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Abstract— Motion planning algorithms should be tested on
a large, diverse, and realistic set of scenarios before deploying
them in real vehicles. However, existing 3D simulators usually
focus on perception and end-to-end learning, lacking specific
interfaces for motion planning. We present an interface for the
CARLA simulator focusing on motion planning, e.g., to create
configurable test scenarios and execute motion planners in
interactive environments. Additionally, we introduce a converter
from lanelet-based maps to OpenDRIVE, making it possible
to use CommonRoad and Lanelet2 maps in CARLA. Our
evaluation shows that our interface is easy to use, creates
new scenarios efficiently, and can successfully integrate motion
planners to solve CommonRoad scenarios. Our tool is published
as an open-source toolbox at commonroad.in.tum.de.
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I. INTRODUCTION

Motion planning algorithms for autonomous vehicles re-
quire intensive virtual testing before evaluating them on
test tracks or public roads. However, the motion planning
research community lacks an easy-to-use 3D environment
with a simple and well-supported motion planning integra-
tion. One of the most used 3D simulation environments
in research is CARLA [1], which offers many features,
e.g., sensor simulation, different weather conditions, multi-
agent simulation, and a traffic manager. A widely used
motion planning environment is CommonRoad [2], providing
benchmark scenarios and many supporting tools, e.g., for
drivability checking [3], manual scenario designing and
converting maps between different formats [4], verifying and
repairing maps [5], evaluating different criticality measures
on traffic participants [6], reachability analysis [7], and
reinforcement learning [8]. Some CommonRoad tools are
already used by the CARLA community, e.g., the converter
from OpenDRIVE1 to lanelet-based maps [4], [9]. In this pa-
per, we present a framework for coupling CommonRoad with
CARLA, enabling the motion planning community to benefit
from the combined features of CARLA and CommonRoad.

A. Related Work

We separate the literature review into a) open-source
autonomous driving simulators, and b) the usage of CARLA
in research.

a) Simulators: A comparison of several simulators for
testing autonomous vehicles is provided in [10], where
CARLA and LGSVL2 [11] are the best simulators based on
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the authors’ evaluation criteria. CARLA also has extensions,
e.g., for crowded traffic environments [12] and integrating
external real-world datasets [13]. SUMO [14] is a simulator
for microscopic traffic simulation, which can also be utilized
as a backend to create interactive scenarios for motion
planning [15]. The Waymo and nuPlan datasets [16], [17]
provide simulators to realize interactive simulations [17],
[18] based on recorded datasets. Many simulators are spe-
cialized in working with OpenScenario3, e.g., OpenPASS4

and Esmini5. Other simulators released in the last years are
SimVC [19], which focuses on perception tasks for different
robotic applications, MetaDrive [20], which focuses on re-
inforcement learning and can replay different datasets, and
OpenTrafficSim6, which combines micro-simulation, macro-
simulation, and meta-simulation in one tool. Our simulator
review emphasizes that currently only CARLA provides
photo-realistic environments, partially also considers motion
planning, and supports different autonomous driving stan-
dards, e.g., OpenDRIVE, ROS7, and OpenScenario.

b) Usage of CARLA: CARLA is one of the most
used simulators in autonomous driving research. Due to
the large number of publications related to CARLA, the
referenced papers are only examples. CARLA can be used
in different research areas, e.g., end-to-end learning [21],
[22] or perception [23], [24]. Since CARLA provides photo-
realistic environments and supports control via an external
steering wheel, it can be used for user studies with a focus
on motion planning [25] and human factors [26], [27]. For
safe motion planning, CARLA has the Responsibility Safety
Standard (RSS) [28] [29] integrated. Several authors use
CARLA to show the usability of their motion planning ap-
proach in realistic environments, e.g., to evaluate traffic rule
compliance [30]–[33], reinforcement learning [34], highway
planning [35], and planning with a focus on critical situations
[36]. To interact with CARLA, one needs to develop custom
interfaces, which limits the exchange and comparison of
research results and requires much work by researchers and
developers.

B. Contributions

We present the first interface between CommonRoad and
CARLA containing the following features:

• Conversion from lanelet-based maps to OpenDRIVE;
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• An open-source tool for the efficient 3D visualization
of CommonRoad scenarios with custom information;

• Interactive testing of motion planning algorithms;
• User-friendly creation of new motion planning bench-

marks.

The remainder of this paper is structured as follows: Sec. II
introduces CARLA, CommonRoad, and OpenDRIVE. The
CommonRoad-CARLA interface and the CommonRoad to
OpenDRIVE map conversion are presented in Sec. III. In
Sec. IV, we present examples of map conversions, scenario
generation, and motion planning. Sec. V concludes the
paper.

II. PRELIMINARIES

Subsequently, we introduce relevant information about
CARLA, OpenDRIVE, and CommonRoad. We denote the
vehicle controlled by a motion planner or human as the ego
vehicle.

A. CARLA

CARLA is an open-source simulator for autonomous
driving research. It is based on the Unreal Engine8 and
is implemented as a client-server system, where the server
takes care of simulating and rendering the photo-realistic
environment. The client is implemented in Python, controls
agents, and receives sensor information. CARLA supports
vehicle and walker actors. Subsequently, we use the terms
walker and pedestrian interchangeably. CARLA also offers
an OpenDRIVE standalone mode, which allows one to simu-
late traffic on maps without additional assets representing the
3D environment – however, this mode has a limited visual
appeal.

B. OpenDRIVE

OpenDRIVE is a map format that allows one to model
detailed road environments. For instance, it is possible to
model the road surface and elevation, which is essential for
driving simulators. OpenDRIVE9 represents roads based on
reference lines which are defined by several geometries, e.g.,
clothoid/Euler spiral (linear change of curvature), arcs (con-
stant curvature), lines (zero curvature), and parametric cubic
curves. A road can be constructed by the combination of
several geometries. Fig. 1 shows a reference line consisting
of a line, a clothoid, and an arc. Based on the reference
line, lanes are defined in the lateral direction, where a third-
order polynomial specifies their width. Fig. 2 visualizes an
OpenDRIVE road consisting of several lane segments in both
driving directions. For a more detailed format definition, we
refer the interested reader to the OpenDRIVE documenta-
tion10.

8unrealengine.com
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Fig. 1: OpenDRIVE reference line defined by a line, a cloithoid, and an
arc. We also illustrate a corresponding CommonRoad lanelet.
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Fig. 2: OpenDRIVE road consisting of lanes in both driving directions
(driving direction is indicated by positive/negative lane segment numbers).

C. CommonRoad Scenario Format

CommonRoad offers a scenario format for motion plan-
ning benchmarks. A CommonRoad scenario consists of
dynamic elements, a map, and planning problems. Com-
monRoad maps are based on lanelets [37] (cf. Fig. 1),
which are small drivable road segments specified by a left
and right boundary. Roads are constructed by lanelets as
illustrated in Fig. 5. The map format supports regulatory,
semantic, and intersection elements. A formal description of
the CommonRoad map elements is provided in [5]. Dynamic
elements can be dynamic obstacles, digital traffic signs,
or traffic lights. A dynamic obstacle consists of an initial
state, shape, and prediction, e.g., a trajectory-based, set-
based, or stochastic prediction. We refer to the CommonRoad
documentation11 for more details about the format.

III. COMMONROAD-CARLA INTERFACE

The CommonRoad-CARLA interface consists of two com-
ponents: a) an interface for interacting with CARLA and b)
a map conversion from CommonRoad to OpenDRIVE (and
vice versa). The CommonRoad-CARLA interface is designed
to achieve the following properties:

• Support for different applications: interactive motion
planning, scenario generation, user studies, and replay
of scenarios from different datasets in 3D (e.g., from
CommonRoad [2], MONA [38], inD [39], or INTER-
ACTION [40] datasets);

• Modularity: Everything can be configured in one com-
mon place;

11commonroad.in.tum.de
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Fig. 3: UML class diagram of the CommonRoad-CARLA interface.

• Simplicity: Predefined interfaces and examples for the
applications in focus;

• Extensibility: The code structure facilitates adding new
features.

These requirements can also be seen in the unified modeling
language (UML) class diagram representing the main parts of
the CommonRoad-CARLA interface architecture (cf. Fig. 3).
The CommonRoad-CARLA interface class is the central
module, e.g., it takes care of initiating the connection to
the CARLA server, controlling the CARLA agents, and
executing different operating modes. The abstract Actor class
represents CARLA actors and maps them to CommonRoad
obstacles. The Controller classes specify the movement
of CARLA actors. Separate classes take care of traffic
light cycles, visualization, and configuration. We utilize the
Python interface of CARLA to control obstacles, receive
environmental information, and configure the simulation. We
also support CARLA features for non-real-time-capable user
code, e.g., synchronous simulations and off-screen mode.
Subsequently, we introduce the different control mechanisms,
map conversion, visualization customization, and scenario
generation.

A. Controlling Dynamic Obstacles

We support different ways to control CARLA vehicles
from CommonRoad:

1) Transform: We translate and rotate the actor as defined
in an obstacle state.

2) Keyboard: Manual actor control via keyboard buttons.
3) TrafficManager: Control via CARLA’s traffic manager.
4) CarlaAgent: Control via CARLA’s example agent.
5) Ackermann: Applying Ackermann control based on an

obstacle state.
6) SteeringWheel: Manual obstacle control via steering

wheel and pedals.
7) PID: The obstacle state is provided to a propor-

tional–integral–derivative (PID) controller, which con-
trols the CARLA agent via steering angle and accel-
eration.

We also provide a simple and extendable motion planner
interface, which allows one to use arbitrary motion planners
and prediction algorithms. The interface requires an addi-
tional low-level controller propagating the planned states,

Map conversion

Initialize CommonRoad-CARLA interface

Update scenario

goal reached?
Store

CommonRoad
scenario

Plan ego trajectory

CARLA simulation

Yes

No

Fig. 4: Possible flow chart for using the CommonRoad-CARLA interface
with a motion planner.

Fig. 5: Mapping of CommonRoad lanelets to OpenDRIVE roads. All
lanelets with the same color are combined to an OpenDRIVE road.

i.e., method 1), 5), or 7). Fig. 4 illustrates a possible program
flow when using the CommonRoad-CARLA interface with
a motion planner, where the concrete program flow may
vary depending on the user configuration. We automatically
assign CommonRoad obstacles to CARLA vehicle models
by comparing the available CARLA vehicle shapes and
selecting the best match. Additionally, the following methods
can control pedestrians:

1) AIWalker: The pedestrian walks automatically to a
goal destination.

2) ManualWalker: The walker moves according to the
direction and velocity defined in an obstacle state.

B. Map

To use CommonRoad maps in CARLA, we convert them
to OpenDRIVE. Our conversion algorithm supports the ar-
bitrary combination of clothoids, arcs, and lines. We create
a) roads, b) junctions, c) static obstacles, and d) regulatory
elements and combine them to an OpenDRIVE map. We
construct the roads in a breadth-first search fashion, where
a randomly selected lanelet is used as the starting lanelet.
Iteratively, a lanelet is extended to the left and right to
collect all lanelets belonging to an OpenDRIVE road. Fig. 5
shows an exemplary road network with lanelets belonging
to different OpenDRIVE roads. The road is constructed
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Fig. 6: Visualization of custom information.

by the following steps: 1) selecting a boundary polyline
between different driving directions as a reference line; 2)
matching the mentioned geometries to the polyline based on
the curvature and heading of the reference line; 3) computing
the remaining parameters, e.g., lateral offset and width.

To use maps provided by CARLA in CommonRoad, we
convert them from OpenDRIVE to CommonRoad using our
approach presented in [9]. Both conversion directions are
available via our CommonRoad Scenario Designer [4]. We
also support converting from Lanelet2 to OpenDRIVE and
vice versa.

C. Visualization

For debugging and user studies, we provide an interface
to customize visualizations. The interface supports the sub-
sequent features (each with custom coloring):

• Bounding boxes for objects (cars, pedestrians, traffic
signs);

• Lines between the ego vehicle and selected other obsta-
cles;

• Custom text above other objects, e.g., distance, object
ID, or velocity.

Additionally, the head-up display provided by the CARLA
examples is configurable. Fig. 6 highlights the supported
features. We provide configurations for several screens.
Therefore, our interface enables the usage of CARLA in user
studies without the need for costly driving simulators. The
user can also save images and videos of the ego vehicle
cameras. For 2D visualizations, we support the birds-eye
view visualization of CARLA.

D. Scenario Generation

The CommonRoad-CARLA interface can create Com-
monRoad scenarios based on the traffic manager of CARLA,
which considers more realistic dynamics compared to mi-
croscopic traffic simulators like SUMO, e.g., a kinematic
single-track model. Moreover, CARLA allows us to specify
general high-level behavior, e.g., the traffic light violation
rate. We support the following configuration parameters of
the CARLA traffic manager:

1) Minimum distance to the leading vehicle;

Obstacle
Ego vehicle Goal region

Reference path Planned trajectory

(a) Time step t = 0.

(b) Time step t = 10.

(c) Time step t = 19.

(d) Time step t = 38.

Fig. 7: CommonRoad motion planning example with scenario ZAM-
CARLA-1_1_T-1.

(a) Time step t = 0. (b) Time step t = 10.

(c) Time step t = 19. (d) Time step t = 38.

Fig. 8: CARLA visualization of the CommonRoad motion planning example
of Fig. 7.

2) Difference to the speed limit;
3) Ignore a) stop signs and b) traffic lights;
4) Following keep right rule;
5) Ignoring collisions with a) pedestrians and b) vehicles;
6) Number of a) running and b) crossing pedestrians;
7) Lane offset from the center line;
8) Number of lane changes to a) left and b) right.

IV. EVALUATION

Subsequently, we evaluate the motion planner interface,
map conversion, and scenario generation. The scripts to
reproduce the results are part of our open-source tool at
commonroad.in.tum.de. For all evaluations, we use a time
step size of ∆t = 0.1s. We successfully evaluated a
sampling-based planner [41] together with a constant ve-
locity prediction algorithm in CARLA on a CommonRoad
scenario with a standing obstacle on the path of the ego
vehicle (cf. Fig. 7 and 8) and a CARLA map with random
traffic (cf. Fig. 9 and 10). Furthermore, we successfully
converted CommonRoad maps to OpenDRIVE. Exemplary
visualizations of CommonRoad and OpenDRIVE maps can
be seen in Fig. 11-13.

Lastly, we generated scenarios using five different CARLA
maps. For parameter 1) we use 1m and for parameters 1) -
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Fig. 9: Planned trajectories by a motion planner in CARLA’s Town 6 world
with random traffic.

(a) Time step t = 0. (b) Time step t = 10.

(c) Time step t = 26. (d) Time step t = 66.

Fig. 10: CARLA visualization of the CommonRoad motion planning exam-
ple of Fig. 9.

4) listed in Sec. III-D 25%. For all other parameters, we
use the default values of CARLA. We generated scenarios
with a maximum of 100 vehicles and 25 pedestrians and
simulated each configuration for 5min. We created over
45h of simulated traffic with more than 450km of traveled
distance. In Tab. I, statistical data of the generated scenarios
for each map is listed. Fig. 14 shows a generated scenario
in CARLA and CommonRoad at different time steps.

V. CONCLUSIONS

We present a modular interface for coupling the Com-
monRoad motion planning framework and CARLA. The
CommonRoad-CARLA interface is the first tool interfacing
CARLA to realize a) efficient creation of new motion plan-
ning scenarios, b) interactive motion planning, c) replaying
artificial or recorded real-world scenarios in 3D, and d)
visualizing custom information for user studies or debugging.
The map conversion from lanelet-based maps to OpenDRIVE

(a) CommonRoad. (b) CARLA/OpenDRIVE.

Fig. 11: Conversion example for CommonRoad map DEU_Backnang-1.

(a) CommonRoad. (b) CARLA/OpenDRIVE.

Fig. 12: Conversion example for CommonRoad map ZAM_FourWay-1.

(a) CommonRoad. (b) CARLA/OpenDRIVE.

Fig. 13: Conversion example for CommonRoad map DEU_Guetersloh-1.

extends our existing widely-used map conversion frame-
work and supports researchers and practitioners, even if
they are not using CARLA. The toolbox is available at
commonroad.in.tum.de.
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