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ABSTRACT

Travel behavior in urban areas has been widely analyzed from the demand side, while the extent

to which the infrastructure imposes constraints on such travel behavior and leads to delays and

congestion has almost never been studied. For car-based transportation, the recently developed

theory of the macroscopic fundamental diagram (MFD) describes the relationship between the

accumulation of vehicles and their trip ending rate as a function of the infrastructure, opening the

door to new and meaningful studies that address the gap mentioned above. In this paper, we use

empirical traffic data from 12 cities around the world to estimate their MFDs, compare them with

respect to their functional behavior and the extent of delays, and explain the observed differences

as a function of the network topology, e.g. intersection density, average betweeness. We find

that the average betweenness centrality in a network seems to be a very clear indicator for the

level of traffic performance. This indicates that it is indeed possible to use some topological

features to predict traffic performance at the macroscopic level.



         

INTRODUCTION

The goal of transportation is to connect people for social and economic interactions (1). Given

the rising urbanization levels worldwide, providing and investing in transportation infrastructure,

especially in cities, is crucial for economic success (2–5). Despite increasing congestion levels,

the car - autonomous or not - will remain among the most important modes of transportation in

cities (6, 7). In general, drivers experience either an uncongested or congested traffic state. In

the uncongested state, the flows of vehicles are constrained by the travel demand, while in the

congested state the flows are constrained by the infrastructure capacity leading to overcrowding,

traffic jams, and the resulting delays (8, 9).

Although the understanding of how the infrastructure constraints the flow of vehicles has

significant implications on how we build our cities, the focus so far has been almost exclusively

on the demand side (10–15). Smeed (16) was among the first who raised the question on the

relationship between the layout of the road network, the desired travel speeds, and the total

capacity. Even though not many followed his path, a few studied the relationship with empirical

data (17–19) and traffic simulation (20–23). They provided further evidence that delays caused

by infrastructure constraints can be described by the design of the road network. The recently

introduced theory by Daganzo and Geroliminis (24) on the Macroscopic Fundamental Diagram

(MFD) provides an analytical relationship between the design of the road network and the

infrastructure constraints on traffic flow. This analytical relationship holds for homogeneous road

networks with similar streets; a condition which might not always hold in complex real urban

road networks (25–27). The MFD relates the accumulation of vehicles in a network to the travel

production (measured in vehicle kilometers) with a concave and well-defined curve. The MFD is

consistent with the physics of congestion and its distinct maximum in travel production has led

to new network-wide traffic control schemes and traffic models (28–30). Figure 1 exhibits the

MFD for London around St. Pancras station and explains the parameters describing its shape.

Here we use the theory of the MFD to uncover the relationships between the design of the

urban road network and the infrastructure constraints this one imposes on the flow of vehicles.

The existing analytical method relies on technical information that might be highly variant or not

even available. Nevertheless, we can estimate the shape of the MFD from empirical traffic data

(25). We compare MFDs and the design of the road network from 12 cities around the world

to derive these relationships. We address then two questions: (i) how is the design of the road

network linked to the MFD shape? and (ii) how do the structure of the road network affect the

macroscopic dynamics of traffic in the MFD?

For each city, we estimate the MFD from inductive loop detectors, measuring traffic flow and

an approximation of traffic density within a certain perimeter. For those same areas, we extract

the road networks from OpenStreetMaps (OSM) and evaluate the features of each network in

terms of their geographic extent and their routing potential. We then approach the first question

by combining the MFD’s shape parameters (see Figure 1) with the obtained network features.

The second question is then addressed by analyzing the temporal variation in the traffic states

throughout the day.

The contributions of this study are twofold and follow the lines of the two research questions.

From the findings on the first question, urban planners and traffic engineers can derive how the

changes to the road network affect the infrastructure constraints and the traffic performance.

From the findings on the second question, planners can derive strategies to reduce the duration

or severity congestion.

The remainder of this paper is organized as follows. The next section describes the available
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FIGURE 1 MFD estimated for London around the St. Pancras station. Both axes are
normalized by the network length in lane-kilometers, such that multiplying
them by the network length then leads to the relationship between accumula-
tion and vehicle production. Line 1 marks the capacity of the network, line
2 the critical density, line 3 the free flow speed.

data and the methodology used for the estimation of the MFD and other traffic parameters, as

well as the computation of the relevant network features. Thereafter, we present preliminary

results on the relationship between road network design and infrastructure constraints described

by the MFD. Then, we compare the measures of macroscopic dynamics of traffic across cities

and relate them to city size. This paper then closes with some concluding remarks.

DATA AND METHODOLOGY

This sections contains two parts. The first subsection presents the estimation of the MFD, the

extraction of the parameters defining its shape, and the indicators we use to measure the traffic

dynamics at the macroscopic level. The second subsection describes the preparation of the road

network and the extraction of the network features. All data sources are spatially prepared to

estimate all parameters and values for the same areas.

Table 1 lists the cities from which we collected data. For most cities, we acquired at least

one week of historical data, but less if data export options were a limiting factor.

MFD

All the data used here comes from inductive loop detectors on the road network, and it has

been obtained directly either from transport authorities or open data portals. All measurements

correspond to single lanes and have been aggregated on 3-5min intervals. The sensors report

the total vehicle count q and the share of time that vehicles occupy the sensor (occupancy)

during a time interval. The latter measure is then transformed into traffic density k [vehicles per

lane-kilometer] (31, 32).



         

TABLE 1 List of cities in this analysis paired with the population within municipality
borders. The technical details of each data set (number and type of loop
detectors, aggregation period, observation period, conversion factor between
occupancy and density, distribution of loop detectors across road levels and
within the link length, network coverage) are available upon request from the
authors.

No City Country Population [1’000]

1 Basel Switzerland 175
2 Bern Switzerland 141
3 Bordeaux France 246
4 Cagliari Italy 154
5 Constance Germany 82
6 Darmstadt Germany 155
7 Frankfurt Germany 732
8 Graz Austria 283
9 Lucerne Switzerland 81
10 Santander Spain 172
11 Toulouse France 466
12 Zurich Switzerland 396

We spatially prepared the data for several purposes: (i) mapping the loop detector locations

to the road network to link the traffic performance to the information on the road hierarchy and

other topological features (33), (ii) identifying the monitored link length of each detector, and (iii)

identifying the distance of the detector to the downstream traffic signal for a potential correction

of the density estimation (25, 27). To construct the MFD we then use the length-weighted

averages of flow and density across the network (25, 31). The network average flow q in vehicles

per hour per lane-kilometer is computed as follows, where li represents the length of link i.

q =
∑

i liqi∑
i li

(1)

The total travel production within the perimeter is then obtained by multiplying the flow q by the

total network length. The network average vehicle density is then given by:

k =
∑

i li ki∑
i li

(2)

The total accumulation of vehicles within the perimeter is then computed by multiplying the

density k by the total network length. The average vehicle speed in the network is computed by

the fundamental equation of traffic flow v = q/k (34–36).

From each estimated MFDwe extract the parameters defining its shape and other indicators of

traffic dynamics. Table 2 lists all parameters and indicators, including a description. We recover

the shape defining parameters free flow speed, u f , and capacity, qcap, by the 95th percentile of



         

TABLE 2 MFDmeasures. The MFD shape parameters free flow speed, u f and capacity,
qcap are extracted from the 95th percentile of the respective distribution of
speed and flow, while the critical density, kcrit , is obtained from the mean
density of all flow values above the 95th percentile of flow . All other indicators
of traffic dynamics are calculated for weekdays between 5:00 and 24:00.

Measure Description

MFD shape parameters
Free flow speed Initial speed, u f , in the network with only little traffic load.

Corresponds to the slope of the MFD at the origin and is
measured as the 95th percentile of speed.

Critical density Number of vehicles, kcrit , in the network that maximizes the
vehicle flow (the production of vehicle kilometer per hour).
The value is obtained where q (k) is maximized.

Capacity Corresponding vehicle flow, qcap, or travel production at
the critical density. The value is obtained where q (k) is
maximized.

Indicators of traffic dynamics
Normalized lowest speed Ratio of the lowest to highest average network speed. Both

values are taken from the distribution of observed speeds.
Daily accumulation Total accumulation of vehicles during the day. The value

is estimated by the integral of accumulation over time. To
compare this value across cities, the value is normalized to
lane-kilometer.

Daily travel production Total travel production during the day. The value is estimated
by the integral of travel production over time. To compare this
value across cities, the value is normalized to lane-kilometer.

Daily weighted delay Sum of delays multiplied by accumulation per time interval.
Share of congestion Share of time throughout the day during which the vehicle

flow is restricted by the infrastructure.

speed and flow respectively; while the critical density, kcrit is estimated from the mean density

of all flow values above the 95th percentile of flow, see Figure 1.

Based on the MFD, we introduce in this analysis six additional indicators of the traffic

dynamics, all with a very clear physical meaning: (i) normalized lowest speed, (ii) daily

accumulation, (iii) daily production, (iv) daily delay, and (v) share of congestion. The normalized

lowest speed is calculated as the ratio of the lowest to the highest observed speed (free flow

speed). The daily accumulation, production, and delay are all computed from the area under the

corresponding graph and give an indication on how heavily loaded the network is during the day.

The share of congestion describes the fraction of time when the vehicle flows are constrained by

the infrastructure. We estimate these indicators for the time period between 5:00 and 24:00.



         

Road network features

In his seminal work, Smeed (16) explained differences in the speed-flow-relationship of several

British cities as a function of the total area dedicated to cars and the area effectively used by

cars. Using the macroscopic two-fluid theory of town traffic, the influence of network features

such as average link length, number of lanes per link, intersection density, and signal operation

characteristics, on the performance of urban speeds have also been analyzed (17, 18). However,

given the small sample size, recovering statistical significant relationships has not been fully

possible. Using the MFD theory, Knoop et al. (21) compared various network designs using

traffic simulation and their findings support the theory that the MFD is network-specific, but

also that more heterogeneous networks exhibit lower capacity. However, not only the built up

environment affects traffic performance, but also the routes chosen by drivers. Evidence suggests

that vehicle flows in road networks are reduced with overlapping routes and drivers not changing

routes adaptively in case of disturbances (37–39) .

Thus, we analyze here road networks not only by their geographic extent and design, but also

by their characteristics as a network. A network is defined as a graph consisting of nodes and

edges. Network analysis has spread over many disciplines from social sciences to biology, in

particular all disciplines that study patterns of connections (40, 41). Intuitively, road networks

are represented by roads as edges and intersections as nodes, the so called primal approach

(42, 43). Here, we follow such approach and represent all possible origins and destinations also

as nodes.

Table 3 summarizes the network features we consider in this preliminary analysis including

a description. First, we consider four features that measure the geographic extent of the

network: the fraction of area covered by roads, the average link length from intersection to

intersection, the average number of lanes per link, and the intersection density. Second, for the

graph characteristics of the road network we consider the fraction of one-way streets and the

betweenness centrality, which describes how in between a node or link is relative to all other

nodes and links in the network (44–46). The centrality measure could indicate important edges or

nodes, which in turn could indicate bottlenecks in the urban infrastructure. The network average

of such a measure then indicates how strongly a network is possibly affected by bottlenecks.

The road networks are queried from OSM. In this analysis, we focus on all main roads and

therefore exclude residential and service roads from the network. We chose all perimeter areas

so they do not contain any highways. We then process the remaining parts of the network to

form an approximate directed graph, where edges stretch from intersection to intersection (traffic

signal, roundabout or similar). From the graph representation we compute the network features

using the igraph-package in R (47).

RESULTS

This section shows a selection of preliminary results of our MFD and network analysis. We first

describe the results, while we present a comprehensive discussion afterwards. In Figure 2 we

compare the parameters critical density, kcrit , and the capacity, qcap, with the network features

introduced in Table 3. Note that the parameters critical density and capacity are only evaluated

for those nine cities where we can identify these values.

Figure 2(a) shows the relationship between the fraction of area covered by roads versus the

capacity of the network. This relationship traces back to Smeed’s seminal work on traffic in

towns (16). In our sample, we observe a range of values both in the fraction of area as well as in
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(a) Share of area covered versus capacity.

zurich

luzern

basel

bordeaux

toulouse

cagliari

graz

santander

constance

0

20

40

60

0.0 0.2 0.4 0.6
Average link length [km]

C
rit

ic
al

 d
en

si
ty

 [v
eh

/la
ne

−
km

]

(b) Average link length versus critical density.

zurich

bern

luzern
basel

darmstadt

bordeaux

toulouse

cagliari

frankfurt
graz

santander

constance

0

200

400

600

800

0.0 0.5 1.0 1.5 2.0 2.5
Average number of lanes

C
ap

ac
ity

 [v
eh

/h
−

la
ne

−
km

]

(c) Average number of lanes versus capacity.
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(d) Intersections per square kilometer versus ca-
pacity.
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(e) Intersections per square kilometer versus criti-
cal density.
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(f) Fraction of one-way streets versus capacity,

FIGURE 2 Relation betweenMFDparameters and network features; both are estimated
for the same perimeter area and the same road classes (trunk, primary,
secondary and tertiary roads following the OSM road classification).



         

TABLE 3 Network features. All network features are estimated for the same areas as the
MFDs. The networks are queried from OpenStreetMap and all residential,
service, and unclassified roads are removed. Networks are further processed
to result in a graph with edges from major intersection to major intersection.
Attributes to the existing layers of OpenStreetMap are added when needed.

Variable Description

Share of area covered Total area of the road network divided by the entire
perimeter area. The total area of the road network
is calculated by multiplying each link by the number
of lanes and 3.5m of width. In case of a river, we
subtracted the river area from the perimeter area.

Average link length An link is defined as the connection between intersecti-
ons (nodes). In this computation, we do not consider
all links shorter than 40m as most of these are turning
lanes at intersections.

Average number of lanes Length-weighted average number of lanes per driving
direction in the network.

Intersections density Density of signalized intersections and roundabouts
per square kilometer in the analyzed area.

Fraction of one-way streets Ratio of lane kilometer of one-way streets over the
total network length in lane kilometer.

Average betweenness centrality Betweenness centrality of a node is the fraction of
shortest paths passing through that node out of all
possible shortest paths. The network average value is
obtained by calculating the mean over all nodes.

the capacity, but no distinct relationship. Figure 2(b) relates the average link length to the critical

density of the networks. The available data shows a slightly downward sloped relationship. This

is surprising as it indicates that networks with longer links get congested at a lower average

density. Figure 2(c) shows the relationship between average number of lanes and the capacity

per lane kilometer. This relationship was first analyzed by Mahmassani et al. using simulation.

They found no large differences in the shape of the MFD when varying the number of lanes

per link (20). The results from our data also exhibit a similar trend. Figure 2(d) relates the

intersection density to the capacity and shows a slightly negative relationship. This is intuitive as

an intersection is a very limiting factor in traffic flow, and thus a higher number of intersections

should decrease the overall capacity. Regarding the critical density, Figure 2(e) shows a positive

relationship between the intersection density and the critical density. This confirms the findings

from Figure 2(b). Lastly, the relationship between the fraction of one-way streets and the capacity

shows no trend.

Figure 3 shows the indicators of traffic dynamics as a function of the log of city population

(which can be considered as a first approximation of travel demand), and the average betweenness

centrality of the network. We take the log of population as we expect a decreasing marginal

effect of population on these indicators. The share of congestion is only evaluated for the 9 cities

where the critical density can be identified.
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(a) Share of area covered versus capacity.
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(b) Average link length versus critical density.
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(c) Log of population versus total daily delay.
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(d) Log of population versus share of congestion.
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(e) Share of congestion versus average between-
ness centrality.
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(f) Normalized lowest speed versus average bet-
weenness centrality.

FIGURE 3 Comparing indicators of the dynamics of macroscopic traffic from Table
2 with population of each city (a)-(d) and average betweenness centrality
(e)-(f). The accumulation, production and delay measures are normalized
to one lane-kilometer to allow a comparison across cities. All indicators of
the dynamics of macroscopic traffic are computed for the time interval from
05:00 to 24:00 on workdays and averaged over all days if applicable.



         

Figure 3(a) relates the population to the accumulation in the network. We observe a positive

trend, indicating that with a larger population more people tend to drive. We observe a similar

relationship in Figures 3(b), 3(c), and 3(d) showing the total travel production, delay, and share of

congestion during the day, respectively. In terms of delay and share of congestion, the city center

of Zurich exhibits the largest values and largest difference with the trend line, indicating that

both delay and congestion are over-proportionate with respect to the population. Hence, there

might be other aspects (potentially topological) that can be affecting these two metrics. Figure

3(e) shows a positive relationship between the share of congestion and the average betweenness

centrality. This is not surprising, as the betweenness centrality can be interpreted as a measure

of potential bottlenecks, and the more potential bottlenecks a network has, the higher the level

of congestions one should expect. Figure 3(f) shows a negative trend between the normalized

lowest speed and the betweenness centrality. Again, this is unsurprising as a higher likelihood of

bottlenecks should lead to lower speeds. Note that the last two illustrations do not control for

city size nor travel demand.

In summary, the results in Figure 2 do not exhibit clear relationships between all considered

MFD parameters and network features, but the findings in Figure 3 show intuitive relationships.

As a matter of fact, the average betweenness centrality in a network seems to be a very clear

indicator of the level of performance one could expect out of such network. This is very

promising, as it indicates that it is indeed possible to use some topological features to predict

traffic performance at the macroscopic level. More research, however, is necessary to properly

formulate some predictions.

For the graph measures of the road network, we have to mention an important issue. When

selecting the area of interest for our analysis, a comparatively small and homogeneous area in

terms of traffic is favored in the MFD estimation, while such a small area might neglect attractive

routes, e.g. on ring-road or highway, outside the considered perimeter. This might affect the

estimation of the betweenness centrality and other related network features.

Even though the traffic data from all cities is recorded from the same sensor type, we cannot

entirely rule out differences in the calibration and data processing in the traffic management

computers which could influence the recordings. Therefore, we put our efforts into minimizing

potential errors in the remaining degrees of freedom in the MFD estimation by (i) paying

attention to the precise geometry of the sensors to reduce the error in the density estimation, (ii)

examining the recordings of each measurement station to remove all recordings exhibiting any

unfamiliar behavior, (iii) doing a precise spatial data preparation to include only recordings from

all cities from the same type of roads.

Literature suggests that the data from loop detectors can be paired with floating car data

to overcome some drawbacks of loop detector measurements, especially the effect of the loop

detector placement on the density estimation (31, 25, 27). Arguably, in such a comparative study,

floating car data should come from a similar type of source, e.g. GPS trajectories, in all cities to

reduce potential errors. However, the access to such kind of data is limited, but if available we

could expand the sample to cities using SCATS traffic control systems, e.g. Dublin, Singapore

and Melbourne.

CONCLUSIONS

This paper presents the first empirical comparison of infrastructure constraints on vehicle flow in

various cities around the world. This study has been made possible by the idea of the MFD (31),

and the increased availability of large-scale traffic data. We propose to use the estimated MFDs



         

for two seminal analyses: (i) link the shape of the MFD and thus the infrastructure constraints to

design of complex real urban road networks, and (ii) identify factors that influence the duration of

congestion, i.e. the duration of the binding of infrastructure constraints. This study contributes

to the understanding on how the design of a city (networks, population, space, etc.) affects

congestion and delays, and could have thus several important implications on how we build our

cities.

Ongoing efforts are devoted to extend the analysis to include data from twenty to thirty

additional cities, e.g. Madrid, London, Munich. With a larger dataset, it will then be possible

to study more graph-based network features for a better understanding of the routing effects.

Importantly, we will also consider traffic signal cycle parameters to further infer the shape of the

MFD. Last but not least, we will also carry out a sensitivity analysis with respect to the MFD

parameter estimation method, the chosen area and the influence of inhomogeneity.

Regarding the indicators of traffic dynamics, we aim at explaining the variation across cities

with factors such as population density, degree of urban sprawl, provision of public transport,

and the value of time as a measure of wealth. We expect the results will then show what level of

congestion is unavoidable (in light of the Downs-Thomson paradox) given a certain city size,

and to what extent measures as public transport can mitigate it.
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