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ABSTRACT1

Travel behavior in urban areas has been widely analyzed from the demand side, while the extent2

to which the infrastructure imposes constraints on such travel behavior and leads to delays and3

congestion has almost never been studied. For car-based transportation, the recently developed4

theory of the macroscopic fundamental diagram (MFD) describes the relationship between the5

accumulation of vehicles and their trip ending rate as a function of the infrastructure, opening the6

door to new and meaningful studies that address the gap mentioned above. In this paper, we use7

empirical traffic data from 12 cities around the world to estimate their MFDs, compare them with8

respect to their functional behavior and the extent of delays, and explain the observed differences9

as a function of the network topology, e.g. intersection density, average betweeness. We find10

that the average betweenness centrality in a network seems to be a very clear indicator for the11

level of traffic performance. This indicates that it is indeed possible to use some topological12

features to predict traffic performance at the macroscopic level.13
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INTRODUCTION1

The goal of transportation is to connect people for social and economic interactions (1). Given2

the rising urbanization levels worldwide, providing and investing in transportation infrastructure,3

especially in cities, is crucial for economic success (2–5). Despite increasing congestion levels,4

the car - autonomous or not - will remain among the most important modes of transportation in5

cities (6, 7). In general, drivers experience either an uncongested or congested traffic state. In6

the uncongested state, the flows of vehicles are constrained by the travel demand, while in the7

congested state the flows are constrained by the infrastructure capacity leading to overcrowding,8

traffic jams, and the resulting delays (8, 9).9

Although the understanding of how the infrastructure constraints the flow of vehicles has10

significant implications on how we build our cities, the focus so far has been almost exclusively11

on the demand side (10–15). Smeed (16) was among the first who raised the question on the12

relationship between the layout of the road network, the desired travel speeds, and the total13

capacity. Even though not many followed his path, a few studied the relationship with empirical14

data (17–19) and traffic simulation (20–23). They provided further evidence that delays caused15

by infrastructure constraints can be described by the design of the road network. The recently16

introduced theory by Daganzo and Geroliminis (24) on the Macroscopic Fundamental Diagram17

(MFD) provides an analytical relationship between the design of the road network and the18

infrastructure constraints on traffic flow. This analytical relationship holds for homogeneous road19

networks with similar streets; a condition which might not always hold in complex real urban20

road networks (25–27). The MFD relates the accumulation of vehicles in a network to the travel21

production (measured in vehicle kilometers) with a concave and well-defined curve. The MFD is22

consistent with the physics of congestion and its distinct maximum in travel production has led23

to new network-wide traffic control schemes and traffic models (28–30). Figure 1 exhibits the24

MFD for London around St. Pancras station and explains the parameters describing its shape.25

Here we use the theory of the MFD to uncover the relationships between the design of the26

urban road network and the infrastructure constraints this one imposes on the flow of vehicles.27

The existing analytical method relies on technical information that might be highly variant or not28

even available. Nevertheless, we can estimate the shape of the MFD from empirical traffic data29

(25). We compare MFDs and the design of the road network from 12 cities around the world30

to derive these relationships. We address then two questions: (i) how is the design of the road31

network linked to the MFD shape? and (ii) how do the structure of the road network affect the32

macroscopic dynamics of traffic in the MFD?33

For each city, we estimate the MFD from inductive loop detectors, measuring traffic flow and34

an approximation of traffic density within a certain perimeter. For those same areas, we extract35

the road networks from OpenStreetMaps (OSM) and evaluate the features of each network in36

terms of their geographic extent and their routing potential. We then approach the first question37

by combining the MFD’s shape parameters (see Figure 1) with the obtained network features.38

The second question is then addressed by analyzing the temporal variation in the traffic states39

throughout the day.40

The contributions of this study are twofold and follow the lines of the two research questions.41

From the findings on the first question, urban planners and traffic engineers can derive how the42

changes to the road network affect the infrastructure constraints and the traffic performance.43

From the findings on the second question, planners can derive strategies to reduce the duration44

or severity congestion.45

The remainder of this paper is organized as follows. The next section describes the available46
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FIGURE 1 MFD estimated for London around the St. Pancras station. Both axes are
normalized by the network length in lane-kilometers, such that multiplying
them by the network length then leads to the relationship between accumula-
tion and vehicle production. Line 1 marks the capacity of the network, line
2 the critical density, line 3 the free flow speed.

data and the methodology used for the estimation of the MFD and other traffic parameters, as1

well as the computation of the relevant network features. Thereafter, we present preliminary2

results on the relationship between road network design and infrastructure constraints described3

by the MFD. Then, we compare the measures of macroscopic dynamics of traffic across cities4

and relate them to city size. This paper then closes with some concluding remarks.5

DATA AND METHODOLOGY6

This sections contains two parts. The first subsection presents the estimation of the MFD, the7

extraction of the parameters defining its shape, and the indicators we use to measure the traffic8

dynamics at the macroscopic level. The second subsection describes the preparation of the road9

network and the extraction of the network features. All data sources are spatially prepared to10

estimate all parameters and values for the same areas.11

Table 1 lists the cities from which we collected data. For most cities, we acquired at least12

one week of historical data, but less if data export options were a limiting factor.13

MFD14

All the data used here comes from inductive loop detectors on the road network, and it has15

been obtained directly either from transport authorities or open data portals. All measurements16

correspond to single lanes and have been aggregated on 3-5min intervals. The sensors report17

the total vehicle count q and the share of time that vehicles occupy the sensor (occupancy)18

during a time interval. The latter measure is then transformed into traffic density k [vehicles per19

lane-kilometer] (31, 32).20
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TABLE 1 List of cities in this analysis paired with the population within municipality
borders. The technical details of each data set (number and type of loop
detectors, aggregation period, observation period, conversion factor between
occupancy and density, distribution of loop detectors across road levels and
within the link length, network coverage) are available upon request from the
authors.

No City Country Population [1’000]

1 Basel Switzerland 175
2 Bern Switzerland 141
3 Bordeaux France 246
4 Cagliari Italy 154
5 Constance Germany 82
6 Darmstadt Germany 155
7 Frankfurt Germany 732
8 Graz Austria 283
9 Lucerne Switzerland 81
10 Santander Spain 172
11 Toulouse France 466
12 Zurich Switzerland 396

We spatially prepared the data for several purposes: (i) mapping the loop detector locations1

to the road network to link the traffic performance to the information on the road hierarchy and2

other topological features (33), (ii) identifying the monitored link length of each detector, and (iii)3

identifying the distance of the detector to the downstream traffic signal for a potential correction4

of the density estimation (25, 27). To construct the MFD we then use the length-weighted5

averages of flow and density across the network (25, 31). The network average flow q in vehicles6

per hour per lane-kilometer is computed as follows, where li represents the length of link i.7

q =
∑

i liqi∑
i li

(1)8

The total travel production within the perimeter is then obtained by multiplying the flow q by the9

total network length. The network average vehicle density is then given by:10

k =
∑

i li ki∑
i li

(2)11

The total accumulation of vehicles within the perimeter is then computed by multiplying the12

density k by the total network length. The average vehicle speed in the network is computed by13

the fundamental equation of traffic flow v = q/k (34–36).14

From each estimated MFDwe extract the parameters defining its shape and other indicators of15

traffic dynamics. Table 2 lists all parameters and indicators, including a description. We recover16

the shape defining parameters free flow speed, u f , and capacity, qcap, by the 95th percentile of17
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TABLE 2 MFDmeasures. The MFD shape parameters free flow speed, u f and capacity,
qcap are extracted from the 95th percentile of the respective distribution of
speed and flow, while the critical density, kcrit , is obtained from the mean
density of all flow values above the 95th percentile of flow . All other indicators
of traffic dynamics are calculated for weekdays between 5:00 and 24:00.

Measure Description

MFD shape parameters
Free flow speed Initial speed, u f , in the network with only little traffic load.

Corresponds to the slope of the MFD at the origin and is
measured as the 95th percentile of speed.

Critical density Number of vehicles, kcrit , in the network that maximizes the
vehicle flow (the production of vehicle kilometer per hour).
The value is obtained where q (k) is maximized.

Capacity Corresponding vehicle flow, qcap, or travel production at
the critical density. The value is obtained where q (k) is
maximized.

Indicators of traffic dynamics
Normalized lowest speed Ratio of the lowest to highest average network speed. Both

values are taken from the distribution of observed speeds.
Daily accumulation Total accumulation of vehicles during the day. The value

is estimated by the integral of accumulation over time. To
compare this value across cities, the value is normalized to
lane-kilometer.

Daily travel production Total travel production during the day. The value is estimated
by the integral of travel production over time. To compare this
value across cities, the value is normalized to lane-kilometer.

Daily weighted delay Sum of delays multiplied by accumulation per time interval.
Share of congestion Share of time throughout the day during which the vehicle

flow is restricted by the infrastructure.

speed and flow respectively; while the critical density, kcrit is estimated from the mean density1

of all flow values above the 95th percentile of flow, see Figure 1.2

Based on the MFD, we introduce in this analysis six additional indicators of the traffic3

dynamics, all with a very clear physical meaning: (i) normalized lowest speed, (ii) daily4

accumulation, (iii) daily production, (iv) daily delay, and (v) share of congestion. The normalized5

lowest speed is calculated as the ratio of the lowest to the highest observed speed (free flow6

speed). The daily accumulation, production, and delay are all computed from the area under the7

corresponding graph and give an indication on how heavily loaded the network is during the day.8

The share of congestion describes the fraction of time when the vehicle flows are constrained by9

the infrastructure. We estimate these indicators for the time period between 5:00 and 24:00.10
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Road network features1

In his seminal work, Smeed (16) explained differences in the speed-flow-relationship of several2

British cities as a function of the total area dedicated to cars and the area effectively used by3

cars. Using the macroscopic two-fluid theory of town traffic, the influence of network features4

such as average link length, number of lanes per link, intersection density, and signal operation5

characteristics, on the performance of urban speeds have also been analyzed (17, 18). However,6

given the small sample size, recovering statistical significant relationships has not been fully7

possible. Using the MFD theory, Knoop et al. (21) compared various network designs using8

traffic simulation and their findings support the theory that the MFD is network-specific, but9

also that more heterogeneous networks exhibit lower capacity. However, not only the built up10

environment affects traffic performance, but also the routes chosen by drivers. Evidence suggests11

that vehicle flows in road networks are reduced with overlapping routes and drivers not changing12

routes adaptively in case of disturbances (37–39) .13

Thus, we analyze here road networks not only by their geographic extent and design, but also14

by their characteristics as a network. A network is defined as a graph consisting of nodes and15

edges. Network analysis has spread over many disciplines from social sciences to biology, in16

particular all disciplines that study patterns of connections (40, 41). Intuitively, road networks17

are represented by roads as edges and intersections as nodes, the so called primal approach18

(42, 43). Here, we follow such approach and represent all possible origins and destinations also19

as nodes.20

Table 3 summarizes the network features we consider in this preliminary analysis including21

a description. First, we consider four features that measure the geographic extent of the22

network: the fraction of area covered by roads, the average link length from intersection to23

intersection, the average number of lanes per link, and the intersection density. Second, for the24

graph characteristics of the road network we consider the fraction of one-way streets and the25

betweenness centrality, which describes how in between a node or link is relative to all other26

nodes and links in the network (44–46). The centrality measure could indicate important edges or27

nodes, which in turn could indicate bottlenecks in the urban infrastructure. The network average28

of such a measure then indicates how strongly a network is possibly affected by bottlenecks.29

The road networks are queried from OSM. In this analysis, we focus on all main roads and30

therefore exclude residential and service roads from the network. We chose all perimeter areas31

so they do not contain any highways. We then process the remaining parts of the network to32

form an approximate directed graph, where edges stretch from intersection to intersection (traffic33

signal, roundabout or similar). From the graph representation we compute the network features34

using the igraph-package in R (47).35

RESULTS36

This section shows a selection of preliminary results of our MFD and network analysis. We first37

describe the results, while we present a comprehensive discussion afterwards. In Figure 2 we38

compare the parameters critical density, kcrit , and the capacity, qcap, with the network features39

introduced in Table 3. Note that the parameters critical density and capacity are only evaluated40

for those nine cities where we can identify these values.41

Figure 2(a) shows the relationship between the fraction of area covered by roads versus the42

capacity of the network. This relationship traces back to Smeed’s seminal work on traffic in43

towns (16). In our sample, we observe a range of values both in the fraction of area as well as in44
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(a) Share of area covered versus capacity.
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(b) Average link length versus critical density.
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(c) Average number of lanes versus capacity.
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(d) Intersections per square kilometer versus ca-
pacity.
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(e) Intersections per square kilometer versus criti-
cal density.
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(f) Fraction of one-way streets versus capacity,

FIGURE 2 Relation betweenMFDparameters and network features; both are estimated
for the same perimeter area and the same road classes (trunk, primary,
secondary and tertiary roads following the OSM road classification).
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TABLE 3 Network features. All network features are estimated for the same areas as the
MFDs. The networks are queried from OpenStreetMap and all residential,
service, and unclassified roads are removed. Networks are further processed
to result in a graph with edges from major intersection to major intersection.
Attributes to the existing layers of OpenStreetMap are added when needed.

Variable Description

Share of area covered Total area of the road network divided by the entire
perimeter area. The total area of the road network
is calculated by multiplying each link by the number
of lanes and 3.5m of width. In case of a river, we
subtracted the river area from the perimeter area.

Average link length An link is defined as the connection between intersecti-
ons (nodes). In this computation, we do not consider
all links shorter than 40m as most of these are turning
lanes at intersections.

Average number of lanes Length-weighted average number of lanes per driving
direction in the network.

Intersections density Density of signalized intersections and roundabouts
per square kilometer in the analyzed area.

Fraction of one-way streets Ratio of lane kilometer of one-way streets over the
total network length in lane kilometer.

Average betweenness centrality Betweenness centrality of a node is the fraction of
shortest paths passing through that node out of all
possible shortest paths. The network average value is
obtained by calculating the mean over all nodes.

the capacity, but no distinct relationship. Figure 2(b) relates the average link length to the critical1

density of the networks. The available data shows a slightly downward sloped relationship. This2

is surprising as it indicates that networks with longer links get congested at a lower average3

density. Figure 2(c) shows the relationship between average number of lanes and the capacity4

per lane kilometer. This relationship was first analyzed by Mahmassani et al. using simulation.5

They found no large differences in the shape of the MFD when varying the number of lanes6

per link (20). The results from our data also exhibit a similar trend. Figure 2(d) relates the7

intersection density to the capacity and shows a slightly negative relationship. This is intuitive as8

an intersection is a very limiting factor in traffic flow, and thus a higher number of intersections9

should decrease the overall capacity. Regarding the critical density, Figure 2(e) shows a positive10

relationship between the intersection density and the critical density. This confirms the findings11

from Figure 2(b). Lastly, the relationship between the fraction of one-way streets and the capacity12

shows no trend.13

Figure 3 shows the indicators of traffic dynamics as a function of the log of city population14

(which can be considered as a first approximation of travel demand), and the average betweenness15

centrality of the network. We take the log of population as we expect a decreasing marginal16

effect of population on these indicators. The share of congestion is only evaluated for the 9 cities17

where the critical density can be identified.18
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(a) Share of area covered versus capacity.
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(b) Average link length versus critical density.
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(c) Log of population versus total daily delay.
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(d) Log of population versus share of congestion.
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(e) Share of congestion versus average between-
ness centrality.
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FIGURE 3 Comparing indicators of the dynamics of macroscopic traffic from Table
2 with population of each city (a)-(d) and average betweenness centrality
(e)-(f). The accumulation, production and delay measures are normalized
to one lane-kilometer to allow a comparison across cities. All indicators of
the dynamics of macroscopic traffic are computed for the time interval from
05:00 to 24:00 on workdays and averaged over all days if applicable.
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Figure 3(a) relates the population to the accumulation in the network. We observe a positive1

trend, indicating that with a larger population more people tend to drive. We observe a similar2

relationship in Figures 3(b), 3(c), and 3(d) showing the total travel production, delay, and share of3

congestion during the day, respectively. In terms of delay and share of congestion, the city center4

of Zurich exhibits the largest values and largest difference with the trend line, indicating that5

both delay and congestion are over-proportionate with respect to the population. Hence, there6

might be other aspects (potentially topological) that can be affecting these two metrics. Figure7

3(e) shows a positive relationship between the share of congestion and the average betweenness8

centrality. This is not surprising, as the betweenness centrality can be interpreted as a measure9

of potential bottlenecks, and the more potential bottlenecks a network has, the higher the level10

of congestions one should expect. Figure 3(f) shows a negative trend between the normalized11

lowest speed and the betweenness centrality. Again, this is unsurprising as a higher likelihood of12

bottlenecks should lead to lower speeds. Note that the last two illustrations do not control for13

city size nor travel demand.14

In summary, the results in Figure 2 do not exhibit clear relationships between all considered15

MFD parameters and network features, but the findings in Figure 3 show intuitive relationships.16

As a matter of fact, the average betweenness centrality in a network seems to be a very clear17

indicator of the level of performance one could expect out of such network. This is very18

promising, as it indicates that it is indeed possible to use some topological features to predict19

traffic performance at the macroscopic level. More research, however, is necessary to properly20

formulate some predictions.21

For the graph measures of the road network, we have to mention an important issue. When22

selecting the area of interest for our analysis, a comparatively small and homogeneous area in23

terms of traffic is favored in the MFD estimation, while such a small area might neglect attractive24

routes, e.g. on ring-road or highway, outside the considered perimeter. This might affect the25

estimation of the betweenness centrality and other related network features.26

Even though the traffic data from all cities is recorded from the same sensor type, we cannot27

entirely rule out differences in the calibration and data processing in the traffic management28

computers which could influence the recordings. Therefore, we put our efforts into minimizing29

potential errors in the remaining degrees of freedom in the MFD estimation by (i) paying30

attention to the precise geometry of the sensors to reduce the error in the density estimation, (ii)31

examining the recordings of each measurement station to remove all recordings exhibiting any32

unfamiliar behavior, (iii) doing a precise spatial data preparation to include only recordings from33

all cities from the same type of roads.34

Literature suggests that the data from loop detectors can be paired with floating car data35

to overcome some drawbacks of loop detector measurements, especially the effect of the loop36

detector placement on the density estimation (31, 25, 27). Arguably, in such a comparative study,37

floating car data should come from a similar type of source, e.g. GPS trajectories, in all cities to38

reduce potential errors. However, the access to such kind of data is limited, but if available we39

could expand the sample to cities using SCATS traffic control systems, e.g. Dublin, Singapore40

and Melbourne.41

CONCLUSIONS42

This paper presents the first empirical comparison of infrastructure constraints on vehicle flow in43

various cities around the world. This study has been made possible by the idea of the MFD (31),44

and the increased availability of large-scale traffic data. We propose to use the estimated MFDs45
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for two seminal analyses: (i) link the shape of the MFD and thus the infrastructure constraints to1

design of complex real urban road networks, and (ii) identify factors that influence the duration of2

congestion, i.e. the duration of the binding of infrastructure constraints. This study contributes3

to the understanding on how the design of a city (networks, population, space, etc.) affects4

congestion and delays, and could have thus several important implications on how we build our5

cities.6

Ongoing efforts are devoted to extend the analysis to include data from twenty to thirty7

additional cities, e.g. Madrid, London, Munich. With a larger dataset, it will then be possible8

to study more graph-based network features for a better understanding of the routing effects.9

Importantly, we will also consider traffic signal cycle parameters to further infer the shape of the10

MFD. Last but not least, we will also carry out a sensitivity analysis with respect to the MFD11

parameter estimation method, the chosen area and the influence of inhomogeneity.12

Regarding the indicators of traffic dynamics, we aim at explaining the variation across cities13

with factors such as population density, degree of urban sprawl, provision of public transport,14

and the value of time as a measure of wealth. We expect the results will then show what level of15

congestion is unavoidable (in light of the Downs-Thomson paradox) given a certain city size,16

and to what extent measures as public transport can mitigate it.17
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