hexahedral mesh is considered in 3D. In [115]
a detailed description of the background grid size as well as the material point
initialization for both models can be found.
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For the contact force calculation in the DEM model the HM+D contact law is
assumed with a coefficient of restitution of 1.0, according to [99, 101]. For the
interaction of MPM and DEM a zero friction coefficient is assumed and a time
step of ∆t = 5e−8s is selected for the computation.
During the calculation, the displacement of the sphere and the deformation of
the beam center are measured and visualized in Figure 5.4 in comparison to the
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Figure 5.4: Single spanned beam hit laterally at its center by a sphere. Numer-
ical results for 2D and 3D models in comparison to reference solu-
tion [89].

reference solution obtained by [89] showing excellent agreement. Due to the cho-
sen geometry, a single impact between the beam and the sphere is observed, re-
sulting in an oscillation of the beam which corresponds to its natural frequency.
Furthermore, the resulting contact force is plotted against the reference solution
in Figure 5.4, confirming the accuracy of the proposed coupling scheme.

5.2.2 Granular Flow Impacting DEM Obstacles

The second example considers the interaction of significant strain flow events
with obstacles. For this purpose, the experiment of granular material impacting
wooden blocks, which was initially conducted by [86], is simulated and the ob-
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tained results are compared with the available data from the literature at specific
time steps.
The initial configuration of the two-dimensional model representing the experi-
ment is depicted in Figure 5.5. It consists of the granular material, which is ini-
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2.0 cm

2
0
cm

10 cm

Wooden blocks
DEM clusters

MPM boundary particles
and

DEM wall condition

MPM

δ

background grid

Figure 5.5: Granular material calculated with MPM impacting wooden blocks
modeled with DEM cluster. Adapted from [115].

tially confined to a region of 10×20×20cm3 and, after being released, flows down
due to gravity. Additionally, three identical wooden blocks are considered, which
are placed on top of each other at a distance of 30cm from the granular mate-
rial. The block on the bottom is glued to the desk to simulate a foundation of a
building. Due to gravity, the granular flow impacts these wooden blocks, pushing
the upper two wooden particles to the right side, resulting in an angular velocity,
whereas the block on the bottom remains fixed.
In the numerical model, the bottom wall of the box containing the material is
modeled as a fixed boundary, while a slip condition is assumed for the vertical
wall. The granular flow is simulated by MPM using the Mohr-Coulomb plane
strain material law with the respective material parameters summarized in Ta-
ble 5.2, which are taken from [86].
For the discretization of the MPM model, an unstructured triangular background

grid with an element size of 0.5cm is chosen. Meanwhile, for the initialization of
the material points, a body mesh of structured triangles with half the element
size, containing three particles each, is selected. As the granular material under-
goes large deformations, boundary particles are placed at a distance of 0.005cm
around the initial configuration of the granular material to ensure a suitable dis-
cretization of the shared interface throughout the simulation. However, for this
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material properties granular material (MPM) wooden blocks (DEM)
density 1300 kg/m3 500 kg/m3

Young’s modulus 50 kPa 50 MPa
Poisson’s ratio 0.4 0.5

cohesion 0 Pa 0 Pa
friction angle 22 ◦ -
dilation angle 0 ◦ -

restitution coeff. - 0.05

Table 5.2: Material properties for the granular flow and the wooden blocks

example, these boundary particles are not placed exactly at the outline of the
body, but are shifted marginally inside the body to avoid numerical instabilities
during the calculation.
Considering gravity-driven granular material, this modification is necessary as
the boundary particles receive the resulting contact forces from the DEM par-
tition and apply them to the MPM model as point loads. If these point loads
are applied to elements containing only a few single material points - which is a
general case at the body outline - this could lead to an non-physical behavior of
these elements and therefore to large movements of the material points within
these elements. Therefore, to ensure that the forces are applied to the main ma-
terial flow, the boundary particles are defined within the first row of the material
points. In this particular case, the marginal shift δ is one third of the body mesh
size, much smaller than the size of the background elements, and therefore al-
most negligible for the final solution.
The wooden blocks are simulated by DEM. Each block is of size 2×1.8×19.8 cm3

and consists of 8× 8 spherical particles which are compacted into a cluster to
model the squared shape of the blocks. Since the bottom block is glued to the
desk, it can be modeled as a fixed boundary in the simulation. Therefore, only
the first and second blocks, counted from the top, are represented as DEM clus-
ter particles. The discretization of the boundary wall follows the initialization of
the boundary particles in MPM, i.e. that the nodes of the wall condition coincide
with the boundary particle positions to avoid errors occurring from data map-
ping.

For the calculation of the contact forces within the DEM partition, a Hertzian
contact law is considered. Friction and adhesion between the wooden clusters
themselves are set to µ = 0.6 and c = 30Pa, respectively. For the interaction
with the rigid boundary, µ = 0.3 and c = 60Pa are assumed and a time step of
∆t = 5e−5s is considered for the simulation.
The numerical results obtained with the partitioned MPM-DEM coupling strat-

egy are presented in Figure 5.6 compared to the experimental results published
by [86]. The visual comparison with the experimental results at the specific times
shows that the numerical model can replicate the experimental results very well.

Similar to the experiment, the granular flow reaches the wooden blocks at t = 0.25s.
Due to the impact, the DEM clusters start moving and rotating around the fixed
block at the bottom. Comparing the results at time t = 0.30s, one can observe
that the two cluster blocks are still in touch over the full width of the block, which
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I) Experiment II) Simulation I) Experiment II) Simulation

Figure 5.6: Granular material calculated with MPM impacting wooden blocks
modelled with DEM cluster. Comparison of the experimen-
tal results [86] and the obtained numerical solution. Adapted
from [115].

agrees well with the experiment. This is an improvement compared to the nu-
merical results obtained by [71], as the adhesion between the DEM blocks can be
considered by the implemented Hertzian contact law within the DEM applica-
tion.
The second block first touches the ground between t = 0.36s and t = 0.37s with
one edge and subsequently rotates until the complete outer edge is in touch with
the ground at t = 0.40s, which corresponds to a rotation of 90◦ in total. Figure 5.7
shows the rotation angle of the second block in comparison to the experiment
and the results from the literature [86, 71]. The obtained solution is in good
agreement for the entire simulation time.
Block number one, the top block, starts to move and rotate together with the
second block and touches the ground for the first time between t = 0.38s and
t = 0.39s with its corner. This impact causes its detachment from the ground and
its rotation around its axis, which coincides with the picture of the experiment at
t = 0.40s and finally comes to rest with a total rotation of 180◦ at about t = 0.45s.
Finally, comparing the runout configuration of the simulation with the experi-
ment, the resting distance of the two moving blocks can be measured. In the
experiment [86], the distance between the left boundary of the second block and
the left boundary of the box was measured to be 34.6cm, whereas in this simu-
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Figure 5.7: Rotation angle of the second block compared to the experi-
ment [86] and the numerical solutions of Liu et al. [86] and Jiang
et al. [71]. Adapted from [115].

lation the distance turned out to be 34.5cm. Likewise for the top block, where
the distance in the experiment was measured at 40.1cm compared to 39.7cm in
the simulation, which is in very good agreement. In order to achieve even higher
accuracy of the results, the calculation parameters, especially within the DEM
application, have to be calibrated for the respective experiment.
Additionally, to prevent the penetration of material points into the DEM parti-
cles at the very end of the simulation, a finer discretization of the interface as
well as a smaller size of the background grid elements in MPM could be chosen.
Apart from that, the numerical solution agrees very well with the experimental re-
sults, proving the applicability of the proposed partitioned MPM-DEM coupling
scheme for large strain flow events interacting with discrete obstacles.

5.2.3 Retaining Wall Collapse

In the final case study, the proposed MPM-DEM coupling strategy is applied to
simulate large deformation and post-failure behavior of soil and retaining wall
blocks. The numerical solution of a two-dimensional simulation is compared
to the experimental results conducted by Bui et al. [32]. Within the experiment,
Aluminum bars with a length of 5cm were used as the model ground to simulate
the two-dimensional conditions.
The segmental retaining wall within this study consists of six identical Aluminum
blocks, which are stacked on top of each other with an overlap of 1.2cm, as de-
picted in Figure 5.8. These rectangular blocks have a width of 3.2cm, a height of
2.5cm and a length of 5.0cm. The material properties of the blocks, as well as
those of the model ground taken from [32], are summarized in Table 5.3.
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Figure 5.8: Initial system of the retaining wall. The wall blocks are discretized
by DEM cluster particles, whereas the model ground is discretized
by MPM. Adapted from [116].

material properties model ground (MPM) retaining wall blocks (DEM)
specific weight 20.4 kN/m3 25.5 kN/m3

Young’s modulus 5.84 MPa 69 GPa
Poisson’s ratio 0.3 0.3

cohesion 0 Pa 0 Pa
friction angle 21.9 ◦ -
dilation angle 0 ◦ -

restitution coeff. - 0.316

Table 5.3: Material properties for the model ground and the retaining wall
blocks

Furthermore, the static friction coefficients between the wall blocks µb−b ≈ 0.31
themselves, the blocks and the bottom wall boundary µb−w ≈ 0.40, and between
the blocks and the model ground µb−s ≈ 0.38 were determined experimentally
by [32] and are therefore also assumed in the numerical simulation herein.
While the retaining wall blocks are modeled with DEM by clustering 6×5 spher-
ical particles to obtain the rectangular shape, the model ground is simulated by
MPM using Mohr-Coulomb plane strain material law. As boundary conditions
for the model ground a fixed support is assumed at the bottom, while a slip con-
dition is imposed in the lateral direction. Therefore, the numerical model is com-
parative to the SPH model created by Bui et al. [32] to numerically investigate the
collapse of the retaining wall system.
For the discretization of the MPM model, a structured quadrilateral background
grid with an element size of 0.4cm is selected, whereas for the initialization of
the material points, an unstructured triangular body mesh with an element size
of 0.1cm, containing 3 particles each, is chosen. Similar to the previous example,
also in this case the model ground undergoes significant deformation. There-
fore, the boundary particles are placed at a distance of 0.01cm at the top and
right contour of the Aluminum bar collection. Once again, a marginal shift of the
interface inside the body of δ = 0.05cm is assumed. Analogous to the previous
example, this shift is very small compared to the background grid element size,
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but it increases the numerical stability of the partitioned coupling scheme. The
simulation is performed with a time step of ∆t = 2e −5s.
Figure 5.9 shows the comparison of the numerical and experimental results at

t = 0s

t = 0.2s

t = 0.4s

t = 0.6s

Experiment Simulation Experiment Simulation

Figure 5.9: Simulation results compared to the experiment conducted by [32].
Adapted from [116].

several times for the failure process of the retaining wall block system. Due to
the pressure forces of the backfilled soil, the retaining wall blocks start to move
to the right, causing the collapse of the retaining wall system. While the block
at the bottom only slides horizontally, triggering the failure of the system, trans-
lational and rotational motions are observed for the other blocks, which are in
very good agreement with the experimental results. For further improvements,
the parameters such as static and dynamic friction coefficients as well as the co-
hesion between the blocks need to be calibrated for the DEM cluster particles
used.
In addition, the comparison of the final runout between the experimental data
and the obtained numerical solution are displayed in Figure 5.10. While in the
experiment the final runout of the block at the bottom was measured to be about
66.4cm, 66.9cm are obtained in this numerical study. Again, the friction coef-
ficients, which are critical to the failure pattern of the segmental retaining wall
system and the final runout, need to be calibrated for the particular experiment.
Summarizing the results, a very good agreement of the results can be observed
and the application of the proposed coupling scheme for various scenarios is
demonstrated. A major advantage is that the modeling of the blocks by DEM in-
herently allows the separation of the blocks, while a continuum-based descrip-
tion can still be used to model the backfilled soil. This is a great advantage espe-
cially for the numerical investigation of large-scale events.

5.3 Conclusions

The validation examples demonstrate the capability of the partitioned MPM-
DEM coupling scheme to simulate the interaction between gravity-driven mass
flows and structures composed of multiple massive blocks. The numerical model
accurately predicts the flow process of the gravity-driven flows as well as the fail-
ure pattern and the subsequent movement of the blocks upon impact.
In contrast to monolithic coupling schemes of MPM and DEM, the partitioned
approach provides the possibility to couple the physics involved in a generalized
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Figure 5.10: Comparison of the final failure pattern between the experiment
conducted by [32] and the MPM-DEM coupling scheme.

way. Each physics involved can be solved independently in its preferred refer-
ence frame, while the interaction is transferred to the shared interface.
Along the shared interface, boundary conditions are imposed within the respec-
tive solvers. For this purpose, a wall condition is defined in the DEM partition
that represents the properties of the coupled counterpart. It imposes a Dirichlet
constraint on the DEM model, and its spatial position as well as its velocity are
updated according to the kinematics of the coupled sub-solver.
Therefore, the DEM back-box solver calculates contact forces with the introduced
wall condition, which are subsequently mapped to the MPM partition as exter-
nal forces. Therefore, a Neumann condition is introduced in the MPM submodel,
which is discretized by boundary particles that receive the forces from the cou-
pled counterpart as external point load conditions. Due to the applied forces, the
MPM body is deformed and the spatial position as well as the kinematics of the
boundary particles are updated within the MPM calculation procedure, analo-
gous to the material points.
This leads to a kinematic update of the shared interface, which in turn is mapped
back to the DEM partition, updating the spatial position of the wall condition as
well as its velocity. Therefore, the coupled problem is solved by a classical fixed-
point iteration using a Gauss-Seidel communication pattern. Since small time
steps are required to compute the DEM model anyway, a weak coupling scheme
is used in this work, omitting the computationally expensive interface iterations.
The shared interface is typically initialized at the spatial positions of the coupled
MPM body contour. However, as detailed in examples 5.2.2- 5.2.3, a marginal
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shift of the shared interface in the MPM body is recommended to avoid singu-
larities when applying the forces to the MPM model. This shift ensures that the
forces are applied to the main material flow, thus increasing the numerical sta-
bility of the coupled simulation.
In the DEM solver, spherical particles are used to model the discrete objects,
which provides very efficient contact detection. Particle clustering is used to rep-
resent arbitrarily shaped particles (see examples 5.2.2- 5.2.3). In addition, this
clustering of particles also provides a more accurate interface representation in
the coupled scheme.
In conclusion, the partitioned MPM-DEM coupling scheme is a powerful method
for simulating large strain flow events interacting with discrete objects. It is suc-
cessfully applied to simulate the impact of gravity-driven mass flows on struc-
tures composed of multiple massive blocks. In addition, this methodology can
be used to simulate rocks or other significant obstacles within a mass flow, in-
cluding possible interactions of these discrete objects.
However, for the numerical simulation of highly flexible structures which are be-
ing impacted by mass flows, FEM rather than DEM should be used for the struc-
tural modeling. The partitioned coupling scheme for these discretization meth-
ods is presented in the following chapter.
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CHAPTER 6

MPM-FEM Coupling

For the numerical simulation of gravity-driven mass flows impacting highly flex-
ible protective structures, the advantages of Lagrangian FEM for modeling the
complex structure need to be combined with MPM, which allows modeling of
large strain events of mass flows.
Besides the monolithic coupling schemes of MPM and FEM, just mentioning [85,
84, 35, 6, 81], a partitioned coupling scheme has been introduced in [132]. In this
work, a mortar mapping between non-conforming FEM and MPM meshes was
developed and a FETI (Finite Element Tearing and Interconnect) based coupling
scheme was applied. However, a critical component of this coupling scheme
is the efficient tracking of the interface throughout the simulation. By exploit-
ing the assumption of small interface deformations, it has been successfully ap-
plied to calculate two-dimensional solid structures which are partially modeled
by MPM and FEM. However, for larger interface deformations, the mortar map-
per has to be reconstructed at each time step and material points are likely to
penetrate the FEM domain. Moreover, contact problems of the MPM and FEM
submodels are not considered and the extension to three dimensions is still pend-
ing. Therefore, further enhancements are required to simulate the filling process
of highly flexible protective structures with granular mass flows using a parti-
tioned MPM-FEM coupling scheme.
Starting from the continuous multi-physics problem, the individual discretized
numerical models are derived. Within each model, the respective boundary con-
ditions at the shared interface need to be defined. Subsequently, the solution
schemes introduced in chapter 4 are tailored to the solvers involved and cou-
pling algorithms for weak and strong coupling are formulated accordingly.
The derived coupling algorithms are assessed and evaluated in depth in the ex-
amples in section 6.2. First, the convergence rate for the coupled problem is
proved and the effect of different coupling sequences is studied. In addition,
the coupling of MPM and FEM with different discretizations is discussed in an
illustrative way, highlighting in particular the requirements for the interface dis-
cretization for robust coupling schemes. Within these studies, the impact of the
type of boundary imposition method in the MPM partition, using either penalty
augmentation, perturbed Lagrangian or Lagrange multiplier methods to weakly
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impose the Dirichlet conditions, is also included.
These intensive investigations form the basis for the subsequent examples of
increasing complexity. In these examples, the coupling scheme is also verified
in the dynamic regime and with highly flexible structures. Then, the coupling
methodology is validated with experimental results from the literature, and fi-
nally, the chapter concludes with a complex example of gravity-driven mass flow
impacting a highly flexible protective structure.

6.1 MPM-FEM Coupling Scheme

As illustrated in Figure 6.1a), the continuous problem is decomposed into the
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Figure 6.1: a) Continuous non-overlapping domain decomposition and b) dis-
cretization of the FEM domain with a mesh and MPM domain with
material points, boundary particles and background grid.

FEM domain ΩS with outwards pointing normal vector nS at the interface ΓS
and the MPM domainΩM with normal vector nM at the interface ΓM. Therefore,
the shared interface of the non-overlapping subsystems is defined by

ΓSM = ΓS ∩ΓM, (6.1)

while within each partition boundary conditions are imposed along this inter-
face to ensure the communication among them. Specifying the notation from
chapter 4, all variables belonging to the MPM sub-solver are denoted by the sub-
script M (instead of d), while those belonging to the structural part are indicated
with the subscript S (instead of o) in the following.
Solving the problem in a partitioned manner, each subsystem is discretized in-
dividually, as illustrated in Figure 6.1b). The structural domain ΩS is subdivided
into non-overlapping elements that define the FE-mesh, while in MPM mate-
rial points represent the domain ΩM. In addition, a computational background
grid is introduced for the MPM sub-solver to solve the governing equations, and
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boundary particles are defined at the shared interface to weakly enforce the in-
terface conditions.
In this work, Neumann conditions are defined at the interface in the FEM parti-
tion. Therefore, the interface nodes of the FEM subsystem receive external forces
FS as input and after solving the FEM subsystem result in the nodal interface dis-
placements ûS, which can be expressed by

ûS =SFEM(FS) (6.2)

using the black-box solver notation.
Since a Dirichlet-Neumann partitioning is selected to solve the partitions se-
quentially, the MPM solver receives as input imposed displacements uM at the
boundary particles and outputs the corresponding reaction forces FM after solv-
ing the MPM partition. Thus, the weak imposition of Dirichlet conditions in
the MPM domain is essentially for this coupling scheme and for this purpose
either the penalty augmentation (see section 3.4.3.1), the perturbed Lagrangian
method (see section 3.4.3.3) or the Lagrange multiplier method (see section 3.4.3.2)
can be used. Adapting the black-box solver notation from chapter 4 consequently
yields

FM =SMPM(uM). (6.3)

This coupling scheme is schematically illustrated in Figure 6.2, while the details
are provided in subsections 6.1.1 and 6.1.2
The alternative approach, swapping the interface definitions, is discussed by the
author in [113]. In this case, the Neumann conditions are imposed on the MPM
partition, while Dirichlet constraints are introduced in the FEM partition. De-
pending on the problem considered, this approach can be used alternatively if
both partitions have approximately the same stiffness, or in case the MPM parti-
tion is the stiffer domain, this approach may even increase the convergence rate.
However, the interface definition for the swapped approach is more advanced
when the contact zone and therefore the shared interface changes during the
simulation or is not known a priori. While in MPM the boundary particles can
be defined in space independently from the material points and are therefore
usually aligned with the outline of the FEM domain, the conditions in the FEM
domain need to be defined at the nodes of the FE-mesh boundary. Consequently,
in case of a varying interface topology during the simulation, the coupling needs
to provide further information during the interface iteration about the contact-
ing counterpart to activate only those nodal Dirichlet constraints at the FEM in-
terface, which are in contact with the MPM partition, while releasing the other
nodes.
This issue is solved inherently in the presented approach, where the Neumann
conditions are defined at the FEM partition. As in the MPM domain, the bound-
ary particles enforcing the Dirichlet constraint are defined at the outline of the
FEM body, solely reaction forces result when they interact with the material, as
the contact detection is inherently resolved in the MPM model via the computa-
tional background grid. Therefore, by mapping those reaction forces to the FEM
partition only non-zero external forces result in the contact zone. Therefore, a
varying interface topology can be easily handled and consequently this decom-
position is preferred and utilized in this work.
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Figure 6.2: Illustration of the MPM-FEM coupling scheme.

To solve the interface equations resulting from the partitioning, a fixed-point it-
eration (see section 4.3) is used. For the sequential execution of the involved
solvers, the solver sequence has to be defined, which results in two alternative
coupling algorithms SFEM ◦SMPM and SMPM ◦SFEM presented below.

6.1.1 Coupling Sequence: SFEM ◦SMPM

Starting with the solution of the MPM solver, which has the Dirichlet condition,
the Picard iteration with iteration counter k is defined by

uk+1
M =SFEM ◦SMPM(uk

M) (6.4)
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resulting in the interface residual for the displacements (according to equation 4.8)

rk
u =SFEM ◦SMPM(uk

M)−uk
M = uk+1

M −uk
M (6.5)

formulated at the MPM interfaceΓh
M. For a strong coupled algorithm, as depicted

in Figure 4.3b), this fixed point iteration has to be repeated until the following
equation for the discretized problem is fulfilled

ϵ> ∥rk
u∥p

ndof
(6.6)

where ϵ is a user-defined braking tolerance and ndof is the total number of dofs
at the interface Γh

M[78].
Solving the interface residual equation 6.5 leads to the following coupling se-
quence, which is summarized by the Algorithm 2.

Algorithm 2 Coupling sequence: SFEM ◦SMPM

while t < tend do
k = 0
while ϵ > ∥rk

u∥/
p

ndof do

(1). MPM Solver: Fk+1
M =SMPM(uk

M) ▷ (equation 6.3)

(2). Mapper: Fk+1
S = HT

MSFk+1
M ▷ (equation 6.7)

(3). FEM Solver: ûk+1
S =SFEM(Fk+1

S ) ▷ (equation 6.2)

(4). Mapper: uk+1
M = HMSûk+1

S ▷ (equation 6.8)

(5). Residual: rk
u = uk+1

M −uk
M ▷ (equation 6.5)

if ϵ < ∥rk
u∥/

p
ndof then

(6). Accelerator: uk+1
M = ACC(uk+1

M ) ▷ (equation 6.9)

k = k +1

The MPM subproblem is solved first with prescribed displacements uk
M at the

interface, resulting in updated reaction forces Fk+1
M at the boundary particles.

These forces Fk+1
M are then mapped to the nodes of the FEM interface as external

forces Fk+1
S by

Fk+1
S = HT

MSFk+1
M (6.7)

using a conservative mapping approach (see section 4.5) for the data transfer. For
FSI or other multi-physics problems, it may be necessary to reconstruct the map-
ping matrix within each time step if the topology of the interface nodes changes.
Within the proposed mapping algorithm however, the mapping matrix only is re-
quired to be calculated once in the initial time step, since the boundary particles
are moving according to the nodes of the FE-mesh and therefore their connectiv-
ity does not change during the computation. Therefore, the superscript k for the
iteration counter is omitted for the mapping matrix.
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An important aspect for this coupling sequence to construct the mapping ma-
trix is that MPM is the origin and FEM is the destination and therefore no shape
function values are available at the MPM interface. Hence, instead of the nearest
element the barycentric mapper has to be used if an interpolation of the nodal
values to the destination nodes is desired.
With the external forces obtained at the interface of the FEM solver, the structural
domain is solved, resulting in updated interface displacements ûk+1

S .
These interface displacements are mapped by

uk+1
M = HMSûk+1

S (6.8)

back to the MPM partition as imposed displacements uk+1
M before the residual

rk
u defined by equation 6.5 is calculated. In case the breaking criteria defined by

equation 6.6 is fulfilled, the interface iteration loop stops.
Otherwise, a convergence accelerator can be applied to modify the imposed dis-

placements uk+1
M at the boundary particles by

uk+1
M = ACC(uk+1

M ) (6.9)

before they are passed to the MPM solver in the next iteration loop. The cal-
culation is repeated until the breaking criteria (equation 6.6) is fulfilled, which
ensures that the interface transmission conditions are satisfied.
In contrast to the strong coupling scheme the iteration procedure is neglected in
the weak coupling algorithm. Consequently, the calculation procedure reduces
to the Algorithm 3, omitting the iteration counter k. Furthermore, the calcula-

Algorithm 3 Weak coupling sequence: SFEM ◦SMPM

while t < tend do
(1). MPM Solver: FM =SMPM(uM) ▷ (equation 6.3)
(2). Mapper: FS = HT

MSFM ▷ (equation 6.7)
(3). FEM Solver: ûS =SFEM(FS) ▷ (equation 6.2)
(4). Mapper: uM = HMSûS ▷ (equation 6.8)

tion of the residual is skipped and convergence accelerators are superfluous. A
predictor step to calculate an initial guess for the subsequent time step is not
considered within this work.

6.1.2 Coupling Sequence: SMPM ◦SFEM

Alternatively, the coupling sequence can start with the execution of the FEM sub-
solver, updating the displacement first by

ûk+1
S =SFEM(Fk

S ) (6.10)

before calculating the MPM model

Fk+1
M =SMPM(uk+1

M ) (6.11)
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which leads to updated reaction forces Fk+1
M . Therefore, this coupling sequence

results in the interface residual for the forces (according to equation 4.10)

rk
p =SMPM ◦SFEM(Fk

S )−Fk
S = Fk+1

S −Fk
S (6.12)

at the FEM interface Γh
S . For a strong coupled algorithm, this iteration has to be

performed until the breaking criteria defined by

ϵ>
∥rk

p∥p
ndof

(6.13)

is met while ndof is the total number of dofs at the FEM interface Γh
S . To accel-

erate the interface iteration loop, the forces for the subsequent iteration can be
modified by

Fk+1
S = ACC(Fk+1

S ) (6.14)

utilizing a convergence accelerator as presented in section 4.3.2 and section 4.4.
The complete calculation for the strong coupling sequence is summarized in Al-
gorithm 4.

Algorithm 4 Coupling sequence: SMPM ◦SFEM

while t < tend do
k = 0
while ϵ > ∥rk

p∥/
p

ndof do

(1). FEM Solver: ûk+1
S =SFEM(Fk

S ) ▷ (equation 6.10)

(2). Mapper: uk+1
M = HMSûk+1

S ▷ (equation 6.8)

(3). MPM Solver: Fk+1
M =SMPM(uk+1

M ) ▷ (equation 6.11)

(4). Mapper: Fk+1
S = HT

MSFk+1
M ▷ (equation 6.7)

(5). Residual: rk
p = Fk+1

S −Fk
S ▷ (equation 6.12)

if ϵ < ∥rk
p∥/

p
ndof then

(6). Accelerator: Fk+1
S = ACC(Fk+1

S ) ▷ (equation 6.14)

k = k +1

In contrast to the previous coupling sequence, the FEM interface is now the ori-
gin partition, since it is executed first. Therefore, the nearest element mapper
can be applied as an alternative to the nearest neighbor mapper to construct the
mapping matrix HMS, which is required to directly transfer the displacements
by equation 6.8, while for the conservative mapping approach the transposed is
used to map the forces by equation 6.7.
Analogous to the previous coupling sequence, the weak coupling algorithm is
obtained omitting the iteration counter k, as only one iteration per time step is
performed. The resulting scheme is summarized in the Algorithm 5.
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Algorithm 5 Weak coupling sequence: SMPM ◦SFEM

while t < tend do
(1). FEM Solver: ûS =SFEM(FS) ▷ (equation 6.10)
(2). Mapper: uM = HMSûS ▷ (equation 6.8)
(3). MPM Solver: FM =SMPM(uM) ▷ (equation 6.11)
(4). Mapper: FS = HT

MSFM ▷ (equation 6.7)

6.2 Verification and Application

In this section, the MPM-FEM coupling scheme is systematically assessed and
evaluated to prove its accuracy and demonstrating its ability to simulate the im-
pact of gravity-driven mass flows on highly flexible protective structures. For this
purpose, various examples of increasing complexity are examined and presented
below, highlighting their respective objectives and the concluding implications
for the coupled algorithm.

6.2.1 Static Cantilever

The first example considers a linear elastic cantilever beam under dead load. The
beam has a total length of 8m, a cross-section of A = 1× 1m2, and a density of
ρ = 1000kg/m3 and is to be solved in a partitioned manner. Therefore, as de-
picted in Figure 6.3 the beam is divided into two partitions with a length of 4m
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b) triangles
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Figure 6.3: System setup of cantilever under dead load solved in partitioned
manner.

each and a shared interface ΓSM.
The structural part with the clamped support is modeled with FEM while the
right part of the beam is modeled with MPM. As a Neumann condition is defined
at the shared interface within the FEM partition for the introduced coupling, the
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FEM partition cannot be defined at the loose end of the beam as this would lead
to a kinematic system for the FEM subsystem. Instead, a Dirichlet constraint
is required at the outer end of the cantilever. Therefore, MPM with a Dirichlet
constraint at the shared interface is used to model the right subsystem.
For both models, a St. Venant Kirchhoff plane stress material law with Young’s
modulus E = 9GPa and Poisson’s ratio ν= 0.0 is assumed.

6.2.1.1 Convergence Rate

To solve the problem, both subsystems are discretized independently defining
a mesh in the FEM partition, while material points and a computational back-
ground grid are defined for the MPM model, which is depicted in the detail of
Figure 6.3. Either quadrilateral or triangular elements are considered for the FE-
mesh and the MPM background grid. Additionally, boundary particles are in-
troduced at the shared interface within the MPM model, imposing the Dirichlet
constraint. Within this study, this constraint is imposed either by penalty aug-
mentation (see section 3.4.3.1) with β = 1e15 for quadrilateral and β = 1e13 for
triangular background grid elements, the perturbed Lagrangian condition (see
section 3.4.3.3) with constant β = 1e25 or with Lagrange multipliers (see sec-
tion 3.4.3.2) to study the effect of the different types of boundary imposition
methods in the coupled simulation.
Moreover, the accuracy and efficiency of the coupling sequences described by
Algorithm 2 and Algorithm 4 are validated and compared. Therefore, each dis-
cretized system is solved twice, while either the MPM sub-solver is executed first
following Algorithm 2 or alternatively calculating first the FEM partition accord-
ing to Algorithm 4 before the MPM subsystem is solved. For both schemes, the
Aitken relaxation scheme (see section 6.2.4) is applied, which modifies the parti-
cle displacement in the former scheme, whereas the structural loads are adapted
in the latter scheme. For the data transfer, the barycentric mapper is utilized in
the first coupling sequence, whereas the nearest element mapper is selected in
the second algorithm. Therefore, the subsequent solver obtains the interpolated
interface displacements from the origin, whereas the forces are mapped using
the conservative mapping approach (details are provided in section 4.5).
The effects of these model assumptions are examined in a convergence rate anal-
ysis. Therefore, the numerical results for the vertical displacement at the center-
line of the beam are compared to the analytical Timoshenko beam solution. The
displacement values are evaluated at point A, which is located at the shared in-
terface, and at the tip of the cantilever, which is marked as point B in Figure 6.3.
For the convergence rate, the numerical solutions are calculated for different
mesh sizes h, assuming the same element type and size for the FE-mesh and the
MPM background grid. For the initialization of the material points within each
MPM submodel, a structured quadrilateral body mesh with half the background
grid element size is chosen, placing 16 material points each. The initialization of
the boundary particles is also guided by the body mesh, defining two boundary
particles within each line segment at the interface. Furthermore, these boundary
particles are initialized to be on the centerline of the background grid elements,
as shown in the detail of Figure 6.3, which exemplifies the model discretization
for an element size of 0.05m.
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In Figure 6.4, the resulting plots for the convergence rate analysis are collected.
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Figure 6.4: Convergence rate of cantilever. Impact of quadrilateral and trian-
gular elements to discretize the coupled problem, the coupling se-
quence (Alg.: 2 or Alg.: 4) and boundary imposition types (penalty,
perturbed Lag., Lagrange) in the MPM sub-solver are investigated.

Hence, within each diagram the relative error of the numerical solution in com-
parison to the analytical result is plotted against the inverse mesh size 1/h. The
diagrams in the first row show the results obtained by penalty augmentation,
while the second and third row provide the solutions when imposing the Dirich-
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let constraints with the perturbed Lagrangian method or the Lagrange multipli-
ers, respectively. In order to make the results clearer, the results are presented
in separate plots. Thus, the first column of the graphs provide the results for the
vertical displacement wA at point A, whereas the results for the vertical displace-
ment wB at point B are collected in the second column.
In the third column of the diagram collection in Figure 6.4, the relative error of
the resulting bending moment MA compared to the analytical result is plotted
against the inverse mesh size. For the calculation of the numerical bending mo-
ment at the shared interface, the external point loads at the FEM interface are
multiplied with their respective lever arms to the centerline of the cantilever be-
fore being summed.
Consistent with the conclusion of section 3.5, the comparison of the solutions
shows that the types of boundary constraints can be used interchangeably. This
of course assumes the proper selection of the problem dependent penalty factor
β in case of penalty augmentation.
Furthermore, it is demonstrated that both coupling sequences (Algorithm 2 and
Algorithm 4) yield the same accuracy for the solution of the strong coupled sys-
tem, thus allowing their interchangeable use.
Within all plots in Figure 6.4, a quadratic convergence rate is obtained, indepen-
dent of the type of boundary imposition method utilized in the MPM sub-solver
and the coupling sequence chosen. Furthermore, as expected, the discretization
of the subproblem with quadrilateral elements provides a higher accuracy for the
resulting displacements compared to the discretization with triangular elements.
However, in case of the quadrilateral elements, the convergence rate of the dis-
placement at point A decreases slightly with mesh refinement. This effect arises
from the imposition of the clamped support on the left side of the beam in com-
bination with the element technology. To demonstrate this, the convergence rate
for the monolithic FEM solution is added to the plots in Figure 6.4, which also
shows the slight decrease of the convergence rate for the displacement at point
A in case of quadrilateral elements.
In case of the discretization with triangular elements, this effect is not present.
Furthermore, for triangular elements, the convergence rate for the monolithic
and the coupled solution are very similar, whereas in case of quadrilaterals the
monolithic approach is more accurate. This discrepancy arises from inaccuracies
in the MPM sub-solver due to particle integration, which in case of quadrilaterals
requires more material points to improve the numerical integration.
For the resulting bending moment, however, a slightly higher accuracy is ob-
tained for the triangular elements compared to the discretization of the coupled
problem with quadrilateral elements. This effect is also related to the MPM sub-
solver. As detailed in section 3.4.3, the reaction forces at the boundary particles
are calculated by interpolating the nodal reaction forces based on an area weight-
ing procedure. Therefore, in case of triangular elements this interpolation results
in a more precise distribution of the reaction forces at the boundary particles,
which subsequently is the basis to calculate the resulting bending moment.
In Figure 6.5, the forces at the shared interface are presented and the distribution
agrees well with the expected solution. Since the number of boundary particles
at the MPM interface Γh

M is larger than the number of nodes at the FEM interface
ΓSh the individual reaction forces at the boundary particles in the MPM partition
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Figure 6.5: Reaction forces at the MPM interface and point loads at the FEM
partition illustrated for a mesh size of 0.05m for both quadrilateral
and triangular meshes.

are smaller compared to the forces which are imposed as point loads to the FEM
counterpart. Hence, the overall balance of forces at the interface is fulfilled. In
agreement with the convergence analysis, the resulting forces at the interface are
very similar regardless of the type of boundary imposition method used in the
MPM sub-solver and the utilized element type to discretize the problem.
In summary, this example shows that quadratic convergence can be achieved in
the coupled analysis of MPM and FEM. This is demonstrated for quadrilateral
and triangular elements which are used to discretize the individual subsystems.
It is also highlighted that penalty, perturbed Lagrangian, and Lagrange multiplier
method can be used interchangeably in the partitioned coupling scheme as long
as the requirements described in section 3.4.3 are met. Furthermore, this study
shows that either coupling sequence, Algorithm 2 and Algorithm 4, can be chosen
to achieve the same level of accuracy.

6.2.1.2 Stiffness Ratio

In the preceding example, the two partitions of the cantilever depicted in Fig-
ure 6.4 are assumed to be equivalent. In this study however, the Young’s modulus
of the MPM partition EMPM is varied, while the stiffness of the FEM partition
EFEM is kept constant. Due to these modeling assumptions, the interface dis-
placement for the cantilever is kept constant while simultaneously the stiffness
ratio of the involved partitions can be varied. Hence, this allows to investigate
the impact of the stiffness ratio on the number of interface iterations required to
achieve the interface equilibrium.
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In analogy to the previous study, the study is performed for quadrilateral and tri-
angular elements used to discretize the problem. Furthermore, the effect of the
coupling sequence is studied. Hence, the strong coupled problem is solved either
according to Algorithm 2 or Algorithm 4. Within the MPM partition, the weak
imposition of the Dirichlet constraints is again varied, analyzing the results for
penalty augmentation, perturbed Lagrangian method, and Lagrange multiplier
imposition. Again, the results are presented in separate graphs to make the re-
sults easier to understand. In case of penalty augmentation, β= 1e15 is selected,
whereas β= 1e25 is set for the perturbed Lagrangian method.
The individual numerical models for the subproblems are created in accordance
with the preceding example, considering a constant mesh size of 0.05m and the
results are summarized in Figure 6.6.
The same pattern of results is obtained for all numerical models. As expected, the
element type used to discretize the models has a minor influence on the num-
ber of coupling iterations. This also applies for the type of boundary imposition
method selected in the MPM submodel, assuming an appropriately calibrated
penalty factor. Obviously, factors chosen too high will introduce numerical errors
into the system, negatively affecting interface convergence or even destabilizing
the coupling algorithm.
The results in Figure 6.6 also show that the coupling Algorithm 2 performs slightly
better than Algorithm 4, but the difference is not significant.
The stiffness ratio of the involved sub-solvers, however, has a great impact on the
required coupling iterations to solve the partitioned problem. While for models
with equal stiffness about 20 interface iterations are required, a significant de-
crease of the required interface iterations is observed when decreasing the stiff-
ness of the MPM partition. However, if the difference in stiffness becomes too
large, an increase in the coupling iterations is again observed. This effect is also
influenced by the Aitken relaxation scheme, used in its default configuration for
this example, as it reaches its upper bound of 2.
In contrast to reducing the stiffness in the MPM partition, increasing EMPM rela-
tive to EFEM greatly increases the number of coupling iterations required to solve
the partitioned system, and the interface equilibrium limits are quickly reached.
This confirms the well-known principle that it is advantageous to impose the
Dirichlet constraint on the weaker subsystem when solving a multi-physics prob-
lem in a partitioned manner.

6.2.1.3 Interface Discretization

To solve the partitioned problem, data exchange at the shared interface is of
paramount importance. Therefore, the discretizations of the involved subsys-
tems have to be adapted to ensure a physical distribution of forces and displace-
ments at the interface. Especially the applied mapping technique in combina-
tion with the individual discretizations of the interfaces are crucial in this regards.
Within this work, interpolation-based mappers are utilized which are detailed in
section 4.5. In addition, conservative mapping is selected. Consequently, the
mapping matrix is constructed for the interface displacements, while its trans-
pose is used for the force transfer.
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Figure 6.6: Necessary coupling iterations plotted against varying ratio of
Young’s modulus EMPM and EFEM of MPM and FEM partition, dis-
tinguishing the coupling Algorithm 2 and Algorithm 4. The re-
sults are displayed for quadrilateral and triangular elements and
the boundary imposition types (penalty, perturbed Lag., Lagrange)
within the MPM partition.

Therefore, regardless of the chosen coupling sequence (Algorithm 2 or Algorithm 4),
a finer interface discretization at the MPM sub-solver is required to subsequently
ensure a physical distribution of the forces at the FEM interface after the map-
ping process.

For the sake of illustration, two models are created with distinctly different dis-
cretizations, as illustrated in Figure 6.7. Model I) has a comparatively coarse dis-
cretization for the FEM model, while a fine discretization is selected for the MPM
model. The interface in the MPM partition is defined by boundary particles, sev-
eral of which are initialized within each background grid element to properly im-
pose the Dirichlet conditions.
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Figure 6.7: Two models to demonstrate the effect of the interface discretiza-
tion. Model I has a coarse mesh for FEM and fine discretization of
MPM model while model II has a fine FE-mesh and coarse MPM
discretization.

Therefore, due to this discretization, all nodes at the FEM interface receive a
point load as external load by mapping the reaction forces of the boundary par-
ticles, which is illustrated in Figure 6.8.

FEM

FEM: point loads MPM: reaction forces

MPM

Figure 6.8: Detail of the reaction forces at the MPM interface and the subse-
quent point loads at the FEM interface for model I. All nodes at the
FEM interface are affected by the coupling.

However, this is not the case if the FEM interface discretization is finer com-
pared to the MPM partition, which is illustratively explained by model II) (see
Figure 6.7). For this model, a very fine discretization is selected for the FEM par-
tition, while only a few boundary particles are initialized in the MPM model in
order to enforce the Dirichlet constraints in the coarsely discretized MPM model.
As a consequence, the FEM interface nodes receive only a few singular forces at
some interface nodes, while the remaining nodes are not affected by the coupling
conditions, as shown in Figure 6.9.
Hence, due to the selected interface discretizations in combination with the map-
pers, which locally interpolate the interface data, a non-physical distribution of
the forces at the FEM interface is obtained, which introduces singularities in the
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Figure 6.9: Detail of the reaction forces at the MPM interface and the subse-
quent point loads at the FEM interface for model II. Only few nodes
at the FEM interface are affected by the coupling.

FEM model. Furthermore, since the interface data is not properly mapped, re-
sulting in interface nodes that are not affected by the coupling, the solvability of
the coupled problem is negatively affected.
Consequently, it is essential for a robust numerical model to select a finer inter-
face discretization of the MPM model in comparison to the FEM counterpart. For
the numerical examples in this thesis, this is always the case anyway, since sev-
eral boundary particles within each background grid element in the MPM model
are required for the boundary imposition. Therefore, even if the same element
size is selected for the FE-mesh and the MPM background grid, the number of
boundary particles will still be larger compared to the number of nodes at the
FEM counterpart, ensuring that the interface data is mapped properly.

6.2.2 Dynamic Beam

A dynamic linear elastic 2D plane stress beam subjected to self-weight is consid-
ered for the second verification example. Thus, in addition to the previous exam-
ples, the partitioned coupling scheme is now applied to a dynamically vibrating
system. This verifies the correct data exchange in the coupled simulation for a
dynamic system where the spatial position of the interface changes with time.
As in the previous example, the beam has a total length of 8m, a cross-section of
A = 1× 1m2 and a density of ρ = 1000kg/m3 and is divided into two partitions
of 4m length each. For both subsystems, a Young’s modulus of E = 90MPa and
Poisson’s ratio of ν= 0.0 are considered.
The beam is clamped on both sides resulting in a symmetric system, which is
illustrated in Figure 6.10.
For the calculation of the coupled system, each subsystem is discretized inde-
pendently. As for the static beam, an element size of 0.05m is selected to dis-
cretize the FEM model and the background grid for the MPM model with quadri-
lateral elements. To initialize the material points, a quadrilateral body mesh is
created with element size of 0.01m, placing 16 material points each. Thus, errors
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Figure 6.10: System setup of the linear elastic dynamic beam, clamped on
both sides modeled with MPM and FEM.

due to cell-crossing and bad integration in the MPM model are negligible due to
the fine material point discretization.
At the shared interface, boundary particles are created in the MPM model, initial-
izing 5 particles within each background grid element to ensure a good interface
data transfer. These mass-less particles are initialized at the centerline of the
background grid elements as depicted in the detail of Figure 6.3. They impose
the Dirichlet condition either by penalty augmentation assuming β = 1e14, the
perturbed Lagrangian method withβ= 1e25, or the Lagrange multiplier method.
To solve the coupled problem, the FEM solver is executed first and a strongly
coupled scheme according to Algorithm 4 is selected. Hence, the nearest ele-
ment mapper (see section 4.5) can be applied to transfer data between the inter-
faces. To accelerate the interface convergence the MVQN convergence accelera-
tor according to section 4.4 is selected, which modifies the forces before they are
applied to the structure as external forces. The vibration of the beam is in total
calculated for 1s with a time step of ∆t = 1e −3s.
During the computation, the vertical displacement w at point A is observed and
plotted over time in Diagram 6.11 considering the different types of boundary
imposition methods. For comparison, the given problem depicted in Figure 6.10
is also calculated as a monolithic FEM model and the displacement at point A is
added to the plot in Figure 6.11.
The results of the monolithic and partitioned system are in perfect agreement,
confirming the accuracy and methodology of the partitioned approach also for
dynamic problems. Furthermore, since the penalty factor is chosen sufficiently
large, all boundary imposition methods can be used interchangeably to obtain
the expected solution.

6.2.3 Cylinder Sliding along Rigid Structure

As illustrated in Figure 6.12, a cylinder sliding down an inclined slope of 60◦ due
to gravity is considered to verify the partitioned coupling scheme of MPM and
FEM in dynamic scenarios. In addition to the previous dynamic example, the
shared interface varies in time as the contact point of the sliding cylinder with
the inclined plane changes during the simulation.
The considered cylinder has a radius of r = 0.5m, a height of h = 1m and a density
of ρ = 7800kg/m3. The material model for the cylinder is assumed to be linear
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Figure 6.11: The vertical displacement at point A of the dynamic beam sub-
jected to self-weight. Comparison of monolithic FEM solution
and partitioned MPM-FEM.

elastic with E = 2e9Pa and ν= 0.0 for the Young’s modulus and the Poisson’s ratio,
respectively.
While the sliding cylinder is modeled with MPM, the inclined slope with dimen-
sion 6×0.5×1 m3, which is fixed at the bottom, is modeled with FEM, assuming a
linear elastic material with a significantly higher Young’s modulus of E = 2e12Pa,
while keeping the Poisson’s ratio at zero. Therefore, compared to the cylinder, the
slope can be considered rigid, allowing for a comparison between the numerical
solution of the cylindrical displacement and the analytical one.
This kind of example is used in various literature for verification purposes, just
mentioning [12] introducing an contact algorithm in MPM, [34] and [117] to ver-
ify the penalty and Lagrange multiplier imposition of non-conforming boundary
conditions in MPM, and [81], which are using a hybrid contact method to couple
MPM and FEM.
Two different numerical models are created for the MPM partition. The first
MPM model uses a structured quadrilateral background grid with size 0.12m
combined with an unstructured triangular body mesh with size 0.06m to initial-
ize 3 particles per element. At the interface, boundary particles are introduced
with a distance of 0.06m along the upper edge of the slope. The discretization
is selected such that the interface and thus the boundary particles are initialized
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Figure 6.12: System of cylinder sliding down inclined slope.

within the MPM background grid elements as depicted in Figure 6.12 a), which
requires a weak imposition of the boundary conditions in the MPM model. For
the second MPM model, a structured triangular background grid with size 0.12m
is utilized, as depicted in Figure 6.12 b), while maintaining the other model pa-
rameters.
FEM is used to discretize the slope selecting a structured quadrilateral mesh with
a size of 0.12m for the elements. Thus, two numerical models for the given prob-
lem are created by coupling it to the two different MPM models. The latter exam-
ple, which has a triangular background grid in the MPM model and a quadrilat-
eral mesh in the FEM model, further verifies the coupling scheme also for differ-
ent element types discretizing the partitions involved.
The cylinder is initialized in direct contact with the slope, which allows a coarse
discretization of the numerical models. However, if the material were to ap-
proach the interface during simulation time, a finer background grid discretiza-
tion of the MPM model would be necessary to calculate the resulting contact
forces (see also section 3.5.3).
The Dirichlet boundary in the MPM model is imposed either by penalty augmen-
tation withβ= 1e15 or by the Lagrange multiplier method. For the solution of the
overall problem, a strong coupled solution scheme is selected executing the in-
dividual solvers according to Algorithm 4. Alternatively, a weak coupling scheme
according to Algorithm 5 can be applied, since the structural displacements in
this example are negligibly small. The calculation is performed for 1s with a time
step of ∆t = 0.001s.
In Figure 6.13 the numerical results at times t = 0s, t = 0.5s and t = 1s are dis-
played illustrating the point loads imposed at the FEM model as well as the re-
sulting displacements at the top of the slope induced by the weight of the sliding
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Figure 6.13: Numerical results of the cylinder which slides down the inclined
slope visualizing the loads and the resulting displacements at the
FEM partition induced by the cylinder modeled with MPM.

cylinder. As expected, the displacements are very small due to the numerical
rigidity of the slope, but it still demonstrates the exchange of the interface data
in the partitioned scheme.
In Diagrams 6.14 the numerical displacements calculated for the cylinder are
plotted against the analytical solution. While Diagram 6.14a) shows the results
for the quadrilateral background grid in MPM, Diagram 6.14b) displays the re-
sults obtained with the triangular background grid, both in combination with a
quadrilateral mesh in the FEM model.
The displacements show a very good agreement, independent of the background
grid element type in the MPM model. Furthermore, both the penalty and the La-
grange multiplier imposition of the non-conforming boundary condition within
the MPM model predict the solution almost equivalently.
Since the gravitational force in the numerical model is fully applied in the first
time step, a harmonic vibration of the elastic cylinder is induced. To numerically
damp these structural deformations, Rayleigh damping is applied to the MPM
model with the parameters αd = 0.0 and βd = 0.01. The results obtained with
Rayleigh damping are labeled damped, while those without damping are labeled
undamped. The considered damping has no effect on the resulting displacement
of the cylinder, as shown in Diagram 6.14.
However, there is a huge effect of the applied damping on the reaction forces,
which are mapped to the FEM partition as external point loads, as illustrated in
Diagram 6.15 and Diagram 6.16 for the respective numerical models.
As shown in the plots, significant oscillations of the reaction forces are present
for both types of boundary imposition methods in case of quadrilateral as well
as triangular background grid elements. This agrees well with the expected nu-
merical solution due to the dynamic calculation of the example combined with
the sudden enforcement of the gravity load. As the simulation progresses, the
magnitude of the oscillations in the reaction forces decreases and converges to
the static load expected from physics.
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Figure 6.14: Comparison of the cylindrical displacements with analytical so-
lution for both numerical models. Values labeled with damped
consider Rayleigh damping while it is not considered for the un-
damped cases.

In numerical models with perfect energy conservation, the magnitude of the os-
cillations is not expected to decrease during the simulation. However, in this
particular example, a rather coarse discretization of the MPM model was cho-
sen, which is the main cause of the energy dissipation.
However, the purpose of this particular example is not to prove energy conserva-
tion. Rather, it is to prove that the reaction forces calculated at the MPM parti-
tion converge to the static load expected from physics by damping the dynamic
effects.
The analytic contact force FC induced by the weight of the cylinder and acting
normal to the inclined slope can be calculated by

FC = r 2 ·π ·h ·ρ · g ·cos(60◦) = 30.05kN (6.15)

and is added to the Diagrams 6.15 and 6.16, respectively. The comparison with
the numerical results is therefore as expected, showing the oscillations of the
forces around the expected static load and converging towards this value due
to damping effects. To accelerate the damping of the dynamic effects Rayleigh
damping is applied, which perfectly demonstrates that the contact forces con-
verge to the expected analytical solution.
The numerical solutions obtained with Rayleigh damping are demonstrating that
the expected solutions can be obtained with either penalty augmentation or La-
grange multiplier imposition of the interface condition in the MPM partition.
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Figure 6.15: Comparison of the contact forces with analytical solution for
static loading condition for structured quadrilateral background
grid and varying boundary imposition types in the MPM model.
Values labeled with damped consider Rayleigh damping while it
is not considered for the undamped cases.

Therefore, in each of the following examples, only one of the types of boundary
imposition methods is considered.
This example also showed that quadrilateral and triangular background grid el-
ements can be used interchangeably and coupled respectively to the FEM coun-
terpart. Furthermore, the comparison of the damped and undamped numerical
solution highlights the effect of the applied Rayleigh damping, which does not
affect the kinematic values of the sliding cylinder, but effectively damps the os-
cillations of the contact forces.

6.2.4 Cylinder Sliding along Flexible Structure

This example adds another level of complexity by considering the sliding cylinder
on a highly flexible structure. As depicted in Figure 6.17, a horizontal flexible
cable spanned between two supports is considered, which is loaded by a cylinder
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Figure 6.16: Comparison of the contact forces with analytical solution for
static loading condition for structured triangular background grid
and varying boundary imposition types in the MPM model. Val-
ues labeled with damped consider Rayleigh damping while it is
not considered for the undamped cases.

Young’s modulus Poisson’s ratio density

cylinder E = 2.0e7Pa ν= 0.0 ρM = 7000
kg
m3

structure E = 2.1e10Pa ν= 0.0 ρS = 7850
kg
m3

Table 6.1: Material properties of the flexible structure and the sliding cylinder.

on the left. Due to the self weight of the cable and the weight of the cylinder, the
cable deforms initiating the cylinder to slide along the flexible structure.
Analogous to the previous example, the considered cylinder has a radius of r = 0.5m
and a height of h = 1.0m. It is modeled with MPM assuming a linear elastic ma-
terial model.
The cable structure with a total length of L = 10.0m is modeled with FEM. It has
a cross-section of A = 0.001m2 assuming also a linear elastic material. The ma-
terial properties of both systems are summarized in Table 6.1.
To solve the given problem with the partitioned MPM-FEM coupling method-
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Figure 6.17: Initial system setup of the cylinder modeled with MPM initialized
on the left of the horizontal flexible cable which is modeled with
FEM.

ology, both models are discretized independently, while the shared interface in
both models is initialized at the position of the undeformed cable structure.
A structured quadrilateral background grid with an element size of 0.05m is se-
lected for the MPM calculation, while the material points are initialized by an un-
structured triangular body mesh with element size of 0.01m, placing 3 particles
within each element. At the shared interface 500 uniformly distributed boundary
particles are initialized, introducing a slip Dirichlet condition in the MPM model.
The constraint is imposed by Lagrange multiplier method in this example.
In order to accurately model the deformed shape of the cable due to the induced
load from the sliding cylinder, the cable is subdivided into 30 equally sized el-
ements. To avoid a singular stiffness matrix at the beginning of the simulation
due to the undeformed geometry of the cable elements, a negligible pre-stress of
1N/m2 is considered.
For the calculation of the complete system a time step of ∆t = 1e −4s is consid-
ered and Algorithm 4 is utilized to solve the strongly coupled problem. Further-
more, Rayleigh damping is considered to damp the dynamic effects induced by
the sudden initialization of the gravity loading.
A peculiarity of this example is that the geometry and shape of the shared inter-
face changes with time. Consequently, the normal direction, which defines the
slip direction of the cylinder, changes direction and must be adjusted according
to the cable deformation. Therefore, in addition to the interface displacements
and forces which are exchanged at the shared interface, the normals defined at
the cable elements in the FEM model need to be transferred to the boundary par-
ticles in the MPM partition. Hence, before the MPM model is solved the normals
at the boundary particles are updated from the FEM model.
The problem is computed in total for 10s, and the results for certain intermediate
steps are displayed in Figure 6.18.
As expected, the cable deforms due to the self-weight of the cylinder and there-
fore the cylinder starts to slide along it. Due to the applied damping, the cylinder
slides toward the right support for about 6s before stopping and sliding back to
the middle of the cable, where it finally arrests.
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Figure 6.18: Numerical results of sliding cylinder on the flexible structure at
specific times.

To verify the results of the numerical simulation, the balance of forces at the cable
structure is investigated. First, the sum of the vertical reaction forces at the FEM
cable structure is compared in Diagram 6.19 with the theoretical reference solu-
tion to ensure that the self-weight of the cylinder modeled with MPM is correctly
transferred to the FEM cable elements.
It is observed that after a dynamic force peak caused by the sudden loading of
the structure, the reaction forces converge to the expected theoretical solution,
which is defined by

Fz,g es = r 2 ·π ·h ·ρM · g + A ·L ·ρS · g = 54.70kN. (6.16)

Since the vertical forces are correctly transferred, the horizontal reaction forces
are to be analyzed in a second step. For this purpose, a simplified structural
model as depicted in Figure 6.20 is used to analytically calculate the horizontal
reaction forces of the cable structure.
Hence, the reference solution assumes that the forces induced by the cylinder are
concentrated in one vertical force Fg,cyl equal to the total weight of the cylinder.
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Figure 6.19: Comparison of the vertical reaction forces of the FEM cable with
the analytic static solution.

L = 10.0 m
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Fg,cyl = 53.93 kNHl
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Hr

Vr

Figure 6.20: Structural model to calculate the analytic reference solution.

The pre-stress and self-weight of the cable are neglected because they are minor
in comparison to the force induced by the cylinder.
Therefore, the horizontal force Hl at the left support can be calculated by

Hl =− 1

f
·

Fg,cyl · (L−x) ·x

L
(6.17)

assuming that f is the vertical deflection at the location x where the vertical force
Fg,cyl acts. The position of the load x and the deflection f are determined from
the movement of the center of the cylinder.
The comparison of the left reaction force obtained from the simulation and the
theoretical one is plotted in Diagram 6.21.
Since the deflection of the cable is zero at the initialization of the system, the
reference solution is not defined in the very first step and then approaches from
infinity. In the numerical model, on the other hand, a negligible pre-stress is
applied providing a non-singular stiffness matrix at the beginning, and due to
the applied loads, the reaction force increases at the beginning of the simulation.
After the initiation, a small difference between the two curves is observed until
they approach the same solution. The deviation of the curve is due to the fact that
the position x and the deflection f are obtained from the motion of the cylinder
center. As illustrated in the left Figure 6.22, the inclination of the cable elements
on the left side of the cylinder is steep at the beginning of the simulation. There-
fore, the loads induced by the cylinder, labeled by Fg,cyl,sim. in the Figure 6.22,
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Figure 6.21: Comparison of the horizontal reaction force Hl of the FEM cable
at the left support with the analytic static solution.

Fg,cyl,anal.Fg,cyl,sim.
Fg,cyl,sim. ≈ Fg,cyl,anal.

t = 0.5s t = 2s

Figure 6.22: Direction of the resulting force dependent on the inclination of
the cable.

are acting normal to the inclined elements. For the simplified theoretical solu-
tion, however, the force is assumed to act in the vertical direction based on the
center of the cylinder. Consequently, the assumed force labeled by Fg,cyl,anal. in
Figure 6.22 has a different direction and an increased distance to the support.
Therefore, the theoretical approach overestimates the horizontal reaction force
at the beginning of the simulation.

After about 2s of simulation time, the inclination of the cable elements is of minor
importance, as visualized in the Figure 6.22(right). Therefore, the direction and
position of the actual forces Fg,cyl,sim. and the approximated ones Fg,cyl,anal. are
nearly identical. Hence, a good agreement of both solutions (see Diagram 6.21)
is obtained proving that the interface data is correctly transferred.

Furthermore, this example demonstrates that the proposed approach can effi-
ciently solve complicated loading scenarios on flexible structures. This is partic-
ularly interesting when instead of elastic bodies, granular material or fluids cause
the deformations of the flexible structure.
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6.2.5 Cylinder Impacting Flexible Structure

In section 3.5.3 the impact of an elastic cylinder on a rigid wall is intensively stud-
ied. To verify the MPM-FEM coupling methodology, this example is extended by
replacing the rigid boundary with a flexible structure.
As illustrated in Figure 6.23, the elastic cylinder with radius r = 0.5m and height
h = 0.3m has a prescribed velocity in the vertical direction. The cylinder is mod-
eled with MPM assuming a linear elastic material. The considered material pa-
rameters are equivalent to the example with the rigid boundary (see section 3.5.3)
and are therefore summarized in Table 3.2.

3.0 m

r = 0.5m

u̇ = 1 m
s

MPM
material points
background grid
boundary particles

FEM
cable elements

Figure 6.23: System setup of the cylinder modeled with MPM impacting a flex-
ible structure with FEM. The details show two different MPM dis-
cretizations which are investigated.

The flexible structure that replaces the rigid boundary is modeled with FEM us-
ing cable elements. A length of 3.0m and a cross-section of 0.001m2 are selected
for the structure, while the elastic object impacts at its center. A linear elastic ma-
terial is selected for the cable elements, while the parameters, which are identical
to those of the previous example, are summarized in Table 6.1.
For the calculation of the FEM model, the flexible structure is subdivided into 5
equally sized cable elements. Additionally, a negligible pre-stress of 1.0N/m2 is
considered to stabilize the cable structure in its undeformed configuration.
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To model the cylinder, two different discretizations are selected for the MPM
model as depicted in the details of Figure 6.23. For the model shown on the
left, a coarse discretization of the background grid is selected using a structured
quadrilateral background grid with an element size of 0.2m. The discretization
is selected analogously to the coarse discretization investigated in section 3.5.3,
where the influence of different background grid element sizes are investigated.
For the relatively large element size, however, it is important to define the bound-
ary nearby the element border to reduce the artificial crumple zone introduced
by the background grid discretization. As demonstrated in Figure 3.21b), even
with the coarse discretization a good approximation of the contact force is ob-
tained due to the initialization of the boundary nearby the element border.
The advantage of this special discretization when investigating the interaction
with a highly flexible structure is that the boundary particles following the move-
ment of the cable elements remain in the same row of background grid elements.
This ensures that as soon as the material points discretizing the cylinder enter the
background grid elements containing boundary particles, the contact between
the structure and the impacting object is detected until the cylinder rebounds.
This is a major difference to the finer background grid discretization depicted in
the right detail of Figure 6.23. For this model, an element size of 0.05m is selected
for the structured quadrilateral background grid. Consequently, the boundary
particles which are following the movement of the flexible structure are changing
their background grid elements due to the impact of the elastic cylinder. Since
the contact detected via the computational background grid in MPM is only de-
tected in case material points and boundary particles are within one element,
the contact between the structure and the impacting object may get lost during
the impact. This is the case when the boundary particles are found in another
background grid element while the material points are still in the previous ele-
ment. Therefore, to investigate the resulting consequences for the calculation
of the coupled model, these two different discretization of the MPM model are
considered.
The material points discretizing the cylinder are initialized in both models by a
triangular body mesh with an element size of 0.01m. While in case of the coarse
background grid 1 material point per element is initialized, 6 material points are
defined in case of the refined background grid.
Analogous to the example of the cylinder impacting the rigid wall, a time step
of ∆t = 2e −4s is selected for the coupled simulation. Structural damping is ne-
glected in this study.
In Diagrams 6.24 and 6.25, the energy of the involved partitions as well as the total
energy of the coupled system are plotted for the coarse and the fine background
grid discretization, respectively.
The conservation of energy is maintained in both MPM models. The kinetic en-
ergy initially stored in the MPM partition is transferred to the FEM submodel
during the impact. The maximum energy in the FEM subsystem is stored at the
point of maximum deflection when the elastic cylinder stops moving. Subse-
quently, the energy is transferred back to the MPM partition, causing the cylinder
to move upwards again until it separates from the cable. A portion of the energy
remains in the structure, causing it to vibrate, while the majority of the energy is
transferred back to the MPM system.
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Figure 6.24: Energy plot of coupled MPM-FEM simulation using the coarse
MPM background discretization.
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Figure 6.25: Energy plot of coupled MPM-FEM simulation using the fine MPM
background discretization.

For both models, it is observed that a portion of energy is transferred at the very
first contact between the cylinder and the structure, followed by a short period
where almost no energy is transferred. The low energy transfer during this period
is due to the low stiffness of the cable elements in their nearly undeformed state,
while the initial jump is caused by the sudden contact detection when the ma-
terial points enter the background grid elements containing the boundary parti-
cles.
Thereafter, the model with the coarse background grid discretization shows a
continuous energy transfer, whereas the model with the fine discretization ex-
hibits several periods of low energy transfer. These intermediate periods of low
energy transfer occur when the boundary particles move to the subsequent back-
ground grid element containing no material points and the associated loss of
contact.
To illustrate this effect, the MPM model at times t = 0.09s and t = 0.11s is shown
in Figure 6.26. While the material points and boundary particles in the left fig-
ure are located within the same background grid elements, they are located in
different elements in the right figure causing the loss of contact.
It is important to emphasize that the MPM discretization in this example was
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t = 0.11st = 0.09s

Figure 6.26: In the left figure boundary particles and material points are lo-
cated in the same background grid elements while in the config-
uration on the right they are located in different elements.

intentionally selected to study the effects of contact loss during the coupled sim-
ulation. Typically, examples are initialized in such a way that not all boundary
particles lose contact with the material points at the same time allowing for con-
tinuous energy transfer.
In Figure 6.27, the displacements of the cylinder center are plotted for the coarse
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Figure 6.27: Displacement of the cylinder center for the coarse and fine back-
ground grid discretization. Additionally the deflection of the FEM
cable elements is depicted.

and the fine MPM background grid discretization. It shows less deflection of the
cylinder in the case of the coarse background grid discretization compared to the
finer background grid.
Again, the main reason for the difference is the contact detection in the MPM
solver. Since the contact is detected as soon as the material points enter the
background grid elements containing the boundary particles, a gap between the
impacting object and the shared interface remains in the calculation. For the
coarse discretization, this gap is larger than for the fine discretization, resulting
in less deformation of the cylinder in the former case. The gap resulting from
the contact detection in the MPM solver is also visible in Figure 6.28, showing
the maximum deflection of the cable structure for both the coarse and fine MPM
discretizations.
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Figure 6.28: Maximal deflection of the flexible structure for the coarse and fine
discretization of the MPM model.

However, the deflection of the flexible structure is nearly identical regardless of
the considered MPM background grid discretizations. To demonstrate this, the
deflection of the cable structure is also added to Diagram 6.27 (dashed line) for
both models. Except for a shift in timing due to the first contact detection via
the background grid, the structural displacements are almost identical. This is
an important finding since the maximum deflection of the flexible structure is
an important value for designing the structures for the impact.

Closely related to the structural deformations are the reaction forces at the sup-
ports of the structure. In Diagram 6.29, the sum of the vertical reaction forces of
the cable structure are plotted for both models.

Analogous to the cable deflection, the resulting reaction forces are shifted in
time, but both the coarse and fine MPM background grid discretizations show
the same pattern and calculate almost the same peak force, which again is deci-
sive for the design of the structures.

For comparison, the impact force calculated in section 3.5.3 for the cylinder im-
pacting the rigid wall is added to the plot. This illustrates the advantages of flex-
ible structures compared to a rigid ones. Due to the structural deformations, the
forces are significantly reduced while the impact duration is extended.

The conclusions of this example are that the energy of the coupled system is
well preserved. Furthermore, it is demonstrated that for the design of the flex-
ible structure, the background grid discretization of the MPM model is of minor
importance as long as it can model the behavior of the impacting body. Finally,
the significant reduction of the impact force peaks due to the flexibility of the
structure are evidenced.
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Figure 6.29: Reaction forces at the cable structure due to the impact for the
coarse and fine MPM discretization in comparison with the im-
pact forces at a rigid boundary.

6.2.6 Granular Material Impacting Flexible Structure

The previous examples systematically assessed the partitioned MPM-FEM cou-
pling scheme for elastic materials. However, the main advantage of MPM is that
materials with large strains can be modeled without mesh entanglement prob-
lems. Hence, in this example, the elastic material of the impacting object is re-
placed by a granular material which includes plastic deformations of the mate-
rial.
As depicted in Figure 6.30, the granular material, initially confined to a cylindrical
shape with radius r = 0.5m and height h = 0.3m falls down due to gravity and
impacts a flexible structure with length 10.0m, while the initial distance between
the flexible structure and the cylindrical shape of the impacting object is 0.1m.

10.0 m

r = 0.5m

g = 9.81 m
s2

MPM
material points
background grid
boundary particles

FEM
cable elements

Figure 6.30: System of the cable and the cylinder made of granular material.

As in the previous examples, the impacting body is modeled by MPM, while the
flexible structure is analyzed by FEM. The structure is modeled by cable elements
with a cross-section of 0.001m2 and a linear elastic material is assumed. The
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selected material parameters, which are identical to the previous examples, are
summarized in Table 6.1.
For the impacting object, a Mohr-Coulomb yield criterion is selected to model
the elastic-plastic material behavior. The material parameters are selected anal-
ogous to the example in section 3.5.4, where the impact of a granular material
onto a rigid wall was analyzed. Therefore, the material properties of the granular
material are summarized in Table 3.4.
For the numerical simulation, both partitions are discretized individually. The
flexible structure is subdivided into 7 equally sized cable elements. As before, a
negligible pre-stress of 1.0N/m2 is applied, while the self-weight of the structure
is neglected. Additionally, Rayleigh damping is applied to the structure with the
coefficients αd = 0.0 and βd = 0.1.
For the calculation of the granular material, a structured quadrilateral background
grid with an element size of 0.05m is chosen, while the material points are initial-
ized by a triangular body mesh with an element size of 0.01m, placing 3 material
points each. Thus, the discretization is selected analogously to the previous ex-
amples (see section 6.2.4).
The shared interface is defined along the flexible structure and in the MPM parti-
tion boundary particles are therefore introduced along the geometry of the struc-
ture with an initial distance of 0.02m to ensure good mapping properties. These
boundary particles follow the structural movement and impose Dirichlet con-
straints on the MPM submodel using the Lagrange multiplier method. For this
example, a fixed condition is assumed which decelerates the side-wards moving
granular material after the impact.
Figure 6.31 shows the numerical results of the coupled simulation obtained with
a time step of ∆t = 1e −4s for specific times.
Furthermore in Diagram 6.32, the structural displacements at the center are plot-
ted during the simulation time. After the maximum deflection at about t = 0.48s,
the structural displacements decrease and converge to the static value. For the
granular material, a similar progression of the point initially located at the center
of the cylinder is observed. Due to the initial gap between the structure and the
cylinder, the displacement measure starts at −0.1m. The maximal deflection is
also observed at about t = 0.48s. However, the value is larger compared to the
structure because the granular material itself deforms due to contact with the
structure.
The sum of the vertical reaction forces at the supports of the flexible structure
are plotted in Diagram 6.33. After the dynamic impact, the value converges to
the expected static solution corresponding to the self-weight of the cylinder

Fg,cyl = r 2 ·π ·h ·ρ · g = 3.19kN (6.18)

while ignoring the self-weight of the structure itself.
Before the forces converge to the static expected value, a significant impact force
consisting of two main peaks is observed. This corresponds well to the results
obtained in section 3.5.4 for the impact forces of a granular material onto a rigid
wall. Although a different load case is assumed in section 3.5.4, the distribution
of the impact force shows some similarities.
For the numerical example with the rigid wall, a significant peak force followed
by a sudden decrease of the force is observed before the impact forces fluctuate
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Figure 6.31: System of the cable and the cylinder made of granular material.
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Figure 6.32: Displacement of the cylinder center modeled with MPM and the
center of the flexible structure during the simulation.

to zero in smaller waves (see Diagram 3.27). The sudden decrease of the forces
is caused by the plastic deformations. This behavior, although not as significant,
is also present in this example where the granular material impacts the flexible
structure. After the first impact peak, the force decreases due to the plastic defor-
mation of the material before reaching the second main peak and then decreas-
ing to the static value.
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Figure 6.33: Reaction forces at the cable structure due to the impact of the
granular material.

6.2.7 CTI Frame

To validate the MPM-FEM coupling methodology, a comprehensive comparison
with physical experiments is essential. For this purpose, the impact of a con-
crete block on a flexible net structure is investigated. The associated experiments
were carried out by Geobrugg at their test site in Walenstadt, Switzerland. In
these tests, a standardized* concrete block is dropped from a height of 2m onto
a DELTAX® G80/2 [57] net spanned into a CTI-frame with rigid boundaries.
Figure 6.34 shows a photograph of the CTI-frame and the concrete block at the
test site.
The block dropped into the center of the net has a side length of 0.41m and a total
mass of 180kg which includes the attached wire rope strap with a weight of 5kg.
The size of the net is 3.9×3.9m2 and it is rigidly attached to the frame by shackles.
In Figure 6.35, the schematic system setup is illustrated.
The experiment is designed such that the block rebounds without damaging any
of the mesh wires and is conducted in total five times with constant input param-
eters. Further details of this example and the experimental setup can be found
in [101, 103].
To numerically investigate these experiments, the concrete block is modeled with
MPM while the flexible net structure is calculated by FEM. Although MPM may
not be the most intuitive method to model the impacting concrete block, these
experiments offer the significant advantage of well-defined model parameters.
This allows to focus on the validation of the coupling methodology, which is the
purpose of this example.
Furthermore, the parameters for modeling the complex net structure with FEM
can also be taken from the literature without the need for additional calibration.
In [103], Sautter et al. numerically investigated these experiments using a par-
titioned coupling of DEM and FEM. Hence, the model parameters for the FEM
model are adopted for this validation example.

* Swiss Agency for Environment, Forests and Landscape (SAEFL)
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Figure 6.34: Photograph of the CTI-frame at the testing site in Walenstadt,
Switzerland. The photograph is taken from [103].
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Figure 6.35: Schematic illustration of the experimental setup.

Thus, a simplified structural model is used to capture the load bearing behav-
ior of the net structure for this test setup. Therefore, instead of modeling the
wire of the net, the surface is homogenized and membrane elements are used
to describe the structural behavior. As these elements have zero out-of-plane
stiffness, only in-plane stresses, and no rotational nodal degrees of freedom, a
negligible pre-stress of 0.01N/m2 in the in-plane directions is applied, providing
a non-singular stiffness matrix at the beginning of the simulation.
Within the experiments, the initial sag of the net due to gravity varied +/−5cm,
since the tensioning force of the net was not directly measurable when spanning
it into the test frame. Therefore, from the five tests conducted, the data of the
experiment with the minimum sag of 0.05m and the one with the maximum sag
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Young’s modulus Poisson’s ratio density thickness

E = 5e7Pa ν= 0.0 ρ = 81.25
kg
m3 8e −3m

Table 6.2: Material properties of the membrane elements to model the net
within the CTI-frame.

of 0.10m, labeled exp_1 and exp_2, are extracted and considered for the com-
parison.
Following [101, 103], the numerical model is designed to fit the measured sag of
test exp_1. Therefore, the utilized Young’s modulus of the membrane elements
is calibrated such that an initial sag of 0.05m is obtained. Furthermore, a lin-
ear elastic material model is assumed since no failure of the net is observed.
In Table 6.2, the material properties of the structural model, which are taken
from [101, 103] are summarized.
For the discretization of the structural model, a structured quadrilateral mesh
with an element size of 0.1m is selected.

Also for the impacting object, which herein is calculated with MPM, a linear elas-
tic material law is assumed. The Young’s modulus and Poisson’s ratio are set to
E = 5e6Pa and ν= 0.0, respectively. The density is adjusted to obtain a total mass
of 180kg for the impacting object.
It is important to note that the value of the Young’s modulus of the impacting
object in the numerical model needs to be adjusted so that the impacting block
behaves like a rigid object compared to the deformations of the flexible net struc-
ture. Nonetheless, the stiffness of the impacting object should be selected with
considerations of the stiffness of the flexible structure. This is because using val-
ues that are too large may result in numerical instabilities in the coupled simula-
tion.
For the discretization of the MPM model, a structured hexahedral background
grid with an element size of 0.08m is selected, while the material points are ini-
tialized by a tetrahedral body mesh with a size of 0.04m, placing 3 particles each.
At the shared interface, which coincides with the initial geometry of the FEM
membrane structure, the boundary particles in the MPM partition are created.
For their initialization, a structured triangular mesh of size 0.01m is selected, ini-
tializing 3 boundary particles each. This discretization ensures that the data at
the interface can be mapped properly. The interface condition is imposed by
penalty augmentation using a penalty factor of β= 1e10 and modeling a contact
condition.
The entire model is solved using the partitioned strong coupling scheme de-
scribed in Algorithm 2. For the calculation a time step of ∆t = 5e −5s is selected
and Aitken relaxation (see section 4.3.2) is applied. Furthermore, Rayleigh damp-
ing with coefficients of αd = 0.0 and βd = 0.02 is used to damp the dynamic re-
sponse in the numerical model.
During the physical experiments, the displacement and velocity of the impacting
object as well as the reaction forces at the edges of the net structure were mea-
sured. Further details on the measuring equipment used and the evaluation of
the test data can be found in [101, 103].
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The measured data are compared to the numerical results of the coupled MPM-
FEM model. Although the modeled system setup is more similar to the first ex-
periment, the data from the second experiment are also included in the plots to
demonstrate the variability of the measured data even if the overall test setup is
kept constant for the experiments.
The displacement of the concrete block over time is plotted in Diagram 6.36
showing the comparison between the experimental data and the numerical re-
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Figure 6.36: Displacement comparison

sults. The plot shows that the displacement of the block modeled with MPM
closely follows the measured displacement obtained by exp_1, but slightly un-
derestimates the maximum deflection. The reason for the underestimation arises
from the contact detection via the computational background grid in the MPM
model.
As detailed in section 3.4, the Dirichlet constraint at the shared interface imposed
by boundary particles along the membrane structure affects the material point
movement as soon as boundary particles and material points are found within
the same background grid element. Consequently, the concrete block repre-
sented by material points is constrained before it actually touches the shared in-
terface, resulting in an offset between the boundary particles and material points.
This phenomenon is visualized in Figure 6.37 where the discretized model is dis-
played. Both figures show the offset between the concrete block, represented
by material points, and the structural surface, which defines the position of the
boundary particles in the MPM model.
In the left figure, both boundary particles and material points are found in the
same background grid elements, causing an interaction with the structure al-
though they are not actually in contact. Obviously, a refinement of the computa-
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background grid

material points

FEM mesh

Figure 6.37: Discretization of the coupled model at two different times. The
left figure shows the model when material points and boundary
particles are within the same background grid element, while in
the right figure they are not.

tional background grid will reduce this offset, but simultaneously increases the
computational cost.
Hence, in addition to the block displacement, the center deflection of the FEM
structure is plotted in Diagram 6.36. It shows that the maximum deflection of the
net structure agrees very well with the deformation measured in the experiment.
Therefore, although a rather coarse discretization of the background grid with an
element size of 0.08m is chosen, the experimental results are still well predicted.
This agrees well with the results of the verification example in section 6.2.5.
In addition, Figure 6.38 shows the maximum deflection obtained in the numeri-

a) Maximal deflection, experiment

b) Maximal deflection, simulation

Figure 6.38: Comparison of the maximal deflection in the experiment and the
numerical solution. Photograph a) is taken from [103]

cal simulation and a corresponding photograph of the physical experiment. Also
here, the small offset between the structure and the block in the numerical result
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is visible, whereas the deformation of the membrane structure shows an excel-
lent agreement with the actual deformation of the physical net.
However, the comparison of the net displacement and the MPM block displace-
ment plotted in Diagram 6.36 also shows that the offset between them is not con-
stant, but varies slightly during the impact. This is also caused by the background
grid discretization within the MPM model.
As depicted in the right of Figure 6.37, in some configurations the boundary par-
ticles below the block, which are aligned on the surface structure, may get found
in a background grid element not containing material points of the concrete
block. Therefore, in this configuration they do not constrain the movement of
the block, resulting in an intermediate reduction of the offset. For example, at
about t = 0.075s, where the dashed line in Diagram 6.36 is drawn, the structural
displacements are temporally not affected by the block motion since the bound-
ary particles and material points are decoupled due to the background grid dis-
cretization.
The dependence of the numerical results on the computational background grid
in the MPM model can also be observed when the reaction forces of the numeri-
cal simulation are compared with the experimental results. In Diagram 6.39, the
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Figure 6.39: Reaction forces comparison

measured forces of the net structure are compared with the force resulting from
the numerical simulation. The latter force is obtained by summing the reaction
forces along the boundary nodes of the FEM structure.
Again, at about t = 0.075s, which is indicated by the dashed line, a significant
reduction of the reaction force is observed, which is caused by the loss of contact
due to the background grid discretization. This effect can be observed several
times during the impact, causing a reduction of the reaction forces and the wave-
like curve of the FEM structure center deflection in Diagram 6.36.
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exp_1 exp_2 simulation
total impuls [kNs] 2.29 2.16 2.17

Table 6.3: Total impuls of exp_1 and exp_2 in comparison to the result from
the simulation.

Furthermore, there is also a significant difference in the timing of the measured
and calculated forces. This is again caused by the background grid discretization
of the MPM model and the resulting offset between block and structure. As visu-
alized in Figure 6.36, the center deflection of the FEM structure at the beginning
of the impact is larger than the measured deformations of the experiment, caus-
ing an earlier increase of the reaction forces. A refinement of the background grid
discretization in the MPM model will reduce this effect.
Nonetheless, the peak force, which is the most important value for the design
of the structure, is predicted very well by the numerical model not necessarily
requiring a further refinement.
In addition to the force distribution, the global behavior of the impact should be
analyzed. Therefore, the total impulse which is obtained by integrating the reac-
tion forces over time should be compared to the values from the experiment. In
Table 6.3 the results are summarized. While the impulse obtained from the sim-
ulation slightly underestimates the impulse from exp_1 by about 5% it is nearly
identical to the result from exp_2. Hence, the numerical approach captures the
global behavior of the experiments and the obtained value is within the variation
of the experiments.
Finally, the measured velocity of the concrete block is compared to the numerical
results in Diagram 6.40. Again, a very good agreement of the results is observed,
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although the MPM block starts to decelerate slightly earlier than the experimen-
tal results. This again results from the contact detection in the MPM model and
the resulting offset between the structure and the block. After the maximum de-
flection, however, the block velocity again agrees very well with the measured
values from the experiments.
Summarizing the results of this example, it can be concluded that the background
grid discretization in the MPM model is a crucial value when simulating contact.
In particular, a coarse background grid discretization results in a time shift and
an underestimation of the maximum deflection of the impacting object. Nonethe-
less, the structural behavior can still be predicted well. Due to the offset between
the material points discretizing the impacting object and the boundary particles
aligned at the surface of the structure, the structural displacements as well as
the peak forces of the structural reactions due to the impact are well predicted.
This agrees well with the results of the numerical example in section 6.2.5. In
summary, this example shows a good agreement between experimental data and
numerical results, thus validating the partitioned MPM-FEM coupling scheme.

6.2.8 Highly Flexible Protective Structure Impacted by
Gravity-Driven Mass Flow

The validation and verification examples proved the accuracy of the MPM-FEM
coupling methodology. Finally, the developed method is applied to model the
impact of gravity-driven granular flow on a highly flexible protective structure.
Typically, these structures consist of a net spanned between steel profiles. To en-
able the structure to undergo significant deformations upon impact, a hinged
support is usually incorporated at the base of these profiles. This allows them to
rotate around their support point upon impact, activating the stiffness of the ca-
bles attached at the top. These cables are spanned uphill and are usually equipped
with braking elements to absorb energy through plastic deformation.
To demonstrate that this behavior is captured by the numerical simulation, a 3D
model is constructed. This model includes a highly flexible protective structure
calculated with FEM, which is subjected to granular mass flow modeled with
MPM. As before, the numerical methods are coupled by the developed parti-
tioned coupling scheme.
The design of the protective structure is inspired by the protective barriers de-
ployed at the Veltheim test site in 2010 to experimentally investigate the impact
of mudflow on protective structures. However, it is important to note that this
example is not intended to be a numerical investigation of these experiments.
Rather, it serves as a qualitative demonstration of the methodology developed
to analyze the impact of gravity-driven mass flows on highly flexible protective
structures.
The protective structure considered has a total length of 15m and a height of 3.5m
and is schematically depicted in Figure 6.41.
It is divided into three equally sized fields with two steel profiles at the outer
edges and two intermediate ones. They are highlighted in orange in Figure 6.41
and are modeled as truss elements in the FEM model. A linear elastic material is
assumed for them, considering the properties of a HEB160 steel profile.
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side view:

front view:

membrane elements truss elements cable elements

sliding cable elements
granular material

cable elements

FEM: protective structure

5.0m 5.0m 5.0m

3.5m

MPM: granular material

Numerical model:

Figure 6.41: System setup of a highly flexible protective structure modeled
with FEM and granular material modeled with MPM, which im-
pacts onto the structure.

In between, a flexible net is spanned which is connected to all profiles at the up-
per and lower point. Furthermore, to prevent lifting of the net due to redirection
of the mass flow due to the barrier, the net is fixed to the ground with anchoring
nails. In the numerical model a fixed support is therefore considered at the bot-
tom of the net, which is highlighted in black in Figure 6.41. In accordance with
the previous example, the net is modeled with surrogate membrane elements
in the FEM model. In Figure 6.41, the net modeled with membrane elements is
highlighted in blue. The material parameters are approximate and therefore as-
sumed to be the same as in the previous example. Therefore the material prop-
erties can be found in Table 6.2.

A cable, to which the net is attached by shackles, is spanned across the width of
the structure. It runs along the top of the structure and is then anchored to the
ground. In Figure 6.41, this cable is highlighted with dashed green lines. Since
the net is attached by shackles to this cable, it can slide along it, allowing larger
deformation. To account for this behavior in the numerical model, a sliding cable
element according to [21, 127], which was also used by [101] to model the slid-
ing of the net along a cable in rockfall protection nets, is used in the FEM model
for this cable. Additionally, this approach is also applied to the cables which are
spanned at the outer edges of the net between the top and bottom of the struc-
ture. In Figure 6.41 they are also highlighted with dashed green lines.

Finally, the vertical steel profiles with hinged support at the bottom are braced in
space with two additional cables each. These cables are spanned uphill and con-
nect the tops of the steel profiles to the ground. Usually, they are not pre-stressed
and get activated at the very moment of the impact and the subsequent defor-
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mation of the barrier. Furthermore, they are equipped with braking elements.
In the numerical model, they are modeled as cable elements and are highlighted
with gray dashed lines in Figure 6.41. The top view of the structure, depicted in
Figure 6.42, illustrates the geometry of the cables spanned uphill.

5.0m 5.0m 5.0m4.0m 4.0m

3.5m 5.0m 3.5m3.0m 3.0m1.5m 1.5m

6.0m

top view:

Figure 6.42: Top view of the protective structure.

To simplify the model and to accommodate the flexible nature of the cables spanned
uphill, which are additionally equipped by braking elements, a reduced stiffness
is applied to these cable elements in the numerical model. Therefore, a Young’s
modulus of E = 2.069MPa is assigned to the cables spanned uphill, whereas E = 2069MPa
is chosen for the cables in width direction and the steel profiles. The cross-
section is assumed to be equivalent for all cable elements, assuming 3.8e −4m2,
which corresponds to a diameter of 22mm. The density is set to ρ = 7850kg/m3

and all cables are modeled without pre-stress.
For the impacting mass flow, dry granular material is considered, which moves
down the inclined slope of 30◦ due to gravity, before impacting the protective
structure. In order to approximate the kinematics observed in the experiments,
where the mass flow is released 41m upstream of the barrier, a substitute inlet is
modeled in this example, focusing on the interaction dynamics.
Therefore, as illustrated in Figure 6.43, the granular material is initially confined
into a spherical shape in front of the structure. Due to gravity, the material moves

1.5m

g = 9.81 m
s2

7.5m 7.5m
2.5m

4.2m

1.5m

g = 9.81 m
s2

30◦

structure

Figure 6.43: Initial geometry of the MPM model.
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downward creating an substitute inlet when it hits the inclined slope first and
then flows toward the structure. Just before impact, a front velocity of about 8m/s
is observed, which is in good agreement with the kinematics of the mass flow
observed in the experiments.

For the granular material, a density of ρ = 2085kg/m3 is selected, which corre-
sponds to the density measured in the experiment for the impacting mass flow.
Additionally, a Young’s modulus of E = 6MPa, a Poisson’s ratio of ν= 0.3, and an
internal friction angle ofΦ= 30◦ are chosen, while Mohr-Coulomb yield criterion
is assumed to model the elastic-plastic behavior of the mass flow.

The results of the numerical simulation are visualized for several times in Fig-
ure 6.44 and Figure 6.45, visualizing the filling process of the flexible protective
structure with the granular mass flow.

Right before the impact, the granular mass flow has a front velocity of approxi-
mately 8m/s before contacting the structure at about t = 0.81s. Upon impact, the
net, which is modeled by membrane elements, gets deformed locally as visual-
ized in the top snapshot of Figure 6.45.

The comparison of the simulation results at time t = 0.9s and t = 1.1s (see Fig-
ure 6.44) shows a significant reduction in the velocity of the granular material.
This consequently has a great influence on the impact forces which are acting
onto the structure. These are plotted in Figure 6.46, showing the peak forces due
to the front flow deceleration of the granular mass flow within this time period.

The subsequent reduction of the impact force is accompanied by the redirection
of the granular mass, which is in good agreement with the observations made
in the experiments and also reported in [128]. This upstream movement of the
material is also visible by comparing the images at t = 1.1s and t = 1.3s in Fig-
ure 6.45. If the net were not fixed to the ground, it would lift and allow some
material to pass underneath.

Within this time period, the stiffness of the cables which are spanned uphill are
also activated. Due to the deformation of the membrane caused by the impact
of the granular material, the steel profiles of the protective structure, which are
modeled by truss elements, start to rotate around their support points and their
tops move in the direction of the flow. In Figure 6.47, the nodal displacements
at the top of the four steel profiles are plotted over time. It shows that the inner
steel profiles are the first to be affected by the impact and deform more than the
outer profiles, which is well in line with the physical expectation. Furthermore, a
very similar deflection of the two outer and two inner steel profiles is observed,
which agrees well with the expected symmetry of the system.

The maximum deflection of the inner trusses is reached at about t = 1.35s, trig-
gering the deformation in the outer sections of the flexible structure. The images
in Figure 6.44 also show the progression of the structural deformation from a lo-
calized disturbance initially to a more widespread effect and finally affecting the
hole protective structure. Hence, the deflection of the outer trusses increases, ac-
tivating the stiffness of the cables attached to their tops, until the peak is reached
at about t = 1.60s.

Upon this point, the front flow of the granular mass is stopped, causing the de-
celeration of the subsequent mass flow without causing further significant defor-
mations of the structure (see Figure 6.45). Also the curve of the impact force in



6.2. Verification and Application 151

t = 0.9s

t = 1.1s

t = 1.3s

t = 1.5s

0.0

10.0

8.0

6.0

4.0

2.0M
PM

ve
lo

ci
ty

m
ag

ni
tu

de
[m

/s
]

0.0

1.0

0.8

0.6

0.4

0.2FE
M

di
sp

la
ce

m
en

tm
ag

ni
tu

de
[m

]

Figure 6.44: Granular material modeled with MPM impacting highly flexible
impervious protective structure modeled with FEM. Numerical
results for times t = 0.9s, t = 1.1s, t = 1.3s and t = 1.5s.
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Figure 6.45: Granular material modeled with MPM impacting highly flexible
impervious protective structure modeled with FEM. Numerical
results for times t = 1.7s, t = 1.9s, t = 2.1s and t = 2.3s.
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Figure 6.46: Impact force caused by the granular material.
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Figure 6.47: Tip deflection of the steel profiles due to the impact of the granu-
lar material.

Figure 6.46 shows that upon this time the force converges to the static pressure
caused by the granular mass.
The impact force curve depicted in Figure 6.46 highlights the remarkable ad-
vantage of flexible protective structures. Due to their flexibility, the structures
undergo significant deformation upon impact, which increases the braking dis-
tance and thus reduces the impact force. For the example considered the peak
force for which the structure needs to be designed is reduced to a value only
slightly larger than the static pressure load. Hence, allows the design of both eco-
nomical and effective protective structures.
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However, the design of these structures is a complex task, as they consist of mul-
tiple components that must be carefully adapted and harmonized in order to
achieve a good load distribution upon impact. For this purpose, numerical sim-
ulations supported by physical experiments are inevitable. Additionally, future
work is required to enhance the numerical model. For example, in the numerical
model of the impacting material, the flow process down the mountains should
be considered incorporating terrain data. Furthermore, the constitutive equa-
tions need to be adjusted to account for the physical behavior of the material,
including the influence of water saturation.

For the structural model, the membrane elements which are utilized to model the
ring-net of the protective structures requires further validation and calibration to
define an appropriate surrogate. Furthermore, the reduced stiffness of the net in
areas that are compressed needs to be incorporated into the numerical model,
e.g. using a wrinkling model for the membrane elements. Moreover, the drainage
effect of the impacted material and the subsequent flow of the water through the
net structure needs to be included in the numerical model.

6.3 Conclusions

The final example demonstrates the effectiveness of the developed partitioned
MPM-FEM coupling scheme in simulating the impact of gravity-driven mass flows
on highly flexible protective structures. Thus, it enables more efficient design of
such structures by allowing detailed investigation of the mass flow behavior dur-
ing impact through numerical simulations which need to be accompanied by
experiments. With these insights, flexible structures can be designed more effec-
tively to ensure even load distribution and proper activation of components such
as braking elements integrated into the cable structures.

However, to effectively perform these complicated numerical investigations, the
insights gained from the preceding examples are crucial, and the main findings
are summarized in the following.

In order to solve the multi-physics problem in a partitioned scheme, the shared
interface needs to be defined. It is positioned along the structure and covers at
least the areas that are expected to be in contact with the material, modeled with
MPM during simulation time. While in the FEM partition point load conditions
are initialized at the nodes of the FE-mesh along this interface, boundary parti-
cles are created in the MPM partition. The number of boundary particles needs
to be larger or at least equal to the number of interface nodes at the FEM counter-
part to ensure a proper mapping of the interface data (see section 6.2.1.3). These
boundary particles are weakly imposing the Dirichlet condition in the MPM par-
tition. For this purpose the penalty augmentation, the perturbed Lagrangian
method and Lagrange multipliers are developed in section 3.4.3 and can be ap-
plied interchangeably (see section 6.2.1- 6.2.3). However, for the first two meth-
ods, the calibration of the penalty factor is often a crucial task, often requiring
pre-knowledge of the numerical solution to set a proper factor. Therefore as an
attractive alternative the Lagrange multiplier method is mainly utilized in the ex-
amples herein.
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All of these types of boundary imposition require a sufficient number of bound-
ary particles to impose the Dirichlet constraints (see [34, 117]) in the MPM sub-
model. This aligns well with the need for an appropriate interface discretiza-
tion to ensure accurate data mapping. Another important aspect of the coupling
scheme is the inherent handling of the contact detection within the MPM par-
tition via the computational background grid. Hence, when boundary particles
aligned at the shared interface are found within the same background grid ele-
ments that also contain material points, the Dirichlet conditions are actively im-
posed and constrain the movement of the material points. Solving the resulting
system of equations of the MPM model consequently results in reaction forces
at the boundary particles, which are transferred to the FEM partition as external
loads due to the mapping process. Conversely, if boundary particles are not in-
teracting with material points zero reaction forces are obtained. Hence, in this
case the material discretized by material points is not in contact with the FEM
structure and consequently no external loads are applied to the structure. There-
fore, the contact detection is inherently included in the MPM submodel, making
this approach computationally very efficient and easy to implement.
However, when selecting the element size of the computational background grid,
the influence of the contact detection should also be taken into account. The
consequences of the discretization, in particular of the computational background
grid, on the solution of the coupled problem are discussed in detail in the exam-
ples provided in section 6.2.5 - section 6.2.7.
Considering these aspects, the developed MPM-FEM coupling scheme provides
a powerful numerical methodology to simulate a wide range of complex engi-
neering problems. It allows to combine the accuracy of FEM to efficiently calcu-
late complex engineering structures with the ability of MPM to model large strain
events, such as mass flows in mountainous terrain, using a continuum-based ap-
proach. The coupling methodology of these two methods allows to simulate the
loading scenarios of mass flows which are impacting highly flexible protective
structures. Thus, these numerical simulations provide opportunities to effec-
tively design economical and efficient protective structures in areas at high risk
from gravity-driven natural hazards.
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CHAPTER 7

Summary and Conclusions

For the numerical simulation of complex engineering phenomena, as the in-
teraction of mass flows impacting protective structures, the coupling of distinct
discretization methods is required to simulate these complex physical phenom-
ena. Within the scope of this work, partitioned coupling strategies are developed
which allow to solve multi-physics problems by coupling black-box solvers. This
approach allows to couple solvers and tools that have been developed over many
decades without the need to derive monolithic coupling methodologies. Instead,
the interaction of the involved partitions is shifted to their shared interface, thus
boundary conditions are imposed in each model along this interface.
The partitioning introduces additional interface equations, which are solved in
this work by fixed-point iterations (see chapter 4). These are formulated in a se-
quential scheme, so that the updated solution of one solver serves as input for
the subsequent solver. Hence, the solution strategy uses a Gauss-Seidel commu-
nication pattern, while both weak and strong coupling schemes are used to solve
the given problems. While strong coupling schemes provide a higher accuracy
since the interface transmission conditions are fulfilled up to a certain accuracy,
the weak coupling schemes are an attractive alternative due to their computa-
tional efficiency. However, the robust imposition of boundary conditions in the
involved solvers is required for the coupling strategies.
In this dissertation, gravity-driven granular mass flows acting on flexible protec-
tive structures are modeled. Due to the large strains developed in the granu-
lar mass flows, MPM is used to discretize the physical problem (see chapter 3).
Hence, the flowing material is represented by Lagrangian moving particles, while
the governing equations are solved on the Eulerian background grid. This al-
lows granular mass flow to be modeled while avoiding the mesh entanglement
problem that limits any Lagrangian mesh-based discretization method. Another
advantage of MPM is that its solution scheme includes the solution of a classical
updated Lagrangian FEM step. However, it is enhanced by extra- and interpola-
tion strategies to transfer data from material points to the corresponding nodes
and vice versa.
However, since the material points move through the Eulerian background grid
the imposition of boundary conditions is a complex task. In particular, moving
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boundary conditions, which change their position during computation, are cru-
cial since they cannot be imposed at the nodes of the computational background
grid in a FEM-like manner. Therefore, boundary particles are introduced, which
provide an adequate description of the boundary condition during the compu-
tation (see section 3.4.1). They are used to weakly impose both Neumann and
Dirichlet boundary conditions in the MPM model, and in case of an interface
condition, they receive and send the necessary interface data.
For the partitioned coupling with DEM, a Neumann condition is developed for
the MPM submodel, which allows the imposition of point load conditions along
moving interfaces (see section 3.4.2). In the DEM counterpart, a wall condition
is introduced along the shared interface, which enforces a Dirichlet constraint
in the DEM solver. This provides the basis to derive the partitioned coupling
of DEM and MPM presented in chapter 5. Due to this coupling, the strength of
DEM to compute accurate contact forces, provided the parameters of the numer-
ical model are well calibrated, is combined with the continuum-based approach
of MPM to efficiently simulate large scale mass flows. This coupling strategy is
successfully applied to simulate the failure process of retaining wall blocks im-
pacted by granular mass flows, and the numerical results are in good agreement
with the corresponding physical experiments.
In addition to the numerical simulation of retaining wall systems, the impact of
gravity-driven mass flows in highly flexible protective structures is also investi-
gated in this work. For this purpose, the partitioned coupling strategy of FEM
and MPM is derived in chapter 6, which allows to combine the strengths of FEM
for accurate and efficient modeling of structures, while MPM is advantageous for
simulating the large strain event of flowing masses. Along the shared interface, a
Neumann condition is introduced in the FEM partition, while in MPM the weak
imposition of essential boundary conditions is required.
For this purpose, the penalty method (see section 3.4.3.1) can be used to weakly
impose the essential boundary conditions, providing a computationally efficient
method. However, the calibration of the penalty factors is a tedious task and nu-
merical instabilities are easily introduced with increasing factors (see section 3.5),
which negatively affects the accuracy of the resulting reaction forces and thus the
robustness of the coupled simulation. For future improvement, an adaptive cal-
culation of the penalty factor would be beneficial. This could enhance the appli-
cability of the penalty method as a weak boundary imposition method in implicit
MPM and thus also in a partitioned coupling strategy.
As an alternative method to weakly impose essential boundary conditions, the
Lagrange multiplier method for implicit MPM is developed in this work (see sec-
tion 3.4.3.2). Consequently, the constraint equations are incorporated into the
system of equations of the MPM model. However, this simultaneously intro-
duces difficulties in solving the resulting saddle point problem. Therefore, a
constant element-wise approximation of the Lagrange multipliers within con-
strained elements, combined with a methodology to eliminate superfluous con-
straints is developed. This provides a suitable Lagrange multiplier discretization
in combination with the simple element-wise interpolation functions used in
MPM to approximate the displacement field. Furthermore, this boundary impo-
sition method copes with the challenges in MPM of Lagrangian moving material
points through an Eulerian background grid, which causes the active background
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grid elements to change within each time step.
The developed methodology for weakly imposing essential boundary conditions
using Lagrange multipliers provides a robust, efficient and user-friendly bound-
ary condition imposition method that avoids the cumbersome calibration of the
penalty factor. Therefore, it can be applied to various application cases (see [117]*)
and has proven to be robust also in the partitioned coupling strategy with FEM
(see section 6.2).
As a combination of the aforementioned types of boundary imposition methods,
the perturbed Lagrangian method is formulated in section 3.4.3.3. In this ap-
proach, the constraint equations remain part of the system of equations, but are
regularized by an additional penalty term. This avoids the procedure of eliminat-
ing superfluous constraints, while introducing the characteristics of the penalty
method.
In section 3.5, the performance of the different types of boundary imposition
methods is systematically assessed with respect to their applicability as interface
condition in a partitioned scheme. Moreover, in section 6.2, the evaluation of the
different types of boundary imposition methods is extended to the partitioned
coupling strategy with FEM. Provided that the penalty factor is successfully cal-
ibrated for the problem to be solved, all types of boundary imposition methods
can be used interchangeably as boundary condition and thus as interface condi-
tion in a partitioned coupling scheme. However, the Lagrange multiplier method
is often preferred because it allows the problem to be solved without requiring
prior knowledge of the interface conditions to define the penalty factor.
Various examples of increasing complexity are systematically evaluated in sec-
tion 6.2 to assess the accuracy of the partitioned MPM-FEM coupling strategy.
Finally, the coupling strategy is successfully applied to model the impact of a
gravity-driven mass flow simulated by MPM into a highly flexible protective struc-
ture calculated by FEM.
Thus, this dissertation provides the foundation for combining the advantages of
different discretization methods to solve advanced engineering problems. For
future work, some further developments are needed to improve the numerical
models of large-scale mass flows acting on protective structures. However, due
to the partitioned approach, these developments can be made in the individual
sub-solvers without affecting the coupled counterpart.
To enhance the MPM submodel, it is proposed to incorporate the terrain data
into the numerical model. This allows the prediction of the flow direction and
flow process of mass movement hazards, which is of significant importance for
the positioning of protective structures and their dimensions. In combination
with calibrated constitutive equations incorporating the influence of water satu-
ration, the developed methodologies can be extended to simulate full-scale ex-
periments for further validation before being extended to large-scale scenarios,
which requires additional effort for computational efficiency.
Additional important steps include the improvement of the structural modeling
of the highly flexible protective structure. It is of paramount importance to de-
velop and calibrate surrogate membrane elements, which represent the physical
behavior of the ring-net. It is essential that these element formulations incorpo-

* published by the author of this dissertation
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rate the reduced stiffness in the case of compression, as well as the penetration of
some material, including the drainage of water through the net structure. An al-
ternative approach would be to utilize and develop unique element formulations
that represent the individual behavior of the rings in the net. This approach may
facilitate the modeling of local damage in ring net structures. However, this ap-
proach significantly increases the computational cost due to the micro-level ele-
ment formulations, which include the contact conditions of the individual rings.
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