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Abstract: Water surface roughness (SR) is a highly relevant parameter governing data reliability in
remote sensing applications, yet lacking appropriate methodology in riverine habitats. In order to
assess thermal accuracy linked to SR of thermal imaging derived from an unmanned aerial vehicle
(UAV), we developed the SR Measurement Device (SRMD). The SRMD uses the concept of in situ
quantification of wave frequency and wave amplitude. Data of nine installed SRMDs in four different
fluvial mesohabitat classes presented a range of 0 to 47 waves per 30 s and an amplitude range of
0 to 6 cm. Even subtle differences between mesohabitat classes run, riffle, and no-/low-flow still and
pool areas could be detected with the SRMD. However, SR revealed no significant influence on the
accuracy of thermal infrared (TIR) imagery data in our study case. Overall, the presented device
expands existing methods of riverine habitat assessments and has the potential to produce highly
relevant data of SR for various ecological and technical applications, ranging from remote sensing of
surface water and habitat quality characterizations to bank stability and erosion risk assessments.

Keywords: remote sensing; UAV; thermal imaging; accuracy; surface roughness; emissivity;
fluvial mesohabitats

1. Introduction

In light of climate change and the ongoing trend of the warming of aquatic habitats [1,2],
understanding the spatio-temporal patterns of temperature distributions in aquatic systems
is of increasing importance [3]. In temperate regions of the world or at higher altitudes,
aquatic organisms are evolutionarily adapted to cold conditions, with many organisms
exceeding thermal limits when temperatures rise above 20 ◦C [4]. To sustain those species,
it is important to preserve habitats with cooler temperatures, so-called thermal refugia [5,6].

Consequently, assessing thermal heterogeneity in rivers and streams is of great eco-
logical relevance [7,8], but in contrast to many other physico-chemical characterizations of
aquatic habitat conditions, it is still poorly harmonized. Due to the generally pronounced
heterogeneity in rivers and lakes (e.g., for rivers 14 ◦C [3], for lakes >3.5 ◦C [9] both in
summer), it is challenging to assess spatio-temporal temperature profiles with conventional
methods such as data loggers, which are typically limited to point measurements with
doubtful representativeness. Therefore, the use of remote sensing based on thermal imagery
has become increasingly popular in the last two decades [5,10].

Studies using airborne thermal imaging as a survey methodology in aquatic envi-
ronment focus on thermal heterogeneity and its fundamental controls on different spatial
scales [8,11–15] including temporal [3,16] and habitat suitability assessments [17]. The
study objects encompass river and stream habitats, ranging from headwaters [18,19] to
coastal zones [20,21]. Several studies are also concerned with the technical perspective
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focusing on accuracy and limitations using UAV-based sensors for thermal imaging and its
subsequent processing in aquatic research [6,11,22–28].

With modern ready-to-fly unmanned aerial vehicles (UAVs) equipped with radiomet-
ric thermal infrared (TIR) sensors (uncooled microbolometers), such studies are now easy
to carry out [11,29]. With the UAVs’ radiometric TIR camera (sensors), the heat radiation
of surfaces can be captured by a sensor and displayed in false-color images, containing
measured temperature information in each pixel.

Thereby, the accuracy of detected heat radiation is, among others (such as internal
camera heating, relative humidity, pitch, roll and yaw), thought to depend strongly on
surface emissivity [18,24,30]. Emissivity is a number that varies from zero to one, which
describes how efficiently an object emits thermal radiation [31], with surface water having
an emissivity factor of 0.96–0.98 [32]. To improve the accuracy of remotely sensed spatial
water surface temperature in principle, calibrating detected TIR imagery temperatures to
ground truth data of measured water surface temperature using linear regression within
the image processing workflow is mandatory [8,10,33,34].

However, the emissivity of objects itself is known to be affected by their surface
structure [35] and thus surface roughness in aquatic habitats is expected to have an influence
on detected thermal data accuracy [36,37]. Since surface roughness and heterogeneity are
in principle displayed in waves, variability in emissivity and thus temperature accuracy is
to be expected [33,34]. This problem has already been addressed on a larger scale in marine
remote sensing research [38–40], where a deviation in accuracy of 0.5 ◦C is common when
using airborne thermal infrared sensors [33,35].

To assess sea surface roughness, the most common approaches used on different scales
include laser scanning, wave staffs, stereo imaging, microwave radar [41,42], polarimetric
infrared, glitter imaging [43], and global navigation system reflectometry [44]. In situ wind
measurements can also be correlated with sea surface roughness parameters, with different
methods available to estimate roughness from wind data [45].

Metric dimensions of stream surface roughness can be very different to marine systems
according to the diverse surface structure of fluvial mesohabitats such as pools, riffles, runs
and still water areas, yet these remain largely untested.

Regarding the smaller survey scales (ground sampling size) of UAV-based remote
sensing in riverine environments, we suspect that the known temperature accuracy of sea
surface does not apply to thermal assessments in rivers and streams. In addition, riverine
surface roughness is expected to have a smaller dimension but a higher heterogeneity
due to the greater structural habitat diversity compared to the sea surface. To date, such
a high degree of habitat variability has not yet been analyzed in the context of the accuracy
of thermal imagery since methods to measure surface roughness on small scale have
been lacking.

In this study, we present a surface-roughness-measuring device (SRMD) for on-site
measuring of surface roughness, developed to (a) read wave amplitude and (b) count wave
frequency. The application of the SRMD was tested in a field experiment combined with an
UAV-based TIR imagery study including the following objectives: (i) proving the SRMDs’
concept to be valid by comparing water surface roughness amplitude and frequency at
fluvial mesohabitat (FMH) level; and (ii) validation of thermal infrared (TIR) imagery
accuracy linked to surface roughness at FMH level.

2. Materials and Methods
2.1. Study Site

This study was carried out at the upper Danube River near Ingolstadt in southern
Germany (river km 2472), including a restored floodplain area consisting of four thermally
and morphologically differentiated and interconnected watercourses [3,46–49]. The four
river sections assessed comprised the bank habitats of the embanked Danube River, the
Ottheinrichbach (OHB), a nature like fish pass (FP), and a hinterland drainage ditch, the
Längenmühlbach (LMB) (Figure 1). As the objectives of this study were linked to fluvial
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mesohabitats (FMHs), within each of the habitats, subsections were classified into run,
riffle, pool and still water according to several authors [50–54]. Since surface roughness is
thought to be highly dependent on hydrological habitat conditions, the measurement points
were selected to reflect the river habitat heterogeneity as described in [3,48] for this study
site. Identification was based on a measurement of the depth, flow velocity and riverbed
substratum in the context of the individual watercourses. “Run” was defined by directed
current, unbroken water surface with constant water depth and river width. “Riffle” was
defined by shallow areas with stronger current as runs where the water breaks over cobbles,
boulders and gravel or where the water surface was visibly broken. “Pool” was defined by
slowly flowing water, potential reverse current, greater depth than riffles or runs and the
location after “riffles” or outside of bends. “Still” was defined for obviously non-flowing
floodplain ponds and for the non- to extremely slow-flowing section (<0.01 ms−1) in the
dammed Danube mainstream (Figure 1). Further information regarding the study sites,
mesohabitats and thermal heterogeneity is available in [3].
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Figure 1. Location of the study site and overview of installed surface roughness measurement
devices (SRMD) and temperature loggers at individual fluvial mesohabitats (FMHs = still, pool, run
and riffle) within a large-scale floodplain restoration at the Danube River. OHB = Ottheinrichbach,
FP = fish pass, LMB = Längenmühlbach, Danube = River Danube. Base orthophoto [55].
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2.2. The Surface Roughness Measurement Device (SRMD)

A novel tool for in situ measuring water surface roughness was constructed for this
study, the “Surface Roughness Measurement Device”, SRMD. In principle, this device
visualizes the waves of surface roughness and makes wave frequency countable and wave
amplitude readable using a scale.

The SRMD consists of a floating ball (80 mm diameter Styrofoam, Hagebaumarkt,
Freising, Germany) on a lever-pointer arm, which transfers the movements of the water
surface, using the lever-pointer, directly on the display of a scale (Figure 2). The lever-
pointer arms are both 27 cm long to ensure a 1:1 leverage ratio. The lever-pointer unit
is bent out of a 4 mm aluminum rod with four coils at the pivot. Pivot coils are bent
around a 20 mm long aluminum tube. The lever-pointer unit with an aluminum tube (inner
diameter 10 mm) is mounted on a metal screw (M8) using a nut and matching washers
to ensure free movement. The pivot-point screw and lever-pointer unit are mounted on
the measurement board with an affixed scale. The scale is divided into 1 cm sections
comprising different colors to allow for easy reading from distance. For field installation,
a pole has to be anchored into the river sediment at the measuring location. The SRMD is
mounted on the pole even to the water level, ensuring the SRMD lever is parallel to the
water surface (Figure 3). The amplitude of the waves can then be read off the scale and
the frequency can be counted. In our case of using the SRMD prototype, all readings were
taken by naked eye, but with little additional effort, automated recordings are also feasible.

Remote Sens. 2024, 16, x FOR PEER REVIEW 4 of 13 
 

 

2.2. The Surface Roughness Measurement Device (SRMD) 
A novel tool for in situ measuring water surface roughness was constructed for this 

study, the “Surface Roughness Measurement Device”, SRMD. In principle, this device 
visualizes the waves of surface roughness and makes wave frequency countable and wave 
amplitude readable using a scale. 

The SRMD consists of a floating ball (80 mm diameter Styrofoam, Hagebaumarkt, 
Freising, Germany) on a lever-pointer arm, which transfers the movements of the water 
surface, using the lever-pointer, directly on the display of a scale (Figure 2). The lever-
pointer arms are both 27 cm long to ensure a 1:1 leverage ratio. The lever-pointer unit is 
bent out of a 4 mm aluminum rod with four coils at the pivot. Pivot coils are bent around 
a 20 mm long aluminum tube. The lever-pointer unit with an aluminum tube (inner 
diameter 10 mm) is mounted on a metal screw (M8) using a nut and matching washers to 
ensure free movement. The pivot-point screw and lever-pointer unit are mounted on the 
measurement board with an affixed scale. The scale is divided into 1 cm sections 
comprising different colors to allow for easy reading from distance. For field installation, 
a pole has to be anchored into the river sediment at the measuring location. The SRMD is 
mounted on the pole even to the water level, ensuring the SRMD lever is parallel to the 
water surface (Figure 3). The amplitude of the waves can then be read off the scale and the 
frequency can be counted. In our case of using the SRMD prototype, all readings were 
taken by naked eye, but with little additional effort, automated recordings are also 
feasible. 

 
Figure 2. Views of the Surface Roughness Measurement Device (SRMD). (Left): technical three-
sided view (all measures in mm). (Right): three-dimensional visualization of the SRMD, including 
a color scale with differentiated colors to mark each 1 cm interval which is readable from the dis-
tance. 

Figure 2. Views of the Surface Roughness Measurement Device (SRMD). (Left): technical three-sided
view (all measures in mm). (Right): three-dimensional visualization of the SRMD, including a color
scale with differentiated colors to mark each 1 cm interval which is readable from the distance.



Remote Sens. 2024, 16, 1674 5 of 13Remote Sens. 2024, 16, x FOR PEER REVIEW 5 of 13 
 

 

 
Figure 3. Installed Surface Roughness Measurement Device (SRMD) on a pole and a small float with 
temperature logger in the fluvial mesohabitat type (FMH) pool. 

2.3. Application of SRMD and Thermal Imaging 
To address the potential impact of surface roughness on the accuracy of thermal 

imaging data and to test the validity of the SRMD, we used simultaneously recorded on-
site data of surface roughness (i) and UAV-based TIR imagery data combined with ground 
truth temperature logger data (ii). 

TIR imagery data were obtained from an UAV survey with hourly flights from 6:00 
am until 8:45 pm (n = 15) at a flight level of 50 m above ground. The survey took place 
during a typical hot summer day (20 July 2020), with an air temperature ranging from 15.3 
°C in the morning to 29.9 °C in the afternoon [3]. TIR imagery were acquired by a Matrice 
210 UAV (DJI, Shenzhen, China) equipped with a XT2 camera sensor ((640 × 512 pixels 
thermal resolution), DJI, Shenzhen, China). The flight at 10 a.m. did not return reliable TIR 
data and was omitted from the analysis. After the survey, a total of 15 data sets (flights), 
each with about 650 individual TIR images, were available for analysis. Further 
information regarding the UAV flights is available in [3]. 

To check for temperature ground truth, nine SRMDs and temperature data loggers 
(UA-002-064 HOBO, Onset Computer Corporation, Bourne, MA, USA) had been installed 
prior to the UAV survey in four different FMH classes consisting of two runs, three riffles, 
two pools, and two still water areas (Figures 1 and 3). Temperature loggers were mounted 
to a small float that floated roughly 0.5 cm below the water surface (Figure 3). To minimize 
measurement errors of the loggers, we placed all loggers in a water-filled bucket for 10 h 
prior to the field survey. Only loggers with temperature deviations < 0.001 K were used. 
Dimensions of surface roughness (objective i) were obtained at the SRMDs by a trained 
field team consisting of two surveyors that independently counted wave frequency and 
read maximum wave amplitude within 30 s during each flight. Frequency and amplitude 
were recorded directly after the UAV left the FMHs. To minimize individual bias for the 
values of surface roughness dimension, we calculated the mean recorded by the two 
surveyors. 

We used temperature difference between temperature logger data (ground truth) and 
raw thermal imagery data as a proxy for possible variability in emissivity linked to surface 
roughness (objective ii). Temperature difference data between TIR imagery and 

Figure 3. Installed Surface Roughness Measurement Device (SRMD) on a pole and a small float with
temperature logger in the fluvial mesohabitat type (FMH) pool.

2.3. Application of SRMD and Thermal Imaging

To address the potential impact of surface roughness on the accuracy of thermal
imaging data and to test the validity of the SRMD, we used simultaneously recorded on-site
data of surface roughness (i) and UAV-based TIR imagery data combined with ground
truth temperature logger data (ii).

TIR imagery data were obtained from an UAV survey with hourly flights from 6:00 am
until 8:45 pm (n = 15) at a flight level of 50 m above ground. The survey took place during
a typical hot summer day (20 July 2020), with an air temperature ranging from 15.3 ◦C in
the morning to 29.9 ◦C in the afternoon [3]. TIR imagery were acquired by a Matrice 210
UAV (DJI, Shenzhen, China) equipped with a XT2 camera sensor ((640 × 512 pixels thermal
resolution), DJI, Shenzhen, China). The flight at 10 a.m. did not return reliable TIR data
and was omitted from the analysis. After the survey, a total of 15 data sets (flights), each
with about 650 individual TIR images, were available for analysis. Further information
regarding the UAV flights is available in [3].

To check for temperature ground truth, nine SRMDs and temperature data loggers
(UA-002-064 HOBO, Onset Computer Corporation, Bourne, MA, USA) had been installed
prior to the UAV survey in four different FMH classes consisting of two runs, three riffles,
two pools, and two still water areas (Figures 1 and 3). Temperature loggers were mounted
to a small float that floated roughly 0.5 cm below the water surface (Figure 3). To minimize
measurement errors of the loggers, we placed all loggers in a water-filled bucket for 10 h
prior to the field survey. Only loggers with temperature deviations <0.001 K were used.
Dimensions of surface roughness (objective i) were obtained at the SRMDs by a trained field
team consisting of two surveyors that independently counted wave frequency and read
maximum wave amplitude within 30 s during each flight. Frequency and amplitude were
recorded directly after the UAV left the FMHs. To minimize individual bias for the values
of surface roughness dimension, we calculated the mean recorded by the two surveyors.

We used temperature difference between temperature logger data (ground truth)
and raw thermal imagery data as a proxy for possible variability in emissivity linked to
surface roughness (objective ii). Temperature difference data between TIR imagery and
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temperature logger at the individual FMH “run 2” were omitted, since fast changing spatio-
temporal mixing patterns of two thermally differentiated river sections did not allow for
an accurate comparison of TIR data to logger data. Raw TIR imagery data were extracted
downstream of the temperature logger position for each flight (n = 15) and 8 FMHs. We
extracted the mean temperature of 4 × 4 pixel squares close to the SRMDs and downstream
of the temperature loggers from 120 individual raw TIR images by using the software FLIR
tools (Version 6.4.17317.1002, Teledyne FLIR LLC, Wilsonville, OR, USA). Raw images were
used for objective ii) because processed imagery can be potentially biased by applying
a linear regression to ground truth data.

2.4. Data Analysis

Shapiro–Wilk tests were applied to test for normal distribution of surface rough-
ness frequency and amplitude, as well as temperature difference of FMHs. Since surface
roughness amplitude and frequency data (objective i) did not always follow a normal
distribution at FMH classes, differences between two or more groups were tested with
the Kruskal–Wallis test and Wilcoxon-signed-ranks post hoc test. Since the analyzed data
of temperature difference between TIR imagery and temperature logger data (objective
ii) did follow a normal distribution, the difference in the homogeneity of variance was
tested using the Levene test. The function ‘ANOVA’ in the package ‘car’ was used to test
for differences of temperature between logger data (ground truth temperature) and TIR
temperature at the FMH class level. Additionally, we applied two linear models to test
for potential correlations between temperature differences from logger data and TIR data
to SR frequency, and between temperature differences from logger data and TIR data to
SR amplitude.

All data were analyzed and visualized using R studio (version 4.3.3, R Core Team,
2024). Statistically significance for all tests was considered at p-values < 0.05. Water surface
roughness amplitude and frequency data (objective i), as well as temperature difference
data between TIR imagery and temperature logger data (objective ii), were analyzed and
visualized at FMH classes (run, riffle, pool and still) and additional visualized for each
individual FMH. Data distributions were visualized in boxplots combined with violin plots
using package ‘ggplot 2’ (version 3.4.0, Wickham, 2016) in R.

3. Results

During this UAV study with 15 hourly flights, a total of 135 measurements of surface
roughness were made at the nine individual mesohabitats. Pools and riffles presented
an overall higher surface roughness than that of runs and still water areas (Figure 4).
Differences in surface roughness between pool and riffle are less distinct than those between
riffle and runs. Surface roughness in runs was intermediate compared to that of pool and
riffles. As expected, no surface roughness was detectable in still water areas. Overall,
FMHs were mainly separated by wave frequency rather than amplitude. The temperature
difference between ground truth and TIR imagery data revealed a similar range and means
(Figure 5).

The mean wave frequency of the FMHs within 30 s ranged from zero waves in still
water habitats to 30.13 waves in pool habitats. The mean wave frequency of riffle was
at 28.20 waves and that of runs at 10.60 waves. The range of wave frequencies of riffles
(5–47 waves) and pools (19–43 waves) was higher than that of runs (4–18 waves) and, of
course, of still water habitats (0.00 waves).

The comparisons of wave frequency in 30 s revealed multiple significant differences
between the FMH classes (Kruskal–Wallis test: p < 0.001). The mean wave frequency in
pools was significant higher compared to runs (Wilcoxon test: p < 0.001) and compared
to still water areas (Wilcoxon test: p < 0.001), but was not significantly lower than the
wave frequency in riffles (Wilcoxon test: p = 1.00). The mean wave frequency in runs was
significantly higher than the wave frequency in still water areas (Wilcoxon test: p < 0.001),
but significantly lower than the wave frequency in riffles (Wilcoxon test: p < 0.001). The
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wave frequency in riffles was significantly higher than in still water areas (Wilcoxon test:
p < 0.001).

Mean wave amplitude of the FMHs within 30 s ranged from 0 cm in still water areas to
2.43 cm in riffles. The mean wave amplitudes of runs were at 1.15 cm and those of pools at
2.03 cm. The amplitude range of waves in riffles (1–6 cm) and pools (0.5–4 cm) was higher
than those in runs (0–3 cm) and, as expected, in still water habitats (0.00 cm).

Comparisons of wave amplitude revealed multiple significant differences between
FMH classes (Kruskal–Wallis test: p < 0.001). The mean wave amplitude in pools was
significant higher compared to that of runs (Wilcoxon test: p < 0.01) and compared to that
of still water areas (Wilcoxon test: p < 0.001), but was not significantly lower than the
wave amplitude in riffles (Wilcoxon test: p = 1.00). The mean wave amplitude of runs was
significantly higher than the wave amplitude of still water areas (Wilcoxon test: p < 0.001),
but was significantly lower than the wave frequency in riffles (Wilcoxon test: p < 0.001).
Expectedly, the wave amplitude in riffles was significantly higher than in still water areas
(Wilcoxon test: p < 0.001).
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Figure 4. Combined box-whisker-plots and violin plots (25% quantile, median, 75% quantile, whisker:
minimum and maximum values, circles represent outliers). (A) Wave frequency of individual
fluvial mesohabitats (FMHs), (B) wave frequency of FMH classes, (C) maximum wave amplitude of
individual FMHs, (D) maximum wave amplitude of FMH classes. Labeled black dots indicate mean
values at (B,D). Different colors represent different mesohabitats.
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Figure 5. Combined box-whisker-plots and violin plots (25% quantile, median, 75% quantile, whisker:
minimum and maximum values) of difference between logger and TIR temperature of individual
FMHs (A) and difference between logger and TIR temperature of FMH classes (B); labeled black dots
indicate mean values. Scatterplots show an absent correlation (black line) between SR (frequency, (C);
maximum wave amplitude, (D)) and temperature difference between logger and TIR data; grey areas
indicate the standard error. Different colors represent different mesohabitats.

The temperature difference between logger temperatures (ground truth) and raw TIR
imagery data revealed a similar range and means in all FMHs at the class level (Figure 5).
The overall lowest mean of temperature difference between ground truth and TIR was
found in pools (3.05 ◦C), while the highest mean temperature difference was found in still
water (3.76 ◦C). The comparison of temperature difference between logger data and raw
TIR imagery as a proxy of variability in emissivity linked to surface roughness revealed
no significant difference between FMH classes (ANOVA: p = 0.06). The linear models
(Figure 5C,D) also revealed no significant correlation between the temperature difference
of logger data to raw TIR data and SR frequency (F-value = 0.00, p = 0.96) and between the
temperature difference of logger data to raw TIR data and SR amplitude (F-value = 0.03,
p = 0.86).

4. Discussion

The presented SRMD device for quantification of surface roughness in the riverine
environment produced reliable data of wave frequency and wave amplitude. Differences
in surface roughness between FMH validated the SRMD concept (objective i). The sur-
face roughness of FMHs combined with TIR and ground truth temperature revealed no
significant difference between FMHs (objective ii).
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4.1. Reliability of SRMDs Concept

Multiple significant differences in pair-wise comparisons of the two dimensions of
surface roughness (amplitude and frequency) at the FMH class level verified that the
concept of the SRMD is valid. In this context, riffles and pools were very similar in their
surface roughness dimensions. This can be attributed to the smooth transitions of fluvial
mesohabitats [50]. Since pools are often located adjacent to riffles, a continuation of surface
roughness characteristics from riffles into the pool areas below can be present until waves
lose their energy and eventually collapse. While the difference between pool and riffle can
alternatively be characterized by other definite factors (e.g., depth and flow velocity), the
distinction between run and riffle is not always clear, both subjectively and objectively, due
to different definitions and less distinct differences in depth and flow velocity [50,53,56].
Surprisingly, the device showed significant differences between riffles and runs, even
though they are expectedly similar by visual checks. The latter clearly demonstrates the
sensitivity and accuracy of the device and its functional concept. Since the investigated
mesohabitats (run riffle, pool and still) represent all possible surface roughness types in
riverine systems, it appears likely that the proposed method is reliable and generally
suitable for measuring surface roughness in a wide range of streams and rivers. Hence,
obtaining the dimensions of surface roughness can contribute to objective identification
and characterization of FMHs from physical measurements. Particularly, in this study, the
SRMD device produced reliable data for the assessment of water surface roughness linked
to TIR imagery accuracy (objective ii).

4.2. Influence of Surface Roughness Linked to Thermal Imaging Accuracy

The application of the SRMD regarding thermal imaging in the riverine environment
suggests a significantly higher temperature accuracy of raw TIR data than previously
assumed since there was no significant temperature difference between TIR data and
logger data (ground truth) at the FMH class level. This is clearly different from the current
state of knowledge from marine environments where a deviation of 0.5 K is considered
acceptable [38–40]. In the context of TIR processing, where calibration to ground truth
temperature is fundamentally necessary, variability in thermal emissivity of the water
surface does not have to be taken into account in our study. Greater accuracy in determining
temperature profiles is clearly an advantage when it comes to risk assessments of exceeding
biologically meaningful thermal thresholds related to mortality, reproduction and feeding
of aquatic organisms, as well as the characterization of temperature-dependent oxygen
solubility and matter fluxes [57].

4.3. Limitations, Potential Error Sources and Future Improvements

Overall, the range of differences between ground truth and TIR temperature appears
surprisingly high. Within one flight, the range of temperature differences at FMHs between
TIR and ground truth temperature is expected to be smaller. The remaining variability in
temperature difference between logger data and TIR data can be attributed to the uncooled
microbolometer and heating of the whole camera body during the study day with an air
temperature up to 30 ◦C, as well as intense use in 15 subsequent flights. The heating of the
camera body can be reduced by using colors with higher reflectance instead of matt black,
for example, aluminum foil [24]. Other factors that can affect the accuracy and precision of
uncooled sensors, such as relative humidity, pitch, roll and yaw of the UAV, and the flight
time, were not taken into account in this study [26,58].

At the present stage of development, the pointer can deflect a maximum of 10 cm
waves; thus, the application of this SRMD is limited when used in riffles with higher waves,
high flow velocity and strong river slope. The installation of the SRMD is also limited by
site depth since it needs to be mounted onto a pole. Additionally, sudden extreme changes
in the water level can become a problem. This particularly applies to water bodies where
the discharge is regulated, e.g., in river sections with hydropeaking.
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4.4. Potential Future Applications

Since the SRMDs concept has proven that measurements of the surface roughness of
rivers across a wide range of habitat conditions are possible, amplitude and frequency are
suitable proxies for characterization of surface roughness. With adjustments or further
development, e.g., concerning digital readings, the concept of the presented device can
provide additional important data of surface roughness.

The possibility to measure surface roughness can improve current efforts on modeling
and predicting mesohabitats dynamically [59] and can potentially improve mesohabitat
classifications based on surface pattern categories (smooth, rippled, broken or unbroken
standing waves) [60]. The applications of the SRMD are not limited to thermal imaging of
surface water temperatures, as it can also be applied in the entire field of remote sensing,
since the surface roughness of lentic, lotic and marine habitats can potentially affect all
types of remote measurements [61]. The SRMD concept could also be used to assess wave
disturbances linked to ship traffic regarding a potential impact to riparian bank habitats
and erosion risk assessments. Surface roughness has so far been disregarded as a factor in
habitat assessments but can certainly have an influence on habitat suitability for aquatic
organisms and their behaviors, e.g., for surface-feeding fishes or in general when it comes
to visibility and hiding, and thus for species’ composition and abundance.

5. Conclusions

This study describes and validates the application of a novel and simple device for
measuring the dimensions of water surface roughness across different fluvial mesohabitat
types in rivers and streams, the SRMD. It provides proof that reliable data of frequency and
amplitude of surface roughness can be obtained across a range of different mesohabitat
types, which contributes to greater accuracy in thermal remote sensing, highly relevant in
light of assessing climate change impacts on aquatic ecosystems. Surface roughness data
linked to thermal infrared imagery and combined with ground truth temperature data
revealed no significant variability in temperature difference at fluvial mesohabitat classes.
Overall, the presented device expands the existing methods of riverine habitat assessments
and has the potential to produce highly relevant data of surface roughness for various
ecological and technical applications, ranging from habitat quality characterizations to
bank stability and erosion risk assessments. Since the developed SRMD may also have
other ecological and technological applications, future research should also test its practical
applications beyond riverine systems.
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