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Abstract

Learning-based solutions for vision tasks require a large
amount of labeled training data to ensure their perfor-
mance and reliability. In single-task vision-based settings,
inconsistency-based active learning has proven to be effec-
tive in selecting informative samples for annotation. How-
ever, there is a lack of research exploiting the inconsis-
tency between multiple tasks in multi-task networks. To ad-
dress this gap, we propose a novel multi-task active learn-
ing strategy for two coupled vision tasks: object detection
and semantic segmentation. Our approach leverages the
inconsistency between them to identify informative samples
across both tasks. We propose three constraints that specify
how the tasks are coupled and introduce a method for de-
termining the pixels belonging to the object detected by a
bounding box, to later quantify the constraints as incon-
sistency scores. To evaluate the effectiveness of our ap-
proach, we establish multiple baselines for multi-task active
learning and introduce a new metric, mean Detection Seg-
mentation Quality (mDSQ), tailored for the multi-task ac-
tive learning comparison that addresses the performance of
both tasks. We conduct extensive experiments on the nuIm-
ages and A9 datasets, demonstrating that our approach out-
performs existing state-of-the-art methods by up to 3.4%
mDSQ on nuImages. Our approach achieves 95% of the
fully-trained performance using only 67% of the available
data, corresponding to 20% fewer labels compared to ran-
dom selection and 5% fewer labels compared to state-of-
the-art selection strategy. The code is available at https:
//github.com/aralhekimoglu/BoxMask.

1. Introduction
Object localization and classification are critical for

planning and executing safe and comfortable autonomous

driving. Recent deep learning methods have demonstrated

(a) Localization Constraint (b) Classification Constraint (c) Segmentation Constraint

X X X

Figure 1: Consistency constraints between object detection and

semantic segmentation. (a) Segmentation mask covers all pixels

of a detected object. (b) A detected object and the segmentation

mask that covers it share the same predicted class distribution. (c)

No pixels outside of the detected boxes are segmented with an

object class.

state-of-the-art (SOTA) performance on 2D object detec-

tion [13, 33, 44] and semantic segmentation [7, 48] tasks.

However, achieving high accuracy in these tasks comes at

a high computational cost when handled separately, mak-

ing them unsuitable to be used together for real-time au-

tonomous driving. To address this challenge, multi-task

learning has emerged as a promising solution. By shar-

ing computations between related tasks, multi-task learn-

ing can achieve high accuracy while meeting real-time re-

quirements. Recent publications showed that networks that

predict both 2D object detection, and pixel-wise semantic

segmentation perform better on both tasks compared to the

single-task trained networks [14,15]. In this paper, we focus

on the problem of multi-task active learning in autonomous

driving, aiming to maximize performance across multiple

tasks while minimizing the need for large amounts of la-

beled training data.

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
Foundation. Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.
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Figure 2: The proposed inconsistency-based selection strategy. Detection boxes and the segmentation mask are obtained from a multi-task

network architecture consisting of a backbone and two task heads. The BoxMask is generated by cropping the region around the detected

box, passing it through the backbone and segmentation head, and applying a threshold τ to the class probability corresponding to the class

of the detected box. Our proposed strategy focuses on three inconsistency scores by using the BoxMask and segmentation mask.

Active learning (AL) [9, 16] is a technique for select-

ing the most informative samples for training a machine

learning model under labeling budget constraints. In a typ-

ical single-task active learning loop, the model’s predic-

tions on the remaining unlabeled data are used to identify

the samples that would be most beneficial for further train-

ing. In vision-based single-task settings, AL has been used

to improve performance in tasks such as image classifica-

tion [3, 45], object detection [8, 12, 23, 30, 37, 41], and se-

mantic segmentation [20, 24]. One effective approach is

inconsistency-based selection, which identifies samples for

annotation by measuring the inconsistency of the model’s

predictions across different augmentations of the input data.

For instance, CALD [46] explores various augmentations

for object detection, and EquAL [20] measures inconsis-

tency between an image and its flipped version for seman-

tic segmentation. However, to our knowledge, no existing

work has explored the use of inconsistency between multi-

ple tasks in the context of multi-task active learning.

Our novel strategy incorporates the concept of

inconsistency-based selection from active learning

and applies it to multi-task learning by leveraging the

inconsistency between two coupled vision tasks, namely

2D object detection and semantic segmentation. Our

approach quantifies the inconsistency between these two

tasks to identify informative samples across both of them

to maximize the performance while minimizing the amount

of labeled data needed for training.

To measure the inconsistency between 2D object detec-

tion and semantic segmentation, we define three constraints

that specify how the two tasks are coupled together. The

first constraint requires that the segmentation mask covers

all pixels of the detected objects (Fig. 1a). The second con-

straint requires that a detected object and the segmentation

mask that covers it share the same predicted class distribu-

tion (Fig. 1b). The third constraint requires that no pixels

outside the detected boxes are segmented with an object-

class (Fig. 1c). To map the object detection predictions to a

similar pixel-wise output as the semantic segmentation pre-

dictions, we define BoxMask to identify the pixels belong-

ing to the object detected by a bounding box. BoxMask en-

ables us to quantify the three constraints by measuring the

overlap between the object detection and semantic segmen-

tation predictions. Based on these constraints, we propose

three scores utilizing the BoxMask that quantify the incon-

sistency between the two coupled tasks.

Our main contributions are the following:

• A novel multi-task active learning strategy that effec-

tively leverages the inconsistency between 2D object

detection and semantic segmentation to improve per-

formance on both tasks and reduce the amount of la-

beled data needed for training.

• A novel method for identifying the pixels belonging

to a detected object (BoxMask) and using it to quantify

the constraints between two tasks into selection scores.

• A comprehensive qualitative and quantitative compar-

ison of the proposed approach and multi-task active

learning baselines against SOTA baselines that are out-

performed by up to 3.4% mDSQ and 5% in data sav-

ings rate.
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2. Related work
2.1. Active learning

AL methods for object detection measure uncertainty of

a detected box through either classification or localization

uncertainty [2, 4, 8, 16, 26, 47]. Recent methods [16, 46]

leverage inconsistency between the predictions of the net-

work when given different augmented versions of the sam-

ple to define the robustness of a sample and select samples

that are less robust. For example, Elezi et al. [16] use hori-

zontal flipping, while Yu et al. [46] explore various augmen-

tations to obtain multiple outputs and measure the inconsis-

tency to define a selection score. Once the uncertainty of an

object is estimated, the scores of all detections are aggre-

gated using either the sum, the average, or the maximum of

the scores, and the resulting image score is used to rank the

images for annotation.

AL methods for semantic segmentation also utilize in-

consistency methods to define uncertainty [20, 24, 29, 40].

For instance, Golestaneh et al. [20] apply horizontal flip-

ping to the image and measure the inconsistency through the

KL-divergence of the predictions from the original and the

flipped image. The unit of data queried in AL methods for

semantic segmentation varies, with methods querying either

whole images [20, 43] or regions [6, 27, 29, 40, 42]. In our

work, we choose to query whole images for labeling since

we are also interested in obtaining object detection labels.

Notably, our approach is the first to utilize inconsistency

between predictions of different tasks to define multi-task

uncertainty and use it for AL selection.

Learning Loss is a task-agnostic strategy proposed by

Yoo et al. [45], using a loss prediction module. The net-

work learns to predict the target loss for unlabeled inputs,

and samples with the highest predicted loss are selected for

labeling. As this approach is task-agnostic, it can be adapted

for multi-task networks and serves as a relevant comparison

in our work.

Diversity-based methods aim to ensure a diverse train-

ing set that covers the input space. One such method is the

use of a core-set, as proposed by Sener et al. [39], where

diversity is defined as the Euclidean distance between inter-

mediate network features for each image. Another method,

CDAL, proposed by Agarwal et al. [1], exploits contex-

tual diversity with respect to the predicted classes, and has

been applied to object detection and semantic segmentation.

These methods are applicable to the multi-task active learn-

ing scenario and provide additional baselines for compari-

son.

2.2. Multi-task learning

Multi-task learning has been studied extensively, and

readers are referred to a survey by Crawshaw et al. [10].

In multi-task architectures, the hidden layers of a backbone

model are shared among different tasks, and have separate

heads that predict each task [19, 31, 49]. Multi-task opti-

mization deals with the joint objective function in multi-

task settings, such as how to weigh losses of individual

loss functions for different tasks [21, 28, 31, 32]. Kendall et
al. [28] explored weighting each loss by its corresponding

single-task uncertainty, using homoscedastic uncertainty for

weighing the multi-task loss.

The idea of joint semantic segmentation and object de-

tection was first investigated for shallow networks in [22,

34,36]. These studies demonstrated that learning both tasks

simultaneously can be better than learning them indepen-

dently. Salscheider et al. [38] employed a shared backbone

and heads in their work, and we adopted this approach as

our multi-task network.

2.3. Multi-task active learning

To our knowledge, no prior research has investigated

multi-task active learning (MTAL) for object detection and

semantic segmentation. However, active learning has been

successfully applied to multi-task settings in other do-

mains, such as Natural Language Processing (NLP). Re-

ichart and Rappoport [35] proposed alternating two single-

task focused data selection strategies in each cycle, while

Ikhwantri et al. [25] randomly selected a task for each cy-

cle. Instead of alternating between two single-task scores,

we propose a novel approach that generates a single score

for selecting interesting samples relevant to both tasks.

3. Methodology

3.1. MTAL problem overview

The goal of this work is to tackle the AL problem of it-

eratively selecting samples from a large pool of unlabeled

data XU to be labeled by an oracle, to improve the perfor-

mance of a multi-task object detection and semantic seg-

mentation network. Specifically, we consider each sample

(x, ydet, yseg) as a triplet, where x is an image, ydet is the

set of objects, and yseg is the pixel-wise segmentation label

belonging to one of the semantic classes Cseg . Detection

labels ydet consists of bounding box coordinates (ybox) and

corresponding categories (ycls) belonging to one of the ob-

ject classes Cdet, where Cdet ⊆ Cseg .

Our multi-task network consists of a shared backbone

and two single-task heads, as shown in Fig. 2. The network

predicts object boxes pdet consisting of (pbox, pcls) and a

segmentation mask pseg for each input image x. In each AL

cycle, the network is trained on the labeled data (XL, Y L),
and a subset S of unlabeled samples is selected for label-

ing. In the next cycle, the selected samples are added to

the labeled dataset, and the network is trained again on the

updated labeled dataset.
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3.2. Method overview

Object detection and semantic segmentation are two in-

terconnected tasks shown to benefit from each other when

combined [14]. The predictions from both tasks are in-

herently coupled, as objects detected in the former should

align with the labeled regions in the latter. We propose an

AL selection strategy that identifies samples where either

task fails. To achieve this, we measure the inconsistency

between the predictions of object detection and semantic

segmentation. These inconsistent areas indicate potential

points of failure for both tasks and, as such, are deemed in-

teresting for further labeling.

To this end, we define three constraints between the tasks

to formulate a selection score as illustrated in Fig. 2.

1. The segmentation mask should cover all pixels be-

longing to the detected object, ensuring that the en-

tire object is accurately segmented for the given class.

(Sec. 3.4)

2. The segmentation mask and the detected object should

have consistent class distributions. (Sec. 3.5)

3. There should be no segmented pixel belonging to a

class from the object detection outside the predicted

bounding boxes. (Sec. 3.6)

3.3. BoxMask generation strategy

To quantify the constraints, we define a binary segmen-

tation mask, BoxMask, that covers all pixels within a de-

tected box belonging to the class of the detected object. A

perfect BoxMask covers each pixel of the entire object of

interest. Fig. 2 illustrates our BoxMask generation strategy.

We begin by cropping a region of the image around the de-

tected box, and then pass it through the network. Using the

segmentation head of our multi-task network, we generate

a segmentation mask for the cropped region pseg(xcrop).
BoxMask is then defined as a binary mask where the pre-

dicted class probability in the new segmentation label is

above a threshold τ for the class of the detected object.

3.4. Localization consistency

Our localization-focused inconsistency score measures

the alignment between a detected object and its correspond-

ing segmentation mask. To ensure consistent detection and

segmentation, the segmentation mask within the detected

box should cover the entire detected object without any

missing regions.

We define the localization inconsistency score as the

number of pixels in the predicted segmentation mask that

does not match the corresponding pixels in the BoxMask

for that detection. To account for varying object sizes

and scales, we normalize the score by |BM |, the num-

ber of pixels in the BoxMask, resulting in a scale-invariant

score. Mathematically, the localization inconsistency score

is given by the following equation:

Sloc =
1

|BM |
∑

i,j∈BM

I(pseg(i, j) �= c) (1)

where, I represents the indicator function, c denotes the

predicted class of the detected object, and i, j represent the

pixel coordinates in the BoxMask (BM ).

3.5. Classification consistency

In Sec. 3.4, we addressed the localization inconsistency

between the BoxMask and the segmentation mask. How-

ever, this approach treats classes that are very different, such

as Truck and Pedestrian, the same as classes that are more

similar, such as Truck and Bus. To account for this, we pro-

pose a classification inconsistency score that considers the

predicted class probabilities during the sample score calcu-

lation.

To achieve this, we transform the predicted object class

distribution pcls into the same probability domain as the

class probabilities predicted by semantic segmentation.

Specifically, we set the probability of the classes not trained

in object detection, i.e., Cseg −Cdet, such as Road and Sky,

to a negligible value to ensure that both tasks have the same

number of classes, without impacting the score calculation.

Since pixels within BoxMask should not contain any classes

from Cseg−Cdet, we consider this a valid assumption. The

transformed probability vector, denoted as p̃cls, contains the

same classes as the segmentation task (Cseg).

The classification inconsistency score, Scls, for a sample

is calculated using the transformed object class probability

distribution p̃cls and the class probability distribution of the

segmentation pseg for each pixel i, j in BoxMask as fol-

lows:

Scls =
1

2|BM |
∑

i,j∈BM

KL
(
pseg(i, j), p̃cls

)
+

KL
(
p̃cls, pseg(i, j)

)
(2)

where KL represents the Kullback-Leibler divergence

between the predicted probability distributions, and the re-

sulting value is averaged to obtain a similarity measure.

3.6. Segmentation consistency

In Sec. 3.4 and 3.5, we addressed inconsistencies within

the boundaries of detected boxes. However, another con-

straint that must be met between the two tasks is that there

should be no segmentation mask outside the boundaries of

the detected box for a class that also belongs to the set of

classes predicted in the object detection Cdet.

To account for the constraint that outside of the detected

boxes, there should be no segmentation mask for classes
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predicted in object detection, we combine all BoxMasks by

taking the pixel-wise maximum and taking the inverse of

the resulting binary mask to define the region falling out-

side of the detected objects, which we denote as BM ′. The

inconsistency score for the remaining segmented areas Sseg

is calculated using Eq. (3):

Sseg =
1

|BM ′|
∑

i,j∈BM ′
I(pseg(i, j) ∈ Cdet) (3)

where I is the indicator function. For each pixel falling

within the inverted BoxMask region, we penalize the class

probabilities for the classes predicted by object detection.

The resulting score is normalized by the number of pixels,

ensuring it is scale-invariant and shares the same range as

the other inconsistency scores.

3.7. Combination of all constraints

The pseudo-code of combining the individual constraint

scores into a single inconsistency score between the two

tasks is given in Algorithm 1. We first calculate each de-

tected box’s BoxMask as described in Sec. 3.3. Then,

we calculate the localization and classification consistency

scores using Eq. (1) and Eq. (2), respectively. We then add

the localization and classification scores to obtain a per-box

consistency score Sbox. Next, as explained in Sec. 3.6, we

combine all BoxMasks and traverse the inverse region to

search for segmentation pixels belonging to classes from

the object detection and calculate the segmentation incon-

sistency using Eq. (3). Finally, we add this score with the

maximum per-box score to estimate the inconsistency be-

tween two tasks as a single selection score.

Algorithm 1 The pseudo-code of combining the constraints

Input: pdet, pseg
Output: score S

1: BM comb = {}
2: for box ∈ pdet do
3: Obtain BM box explained in Sec. 3.3

4: Compute Sloc using Eq. (1)

5: Compute Scls using Eq. (2)

6: Sbox = Sloc + Scls

7: BM comb = pixelwise max(BM comb, BM box)
8: end for
9: BoxMask′ = inverse(BM comb)

10: Compute Sseg using Eq. (3)

11: S = Sseg + max
box∈pdet

(Sbox)

4. Experiments
4.1. Experimental setup

Datasets. We evaluate the performance of our approach

on two publicly available datasets: nuImages [5] and the

A9-Dataset [11]. The nuImages dataset provides 3D and

2D sensor data collected from autonomous vehicles operat-

ing in urban settings. We use images taken from the front

camera, resulting in a training set size of 13,187 images and

3,249 images for the validation set with a total of 138,569

objects. The first release of the A9 dataset offers camera and

LiDAR frames from two overhead gantry bridges on the A9

autobahn near Munich, Germany. It provides annotations

for object detection and semantic segmentation with 33,378

labeled image frames and a total of 672,049 3D and 2D ob-

ject labels. The A9 dataset was created using the proAnno
labeling toolbox which is based on [50].

Implementation details. We employ the multi-task net-

work architecture proposed by Salscheider et al. [38], aug-

mented with the loss prediction module and the active learn-

ing framework. The hyperparameters proposed in the orig-

inal work are used. The experiments are performed using a

batch size of 4 and a learning rate of 0.001.

To perform active learning, we randomly divide the

training set into a labeled pool of 40% and an unlabeled

pool of 60%. The initial labeled pool is used to pre-train the

network, and at each iteration, the top 10% of the samples

with the highest scores are selected from the unlabeled pool

to add to the labeled pool, based on the available annota-

tions. We perform six active learning iterations of 30,000

steps per iteration for each dataset. We employ a contin-

uous training strategy, where each active learning iteration

is initialized with the best-performing checkpoint from the

previous iteration. All experiments are conducted using two

Tesla V100 GPUs and evaluated on the respective validation

sets.

Evaluation metrics. The evaluation metrics for ob-

ject detection and semantic segmentation are typically mea-

sured using mean Average Precision (mAP) [18] and mean

Intersection-over-Union (mIoU) [17], respectively. How-

ever, a new metric that can capture the performance of both

tasks is necessary to evaluate the performance of multi-task

active learning methods. Therefore, we propose the mean

Detection Segmentation Quality (mDSQ) metric, which

normalizes mAP and mIoU by the performance of the fully-

trained network and combines them, as shown in Eq. (4).

mDSQ = (
mAP

mAPfully
+

mIoU

mIoUfully
)/2 (4)

where mAPfully and mIoUfully represent the perfor-

mance of the network trained with 100% of data for 300,000

steps. This metric is more suitable for comparing multi-task

active learning methods than the individual metrics used in
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(a) Multi-task performance (mDSQ) (b) Detection performance (mAP) (c) Segmentation performance (mIoU)

Figure 3: Comparison of our proposed method with SOTA AL methods on the nuImages dataset. Lines indicate the average results over

three trials. Note that all the methods start with the same network trained with 40% of labeled samples.

(a) Multi-task performance (mDSQ) (b) Detection performance (mAP) (c) Segmentation performance (mIoU)

Figure 4: Comparison of our proposed method with SOTA AL methods on the A9 dataset. Lines indicate the average results over three

trials. Note that all the methods start with the same network trained with 40% of labeled samples.

each task, as it combines both metrics into a single score

normalized by the fully-trained performance.

We evaluate the performance of our method using the

mDSQ metric and report the mean of the metric by running

three experiments with three random initial data pools. We

present each experiment’s numerical values and variance in

the supplementary.

4.2. Baselines

To compare the effectiveness of our multi-task active

learning method, we compare it against several baselines

from the literature. We choose two inconsistency-based AL

methods from the literature: we use CALD [46] as the SOTA

method for object detection, and EquAL [20] for the seman-

tic segmentation. We also compare against the alternating

selection strategy, Alternation, proposed by Reichart and

Rappoport [35], and alternate between two SOTA detection

and segmentation selection scores CALD and EquAL. Due

to its task-agnostic nature, we also compare our method

against the loss prediction strategy, LL4AL, proposed by

Yoo et al. [45]. We extend the network architecture by

two loss prediction modules that learn to predict the loss

of each task. The loss of both tasks is then summed to-

gether to form a combined loss score. We use CDAL [1] as

our diversity-based baseline, and to mimic passive learning,

we use Random selection, where each sample is assigned a

score following a uniform distribution.

4.3. Quantitative results

nuImages. Our results on the nuImages dataset are pre-

sented in Fig. 3, which shows the mDSQ, mAP, and mIoU

metrics. In the initial AL cycle, our method outperforms all

the baselines by at least 0.71%. As the number of actively

selected labels increases, for example, using 80% of all

available data, with 50% actively labeled, our method out-

performs Random by 3.39% and the second-best method,

LL4AL, by 1.07%.

Our approach reaches 95% of the fully-trained perfor-

mance using only 67% of the data, compared to 74% of

LL4AL and 87% of random selection, corresponding to 20%

of more data savings. We observe that both of the multi-task

selection scores (Ours, LL4AL) outperform the single-task

scores, their alternation and the diversity-based method.

This demonstrates that a score that considers both tasks is

more suitable for multi-task networks, compared to alter-

nating between single-task scores as previously done.
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Score 50% 70% 90%

Sloc 86.9 94.0 96.4

Scls 86.5 93.5 96.6

Sseg 87.1 94.4 96.9

Sloc + Scls 87.4 93.7 96.6

Scls + Sseg 87.0 95.0 97.0

Sloc + Sseg 87.7 94.6 97.5
Sloc + Scls + Sseg 88.0 95.6 97.3

Table 1: Ablation study of the contribution of each scoring con-

straint for each amount of used data on nuImages.

Regarding single-task performance, as shown in Fig. 3b

and Fig. 3c, our method is on par with the SOTA detection

algorithm CALD and even outperforms it as the number of

actively selected samples increases. For semantic segmen-

tation, our method outperforms the SOTA segmentation al-

gorithm EquAL. These results demonstrate that both tasks

benefit from inconsistency information from the other task.

A9. We present the mDSQ, mAP, and mIoU metrics for

the A9 dataset in Fig. 4. Our method outperforms all the

baselines for all data percentages, demonstrating the effec-

tiveness of our data selection strategy in a larger dataset.

Our selection strategy has the highest performance in the

first cycle, leading to the best performance throughout the

remaining cycles. We achieve 95% mDSQ using only 66%

of the data, which means a 34% savings in labeling budget

compared to full training.

For single-task detection performance (Fig. 4b), our

method is on par with the Alternation baseline. For se-

mantic segmentation (Fig. 4c), our method is on par with

the SOTA segmentation algorithm EquAL. These results

demonstrate that our multi-task approach can achieve com-

parable or better performance than state-of-the-art single-

task AL methods for both detection and segmentation.

4.4. Qualitative results

We present qualitative results to compare the final perfor-

mances obtained by following different selection strategies

in Fig. 5. Compared to the CALD baseline, our method

provides more fitting segmentation masks within each de-

tection. For example, for the bottom vehicle in the last row,

our method correctly segments the regions as Car instead

of Truck, demonstrating the effectiveness of using class in-

consistency. Additionally, our method produces more accu-

rate localization for the left front wheel, which is another

constraint we set in our method. Finally, the pixels outside

of the boxes are worse than our method, demonstrating the

effectiveness of the segmentation constraint. Overall, our

qualitative comparison shows that our method outperforms

the baselines in producing accurate and consistent object

detection and segmentation results.

4.5. Ablation studies

Ablation on each component. We perform an ablation

study to evaluate the contribution of each scoring constraint

function to the overall performance of our method. The re-

sults are shown in Tab. 1. Among the single-score versions,

Sseg has the highest performance, indicating the importance

of avoiding segmented pixels outside the bounding boxes.

Sloc and Scls have comparable results, as they are both fo-

cused on different types of inconsistency, namely classifi-

cation, and localization. We observe that the two combina-

tions lead to better performance compared to their single-

score counterparts. The best performance is achieved when

we combine all three scores, as shown in the last row of the

table. These results demonstrate the effectiveness of each

constraint and the importance of combining them to achieve

optimal performance.

Analysis of BoxMask accuracy and threshold. The

accuracy of the BoxMask is a crucial factor in obtaining

accurate constraints in our method. We conduct an exper-

iment to evaluate the accuracy of the BoxMask and com-

pared it with using a separate network trained solely for se-

mantic segmentation. We calculate the mIoU between the

ground-truth binary segmentation label and the predict seg-

mentation mask. We are only interested in the areas in the

ground-truth segmentation that belong to the class from the

detected box and only for the area bounded by the detected

boxes. Based on our results, we select a threshold value τ
of 0.3 for BoxMask generation. Even though our method

does not have any additional parameters, it still performs

comparably to using a separate network. Therefore, we use

the same segmentation head from our multi-task network

for generating the BoxMask predictions.

Correlation of each consistency score with the actual
error. We analyze the correlation of each consistency score

with respect to the losses and each other, presented in Fig. 6.

We observe that Sseg is better at measuring segmentation er-

ror, while Scls and Sloc are the most effective at measuring

classification and localization error in the detected boxes,

respectively. Since these three losses are the main compo-

nents in a joint detection and segmentation loss function, all

three constraints effectively capture areas where the individ-

ual losses are high. We also observe that Sloc and Sseg have

the lowest correlation across the selection scores, which ex-

plains the highest performance when combined in Tab. 1.

Single-task LL4AL and alternation. To support our

hypothesis that multi-task active learning is more effec-

tive in dealing with multiple tasks simultaneously, we com-

pare the performance of the LL4AL strategy when using

two single-task scores and one multi-task score. As shown

in Fig. 7, using a single multi-task score outperforms the

single-task scores and their alternation. This suggests that a

score considering both tasks is more suitable for multi-task

networks than alternating between single-task scores.
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Figure 5: Qualitative comparison of the Random (second), CALD (third), and Our (fourth) sampling strategies on the A9 dataset. Light

blue and dark blue correspond to the Truck and Car classes.
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Figure 6: Correlation of each constraint and losses

Mask Gen. τ Add Mem. Accuracy

BoxMask

0.1 - 74.7

0.3 - 78.4

0.5 - 77.9

0.7 - 73.2

HR-Net - 6.31 GB 80.2

Table 2: Performance of BoxMask across different thresholds.

5. Conclusion

This study addressed the gap in research on active learn-

ing for multi-task networks in the vision domain. Our pro-

posed selection strategy combines knowledge from the two

50 55 60 65 70 75 80 85 90
% of used data

86

88

90

92
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m
DS

Q

Seg
Det
Alternate
Comb

Figure 7: Comparison between multi-task LL4AL to single-task

losses and their alternation. Seg and Det refer to LL4AL using

only the segmentation and detection losses, respectively. All meth-

ods start with the same network trained with 40% of labeled data.

task domains, object detection and semantic segmentation,

into a single multi-task selection score. This strategy relies

on three constraints between the two tasks and measures

them by identifying the pixels belonging to a detected ob-

ject through the BoxMask. Our experiments on two multi-

task datasets demonstrate the effectiveness of our approach,

as it outperforms all the baselines by 3.4% and achieves 5%

fewer annotations. Future work will focus on adapting our

task inconsistency-based selection strategy to other multi-

task networks.
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