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Abstract

Motivated by the discrepancy between Bayesian and frequentist upper limits on the tensor-to-scalar ratio parameter
r found by the SPIDER collaboration, we investigate whether a similar trend is also present in the latest Planck and
BICEP/Keck Array data. We derive a new upper bound on r using the frequentist profile likelihood method. We
vary all the relevant cosmological parameters of the ΛCDM model, as well as the nuisance parameters. Unlike the
Bayesian analysis using Markov Chain Monte Carlo (MCMC), our analysis is independent of the choice of priors.
Using Planck Public Release 4, BICEP/Keck Array 2018, Planck cosmic microwave background lensing, and
baryon acoustic oscillation data, we find an upper limit of r< 0.037 at 95% Confidence Level (C.L.), similar to the
Bayesian MCMC result of r< 0.038 for a flat prior on r and a conditioned Planck lowlEB covariance matrix.

Unified Astronomy Thesaurus concepts: Cosmic microwave background radiation (322); Cosmic inflation (319);
Cosmology (343); Cosmological parameters (339)

1. Introduction

Detecting the stochastic background of primordial gravitational
waves predicted within the inflationary paradigm (Grishchuk 1974;
Starobinsky 1979) represents one of the principal objectives of the
current cosmological research, as it would provide the definitive
evidence for cosmic inflation (Guth 1981; Sato 1981; Albrecht &
Steinhardt 1982; Linde 1982).

Whereas inflation produces gravitational waves (i.e., tensor
modes) over a wide range in frequency measurable by several
different probes (see, e.g., Campeti et al. 2021, for a review), the
most promising route to detection is the B-mode polarization of
the cosmic microwave background (CMB; Kamionkowski et al.
1997; Seljak & Zaldarriaga 1997).

The current data sets only provide upper bounds on the tensor-to-
scalar ratio r (i.e., the ratio of the amplitudes of the tensor and scalar
modes power spectra). To date, the tightest limit on r (customarily
measured at the pivot scale k0= 0.05 Mpc−1) is r< 0.032 at 95%
Confidence Level (C.L.; Tristram et al. 2022), coming from the
Planck latest CMB temperature and E and B-mode polarization data
(Tristram et al. 2021), the BICEP/Keck Array B-mode data
(BICEP/Keck Collaboration 2021, hereafter BK18), the baryon
acoustic oscillations (BAO) of the large-scale structure (Alam et al.
2021), and the CMB lensing data (Planck Collaboration VIII 2018).
This upper limit is derived using a standard Bayesian Monte Carlo
Markov Chain (MCMC) procedure, varying the relevant cosmo-
logical parameters of a flat Λ cold dark matter (ΛCDM) model and
adopting the Sellentin & Heavens (2016, hereafter SH) correction
to the Hamimeche & Lewis (2008, hereafter HL) likelihood for the
Planck large-scale EE, BB, and EB power spectra (the “lowlEB”
likelihood). The SH correction is needed to account for the
increased uncertainty in parameter estimation due to the limited
number of simulations used to estimate the covariance matrix. This

is obtained by analytically marginalizing over the unknown true
covariance matrix.
Most of the constraining power on r at the pivot scale comes

from BK18ʼs B-mode data. An upper limit of r< 0.036 at 95%
C.L. (BICEP/Keck Collaboration 2021) is obtained just from
the BK18 data, provided that we fix the ΛCDM parameters to
their best-fitting values given in Planck Collaboration VI
(2020). The Planck satellite provides, on the other hand, the
tightest constraints to date on the B modes at the largest angular
scales, which are not accessible from the ground. Exploiting the
latest NPIPE-processed Public Release 4 (PR4) of temperature
and polarization maps (Planck Collaboration Int. LVII 2020),
the Planck collaboration reported a limit of r< 0.056 at 95% C.
L. (Tristram et al. 2021), which is relaxed to r< 0.075 when
properly accounting for the SH correction in the lowlEB
likelihood (Beck et al. 2022).
While the SH correction accounts for the Monte Carlo noise in

the estimated covariance matrix, it does not correct for the
additional scatter in the best-fitting maximum a posteriori
parameter (MAP) estimate, which can lead to a misestimation
of confidence limits (Beck et al. 2022). This effect is especially
relevant near the physical boundary of a given parameter (i.e.,
r� 0 in our case of interest) and can produce a significant
underestimation of the upper limit. The issue can be corrected by
increasing the number of (computationally expensive) time-
ordered data simulations used in the covariance matrix estimation
or by properly conditioning the covariance matrix. The latter
method has been applied in Beck et al. (2022) to the lowlEB
Planck likelihood (which we will refer to as “conditioned HL” in
the following), resulting in a much weaker Planck-only upper
limit of r< 0.13 at 95% C.L., associated to a large shift of the
peak of the marginalized distribution to larger r values than in
the SH case. Similarly, for the Planck + BK18 + BAO + lensing
combination, the conditioning results in a more conservative
upper limit of r< 0.038.
In this paper, we present constraints on r using the

frequentist profile likelihood method, and compare them to
the standard Bayesian MCMC procedure adopted throughout
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the literature.4 As shown by results from the SPIDER
collaboration (Ade et al. 2022), the two approaches can give
quite different answers, with the Bayesian upper limit being
almost a factor of 2 larger than its frequentist counterpart.
While the profile likelihood is a standard data analysis tool in
particle physics (see, e.g., ATLAS Collaboration 2013; Particle
Data Group 2020), it has been seldom used in cosmology,
notable cases of use being the application to ΛCDM parameters
estimation from the Planck data (Planck Collaboration Int.
XVI 2014), to the Early Dark Energy fraction (Herold et al.
2022), to coupled dark energy and Brans-Dicke models
(Gómez-Valent 2022) and, as anticipated above, to the
estimation of r from the SPIDER data (Ade et al. 2022).
Nonetheless, this approach bears several potentially interesting
differences with Bayesian methods (Cousins 1995). First, the
profile likelihood does not require priors, which may have an
impact on the final constraints. Second, while in Bayesian
methods the choice of a specific set of parameters to sample
might represent an implicit prior choice, the maximum
likelihood estimate (MLE) is invariant under model reparame-
terization. Third, the parameter estimates obtained from the
profile likelihood are not affected by “volume effects” that can
arise during marginalization in the MCMC approach (Hamann
et al. 2007). Moreover, the profile likelihood formalism allows
us to conveniently include the effect of the parameter’s
physical boundary in the confidence intervals via the Feld-
man–Cousins prescription (Feldman & Cousins 1998).

Our work aims to deconstruct the current constraints on r
and scrutinize their robustness. Similarly to the profile
likelihood analysis performed on the ΛCDM parameters
(Planck Collaboration Int. XVI 2014), we study the effect of
priors and marginalization on the inference of r from the Planck
and BK18 data. We also explore the effect of conditioning the
Planck lowlEB covariance matrix (Beck et al. 2022) on the
profile likelihood.

The structure of the paper is the following. We describe the
data and likelihood used in our analysis in Section 2. We
review the profile likelihood formalism and the Feldman–
Cousins prescription in Section 3. We discuss the new
constraints on r from our frequentist analysis and compare
them to the Bayesian credible intervals in Section 4. We
conclude in Section 5.

2. Data and Likelihoods

We use the latest Planck NPIPE-processed PR4 maps
(Planck Collaboration Int. LVII 2020) and the BK18 data set
(BICEP/Keck Collaboration 2021). We use the data and
likelihoods publicly available for the Cobaya5 (Torrado &
Lewis 2021) MCMC framework, as done in Tristram et al.
(2022). We also use Cobaya as an interface with the CAMB
Boltzmann solver (Lewis et al. 2000).

2.1. Planck Likelihoods

The Planck likelihood consists of three parts: the low-ℓ TT
Commander likelihood (Planck Collaboration V 2020) for ℓ=
2–30, the high-ℓ TT + TE + EE HiLLiPoP likelihood6 (Planck
Collaboration XV 2013; Planck Collaboration XI 2016;

Couchot et al. 2017) for ℓ= 30–2500, and the low-ℓ EE +
BB + EB LoLLiPoP or the lowlEB likelihood7 (Tristram
et al. 2021) for ℓ= 2–150.
The low-ℓ TT likelihood is the same as in PR3, since no

improvement is expected with the PR4 update for the high
signal-to-noise temperature data. The HiLLiPoP likelihood is
instead a Gaussian likelihood for cross-power spectra of the
Planck 100, 143, and 217 GHz data.
The LoLLiPoP likelihood for large-scale EE, BB, and EB

power spectra implements the HL approximation for a non-
Gaussian likelihood (Hamimeche & Lewis 2008), adapted
specifically for cross-power spectra (Mangilli et al. 2015). In
this case, an offset term is needed to make the distribution of
cross-power spectra similar to that of autopower spectra, as
required by the HL approximation. The covariance matrix for
this likelihood is estimated from 400 Monte Carlo simulations
of PR4, which include Planck noise, systematic effects, and
foreground residuals. The Planck lowlEB likelihood imple-
ments the SH correction to the HL likelihood to account for the
Monte Carlo noise in the covariance matrix estimate. This is
not sufficient to amend the additional scatter in the MAP
estimate: a possible solution indicated in Beck et al. (2022)
involves using the HL likelihood (without the SH correction)
with a conditioned covariance matrix. The conditioning
strategy removes all off-diagonal elements beyond the next-
to-nearest neighbor for unbinned multipoles (ℓ� 35) and all
off-diagonal elements beyond the nearest neighbor for binned
multipoles (ℓ> 35). We will refer to this specific choice as
“cond. HL” in the following.

2.2. BICEP/Keck Array 2018 Likelihood

The BK18 likelihood, which includes only B modes at
ℓ; 30–300, also applies the HL approximation to auto- and
cross-power spectra in conjunction with the WMAP data at 23 and
33GHz and Planck NPIPE-processed data at 30, 44, 143, 217,
and 353 GHZ. The bandpower covariance matrix is estimated from
499 simulations. The default BK18 likelihood already incorporates
conditioning to reduce the Monte Carlo noise.

2.3. Likelihood Combination and Priors in the Default Analysis

We combine the Planck and BK18 likelihoods, neglecting
correlations between them. This is a good approximation
because the current B-mode data are noise-dominated, the two
CMB surveys have uncorrelated noises, and they observe very
different fractions of the sky (i.e., 50% for Planck and 1%
for BK18; see Tristram et al. 2021, 2022). In the following,
whenever we use the Planck likelihood, we will also include
the BAO data (Alam et al. 2021) and the Planck CMB lensing
data (Planck Collaboration VIII 2018).
There are in total 33 free parameters in the default Planck

+ BK18 analysis, including r, 6 parameters of a flat ΛCDM
model {Ωbh

2, Ωch
2, τ, As, ns, θMC}, and the nuisance

parameters. The tensor spectral index nt is fixed via the
inflationary consistency relation nt=−r/8, similarly to
previous analyses (Tristram et al. 2021, 2022). We also
checked that fixing nt = 0 as in the BICEP/Keck Collaboration
(2021) analysis does not impact our results.
The Planck likelihoods introduce 19 nuisance parameters,

accounting for map and absolute calibration and foreground
4 We emphasize that all upper limits on r reported above have been derived
with an MCMC approach.
5 cobaya.readthedocs.io
6 github.com/planck-npipe/hillipop 7 github.com/planck-npipe/lollipop
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modeling (for a description see Appendix B in Tristram et al.
2021). Of these, eight parameters have a Gaussian prior in the
default MCMC analysis, whereas the others have uniform
priors. The BK18 likelihood has seven nuisance parameters
accounting for Galactic dust and synchrotron foreground
modeling. Of these, six parameters have uniform priors in the
default BK18 analysis (BICEP/Keck Collaboration 2021),
whereas the synchrotron spectral index βs has a Gaussian prior
βs=−3.1± 0.3 (motivated by the WMAP 23 and 33 GHz
data; Fuskeland et al. 2014). As shown in BICEP/Keck
Collaboration (2021), the constraint on βs from the BK18 data
is prior-dominated; therefore, for a more direct comparison
with the Bayesian results in the literature, we also explore the
possibility of fixing βs=−3.1 in the profile likelihood, since
frequentist analyses do not incorporate priors. We indicate such
choice as “fixed βs” in the following.

3. Profile Likelihood

We use the profile likelihood to investigate the effects of
priors and marginalization on the current Bayesian constraints
on r. The profile likelihood is a staple in the frequentist’s
toolbox. As it does not incorporate priors, explicitly or
implicitly via the model parameterization, it is immune to
volume effects which may appear during marginalization
in MCMC.

The profile likelihood for a parameter of interest μ (in our
case μ= r) is obtained by fixing μ to multiple values within the
range of interest and minimizing the c m m= -2 log2 ( ) ( )
with respect to all the remaining cosmological and nuisance
parameters for each fixed value of μ. Here,  is the likelihood.
By construction the minimum cmin

2 coincides with the global
MLE (also called “best-fit”).

We use c m c m cD = -2 2
min
2( ) ( ) to construct frequentist

confidence intervals on μ. If μ is far away from its physical
boundary, a confidence interval at α C.L. can be obtained by
cutting Δχ2(μ) at a fixed threshold cD th

2 such that the cumulative
distribution function of the χ2 distribution with one degree of
freedom is equal to α (e.g., cutting at cD = 1th

2 and cD = 3.84th
2

for 68% or 95% C.L., respectively; see, e.g., Trotta 2017). We can
use this procedure for both parabolic (associated to a Gaussian-
distributed parameter) and nonparabolic Δχ2(μ) thanks to
invariance of the MLE under reparameterization.

3.1. The Feldman–Cousins Prescription

If the parameter estimate is instead close to its physical
boundary, as in our case of interest, the classical Neyman’s
construction of frequentist confidence intervals is unsatisfac-
tory. It can lead to empty intervals and to failure of the
frequentist coverage property8 if the choice of reporting an
upper limit or a two-sided interval is made by looking at
the data.

These issues can be solved by adopting the Feldman &
Cousins (1998, hereafter FC) prescription. For each value μ of
the parameter of interest (with unknown true value) and each
observable x, we compute the likelihood ratio

m
m

m
=R x

x

x
, , 1

best

( ) ( ∣ )
( ∣ )

( )



where μ can take only physically allowed values and μbest is the
value of μ which maximizes the likelihood mx( ∣ ) . The so-
called confidence belt at the desired α C.L. is then built by
selecting for each μ an acceptance interval [x1, x2] such that

ò
m m

m a

=

=

R x R x

P x dx

, , ,

,
2

x

x
1 2

1

2

( ) ( )

( ∣ ) ( )
⎧
⎨
⎩

where P(x|μ) is the probability density function for x given μ

and the values x are added to the acceptance interval in order of
decreasing likelihood ratio. The confidence belt is then given
by the union of all acceptance intervals [x1(μ), x2(μ)]:
intercepting it with a line at x= x0, with x0 being the value
of x minimizing χ2 (i.e., the value measured in the experiment),
we obtain the confidence interval [μ1, μ2] for the parameter μ.
The FC prescription provides, therefore, an additional

criterion to fix the extrema of the confidence intervals in
Neyman’s construction and to transition between an upper limit
and a two-sided interval, giving exact frequentist coverage for a
Gaussian parameter even in proximity of a physical boundary.
This is in contrast with the conservatism (i.e., overcoverage)
inherent to Bayesian limits in the same context (Cousins 1995;
Feldman & Cousins 1998). While conservatism might not be as
a severe issue as undercoverage, it certainly degrades our
ability to discriminate against false hypotheses, making it
worthwhile to examine frequentist intervals.
As we will see in the next section, the profile likelihood for r

gives a parabolic Δχ2 near its minimum, and presents a
physical boundary at r= 0. In this case, m = xmax 0,best ( ) and
the likelihood ratio in Equation (1) becomes (Feldman &
Cousins 1998)

m
m

m m
=

- -
- <

R x
x x

x x
,

exp 2 , for 0,

exp 2 , for 0,
3

2

2
( )

( ( ) )
( )

( )
⎧

⎨⎩
where x and μ are expressed in units of σ, that is, the width of
the parabolic fit to Δχ2(μ). The confidence interval is obtained
by solving the system given in Equation (2) with P(x|μ) being a
Gaussian with mean μ and unit variance.

3.2. Minimization Algorithm

We minimize χ2(r) with the MIGRAD algorithm implemen-
ted in the iMinuit9 package, a python interface for the
popular Minuit multidimensional minimizer.10 We scan the
parameter space, fixing r to values over a wide range and
minimizing χ2(r) with respect to the remaining 32 free
parameters for each fixed r. Each point in the profile likelihood
typically requires around 104( ) evaluations of the likelihood,
with each evaluation taking 1( ) s (using 10 logical central
processing units on a computer cluster node), almost
exclusively absorbed by the evaluation of the CAMB Boltzmann
code.11 To increase the chance of the minimizer reaching the

8 The frequentist coverage property is realized at the level α if a fraction α of the
confidence intervals obtained from Neyman’s construction contains the fixed and
unknown true value of the parameter of interest. (see, e.g., Cousins 2018).

9 iminuit.readthedocs.io
10 We found significantly better performances using iMinuit compared to
other common minimizing algorithms (e.g., the scipy minimize module
(Virtanen et al. 2020) and Py-BOBYQA (numericalalgorithmsgroup.github.io),
which are already implemented in the Cobaya sampler).
11 The profile likelihood is highly competitive with the more traditional
MCMC approach, which requires 106( ) points to reach convergence, due to
inefficient sampling of the Metropolis–Hastings algorithm near the boundary of
a parameter with a uniform positive prior.
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global minimum, each minimization is started from 10 different
random initial parameter sets. We take the point with the lowest
χ2 as the final result. We checked that increasing the accuracy
settings of the CAMB code does not change our results.

4. Results and Comparison to the Bayesian Analysis

In Figure 1 and Table 1 we report 95% C.L. upper limits on r
obtained from the profile likelihood (darker shaded bars) and
compare them to their Bayesian MCMC counterparts (lighter
shaded bars). We also show the best-fitting r, that is, the global
MLE values found in the profile likelihood analysis as the
black dots, and indicate negative (unphysical) values of r by the
hatched dark gray region.

We consider three data set combinations: Planck + BAO +
lensing, BK18-only, and Planck + BK18 + BAO + lensing.
For each combination involving the Planck data, we show the
results obtained marginalizing over the lowlEB covariance
matrix (“SH”) and the ones conditioning it (“cond. HL”), as
discussed in Section 2. For each combination involving

the BK18 data, we show the results fitting for the synchrotron
spectral index βs and the ones fixing it to βs=−3.1 (i.e., to the
mean of the Gaussian prior imposed in the MCMC default
analysis; see Section 2.3), labeled as “fixed βs.”
In Figure 2 we show Δχ2(r) and the respective parabolic fits

(solid lines), the upper limits from the FC prescription (vertical
dashed lines), and the values of Δχ2 corresponding to each
upper limit (horizontal dashed lines). The colors indicated in
Table 1 match those in Figures 1 and 2.
We start by discussing the results of Planck + BAO +

lensing (blue and orange bars in Figure 1). If the SH correction
is used, the MLE from the profile likelihood lies in the
unphysical region of the parameter space (rMLE=−0.027),
whereas conditioning the Planck lowlEB covariance matrix
shifts it to a large positive value (rMLE= 0.053). This results in
a significantly larger upper limit (r< 0.15 instead of r< 0.068)
in the latter case, despite the width of Δχ2(r) being the same in
both cases. This confirms the findings of Beck et al. (2022) in a
prior-independent manner.

Figure 1. Summary of 95% C.L. upper limits on r for data sets considered in this work. The darker shaded bars indicate the upper limit from the profile likelihood,
whereas the lighter shaded bars the MCMC one. The best-fitting r values from the profile likelihood analysis are shown as the black dots. Negative (unphysical) values
of r are indicated by the hatched dark gray region. The baseline result of this work is highlighted in bold.

Table 1
Upper Limits on the Tensor-to-scalar Ratio Parameter r (95% C.L.) from the Profile Likelihood Method with the FC Prescription and the MCMC

Data Likelihood Fixed βs Profile (95% C.L.) MCMC (95% C.L.) rMLE Color

Planck + BAO + lensing SH L r < 0.068 r < 0.075 −0.027
cond. HL L r < 0.15 r < 0.13 0.053

BK18 fix ΛCDM params. r < 0.033 r < 0.036 −0.015
r < 0.035 r < 0.036 0.013

Planck + BK18 + BAO + lensing SH r < 0.026 r < 0.032 −0.019
r < 0.032 r < 0.032 0.01

cond. HL r < 0.042 r < 0.038 −0.0021

r < 0.037 r < 0.038 0.015

Note. We also report the MLE for r obtained from the profile likelihood method. For “cond. HL” we adopt the conditioning prescription defined in Beck et al. (2022)
for the Planck lowlEB likelihood. For “SH” we marginalize the likelihood over the covariance matrix (Sellentin & Heavens 2016). Note that for BK18-only data we
fix all six ΛCDM parameters to the best-fitting values given in Planck Collaboration VI (2020). For each case involving the BK18 likelihood, we indicate whether we
are fixing the synchrotron spectral index to βs = −3.1 (see Section 2 for details). The baseline result of this work is highlighted in bold. The colors shown in the
rightmost column match those in Figures 1 and 2.
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Comparing the MCMC and profile likelihood limits, we
observe that the limit from the profile likelihood is tighter in
the SH-corrected case, whereas the opposite is true in the
conditioned HL case. In the SH case, the MLE lies deep in the
negative region, where Bayesian intervals notoriously over-
cover in the presence of a boundary (Feldman & Cousins 1998).
In the conditioned HL case, instead, the weaker profile
likelihood limit is partly due to the different coverage
properties and definitions of Bayesian limits compared to FC
far from the boundary and partly to the effect of the Gaussian
priors in the Planck likelihood.

The BK18-only constraints (green bars in Figure 1) are
obtained fixing the ΛCDM parameters to their Planck
Collaboration VI (2020) best-fitting values, as done in
BICEP/Keck Collaboration (2021). The upper limit from the
profile likelihood is slightly tighter than the corresponding
MCMC case (r< 0.033 versus r< 0.036), with an MLE lying
deep in the negative region. We notice, however, that the best-
fitting model prefers a value βs;−2 for the synchrotron
spectral index nuisance parameter in the BK18 likelihood (see
the Appendix). On the other hand, constraints on this parameter
in the default MCMC analysis are prior-driven (see
Section 2.3) and prefer a value βs;−3. Therefore, a more
straightforward comparison with the frequentist approach can
be drawn after fixing βs to the central value of the Gaussian
prior in the profile likelihood (pink bars in Figure 1). We then
recover r< 0.035, very close to the Bayesian result given in
BICEP/Keck Collaboration (2021).

The difference between the FC and Bayesian limits obtained
from the Planck+BK18+BAO+lensing data, both in the SH-
corrected and the conditioned HL cases (the light blue and purple
bars in Figure 1), is also due to the prior-dominated constraint on
βs in the MCMC analysis, and to its consequent effect on the
position of the MLE and the different width of Δχ2 (compare,
e.g., the purple and red solid lines). Fixing βs in the profile
likelihood leads to equal or slightly tighter limits than the MCMC
ones (see the pink, yellow, and red bars). Specifically, these small
differences can be fully ascribed to the overcoverage of the

Bayesian limit near the boundary (Section 3), since we found that
fixing βs in the MCMC analysis produces the same upper limit as
imposing the Gaussian prior on it.
We also checked the effect of fixing the Planck likelihood

nuisance parameters to the mean values of their Gaussian prior
(Tristram et al. 2021, 2022) in the profile likelihood analysis.
For the Planck+BK18 combinations (with fixed βs and
conditioned HL covariance) this leads to the same upper limit
and MLE as when fitting those nuisance parameters. In other
words, the constraint is not prior-dominated and the nuisance
parameters are constrained by the data.
We address the relevance of volume effects due to margin-

alization in the context of Bayesian inference for r. As evident
from Figure 1 and Table 1, no substantial difference exists between
MCMC marginalized limits and the prior-independent FC ones, as
long as prior-dominated nuisance parameters such as βs are fixed
in the profile likelihood analysis. This suggests that volume effects
do not play a prominent role in the Bayesian constraints. We note
also that, because of the inefficiency of the Metropolis–Hastings
algorithm in sampling near the boundary when a uniform positive
prior is imposed on r, an apparent lower limit r> 0, which is
entirely caused by the prior-dominated posterior, appears (Hergt
et al. 2021). In fact, very small values of r are too sparsely sampled
when such a prior is used. Achieving convergence (conventionally
assessed via the Gelman–Rubin diagnostic) can thus be very time-
consuming and require numerous evaluations of the likelihood (see
Section 3.2 and footnote 11). In the available literature, MCMC is
used to explore also negative values of r in order to try to
circumvent this efficiency issue; however, this is unphysical as the
model and the angular power spectra cannot be defined for
negative r. The problem is exacerbated when one explores also the
tensor spectral index nT in the MCMC fit. These issues can be
addressed, for instance, with the adoption of a logarithmic prior on
r, introducing, however, a dependence of the constraints on the
choice of the prior lower edge, as well as with the profile
likelihood approach we adopt in this paper.

Figure 2. Profile likelihoods for r from the data sets combinations considered in this work. The points are the c c-2
min
2 values obtained from the likelihood

maximization, whereas the parabolic fits are shown as the solid lines. The dashed lines indicate the upper limits at 95% C.L. according to the FC prescription.
Unphysical (negative) values of r are shown as the dark gray hatched area. The baseline result is shown in the thick red line.
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5. Conclusions

In this paper, we derived confidence intervals on r from the
state-of-the-art CMB data sets Planck and BK18 via the
frequentist profile likelihood method, and compared with the
Bayesian MCMC procedure typically adopted in the literature.
This is a useful robustness test for a potential future detection
of r or for putting robust upper limits on this parameter,
checking simultaneously for the dependence on priors and the
volume effect upon marginalization in the Bayesian constraints.
The profile likelihood is not affected by the inefficiency of the
MCMC sampling near the boundary when a uniform prior is
imposed on r� 0.

The profile likelihood and MCMC results did not agree for
all the data combinations explored in the paper. Specifically,
we reported an upper limit of r< 0.042 at 95% C.L. for the
combination of Planck, BK18, BAO, and lensing with a
conditioned Planck lowlEB covariance matrix as suggested in
Beck et al. (2022). This limit is more conservative than the
corresponding MCMC limit of r< 0.038. We find that the
Bayesian constraint is driven by the Gaussian prior adopted for
the synchrotron spectral index βs in the BK18 likelihood.
Fixing this nuisance parameter to the central value of the prior,
βs=− 3.1, we eventually obtained an upper limit of r< 0.037
from the profile likelihood, slightly tighter than the MCMC
limit because of the well-known overcoverage of Bayesian
intervals near the parameter boundary.

We also confirmed the findings in Beck et al. (2022)
regarding the conditioning of the Planck lowlEB covariance
matrix: the additional scatter due to the limited number of
simulations used in the covariance matrix construction moves

the MLE of the lowlEB likelihood toward lower values,
deceptively tightening the resulting upper limit.
The profile likelihood method is computationally more

efficient than the MCMC, providing a useful alternative for a
fast and robust evaluation of confidence limits near the physical
boundary of a parameter.
We anticipate that the profile likelihood will represent a

useful sanity check for prior effects in future and increasingly
sensitive surveys, such as the BICEP array (Moncelsi et al.
2020), the Simons Observatory (Ade et al. 2019), the LiteBIRD
satellite (LiteBIRD Collaboration 2022), and the CMB-S4
(Abazajian et al. 2016) experiments.

We thank Lukas Heinrich, Laura Herold, and Matthieu
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edge the use of the iMinuit, Cobaya, LoLLipop, and
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Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) under Germany’s Excellence Strategy—EXC-
2094-390783311. The numerical analyses in this work have
been supported by the Max Planck Computing and Data
Facility (MPCDF) computer clusters Cobra, Freya, and Raven.

Appendix
Best-fitting Parameters

In Table 2 we compare the best-fitting parameters for the
Planck+BK18+BAO+lensing combination and conditioned
lowlEB covariance matrix with (“Fixed βs” Column) and
without (“Free βs” Column) fixing the synchrotron spectral
index βs in the BK18 likelihood. See Section 2 and references
therein for details on likelihoods and parameters used here.
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Table 2
Best-fit Parameters for Planck + BK18 + BAO + Lensing with Conditioned HL Covariance, Fitting or Fixing βs in the BK18 Likelihood

Parameter Type Best-fit (Free βs) Best-fit (Fixed βs)

Cosmological parameters
r profile MLE −0.0021 0.015
θMC free 0.104062 0.0104062

Alog 1010
s( ) free 3.054 3.054

ns free 0.966 0.967
Ωbh

2 free 0.0223 0.0223
Ωch

2 free 0.119 0.119
τ free 0.0603 0.0604
As derived 2.12 × 10−9 2.12 × 10−9

H0 derived 67.43 67.43
σ8 derived 0.813 0.813

BK18 nuisance parameters
βs free or fixed −2.0 (free) −3.1 (fixed)
Ad free 4.433 4.397
Async free 0.17 0.517
αd free −0.641 −0.657
αs free −1.9 × 10−7 −4.3 × 10−6

βd free 1.500 1.484
ò free 0.03 -0.131

Planck nuisance parameters
Apl free (HiLLiPoP, lowlTT, lensing) 1.00189 1.00192
c0(100A) free (HiLLiPoP) 3.85 × 10−3 3.86 × 10−3

c1(100B) free (HiLLiPoP) −1.0053 × 10−2 −1.0053 × 10−2

c3(143B) free (HiLLiPoP) −1.0031 × 10−2 −1.0026 × 10−2

c4(217A) free (HiLLiPoP) −1.0053 × 10−2 −1.0053 × 10−2

c5(217B) free (HiLLiPoP) −4.419 × 10−3 −4.417 × 10−3

APS(100 × 100) free (HiLLiPoP) 2.620 × 102 2.619 × 102

APS(100 × 143) free (HiLLiPoP) 1.245 × 10−2 1.244 × 102

APS(100 × 217) free (HiLLiPoP) 84.71 84.65
APS(143 × 143) free (HiLLiPoP) 53.09 53.05
APS(143 × 217) free (HiLLiPoP) 37.70 37.67
APS(217 × 217) free (HiLLiPoP) 74.39 74.41
Adust

100 free (HiLLiPoP) 1.694 × 10−2 1.688 × 10−2

Adust
143 free (HiLLiPoP) 3.966 × 10−2 3.963 × 10−2

Adust
217 free (HiLLiPoP) 0.1322 0.1322

ASZ free (HiLLiPoP) 1.050 1.048
ACIB free (HiLLiPoP) 1.056 1.055
AkSZ free (HiLLiPoP) 7.722 × 10−5 2.723 × 10−5

ASZ×CIB free (HiLLiPoP) 3.961 × 10−5 3.582 × 10−6

c2(143A) fixed (HiLLiPoP) 0.0 0.0
Aradio

PS
fixed (HiLLiPoP) 0.0 0.0

Adust
PS

fixed (HiLLiPoP) 0.0 0.0

Adust
100T derived (HiLLiPoP) 1.694 × 10−2 1.688 × 10−2

Adust
143T derived (HiLLiPoP) 3.966 × 10−2 3.963 × 10−2

Adust
217T derived (HiLLiPoP) 0.1322 0.1322

Adust
100P derived (HiLLiPoP) 1.694 × 10−2 1.688 × 10−2

Adust
143P derived (HiLLiPoP) 3.966 × 10−2 3.963 × 10−2

Adust
217P derived (HiLLiPoP) 0.1322 0.1322

χ 2 values
cBAO

2 L 17.87 17.84

cBK18
2 L 534.70 536.20

clowlEB
2 L 156.50 155.65

chillipop
2 L 30346.11 30345.86

clowlTT
2 L 22.90 23.36

clensing
2 L 8.71 8.72

ctot
2 L 31086.786 31087.63

7

The Astrophysical Journal, 941:110 (8pp), 2022 December 20 Campeti & Komatsu



ORCID iDs

Paolo Campeti https://orcid.org/0000-0002-5637-519X
Eiichiro Komatsu https://orcid.org/0000-0002-0136-2404

References

Abazajian, K. N., Adshead, P., Ahmed, Z., et al. 2016, arXiv:1610.02743
Ade, P., Aguirre, J., Ahmed, Z., et al. 2019, JCAP, 02, 056
Ade, P. A. R., Amiri, M., Benton, S.J., et al. 2022, ApJ, 927, 174
Alam, S., Aubert, M., Avila, S., et al. 2021, PhRvD, 103, 083533
Albrecht, A., & Steinhardt, P. J. 1982, PhRvL, 48, 1220
ATLAS Collaboration 2013, Combined Measurements of the Mass and Signal

Strength of the Higgs-like Boson with the ATLAS Detector using up to 25
fb−1 of Proton-proton Collision Data, Report, ATLAS-CONF-2013-
014, CERN

Beck, D., Cukierman, A., & Wu, W. L. K. 2022, MNRAS, 515, 229
BICEP/Keck Collaboration 2021, PhRvL, 127, 151301
Campeti, P., Komatsu, E., Poletti, D., & Baccigalupi, C. 2021, JCAP, 01, 012
Couchot, F., Henrot-Versillé, S., Perdereau, O., et al. 2017, A&A, 602, A41
Cousins, R. D. 1995, AmJPh, 63, 398
Cousins, R. D. 2018, arXiv:1807.05996
Feldman, G. J., & Cousins, R. D. 1998, PhRvD, 57, 3873
Fuskeland, U., Wehus, I. K., Eriksen, H. K., & Næss, S. K. 2014, ApJ,

790, 104
Gómez-Valent, A. 2022, PhRvD, 106, 063506
Grishchuk, L. P. 1974, ZhETF, 67, 825
Guth, A. H. 1981, PhRvD, 23, 347

Hamann, J., Hannestad, S., Raffelt, G. G., & Wong, Y. Y. Y. 2007, JCAP,
08, 021

Hamimeche, S., & Lewis, A. 2008, PhRvD, 77, 103013
Hergt, L. T., Handley, W. J., Hobson, M. P., & Lasenby, A. N. 2021, PhRvD,

103, 123511
Herold, L., Ferreira, E. G. M., & Komatsu, E. 2022, ApJL, 929, L16
Kamionkowski, M., Kosowsky, A., & Stebbins, A. 1997, PhRvL, 78, 2058
Lewis, A., Challinor, A., & Lasenby, A. 2000, ApJ, 538, 473
Linde, A. D. 1982, PhLB, 108, 389
LiteBIRD Collaboration 2022, PTEP, 11, ptac150
Mangilli, A., Plaszczynski, S., & Tristram, M. 2015, MNRAS, 453, 3174
Moncelsi, L., Ade, P.A.R., Ahmed, Z., et al. 2020, Proc. SPIE, 11453, 1145314
Particle Data Group 2020, PTEP, 2020, 083C01
Planck Collaboration Int. LVII 2020, A&A, 643, A42
Planck Collaboration Int. XVI 2014, A&A, 566, A54
Planck Collaboration V 2020, A&A, 641, A5
Planck Collaboration VI 2020, A&A, 641, A6
Planck Collaboration VIII 2018, A&A, 641, A8
Planck Collaboration XI 2016, A&A, 594, A11
Planck Collaboration XV 2013, A&A, 571, A15
Sato, K. 1981, MNRAS, 195, 467
Seljak, U., & Zaldarriaga, M. 1997, PhRvL, 78, 2054
Sellentin, E., & Heavens, A. F. 2016, MNRAS, 456, L132
Starobinsky, A. A. 1979, JETPL, 30, 682
Torrado, J., & Lewis, A. 2021, JCAP, 05, 057
Tristram, M., Banday, A.J., Górski, K. M., et al. 2021, A&A, 647, A128
Tristram, M., Banday, A.J., Górski, K. M., et al. 2022, PhRvD, 105, 083524
Trotta, R. 2017, arXiv:1701.01467
Virtanen, P., Gommers, R., Oliphant, T. E., et al. 2020, NatMe, 17, 261

8

The Astrophysical Journal, 941:110 (8pp), 2022 December 20 Campeti & Komatsu

https://orcid.org/0000-0002-5637-519X
https://orcid.org/0000-0002-5637-519X
https://orcid.org/0000-0002-5637-519X
https://orcid.org/0000-0002-5637-519X
https://orcid.org/0000-0002-5637-519X
https://orcid.org/0000-0002-5637-519X
https://orcid.org/0000-0002-5637-519X
https://orcid.org/0000-0002-5637-519X
https://orcid.org/0000-0002-0136-2404
https://orcid.org/0000-0002-0136-2404
https://orcid.org/0000-0002-0136-2404
https://orcid.org/0000-0002-0136-2404
https://orcid.org/0000-0002-0136-2404
https://orcid.org/0000-0002-0136-2404
https://orcid.org/0000-0002-0136-2404
https://orcid.org/0000-0002-0136-2404
http://arxiv.org/abs/1610.02743
https://doi.org/10.1088/1475-7516/2019/02/056
https://ui.adsabs.harvard.edu/abs/2019JCAP...02..056A/abstract
https://doi.org/10.3847/1538-4357/ac20df
https://ui.adsabs.harvard.edu/abs/2022ApJ...927..174A/abstract
https://doi.org/10.1103/PhysRevD.103.083533
https://ui.adsabs.harvard.edu/abs/2021PhRvD.103h3533A/abstract
https://doi.org/10.1103/PhysRevLett.48.1220
https://ui.adsabs.harvard.edu/abs/1982PhRvL..48.1220A/abstract
https://doi.org/10.1093/mnras/stac1775
https://ui.adsabs.harvard.edu/abs/2022MNRAS.515..229B/abstract
https://doi.org/10.1103/PhysRevLett.127.151301
https://ui.adsabs.harvard.edu/abs/2021PhRvL.127o1301A/abstract
https://doi.org/10.1088/1475-7516/2021/01/012
https://ui.adsabs.harvard.edu/abs/2021JCAP...01..012C/abstract
https://doi.org/10.1051/0004-6361/201629815
https://ui.adsabs.harvard.edu/abs/2017A&A...602A..41C/abstract
https://doi.org/10.1119/1.17901
https://ui.adsabs.harvard.edu/abs/1995AmJPh..63..398C/abstract
http://arxiv.org/abs/1807.05996
https://doi.org/10.1103/PhysRevD.57.3873
https://ui.adsabs.harvard.edu/abs/1998PhRvD..57.3873F/abstract
https://doi.org/10.1088/0004-637X/790/2/104
https://ui.adsabs.harvard.edu/abs/2014ApJ...790..104F/abstract
https://ui.adsabs.harvard.edu/abs/2014ApJ...790..104F/abstract
https://doi.org/10.1103/physrevd.106.063506
https://ui.adsabs.harvard.edu/abs/2022PhRvD.106f3506G/abstract
https://ui.adsabs.harvard.edu/abs/1974ZhETF..67..825G/abstract
https://doi.org/10.1103/PhysRevD.23.347
https://ui.adsabs.harvard.edu/abs/1981PhRvD..23..347G/abstract
https://doi.org/10.1088/1475-7516/2007/08/021
https://ui.adsabs.harvard.edu/abs/2007JCAP...08..021H/abstract
https://ui.adsabs.harvard.edu/abs/2007JCAP...08..021H/abstract
https://doi.org/10.1103/PhysRevD.77.103013
https://ui.adsabs.harvard.edu/abs/2008PhRvD..77j3013H/abstract
https://doi.org/10.1103/PhysRevD.103.123511
https://ui.adsabs.harvard.edu/abs/2021PhRvD.103l3511H/abstract
https://ui.adsabs.harvard.edu/abs/2021PhRvD.103l3511H/abstract
https://doi.org/10.3847/2041-8213/ac63a3
https://ui.adsabs.harvard.edu/abs/2022ApJ...929L..16H/abstract
https://doi.org/10.1103/PhysRevLett.78.2058
https://ui.adsabs.harvard.edu/abs/1997PhRvL..78.2058K/abstract
https://doi.org/10.1086/309179
https://ui.adsabs.harvard.edu/abs/2000ApJ...538..473L/abstract
https://doi.org/10.1016/0370-2693(82)91219-9
https://ui.adsabs.harvard.edu/abs/1982PhLB..108..389L/abstract
https://doi.org/10.1093/ptep/ptac150
https://doi.org/10.1093/mnras/stv1733
https://ui.adsabs.harvard.edu/abs/2015MNRAS.453.3174M/abstract
https://doi.org/10.1117/12.2561995
https://ui.adsabs.harvard.edu/abs/2020SPIE11453E..14M/abstract
https://doi.org/10.1093/ptep/ptaa104
https://ui.adsabs.harvard.edu/abs/2020PTEP.2020h3C01P/abstract
https://doi.org/10.1051/0004-6361/202038073
https://ui.adsabs.harvard.edu/abs/2020A&A...643A..42P/abstract
https://doi.org/10.1051/0004-6361/201323003
https://ui.adsabs.harvard.edu/abs/2014A&A...566A..54P/abstract
https://doi.org/10.1051/0004-6361/201936386
https://ui.adsabs.harvard.edu/abs/2020A&A...641A...5P/abstract
https://doi.org/10.1051/0004-6361/201833910
https://ui.adsabs.harvard.edu/abs/2020A&A...641A...6P/abstract
https://doi.org/10.1051/0004-6361/201833886
https://ui.adsabs.harvard.edu/abs/2020A&A...641A...8P/abstract
https://doi.org/10.1051/0004-6361/201526926
https://ui.adsabs.harvard.edu/abs/2016A&A...594A..11P/abstract
https://doi.org/10.1051/0004-6361/201321573
https://ui.adsabs.harvard.edu/abs/2014A&A...571A..15P/abstract
https://doi.org/10.1093/mnras/195.3.467
https://ui.adsabs.harvard.edu/abs/1981MNRAS.195..467S/abstract
https://doi.org/10.1103/PhysRevLett.78.2054
https://ui.adsabs.harvard.edu/abs/1997PhRvL..78.2054S/abstract
https://doi.org/10.1093/mnrasl/slv190
https://ui.adsabs.harvard.edu/abs/2016MNRAS.456L.132S/abstract
https://ui.adsabs.harvard.edu/abs/1979JETPL..30..682S/abstract
https://doi.org/10.1088/1475-7516/2021/05/057
https://ui.adsabs.harvard.edu/abs/2021JCAP...05..057T/abstract
https://doi.org/10.1051/0004-6361/202039585
https://ui.adsabs.harvard.edu/abs/2021A&A...647A.128T/abstract
https://doi.org/10.1103/PhysRevD.105.083524
https://ui.adsabs.harvard.edu/abs/2022PhRvD.105h3524T/abstract
http://arxiv.org/abs/1701.01467
https://doi.org/10.1038/s41592-019-0686-2
https://ui.adsabs.harvard.edu/abs/2020NatMe..17..261V/abstract

	1. Introduction
	2. Data and Likelihoods
	2.1. Planck Likelihoods
	2.2. BICEP/Keck Array 2018 Likelihood
	2.3. Likelihood Combination and Priors in the Default Analysis

	3. Profile Likelihood
	3.1. The Feldman–Cousins Prescription
	3.2. Minimization Algorithm

	4. Results and Comparison to the Bayesian Analysis
	5. Conclusions
	AppendixBest-fitting Parameters
	References



