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ABSTRACT1

Over the past years, Paris, the capital of France, has experienced notable changes in its road net-2

work supply: the city has reduced space dedicated to cars while concurrently expanding dedicated3

infrastructure for active modes of transportation. This policy aims to reduce car travel and its ex-4

ternalities, like carbon emissions. The Downs-Thomson paradox provides a hypothesis to which5

extent this modal shift occurs: assuming that road networks is reduced and average cycling door-6

to-door journey times improve, it could be expected that car travel reduces to a level that leads to7

similar or less congestion than before the intervention.8

In this paper, we investigate the relationship of car network reduction and bike network9

expansion with reduced car travel and increased bike travel. We use empirical traffic data from10

Paris as well as map data from OpenStreetMap for the time period from 2015 to 2022. The results11

reveal a significant shift: car traffic declined by approximately 13%, inflow car traffic by 23%,12

and cycling increased 94% from 2016 to 2022 (cycling was not measured in 2015). We use the13

theory of the macroscopic fundamental diagram (MFD) to assess the change in traffic behaviour.14

Comparing the MFDs from 2015 to 2022, the MFD capacity is reduced by about 15%. Overall, we15

find that the decline in car travel reduced carbon emissions by 11%. Considering Paris’ reputation16

as a progressive city in terms of network supply re-adaptation, the outcomes of this study hold17

relevance for all cities currently engaged in transport supply adjustments.18

Keywords: network changes, traffic data, Paris bike network, network/macroscopic fundamental19

diagram; Down/Thomson paradox; decarbonization20
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INTRODUCTION1

There are many cities notable for their transportation system, while one city is, in particular, notable2

for its transformation of the transportation system: Paris, the capital of France. Paris massively3

changed and is continuing to change its road network supply: reducing the space available for4

the car, and expanding the space for the bike. Some view this and similar initiatives in France5

as a step towards making France a global leader in promoting cycling (1). This transport policy6

aims at discouraging car use and promoting cycling and thus supporting Paris’ decarbonization7

goals. By 2050, Paris plans to completely eliminate local emissions, making the city emission-8

free. Additionally, they aim to reduce the carbon footprint by 80% compared to 2004 levels (2).9

The transformation in Paris can be attributed to various political initiatives introduced from10

2015 onwards, largely led by Mayor Anne Hidalgo (2014 -). Notably, the Plan Velo I (2015 - 2020)11

and Plan Velo II (2021 - 2026) have played a significant role in making Paris a more bike-friendly12

city, with the objective of achieving a “100% cyclable” status (3). During the implementation of13

these plans, approximately 1,000 km of bike paths were created between 2015 and 2020, with plans14

to add an additional 180 km by 2026 (4, 5). The second plan also includes the removal of 72% of15

car parking spaces (6). Other initiatives, such as “Paris breathes” since 2016, involve temporary16

street closures on Sundays, and the city’s transformation towards becoming a “15-minute city”17

since 2020. This transformation encompasses conceptual changes, such as repurposing school18

playgrounds into parks after hours, and network changes, including redesigning public squares19

like Place de la Bastille to include trees and bike lanes (7). The main objective of these initiatives20

is to improve bike accessibility and promote sustainable transportation options city-wide. The21

collective efforts aim to create a greener, pedestrian-friendly urban environment and make Paris22

more conducive to cycling. As a result of the Plan Velo I, Plan Velo II, and the alterations towards23

becoming a “15-minute city”, the bike and car network in Paris has undergone significant changes.24

Consequently, it is not feasible to evaluate the impact of each plan in isolation; we must consider25

the overall network changes since 2015.26

Paris serves as a compelling example for many cities facing the challenges of achieving27

emission targets amid the climate crisis. Understanding the impact of significant network modifi-28

cations on transportation behavior becomes crucial as cities consider changes and promote cycling.29

Additionally, Paris’ substantial investment in Velo I and Velo II (over 400 million euros) highlights30

the importance of analyzing changes to aid budget planning. Valuable insights from Paris’ network31

changes can inform expectations of traffic behavior adjustments in other cities.32

All the changes to the network lead to the question of to which extent the politically de-33

sired modal shift occurs. Here, the Down/Thomson paradox provides a starting point (8–10): the34

removal of car space reduces the overall network capacity, i.e., increasing door-to-door journey35

travel times for cars with everything else being equal, while improved cycling infrastructure de-36

creases cycling door-to-door journey travel times in addition to the safety benefit. Consequently, a37

new equilibrium point can be expected where car travel is reduced by that amount which leads to38

similar or less congestion compared to the time before the intervention. Less congestion can be ex-39

pected as cycling travel times improve over the years. However, considering the changes in travel40

preferences since the COVID-19 pandemic, e.g., working from home and cycling (11, 12), it is41

likely that these changes also affect the observed traffic outcomes in Paris, i.e., leading to a different42

equilibrium than expected based on the prediction of the Down/Thomson paradox. Nevertheless,43

in this paper, we investigate the relationship between network changes and demand changes and44

their implications on decarbonization. Our analysis of to which extent supply-side measures are an45
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FIGURE 1 : Overview of workflow

effective means of transportation demand management uses empirical car and bike traffic data from1

Paris for the time period from 2015 to 2022 as well as historical map data from OpenStreetMap2

together with the theory of the macroscopic fundamental diagram (MFD). It provides a macro-3

scopic and aggregated perspective of traffic in an entire urban network (13) and is consequently4

appropriate for assessing Paris’ transport policy.5

This paper contributes with the first large-scale empirical assessment of network changes6

and changes in bike and car traffic flow in Paris. The data-driven analysis reveals that traffic7

production has decreased by 13%, and the inflow travel production by 23%, while the car network8

decreased by 5% (lane km) during our observation period. Congestion levels also appear to have9

fallen. In contrast, bike traffic increased by 57% for those detectors installed in 2019, and even10

94% for those installed in 2016, while the bike network increased by 11%.11

This paper is organized as follows and as illustrated in Figure 1. The next section presents12

the methods used for the assessment. Then, we present the processing of the network and traffic13

data, followed by the results. In the last section we provide a conclusion that highlights the novel14

insights gained, limitations of the proposed method, and future research directions.15

METHOD16

We explore the impact of car and bike network changes on the respective car and bike traffic in17

Paris using the theory of the macroscopic fundamental diagram (MFD) (13, 14) as well as mea-18

sured network changes from OpenStreetMap (see next section). The MFD provides an aggregated19

macroscopic and network-wide relationship between the number of vehicles in the network and the20

average speed of all vehicles in the network. This relationship results from network topology and21
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TABLE 1 : List of symbols used in this analysis.

Symbol Unit Description

Y - Set of years with elements {2015; . . . ;2023}
y - Year index

Dy - Set of all days in the considered year y
D - Union of all sets Dy for all years y ∈ Y
d - Day index
H - Set of hours in the day (24-hour clock) with elements {5; . . . ;22}
h - Hour index

Nc - Set of network car detectors
Nc,in f low - Set of inflow car detectors

Nb - Set of bike detectors
i - Detector index

oihd % Detector occupancy
qihd veh/h Flow of vehicles (cars or bikes) per hour

li km Length of the road segment of car detector i ∈ Nc
Lc,y lane-km Length of the total road network in lane-km, for given year y
Lb,y cycleway-km Length of the total bike network in cycleway-km, for given year y
u f km/h Observed free-flow speed in Paris

Πhy veh-km/h Travel production per hour h and year y
vhy km/h Velocity per hour h and year y

e(v) kg/10 km Speed-specific emissions
Ey kg Emissions per year y ∈ Y

multimodal traffic operations (15–18). The network-wide perspective provides a unique oppor-1

tunity to assess the impact of large-scale transport policies such as re-purposing road space (19),2

changing routes (20), or changing the headway of the bus system (21). The MFD distinguishes3

three types of flows: internal flows, network inflow, and network outflow. While the first flow4

captures all vehicle movements inside the network, which is described by the MFD, the network5

inflow describes the number of vehicles that are entering the network per unit of time. Conversely,6

the network outflow summarizes all vehicles that leave the network or end their trip in the net-7

work. Based on the average network speeds estimated in the MFD, we can use speed-specific8

carbon emission factors to compute the total carbon emissions, following the idea of emission-9

macroscopic fundamental diagram (22). Table 1 lists all symbols used in this analysis.10

The MFD can be estimated with various methods (23), but considering the focus on assess-11

ing empirical changes of Paris’ urban-scale transport policies over a long period of time, only the12

“loops method” seems appropriate. Loop detectors are built into the street and count the number of13

passing vehicles per unit of time, flow q in vehicles per hour, and the time that vehicles occupy the14

detector, occupancy o in percent. Flow and occupancy are recorded in Paris at every measurement15

location i ∈ Nc, in every hour h ∈ H, on every day d ∈ D. Note that loop detectors are usually16

not installed on all roads, but only on a subset of roads, here denoted Nc. The assumption is made17
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that these roads are representative for the entire considered network. In this analysis, we select the1

MFD representation of travel production Π versus the number of vehicles n because the flow data2

reported in Paris is for the entire link, not per lane, and we have no information on the number of3

lanes per measurement location; hence, we cannot express the MFD on a per-lane basis.4

We estimate the macroscopic fundamental diagram as follows. First, we aggregate the5

occupancy of all single detectors oihd to the network average occupancy ohd as shown in Eqn. 1.6

ohd =
1

|Nc| ∑
i∈Nc

oihd ∀h ∈ H,∀d ∈ D (1)
7

Second, the total travel production of all detectors Πhd is calculated using the detector flow qihd8

and its associated road network length li as shown in Eqn. 2.9

Πhd = ∑
i∈Nc

liqihd ∀h ∈ H,∀d ∈ D (2)
10

Average network occupancy ohd can be transformed into the accumulation of vehicles nhd using11

a linear transformation with scalar s (14, 24). We obtain a reliable estimate of s for Paris by12

calibrating the MFD’s free-flow branch to speed values reported for the periods in which traffic13

states are in the interval of 0 to 4% occupancy. We find that the average free-flow speed in Paris is14

around u f = 28 km/h (25). Using the fundamental equation of traffic flow v = Π/n (26), we can15

express the relationship between the measured Πhd , ohd and u f values and the calibration scalar s16

as given in Eqn. 3.17

u f =
Πhd

ohd/s
(3)

18

The best value for s is derived using ordinary least squares and is found to be s = 0.046. With19

the calibration scalar (s) determined, we transform all average network occupancy values ohd into20

the number of vehicles nhd and subsequently calculate the speed (v = Π/n) for all points in the21

estimated MFD.22

Using the idea of the emission-MFD (22), we can use the estimated MFD as given in Πhd ,23

nhd , and vhd to derive average daily carbon emissions from the estimated MFD E based on speed-24

specified emission values e(v). Table 2 lists the values used in this analysis.25

TABLE 2 : Speed-specific emission values e(v), taken from (25).

Speed [km/h] Emissions [kg/10 km]

17.5 2.38
20.0 2.28
22.5 2.15
25.0 2.10
27.5 1.98
30.0 1.92

We estimate the average daily emissions Ey in year y as given in Eqn. 4, where Πhy and vhy26

are the annual average values of the observed travel production and accumulation values at hour h27

TRB Annual Meeting 2024 Initial Paper Submittal
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in year y in the MFD, i.e., Πhy =
1

|Dy| ∑d∈Dy Πhd and vhy =
1

|Dy| ∑d∈Dy vhd .1

Ey = ∑
h∈H

Πhy · e
(
vhy

)
∀y ∈ Y (4)

To quantify the network changes in Paris, we define three quantities. The capacity of the MFD Cy,
the total network length of cars Lc,y in lane-kilometres, and the total network length of bikes Lb,y
in cycleway kilometres in each year y. While the measurement of Lc,y and Lb,y uses map data (see
next section), the MFD capacity is defined as the 95th percentile of the travel production of year y
in the MFD as shown in Equation 5.
Cy = Πhd,[95] h ∈ H,d ∈ Dy (5)

2

We define four quantities for each year y that measure the changes in car and bike traffic:3

1. The average travel production in the network Π̄y:

Π̄y =
1

|Dy| ∑
d∈Dy

∑
h∈H

Πhd, (6)
4

5

2. The average accumulation of vehicles in the network n̄y:

n̄y =
1

|Dy| ∑
d∈Dy

∑
h∈H

nhd, (7)
6

7

3. The average travel production of a selected number of inflow links Π̄y,in f low:

Π̄y,in f low =
1

|Dy||Nc,in f low| ∑
d∈Dy

∑
h∈H

∑
i∈Nc,in f low

li ·qihd, (8)
8

9

4. The average bike counts B̄y:

B̄y =
1

|Dy||Nb| ∑
d∈Dy

∑
h∈H

∑
i∈Nb

qihd. (9)
10

11

Regarding this paper’s hypotheses, we expect a positive correlation between the network’s12

travel production (Π̄y) and the travel production of inflow detectors (Π̄y,in f low) with both the MFD13

capacity (Cy) and the total road network length (Lc,y). Conversely, we expect a slightly weaker14

positive correlation between vehicle accumulation (n̄y) and MFD capacity/road network length.15

Analogously, we anticipate a positive correlation between bike counts (B̄y) and the total length of16

the bike network (Lb,y).17

NETWORK DATA18

In this section, we discuss the derivation of the total network length for car and bike traffic in19

Paris. For each year y ∈ Y , Lc,y notates the lane-kilometres for car traffic, and Lb,y notates the20

cycleway kilometres of the bike-network. Current and historical data for the Paris car and bike21
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FIGURE 2 : Paris’ road and bike network and the studied area

network is obtained from OpenStreetMap (OSM) (27) using OSMnx (28). In this analysis, we1

focus on the road network within the Boulevard Périphérique, a motorway ring road encompassing2

the entire city. This ring offers a natural boundary for studying changes on the supply and demand3

side. Figure 2 shows the selected networks, with the bike network highlighted in violet and the4

road network in blue, while the boundary of the study area is shown in green. These colors are5

consistently used for the two modes in the following. It is worth noting that both networks extend6

beyond the study area, reaching into the suburban regions outside the boundaries of Paris.7

Technical procedure8

To obtain the network data, we follow the following procedure: We request data from OSM, for9

January 1st of the years 2015 to 2023, for the region inside the Boulevard Périphérique (using the10

polygon option of OSMnx). Using the graph_from_polygon function with simplify=False, we pre-11

serve different road and cycleway classifications in order to examine edges based on their specific12

classifications. The road classification of an edge in the car network is the value in the column13

“highway”: This value serves as the primary identifier for different types of roads, streets, or paths14

(29). Examples include “primary”, “secondary” and “residential”. We group edges with a road15

class ending on “_link” (i.e. “primary_link”) into the “other” road classification. The cycleway16

classification of an edge in the bike network is determined by the value in the “cycleway” column.17

The “cycleway” attribute serves as the primary identifier for cycling infrastructure, encompassing18

cycle lanes that are part of the road and separated cycle tracks running parallel to the road (30).19

Examples are “opposite”, “track”, “lane”, etc.20

For the car network, computing the kilometres per edge classification is straightforward.21

TRB Annual Meeting 2024 Initial Paper Submittal
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For the bike network in OSM, there is more space for interpretation compared to the car network:1

OSMnx provides an option to compute the total bike network using the parameter network_type=2

“bike”. This includes all streets where biking is theoretically possible, including roads with road3

classifications such as primary streets, etc. The total length of this network is 1,785 km in 20154

and 1,861 km in 2023. However, official statistics state the lengths as 740 km in 2015 and 1,4005

km in 2020 (4, 5). To address this, we follow Geoffrey Boeing’s suggestion, which is to consider a6

graph comprising everything with either a cycleway key or “highway=cycleway” tag. This involves7

permissively downloading more data than needed, removing non-cycleways, eliminating isolated8

nodes, and finally simplifying the graph’s topology (31). We then filtered out edges with the9

bike classifications “no” or “none”. The resulting bike network has a length of 1,072 km in 201510

and 1,126 km in 2020. This does not match precisely the city’s official figures, however, we11

consider this network a better estimate than using the total bike map created with the parameter12

network_type= “bike”. These estimates are then considered the bike network length Lb,y in year y.13

We compute the lane-kilometres for the car network as follows: For every year, we first14

group the edges by their road classification and compute the absolute length of the edges. For15

this, we include the value in the column “oneway”, indicating whether the edge is one-way or16

not. Then we derive out of those edges with a lane specification (that is, the column “lanes” is17

not “nan”), the average number of lanes. The average number of lanes per road classification are,18

in decreasing order: Trunk (7.3), primary (5.8), secondary (5.1), motorway (4.7), tertiary (4.0),19

unclassified (3.7), residential (2.7), living_street (2.5), other (1.7). The lane-kilometres per road20

classification is the product of the average number of lanes by the absolute length of the edges.21

The sum of all considered road classifications is then our estimate of the car network length in lane22

kilometres Lc,y in year y.23

It is important to note that the networks in OSM experience an increasing level of speci-24

fication. In 2015, only 7.4% of edges in the car network had a lane specification, while in 2023,25

it increased to 41.7%. Additionally, the number of edges classified as “unclassified” decreased26

significantly by 67.0%, while edges with other edge classifications stayed at about the same level.27

As for the bike network, the edges in the bike network for which “cycleway” is defined is 71.5% in28

2015 and 99.5% in 2023. The tag “oneway:bicycle” is specified for 0.3% of bike roads in 2015 and29

41.2% in 2023. From those edges where it is specified, only few are specified as oneway: 2015 -30

2017 it is 0.0%, meaning all cycleways which had this tag were two-ways. It rises to 11.1% in 202031

and drops to 1.6% in 2023. The increase in lane specification is likely due to quality improvements32

of OSM during the observation period. Nevertheless, this bias is potentially affecting the results of33

our analysis.34

Network changes35

In Figure 3, we can observe the relative changes of the car and bike network. The relative changes36

of car lane-kilometres differentiated by their road classification are depicted in blue and grey tones,37

and bike kilometres over the observation period are in pink.38

Notably, the lane-kilometres of unclassified streets have decreased significantly by approx-39

imately 70%, undoubtedly a result of improved data over time. Additionally, there is a slight40

decrease in lanes classified as “secondary”, “tertiary”, and “other”. On the other hand, there is a41

slight increase in lanes classified as “residential”, while lanes classified as “primary and “trunk”42

appear to remain relatively stable.43

Overall, the network’s lane-kilometres have decreased from 10,759 km in 2015 to 10,23744
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FIGURE 3 : Change of lane-kilometres, relative

km in 2023, representing an overall “space” decrease of 4.9%. The bike network has grown from1

1,073 km in 2015 to 1,190 km in 2023, a 10.9% increase over the last eight years. For bikes, we2

do not carry out investigations regarding different cycleway classifications because the network is3

not sufficiently informative.4

TRAFFIC DATA5

To assess demand shifts, we analyze traffic data provided by official sources (32, 33). We use loop6

detector data from Paris for our analysis. Our focus lies on weekdays and the time range between7

5 am to 11 pm, as the traffic data on weekends, holidays, and during the night is not relevant for8

assessing the long-term changes. We refer to those hours as “relevant hours”.9

We analyzed the network data for January 1st from 2015 to 2023. However, when exam-10

ining traffic data, we focus on complete calendar years, selecting representative days from each11

season. To maintain consistency, our analysis covers the years 2015 to 2022, as 2023 is ongoing.12

Vehicle traffic data13

Within the vehicle traffic dataset, we have 2,706 loop detectors available. However, only 33% of14

these detectors consistently provide at least one value for q and o each year from 2015 to 2023.15

Figure 4 depicts their availability over the years, with detectors that do not deliver any data for q16

and o in a given year filtered out. Figure 4 clearly reveals that not all detectors offer full coverage17

during the relevant hours. Notably, detectors that provide q and c for at least one relevant hour18

often demonstrate consistent data for a substantial portion of the relevant hours. However, these19

hours may not necessarily overlap.20

Due to this limitation, we cannot utilize the complete data from all detectors on all days.21

We must reduce the sample by selecting a subset of detectors and days that offer data consistently22
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FIGURE 4 : Percentage of relevant hours per detector

every year and during the relevant hours of the day.1

To achieve this, we proceed with the following methodical approach, see below. As a result,2

we identify a subset of 153 detectors, each covering the same 20 days per year. Note that in Paris3

one detector in the data reports data per road segment, not lane, i.e., it provides an aggregated4

measurement of several lane detectors. Figure 5 showcases the selected detectors, which cover5

5.5% of Paris’ road network (in 2023, there are 2,779 detectors). This process ensures that we6

work with reliable and comprehensive data, allowing for more accurate analysis and insights.7

Methodological approach8

Given a vehicle detector ψ, the flow q of ψ is the number of vehicles passing ψ per hour. The9

occupancy o of ψ is the percentage of the time that ψ is occupied with vehicles. We say that10

a work day φ is vehicle-complete for a detector ψ, if ψ measured both q and o for every hour11

between 5 am - 11 pm of φ.12

In our analysis, we focus on a carefully chosen subset of detectors, which consists of pre-13

cisely five vehicle-complete days per season. Each season includes one Monday, three days from14

Tuesday to Thursday, and one Friday. We standardized these vehicle-complete days across all de-15

tectors for consistency. To identify the largest possible subset meeting these criteria, we executed16

the following steps:17

1. We start with 2,706 detectors in the geographical region, valid during our observation18

period and present in both the network (QGIS) and traffic data.19

2. After filtering for relevant hours and making the dataset complete, we found that 48% -20
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FIGURE 5 : The network and inflow vehicle detectors

61% of detectors provided data for at least one relevant hour, depending on the year.1

3. Out of 2,706 detectors, 906 (33%) provided data for q and o for at least one hour every2

year. The data availability for these detectors is depicted in Figure 4.3

4. Using nonlinear optimization, we identified 153 detectors measuring the same 2994

vehicle-complete days.5

5. We selected 20 days per year from the 299 vehicle-complete days, leaving us with 1606

days.7

6. After excluding days affected by COVID-19 and a high-risk incident, we obtained 1548

chosen vehicle-complete days.9

10

To explore the changes in traffic entering and leaving the city, we focus on the in- and11

outflow detectors, marked in cyan on Figure 5.12

Figure 6 presents the traffic flow (q) for two detectors, displayed as raw data over all days.13

Notably, the inflow detector 4646 shows a consistent flow, remaining fairly stable over time. The14

network detector 33 exhibits a sharp decline over the years, suggesting changes on the supply side,15

e.g., a reduction in the number of lanes.16

Both the consistent flow and the sharp decline are representative of the other network and17
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(a) Inflow detector 4646 (b) Network detector 33

FIGURE 6 : Vehicle traffic over time

inflow detectors.1

Bike traffic data2

The city of Paris installed bike traffic detectors from 2016 onwards, totaling 73 distinct detectors.3

To directly compare bike traffic to vehicle traffic, we aimed to consider days for which we analyzed4

vehicle traffic. However, no single bike detector delivered data for all relevant hours of the chosen5

vehicle-complete days (from 2016 onwards).6

As the number of bike detectors is limited, selecting detectors and complete days like we7

did for vehicle traffic isn’t feasible. We relaxed the criterion to consider bike detectors “valid”8

for a given year if they had bike counts for every relevant hour on at least n− 10 days out of n9

vehicle-complete days. This led to the following distribution:10

1. 6 detectors are valid 2016 - 202311

2. 23 detectors are valid 2019 - 202312

3. The rest of the detectors (44) do not deliver consecutive data13

14

Our analysis focuses on detectors in groups 1 and 2. Figure 7 displays the selected de-15

tectors, covering 9.5% (2016-) / 36.5% (2019-) of Paris’ bike network (in 2023, 63 detectors are16

present).17

The detectors, especially those installed first (in purple), are at central spots of the bike net-18

work. Detectors installed in 2019 are also positioned centrally, depicted in violet. Some detectors19

are close to each other or overlap, like four of the six detectors in group 1.20

Figure 8 displays bike counts from two detectors in each group 1 and 2, showing raw data21

across all days. The plots reveal a gradual increase in bike traffic over time, with a noticeable dip in22

2020, likely attributable to COVID-19. These patterns are representative of other bicycle detectors23

in groups 1 and 2.24

RESULTS25

We present the results as follows. First, we present the network changes, i.e., the supply side, then26

we present the traffic flow changes, i.e., the demand side, before combining both.27
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FIGURE 7 : Planned bike network 2026 within study area, with detectors

(a) Detector 100047547 (b) Detector 100006300

FIGURE 8 : Bike traffic over time
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Supply-side changes1

In Figure 9, we show the estimated MFDs for the years 2015 and 2022. Recall that we defined2

the capacity as the 95th percentile of the travel production. It can be seen that from 2015 to3

2022, the capacity is reduced by 14.9%, while the observed average accumulation of vehicles is4

reduced by 15.3%. The reduced capacity can be explained by the network measures that reduced5

the available space for cars. If there had been no change in car travel demand, the MFD in 20226

would exhibit higher accumulation levels and likely a more distinct congestion branch; however,7

this is not observed, suggesting that car travel demand adapted, e.g., by changing mode, departure8

time, or conducting no trip at all. Additionally, the observed free-flow branch in the MFD suggests9

that some network measures led to a decrease in free-flow speed and created a more substantial10

bending of the curve (in MFD terms, the slope of the second cut is less in 2022 compared to 2015).11

Possible explanations for this observed behavior are reduced free-flow speeds, changes to traffic12

control, and more moving bottlenecks.13

In Figure 10, we combine the changes in capacity with the changes in car and bike network14

length. The capacity, plotted in grey, shows a 2.8% initial increase in 2016, followed by a contin-15

uous decrease starting from 2017. By 2022, there’s a reduction of 14.9% compared to the 201516

value. It can be seen that the observed capacity decreased more than the total network length for17

cars. This gap suggests that either the used data is biased, e.g., the selected subset of links is not18

representative or the data in OSM is incomplete, or that there are further unobserved factors that19

decreased the MFD capacity stronger than the network length, e.g., changes to traffic control or20

speed limit changes.21

Demand-side changes22

Figure 11 illustrates the changes in traffic flow, i.e., observed travel demand, as measured in travel23

production Π̄y, inflow travel production Π̄y,in f low, and the average accumulation of vehicles n̄y. It24

is evident that these metrics follow similar patterns: a slight increase until 2017, a decrease in 202025

(likely due to the impact of COVID-19), followed by another slight increase. However, as of 2022,26

it is notable that travel production, inflow, and average network accumulation are all below 201527

levels. The traffic flow inside and outside the city was monitored through five detectors positioned28

near the outer ring of the city, as depicted in Figure 5 in the traffic data section. In contrast,29

the behavior of bike demand exhibits different patterns: The purple line, representing detectors30

measuring bike traffic from 2016 onwards, shows a slight decline in 2018, followed by an increase31

in 2019, a relatively steady rise until 2020, and finally, an exponential increase from 2020 onwards.32

The detectors installed in 2019, depicted in violet, also demonstrate an exponential increase from33

2020 onwards, but with a shallower curve. These variations in behavior can be attributed to the34

positioning of the detectors. The initial detectors were strategically placed at crucial locations35

within Paris’ bike network. Consequently, it is reasonable to observe a steeper increase in bike36

traffic at these early installation locations compared to spots where detectors were installed later in37

the observation period.38

Combining supply- and demand side changes39

In Table 3, we summarize the overall changes in network (supply), traffic/travel (demand), and40

emissions. The car network experienced a reduction of 4.9% measured in lane kilometers, while41

the bike network increased 10.9% during the observation period. During this period, the observed42

MFD capacity decreased by 12.4%, and the average accumulation of vehicles decreased by 8.5%.43
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FIGURE 9 : MFD for the years 2015 and 2022

The travel production declined by 13.4%, and the inflow travel production decreased by 23.4%.1

Conversely, bike traffic exhibited substantial growth. Detectors from 2019 onwards observed a2

57.1% increase (2019 - 2022). For detectors starting in 2016, the increase was even more pro-3

nounced: The change was 73.6% for 2019 - 2022 and 93.9% for 2016 - 2022.4

In Figure 12, we present a comparison of changes on the supply side with changes on the5

demand side, specifically examining the MFD capacity in relation to network travel production, in-6

flow travel production, and average network accumulation. The data reveals a positive correlation7

between the supply and demand measures. Both travel production and congestion levels have de-8

creased, contradicting the hypothesis based on the Downs/Thomson paradox, which suggests that9

travel production reductions should result in similar congestion levels before and after the inter-10

vention. The observed reduction in congestion is significant, indicating that additional unobserved11

TABLE 3 : Summary of relative changes from 2015 to 2022

Changes from 2015 to 2022 (%)

Mode Network (supply side) Traffic/travel (demand side) Emissions

Vehicle -4.9% -13.4% [network d.] / - 23.4% [inflow d.] -11.4%
Bike +10.9% +93.9% [2016-] / +57.1%, +73.6% [2019-] 0%
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FIGURE 10 : Change of network and MFD capacity over time

factors, such as remote work practices, likely contribute to the observed changes.1

Assessment of changes in carbon emissions2

Based on the estimated MFD (see Figure 9) and speed-specific emission factors (see Table 2), we3

analyzed the average daily emissions in the specific sub-network defined by the loop detector links4

(Figure 5). The results, as shown in Figure 13, consider both car travel production and associated5

speed, as per the emissions-MFD (22). Over the period from 2015 to 2022, a notable reduction of6

11.4% in carbon emissions was observed for our selected subnetwork.7

The chosen subnetwork can be considered a reliable proxy for the broader Paris area. Con-8

sequently, the estimated emission reduction in this subnetwork provides a close approximation of9

the overall emission reduction for the entire region.10

DISCUSSION11

The analysis of the relationship between supply-side changes in the network and demand-side12

changes in traffic flow and travel production using the macroscopic fundamental diagram (MFD)13

and emission-MFD shows that the supply-side measures coincided with changes on the demand14

side, leading to a substantial reduction in carbon emissions from car traffic. However, a reduction15

in car travel by the Downs/Thomson paradox was not supported by the data. This section discusses16

the methods, data, and findings.17
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FIGURE 11 : Demand changes

Methods1

Our study uses the MFD and the emission-MFD as key methods. Here, the MFD estimation can be2

improved by fusing loop detector with floating car data (34) as well as partitioning of the network3

(35). Further, our present analysis does not takes into account trip lengths, which is a key parameter4

to transform travel production into trip rates (13). To enhance our analysis, we can also employ5

methods to estimate origin-destination matrices from the loop detector data (36) to estimate the6

trip production and its development over time.7

Further, considering estimates of door-to-door travel times for public transport and cycling8

could improve the assessment of whether the Downs/Thomson paradox determines the new ob-9

served congestion levels in the city or not.10

Data11

The information provided by OpenStreetMap does not entirely reflect the actual road network;12

Further, data quality improved substantially during the observation period. In particular, Open-13

StreetMap lacks precise specifications for the road classification as well as how many lanes each14

road segment has. Additionally, there is a time lag in data updates, as changes are not immediately15

documented. This affects both modes, car and biking. Unfortunately, we could not corroborate the16

numbers from OpenStreetMap with official data.17

Regarding traffic data, it is surprising that only 153 out of over 2,700 detectors reported18

several full days throughout the observation period. Increasing the coverage of loop detectors in19
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FIGURE 12 : Relative changes to MFD capacity

FIGURE 13 : Emission development
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the analysis and MFD estimation could help to reduce a likelihood of a loop detector selection1

bias. Further, obtaining precise information on the number of lanes at the measurement location2

would improve the estimation of travel production; this information, together with better speed3

information for MFD calibration, would also help to investigate whether the occupancy scale has4

a similar interpretation each year.5

Findings6

The relationship between changes in the network supply and changes in traffic with subsequent7

impacts on carbon emissions is intuitive and aligns well with Paris’ policy objective. Importantly,8

the macroscopic perspective of the MFD does not inform about individual-specific reasons, e.g.,9

working from home or peak avoidance. Nevertheless, data reveals that congestion levels in Paris10

declined from 2021 to 2022 (25), which corroborates our findings based on the MFD in Figure 11.11

A throughout assessment of the policy measure requires the consideration of more dimen-12

sions. For example, the health benefits of cycling or reducing the urban heat island effect by13

greening more urban space. This investigation is only an interim assessment of the fundamental14

changes in Paris. It will be particularly interesting to study traffic behavior once the changes are15

fully implemented.16

CONCLUSION17

In this paper, we explored the relationship between network changes and traffic for both bike and18

car in Paris from 2015 to 2022. We analyzed the impact on carbon emissions reduction from19

vehicle traffic using empirical data. Travel production declined by 13.4%, while inflow travel pro-20

duction decreased by 23.4%. In contrast, bike traffic increased significantly, with a 57.1% rise for21

detectors measuring from 2019 onwards and a more substantial 93.9% increase for detectors mea-22

suring from 2016 onwards. Over the same period, the car network length decreased by 4.9%, while23

the bike network expanded by 10.9%. Interestingly, the MFD capacity decreased by 14.9%, sug-24

gesting other factors influencing network performance. In conclusion, these changes collectively25

led to an 11.4% reduction in carbon emissions from vehicle traffic between 2015 and 2022.26

The focus of future research is on improving the data quality from both network and traffic27

recordings; presumably, integrating another source like floating car data. Additionally, a through-28

out economic assessment of the changes of all relevant internal and external costs should be un-29

dertaken to evaluate the effectiveness of Paris’ policy of re-adapting its road-based transportation30

system.31

The benefits of the transformation in Paris are not limited to carbon savings alone. It is32

conceivable that the mode shift towards cycling could also have implications for the health of33

citizens and urban greening. Paris is a prominent and most likely successful example of efforts34

to reduce carbon emissions from transportation by managing demand and not technology alone.35

Consequently, one can conclude that the changes in Paris provide valuable insights that could apply36

to other metropolises too.37
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