
Constructive Alignment in Modern Computing Education: An
Open-Source Computer-Based Examination System

Matthias Linhuber
matthias.linhuber@tum.de

Technical University of Munich
Munich, Germany

Jan Philip Bernius
janphilip.bernius@tum.de

Technical University of Munich
Munich, Germany

Stephan Krusche
krusche@tum.de

Technical University of Munich
Munich, Germany

ABSTRACT
Large-scale paper-based examinations (PBEs) in computing educa-
tion frequently emphasize rote memorization, thereby misaligning
instructional objectives with assessment techniques. Such incon-
gruities hinder the preparation of students for real world challenges
in both industry and academia by inadequately evaluating higher-
order cognitive abilities. Often, educators are deterred from im-
plementing comprehensive skills assessment due to the perceived
complexity and resource-intensive grading processes involved.

To mitigate these limitations, this paper introduces an exam
mode as an integral feature of the open-source learning platform
Artemis. Designed for both local and cloud-based deployment, this
exam mode incorporates anti-cheating protocols, automates the
grading of diverse exercise types, and features double-blind manual
grading to ensure assessment integrity. It fosters the evaluation of
complex cognitive skills while substantially reducing the adminis-
trative load on faculty.

This paper substantiates the effectiveness of the Artemis exam
mode through widespread institutional adoption, demonstrated
by over 50 successful computer-based examinations (CBEs). An
in-depth case study involving 1,700 undergraduate software en-
gineering students offers key insights, best practices, and lessons
learned. This research not only pioneers the documentation of a
secure, scalable, and reliable exam system at an institutional scale
but also marks a seminal contribution to modernizing assessment
strategies in computing education, with a particular focus on con-
structive alignment.

CCS CONCEPTS
• Software and its engineering→ Designing software; • Ap-
plied computing → Education; • Social and professional top-
ics→ Student assessment.

KEYWORDS
Automated Assessment, Programming Exercises, Continuous Inte-
gration, Version Control, Instant Feedback, Online Editor, Plagia-
rism Checks, Open-Source Learning Platform, Exam Mode, Auto-
mated Grading, Scalability.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
Koli Calling ’23, November 13–18, 2023, Koli, Finland
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1653-9/23/11. . . $15.00
https://doi.org/10.1145/3631802.3631818

ACM Reference Format:
Matthias Linhuber , Jan Philip Bernius , and Stephan Krusche . 2023.
Constructive Alignment in Modern Computing Education: An Open-Source
Computer-Based Examination System. In 23rd Koli Calling International
Conference on Computing Education Research (Koli Calling ’23), November
13–18, 2023, Koli, Finland. ACM, New York, NY, USA, 11 pages. https://doi.
org/10.1145/3631802.3631818

1 INTRODUCTION
The demand for computer scientists has witnessed substantial
growth in recent years, resulting in large class sizes exceeding
1,000 students in undergraduate courses and 500 students in gradu-
ate courses. This presents a challenge for instructors, as individual
interaction and customization of lectures, exercises, and assess-
ments to heterogeneous student groups become impractical or even
impossible. Instructors in such large courses encounter difficulties
when assessing students. Many opt to prioritize lower cognitive
skills to reduce grading efforts, as assessing exercises that involve
repetition of previously learned concepts is comparatively easier.
Assessing higher-order skills such as explanations, differentiations,
or novel creative solutions to existing problems requires consider-
able effort. However, excluding exercises that require higher-level
competencies from examinations may inadvertently promote rote
memorization, leading to diminished learning outcomes in desired
competencies.

The implementation of constructive alignment [4] offers a poten-
tial solution to the challenges faced by instructors [11]; however,
its adoption remains challenging, as instructors often struggle to
define learning outcomes and align learning activities with assess-
ments. PBEs tend to restrict students to writing minimal code on
paper, despite their acquisition of more complex programming skills
using Integrated Development Environments (IDEs) throughout
their studies. This exemplifies the inherent lack of constructive
alignment using PBEs for assessing programming skills.

The COVID-19 pandemic necessitated a shift to online examina-
tions due to distancing regulations, resulting in a rise in CBEs and
the development of new solutions. However, with the relaxation of
strict distancing rules, many instructors have reverted to supervised
onsite PBEs, primarily due to concerns about increased cheating
possibilities in online exams. While onsite supervised CBEs are
feasible, apprehensions regarding the complexities of setup and
associated risks deter their adoption. Ensuring sufficient power
outlets, stable WiFi, and a reliable CBE system poses challenges, as
universities often lack adequate computer rooms, necessitating stu-
dents to use their own notebooks, which vary in operating systems.
Consequently, guaranteeing security without intrusive measures
on students’ devices becomes impractical. This limits the available

https://orcid.org/0000-0003-3640-5424
https://orcid.org/0000-0003-3640-5424
https://orcid.org/0000-0001-8278-4598
https://orcid.org/0000-0001-8278-4598
https://orcid.org/0000-0002-4552-644X
https://orcid.org/0000-0002-4552-644X
https://doi.org/10.1145/3631802.3631818
https://orcid.org/0000-0003-3640-5424
https://orcid.org/0000-0001-8278-4598
https://orcid.org/0000-0002-4552-644X
https://doi.org/10.1145/3631802.3631818
https://doi.org/10.1145/3631802.3631818

Koli Calling ’23, November 13–18, 2023, Koli, Finland Matthias Linhuber, Jan Philip Bernius, and Stephan Krusche

online examination types to open book or open internet scenar-
ios, where students can access external resources during the exam.
Consequently, the range of exam questions that instructors can ask
is restricted, and the complete reuse of previous exam questions
becomes infeasible, as easy access to solutions in lecture slides
or online sources would undermine the assessment of students’
individual problem-solving competence.

These consequences require instructors to invest more time in
creating problem statements. However, these challenges also have
positive implications for teaching, as instructors are compelled to
design original tasks with unique problems that closely resemble
real world challenges faced by computer scientists in industry. Such
exercises can effectively assess students’ problem-solving skills by
evaluating their ability to apply learned concepts within specific
problem contexts. In addition to the advantages for students, in-
structors also benefit from CBEs. They offer automated grading,
which reduces effort, enhances grading fairness, and shortens the
time between examinations and result publication.

In this paper, we present the system Artemis that allows in-
structors to conduct large-scale online and onsite CBEs in a secure
and reliable way. Section 2 discusses previous work in the area of
computer-based assessment. In Section 3, we describe how the ref-
erence implementation Artemis supports quiz, text, modeling and
programming assignments and their automatic correction in exams.
Section 4 describes how Artemis implements the exam process
with five distinct phases: design, preparation, conduction, correc-
tion, and review. Section 5 presents a case study of one large CBE
with 1,700 registered students in a software engineering course. In
Section 6, we present findings and lessons learned.

2 RELATEDWORK
Online examination is a broad research field which has been of
interest for many years. Yuan Zhenming et al. introduced a web-
based exam system that supports objective questions and operating
questions. They showed a framework to support auto grading of
Microsoft Office submissions and other basic computer tasks [27].
Liang Zhang et al. introduced a web-based exam system in 2006
[21]. Part of their system is an auto grading component which helps
to assess multiple choice, fill-in questions, and Microsoft Office sub-
missions. Fluck et al. outlined an online examination strategy using
a specialized live operating system [9]. The system can be con-
figured for open and closed book exams. An instructor creates a
document containing the exercises and students can use the pro-
vided software to work on them. Trivedi describes a similar setup,
but uses a customized head set, and fingerprint readers as addi-
tional components [26]. The custom operating system ensures that
only explicitly allowed computer aids can be accessed. All exam
questions are delivered via an audio stream to the students headset.
The accompanying desktop program shows a set of predefined an-
swers the student can select. The system has several disadvantages
since specialized hardware is required for all students, only multiple
choice questions are supported, and the overhead introduced by the
audio questions is significant. Fragulis et al. introduced a wordpress-
based examination plugin which supports multiple choice and text
submissions called ODES [10]. A student receives an auto generated,

random selection of questions based on constraints posed by the
instructor. In addition, their system supports automatic grading.

In 2011, Terzis and Economides proposed a model which investi-
gate factors for the acceptance of computer based assessment [25].
They found that the most important constructs are "perceived ease
of use" and "perceived playfulness" for students. Piaw Chua showed
that computer-based testing has better external and internal va-
lidity than paper-based testing methods [23]. The author found
that computer-based testing results in better self-efficiency and
higher intrinsic motivation. Boevé et al. found that CBEs do not
influence the students scores in comparison to traditional exams in
psychology, but the acceptance of such exams is lacking - especially
because students are not familiar with the process [5]. Harley et al.
showed that CBEs can reduce negative emotions in comparison
to traditional examination scenarios [12]. The authors explicitly
took the levels of anxiety, hopelessness, and shame into account.
All three emotions are found to be lower in CBEs.

In a recent study, Eko et al. showed a fault-tolerant, web-based
exam system targeted for developing countries [8]. The primary
focus of this work was to show an exam system which is resilient to
power losses and network issues. The authors implemented a web
application which ensures exams can be resumed if disruptions oc-
cur. They support concurrent exams and random question selection.
However, their system only supports multiple choice questions and
has limited scaling potential due to the chosen data model.

The open-source community also implemented tools that sup-
port educators with grading. Moodle1 is a broadly adopted Learning
Management System (LMS) allowing educators to conduct exams.
Ilias2 is a similar open-source LMS that also supports online ex-
ams. However, both lack modeling and programming exercises
support rendering them unusable for constructively aligned pro-
gramming courses. JupyterHub combined with tools like nbgrader3
implements programming assignments and free text answers with
automatic and manual grading workflows but lacks other assign-
ment types like quizzes and modeling [13].

Also, commercial solutions are available. Inspera4 implements a
cloud-based versatile assessment and certification workflowwith 25
question types, including a basic support for programming assign-
ments. Still, the current version is limited to small code snippets,
and automatic assessment is not fully supported yet. Also, modeling
support is missing. Similarly, Gradescope5 implements an exam
platform with the addition of programming tasks. All commercial
solutions presented here have the disadvantage that they are paid,
and student data is managed outside of the university or school,
which may lead to privacy issues.

Previous studies and the existing tool spectrum show that CBEs
are desired. However, the existing solutions are limited regarding
possible question types, automatic correction, price, ease of use,
and acceptance. The open-source Artemis exam mode presented in
this paper aims to solve the shown limitations by using the same
familiar learning platform students use during the course for the
final examination, providing diverse exercise types (quiz, modeling,

1https://moodle.org
2https://www.ilias.de/en
3https://nbgrader.readthedocs.io/en/stable
4https://www.inspera.com/product-overview
5https://www.gradescope.com

https://moodle.org
https://www.ilias.de/en
https://nbgrader.readthedocs.io/en/stable
https://www.inspera.com/product-overview
https://www.gradescope.com

Constructive Alignment in Modern Computing Education Koli Calling ’23, November 13–18, 2023, Koli, Finland

text, and programming exercises), and corresponding automatic
grading.

3 ARTEMIS AND EXAMMODE
Leveraging the open-source6 Learning Platform Artemis [16], the
proposed exam mode enables instructors to curate exams for each
course with customizable student registries and a diversity of ex-
ercise types. Artemis accommodates time extensions, augments
reliability through local autosaving with 30-second synchroniza-
tions, thus circumventing potential issues due to internet instability.

Post-examination, the assessment dashboard facilitates instruc-
tors in visualizing and evaluating submissions, with options for
multiple correction rounds. Following the assessments, Artemis
provides the results online, granting students the opportunity to
review and file for re-assessment, which engages a secondary re-
viewer for reconsideration. Artemis generates a comprehensive
statistical report for performance analysis.

Artemis’s unique functionality allows the creation of individual-
ized exams, utilizing a set of variable exercises, randomized order,
and a blend of compulsory and optional tasks, thereby augment-
ing the randomness of each assignment. Artemis offers robustness
against internet disruptions, by permitting offline work on specific
exercises and syncing saved progress upon connection recovery. For
programming tasks, Artemis mandates internet connectivity only
during solution submissions from their integrated development
environment.

3.1 Exercise types
Artemis supports programming, modeling, quiz, text and file ex-
ercises. It utilizes version control and continuous integration for
programming exercises, interfacing with corresponding servers
for automatic assessment via test cases and static code analysis.
This enables real-time, interactive feedback for students, while
maintaining limited feedback during exams to prevent correct so-
lution disclosure. Instructors populate a version control template
repository with exercise skeleton code and dependencies, while
auto-grading tests reside in a separate, student-inaccessible reposi-
tory. Customizable combinations of black-box, white-box tests, and
static analysis evaluate functionality, implementation details, and
code quality.

The instructor sets a build plan in the Continuous Integration
System (CIS), which compiles and tests the exercise code, includ-
ing a task to pull updates from repositories and notify Artemis of
results. Before an exam starts, Artemis produces personalized stu-
dent repositories and build plans, which activate upon student code
submissions, concealing continuous integration complexities from
the student. For large-scale exams, Artemis efficiently manages a
multitude of student-specific repositories and build plans.

Students can work either locally or via the online editor during
exams. Upon submission, the build plan compiles, tests, and swiftly
uploads results to Artemis for student review. Incorrect solutions
provide error feedback, enabling multiple submission attempts.
Instructors monitor progress in real time and can conduct manual
reviews if needed, assessing aspects not covered by automatic tests
or analysis.
6https://github.com/ls1intum/Artemis

Artemis also facilitates the composition of three quiz types:
short-answer, drag-and-drop, and multiple-choice questions. For
short-answer questions, instructors can control for typos and capi-
talization. Drag-and-drop questions can be created using images or
modeling elements, with Artemis ensuring no unsolvable mappings.
Multiple-choice questions, along with associated hints and expla-
nations, are defined using markdown. Quizzes are auto-graded,
random question and answer order can be implemented to deter
collaboration. Various scoring strategies, including all or nothing,
and proportional with or without penalty, are offered.

Artemis integrates an online modeling editor Apollon7 that
is open-source. Apollon supports seven Unified Modeling Lan-
guage (UML) diagrams: class, object, activity, use case, commu-
nication, component, and deployment diagrams. It also supports
three additional non-UML diagram types: Petri nets, syntax trees,
and flowcharts. Apollon is lightweight and easy to use to lower the
entrance barrier of digital modeling.

3.2 Automatic Assessment
Artemis employs varying assessment strategies depending on ex-
ercise type. Programming exercises are auto-assessed using soft-
ware tests and Static Code Analysis (SCA) rules, with instructor-
determined weightings, hidden tests, and customizable SCA rules
that measure code quality aspects. An optional manual assessment
phase permits in-depth feedback provision. Quiz exercises are auto-
assessed with scoring strategy-based results. Instructors can revise
quizzes by adding text options or invalidating ambiguously formu-
lated questions.

Artemis utilizes supervised machine learning for semi-automatic
assessment of modeling and text exercises [2, 3, 15]. During man-
ual assessment, Artemis learns correctness aspects and, through
similarity analysis, proposes feedback for subsequent submissions.
Exercise-specific feedback provision is enabled for different exer-
cise types, with reviewer training implemented to ensure grading
consistency and fairness.

The double-blind review process eliminates potential bias, and
structured grading instructions further standardize grading. Pre-
defined feedback can be applied via drag-and-drop mechanisms.
A feedback rating system and a reviewer leaderboard foster high-
quality feedback provision, aiding student comprehension and mis-
conception prevention.

3.3 Architecture
Krusche and Seitz introduced the initial version of Artemis in 2018
[16]. The top-level architecture of Artemis consists of 5 subsys-
tems. Artemis implements a client server architectural style with
an Artemis Application Server and a Artemis Application Client con-
nected via the Artemis API. The Artemis Application Server uses
services provided by a Version Control System, a Continuous Inte-
gration System, and a User Management System. Figure 1 illustrates
the connections between the subsystems. [16]

Since potentially hundreds of students access Artemis simultane-
ously during an exam, a scalable and highly available architecture is
required. Both can be achieved by a vertical scaling approach. The
Artemis is designed to support a clustered deployment based on
7https://github.com/ls1intum/Apollon

https://github.com/ls1intum/Artemis
https://github.com/ls1intum/Apollon

Koli Calling ’23, November 13–18, 2023, Koli, Finland Matthias Linhuber, Jan Philip Bernius, and Stephan Krusche

Artemis
Application Server

Artemis
Application Client

Version Control
System

Continuous
Integration

System

User
Management

System

CBSE
API

Access
Management

Build Plan
Management

Repository
Management

Figure 1: Artemis top level design with external subsys-
tems

«subsystem»
client1:Artemis

Application Client

«subsystem»
:Load Balancer

«subsystem»
:Database

«subsystem»
clientN:Artemis

Application Client

«subsystem»
instance1:Artemis
Application Server

«subsystem»
instance2..N:Artemis

Application Server

«subsystem»
:Broker

REST + WSWS

...

«subsystem»
:Disovery Service

«subsystem»
:Shared Storage

REST + WSWS

Figure 2: Artemis multi node architecture

multiple Artemis Application Servers as shown in Figure 2. A Load
Balancer exposes the Artemis Application Servers to the Artemis Ap-
plication Clients via REST andWebsockets (WS) and handles the TLS
termination. All nodes connect to a central Database and have ac-
cess to a Shared Storage for persistent data management. In addition,
we employ a Message Broker to distribute and relay WS requests, a
Shared Cache to have common, distributed data structures between
all nodes, and a Discovery Service to find and adopt nodes as they
start up and add them to the cache pool.

This architecture allows dynamic scaling by adding or removing
Artemis Application Servers on demand. The cluster automatically
adopts new nodes and schedules new connections after they become
ready. Artemis is highly available since the system continues to
work as long as at least one Artemis Application Server remains
functional.

4 EXAM PHASES
The Artemis exam mode is structured in five phases: design, prepa-
ration, conduction, correction, and review. Figure 3 shows all phases
and the load distribution on the involved Artemis subsystems.

4.1 Design
During design, the instructors design the exercises they intend to
use in the exam. Each exercise should be aligned with the course
learning goals. The exercise types are of the same nature as the
assignments during the semester. Hence, students have to use the
same cognitive skills and strategies to get to a solution. Instructors
use the workflow introduced by Krusche and Seitz to create exam
exercises [16].

During creation of an exercise, an instructor writes an problem
statement and a clear description of the action items the student
has to solve. In addition, they create a sample solution (which may
include assessment hints and details) and grading criteria which
have to bemet to get a specified number of points. For programming
exercises, also software tests are required. Depending on the exam
style, instructors may create tests which provide feedback during

the exam, or are only executed after the exam during the Correction
phase.

Collaboration between students is a major concern in CBEs.
With communication software being broadly available and digital
exam solutions being easily shareable, it is very easy for students
to exchange exam solutions among each other. To prevent this
form of collaboration, every students gets their individual prob-
lem set. An exam typically consists of many exercises. For every
exercise, instructors define one or more exercise variants. Artemis
generates an individual set of assignments for every student by
randomly selecting one variant for every exercise. Since variants
are complete exercises on their own they can be completely unique
and independent from each other. However, it is a good practice
to limit variations to minor differences to keep the difficulty level
comparable.

Finally, this phase includes quality control. Instructors typically
review and test an exam before the conduction. This activity in-
cludes test runs by, e.g., colleagues which give feedback on the
exercises and check the understandability of problem statements
and the time constraints. The Artemis system supports this activity
with its exam test run feature: instructors can compose an indi-
vidual test exam based on the variants and invite the testers to
execute the exam within the system. Thereby, the test runs can be
configured so that all variants are covered and the tests can execute
the exam in the actual examination system with a real working
time.

4.2 Preparation
The first step in the exam preparation phase is to import all the
students registered for the exam in to the system. This information
may come from an external data source e.g. a central examination
management system, or directly from the instructor. Each student
receives an individual exam consisting of a permutation of exercises
picked from the exercise variants the instructor created during the
Design phase. The system ensures that all exercise variants are
equally distributed. Instructors may adapt individual exams due

Constructive Alignment in Modern Computing Education Koli Calling ’23, November 13–18, 2023, Koli, Finland

VCS

CIS

Artemis

Design Preparation Conduction Correction Review

Exam ready Exam start Exam over Results public

Application Load

Figure 3: Exam conduction timeline with typical load patterns on the involved subsystems

to external constraints like extended working time or specialized
exercise mappings.

Based on the individual exams, the system creates the corre-
sponding exercise resources e.g. repositories and build plans. Since
the creation of these resources requires considerable computing
power, this activity is typically performed some time before the
exam start. Instructors can monitor the generation of the exercise
resources in the Artemis exam dashboard. By the end of the prepa-
ration phase, all individual student exams are composed and all
resources are prepared for the exam conduction, enabling a smooth
start of the exam. The primary load during this phase is on the
Version Control System (VCS) and CIS due to the mass creation of
exam resources.

4.3 Conduction
Five minutes before the official working time starts, students can
open the exam view in Artemis and sign off exam hints, modali-
ties, and terms. In this time frame, the Artemis Application Client
downloads and caches the Individual Exam for the student in the
background. The Artemis Application Server meanwhile adjusts
the access permissions for all exam repositories in the VCS. The
client ensures all exams start simultaneously by synchronizing a
client-internal clock with the Artemis Application Server. This de-
sign decision distributes computationally intensive tasks to prevent
a throughput bottleneck at the exam start.

As soon as the official working time starts, Artemis shows an
overview of all exercises the student has to solve. The User Interface
(UI) is closely aligned with the familiar exercise view students
use to solve their homework. However, the UI is reduced to the
necessary exam functionality to improve the visual affordance but
have a consistent and standardized UI [22]. In addition, we show
the remaining exam time in all views.

Instructors can choose whether students receive detailed feed-
back on their programming exercises during the exam, or only
a basic compile check. Either way, students can submit program-
ming exercises multiple times, Artemis builds the current state and
shows feedback in the editor view. The feedback is generated asyn-
chronously by the CIS and pushed to the Artemis Application Client
via Websockets. The state in the client is automatically synced to
the server every 30 seconds. In addition, Artemis allows to work

offline in case a student has connectivity issues. The state is synced
to the server as soon as the connection is recovered.

At the end of the official working time, the students have to sign
off and actively submit their exam. The instructor may configure a
grace period to account for technical difficulties, and the time over-
head introduced by git operations. The Artemis Application Server
revokes access to the students’ git repositories in the background.
As this task takes some time to complete, Artemis additionally
monitors late pushes and marks them as invalid. During this phase
Artemis has a consisted, elevated load. The load on VCS and CIS is
steadily rising and reaches a maximum at the final submission.

4.4 Correction
After the exam is completed, the correction phase starts. The sys-
tem allows manual and automatic correction of exercises. Both
are strictly double-blind and fully parallelizable. This is especially
important for large exams with multiple instructors involved in the
correction of exercises. Each exercise is equipped with a sample
solution and initial grading criteria to support instructors to assess
exams consistently. In addition, the system provides ML-Based grad-
ing and feedback suggestions [2, 3, 15]. There are cases in which
grading criteria may change during the assessment, e.g. because
the reviewers identify creative solutions that do not fit to the grad-
ing criteria, but still reflect a correct solution. The instructor can
conduct multiple correction rounds to improve the quality of the
correction in such situations.

Programming exercises are assessed by software tests and static
code analysis. Initially, the system uses the tests instructors created
during the Design phase. However, these tests may not be sufficient.
Some initial software test may not cover important details which
were forgotten in the Design phase. The system allows test adaption
and automatic test reruns to re-evaluate and grade all submissions
without manual intervention. This allows instructors to iterate over
the grading criteria multiple times. Each re-evaluation shows the
change of achieved points for each submissions. The primary load
on the subsystems of Artemis is induces by these test-reruns.

In addition to the correction, Artemis performs automatic pla-
giarism detection for text, modeling and programming exercises.
It analyzes the similarities between all student submissions and
highlights those which exceed a given threshold. Artemis integrates

Koli Calling ’23, November 13–18, 2023, Koli, Finland Matthias Linhuber, Jan Philip Bernius, and Stephan Krusche

the open-source plagiarism tool JPlag [24] for programming and
text exercises. For modeling exercises it offers a custom similar-
ity assessment mechanism. With the integrated plagiarism editor,
instructors can compare all highlighted submissions and confirm
those actual plagiarism attempts cases. In addition, instructors can
download a report of accepted and rejected plagiarism attempts.
Artemis integrates functionality to notify the students, and allow
them to react to the accusation.

4.5 Exam Review
Artemis offers the possibilities for online exam reviews so that
students can participate in the review asynchronously reducing
commute and time efforts. During the review period, students have
the opportunity to evaluate the assessment of their exam in the
web interface of Artemis. They can inspect the correction results
and the feedback and compare their own solution with the example
solution and the grading criteria provided by the instructor.

If they find inconsistencies, they can submit complaints about
perceived mistakes triggering a re-evaluation of their exam exercise.
The complaint review is triple-blind. Artemis ensures that a second
reviewer evaluates the complaint who does not know neither the
identity of the student nor the first reviewer. This increases the
fairness and minimizes the risks of personal bias. Students may
dispute plagiarism accusations identified in the Correction phase.
After all complaints are reviewed, the final grades can be analyzed
and exported to external systems.

5 CASE STUDY
This case study describes the instantiation of Artemis in the course
Introduction to Software Engineering at Technical University of
Munich (TUM). Traditionally, Introduction to Software Engineering
is an on-campus lecture-based course taught to first-year bachelor
computer science students. The course has grown rapidly over the
last decade with 2,200 students registered for summer semester
2022. In summer 2020, the COVID-19 pandemic forced this course
be be taught and examined in an online setting. As of the further
increasing student numbers, we kept the examination online for
the 2021 and 2022 editions of the course while teaching returned to
an on-campus format in 2022. In this case study we investigate the
following research questions by using the Artemis exam mode in
Introduction to Software Engineering:

RQ1: What compute infrastructure is needed to host a reliable
CBE system?

RQ2: Can CBEs reduce efforts in terms of design, conduction,
and correction?

5.1 Course
The course covers a wide range of software engineering concepts,
including requirements analysis, system and object design, test-
ing, software lifecycles, configuration management, project man-
agement, and UML modeling [20]. Instructors establish specific
learning objectives for each lecture based on the six cognitive skills
outlined in Bloom’s revised taxonomy [1]. The emphasis in this
course is on higher cognitive skills, with students actively applying

the concepts through practical exercises. The teaching concepts
and exercises are carefully aligned with the course objectives using
the constructive alignment methodology [4].

Introduction to Software Engineering follows an interactive
learning approach, employing multiple iterations of theory, ex-
amples, exercises, solutions, and reflection [17]. The course utilizes
exercises to encourage student participation [18] and promote at-
tendance in the lectures [19]. Throughout the semester, students
engage in various types of exercises to prepare for the final exam,
including in-class exercises during lectures, group exercises in small
ad hoc groups, individual homework exercises, and team exercises
over five 2-week sprints. To receive feedback and points, students
are required to submit their exercise solutions to Artemis. Partici-
pation in the exercises also offers the opportunity to earn bonus
points for the final exam. The assignments in the final exam follow
the same concept and structure as the exercises during the semester.

5.2 Artemis Deployment at TUM
The deployment of Artemis for the case study is illustrated in Fig-
ure 4. The components of Artemis including the database, broker,
shared storage, and load balancer are running on separate Virtual
Machines (VMs). We scaled Artemis horizontally to 11 Artemis
application server nodes, distributed across two classes of VMs.
Specifically, six servers run on small VMs with 4 CPUs and 8 GB
RAM, while five run on large VMs with 12 CPUs and 16 GB RAM.

«Virtual Machine»

«Virtual Machine» «Virtual Machine»

 :Build Agent

«Virtual Machine»

«Virtual Machine»

«component»
:Load Balancer

«component»
:Load Balancer

«Virtual Machine»

Jira:
User Management

«Virtual Machine»

Bitbucket:
Version

Control System

«Virtual Machine»

Bamboo:
Continuous

Integration System

«Virtual Maschine»
«Virtual Maschine»

«component»
Node1:Artemis

Application Server

«Virtual Maschine»

«component»
Node1:Artemis

Application Server

«Virtual Maschine»

«component»
Node1:Artemis

Application Server

«Virtual Maschine»

«component»
Node1:Artemis

Application Server

«Virtual Maschine»

«component»
Node1:Artemis

Application Server

«Virtual Machine»

«component»
Node1:Artemis

Application Server

«component»
:Broker

«component»
:Shared Storage

«component»
:Database

«Virtual Machine»

 :Build Agent
«Virtual Machine»

 :Build Agent

«Virtual Machine»

 :Build Agent

Figure 4: Artemis multi node deployment with external sub-
systems at TUM

The Artemis instance at TUM uses Atlassian Jira as User Man-
agement System. Jira is connected to the universities central user
directory. This architecture allows students to use their university
account to log in to the systems while the instructors can manage
access to different materials independent of the central authorities.
Atlassian Bitbucket implements the Version Control System. It in-
tegrates well with the User Management System and can be scaled
horizontally. Atlassian Bamboo is the Continuous Integration Sys-
tem. Bamboo delegates the build execution to 90 Linux Build Agents
deployed as virtual machines to a Proxmox hypervisor clusters.

The Discovery Service is implemented by the JHipster Registry
using Eureka. It ensures that the nodes find each other and establish
the shared hazelcast cache. The Artemis system uses MySQL Server
as Database implementation and ActiveMQ as Broker implemen-
tation. Nginx serves as the Load Balancer component. The system

Constructive Alignment in Modern Computing Education Koli Calling ’23, November 13–18, 2023, Koli, Finland

uses the default load balancing strategy of ngnix: weighted round
robin. We found that for this use case round robin is a good load
distribution strategy. In Section 5, we discuss a real world example
and show the achieved distribution in more detail.

5.3 Introduction to Software Engineering Exam
In the following, we walk through the five exam phases introduced
in Section 4 of the Introduction to Software Engineering exam from
summer 2022.

Design: The exam consisted of eight exercises giving 100 points
in total: four multiple-choice quiz exercises (20 points), one pro-
cess modeling exercise (12 points), one design pattern modeling
exercise (13 points) and two Java programming exercises on REST
and Software Testing (25 and 30 points). For every exercise, we
created between four and six exercise variants. Exercise variants
provide a similar problem statement in terms of structure, but the
instructors changed the underlying example so that the different
variants test the same cognitive skill but pose a different problem
context. For example, the design pattern exercise asks students to
model an investment system showing current values based on the
live price development on the stock market. Three possible variants
in this example are: (1) a ETF investment system, (2) a single stock
investment system, and (3) a crypto currency investment system.

Preparation: 1695 students were registered for the Introduction
to Software Engineering exam. As part of the preparation phase,
Artemis generates an individual exam for every student by choos-
ing one variant for every exercise. Given the number of variants
for the exercises, a total of 122,880 unique individual exams version
exist. Figure 5 shows the distribution of variants for all eight exer-
cises. For the two programming exercises, Artemis already creates
git repositories containing the skeleton code, resulting in 3,390
individual repositories for the exam.

0
100
200
300
400
500

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 5 6 1 2 3 4 5 1 2 3 4
Quiz 1 Quiz 2 Quiz 3 Quiz 4 Process

Modeling
Design patterns REST Testing

Figure 5: Introduction to Software Engineering exam with
number of exercises, variants, and students per variant

Conduction: We performed the exam on an Artemis installation
that is also used by other courses so the system operated in a typical
production environment and was not limited or reserved for the
exam conduction. Figure 6 depicts the number of active users /
sessions in the Artemis system around the exam. 1,500 of the 1,695
registered students started the exam (88 %). 1,477 students handed
in the exam in the end (98 %). We measured 2359 active users in the
system 5 minutes before the exam start. During the exam period,
the system peaked with 3163 active users around 20 minutes before
the exam end. The exam ended with 2896 active users in the system.
The number of active users declines quickly after the end of the
exam with 2050 active users 5 minutes after the exam end. During
the exam, we carefully monitored the system load of all machines in
terms of CPU, RAM and disk IO usage. We did not record significant
system load on the eleven Artemis node machines. However, we

monitored a slightly increased system load on the database server
around the end of the exam. Figure 7 depicts the even distribution of
users / sessions to the 11 nodes. Small instances (node{2-7}) host
between 125 and 175 users each and large instances (node{1,8-11})
host between 400 and 500 users.

We operated 90 build agents in the system of which 80 were
capable to build and test student exam solutions. During the exam,
the tests only verify whether the solution is compilable. Figure 8
depicts the number of active build agents over the course of the
exam. Only 3 agents were active in the 5 minutes before the start
of the exam. This metric slowly increases towards the end of the
exam with 45 active agents 10 minutes before the end and all 80
capable agents active during the last 5 minutes of the exam.

Six people supervised the exam conduction: Three people moni-
tored the compute infrastructure and another three people moni-
tored the official chat room, looking out for problems and answering
questions.

The Broker subsystem crashed between 15 and 10 minutes before
the exam. This outage was detected by the monitoring system and
could be resolved by an automatic system restart.

Correction: The exam correction process is different for the
three different exercise types (quizes, programming, and modeling)
used in the exam. Multiple-choice quiz exercises can be evaluated
automatically based on the solution mapping defined as part of the
design phase. This evaluation has to be invoked manually by the
instructor with the click of a button.

Programming exercises are corrected using a set of unit tests.
The execution of the unit tests was scheduled to run after the exam
between 08/09 00:00 and 08:00 grouped by exercise variant. These
runs are visible as peaks in the build agent utilization in Figure 8.
The instructors inspected the test results to adapt the preliminary
test cases to correctly grade unexpected exam solution attempts.
The test executions of the adapted tests can be seen in the following
peeks in build agent utilization.

Modeling exercises were corrected manually. The assessment
took two days with 15 - 20 humans grading in parallel. All grad-
ing was done in the Artemis web client using the grading criteria
specified during the Design phase.

Review: Students were given 3.5 days to review their exams
online in Artemis. In total, the instructors received 184 complaints
on modeling exercises (manually graded) and 492 complaints on
programming exercises (automatically graded using test cases).
Studentswere aware that programming exerciseswere not reviewed
by humans and argued how small mistakes might have affected
more test cases to fail. The students did not have access to the
instructors test cases, but received generated feedback messages.

5.4 Results
We answer the two research questions based on the case study in
the Introduction to Software Engineering exam.

RQ1: The needed compute infrastructure primarily depends on
the number of students involved. Two important measures are the
number of Artemis server nodes and the number of build agents.
We distinguish three scenarios:

(1) Examswithup to ~250 students: a deployment with a single
Artemis server node and five build agents is sufficient.

Koli Calling ’23, November 13–18, 2023, Koli, Finland Matthias Linhuber, Jan Philip Bernius, and Stephan Krusche

Figure 6: Artemis overall participating students Figure 7: Artemis participating students per Artemis Node

Figure 8: Build agent activity during and after the exam

(2) Exams with between ~250 and ~1,000 students: vertical
scaling of one Artemis server node with increased hardware
resources in terms of CPUs and RAM is sufficient. For exam-
ple, use a server with 12 CPU cores and 24 GB RAM when
approaching the 1,000 student mark.

(3) Exams withmore than ~1,000 students: horizontal scaling
of Artemis server nodes facilitates improved load distribution
and ensures seamless failover mechanisms in the event of
failures. To mitigate large build queues and ensure timely
feedback within exams, it is necessary to utilize more than
20 build agents, as the capacity of these agents is a crucial
determinant for prompt exercise feedback, directly impacting
individual students.

Finding 1: One build agent per 50 participating students is a good
estimate for efficient resource planning in CBEs with programming
exercises.

RQ2: To conduct an effort comparison, this study examines the
allocation of human resources and time between an online exam-
ination and the previous edition of the Introduction to Software
Engineering course, which was administered in a traditional paper-
based format in 2019 (pre-pandemic). Compared to the traditional
PBE, several aspects of the online examination require additional
efforts during the design phase:

(1) Open-book/Open-internet examination: The online for-
mat necessitates the creation of different questions that tar-
get higher-level cognitive skills. Designing such questions
is a time-consuming process, as they typically require con-
textualization to facilitate application. The replication of
definitions is rendered irrelevant, as definitions or simple
examples can be readily accessed from course materials or
online sources.

(2) Creation of variants: developing exercise variants ampli-
fies the workload in exercise design, as the number of ex-
ercises increases accordingly. Although variants can often
be derived from one another, meticulous consideration is
essential to select a suitable set of examples.

(3) Automatic grading of programming exercises: Setting
up programming exercises for automatic grading necessi-
tates the establishment of a comprehensive set of test cases.
The definition of test cases is a time-consuming endeavor,
particularlywhen accommodating different solution approaches
is required.

The 2019 PBE was administered in ten lecture halls across two
campuses in Munich. The conduction of the examination involved
the participation of 50 university employees who performed tasks
such as distributing and collecting exam sheets, verifying student
identities, preventing cheating, and addressing questions. The al-
location of staff was based on room capacities, where an average
lecture hall was supervised by two scientific employees and three
assistants.

In contrast, the CBE conducted in 2022 was remotely taken by
students from their homes, obviating the need for lecture hall staff.
The supervision of the CBE involved only six individuals. Conse-
quently, the conduction effort was reduced by 88 %.

For the correction of the paper-based exam in 2019, we used
an exam scanning solution which automated grading of multiple-
choice exercises. Six exercises, including modeling, free text, and
paper-based programming, had to be manually corrected. This
manual correction process spanned ten days and an average of
24 people working eight hours per day in parallel, resulting in
1,920 correction hours. In contrast, the CBE only required two full
working days with an average of 15 people involved, resulting in
240 hours. The manual correction efforts are decreased by 88 %.

The design of a CBE requires more initial setup effort compared
to a PBE, especially in defining multiple variants for deception
prevention and test cases for automatic evaluation of program-
ming exercises. However, this effort is more than compensated by
significant savings during execution and correction.

Finding 2: The combined effort of preparing, conducting, and
correcting a CBE is significantly less than a PBE when more than
∼100 students participate.

Finding 3: CBEs can be realized at large scale while involving less
people.

6 DISCUSSION AND LESSONS LEARNED
CBEs have several advantages over PBEs, but also introduce chal-
lenges and risks. We discuss the most important aspects and present
the lessons learned in the following section.

Constructive Alignment in Modern Computing Education Koli Calling ’23, November 13–18, 2023, Koli, Finland

6.1 Exercises
CBEs necessitate exercises that target cognitive skills different from
those assessed in traditional paper-based exams. It is crucial to pre-
vent students from easily finding solutions to problem statements
online. Hence, instructors may be tempted to create more chal-
lenging programming exercises, assuming that the IDE provide
sufficient assistance to students for simple aspects (e.g., creating
getters and setters), thus justifying more complex problem state-
ments. However, given the limited time and stressful nature of
exams, instructors should carefully estimate the time required for
students to read the problem statement, comprehend the template
code, and solve the exercise.

To provide a more realistic estimate of the time students will
need to complete the task, instructors should calculate the differ-
ence/delta between the solution and template code in programming
exercises by quantifying the number of lines students need to add
and modify. These lines can be categorized into simple code (e.g.,
imports, getters, setters), moderately heavy code (e.g., basic logic
statements), and heavy code (e.g., complex logic statements), and
different time estimates can be assigned accordingly. It is also bene-
ficial to grant additional working time (e.g. 10 minutes) to account
for various technical issues and overhead that may arise during
code cloning and uploading.
Finding 4: To optimize the effectiveness of programming exercises,
it is essential to incorporate contextual problem statements that
align with the learning objectives, while also categorizing the solu-
tion code based on its complexity to facilitate accurate estimation
of the required working time.

6.2 Variants
Similarly, exercise variants should not differ significantly to ensure
comparability of results. An effective strategy is to create a complete
exercise variant with a specific context in a particular application
domain. Subsequently, instructors can generate variants by altering
the application domain. For example, one exercise variant could
be "Implement a product API using REST for a shop selling mobile
phones," while another variant could be "Implement a product API
using REST for a shop selling cereal."
Finding 5: The implementation of a baseline exercise within a
specific context, followed by the adaptation of the exercise to other
domains, represents a fair strategy for generating comparable exer-
cise variants.

6.3 Live Feedback
Providing detailed feedback during exams poses challenges and
may not be desirable for several reasons. Firstly, it encourages
students to share solutions with their peers if they receive a 100 %
score. Secondly, it becomes difficult to modify grading criteria after
the fact, as students may cease working on the exercise once they
receive the 100 % solved feedback even though the solution is not
fully implemented. Lastly, if there is a mistake in the tests and
a student does not receive a success message during the exam
due to an error, they may complain about the time lost. These
risks and issues make live feedback undesirable for most use cases.
However, it can be helpful to inform students if their own code

would successfully compile against the predefined tests in the CIS
environment.
Finding 6: Feedback for programming tasks during the CBE beyond
a compilation check is not recommended.

6.4 Acceptance
According to our observations, the acceptance among students is
high. Most students prefer CBEs to PBEs because they can use
their familiar programming tools instead of programming on paper,
and because the scenario is more realistic. However, a few students
complain that the CBEs are more difficult than the traditional exams.
We assume that this complaint is independent of the CBE and is
more related to the fact that constructively aligned assessments
focus more on higher cognitive skills instead of pure knowledge
questions. Hence, root learning is not sufficient to pass the exam
and students cannot efficiently pass a course with one day of effort
anymore. We aim to quantify this in future research.

Creating open-book exams is more difficult and time consuming
than creating closed-book exams since straightforward knowledge
questions should not be used. The same applies for CBEs. Instruc-
tors have to invest time and effort into creating good and construc-
tively aligned exams while keeping the difficulty level reasonable.
By using automatic assessment, instructors can make up this time
later in the process, which would lead to a generally high accep-
tance among them. However, due to increased cheating possibilities,
some instructors fear academic integrity loss and still prefer PBEs,
in particular if they can delegate the assessment to doctoral students
or teaching assistants.
Finding 7: Most students prefer CBEs, while there are mixed feel-
ings on the instructor side.

6.5 Security
A CBE setup needs to be managed with great care and attention
to detail. The introduced overhead of managing such deployments
by hand is significantly and error-prone. A rigorous configuration
management solution should be used to manage these systems
automatically. The Artemis Ansible8 collection installs, configures,
and updates all components in a declarative fashion. This approach
not only ensures a consistent and up-to-date production setup, but
also canonical production-equivalent test setups.

Confidentiality, authenticity, and data integrity are crucial secu-
rity design goals for automatic assessment in CIS. First and fore-
most, students may submit arbitrary code to the VCS which is built
and tested automatically. The tests imply a remote code execution
of the student code, which needs to be secured to avoid issues.
Depending on the programming language and test strategy, this
may lead to substantial security risks. Docker containers isolate
the build execution from the host operating system and other build
executions. They provide individual execution environments for
different programming languages. The careful creations of tests
with timeouts and strict security are important.

System availability is a central concern in exams. Infrastructure
forms an interesting target for Denial of Service (DoS) attacks.
While it is hard to prevent these attacks completely, administrators
8https://www.ansible.com

https://www.ansible.com

Koli Calling ’23, November 13–18, 2023, Koli, Finland Matthias Linhuber, Jan Philip Bernius, and Stephan Krusche

can make them more difficult and reduce the impact as much as
possible. Simple measurements include adding rate limits to costly
API endpoints in the load balancing component and setting up tools
like fail2ban to block malicious IP addresses automatically.
Finding 8: Providing a secure and reliable exam infrastructure at
scale requires substantial effort.

6.6 Deception
CBEs at home are more susceptible to deception than CBEs and
PBEs in the lecture hall. In recent years, large language models
became more and more relevant. Significant advancements in AI,
such as GPT-3, GPT-4 and their general availability via ChatGPT9
influence education [14]. Traditional text-based questions are no
longer sufficient to assess students [7]. Even solutions for tasks
where the student is supposed to argue in a certain context can now
be generated automatically to some extent. The exam in Section 5
did not include text exercises for this reason. Also, programming ex-
ercises are susceptible to AI generated solutions from tools such as
ChatGPT, Codex10, and Github Copilot11. A remedy to this problem
are supervised CBEs in the lecture hall with computers provided by
the university. An alternative for larger courses would be scenarios
in which students bring their own device. While the effort for the
conduction of the examwould increase again, the presented benefits
in terms of automatic assessment and constructive alignment still
hold. Due to the supervision in the lecture hall, deception would
be less likely.

7 CONTRIBUTIONS AND FUTUREWORK
This paper presents three main contributions: first, it shows the
design and architecture for a scalable CBE system that enables in-
structors to conduct constructively aligned, personalized exams.
Artemis supports instructors with semiautomatic assessment for
quiz, modeling, text, and programming exercises, parallel double-
blind manual correction and triple-blind student complaints. Sec-
ond, it formalizes a scaled exam conduction process consisting of
five phases: Design, Preparation, Conduction, Correction, and Re-
view. Third, it presents eight findings from a case study with 1,700
students that shows the use of the Artemis exam mode in a large
software engineering exam.

The presented research can be extended in the following ways:
Evaluation across institutions: The Artemis system was suc-

cessfully used for examination in multiple higher education in-
stitutions, especially during the COVID-19 pandemic. However,
no formal evaluation was conducted across institutions. Future
research should identify patterns and best practices of CBEs and
their infrastructure.

Bring your own device (BYOD) exams: The focus of this paper
primarily revolves around CBEs conducted online. Nevertheless,
onsite CBEs also present a viable alternative for assessing students,
depending on the availability of adequate computer labs. Consider-
ing the limited availability of computer rooms in most universities,
the adoption of BYOD exams, where students use their own laptops
in exam rooms, emerges as a logical next step. However, BYOD
9https://chat.openai.com
10https://platform.openai.com/docs/guides/code
11https://github.com/features/copilot

exams introduce new challenges related to onsite infrastructure,
including power supply and internet connectivity. Further investi-
gation is warranted to analyze the challenges, benefits, and risks
associated with BYOD exams.

AI in the examination: The effect of AI, especially large lan-
guage models such as ChatGPT, is a current topic in education
research [6, 14]. Future investigations should rigorously explore
the implications of AI in exam environments. This includes the de-
velopment of technical methodologies for identifying AI-generated
submissions and ethical inquiries into the responsible utilization
of AI technologies by both students and instructors. AI has the po-
tential to help instructors generate variants or complete exercises
during the Design phase, reducing the effort for large scale exams.

Dynamic application scaling: In this study, the system was
scaled manually. A transition from a VM-based deployment ap-
proach to a container-based approach may be evaluated for exam
use cases. Future work is needed to explore the potential uses for
microservice architectures in CBE.

In conclusion, this research not only advances the field of CBEs
through its innovative design and comprehensive evaluation but
also provides actionable insights for educators and institutions
aiming for more effective, scalable, and constructively aligned as-
sessments. As computing education continues to evolve, the contri-
butions of this paper lay a critical foundation for future empirical
studies and technological advancements in assessment strategies.

REFERENCES
[1] Lorin W. Anderson, David R. Krathwohl, Peter W. Airasian, Kathleen A. Cruik-

shank, Richard E. Mayer, Paul R. Pintrich, James Raths, and Merlin C. Wittrock.
2001. A Taxonomy for Learning, Teaching, and Assessing: A Revision of Bloom’s
Taxonomy of Educational Objectives. Longmans Green.

[2] Jan Philip Bernius, Stephan Krusche, and Bernd Bruegge. 2021. A Machine Learn-
ing Approach for Suggesting Feedback in Textual Exercises in Large Courses. In
8th ACM Conference on Learning @ Scale (Potsdam, Germany) (L@S ’21). 173–182.
https://doi.org/10.1145/3430895.3460135

[3] Jan Philip Bernius, Stephan Krusche, and Bernd Bruegge. 2022. Machine learning
based feedback on textual student answers in large courses. Computers and
Education: Artificial Intelligence 3 (2022), 100081. https://doi.org/10.1016/j.caeai.
2022.100081

[4] John Biggs. 2003. Aligning teaching and assessing to course objectives. Teaching
and learning in higher education: New trends and innovations 2 (2003), 13–17.

[5] Anja J. Boevé, Rob R. Meijer, Casper J. Albers, Yta Beetsma, and Roel J. Bosker.
2015. Introducing Computer-Based Testing in High-Stakes Exams in Higher
Education: Results of a Field Experiment. PLOS ONE 10, 12 (Dec. 2015), e0143616.
https://doi.org/10.1371/journal.pone.0143616

[6] Thomas K.F. Chiu, Qi Xia, Xinyan Zhou, Ching Sing Chai, and Miaoting Cheng.
2023. Systematic literature review on opportunities, challenges, and future
research recommendations of artificial intelligence in education. Computers and
Education: Artificial Intelligence 4 (2023), 100118. https://doi.org/10.1016/j.caeai.
2022.100118

[7] Debby Cotton, Peter Cotton, and J. Reuben Shipway. 2023. Chatting and Cheating.
Ensuring Academic Integrity in the Era of ChatGPT. Preprint. EdArXiv. https:
//doi.org/10.35542/osf.io/mrz8h

[8] Ceasar E. Eko, Idongesit E. Eteng, and Eyo E. Essien. 2022. Design and Imple-
mentation of a Fault Tolerant Web-Based Examination System for Developing
Countries. Eastern-European Journal of Enterprise Technologies 1, 2(115) (Feb.
2022), 58–67. https://doi.org/10.15587/1729-4061.2022.253146

[9] Andrew Fluck, Darren Pullen, and Colleen Harper. 2009. Case Study of a Com-
puter Based Examination System. Australasian Journal of Educational Technology
25, 4 (Sept. 2009). https://doi.org/10.14742/ajet.1126

[10] George F. Fragulis, Lazaros Lazaridis, Maria Papatsimouli, and Ioannis A. Skor-
das. 2018. O.D.E.S.: An Online Dynamic Examination System Based on a CMS
Wordpress Plugin. In 2018 South-Eastern European Design Automation, Computer
Engineering, Computer Networks and Society Media Conference (SEEDA_CECNSM).
IEEE, Kastoria, 1–8. https://doi.org/10.23919/SEEDA-CECNSM.2018.8544928

[11] Telle Hailikari, Viivi Virtanen,Marjo Vesalainen, and Liisa Postareff. 2021. Student
perspectives on how different elements of constructive alignment support active
learning. Active Learning in Higher Education (2021).

https://chat.openai.com
https://platform.openai.com/docs/guides/code
https://github.com/features/copilot
https://doi.org/10.1145/3430895.3460135
https://doi.org/10.1016/j.caeai.2022.100081
https://doi.org/10.1016/j.caeai.2022.100081
https://doi.org/10.1371/journal.pone.0143616
https://doi.org/10.1016/j.caeai.2022.100118
https://doi.org/10.1016/j.caeai.2022.100118
https://doi.org/10.35542/osf.io/mrz8h
https://doi.org/10.35542/osf.io/mrz8h
https://doi.org/10.15587/1729-4061.2022.253146
https://doi.org/10.14742/ajet.1126
https://doi.org/10.23919/SEEDA-CECNSM.2018.8544928

Constructive Alignment in Modern Computing Education Koli Calling ’23, November 13–18, 2023, Koli, Finland

[12] Jason M. Harley, Nigel Mantou Lou, Yang Liu, Maria Cutumisu, Lia M. Daniels,
Jacqueline P. Leighton, and Lindsey Nadon. 2021. University Students’ Negative
Emotions in a Computer-Based Examination: The Roles of Trait Test-Emotion,
Prior Test-Taking Methods and Gender. Assessment & Evaluation in Higher
Education 46, 6 (2021), 956–972. https://doi.org/10.1080/02602938.2020.1836123

[13] Project Jupyter, Douglas Blank, David Bourgin, Alexander Brown, Matthias
Bussonnier, Jonathan Frederic, Brian Granger, Thomas Griffiths, Jessica Hamrick,
Kyle Kelley, M Pacer, Logan Page, Fernando Pérez, Benjamin Ragan-Kelley, Jordan
Suchow, and Carol Willing. 2019. Nbgrader: A Tool for Creating and Grading
Assignments in the Jupyter Notebook. Journal of Open Source Education 2, 11
(Jan. 2019), 32. https://doi.org/10.21105/jose.00032

[14] Enkelejda Kasneci, Kathrin Seßler, Stefan Küchemann, Maria Bannert, Daryna
Dementieva, Frank Fischer, Urs Gasser, Georg Groh, Stephan Günnemann, Eyke
Hüllermeier, Stephan Krusche, Gitta Kutyniok, Tilman Michaeli, Claudia Nerdel,
Jürgen Pfeffer, Oleksandra Poquet, Michael Sailer, Albrecht Schmidt, Tina Seidel,
Matthias Stadler, JochenWeller, Jochen Kuhn, and Gjergji Kasneci. 2023. ChatGPT
for Good? On Opportunities and Challenges of Large Language Models for Education.
Preprint. EdArXiv. https://doi.org/10.35542/osf.io/5er8f

[15] Stephan Krusche. 2022. Semi-Automatic Assessment of Modeling Exercises Using
Supervised Machine Learning. In Hawaii International Conference on System
Sciences. https://doi.org/10.24251/HICSS.2022.108

[16] Stephan Krusche and Andreas Seitz. 2018. ArTEMiS: An Automatic Assessment
Management System for Interactive Learning. In 49th ACM Technical Symposium
on Computer Science Education (Baltimore, Maryland, USA) (SIGCSE ’18). 284–289.
https://doi.org/10.1145/3159450.3159602

[17] Stephan Krusche and Andreas Seitz. 2019. Increasing the Interactivity in Software
Engineering MOOCs - A Case Study. In 52nd Hawaii International Conference on
System Sciences. 1–10.

[18] Stephan Krusche, Andreas Seitz, Jürgen Börstler, and Bernd Bruegge. 2017. Inter-
active learning: Increasing student participation through shorter exercise cycles.

In 19th Australasian Computing Education Conference. ACM, 17–26.
[19] Stephan Krusche, Nadine von Frankenberg, and Sami Afifi. 2017. Experiences of

a Software Engineering Course based on Interactive Learning. In Tagungsband
des 15. Workshops Software Engineering im Unterricht der Hochschulen (SEUH).
CEUR, 32–40.

[20] Stephan Krusche, Nadine von Frankenberg, Lara Marie Reimer, and Bernd
Bruegge. 2020. An interactive learning method to engage students in mod-
eling. In International Conference on Software Engineering: Software Engineering
Education and Training. 12–22.

[21] Liang Zhang, Yue-ting Zhuang, Zhen-ming Yuan, and Guo-hua Zhan. 2006. A
Web-Based Examination and Evaluation System for Computer Education. In
Sixth IEEE International Conference on Advanced Learning Technologies (ICALT’06).
IEEE, Kerkrade, The Netherlands, 120–124. https://doi.org/10.1109/ICALT.2006.
1652383

[22] J. Nielsen. 1994. Usability Engineering. Elsevier Science.
[23] Yan Piaw Chua. 2012. Effects of Computer-Based Testing on Test Performance

and Testing Motivation. Computers in Human Behavior 28, 5 (2012), 1580–1586.
https://doi.org/10.1016/j.chb.2012.03.020

[24] Lutz Prechelt, Guido Malpohl, Michael Philippsen, et al. 2002. Finding plagiarisms
among a set of programs with JPlag. J. Univers. Comput. Sci. 8, 11 (2002), 1016.

[25] Vasileios Terzis and Anastasios A. Economides. 2011. The Acceptance and Use of
Computer Based Assessment. Computers & Education 56, 4 (May 2011), 1032–1044.
https://doi.org/10.1016/j.compedu.2010.11.017

[26] Aakash Trivedi. 2010. A Relevant Online Examination System. In 2010 Inter-
national Conference on Technology for Education. IEEE, Mumbai, India, 32–35.
https://doi.org/10.1109/T4E.2010.5550114

[27] Yuan Zhenming, Zhang Liang, and Zhan Guohua. 2003. A Novel Web-Based
Online Examination System for Computer Science Education. In 33rd Annual
Frontiers in Education, 2003. FIE 2003., Vol. 3. IEEE, Westminster, Colorado, USA.
https://doi.org/10.1109/FIE.2003.1265999

https://doi.org/10.1080/02602938.2020.1836123
https://doi.org/10.21105/jose.00032
https://doi.org/10.35542/osf.io/5er8f
https://doi.org/10.24251/HICSS.2022.108
https://doi.org/10.1145/3159450.3159602
https://doi.org/10.1109/ICALT.2006.1652383
https://doi.org/10.1109/ICALT.2006.1652383
https://doi.org/10.1016/j.chb.2012.03.020
https://doi.org/10.1016/j.compedu.2010.11.017
https://doi.org/10.1109/T4E.2010.5550114
https://doi.org/10.1109/FIE.2003.1265999

	Abstract
	1 Introduction
	2 Related Work
	3 Artemis and Exam Mode
	3.1 Exercise types
	3.2 Automatic Assessment
	3.3 Architecture

	4 Exam Phases
	4.1 Design
	4.2 Preparation
	4.3 Conduction
	4.4 Correction
	4.5 Exam Review

	5 Case Study
	5.1 Course
	5.2 Artemis Deployment at TUM
	5.3 Introduction to Software Engineering Exam
	5.4 Results

	6 Discussion and Lessons Learned
	6.1 Exercises
	6.2 Variants
	6.3 Live Feedback
	6.4 Acceptance
	6.5 Security
	6.6 Deception

	7 Contributions and Future Work
	References

