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ABSTRACT: Machine learning has been an integral part of
interpreting data from mass spectrometry (MS)-based proteomics
for a long time. Relatively recently, a machine-learning structure
appeared successful in other areas of bioinformatics, Transformers.
Furthermore, the implementation of Transformers within bio-
informatics has become relatively convenient due to transfer
learning, i.e., adapting a network trained for other tasks to new
functionality. Transfer learning makes these relatively large
networks more accessible as it generally requires less data, and
the training time improves substantially. We implemented a Transformer based on the pretrained model TAPE to predict MS2
intensities. TAPE is a general model trained to predict missing residues from protein sequences. Despite being trained for a different
task, we could modify its behavior by adding a prediction head at the end of the TAPE model and fine-tune it using the spectrum
intensity from the training set to the well-known predictor Prosit. We demonstrate that the predictor, which we call Prosit
Transformer, outperforms the recurrent neural-network-based predictor Prosit, increasing the median angular similarity on its hold-
out set from 0.908 to 0.929. We believe that Transformers will significantly increase prediction accuracy for other types of
predictions within MS-based proteomics.
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■ INTRODUCTION

Just as in many other areas involving the analysis of large and
complex data sets, different types of machine learning are
tremendously helpful for the modern analysis of mass
spectrometry (MS)-based proteomics data.1,2 For example,
we nowadays can use machine learning to predict tryptic
digestion,3 chromatographic retention time,4−6 collisional cross
section,7 the accuracy of peptide−spectrum matches,8 and the
accuracy of transitions in DIA data9 are tasks that utilize
machine learning.
One task that has gained traction in the last couple of years

is predicting MS2 spectra from peptide sequences.10,11 Such
predictors can predict relative intensities of a given peptide
sequence’s b- and y-ions. Together with the m/z values of the
ions, which one can derive from first principles, one can
subsequently form a full MS2 spectrum. MS2 spectrum
prediction has in a short time established itself as a means to
rescore peptide spectrum matches,12 increasing the sensitivity
in large search spaces,13 and target−decoy strategies for DIA
interpretation.14

Many types of frameworks are available for training a
predictor, such as support vector machines and recurrent
neural networks (RNNs) used within MS-based proteomics.
However, in the last couple of years, a structure first in natural
language processing15 known as Transformers16 has success-

fully been employed within bioinformatics, e.g., structure
prediction,17,18 gene expression prediction,19 and even within
MS-based proteomics, e.g., peptide detection problem,20 DIA
library generation for the phosphoproteome,21 and de novo
interpretation of MS2 spectra.22

Transformers are, like RNNs, designed to handle sequential
input data and do so through attention mechanisms, i.e.,
mechanisms that enhance the essential parts of the input
sequence for its output. However, unlike RNNs, the Trans-
formers do not use recurrence, thus enabling a significant
speed-up by parallelizing their training. The encoder−decoder
structure is the basis of the Transformers, where both the
encoder and decoder adopt the multiheaded attention
mechanism.16

Notably, the task assessing protein embedding (TAPE)
model17 is exciting; a Transformer-based autoencoder of
protein sequences is formed by withholding one amino acid at
a time in a large set of protein sequences and subsequently
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predicting which is the missing amino acid. One can
subsequently employ the model for higher-level tasks by
plugging them into some extra layers of neurons in a process
known as transfer learning.17,18

Here, we argue that Transformers can greatly aid MS-based
proteomics. We demonstrate that TAPE’s BERT submodel can
predict MS2 spectrum intensities from peptide sequences. We
are using the training and test sets of the popular Prosit11

predictor and demonstrate that the transformer-based
predictor, which we named Prosit Transformer, drastically
outperforms the old implementation of Prosit.

■ METHODS

Data

We downloaded the Prosit training data from https://figshare.
com/projects/Prosit/35582. This set is composed of spectra
from PXD004732, PXD010595, and PXD021013.11,13 The
Prosit data had to be converted from HDF5 to LMDB to be
compatible with the TAPE framework. The LMDB data files
used during training and validation are accessible at https://
figshare.com/articles/dataset/LMDB_data_Tape_Input_
Files/16688905.

Architecture

The TAPE model consists of 12 768 hidden unit attention
layers, with the attention dropout (DropHead) rate23 and
regular dropout rate set to 0.1. We downloaded weights for the
pretrained model that has been trained on the raw protein
sequences in the protein families database (Pfam) to predict
the amino acid at each protein position given the previous
amino acids and the following amino acids.17 The Prosit-
specific transformer has the same parameter but consists of
nine attention layers. The metadata layer is a multilayer
perceptron (MLP) with two layers of size 512 units followed
by a dropout rate of 0.1 each. The final prediction layer has the
same structure, except for no dropout after the final layer. The
activation function is ReLU, except for the prediction layer
where the first layer uses a ReLU6,24 i.e., a max(0,min(6,x))
function as an activation function, and the final layer uses a
linear layer.

Metrics

We measure angular distance
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and angular similarity, sAB = 1dAB as measures of accuracy of
the predicted intensities. Here, A is the vector of predicted
intensities, and B is the vector of observed intensities for the
ion series included in the prediction. However, we introduced
a few extra steps during training to avoid undefined behavior.
First, to avoid undefined values using angular similarity during
training, we had to clip the inputs to cos−1 with −(1 − ϵ) and
(1 − ϵ) to avoid undefined values. This implementation was
necessary since some predictions were too similar to their
target after training, resulting in an undefined loss. However,
there was no clipping during the evaluation, so it will not affect
the final result. Lastly, we also had to introduce a small ϵ in the
denominator in the cosine similarity, i.e., max(∥A∥·∥B∥, ϵ), to
ensure no undefined behavior during training. The sum of all
dAB for all peptides in the test set was used as a loss function for
the training of the networks.

We calculated the FDR = FP/(FP + TP) and FNR = FN/
(FN + TP) for each predicted spectrum to measure the
number of erroneous peak predictions. Here, FP is the number
of peaks predicted in excess to be present in a spectrum that
was absent in the observed spectrum; FN is the number of
peaks deficiently predicted to be absent in a spectrum that was
present in the observed spectrum, and TP is the number of
peaks accurately predicted to be present in a spectrum that was
present in the observed spectrum.

Postprocessing of Predicted Intensities

We use the same postprocessing on the predicted spectrum
used in Prosit11 for the final result. To clarify, we set ions with
a predicted negative intensity to zero, i.e., a negative intensity
indicates an absent peak. Furthermore, we set all ion’s intensity
that is not obtainable for any given peptide due to too low a
charge state or too low peptide length to −1. However, we
exclude such peaks for similarity measurements.

Hardware

The model was trained on the Berzelius SuperPOD, a GPU
cluster consisting of 60 NVIDIA DGX A100 systems, linked on
a 200 Gbit/s NVIDIA Mellanox InfiniBand HDR network.

■ RESULTS
We set out to test whether Transformers are a technology fit
for spectrum intensity predictions, i.e., to predict the intensities
of the most commonly observed ion series (b+, b2+, b3+, y+, y2+,
and y3+) of product ion spectra from peptide fragmentation.
The length of the peptides ranged between 7 and 30 amino
acids long. We used the train/test data and the preprocessing
coming with the Prosit predictor as a testbed. Prosit’s scripts
calculating the intensity vectors, adopting metadata, and
calculating predictions’ angular similarity have been found to
be robust after years of use. We also found it straightforward to
set up a benchmark, as we could reuse the Prosit test sets just
out of the box. We will refer to the traditional Prosit predictor
as Prosit RNN from hereon to avoid confusion.

Model

We set out to use the setup previously used for training and
testing the Prosit model but with a transformer. We used the
pretrained TAPE model17 and retrofitted it with a Prosit-
specific decoder and some additional application-specific code
(see Figure 1). The TAPE model will encode the peptide into
a 512-dimensional embedding. Furthermore, just as for the
original RNN-based Prosit model, we used layers for handling
metadata consisting of the charge state of the spectrum and its
collision energy (CE). The charge states range from one to six,
represented as six-dimensional one-hot encoding. Hence, the
metadata layer has seven input nodes to account for the charge
state and CE. The metalayer transforms the metadata into a
512-dimensional vector that is subsequently combined with
the encoded peptide by element-wise multiplication. Then a
Prosit-specific Transformer will decode this combined
embedding. Lastly, a two-layered multilayer perception
(MLP) follows the decoding layer, serving as a prediction
layer to predict the spectrum intensity. The MLP used
activation by a hinge loss function constrained between 0 and 6
(a RELU6 function) to activate the two final layers to avoid a
so-called gradient explosion. For the training, the objective
function was to minimize the sum of the angular distances
between the observed and predicted spectrum intensity
vectors.
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Training of the Model

During the training, we used a batch size of 1024, a learning
rate of 0.0001, gradient accumulation step of 1, and a linear
learning rate schedular with 10000 warmup steps. The training
proceeded until no further improvement over 10 epochs.
To better predict present and absent peaks, we introduced a

hyperparameter, δ, setting an artificial offset of the intensities
of absent peaks to δp = δ/|number of considered peaks|. This
hyperparameter adds an extra penalty if the model predicts
intensities for absent peaks. By varying the size of δ, we can
control the model’s propensity to predict peaks as absent and,
by such means, tune the model’s false positive and false
negative predictions. We measured the false discovery rate
(FDR) and the false negative rate (FNR) of each spectrum and
then plotted the average angular similarity, the FDR, and the
FNR for different choices of δ. We selected δ = 0.34 for the
final training (see Figure 2).
Comparison of Performance to Regular Prosit

To test the performance of our final Prosit Transformer, we
investigated its performance on the same held-out test set as
used when initially training Prosit RNN. We calculated the so-
called angular similarity between the predicted and observed
intensities for both predictors. Overall, we see that the
predictions from Prosit Transformer have an angular similarity
higher than that of Prosit RNN and are hence more accurate
(Figure 3A). The Prosit Transformer increased the median
angular similarity from Prosit RNN’s 0.908 to 0.929. We also
see that Prosit Transformer obtained an angular similarity
higher than that of Prosit RNN in 75.7% of the spectra,
whereas the opposite was true in 24.3% of the spectra. The
same pattern was also true when dividing the PSMs based on
their peptide’s lengths (Figure 3B). We also wanted to
compare the predictors’ ability to predict present and absent
(zero intensity) fragment peaks. Our choice of hyperparameter
δ for Prosit Transformer resulted in a lower fraction of
observed absent peaks among the predicted nonzero intensity
peaks (Figure 3C) while observing a higher fraction of

predicted absent peaks among the observed nonzero intensity
peaks (Figure 3D) for Prosit Transformer compared to Prosit
RNN.
Comparison of a Transformer to an Extended RNN for
Prediction of Spectra

We set out to eliminate other explanations for Prosit
Transformer’s elevated performance than the Transformers
themselves. A notable difference between Prosit RNN and
Prosit Transformer is their difference in size. Prosit RNN
contains 3 million parameters, while Prosit Transformer
contains 164 million parameters, which gives the Transformer
an unfair advantage. Hence, we stacked long short-term
memory layers to create RNN models of similar size to the
ones of the Transformers. This extended RNN gave a median
angular similarity of 0.892 compared to Prosit Transformer’s
0.929. Further, Prosit Transformer also outperformed the
extended RNNs encoder in combination with Prosit Trans-
former’s decoder (median angular similarity of 0.927), as well
as Prosit Transformer’s encoder in combination with Prosit
RNN’s decoder (median angular similarity of 0.915). See
Table 1 for an overview of the permutations of encoder decode
architectures and their sizes.
When training the RNN models, the learning rate had to be

decreased from 0.0001 to 0.00008 to get the model to learn.
Everything else was the same as for the Transformer−
Transformer model. We also had to switch the gated recurrent
unit of the Prosit RNN to an LSTM to use the TAPE
framework, leading to minor differences between the extended
Prosit RNN and Prosit RNN.
Surprisingly, the extended RNN−RNN model got worse

results than regular Prosit. The decrease could be due to that
increase from 3 to 178 M parameters, leading to overfitting,
requiring more data to justify such a massive model for the
type of architecture. However, a performance increase was
observed in all cases when adding a Transformer to the
architecture. The most significant increase in performance
appeared when implementing the Transformer as a decoder,
i.e., after the peptide has been encoded and combined with the
metadata, and not in the peptide’s encoding, although this
improves the results, as well.
At first, the conclusion that the Transformer−Transformer

model performed best might seem to contradict the results of

Figure 1. Architecture of the Prosit Transformer. The model depends
on a pretrained encoder from the TAPE project and uses the TAPE
design for a Prosit-specific decoder. However, our model implements
many of the design features of Prosit RNN, i.e., layers handling
metadata and final intensity prediction.

Figure 2. Effect of adjusting the hyperparameter δ on predicting the
absence/presence of individual MS2 peaks. To obtain better
prediction accuracy of present and absent MS2 peaks, we adjusted
the intensities of absent peaks from zero to δ. We measured the false
discovery rate (FDR) and the false negative rate (FNR) of each
spectrum and then plotted the average angular similarity, the FDR,
and the FNR for different choices of δ. We selected δ = 0.34 for the
final training. The predicted spectra were not postprocessed for the
measurements in this figure (see Methods).
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others. Particularly, DeepPhospho21 reports a better perform-
ance for their LSTM−Transformer model than for their
Transformer−Transformer model. However, it is worth noting
that the circumstances were different; their LSTM decoder was
larger than their Transformer decoder (34 M vs 6 M
parameters).21 One would expect that the Transformer’s
performance would increase with a larger model, whereas the
LSTM would not benefit as much (perhaps even getting
worse) with a larger model.

Time Comparison of Spectrum Prediction

The Prosit Transformer was quicker to train than the full RNN
model (approximately 3 versus 6 GPU days). However, all of
the models in Table 1, were slower than the original Prosit
RNN due to their increased size. To demonstrate this, both
regular Prosit and Prosit Transformer were timed for
predicting 1000, 10000, and 100000 spectra; see Table 2.
Prosit Transformer requires roughly 40 times more time, so
there is a trade-off between accuracy and time requirements for
the transformer’s predictions when increasing model size.

Prosit Transformer’s Ability to Model Collision Energy

We also wanted to test that the improved ability of Prosit
Transformer to predict MS2 intensities did not affect the
predictor’s ability to model CE’s influence on predicted
spectra. We hence isolated batches of spectra with CE = {0.2,

0.25, 0.3, 0.35, 0.4} and measured the median angular
similarity when predicting the spectra for a range of different
collision energies (Figure 4). The highest angular similarity
was found between the observed and predicted spectra when
setting CE to the set’s actual specified value.

■ DISCUSSION
Here, we have used a Transformer trained to predict a protein
sequence and transferred its functionality into predicting
intensities of the b- and y-ions of MS2 spectra. The resulting
predictor’s performance outperformed a predictor built by a
classical recurrent neural network. This type of structure can
likely improve other types of peptide property prediction.
One interesting finding was that the most significant

improvement was when using Transformers as a decoder
when comparing different combinations of RNNs and

Figure 3. Comparison of the accuracy of Prosit Transformer and Prosit RNN. (A) We made separate histograms and smoothed them with a kernel
density estimator to observe the distribution of angular similarity for the spectra predicted with Prosit Transformer and Prosit RNN. (B) Same
angular similarity was also stratified by the length of peptides. We also measured the (C) false discovery rate, i.e., the fraction of observed absent
peaks among the predicted nonzero intensity peaks for each spectrum, and (D) false negative rate, i.e., the fraction of predicted absent peaks among
the observed nonzero intensity peaks.

Table 1. Extended RNN Model’s Size and Performancea

architecture for encoder−
decoder

encoder
size

encoder
layers

encoder
units

decoder
size

decoder
layers

decoder
units

total
size

median angular
similarity

Transformer−Transformer 85M 12 768 64M 9 768 164M 0.929
RNN−RNN 77M 5 1028 93M 5 2056 178M 0.892

Transformer−RNN 64M 9 768 94M 10 768 172M 0.9156
RNN−Transformer 53M 6 768 113M 6 768 173M 0.927

aWe trained and tested different permutations of expanded RNNs and Transformers of comparable size and compared their prediction accuracy.

Table 2. Larger Transformer Model Needs More Time to
Predict Spectraa

number of predicted spectra 1k 10k 100k

Prosit RNN 0.05 s 0.5 s 4.7 s
Prosit Transformer 2 s 18 s 180 s

aWe measured the required time to predict spectra from peptides for
both Prosit RNN and Prosit Transformer.
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Transformers as decoders and encoders. A possible inter-
pretation of this result is that Transformer architecture better
utilizes the metadata, i.e., the collision energy and charge state
information. A future direction of the project could be to
investigate the source of the improved accuracy by examining
the effects of removing this information from the different
decoders.
Here, we made use of the framework provided by the

original Prosit project. It was essential to access the scripts and
data sets provided and hardened by the previous team of
algorithm designers. In general, it is of utmost importance to
keep this type of resource easy to access. If we want to attract
the attention of the machine learning community, which often
wants a precise problem formulation and does not like to get
into the details of how to generate data sets from scratch, we
need to help them.
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