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Abstract
High-purity germanium detectors are crucial detectors for a wide range of nuclear and
particle physics experiments. A detailed understanding of their performance, and in
particular the ability to precisely predict their performance using simulations, is es-
sential for achieving best results. Accurate simulations for high-purity germanium
detectors rely on precise information about the impurity density profile of the detec-
tor and charge carrier mobilities in germanium. Typically, the information provided
by the detector manufacturer or in the literature is very limited, resulting in large un-
certainties in the simulation output. In this thesis, the impurity density profile and
the charge carrier mobilities in a p-type germanium segmented point-contact detector
are determined using data from a novel Compton Scanner. Capacitance measurements
and Compton images of undepleted volumes of the detector suggest a strong radial de-
crease in the impurity density in the last centimeter close to the surface. The hole-drift
anisotropy was larger and the electron-drift anisotropy was smaller than the predic-
tion using widely used mobility parameters and charge-drift models. Updated values
for the charge-carrier mobilities in germanium and their temperature dependence are
determined and an improved electron-drift model is proposed.

Zusammenfassung
Hochreine Germaniumdetektoren spielen eine entscheidende Rolle in einer Vielzahl
von Kern- und Teilchenphysikexperimenten. Ein detailliertes Verständnis des Verhal-
ten solcher Detektoren und insbesondere die Fähigkeit, dieses Verhalten mit Hilfe von
Simulationen möglichst genau vorherzusagen, sind für die optimale Auswertung von
Messdaten essentiell. Präzise Pulsformsimulationen für hochreine Germaniumdetek-
toren hängen stark von genauen Informationen über das Dotierungsprofil und die La-
dungsträgermobilitäten im Detektor ab. In der Regel sind die vom Detektorhersteller
bereitgestellten oder in der Literatur vorhandenen Informationen sehr limitiert. Dies
führt zu großen Unsicherheiten bei Simulationsergebnissen. In dieser Arbeit werden
das Dotierungsprofil und die Ladungsträgermobilitäten in einem segmentierten p-Typ
Germanium Punktkontaktdetektor mithilfe eines neuartigen Compton Scanners be-
stimmt. Kapazitätsmessungen und direkte Abbildungen der nicht verarmten Bereiche
im Detektors deuten auf eine starke radiale Abnahme des Dotierungsprofils im letz-
ten Zentimeter nahe der Oberfläche hin. Im Vergleich zu häufig verwendeten Litera-
turwerten wurden kleinere Loch- und größere Elektronendriftanisotropien gemessen.
Aktualisierte Werte für die Ladungsträgermobilitäten in Germanium und deren Tem-
peraturabhängigkeiten wurden bestimmt und ein verbessertes Elektronendriftmodell
vorgeschlagen.
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1 Introduction
Germanium detectors have maintained their pioneering status as leading-edge radiation
detectors for over 60 years [1]. They are used to detect particle interactions from a few
eV to several MeV with an excellent energy resolution and a detection efficiency close
to unity, allowing for investigations of physics processes over a wide range of energies.

High-purity germanium detectors are deployed in many physics experiments world-
wide. Several collaborations [2–6] deploy germanium detectors with sub-keV energy
thresholds to search for weakly-interacting massive particles in the MeV mass param-
eter space. Such detectors are also used to study the nature of neutrinos, e.g. in de-
tecting coherent elastic neutrino-nucleus scattering [7–9] or searching for neutrinoless
double-beta decay of 76Ge [10–12]. Moreover, germanium detectors are used to study
the structure, shape and decay modes of atomic nuclei [13–16], to screen materials in
underground laboratories [17–19], to measure the element composition on the surfaces
of planets and moons in our solar systems [20–26], to image astrophysical sources [27],
to monitor radiation exposure and in other medical applications [28]. Understanding
germanium detectors and their performance has an impact in many areas of physics.

The working principle of germanium detectors in most of these applications is based on
ionization [29]. Part of the deposited energy is used to excite bound electrons, thereby
also creating vacancies in the covalent bonds of the germanium crystal, so-called holes.
The electric field in the germanium detector leads to the separation and subsequent
collection of the electrons and holes on electric contacts placed on the detector surface.
The time evolution of the charges induced on the contacts during the charge collection,
so-called pulses, are typically read out using low-noise charge-sensitive preamplifiers.

Analyzing the shapes of the pulses does not only allow for the determination of the
deposited energy with an excellent resolution but also for an insight into the event
topology, i.e. where the energy was deposited in the detector and what the properties
of the particles causing the event were. This additional information allows for efficient
identification of background events in rare-event searches [30–32] which is crucial for
improving the sensitivity in next-generation experimental efforts [33].

The largest uncertainties, which strongly influence the charge-carrier drift and, hence,
the recorded pulse shapes, are due to the restricted knowledge on the impurity density
profile of a given detector and the charge-carrier mobilities in germanium. It is not
trivial to study both influences independently using pulse shape analysis alone as the
length and shapes of the pulses are given by an interplay of the two. However, impurity
densities can be estimated from capacitance measurements [34], and charge-carrier
mobilities can be studied via the temperature dependence of pulse shapes [35, 36].

The goal in this thesis is to determine both, the impurity density profile of a large-
volume germanium detector and the charge-carrier mobilities in germanium, indepen-
dently using a novel Compton characterization technique. The techniques developed
and the knowledge gained should be generally applicable.

1
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The thesis is structured as follows:
Chapter 2 uses neutrinoless double-beta decay as a case study to motivate the use of
germanium detectors in rare-event searches. The basic working principle of germa-
nium detectors and our current understanding of charge-carrier drift in germanium
are presented in chapters 3 and 4, followed by their implementation in the simulation
software package SolidStateDetectors.jl [37] in chapter 5. Chapter 6 introduces the
p-type segmented point-contact detector that was used as a test detector for this thesis,
followed by the characterization of its read-out electronics in chapter 7. The deter-
mination of the impurity density profile of the detector based on capacitance-voltage
measurements is presented in chapter 8. The novel wide-angle Compton Scanner to
study bulk events in germanium detectors [38] and its hardware and software upgrades
performed within the framework of this thesis are presented in chapter 9. In chapter 10,
a novel method to determine the impurity density profile through Compton imaging of
the development of the depleted volume with increasing bias voltage is presented. The
procedure to create pulse shape libraries from Compton Scanner data is explained in
chapter 11. A novel method to extract charge-carrier mobilities for electrons and holes
and their temperature dependence using the pulse shape library from data and the im-
proved impurity density profile is introduced in chapter 12. The results presented in
this thesis are summarized in chapter 13 and will improve the input to pulse shape
simulation frameworks and, thus, improve background identification techniques for
rare-event searches.

2
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2 Physics motivation
In this chapter, neutrino physics and, in particular, neutrinoless double-beta decay are
used as a case study to motivate the use of germanium detectors in fundamental re-
search. After giving an introduction to the history of neutrino physics and to neutrino-
less double-beta decay, the "Large Enriched Germanium Experiment for Neutrinoless
ββ Decay", LEGEND, is presented.

2.1 History

2.1.1 Radioactive decay

An isotope A
ZX, consisting of A nucleons, i.e. Z protons and A − Z = N neutrons,

will eventually decay if there is a daughter isotope with a lower mass. In 1935,
C.F. Weizsäcker proposed a semi-empirical formula [39] to estimate the mass of nuclei,
M(A,Z), based on the nuclear liquid drop [40] and nuclear shell models [41]:

M(A,Z) = NMn +ZMp

−avA+asA2/3 +acZ(Z −1)A−1/3 +aa(A−2Z)2A−1 +δ . (2.1)

The mass of a nucleus is not simply given by the sum of the neutron and proton masses,
Mn and Mp, but also reflects the binding energy resulting from interactions between the
nucleons. In Weizsäcker’s model, the last five terms in Eq. (2.1) describe the dominant
nucleon binding mechanisms. The parameters av, as, ac and aa, describe the magnitude
of volume, surface, Coulomb and asymmetry energy. The last parameter δ , accounting
for spin couplings between the nucleons, depends on whether N and Z are odd or even:

δ =





+∆, for odd-odd nuclei, i.e. if N and Z are both odd

−∆, for even-even nuclei, i.e. if N and Z are both even

0, for odd-even and even-odd nuclei, i.e. if A is odd

, (2.2)

where, classically, ∆ = apA−1/2 with a constant ap. A more complex empirical ex-
pression for ∆ was found to be more accurate especially for medium-heavy nuclei
with 50 < Z < 82 and 82 < N < 126 [42].

For fixed A, Eq. (2.1) describes Z-dependent parabolic functions, so-called mass parabo-
las. The isotope closest to the minimum of the lowest mass parabola is stable. The
other isotopes decay towards the stable isotope. If a neutron β−-decays into a proton,
Z increases by one. If a proton β+-decays into a neutron or if a proton captures an
electron, Z decreases by one.

The presence of the pairing term for nuclei with even A, see Eq. (2.2), results in iso-
topes with odd and even Z being located on different mass parabolas. This is shown
for A = 76 in Fig. 2.1a. In this case, 76As has a higher mass than its direct neighbors,
76Ge and 76Se. As a consequence, 76As undergoes both β+ and β− decay, and 76Ge is
stable with respect to regular β− decay.

3
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(a)
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Figure 2.1: (a) Energy levels for isotopes with A = 76 and the two mass parabolas for odd
(dashed) and even (solid) Z, adapted from [43], where Q is the energy excess compared to 76Se.
(b) Energy levels and decay modes of the isotopes near the minimum of the mass parabolas.

2.1.2 Discovery of the neutrino

During β− decays, when neutrons decay to protons, electrons are emitted and charge
is conserved. Assuming two-body decays and the conservation of energy and momen-
tum, the electrons emitted in β− decays of a given isotope would be mono-energetic,
resulting in discrete energy spectra. In 1914, J. Chadwick observed that this was not
the case and that the energy spectra of electrons were continuous [44].

In a "desperate remedy" to save the law of conservation of energy, W. Pauli proposed
the existence of neutrinos in 1930 [45] — electrically neutral, spin–1/2 particles that
would additionally be emitted in β decays, which we now refer to as neutrinos:

A
ZX

β−
−−−→ A

Z+1 Y+ e−+νe
A
ZX

β+

−−−→ A
Z−1 Y+ e++νe , (2.3)

where νe and νe denote electron-neutrinos and -antineutrinos.

In 1956, F. Reines [46] and C.L. Cowan [47] were the first to observe νe from a reactor
through inverse β decay. In their experiment, the νe interacted with protons in a water
tank, converting them to neutrons under the emission of a positron. The events were
identified through the observation of neutron capture and positron annihilation which
result in the emission of a series of photons with characteristic energies within a few µs.
In later experiments, two more generations of neutrinos were observed: the muon-
neutrino νµ [48] and the tau-neutrino ντ [49].
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2.1.3 Double-beta decay

Two-neutrino double-beta decay, 2νββ , is a rare process which was first proposed by
M. Goeppert-Mayer in 1935 [50]. It can be thought of as two simultaneous β decays,
leading to the increase or decrease of Z by two:

A
ZX

2νβ−β−
−−−−−−→ A

Z+2 Y+2e−+2νe
A
ZX

2νβ+β+

−−−−−−→ A
Z−2 Y+2e++2νe (2.4)

The half-lives of 2νββ decays are several orders of magnitude longer than those of
regular β decays. Thus, it is only experimentally observable if an isotope is stable
with respect to regular β decay, i.e. when M(A,Z ±2)< M(A,Z)< M(A,Z ±1). The
decay energy, Qββ = M(A,Z)−M(A,Z ±2), is shared among the emitted leptons.

The first direct evidence of 2νβ−β− in 82Se was observed in a time-projection cham-
ber measurement in 1987 [51], reporting a half-life of (1.1+0.8

−0.3) · 1020 yr. Up until to-
day, 2νβ−β− has been observed in eleven isotopes with half-lives ranging from 1018

to several 1021 yr [52], making it one of the rarest nuclear decay modes observed so far.

2.1.4 Neutrinoless double-beta decay

In the Dirac-Fermi theory [53], neutrinos and antineutrinos are different states, i.e. dis-
tinguishable particles. In 1937, E. Majorana proposed an alternative theory, in which
neutrinos are their own antiparticles, so-called Majorana particles [54]. Applying Ma-
jorana’s theory to double-beta decay, W.H. Furry predicted [55] the existence of neu-
trinoless double-beta decay, 0νββ , where no (anti)neutrinos are emitted and where the
decay energy Qββ is shared among the two electrons or positrons:

A
ZX

0νβ−β−
−−−−−−→ A

Z+2 Y+2e− A
ZX

0νβ+β+

−−−−−−→ A
Z−2 Y+2e+ . (2.5)

This lepton-number violating process has not yet been observed. Despite the existence
of several mechanisms that would induce it, observing 0νββ would unambiguously
prove that neutrinos are at least partially Majorana particles [56, 57] and provide sup-
port for leptogenesis, one possible explanation for the matter-antimatter-asymmetry
observed in our universe [58].

2.2 Neutrinos in the Standard Model of Particle Physics

The Standard Model of Particle Physics, SM, was constructed to describe elementary
particles and three of the four fundamental forces as known in the mid-1970s based on
experimental observations.

In the SM, three generations of "active" left-handed neutrinos, i.e. νe, νµ and ντ , are
implemented that, together with the corresponding charged leptons, form lepton dou-
blets under the SU(2)L symmetry of the weak interaction. So far, all observations are
consistent with only left-handed leptons and right-handed antileptons participating in
weak interactions, providing strong evidence for maximal parity violation [59–61] and
the V −A nature [62, 63] of the weak interaction.
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Measurements of the total decay width of the Z0 boson determine the effective num-
ber of light-neutrino states with mν < mZ0/2 as 2.9840±0.0082 [64]. This is in good
agreement with the three neutrino generations implemented in the SM. Additional neu-
trino states would need to be either heavy, i.e. mν >mZ0/2, or sterile, i.e. neutrinos with
no SM gauge interactions and singlets of the complete SM gauge group. As there was
no experimental evidence for any such states, they were not implemented in the basic
SM – it contains only left-handed Dirac neutrinos and no right-handed counterpart,
resulting in neutrinos being massless at the Lagrangian level [65].

2.3 Neutrinos as currently observed

In quantum mechanics, neutrinos are described as quantum states with associated prob-
abilities, which indicate potential outcomes of measurements.

Massive neutrinos with weak-interaction eigenstates (flavors), να with α ∈ {e,µ,τ},
different from neutrino-mass eigenstates, νi with i ∈ {1,2,3}, can oscillate, i.e. change
flavor when propagating through space [66]. The relation between the neutrino weak
eigenstates, νe, νµ and ντ , and the neutrino mass eigenstates, ν1, ν2 and ν3, is described
by the unitary Pontecorvo-Maki-Nakagawa-Sakata matrix, UPMNS [66, 67]:




νe

νµ

ντ


=




Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3




︸ ︷︷ ︸
= UPMNS




ν1

ν2

ν3


 . (2.6)

This mixing matrix can be parameterized [65] as

UPMNS =




1 0 0

0 c23 s23

0 −s23 c23







c13 0 s13e−iδCP

0 1 0

−s13eiδCP 0 c13







c12 s12 0

−s12 c12 0

0 0 1







1 0 0

0 eiη1 0

0 0 eiη2


 ,

(2.7)
with si j = sin(θi j) and ci j = cos(θi j), where θ12, θ23 and θ13 are three mixing angles,
and a phase-angle, δCP, which is attributed to charge-parity violations. If neutrinos are
Majorana particles, two additional Majorana phases, η1 and η2, are present in UPMNS.
For Dirac neutrinos, η1 and η2 can be absorbed into the neutrino states.

The observation of oscillations between all neutrino flavors [68, 69] proves that there
are (at least) three non-degenerate neutrino-mass eigenstates, ν1, ν2 and ν3, with
masses, m1, m2 and m3, and non-vanishing θi j. The observed oscillation probabilities
are used to determine the squared mass differences, ∆m2

i j = m2
i −m2

j , and show that
at least two neutrino masses are non-zero [65]. However, the mass generation mech-
anisms, the absolute neutrino masses and even the mass ordering are still unknown.
From matter effects in the Sun, it is known that ∆m2

21 > 0, i.e. that m1 < m2 [70]. An
updated global fit based on neutrino oscillation data from 2020 prefers the normal mass
ordering, i.e. m1 < m2 < m3, over the inverted mass ordering, i.e. m3 < m1 < m2, with
a statistical significance of 2.5σ [71].
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There are different experimental approaches to measure the absolute neutrino masses.

Cosmological observations constrain the sum of all three known neutrino masses, ∑mi.
Massive neutrinos would influence the cosmic microwave background and the large-
scale structure of the universe [72]. Currently, the most constraining limit on the sum
of the neutrino masses assuming the ΛCDM model is ∑mi < 0.09eV at 95% C.L. [73].

Massive neutrinos also influence the energy spectrum of the electrons emitted in β de-
cay, as some of the energy, Qβ = M(A,Z)−M(A,Z±1), is converted to neutrino-mass
energy, ⟨mνe⟩. Direct kinematic searches, investigating the spectrum of the electrons
emitted in regular β decay close to the endpoint at Qβ are sensitive to the incoher-
ent sum over the mass eigenvalues, ⟨mνe⟩=

√
∑ |Ueimi|2. The current best limit of

⟨mνe⟩< 0.8eV at 90% C.L. was reported by the KATRIN collaboration in 2022 [74].

A third process to study the nature and masses of neutrinos is 0νββ [75].

2.4 Theory extensions for neutrinoless double-beta decay

2.4.1 Exchange of light Majorana neutrinos

d

d

e

e

u

u

W−

W−

νM

Figure 2.2: Feynman diagram depicting
0νββ mediated by the exchange of a vir-
tual light Majorana neutrino, νM [56].

As 0νββ does not conserve lepton number, it
needs to be mediated by some physics process
beyond the SM. One minimal and, perhaps, the
most natural extension would be the exchange
of a virtual light Majorana neutrino, νM, through
charged-current weak interactions, see Fig. 2.2.

W.H. Furry originally assumed 0νββ to have
a higher transition probability than 2νββ due
to the larger phase space for the emitted elec-
trons [55]. However, the maximal parity viola-
tion described as a V −A weak interaction re-
quires the neutrino helicity to be flipped.

The helicity flip, enabled by a mass term of the neutrino in the Lagrangian, results in
the suppression of 0νββ by the square of the effective Majorana mass,

⟨mββ ⟩=
∣∣∣∣∣

3

∑
i=1

U2
ei mi

∣∣∣∣∣=
∣∣m1|Ue1|2 +m2|Ue2|2 exp(2iη1)+m3|Ue3|2 exp(2iη2)

∣∣ , (2.8)

which is the coherent sum over the neutrino mass eigenvalues and depends on the
absolute neutrino masses, m1, m2 and m3, the values of Ue1, Ue2 and Ue3 and the
Majorana phases η1 and η2, in Eq. (2.7).

While the values for Ue1, Ue2, Ue3, ∆m2
21 and |∆m2

31| are known from neutrino oscil-
lation experiments [76], there are no constraints on the Majorana phases, η1 and η2.
For both normal and inverted mass ordering, the lowest mass, mmin, can be used to
calculate the other two masses. A probability distribution for ⟨mββ ⟩ can be composed
by uniformly sampling values for η1 and η2 [77, 78].
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Figure 2.3: Marginalized posterior distributions for ⟨mββ ⟩ in dependence of the lightest neu-
trino mass, mmin, for the normal and the inverted mass ordering, adapted from [77]. The solid
lines depict the allowed parameter space given by the 3σ intervals of the neutrino oscillation
parameters [76]. The probability densities are normalized to the logarithms of ⟨mββ ⟩ and mmin.

Figure 2.3 shows the probability density of the neutrino mass parameters ⟨mββ ⟩ and
mmin as published by Agostini et al. in 2017 [77] using logarithmic priors on mass
observables and uniform priors on angles and phases*. The 90% central interval for
⟨mββ ⟩ is 20 − 119meV for the inverted ordering, and 3 − 104meV for the normal
ordering. For the inverted ordering, ⟨mββ ⟩ is always larger than (18.4±1.3)meV [80].
For normal ordering, ⟨mββ ⟩ could, in principle, be zero. This would, however, require
fine-tuning of η1 and η2.

If mediated by only the exchange of a light Majorana neutrino, the half-life of 0νββ ,
T 0νββ

1/2 , is [81]
(T 0νββ

1/2 )−1 = G0νββ g4
A

∣∣∣M0νββ
∣∣∣
2 ⟨mββ ⟩2

m2
e

, (2.9)

where G0νββ is the phase-space factor, gA ≃ −1.276 [82] is the weak axial vector
coupling constant, M0νββ is the nuclear matrix element and me is the electron rest
mass. The value for G0νββ depends on the atomic number Z of the isotope, scales with
Q5

ββ , can be calculated very precisely and is of the order of 10−15 yr−1 [81]. Reported
values for M0νββ vary by a factor of up to three, depending on the nuclear model used
for the computation [83].

Measuring (or setting lower limits on) T 0νββ
1/2 allows determining (or setting an upper

limit on) ⟨mββ ⟩. Assuming the Majorana nature of neutrinos and no other processes
involved, the effective Majorana neutrino mass ⟨mββ ⟩ can be extracted from T 0νββ

1/2 . In
this case, experiments sensitive to T 0νββ

1/2 of the order of 1028 yr are able to fully probe
the mass parameter space for the inverted ordering.

*Note that the posterior probabilities depend strongly on the choice of prior on mmin [79].
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2.4.2 Alternative processes mediating neutrinoless double-beta decay

While the exchange of light Majorana neutrinos in left-handed charged-current weak
interactions is a very popular process that could mediate 0νββ , it might not be the
only one. Figure 2.4 shows alternative mechanisms mediating 0νββ through other
lepton-number-violating extensions of the SM, e.g. via the exchange of

• heavy Majorana neutrinos or doubly-charged Higgs in left-right symmetric models
which allow for small right-handed currents in the weak interactions [84],

• neutralinos or gluinos in R-parity-violating minimal supersymmetric models [85, 86],
• scalar or vector leptoquarks in combination with Majorana neutrinos [87].

d

d

e

e

u

u

W−

W−

N

d

d

u

u

e

e

W−

W−

H−−

d

d

u

u

e

e

ũ

ũ

χ̃0, g̃

d

d

u

u

e

e

χ̃0, g̃

d̃

d̃

d

d

u

e

e

u

S,V µ

W−

νM

d

d

e

u

u

eνM

S,V µ

W−

Figure 2.4: Feynman diagrams depicting possible 0νββ mechanisms mediated (top) by a
heavy Majorana neutrino, N, or a doubly-charged Higgs boson, H−−, in left-right symmetric
models [84], (middle) by neutralinos, χ̃0, or gluinos, g̃, in R-parity-violating minimal super-
symmetric models involving the supersymmetric partners of the u and d quarks, ũ and d̃, [86] or
(bottom) by a Majorana neutrino, νM, together with a scalar or vector leptoquark, S or V µ [87].
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It is challenging to experimentally distinguish between these different mechanisms. If
the theoretical model allows for right-handed currents in the weak interaction, mea-
surements on the angular correlations between the emitted electrons might give an
insight into the underlying physics of 0νββ [88].

It should also be noted that these alternative processes will result in additional Ma-
jorana mass terms in the Lagrangian. This leads to further contributions to T 0νββ

1/2
in Eq. (2.9), i.e. ⟨mββ ⟩2 → ⟨mββ ⟩2 + ⟨Mββ ⟩2, where ⟨Mββ ⟩2 is an effective Majorana
mass resulting from physics beyond light Majorana neutrino exchange [89]. If 0νββ
is not only mediated by light Majorana neutrino exchange, ⟨Mββ ⟩2 might be the domi-
nant contribution to T 0νββ

1/2 and ⟨mββ ⟩ could turn out to be as small as < 10−24 eV [90].

In conclusion, 0νββ only allows for the measurement of ⟨mββ ⟩. Absolute neutrino
masses can only be determined if neutrinos are 100% Majorana particles and if no other
lepton-violating processes apart from light Majorana neutrino exchange cause 0νββ .

2.5 Experimental searches for neutrinoless double-beta decay

2.5.1 Experimental signature

All isotopes undergoing 2νββ are candidates for 0νββ . Experimentally, these two
decay modes can be distinguished by measuring the sum of the kinetic energies of
the two emitted electrons, Eββ . In 2νββ , a part of the decay energy Qββ is carried
away by the neutrinos and remains undetected. Thus, in analogy to regular β decay,
the spectrum of Eββ is continuous with Eββ < Qββ . In 0νββ , the decay energy is
basically fully transferred to the electrons*, i.e. Eββ ≈ Qββ , resulting in a discrete
peak at Qββ . An example spectrum of Eββ is shown in Fig. 2.5.

Eββ/Qββ

dN dE
β

β

2νββ 0νββ
(not to scale)

0.0 0.5 1.0

Figure 2.5: Spectrum of the sum of the kinetic energy, Eββ , of the two electrons emitted in
2νββ (dashed) and in 0νββ (solid), adapted from [91]. The 0νββ peak, if existent, is ex-
pected to be several orders of magnitude smaller and broadened by the finite energy resolution
of the experimental setup.

*As the electrons are much lighter than the daughter nucleus, the recoil energy is negligible.
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2.5.2 Event statistics and sensitivity

If existent, 0νββ is a very rare process and the probability distribution for the number
of events has to be evaluated with Poisson statistics. The expected number of observed
0νββ events, N0νββ

obs , in the region of interest, ROI, around Qββ is [75]

N0νββ
obs = εN0


1− exp


− ln(2) t

T 0νββ
1/2






t≪T 0νββ
1/2≈ εN0

ln(2) t

T 0νββ
1/2

= ln(2)
NA

W


 aεMt

T 0νββ
1/2


 ,

(2.10)
where ε is the efficiency to detect a 0νββ event in the ROI, t is the measurement time
and N0 is the number of 0νββ candidate nuclei. The latter is commonly rewritten as
N0 = MaNA/W , where M is the source mass, a is the abundance of the 0νββ isotope
in the source, NA is Avogadro’s constant and W is the molar mass of the source. The
source mass multiplied by the measurement time, Mt, is often referred to as exposure.

As T 0νββ
1/2 is expected to be of the order of 1028 yr or beyond, N0νββ

obs will be small.
For example, for 76Ge (W = 75.92g mol−1 [92]) and T 0νββ

1/2 = 1028 yr, an exposure of
10t yr (e.g. 1 t of detector mass and 10 yr measurement time) leads to an expectation
of only N0νββ

obs ≈ 5.5, assuming 100% abundance and 100% detection efficiency.

It is crucial that a possible 0νββ peak in the spectrum is not hidden by background or
mistaken for background. The background is typically quantified using the so-called
background index, B, which describes the expected number of background events,
Nbkg

obs , in a given energy window per unit of exposure:

Nbkg
obs = B ∆E Mt , (2.11)

where ∆E describes the width of the ROI.

In the absence of background events, the probability, p /0, of not observing any event in
the ROI for the expectation N0νββ

obs is given by Poisson statistics as p /0 = exp(−N0νββ
obs ).

Demanding p /0 to be lower than a given probability, e.g. 90%, results in a maximum
value of N0νββ

obs that could be missed. Using Eq. (2.10), this provides a lower bound on
T 0νββ

1/2 proportional to aεMt.

In the presence of background events, the required number of 0νββ events has to
be higher than possible random fluctuations expected from the background to set a
limit or to claim a discovery. The 3σ discovery sensitivity of an experiment, S0νββ ,
defined as the value for T 0νββ

1/2 , for which a 50% chance to measure a signal with a
significance of at least 3σ is expected [93], can be determined from heuristic counting
analysis [77]. For Nbkg

obs < 0.0027, the measurement is quasi-background free and a
single count in the ROI is sufficient to claim a 3σ discovery. Thus, S0νββ ∝ aεMt only
until the experiment exceeds the background-free threshold. Above that, the sensitivity
approaches an asymptotic S0νββ ∝ aε

√
Mt/B∆E for high Nbkg

obs ≳ 20.

In order to have high S0νββ , experiments searching for 0νββ should have high de-
tection efficiencies, large source masses, long measurement times, an excellent energy
resolution and preferably be background-free or at least have a low background index.
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2.5.3 Detector concepts

From the 35 possible 0νβ−β− candidates, 28 have been studied experimentally [94].
So far, no significant evidence for 0νββ has been observed. The various experiments
have reported lower bounds on T 0νββ

1/2 for different isotopes of up to 2.3 · 1026 yr, see
Tab. 2.1. The corresponding ranges in ⟨mββ ⟩ reflect the ranges of the matrix elements
published, see Eq. (2.9).

Table 2.1: Current best limits on the 0νββ half-life, T 0νββ
1/2 , and on the effective neutrino Majo-

rana mass, ⟨mββ ⟩, all at 90% confidence limit. Only limits with T 0νββ
1/2 > 1024 yr are included.

Isotope Experiment Limit T 0νββ
1/2 Limit ⟨mββ ⟩ Ref.

76Ge GERDA > 1.8 ·1026 yr < 79−180meV [95]
76Ge MAJORANA > 8.3 ·1025 yr < 113−269meV [96]
82Se CUPID-0 > 4.6 ·1024 yr < 263−545meV [97]

100Mo CUPID-Mo > 1.8 ·1024 yr < 280−490meV [98]
130Te CUORE > 2.2 ·1025 yr < 90−305meV [99]
136Xe EXO-200 > 3.5 ·1025 yr < 93−286meV [100]
136Xe KamLAND-ZEN > 2.3 ·1026 yr < 36−156meV [101]

The experiments setting the strongest limits on T 0νββ
1/2 , see Tab. 2.1, are based on com-

bining the source and the detector, by either using the source as detector or embedding
the source isotope into the detector material. The three main mechanisms to measure
the electron energies are scintillation, ionization and emission of phonons [102].

In monolithic liquid detectors, hundreds of tons of liquid scintillator doped with 0νββ
candidate isotopes, e.g. 136Xe in KamLAND-ZEN [101] or 130Te in SNO+ [103], are
deployed. The signal electrons as well as other particles depositing energy will result in
the emission of scintillation light which is measured using photomultiplier tubes. From
this, the energy and the location of the event can be reconstructed. By selecting events
in the center, the detector can self-shield against external background events. While
these detectors can be scaled up easily to high exposures, the energy resolution at Qββ
is of the order of hundreds of keV. Thus, the continuous 2νββ spectrum overlaps with
the 0νββ peak, resulting in an unavoidable background in the ROI from 2νββ events.

In time-projection chambers holding liquids or gases, energy deposits in the detector
medium lead to both scintillation and ionization signals. Ideally, the medium is chosen
to only consist of the 0νββ candidate isotope, e.g. 136Xe in EXO-200 [100]. Here,
the energy and position inside the volume can be reconstructed from the difference
in arrival time between the scintillation and ionization signals, which allows to detect
external background events close to the surface. These time-projection chambers have
reached energy resolutions of 30 keV at Qββ , resulting in smaller 2νββ background
in the ROI compared to monolithic liquid detectors.
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In cryogenic calorimeters or bolometers, energy deposits in cryogenically cooled crys-
tals result in the emission of phonons that induce heat which is registered using highly
sensitive temperature sensors. In CUORE [99], 988 TeO2 crystals with masses of
∼ 750g each and a natural abundance of 34% 130Te were operated with an energy res-
olution of 7.8 keV at Qββ . CUORE was limited by surface backgrounds from alpha
decays. Upgrading CUORE by using scintillating bolometers, e.g. ZnSe with 82Se in
CUPID-0 [97] or Li2MoO4 with 100Mo in CUPID-Mo [98], allows for particle identi-
fication which further reduces the background index and yields higher S0νββ .

In germanium detectors enriched in 76Ge, energy deposits are registered solely through
the ionization of atoms in the crystal and subsequent charge collection on the electrodes
of the detector. Detailed information on their working principles is presented in sec-
tion 3.3. Experiments using germanium detectors to search for 0νββ , i.e. GERDA [95]
and MAJORANA [96], have reported the lowest background index in the ROI of any
0νββ experiment so far of (5.2+1.6

−1.3) ·10−4 counts/(keV kg yr) [95], and excellent en-
ergy resolutions of 2.52 keV at Qββ [96]. Those achievements create a quasi-background-
free environment for a search for 0νββ at Qββ = 2039.061keV [104].

One alternative concept searching for 0νββ is based on tracking calorimeters, as e.g. in
NEMO-3 [105] or SuperNEMO [106]. Here, the source isotope is deployed in thin
foils allowing the emitted electrons to escape from the foil. The foils are surrounded
by a set of tracking chambers and calorimeters to reconstruct the tracks and energies of
the electrons, respectively. Due to the required thinness of the foils, these experiments
will not reach high exposures but would offer valuable insights into the kinematics of
the emitted electrons in 2νββ and possibly 0νββ . The former will provide a better
understanding of the nuclear physics of the decaying isotope. The latter would allow
to probe the different mechanisms mediating 0νββ , see section 2.4.2.

In order to probe T 0νββ
1/2 of 1028 yr and beyond, i.e. the range relevant in case of the

inverted ordering for light neutrino masses, three ton-scale experiments are planned.

• CUPID [107] (based on CUPID-Mo), using Li2MoO4 scintillating bolometers,
• nEXO [108] (based on EXO-200), using a 136Xe time projection chamber,
• LEGEND [12] (based on GERDA and MAJORANA), using germanium detectors.

In the final part of this chapter, the LEGEND experiment is presented to demonstrate
the effort required to build a ton-scale experiment searching for 0νββ .

2.5.4 The LEGEND experiment

The LEGEND collaboration aims to build a ton-scale 76Ge-based experiment searching
for 0νββwith the goal of probing T 0νββ

1/2 > 1028 yr [12]. The experimental program is
divided into two stages: LEGEND-200 and LEGEND-1000, which will deploy 200 kg
and 1000 kg of germanium detectors to reach exposures of 1 t yr and 10 t yr, respectively.
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Figure 2.6: Artistic view of (a) a typical LEGEND detector with electronics, held by a PEN
base plate and copper rods, (b) the LEGEND-200 detector array surrounded by optical fiber
shrouds and (c) the LEGEND-200 liquid-argon cryostat. The LEGEND-200 water tank is not
shown. Image courtesy of Patrick Krause.

For LEGEND-200, approximately 200 kg of 76Ge-enriched germanium detectors were
to be deployed in the existing infrastructure of GERDA Phase II [109]. The LEGEND-
200 detectors have different geometries and masses, ranging from 500 g to more than
3 kg. The detectors are biased and read out using low-mass front-end electronics,
placed onto base plates made of polyethylene naphthalate, PEN. They are held by
rods machined underground out of electroformed copper, see Fig. 2.6a. These detector
units are arranged into vertical strings which are combined to form a circular array.
The detector array is enclosed in optical fiber shrouds covered with tetraphenyl buta-
diene, TPB, see Fig. 2.6b. The array is submerged in a cryostat filled with 64 m3 of
liquid argon and has walls covered by a wavelength-shifting reflector, see Fig. 2.6c.
The liquid-argon cryostat is surrounded by a tank filled with 590 m3 ultra-pure water,
which is equipped with photomultiplier tubes on the tank walls. The LEGEND-200 ex-
periment is located in Hall A of the INFN Gran Sasso National Laboratory, LNGS. At
the time of writing, the LEGEND-200 detector array consisted of 142 kg of germanium
detectors grouped in 10 strings and had started data taking.
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In order to increase the sensitivity on T 0νββ
1/2 with respect to GERDA, LEGEND-200

aims to lower the background index by a factor of ≈ 3 to 2 ·10−4 counts/(keV kg yr).
The background reduction strategy of LEGEND-200 is based on the GERDA [95]
experience: shielding against external background, reducing the sources of internal
background and identifying the remaining background events.

Background from cosmic and atmospheric radiation is reduced by the 1400 m rock
overburden that translates to 3500 m water equivalent. This reduces the flux of muons
in the experiment down to 1.25 m−2 h−1 [109]. The water in the outer tank shields
against external neutrons, the liquid argon against external gammas.

In order to reduce the radioactivity in the vicinity of the detectors, the amount of ma-
terial to hold or operate the detectors is minimized. All the materials in the vicinity of
the detectors were carefully screened to avoid radioactive contaminations and stored
mainly underground to reduce the impact of cosmic activation.

The remaining unavoidable background events are reduced using active veto systems.
The water tank can detect muons through the detection of Cherenkov radiation. The
liquid argon and the PEN base plates are scintillating in response to gamma events.
The scintillation light is shifted to blue through the TPB and guided to the silicon
photomultipliers through optical fibers. As 0νββ results in a single-detector event with
an energy of Qββ , any event with coincident triggers in the water tank, the liquid-argon
tank or multiple detectors is classified as a background event and rejected. In addition,
analyzing the detector signals, i.e. the pulse shapes, provides further classification of
events into 0νββ candidates or background [30, 31, 110].

The background within GERDA [111] was dominated by alphas and gammas origi-
nating from contaminations with isotopes from the 238U and the 232Th decay chains.
Also significant were background events originating from cosmogenically activated
42K in the liquid argon. All of this was addressed in LEGEND-200 by improving the
choice of materials in the vicinity of the detectors, e.g. by using optically active PEN
base plates, underground-electroformed copper and low-mass front-end electronics.
In addition, pulse shape analysis techniques need to be improved to more efficiently
recognize unavoidable background events.

In LEGEND-1000, 1000 kg of germanium detectors are to be deployed in a new in-
frastructure at a site yet to be selected. The background index will need to be fur-
ther reduced to < 10−5 counts/(keV kg yr) in order to create a background-free ROI.
LEGEND-1000 will build on the experience of LEGEND-200 to improve all parts of
the experimental design, e.g. using underground liquid argon to reduce the amount
of 42K, enclosing the detectors in PEN to avoid surface contaminations from radioac-
tive isotopes in the liquid argon and using improved germanium detectors.

The immense experimental effort will allow LEGEND to probe the inverted order-
ing for Majorana neutrino exchange and, thus, possibly provide answers to the open
questions about the nature of neutrinos.
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3 Germanium detectors
For all applications listed in chapter 1, germanium detectors are used to detect particle
interactions by measuring the charge resulting from ionization in the germanium.

In this chapter, the different interaction processes between particles and germanium,
relevant in the energy range between a few keV and a few MeV, as well as their event
topologies are presented. Afterwards, a general introduction to the properties of ger-
manium is given. Finally, the working principles and the fabrication of germanium
detectors are discussed.

3.1 Interactions of relevant particles with germanium

3.1.1 Photons

Photons with an energy of a few keV or above are often called gammas. The detection
of gammas in this energy range is especially important to identify nuclear decays.
Gammas interact in germanium via photoelectric absorption, Compton scattering and
pair production. Figure 3.1 shows the linear absorption coefficient for these processes
as a function of the energy of the incident gamma, Ein.
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Figure 3.1: Linear absorption coefficient for different interaction processes of gammas in ger-
manium as a function of the gamma energy, Ein [112].
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3.1.1.1 Photoelectric absorption

For Ein < 150keV, the dominant process is photoelectric absorption. A free electron
cannot absorb a gamma completely [29, p. 49] because energy and momentum cannot
be simultaneously conserved. Therefore, photoelectric absorption requires the envi-
ronment of an atom. During this process, the gamma transfers its full energy to one
of the bound electrons, resulting in its ejection from the atom as a so-called photoelec-
tron. Part of the energy is used to overcome the binding energy, EB, and the rest of the
energy is converted to the kinetic energy of the photoelectron, Ee, i.e.

Ee = Ein −EB . (3.1)

The interaction probability increases with smaller Ein, see Fig. 3.1.

In germanium, most of the gammas with Ein > 11.1keV that undergo photoelectric ab-
sorption interact with electrons in the K shell [29, p. 49], where EB = 11.1keV [113].
Gammas with Ein < 11.1keV interact in shells with smaller EB, i.e. the L and the
M shell. The vacancy created in the atom is subsequently filled by capturing a free
electron from the surrounding or by rearranging the electron configuration within the
atom, leading to the emission of characteristic X-rays or Auger electrons [29, p. 334],
see Fig. 3.2. The range of these secondary particles emitted after photoelectric absorp-
tion is well below a millimeter, leading to reabsorption very close to the site of the
primary interaction and resulting in very localized clusters of energy.
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Figure 3.2: Sketch of the origin and energy of photoelectrons, Auger electrons and X-rays,
based on [29, p. 334] with the values of the binding energies for germanium taken from [113].
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3.1.1.2 Compton scattering

Gammas with 150keV≤Ein ≤ 8MeV predominantly interact in germanium via Comp-
ton scattering. The incident gamma scatters off a bound electron, transferring only part
of its energy, Edep, to the electron, see Fig. 3.3a. The gamma is deflected by the Comp-
ton angle, θ , with respect to its initial direction, where

cos(θ) = 1− mec2Edep

Ein
(
Ein −Edep

) . (3.2)

The value of θ can be between 0◦ and 180◦ and its distribution depends on Ein. The dif-
ferential cross-section for Compton scattering, dσ/dΩ, is given by the Klein-Nishina
formula [114]. For unpolarized incident gammas, it is [29, p. 51],

dσ
dΩ

=Zr2
0

(
1

1+α(1− cosθ)

)2(1+ cos2 θ
2

)(
1+

α2(1− cosθ)2

(1+ cos2 θ)[1+α(1− cosθ)]

)
,

(3.3)
where dΩ = sinθ dθ dφ is the differential solid angle, r0 = 2.818 ·10−15 m is the clas-
sical electron radius and α = Ein/mec2.

For unpolarized gammas, the dependence of the solid angle on φ can be integrated out
and dΩ = 2π sin(θ)dθ . The θ -distribution for Compton scattering becomes

dσ
dθ

=
dσ
dΩ

dΩ
dθ

= 2π sin(θ)
dσ
dΩ

. (3.4)

Figure 3.3b shows the polar distributions of Compton angles for different Ein.

θ

Incident gamma
with energy Ein

Scattered gamma
with energy
Eout = Ein −Edep

Recoil electron

(b)(a)

ForwardForwardBackwardBackward

Figure 3.3: (a) Sketch of a gamma Compton scattering off an electron by the Compton angle, θ ,
adapted from [29, p. 51]. (b) θ -distribution of Compton scattered gammas as derived from
dσ/dθ in Eq. (3.4) for different incident energies, Ein, for a gamma incident at θ = 180◦.

For Ein up to 1 keV, the most preferred θ values are 51.9◦ (forward-scattering) and
128.1◦ (backward-scattering), both with almost equal probability. With increasing
Ein, the probability of backward-scattering rapidly decreases and forward-scattering
is more likely. In general, the most preferred value for θ decreases with increasing Ein,
e.g. to 38.4◦ for 289 keV, to 30.9◦ at 662 keV and to 18.7◦ for 2614 keV.
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3.1.1.3 Pair production

The dominant interaction process for gammas with Ein > 8MeV with germanium is
pair production, i.e. the creation of an electron-positron pair. For this, the incident
energy must exceed twice the rest mass of the electron, i.e. Ein ≥ 2mec2 = 1022keV.
To conserve energy and momentum, pair production requires the exchange of a virtual
photon with a nucleus in the target material which then experiences a small recoil. The
positron subsequently annihilates with an electron in the material. If the positron was
at rest, two back-to-back gammas with 511 keV energy each are emitted. If a 511 keV
gamma interacts in germanium, it predominantly does so via Compton scattering.

3.1.2 Heavy charged particles

All charged particles but the electron count as heavy charged particles. A charged par-
ticle passing through a target material continuously loses energy through Coulomb in-
teractions, predominantly through collisions with orbital electrons. While the charged
particle continuously decelerates, electrons in the target material are either excited
to higher-energy states within their atoms or the target atoms become ionized. Less
than about 1/500 of the energy of the incident particle is transferred in a single col-
lision [29, p. 30]. Typically, several hundreds of collisions are needed to noticeably
decelerate or stop a particle.

The linear stopping power, ⟨−dE/dx⟩, acting on charged particles is defined as the
average energy loss, −dE, per unit path length, dx. For heavy charged particles with
charge ze, where e is the elementary charge, and velocity β = υ/c, the linear stop-
ping power through ionization (in units of MeV/cm) is described by the Bethe-Bloch
formula [115]:

〈
−dE

dx

〉
=

1
2

ρAKz2 Z
A

1
β 2

(
ln

2mec2β 2γ2Wmax

I2
exc

−2β 2 −δ (βγ)
)

, (3.5)

where ρA is the mass density of the target material, K = 0.307MeV cm2 g−1, Wmax is
the maximum energy transfer in a single collision, Iexc is the mean excitation potential,
γ = 1/

√
1−β 2 and δ is a density correction term [116]. This formula is a good ap-

proximation for all heavy charged particles with 0.1 < βγ < 1000, which pass through
intermediate-Z materials. Equation (3.5) provides an estimate of the penetration depth
of heavy charged particles. For example, alpha particles with energies around 5 MeV
penetrate around 20 µm into germanium before being stopped.
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3.1.3 Electrons

For electrons, the Bethe-Bloch formula shown in Eq. (3.5) does not hold [115] because,
in quantum mechanics, neither the incoming nor the electron off which it scatters can
be identified with the outgoing electron. Energy transfers between electrons are de-
scribed by the Møller cross-section [117], which gives the linear stopping power [115]:

〈
−dE

dx

〉
=

1
2

ρAK
Z
A

1
β 2

(
ln

mec2β 2γ2(mec2(γ −1)/2)
I2
exc

+(1−β 2)−
2γ −1

γ2 ln(2)+
1
8

(
γ −1

γ

)2

−δ (βγ)

)
. (3.6)

3.1.4 Bremsstrahlung

All charged particles can get deflected by nuclei, resulting in the emission of radia-
tion, so-called bremsstrahlung. This process is most relevant for electrons as it is sup-
pressed by the mass of the charged particle. The emission of bremsstrahlung becomes
the dominant energy-loss mechanism for electrons with energies above the so-called
critical energy, which is 18.16 MeV in germanium [118].

The average bremsstrahlung energy is low, and it is reabsorbed in the vicinity of the
original interaction site [29, p. 44]. However, bremsstrahlung cannot be neglected for
events with electrons in the MeV range. In the absence of hard bremsstrahlung, elec-
trons with energies of a few MeV are expected to deposit their energy within a millime-
ter. Once an electron is reduced to the critical energy E < 18.16MeV, it predominantly
loses its energy via ionization as described by Eq. (3.6).

3.1.5 Event topologies

In searches for 0νββ in 76Ge, a peak in the combined energy spectrum of the two
emitted electrons is expected at Qββ = 2039.061keV [104], see Fig. 2.5. However,
it is also possible that the energy deposited by any other particle falls into the ROI
around Qββ . Such events might be mistaken for signal events and become background.

The different interaction processes of gammas and of charged particles with germa-
nium lead to differences in the event topologies, i.e. how the deposited energy is dis-
tributed. Information obtained on the event topology can be used to distinguish signal-
like events from background-like events [110]. Events can, for example, be classified
into single-site or multi-site events, reflecting whether the energy was deposited at a
single site or at multiple well-separated sites in the detector.

In 0νββ and 2νββ , the two electrons deposit 90% of their energy through ionization
in a volume with a radius of approximately 1 mm around their origin [110], resulting in
single-site events if no hard bremsstrahlung occurs. Background events with energies
in the ROI around Qββ resulting from incident gammas with energies of a few MeV
are most likely multi-site events. A selection of event topologies for gammas with
energies of a few MeV is shown in Fig. 3.4.
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Figure 3.4: Possible gamma-event topologies in (a) an extremely large detector and (b) an
intermediate-size detector, adapted from [29, p. 314–316]. Gammas, γ , are shown in blue,
electrons, e−, and positrons, e+, in red. The possibility that MeV electrons and positrons can
emit bremsstrahlung is not depicted here.

If the gamma is photoelectrically absorbed, its energy is fully transferred to a photo-
electron which, in the absence of hard bremsstrahlung, results in a single-site event
with Edep = Ein, see Fig. 3.4a. These events could mimic 0νββ events if Ein ≈ Qββ
or if the photoelectron emits bremsstrahlung with an energy of Ein −Qββ that escapes
from the detector. Note that the probability of photoelectric absorption strongly de-
creases with increasing energy. At Qββ , Compton scattering is more than two orders
of magnitude more likely than photoelectric absorption, see Fig. 3.1.

If the gamma Compton scatters once and escapes from the detector, the event is a
single-site event with Edep < Ein. If the scattered gamma does not escape immediately
but additionally deposits all or part of its energy in the detector, the event is a multi-
site event with Edep ≤ Ein. Both of these cases can lead to background events in the
ROI around Qββ if Ein ≥ Qββ . However, the probability that a high-energy gamma
deposits Edep ≈ Qββ via a single Compton scatter and creates a single-site event is ex-
tremely low due to the Klein-Nishina distribution, see Eq. (3.3). For example, the most
probable Compton-scattering angle for a 2614.533 keV gamma emitted from 208Tl de-
cay [119] is θ = 18.7◦, resulting in an energy deposit of only Edep = 556keV. Only in
0.29% of the cases, Edep falls within Qββ ±2.5keV. In addition, the scattered gamma
is highly likely to interact at least once more before possibly escaping the detector,
resulting in a multi-site event.

If the gamma interacts via pair production, the electron and positron deposit their en-
ergy predominantly through ionization close to their point of creation. If both 511 keV
gammas escape from the detector and no hard bremsstrahlung was emitted, this results
in a single-site event with Edep = Ein −2mec2. If the annihilation gammas interact with
the detector, this results in a multi-site event with Edep ≤ Ein.
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3.2 Germanium as solid-state detector material

3.2.1 Crystal structure, band structure and band gap
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[010]
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]

Figure 3.5: Diamond struc-
ture of the germanium crystal
lattice. The two-atom base is
shown in red. Axes are labeled
with Miller indices [120, p. 9].

Germanium is a group-IV element with four valence
electrons in hybrid sp3 orbitals. Pure germanium crys-
tallizes in the diamond structure, a face-centered cu-
bic lattice structure with a two-atom base, see Fig. 3.5.
The four valence electrons form covalent bonds with
valence electrons from neighboring germanium atoms.

The high symmetry of this crystal structure results
in a high symmetry of its energy potential, Ve(⃗r).
Assuming a perfect, infinitely large crystal, Ve(⃗r)
has a translation symmetry by any lattice vector, L⃗,
i.e. Ve(⃗r+ L⃗) =Ve(⃗r). In addition, it has a rotational
symmetry along the main crystallographic axes.

The dynamics of the electrons in the crystal can be described by solving Schrödinger’s
equation [121], (

− h̄2

2me
∇⃗2 +Ve(⃗r)

)
ψe(⃗r) = Eeψe(⃗r), (3.7)

where h̄ = h/2π is the reduced Planck constant, ∇⃗ is the nabla operator, Ee is the total
energy of the electron and ψe(⃗r) is the electron wave function. The probability of
finding an electron at a position, r⃗, is given by |ψe(⃗r)|2.

For free electrons, i.e. Ve(⃗r) = 0, the solution of Eq. (3.7) for ψe(⃗r) are planar waves,
i.e. ψe(⃗r) = ψ0 exp(i⃗k · r⃗), and the corresponding electron energy is

Ee(⃗k) =
h̄2k2

2me
, (3.8)

where k = |⃗k| is the absolute value of the electron wave vector, k⃗, and ψ0 is a normal-
ization factor. In general, the relation between Ee and k⃗ is known as the de-Broglie
dispersion relation. The wave vector can be associated with the classical momentum
of the electron, p⃗e, via p⃗e = h̄⃗k. The dispersion relation for free electrons in Eq. (3.8)
takes the well-known form of the kinetic energy in classical mechanics, Ee = p2

e/2me.

In the presence of a non-vanishing Ve(⃗r), solving Eq. (3.7) does not necessarily result
in a planar wave solution for ψe(⃗r) and a parabolic dispersion relation.

For bound electrons in a perfect crystal, the periodicity of Ve(⃗r) results in a peri-
odicity of ψe(⃗r). The electron wave function in such crystals can be described us-
ing Bloch functions, ψe(⃗r) = u(⃗r) exp(i⃗k · r⃗), which are periodically modulated pla-
nar waves [122]. The modulation function, u(⃗r), accounts for the crystal symmetry,
e.g. u(⃗r+ L⃗) = u(⃗r). As a consequence, ψe(⃗r) and, thus, Ee(⃗k) are periodic* in k⃗,
i.e. Ee(⃗k) = Ee(⃗k+ G⃗), with G⃗ · L⃗ being an integer multiple of 2π .

*ψe(⃗r) = ψe(⃗r+ L⃗) = u(⃗r+ L⃗) exp(i⃗k · (⃗r+ L⃗)) = u(⃗r) exp(i⃗k · r⃗) exp(i⃗k · L⃗) = ψe(⃗r) exp(i⃗k · L⃗)
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The periodic dispersion relation in crystals is often referred to as the band structure.
The calculation of the band structure can be restricted to the primitive unit cell of the
reciprocal lattice, i.e. the first Brillouin zone [123]. It is defined as the set of k⃗-vectors
that is closer to 0⃗ than to any non-zero G⃗. In Fig. 3.6a, the first Brillouin zone of a
face-centered cubic lattice, the coordinate system and points and directions of high
symmetry, expressed through Miller indices, are shown.

The band structure of germanium can theoretically be derived from pseudopoten-
tials [124] and is shown in Fig. 3.6b. In contrast to free electrons, a single k⃗ state
can have multiple energy values assigned. In addition, the band structure shows a
range of energies without corresponding states, the so-called band gap. The size of the
band gap, Eg, in germanium is 0.746 eV at 0 K and 0.665 eV at 300 K [29, p. 357].

The states below and above the band gap are referred to as valence and conduction
band, respectively. Electrons in the valence band are bound to the atoms and do not
contribute to an electric current. In contrast, electrons in the conduction band are not
bound and can contribute to an electric current. In the absence of any excitation, all
states in the valence band and none of the states in the conduction band are occupied.
The excitation of electrons from the valence to the conduction band creates vacancies
in the valence band, so-called holes. Holes act as positive charge carriers with energies
Eh =−Ee and also contribute to the conductivity. Thus, the overall conductivity is de-
termined by the sum of electrons in the conduction band and holes in the valence band.
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Figure 3.6: (a) First Brillouin zone of a face-centered cubic crystal with high symmetry points,
Γ, X, K, L, and their Miller indices, taken from [123]. (b) Theoretically derived band structure
of germanium along the directions of high symmetry, adapted from [124]. The minimum of the
conduction band is shown as a red point, the maximum of the conduction band as a green point.
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In germanium, the maximum of the valence band is located at the Γ-point at k⃗ = 0,
whereas the minimum of the conduction band is found at the L-points at k⃗ ̸= 0. There
are eight L-points laying exactly at the boundary of the first Brillouin zone, resulting
in a four-fold space degeneracy of the minima of the conduction band [125]. Near
the maximum of the valence band and the minimum of the conduction band, the band
structure is nearly parabolic as expected for free electrons. However, the curvatures of
the parabolas differ from the expectation for me in Eq. (3.8). Thus, electrons and holes
populating these states can be described as free particles with effective masses, m∗

e and
m∗

h, given by the curvatures of the band structure at the L- and Γ-point:

m∗
e = h̄2

(
d2Ee

dk2

∣∣∣∣
L

)−1

and m∗
h = h̄2

(
d2Eh

dk2

∣∣∣∣
Γ

)−1

. (3.9)

The effective masses also depend on the direction of the propagation of the charge car-
riers. Along the ⟨111⟩-direction, the curvature around the minimum of the conduction
band at the L-point is smaller than perpendicular to ⟨111⟩. This results in different ef-
fective electron masses at the L-point, along and perpendicular to the ⟨111⟩-direction
of m∗

e,L = (1.64±0.03)me and m∗
e,T = (0.0819±0.0003)me, respectively [126]. The

valence band maximum is reached by two bands with different curvatures, see Fig. 3.6b,
giving rise to light and heavy holes with m∗

lh = 0.044me and m∗
hh = 0.28me [127].

3.2.2 Crystal defects, impurities and doping

In reality, germanium crystals are not perfect but have crystal defects and impurities.
Crystal defects can be missing or additional atoms, as well as line and surface defects.
These lead to deviations in the crystal periodicity and, hence, from the ideal band
structure shown in Fig. 3.6b. Impurities are atoms of other elements that replace or
occupy space between the germanium atoms in the crystal lattice. They are called
electrically active if they influence the electric properties of the germanium crystal.
The intentional introduction of impurities into a germanium crystal, so-called doping,
creates additional states in the band gap that can lead to an excess of holes in the
valence band (p-type doping) or of electrons in the conduction band (n-type doping).

In p-type germanium, germanium atoms are replaced by atoms with fewer valence
electrons, so-called acceptors, which are usually group-III elements. The absence of
valence electrons leads to unsaturated covalent bonds that create empty states in the
band gap with energies very close to the valence band maximum. By thermal excitation
of electrons from the valence band, these acceptor atoms become negatively ionized
and holes are created in the valence band.
In n-type germanium, germanium atoms are replaced by atoms with more valence
electrons, so-called donors, which are usually group-V elements. Here, the additional
electrons populate energy states in the band gap very close to the conduction band.
Thermal excitation of these electrons leads to the positive ionization of the donor atoms
and an increase of electrons in the conduction band.

A doped germanium crystal is more conductive if the impurities are ionized through
thermal excitation but still remains electrically neutral as a whole.
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3.2.3 Electric potential, electric field and depletion

When p-type and n-type materials are connected, a so-called p-n-junction is created,
see Fig. 3.7. As the hole concentration is much higher in the p-type region, the holes
diffuse towards the n-type region and recombine with electrons there, leaving nega-
tively charged impurities behind. Likewise, electrons diffusing from the n-type to the
p-type region leave positively charged impurities behind. These ionized impurities cre-
ate an electric field, E⃗ (⃗r), which counteracts the diffusion. According to Gauss’s law,

∇⃗(εr (⃗r) E⃗ (⃗r)) =
ρ (⃗r)
ε0

(3.10)

∇⃗(εr (⃗r)⃗∇φ (⃗r)) =−ρ (⃗r)
ε0

(3.11)

where ρ (⃗r) is the space charge density, φ (⃗r) is the electric potential, E⃗ (⃗r) =−∇⃗φ (⃗r),
ε0 = 8.854 ·10−12 F/m is the vacuum permittivity and εr (⃗r) is the relative permittivity.
In pure germanium, εr (⃗r) = 16 [29, p. 357].

The electric field causes the drift of the electrons and holes which counteract their dif-
fusion. The electric field strength increases until the diffusion currents and the drift
currents reach an equilibrium. When the equilibrium is reached, a layer with almost
no free charge carriers has formed at the p-n-junction, the so-called depletion layer, see
Fig. 3.7. Due to charge conservation, the charges in the p-type and in the n-type regions
have the same magnitude. If the impurity concentration in the p-type material is higher
than that in the n-type material, the depletion layer extends deeper into the n-type re-
gion, see Fig. 3.7. The electric potential difference between both ends of the depletion
layer is called the contact potential, VC ≈ Eg/e, where e is the elementary charge.

n-type

p-type

n-type

p-type

z z z z

0
w

ρ E φ

VC

Figure 3.7: Schematic of a p-n-junction along the spatial coordinate z, with a depletion layer
of width w and the corresponding density of fixed space charges ρ , electric field strength E and
electric potential φ , taken from [128]. The contact potential is denoted as VC. Electrons are
shown in red, holes in green and the depleted volume in yellow.
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3.3 Working principle of germanium detectors

3.3.1 Charge carrier statistics

In all of the interactions described in section 3.1, the energy deposited in the germa-
nium crystal leads to the creation of electron-hole pairs. The average energy required
to produce one electron-hole pair at 77 K of Eeh = 2.95eV [129] is larger than Eg
because most of the energy is absorbed by the crystal through the creation of phonons.

The number of electron-hole pairs, Neh, created from an energy deposit, Edep, is subject
to statistical fluctuations. The mean value, ⟨Neh⟩, and the standard deviation, σeh, of
the number of electron-hole pairs are

⟨Neh⟩=
Edep

Eeh
σeh =

√
FEdep

Eeh
. (3.12)

The Fano factor, F , accounts for the observation that due to the influence of the crystal
the electron-hole creation is not a purely statistical process and that the variance is
reduced compared to what would be expected for Poisson statistics. The small Fano
factor of F = 0.129±0.003 in germanium [130] results in small statistical fluctuations
and an excellent energy resolution.

3.3.2 Charge separation and active volume

If the electron-hole pairs recombine, the energy deposit and, hence, the particle in-
teraction cannot be detected. In order to detect and reconstruct deposited energy, the
electrons and holes need to be quickly separated and subsequently collected.

In principle, the depletion layer of an unbiased p-n-junction can be operated as a de-
tector. The electric field in the depletion layer allows for the separation of the electrons
and holes towards the n-type and p-type region, respectively, where they can then be
collected. However, this would not be very suitable for efficient detection because the
depletion layer, which is the active volume of the detector, would be small.

To increase the width of the depleted volume and the electric field strength, the p-n-
junction is operated in reverse-bias mode by applying a positive potential to the n-type
region or a negative potential to the p-type region. When the bias voltage is increased,
the electric field in the depleted volume is first weakened. The charge carriers resume
diffusing, increasing the width of the depleted volume until reaching equilibrium.

The operation in reversed-bias mode requires electric contacts with well-defined poten-
tials on the surface of the detector. A germanium detector is fabricated using an n-type
or p-type germanium crystal that forms the so-called bulk. The contacts are typically
created by heavily doping the surface to form n+-type and p+-type layers with impurity
concentrations orders of magnitude higher than the concentration in the bulk.
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(a) (b) (c)p+ contact

n+ contact

p-type bulk

w

w
w

0 0

VB <VD VB >VD

Figure 3.8: p-type detector with p+ and n+ contacts in planar geometry (a) unbiased, (b) with
a positive potential VB below and (c) above the full-depletion voltage VD applied to the n+ con-
tact, adapted from [128]. The depleted volume is shown in yellow, the undepleted p-type bulk
is shown in light green, and the p+ and n+ contacts are shown in green and red, respectively.

By heavily doping the surface, the depleted volume extends almost exclusively into the
bulk of the detector when a reversed-bias voltage is applied, see Fig. 3.8. For a planar
detector, the depletion width, w, is given by [29, p. 375]

w ≈
√

2ε0εrVB

eNI
, (3.13)

where VB is the bias voltage and NI is the density of ionized impurities in the bulk.
The derivation of Eq. (3.13) and the formula for a cylindrical geometry can be found
in Appendix A on page 185. In high-purity germanium, NI is typically as low as
1010 cm−3, resulting in active volumes with dimensions of up to 10 cm.

In reversed-bias mode, φ (⃗r) is defined by the space charge density from the ionized
impurities ρ (⃗r) and the bias voltages, VB,i, applied to the contacts, Si:

∇⃗(εr (⃗r)⃗∇φ (⃗r)) =−ρ (⃗r)
ε0

φ (⃗r)|Si =VB,i . (3.14)

Here, φ (⃗r) can be written as a sum of two components, i.e. φ (⃗r) = φV (⃗r)+φρ (⃗r) with

∇⃗(εr (⃗r)⃗∇φV (⃗r)) = 0 φV (⃗r)|Si =VB,i (3.15)

∇⃗(εr (⃗r)⃗∇φρ (⃗r)) =−ρ (⃗r)
ε0

φρ (⃗r)|Si = 0 , (3.16)

where φV (⃗r) satisfies the boundary conditions due to the applied VB,i to the contacts
Si and φρ (⃗r) accounts for the charge density from the ionized impurities. The electric
field follows from

E⃗ (⃗r) =−∇⃗φ (⃗r) . (3.17)
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In the depleted volume, E⃗ leads to the separation and to the collection of electrons and
holes on the detector contacts. If E⃗ is small or zero, the electron-hole pairs get trapped
or do not move at all, leading to incomplete charge collection. It is, thus, desirable to
operate germanium detectors such that volumes with low or vanishing E⃗ are avoided.

The voltage at which the bulk of the detector is fully depleted is called the full-
depletion voltage, VD. Operating a germanium detector at V > VD maximizes the
active volume and ensures fast and full charge collection, resulting in good detection
efficiency.

For V <VD, a part of the detector volume remains undepleted. In the undepleted vol-
ume, the electric field vanishes. If energy is deposited there, the electron-hole pairs
recombine and the energy deposit cannot be registered. The size and the geometry of
the undepleted volume are determined by the density of ionized impurities in the de-
pleted volume and the bias voltage, see Eq. (3.13). Note that the density of non-ionized
impurities in the undepleted volume does not influence the size and geometry of the
active volume. Thus, measuring the evolution of the active volume of an undepleted
detector provides an estimate for the density of its electrically active impurities.

3.4 Signal generation in germanium detectors

3.4.1 Schockley-Ramo theorem

The electrons and holes create an additional electric potential in the detector. As the
electric contacts are conductive and kept at fixed potentials, this is balanced out by
the induced mirror charges on the surface of the contacts. The output signal of a
germanium detector is given by the induced charges on the contacts which should not
be mistaken for the charges drifting through the bulk of the detector.

Electrons induce negative charges while holes induce positive charges on the contacts.
When the electron-hole pairs are created, the contributions from the electrons and holes
cancel and no net charge is induced on any of the contacts. As the charge carriers
subsequently move, the contributions do not cancel anymore, resulting in observable
net induced charges on the contacts.

The charges induced on the contacts can be calculated using the Schockley-Ramo the-
orem [131, 132] which is based on the concept of weighting potentials. The weighting
potential, Wi(⃗r), describes how much charge is induced on the contact, Si, by a unit
charge located at a position, r⃗, where i ∈ {1, . . . ,N} and N is the number of contacts.

If a charge has reached a contact S j, it will see the full charge, i.e. W j (⃗r)|S j = 1. At
that time, no charge is induced on all contacts Sk with k ̸= j, i.e. Wk(⃗r)|S j = 0.

A formula for W j (⃗r) can be derived from Eq. (3.11), effectively setting ρ (⃗r) = 0 and
the boundary conditions to be one on S j and zero on all other contacts [133], i.e.

∇⃗(εr (⃗r)⃗∇W j (⃗r)) = 0 W j (⃗r)|Sk = δ jk =

{
1, if j = k

0, if j ̸= k
. (3.18)
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Note that all Wi(⃗r) are only defined by the contact geometry of the detector and are
independent of any space charges. The net induced charges on Si, Qi, are given by
evaluating Wi(⃗r) at the positions r⃗p of all point-like particles, p, that carry a charge qp:

Qi = ∑
p

qpWi(⃗rp) . (3.19)

The sum in Eq. (3.19) can be split into the contributions from the electrons and holes.
As the positions of the electrons and holes, r⃗e(t) and r⃗h(t), evolve with time, t, during
their drift through the detector volume, the net induced charge also evolves with time:

Qi(t) =−e ∑
electrons

Wi(⃗re(t))+ e ∑
holes

Wi(⃗rh(t)) . (3.20)

The time evolution of the net induced charge, Qi(t), is called charge pulse. The length
of a pulse is given by the time from the creation of electron-hole pairs until the full
collection of all charge carriers. The shape of a pulse depends on the drift paths of the
charge carriers and the geometry of Wi(⃗r), which is defined by the detector geometry.
Note that while the fixed space charges resulting from ionized impurities do not influ-
ence Wi(⃗r), they can significantly influence the electric field and, thus, the drift of the
charges and impact the shape and lengths of the charge pulses.

3.4.2 Segmentation

The simplest detector contact geometry comprises a p-type crystal equipped with one
n+-type contact collecting the electrons and one p+-type contact collecting the holes.

In more complex contact geometries, the surfaces are segmented into smaller contacts
which are read out individually. If there are multiple n+ contacts, the electrons will,
depending on the locations of the energy deposits, be collected in one or more seg-
ments. The segments which collect electrons provide charge pulses ending at a non-
zero height, reflecting the energy deposited in this segment. In contrast, non-collecting
segments will show pulses that return back to their initial value after the charge drift
has ended, so-called mirror pulses. If the p+ contact remains unsegmented, it will col-
lect all holes and its final pulse height will be proportional to Neh and, thus, to the total
energy deposited in the detector, see Eq. (3.12).

Segmented detectors increase the number of independent charge pulses per event. Ana-
lyzing pulse shapes from segmented detectors allows for the extraction of more infor-
mation on the topology of a given event than analyzing only the pulse shapes from the
central p+ contact.
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3.4.3 Capacitances

There are capacitances between all contacts of the detector. As a consequence, a
change of potential, dVk, applied to a contact Sk results in a change in charge, dQ j,
on another contact S j. The capacitance between S j and Sk, c jk, is

c jk =
dQ j

dVk
. (3.21)

The capacitance c jk can be calculated from the overlap of the gradients of the weighting
potentials W j (⃗r) and Wk(⃗r), integrated over the closed system volume, VW [134]:

c jk = ε0

˚

VW

d3r ∇⃗W j (⃗r) · εr (⃗r) · ∇⃗Wk(⃗r) . (3.22)

For j ̸= k, the values for c jk are negative.

The capacitances depend on the level of depletion of the detector. For a fully-depleted
detector, c jk is solely given by the geometry of the surface contacts S j and Sk and
does not depend on how much larger than VD the applied bias voltage VB is. If VB is
below VD, the presence of undepleted volumes leads to additional conductive volumes
in the bulk of the detector. Contacts connected to the undepleted volumes effectively
extend further into the bulk. This reduces the distance between the contacts, resulting
in steeper ∇⃗W j (⃗r) and ∇⃗Wk(⃗r) and, thus, higher absolute values for c jk.

As the extent of the depleted volume is given by the impurity density, see section 3.3.2,
measuring the detector capacitance as a function of VB below full depletion provides
valuable insight into the impurity density distribution in the bulk of the detector.

3.4.4 Cross-talk

The capacitances between contacts result in intrinsic cross-talk, i.e. the induction of
a signal in one contact from another contact. In addition, capacitances between the
read-out cables result in electronic cross-talk. Thus, the measured charge pulses are
not completely independent from each other. For segmented detectors, cross-talk has
been observed [135] to have (at least) a linear and a differential component and to
significantly influence the observed pulse shapes.

Linear cross-talk describes the fact that a pulse shape observed for a given segment
consists to a small fraction of a linear combination of the pulse shapes from the other
contacts. As one consequence, mirror pulses that would normally return to their base-
line after the charge collection will show a shift of the baseline after the pulse from
contributions of collecting segments.

Differential cross-talk describes an additional form of cross-talk where a fraction of the
derivative of a pulse shape is seen by neighboring contacts. Differential cross-talk is
significant when the pulses from the involved contacts rise with different speeds [136]
and does not affect the final pulse height.
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3.4.5 Energy resolution

One of the main advantages of using germanium detectors is their excellent energy
resolution. The energy resolution defines how well the detector can reconstruct the
energy of an event. The three terms that dominate the energy resolution are statistical
fluctuations in the number of created electron-hole pairs, incomplete charge collection
and electronic noise [29, p. 416]. The terms are independent and added in quadrature.

Statistical fluctuations in the number of created electron-hole pairs are small but cannot
be avoided and depend on the deposited energy, see Eq. (3.12). Incomplete charge
collection can be mitigated by avoiding germanium detector operation with too low
average electric fields to prevent the recombination of electrons and holes before being
collected. In general, the energy resolution is better for higher VB. If the detector is
operated below the full-depletion voltage, its energy resolution usually degrades.

Electronic noise can be reduced by operating detectors with capacitances of a few pF
or below with low-noise readout electronics. However, this term usually dominates.

3.5 High-purity germanium detector fabrication

In order to fabricate large-volume germanium detectors, high-purity germanium with
impurity densities of the order of 1010 cm−3 or below is needed. However, the impurity
concentration in raw germanium is typically of the order of 1013−14 cm−3 [137]. In this
section, the steps needed to purify raw germanium to detector-grade germanium and
to fabricate high-purity germanium detectors are described.

3.5.1 Germanium purification: Zone refinement

A widely used process to purify germanium is zone refinement [138]. It is based on
locally melting a part of a germanium metal rod, creating solid-liquid interfaces which
cause unwanted impurities to segregate, i.e. to accumulate in the liquid phase, and to
move the impurities to one end of the rod.

The segregation behavior of impurities in germanium is quantified by their segregation
coefficients, kS, which describe the ratio between the impurity concentrations in the
solid phase and in the liquid phase of germanium in equilibrium [140]. In germanium,
most acceptors (aluminum, gallium, indium) and donators (phosphorus, arsenic, anti-
mony) have segregation coefficients kS ≲ 0.1 [140], which means that they preferably
accumulate in molten germanium. In contrast, boron has kS > 5 [141] and, thus, a
strong preference for accumulating in crystalline germanium.

The zone refinement method is depicted in Fig. 3.9. The raw germanium rod is first
placed into a container. Then, one or more circular heaters locally melt the germanium
and are moved along the rod. Impurities with kS < 1 accumulate in the molten zone. In
contrast, boron segregates quickly out of the molten zone into the recrystallized zone.
By moving the heater toward one end of the rod, the molten zone and the accumulated
impurities with kS < 1 are guided toward one side of the rod.
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Raw germaniumRecrystallized germanium

HeaterMolten zone
Moving direction

of the heater

Figure 3.9: Schematic of the zone refinement method, adapted from [139].

After several repetitions of this process, boron has slightly accumulated in one end of
the rod, whereas all other impurities with kS < 1 are mostly concentrated in the other
part of the rod [142]. If the center part reaches the desired purity, the outer parts are
cut off and the center part is used to produce high-purity germanium crystals.

3.5.2 Crystal growth: Czochralski method

High-purity germanium detectors are based on single crystals. Large-volume single
crystals are usually grown using the Czochralski method [143], see Fig. 3.10. The
purified germanium is first molten. Then, a small seed crystal is inserted at the center
of the molten bath. The crystal is grown by slowly rotating and pulling the seed crystal
out. Crystal growth parameters like temperature gradients, pulling rates and rotation
speeds, as well as tempering procedures have to be controlled and optimized in order
to grow large-volume single crystals with reasonably small differences in impurities
and the required density of long-range defects.

(a) (b) (c) (d) (e)
Figure 3.10: Schematic of the steps of growing a germanium single-crystal using the Czochral-
ski method, taken from [144]: (a) melting purified germanium material, (b) introducing a seed
crystal, (c) starting the crystal growth by slowly rotating the seed crystal, (d) pulling the crystal
out of the melt and (e) tempering it.
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The electrical properties of the crystal can be manipulated by doping the germanium
melt. Depending on the concentration of electrically active impurities in the melt and
the temperature gradients, p-type or n-type germanium crystals can be grown.

The impurity density distribution is in general not completely uniform throughout the
crystal. Boron is expected to accumulate at the top whereas all other impurities with
kS < 1 are expected to concentrate at the lower end of the crystal, resulting in an impu-
rity gradient between the top and the bottom of the crystal. In addition, the crystal-melt
interface surface is not perfectly flat. When viewed from the melt, it is concave at the
beginning and slightly convex at the end of the growing process [145]. As a conse-
quence, impurities are more likely to concentrate in the center of the crystal. Depend-
ing on the strength of the offset, this results in a radially decreasing impurity density.

One special impurity that might unintentionally appear in germanium is copper [146].
Copper has a very low kS < 10−5 and a high diffusion coefficient at low temperatures.
As kS is very small, copper contaminations during the crystal growth are expected to
originate from the gas phase. It has also been seen that the copper distribution strongly
depends on the time-dependent temperature at which the crystal was grown [146].
Copper contaminations also result in radial impurity gradients, so-called coring.

3.5.3 Contact fabrication and passivation

To fabricate a high-purity germanium detector, a detector-grade slice is cut out from
a large-volume single crystal. Depending on the desired detector properties, the ge-
ometry is further optimized, e.g. by drilling boreholes or grooves or by tapering or
rounding sharp edges. Then, contacts are added onto the crystal surface.

Holes are collected on p+ contacts which are normally created using boron implan-
tation [147]. The resulting contacts have thicknesses of a few hundred nm. These
contacts can easily be segmented using lithography.

Electrons are collected on n+ contacts which are usually made by lithium diffusion [148]
with thicknesses of around 1 mm. To create segmented lithium-drifted contacts, the
segments need to be spaced at least 1 mm apart or mechanically separated by cutting
grooves between the segments. In addition, the diffusion temperatures needed for fab-
ricating lithium-diffused contacts of 160°C or above will add copper contaminations to
the germanium crystal [149]. Recent studies have explored the possibilities to replace
lithium-diffused n+ contacts with thin-layer contacts made from amorphous germa-
nium [150] or pulsed-laser diffused antimony [151].

Surfaces without a contact can be covered by passivation layers made from silicon
monoxide, silicon dioxide, germanium oxide or amorphous germanium, with thick-
nesses of the order of 10 nm to 2 µm. The passivation protects the crystal from pollu-
tion and corrosion. It has to have a high and homogeneous surface resistivity to prevent
high surface currents and localized charge-ups. Passivated surfaces can influence the
electric field and the charge-carrier drift in germanium and have a significant impact
on the pulse shapes for energy deposits close to the surface.
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4 Charge-carrier drift in germanium

Electrons and holes drift whenever an electric field E⃗ is present. The electron- and hole-
drift velocities, υ⃗e and υ⃗h, are given by the electron and hole mobilities, µe and µh:

υ⃗e = µeE⃗ υ⃗h = µhE⃗ . (4.1)
In addition to the physics introduced in chapter 3, a model that accurately describes
µe and µh in germanium is needed to simulate events in germanium detectors. In this
chapter, the models used to describe charge-carrier drift in germanium are summarized.

4.1 Time-of-flight measurements

Originally, values for υ⃗e and υ⃗h were obtained from time-of-flight measurements [152]
conducted in planar single-crystal samples with thicknesses of several hundred µm.
Electron-hole pairs were created very close to one of the surfaces of the sample. De-
pending on which side of the crystal was irradiated, either the electrons or the holes
drifted through the bulk of the sample and reached the other side of the sample after the
so-called transit time. The electric field strength, E = |E⃗ |, was modified by applying
different reverse-bias voltages VB. For each E , the drift velocity was determined by
dividing the thickness of the sample by the transit time.

In the analyses of the time-of-flight measurements, a constant electric field of E =VB/d
was assumed, where d is the thickness of the sample. This assumption neglects the
linear gradient in the electric field resulting from ionized impurities, resulting in de-
viations of up to ∆E = eNId/2ε0εr from the assumed electric field. Typical values of
NI ≈ 1010 cm−3 and d = 500µm [152] result in ∆E = 28.3V/cm.

4.2 Longitudinal anisotropy

The time-of-flight measurements revealed a strong dependence of µe and µh on E⃗ [153].
For electric fields parallel to one of the three main crystal axes, ⟨100⟩, ⟨110⟩ and ⟨111⟩,
υ⃗e and υ⃗h are parallel to the electric field, i.e. the drift is longitudinal. The longitudi-
nal drift velocities, υL,e and υL,h, are different along the different axes. This is also
known as longitudinal anisotropy. The longitudinal anisotropy causes drifts that are
not parallel to the electric field lines between the crystal axes. This is known as trans-
verse anisotropy.

For all axes, υL,e/h increase linearly with E before approaching saturation drift veloc-
ities for E ≳ 1000V/cm. A first parameterization for the saturation behavior of υL,e/h
was proposed in 1971 by D.M. Caughey and R.E. Thomas for silicon [154] and later
expanded by adding a negative term by L. Mihailescu et al. [155]:

υL,e/h(E) =
µ0E

(1+(E/E0)β )1/β −µnE . (4.2)

The parameters µ0, β > 0, E0 and µn ≪ µ0 are different for electrons and holes and for
the different crystal axes. They are also known to be temperature-dependent [156].
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Table 4.1: Literature values for the drift velocity parameters in Eq. (4.2) for electrons and holes
along the ⟨100⟩ and ⟨111⟩ axes in germanium at T0 = 78K [135].

Charge carrier Axis µ0 in cm2

Vs E0 in V
cm β µn in cm2

Vs

Electrons ⟨100⟩ 38609 511 0.805 −171

⟨111⟩ 38536 538 0.641 510

Holes ⟨100⟩ 61824 185 0.942

⟨111⟩ 61215 182 0.662

102 103

E in V/cm

106

107

υ L
,e

in
cm

/s

υ100
L,e

υ110
L,e

υ111
L,e

102 103

E in V/cm

106

107

υ L
,h

in
cm

/s
υ100

L,h

υ110
L,h

υ111
L,h

(a) (b)

Figure 4.1: Longitudinal (a) electron- and (b) hole-drift velocity as a function of E along the
⟨100⟩, ⟨110⟩ and ⟨111⟩ axes at T0 = 78K. υ100

L,e/h and υ111
L,e/h were calculated using Eq. (4.2) and

the values in Tab. 4.1, υ110
L,e/h using the charge drift models introduced in section 4.4.

The values for µ0, β , E0 and µn for electrons and holes along the ⟨100⟩ and ⟨111⟩ axes
in germanium were extracted by fits to experimental data measured at a reference tem-
perature of T0 = 78K [135], see Tab. 4.1 and Fig. 4.1.

For E ≪ E0, the term (E/E0)
β in Eq. (4.2) is negligible, resulting in υL,e/h ≈ µ0E .

Thus, µ0 describes the mobility in this linear region, i.e. for low electric field strengths.
The values for µ0 depend only slightly on the axes, see Tab. 4.1. This predicts an almost
isotropic drift for E ≪ E0, i.e. υ100

L,e/h ≈ υ110
L,e/h ≈ υ111

L,e/h, for both electrons and holes.

For E ≫ E0, (E/E0)
β becomes the dominant term in the denominator of Eq. (4.2), re-

sulting in a constant saturation velocity for holes, i.e. υL,h ≈ υsat,h = µ0E0. As for µ0,
the values for E0 in Tab. 4.1 are similar for the different axes, implying similar υsat,h.
For electrons, υsat,e shows a slight E-dependence, i.e. υL,e ≈ υsat,e = µ0E0 −µnE . This
results from electrons being transferred from the conduction band minima at the L-points
to higher-energetic conduction band minima, e.g at the Γ-point, see Fig. 3.6, where
they acquire a different m∗

e and, hence, a different υ⃗e than at the L-points [153]. The
parameter µn accounts for this so-called Gunn effect.

The parameter E0 describes the electric field strength at which the transition between
the linear region and the saturated region sets in. The transition region around E ≈ E0
is mostly influenced by β . Smaller values for β result in longer transition regions. The
parameter β differs significantly for the ⟨100⟩ and the ⟨111⟩ axes, see Tab. 4.1, result-
ing in anisotropic charge-carrier drift for E ≳ E0, i.e. in υ100

L,e/h > υ110
L,e/h > υ111

L,e/h [157].
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4.3 Scattering processes

In vacuum, a homogeneous electric field continuously accelerates electrons and their
drift velocity increases with time. In a solid, electrons and holes repeatedly scatter,
losing part of their energy and changing their direction. As a consequence, |⃗υe| and
|⃗υh| reach finite, E⃗-dependent values as result from µe and µh in Eq. (4.1).

The anisotropy of υ⃗e and υ⃗h is due to the anisotropy in µe and µh. It results from
different effective masses, m∗, of the charge carriers depending on the direction of their
movement [158, 159]. In addition, the various scattering processes, which limit the
linear charge-carrier mobility µ0 for both electrons and holes, have different functional
dependencies on m∗. Furthermore, the values for µ0 strongly depend on the densities
of ionized and neutral impurities in the crystal, NI and NN , and the temperature T .

The resistivity of germanium can be expressed as the sum of the resistivity of a pure
and perfect crystal and the resistivity resulting from imperfections, e.g. from impurities
and lattice defects [160]. As µ0 is inversely proportional to the resistivity, it is related
to the individual mobilities, µP, due to different scattering processes, P, as

1
µ0

= ∑
P

1
µP

(4.3)

The temperature dependence of the charge-carrier mobilities is dominated by the pro-
cess with the smallest µP. In high-purity germanium, this process is the scattering off
acoustic phonons, i.e. the interaction with the thermal motion of the crystal lattice. It
is modeled as [161]

µA =

√
8πeh̄4⟨CL⟩

3E2
ac(m∗)5/2(kBT )3/2 ∝ (m∗)−5/2T−3/2 , (4.4)

where kB = 1.381 ·10−23 J/K is the Boltzmann constant, ⟨CL⟩ is the average longitudi-
nal elastic constant of the crystal and Eac is the acoustic deformation-potential constant.

Charge carriers can also scatter off ionized impurities [162], for which

µI =
64

√
πε2

0 ε2
r (2kBT )3/2

NI e3(m∗)1/2 ln
(

1+
(

12πε0εrkBTe−2N−1/3
I

)2
) ∝ (m∗)−1/2N−1

I T 3/2 . (4.5)

This contribution is only relevant in depleted volumes of the detector where NI is suf-
ficiently high. In high-purity germanium, the influence of µI on µ0 is expected to be
negligible because NI ≲ 1010 cm−3. For T = 78K, µI is of the order of 1010 cm2/Vs,
which is orders of magnitude higher than the measured values for µ0 listed in Tab. 4.1.

Finally, µ0 can be reduced by scattering off neutral impurities [163]. In that case,

µN =
e3m∗

20κNN h̄3 =
e3m∗

80πε0εrNN h̄3 ∝ (m∗) N−1
N , (4.6)

where κ = 4πε0εr. This contribution was originally assumed to be temperature inde-
pendent [163]. A later publication proposed a T -dependence of µN ∝ T 1/2 [164].
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Neutral impurities are contaminations introduced during the crystal and detector fab-
rication. The value for NN in high-purity germanium detectors is unknown. Accord-
ing to Eq. (4.6), scattering off neutral impurities is relevant if NN ≳ 1015 cm−3, where
µN ≲ 105 cm2/Vs. The electrically active impurities are actually neutral impurities in
undepleted volumes but are not significant as 1010 cm−3 ≪ 1015 cm−3.

In 1981, E.E. Haller et al. published measured values for NN for different elements in
high-purity germanium [165]. It was seen that these values depend on the conditions,
under which the high-purity germanium crystals were grown. If the crystal was grown
in a hydrogen atmosphere, the hydrogen concentration was of the order of 1014 cm−3.
For crystals grown in a nitrogen atmosphere, a concentration of oxygen of more than
4 ·1014 cm−3 was observed. In addition, silicon impurities were measured to be of the
order of 1014 cm−3. If grown from a melt in a graphite-coated quartz crucible, the car-
bon concentration in the germanium crystal was of the order of 2 ·1014 cm−3 [166].
Currently, the standard procedure is to grow crystals in a hydrogen atmosphere from
carbon or carbon-coated crucibles. The companies do not provide details and the con-
centration of neutral impurities is not known.

If NN ≪ 1015 cm−3, the influence of µN on µ0 can be neglected and µ0 is dominated
by µA, resulting in µ0 ∝ (m∗)−5/2T−3/2. The measured temperature dependence of
µ0 in the range from 130 K and 300 K was reported to be µ0 ∝ T−1.68 for electrons
and µ0 ∝ T−2.40 for holes [167–170]. In recent measurements at lower temperatures
and higher electric field strengths, the temperature dependence was significantly less
pronounced than the expected T−3/2 proportionality [35, 36].

4.4 General charge-drift models

So far, only longitudinal drifts along the main crystal axes have been discussed. Es-
tablished values for the drift parameters exist only for the ⟨100⟩ and ⟨111⟩ axes, see
Tab. 4.1. For drifts between the crystal axes, the electron or hole drift velocity is not
necessarily parallel to the electric field vector. This transverse anisotropy cannot be
predicted using just the parameterization of the longitudinal drift velocity in Eq. (4.2).

A good model for the charge-carrier drift in germanium not only has to accurately
predict the charge-drift velocity parallel to the crystal axes but also the transverse
anisotropy for arbitrary orientations of the electric field. For this, general expressions
for υ⃗e and υ⃗h, motivated by the band structure and predicting the measured values for
the longitudinal drift velocities υ100

L,e/h and υ111
L,e/h given by Eq. (4.2), are needed.

4.4.1 Hole drift model

Holes in germanium populate states around the valence band maximum at the Γ-point.
At thermal equilibrium, the hole population consists of 96% heavy holes and 4% light
holes [171]. Therefore, most hole-drift models only consider the contributions of heavy
holes. In the absence of an electric field, the heavy holes are symmetrically distributed
around the Γ-point and the mean wave vector of the holes, k⃗0, is zero. This symmetry
is broken in the presence of an electric field, resulting in a non-zero k⃗0 ∥ E⃗ .
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In general, the k⃗-distribution of heavy holes around k⃗0 can be approximated by a drifted
Maxwellian distribution [172],

f (⃗k,⃗k0) = a · exp

(
−h̄2(⃗k− k⃗0)

2

2m∗
hhkBThh

)
, (4.7)

where m∗
hh and Thh are the effective mass and the temperature of the heavy holes.

The overall hole-drift velocity for a given electric field, υ⃗h(E⃗), results from averaging
the velocity contributions, υ⃗k(⃗k), over all k⃗-states:

υ⃗h(E⃗) =
h̄

aπ3/2
√

2m∗
hhkBThh

ˆ

R3

d3k υ⃗k(⃗k) f (⃗k,⃗k0(E⃗)) . (4.8)

The associated hole-drift velocity υ⃗k(⃗k) for a given k⃗-state depends on the band struc-
ture of the heavy holes Eh(⃗k). In spherical coordinates, k⃗ = k⃗(k,θ ,ϕ), it is

υ⃗k(⃗k) =
1
h̄

∇⃗kEh(⃗k)|⃗k with Eh(⃗k) = A
h̄2k2

2me
(1−q(θ ,ϕ)) (4.9)

and q(θ ,ϕ) =

√

B2 +
C2

4
(sin(θ)4 sin(2ϕ)2 + sin(2θ)2) ; (4.10)

∇⃗kEh(⃗k) =
∂Eh

∂k
e⃗k +

1
k

∂Eh

∂θ
e⃗θ +

1
k sin(θ)

∂Eh

∂ϕ
e⃗ϕ =

Ah̄2k
me

(1−q(θ ,ϕ)) e⃗k − (4.11)

C2Ah̄2k
8meq(θ ,ϕ)

[(
2sin(θ)3 cos(θ)sin(2ϕ)2 + sin(4θ)

)
e⃗θ + sin(θ)3 sin(4ϕ) e⃗ϕ

]
,

where A = 13.35, B = 0.6367 and C = 0.9820 are measured germanium-specific pa-
rameters [171] and e⃗k, e⃗θ , e⃗ϕ are the unit vectors in the local spherical coordinate
system. The function q(θ ,ϕ) describes the slightly warped structure of Eh(⃗k) [173], re-
sulting in smaller drift velocities along the ⟨111⟩ axis compared to all other directions.

For a given electric field expressed in spherical coordinates, E⃗ = E⃗(E ,θ0,ϕ0), the mean
wave vector is aligned with E⃗ , i.e. k⃗0 = k⃗0(k0,θ0,ϕ0) where k0 = |⃗k0| depends on E .*
The hole-drift velocity υ⃗h can be calculated for any k⃗0 by numerically integrating the
right side of Eq. (4.8). Details can be found elsewhere [171]. Choosing θ0 and ϕ0 to
be aligned with the ⟨100⟩, ⟨110⟩ or ⟨111⟩ axes allows to determine the longitudinal
hole-drift velocities, υ100

L,h (k0), υ110
L,h (k0) and υ111

L,h (k0), as functions of k0.

The results for υ⃗h for arbitrary θ0 and ϕ0 can be approximated well as inspired by
Eq. (4.11) [171]. For the x-axis, i.e. θ0 =

π
2 and ϕ0 = 0, aligned with the ⟨100⟩ axis

of the crystal, the radial, polar and azimuth components of υ⃗h, i.e. υr
h, υθ

h and υϕ
h , are

expressed as functions of k0, θ0 and ϕ0:

υr
h = υ100

L,h (k0) [1−Λ(k0)(sin(θ0)
4 sin(2ϕ0)

2 + sin(2θ0)
2] , (4.12)

υθ
h = υ100

L,h (k0) Ω(k0) [2sin(θ0)
3 cos(θ0)sin(2ϕ0)

2 + sin(4θ0)] , (4.13)

υϕ
h = υ100

L,h (k0) Ω(k0) sin(θ0)
3 sin(4ϕ0) . (4.14)

*The exact expression for k0(E) is not required for this hole drift model. However, for values of E
relevant for germanium detectors: 0 ≤ h̄k0/

√
2m∗

hhkBThh ≤ 3 [171].
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Here, k0 still needs to be replaced by a physical observable, e.g. υrel(E) = υ111
L,h (E)/υ100

L,h (E).
The functions Λ(k0) and Ω(k0) denote the relative difference in radial velocity and the
relative tangential velocity, respectively.

The longitudinal and the transverse anisotropy arise through Λ(k0) and Ω(k0):

Λ(k0) =
υ100

L,h (k0)−υ110
L,h (k0)

υ100
L,h (k0)

and Ω(k0) =
υϕ

h (θ = π
2 ,ϕ = π

8 )(k0)

υ100
L,h (k0)

, (4.15)

where υϕ
h (θ = π

2 ,ϕ = π
8 ) is the hole-drift velocity transverse to the axis that bisects

the ⟨100⟩ and ⟨110⟩ axes, which can also be determined through Eq. (4.8).

The computation of Λ and Ω is time-consuming as it involves several numerical in-
tegrations. Therefore, analytical approximations of Λ and Ω have to be used. Unlike
in the publication from Bruyneel et al. [171], the analytical expressions for Λ and Ω
in this thesis are not functions of k0 but directly depend on the physical observable
υrel(E) = υ111

L,h (E)/υ100
L,h (E). Thus, k0 does not appear in the final expression for υ⃗h(E⃗)

and only υ100
L,h (E) and υ111

L,h (E) enter the calculation. Evaluating Eq. (4.12) along the
⟨111⟩ axis, i.e. θ0 = asin(

√
2/3) and ϕ0 = π/4, results in

υ111
L,h = υ100

L,h

[
1− 4

3
Λ(k0)

]
⇒ Λ(υrel) =

3
4
(1−υrel) , (4.16)

which is independent of the germanium-specific parameters A, B and C in Eq. (4.10).
In particular, the isotropic case, i.e. υ100

L,h = υ111
L,h ⇔ υrel = 1 results in Λ(υrel = 1) = 0.

Substituting this into Eq. (4.12) predicts υr
L,h = υ100

L,h , i.e. an isotropic drift independent
of the crystal axes.

Combining Eqs. (4.15) and (4.16) defines a relation between υ100
L,h , υ110

L,h and υ111
L,h , i.e.

υ110
L,h = 1

4υ100
L,h + 3

4υ111
L,h , which allows calculating υ110

L,h from υ100
L,h and υ111

L,h , see Fig. 4.1b.

The expression for Ω(υrel) is determined by calculating Ω(k0) and υrel(k0) for a set
of k0 in the region of interest, 0 ≤ h̄k0/

√
2m∗

hhkBThh ≤ 3 [171], using Eqs. (4.8) and
(4.15) and fitting a fourth-order polynomial to the result, see Fig. 4.2. The fourth-order
polynomial was constructed in orders of (1−υrel) and with no constant term to ensure
Ω(υrel = 1) = 0, i.e. no anisotropy in the isotropic case υ100

L,h = υ111
L,h ⇔ υrel = 1:

Ω(υrel) =−0.29711 · (1−υrel) −1.12082 · (1−υrel)
2

+3.83929 · (1−υrel)
3 −4.80825 · (1−υrel)

4 . (4.17)

Thus, υ⃗h(E⃗) is calculated independently of k0 for arbitrarily oriented E⃗ based on just
υ111

L,h (E) and υ100
L,h (E) given by the parameterization in Eq. (4.2) and the values listed

in Tab. 4.1. The ratio between the two provides υrel(E) = υ111
L,h (E)/υ100

L,h (E) which is
used to calculate Λ(υrel) and Ω(υrel) for a given E⃗ using Eqs. (4.16) and (4.17):

υ⃗h(E⃗) =





υr
h(E⃗) = υ100

L,h (E) [1−Λ(υrel)(sin(θ0)
4 sin(2ϕ0)

2 + sin(2θ0)
2]

υθ
h (E⃗)= υ100

L,h (E) Ω(υrel) [2sin(θ0)
3 cos(θ0)sin(2ϕ0)

2 + sin(4θ0)]

υϕ
h (E⃗)= υ100

L,h (E) Ω(υrel) sin(θ0)
3 sin(4ϕ0)

.

(4.18)

39



Felix Hagemann
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Figure 4.2: Numerically calculated values for Ω(υrel) in germanium and a corresponding fit
of a fourth-order polynomial, see Eq. (4.17). The values for Ω and υrel were calculated using
Eqs. (4.8) and (4.15) for 0 ≤ h̄k0/

√
2m∗

hhkBThh ≤ 3 [171] in steps of 0.01 and are connected by
a dashed line. The fit is shown as a solid line.

4.4.2 Electron-drift model

The electron-drift model in germanium [155] is more complex than the hole-drift
model. Electrons do not populate a single conduction band minimum but four degen-
erate minima at the L-points. In each of these so-called valleys, the effective electron
mass takes a value between m∗

e,T = 0.0819me and m∗
e,L = 1.64me [126], depending on

the orientation of the electric field. The electron population of the valleys also depends
on E⃗ . All of this needs to be taken into account when deriving a general expression for
υ⃗e(E⃗) based on the longitudinal electron-drift velocities, υ100

L,e (E) and υ111
L,e (E).

4.4.2.1 Effective electron masses

ϕ110

acos(
√

2
3 )

x
y

z

x′

y′
z′

[100]

[010]

[0
01
]

⟨110⟩

⟨111⟩

Figure 4.3: Relation between the lo-
cal coordinates x′y′z′ in the conduc-
tion band minimum and the crystal
coordinate system xyz. The y′-axis
is aligned with the ⟨111⟩ axis.

The dispersion relation, E j (⃗k), for each conduc-
tion band minimum, j ∈ {1,2,3,4} can be approx-
imated using a parabolic function in k⃗,

E j (⃗k) =
h̄2

2
k⃗†γ j⃗k , (4.19)

where γ j is the inverse effective mass matrix of the
j-th valley. In the local coordinate system of a val-
ley, x′y′z′, with the y′-axis pointing parallel to the
⟨111⟩ axis, see Fig. 4.3, the inverse effective mass
matrix, γ0, is

γ0 =




(m∗
e,T )

−1 0 0

0 (m∗
e,L)

−1 0

0 0 (m∗
e,T )

−1


 ,

which has the transverse and longitudinal inverse
effective electron masses on the diagonals and ac-
counts for the curvature of the band structure.
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In the global coordinate system, xyz, the inverse effective mass matrix, γ j, for the
j-th conduction band minimum can be derived from γ0 by applying two rotations, see
Fig. 4.3: one rotation by acos(

√
2/3) around the x′-axis aligning the y′-axis with the

⟨110⟩ axis, and one further rotation around the z-axis aligning the y′-axis with the y-axis,

γ j = R−1
j γ0 R j with R j = Rx′(acos(

√
2/3)) Rz(ϕ110 + jπ/2) , (4.20)

where ϕ110 is the angle between the ⟨110⟩ and the y-axis. The differences between the
four γ j are the rotations by multiples of π/2 around the z-axis.

Equation (4.19) implies that, for a given k⃗, the inverse effective electron mass, (m∗
e, j)

−1,
in the j-th minimum is the projection of γ j along k⃗, see section 3.2.1. If k⃗ is aligned
with the electric field, i.e. k⃗ ∥ E⃗N , where E⃗N = E⃗/E is the normalized electric field
vector, then (m∗

e, j)
−1 = E⃗†

Nγ jE⃗N .

Table 4.2: Expressions for (m∗
e, j)

−1 = E⃗†
Nγ jE⃗N for electric fields E⃗ parallel to the ⟨100⟩, ⟨110⟩

and ⟨111⟩ axes for the four conduction band minima j.

E⃗ ∥ ⟨100⟩ E⃗ ∥ ⟨110⟩ E⃗ ∥ ⟨111⟩
j = 1 2

3(m
∗
e,T )

−1 + 1
3(m

∗
e,L)

−1 1
3(m

∗
e,T )

−1 + 2
3(m

∗
e,L)

−1 (m∗
e,L)

−1

j = 2 2
3(m

∗
e,T )

−1 + 1
3(m

∗
e,L)

−1 (m∗
e,T )

−1 8
9(m

∗
e,T )

−1 + 1
9(m

∗
e,L)

−1

j = 3 2
3(m

∗
e,T )

−1 + 1
3(m

∗
e,L)

−1 1
3(m

∗
e,T )

−1 + 2
3(m

∗
e,L)

−1 8
9(m

∗
e,T )

−1 + 1
9(m

∗
e,L)

−1

j = 4 2
3(m

∗
e,T )

−1 + 1
3(m

∗
e,L)

−1 (m∗
e,T )

−1 8
9(m

∗
e,T )

−1 + 1
9(m

∗
e,L)

−1

The expressions for E⃗†
Nγ jE⃗N for E⃗ parallel to the main crystal axes are listed in Tab. 4.2.

For E⃗ ∥ ⟨100⟩, the effective electron mass is identical for all conduction band minima.
For E⃗ ∥ ⟨110⟩, the electrons in two of the valleys acquire the lowest possible effective
mass of m∗

e,T . In the other two valleys, effective electron masses are slightly higher.
For E⃗ ∥ ⟨111⟩, the electrons in one valley acquire the highest possible effective mass
of m∗

e,L. In the other three valleys, the effective electron masses is significantly lower.

For arbitrarily oriented E⃗ between the main crystal axes, the expressions for E⃗†
Nγ jE⃗N

for the four conduction band minima are typically different from each other.

4.4.2.2 Population of the conduction band minima

The population of electrons in the j-th valley also depends on E⃗†
Nγ jE⃗N [174]. If the

expressions for E⃗†
Nγ jE⃗N are not identical for the four valleys, the electrons will re-

distribute, resulting in an unequal population of the four valleys. In this case, the
population of the conduction band minima is changed by the external electric field.

If no electric field is applied, the four valleys are equally populated. If an electric
field parallel to the ⟨100⟩ axis is applied, all valleys remain equally populated and
no redistribution of the electrons is expected. For electric fields along the ⟨110⟩ or
⟨111⟩ axes, the electrons accumulate in the valleys where m∗

e, j is higher, i.e. where
E⃗†

Nγ jE⃗N = 1
3(m

∗
e,T )

−1 + 2
3(m

∗
e,L)

−1 for ⟨110⟩ and E⃗†
Nγ jE⃗N = (m∗

e,L)
−1 for ⟨111⟩.
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A first parameterization for the fraction of electrons, n j
n , populating the j-th valley

was given by H.G Reik and H. Risken in 1962 [159], assuming a Maxwellian energy
distribution of the electrons and redistribution of the electrons in the valleys through
isotropic scattering of the electrons off phonons:

n j

n
=

(E⃗†
Nγ jE⃗N)

−1/2

4
∑

i=1
(E⃗†

NγiE⃗N)−1/2
, (4.21)

L. Mihailescu et al. modified the expression for n j
n to account for the electric-field

dependence of the electron redistribution by introducing an empirical function R(E)
that scales the deviation from an equal distribution [155]:

n j

n
=R(E)




(E⃗†
Nγ jE⃗N)

−1/2

4
∑

i=1
(E⃗†

NγiE⃗N)−1/2
− 1

4


+

1
4
. (4.22)

The function R(E) is determined from measurements with E⃗ ∥ ⟨111⟩, where a redistri-
bution of the electrons between the valleys is expected. The expression in Eq. (4.22)
is assumed to hold for all orientations of E⃗ .

4.4.2.3 Electron-drift velocity

A general expression for υ⃗e(E⃗) was proposed by H.G. Reik and H. Risken in 1962 [159]
which was further developed by L. Mihailescu et al. [155]:

υ⃗e(E⃗) =A(E) ·
4

∑
j=1

n j

n
γ jE⃗N√
E⃗†

Nγ jE⃗N

, (4.23)

The expression consists of a term A(E) which depends only on the magnitude of the
electric field E and a term that depends only on the orientation of the electric field E⃗N .
The function A(E) captures the saturation behavior of υ⃗e(E⃗) for E ≫ E0, see sec-
tion 4.2. The second term results in longitudinal and transverse anisotropies which
arise from effective-mass anisotropies and the redistribution of electrons between the
valleys for differently oriented E⃗ .

The function A(E) is determined from measurements of υ100
L,e (E). For E⃗ ∥ ⟨100⟩, the

expressions for E⃗†
Nγ jE⃗N are independent of j, see Tab. 4.2. The valleys are equally pop-

ulated, i.e. n j
n = 1

4 , and contribute equally to υ⃗e. Substituting this into Eq. (4.23) yields

υ⃗e(E⃗) =A(E)
√

2
3(m

∗
e,T )

−1 + 1
3(m

∗
e,L)

−1 E⃗N
!
= υ100

L,e (E) E⃗N (4.24)

⇒A(E) =
υ100

L,e (E)√
2
3(m

∗
e,T )

−1 + 1
3(m

∗
e,L)

−1
(4.25)

⇒ υ⃗e(E⃗) = υ100
L,e (E)

4

∑
j=1

n j

n
1√

2
3(m

∗
e,T )

−1 + 1
3(m

∗
e,L)

−1

γ jE⃗N√
E⃗†

Nγ jE⃗N

. (4.26)
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The function R(E) in Eq. (4.22) is determined from υ111
L,e (E). For E⃗ ∥ ⟨111⟩, one of the

valleys, i.e. j = 1, is aligned with the electric field, resulting in E⃗†
Nγ1E⃗N = (m∗

e,L)
−1 and

E⃗†
Nγ jE⃗N = 8

9(m
∗
e,T )

−1 + 1
9(m

∗
e,L)

−1 for j ∈ {2,3,4}. As a consequence, the electrons are
redistributed with n1

n ̸= n2
n = n3

n = n4
n . Substituting this into Eq. (4.26) yields

υ111
L,e (E) = υ100

L,e (E)
n1
n

√
(m∗

e,L)
−1 +

(
1− n1

n

)√8
9(m

∗
e,T )

−1 + 1
9(m

∗
e,L)

−1

√
2
3(m

∗
e,T )

−1 + 1
3(m

∗
e,L)

−1

⇒ n1

n
=

√
2
3(m

∗
e,T )

−1 + 1
3(m

∗
e,L)

−1
υ111

L,e (E)
υ100

L,e (E)
−
√

8
9(m

∗
e,T )

−1 + 1
9(m

∗
e,L)

−1

√
(m∗

e,L)
−1 −

√
8
9(m

∗
e,T )

−1 + 1
9(m

∗
e,L)

−1
. (4.27)

This means that the electron population of the valley j = 1 is defined by m∗
e,T , m∗

e,L,
υ100

L,e (E) and υ111
L,e (E). Inserting this in Eq. (4.22) for E⃗ ∥ ⟨111⟩ provides an analytic

expression for R(E) of

R(E) =

√
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∗
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√
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∗
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With m∗
e,T = 0.0819me and m∗

e,L = 1.64me [126], Eqs. (4.25) and (4.28) become

A(E) =
υ100

L,e (E)
2.888

and R(E) =−3.414
υ111

L,e (E)
υ100

L,e (E)
+3.161 . (4.29)

The electron-drift model presented here allows to predict υ⃗e(E⃗) for arbitrarily oriented
E⃗ taking only υ100

L,e (E) and υ111
L,e (E) given by Eq. (4.2) and the values listed in Tab. 4.1

as input. From υ100
L,e (E) and υ111

L,e (E), A(E) and R(E) are determined, see Eq. (4.29),
which define the saturation of υ⃗e at high electric fields and the longitudinal and trans-
verse anisotropy, respectively. Then, for a given E⃗ , the expressions for E⃗†

Nγ jE⃗N are
determined and n j

n are calculated using Eq. (4.22). The final electron-drift velocity
υ⃗e(E⃗) is determined using Eq. (4.23). For E⃗ ∥ ⟨110⟩, Eq. (4.23) yields a relation of
υ110

L,e = 0.7858υ100
L,e +0.2002υ111

L,e , which was used for Fig. 4.1a.

By construction, this electron-drift model never predicts the perfectly isotropic case,
for which υ100

L,e = υ110
L,e = υ111

L,e . Even for equally populated valleys, i.e. n j
n = 1

4 , the dif-
ferent expressions for E⃗†

Nγ jE⃗N for differently oriented E⃗ already result in a longitudinal
anisotropy of υ110

L,e /υ100
L,e ≈ 0.971 and υ111

L,e /υ100
L,e ≈ 0.926.
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4.4.2.4 Modifications to the electron-drift model

The terms γ jE⃗N/
√

E⃗†
Nγ jE⃗N in Eq. (4.23) describe the projection of γ j ∝ (m∗

e)
−1 along

the normalized electric field E⃗N and scale with (m∗
e)

−1/2. The resulting dependence
of υe ∝ (m∗

e)
−1/2 implies that the ionized impurities are the predominant scattering

centers, see Eq. (4.5). Recent measurements of the temperature dependence of the
electron-drift anisotropy in germanium challenge this assumption [36].

In high-purity germanium, the density of ionized impurities is typically as low as
1010 cm−3. Therefore, it is reasonable to assume that the dominant process is the scat-
tering off acoustic phonons and that υe ∝ (m∗

e)
−5/2, see Eq. (4.4). The latter can be

incorporated in the electron-drift model by modifying Eqs. (4.22) and (4.23) to

υ⃗e(E⃗) =A(E) ·
4

∑
j=1

n j

n
(E⃗†

Nγ jE⃗N)
3/2 γ jE⃗N , (4.30)
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1
4
. (4.31)

The expressions for A(E) and R(E) for the modified electron-drift model are

A(E) =
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L,e (E)√
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,

With m∗
e,T = 0.0819me and m∗

e,L = 1.64me [126], Eqs. (4.32) and (4.33) become

A(E) =
υ100

L,e (E)
201.066

and R(E) =−0.683
υ111

L,e (E)
υ100

L,e (E)
+1.004 . (4.34)

The modified electron-drift model yields a relation of υ110
L,e = 0.3860υ100

L,e +0.6901υ111
L,e ,

i.e. the electron-drift anisotropy between the ⟨100⟩ and ⟨110⟩ directions is larger com-
pared to the unmodified electron-drift model. This has also been observed in the past [36].

By construction, the default and the modified electron-drift model both predict the lon-
gitudinal drift velocities along the ⟨100⟩ and the ⟨111⟩ axis provided as input. How-
ever, the expressions for A(E) and R(E) in Eqs. (4.29) and (4.34) define different
transverse anisotropies, resulting in different behaviors along the ⟨110⟩ axis and be-
tween the axes.
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4.5 Charge-cloud effects

So far, electrons and holes have been described as charge carriers that independently
drift in clusters as a response to an external electric field. Charge-cloud effects in-
side these clusters, i.e. diffusion and Coulomb self-repulsion, additionally influence
the trajectories of the charge carriers and, hence, the pulse shapes [175].

Diffusion describes the random motion of charge carriers. Their average velocity de-
pends on the temperature of the material and results in a particle flux from regions
with high concentration to regions with low concentration. Coulomb self-repulsion
describes the effect that same-sign charge carriers within a cluster repel each other.

The dynamics of charge-carrier clusters, diffusion plus Coulumb self-repulsion, are
well described by the continuity equation:

∂
∂ t

ne/h(⃗r, t)+ ∇⃗ j⃗e/h(⃗r, t) = se/h(⃗r, t) , (4.35)

where ne/h(⃗r, t) is the number density and j⃗e/h(⃗r, t) is the flux of electrons and holes,
respectively. The term se/h(⃗r, t) is the generation (se/h > 0) or annihilation (se/h < 0)
of charge carriers per unit volume and unit time. For electrons and holes, j⃗e/h is the
sum of the diffusion flux, j⃗ diff

e/h , and the drift flux, j⃗ drift
e/h , with

j⃗ diff
e/h (⃗r, t) =−De/h(⃗r) ∇⃗ne/h(⃗r, t) and j⃗ drift

e/h (⃗r, t) = ne/h(⃗r, t)µe/h(⃗r) E⃗ (⃗r) ,
(4.36)

where De/h is the electron or hole diffusion coefficient, which can be estimated from
the mobility µe/h using the Einstein-Smoluchowski relation [29, p. 356]:

De/h(⃗r) =
kBT

e
µe/h(⃗r) . (4.37)

Substituting Eq. (4.36) into Eq. (4.35) and setting se/h(⃗r, t) = 0 results in a differential
equation for the charge-carrier concentration of

∂
∂ t

ne/h(⃗r, t)+ ∇⃗(−De/h(⃗r)⃗∇ne/h(⃗r, t)+ne/h(⃗r, t)µe/h(⃗r)E⃗ (⃗r)) = 0 . (4.38)

In the rest frame of the charge cluster, the distribution of the charge carriers can be
approximated as a sphere with charge

Q(r, t) =±e
˚

V

d3r ne/h(r, t) =±e

rˆ

0

dr 4πr2 ne/h(r, t) , (4.39)

using "+" for holes and "−" for electrons. The electric field created by the charge
cluster is

E⃗ (⃗r, t) = Q(⃗r, t)
4πε0εr (⃗r)r2 e⃗r . (4.40)
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In the absence of an external electric field and in a spherical coordinate system with
the origin in the center of the charge cluster, the evolution of a spherical charge cloud,
Q(r, t), can be described by a second-order differential equation [176]:

− 1
De/h(⃗r)

∂Q
∂ t

+
∂ 2Q
∂ r2 − 2

r
∂Q
∂ r︸ ︷︷ ︸

Diffusion

−Q
∂Q
∂ r

e
kBT

1
4πε0εrr2

︸ ︷︷ ︸
Coulomb self-repulsion

= 0 . (4.41)

The detailed derivation of Eq. (4.41) can be found in Appendix B on page 187.

4.5.1 Diffusion

An analytical formula for the diffusion-driven evolution of the size of the charge clus-
ter is obtained from Eq. (4.41), neglecting the term that describes the Coulomb self-
repulsion. and assuming a constant µe/h(⃗r), i.e. a constant De/h(⃗r), see Eq. (4.37):

∂Q
∂ t

= De/h

(
∂ 2Q
∂ r2 − 2

r
∂Q
∂ r

)
⇒ Q(r, t) = A(t0)

√
t
t0

exp

(
− r2

4De/ht

)
(4.42)

ne/h(r, t) =
Ne/h

(4πDe/h t)3/2 exp

(
− r2

4De/ht

)
, (4.43)

where Ne/h is the number of charge carriers in the cluster. The density is normally
distributed and the sphere expands in time with a radial standard-deviation of σe/h =√

6De/ht in three dimensions. The charge cluster evolution is given only by the mate-
rial properties of the detector and does not depend on the deposited energy.

4.5.2 Coulomb self-repulsion

The contribution of Coulomb self-repulsion to the size evolution of the charge cluster
is calculated using Eq. (4.41), neglecting effects from diffusion:

∂Q
∂ t

+Q
∂Q
∂ r

µe/h

4πε0εrr2 = 0 ⇒ Q(r, t) =
4πε0εrr3

3µe/h t
. (4.44)

As the total charge is expected to be constant, i.e. Q(r, t) = Q, Eq. (4.44) describes a
sphere with with radius r which monotonously expands with time t as

r = 3

√
3µe/hQt
4πε0εr

, (4.45)

and has a radially constant charge-carrier density which decreases over time,

n(r, t) =
ε0εr

eµe/h t
. (4.46)

In contrast to the case of diffusion, the evolution of the charge cluster driven by
Coulomb self-repulsion also depends on the charge in the cluster and, hence, on the
number of created electron-hole pairs. Therefore, the effect of Coulomb self-repulsion
increases for larger energy deposits.
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4.5.3 Initial charge-cloud size

So far, the initial size of the charge cloud has been neglected. When gammas interact
with germanium, the recoil electron produced during photoelectric absorption, Comp-
ton scattering or pair production travels a certain range while dissipating its energy
through the creation of electron-hole pairs. Higher energy depositions lead to higher-
energetic recoil electrons, which lead to electron-hole pairs being created over a wider
range. Values for the initial size of the charge cloud can be estimated either from Monte
Carlo simulations, e.g. using GEANT4 [177], or from tabulated values of the range of
electrons in matter.

There are several ways to classify the range of electrons in germanium [178]:

• The continuous-slowing-down approximation, CSDA, range is a measure of the av-
erage path length of an electron until thermalizing. It is calculated by integrating the
inverse of the total linear stopping power with respect to the electron energy [179].
For electrons with an initial energy of E0, the CSDA range, RCSDA, is

RCSDA =

E0ˆ

0

〈
−dE

dx

〉−1

dE . (4.47)

• The practical range, Rp, is a measure of straight-line penetration length [180]. The
recoil electron does typically not move along a straight line but is deflected multiple
times through Coulomb scattering, especially at low electron energies. The practical
range is shorter than the CDSA range and defines a distance after which 90 to 95%
of the incident electrons have stopped [180]. For germanium, Rp fits within 10% to

Rp = αE (1−β/(1+ γE)) , (4.48)

with α = 0.83µm/keV, β = 0.9841 and γ = 0.0030/keV [181].

Table 4.3: Electron ranges in germanium
for selected energies E0 of the incident elec-
trons. The values of the CSDA range RCSDA
were taken from literature [179]. The val-
ues of the practical range Rp were calcu-
lated using Eq. (4.48).

E0 in keV RCSDA in µm Rp in µm

300 248 120

662 740 368

1020 1262 641

In Tab. 4.3, values of the CSDA and the prac-
tical range of electrons in germanium are
listed for selected electron energies. The val-
ues of the CSDA range are around twice as
large as the values of the practical range.

The initial charge-cloud volume can be ap-
proximated as a sphere with a diameter
of Rp. This approximation overestimates the
effects of the initial charge-cloud size [181].
However, it describes the charge-cloud dy-
namics more realistically than assuming a
point-like energy deposition and neglecting
the range of the recoil electrons.
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5 Detector simulation using SolidStateDetectors.jl
Within the framework of this thesis, substantial work
was put into improving existing charge drift models
and implementing models for charge cloud dynamics
into the open-source ȷulıa simulation software package
SolidStateDetectors.jl [37], SSD.

SSD has been developed by the LEGEND group at the Max Planck Institute for Physics
in Munich. It provides a framework to simulate three-dimensional solid-state detector
geometries including their environments to calculate electric fields and to generate
pulse shapes. The modular structure of the package facilitates fast modifications of
the source code, e.g. the implementation of custom impurity density profiles or charge
drift models.

SSD comprises two parts: the field calculation for a given detector configuration and
the pulse-shape simulation for a given event, see Fig. 5.1.

Impurity
density, ρ (⃗r)

Bias voltage,
VB,i

Contact
geometry, Si

Detector
geometry, ε (⃗r)

Electric poten-
tial, φ (⃗r)

Depletion level

Electric field,
E⃗ (⃗r)

Capacitances, c jk

Weighting
potentials, Wi (⃗r)

Simulation of
particle inter-

actions

Energy deposits,
Edep, r⃗e(0), r⃗h(0)

Charge drift
models, µe, µh

Charge drift
paths, r⃗e(t), r⃗h(t)

Raw charge
pulses, Qi(t)

Electronics and
cross-talk models

Data-like charge
pulses, Qmeas

i (t)

Field calculation
(once per detector

configuration)

Pulse-shape simulation
(once per event)

SolidStateDetectors.jl [37] GEANT4 [177]

Input to the field calculation

Output of the field calculation

Input to the pulse-shape simulation

Output of the pulse-shape simulation

External packages / code

Figure 5.1: Flowchart of SSD, consisting of the field calculation (hatched) and the pulse-shape
simulation (solid).

The electric potential φ (⃗r) is calculated from the impurity density, the applied poten-
tials to the contacts as well as the detector and contact geometries. If the detector is
operated below the full-depletion voltage, local extrema will appear in φ (⃗r) that can be
attributed to undepleted volumes. If set by the user, the density of ionized impurities
is set to zero in the undepleted volume and the electric potential is recalculated. The
electric field is determined by differentiating the electric potential. The weighting po-
tentials are calculated for each contact based on the geometry and the depletion level of
the detector. The capacitance matrix can be calculated from the weighting potentials.
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The electric field and the weighting potentials are inputs to the pulse-shape simula-
tion. The distribution of energy deposits, e.g. simulated using the simulation toolkit
GEANT4 [177], and models describing the electron and hole drift in the detector are
needed for the simulation of pulse shapes. The pulses obtained from pulse-shape sim-
ulations using SSD depict the raw charge pulses expected from the equations listed in
sections 3.4 and 4. Effects from the limited bandwidth of the read-out electronics or
from cross-talk need to be accounted for using external code to obtain data-like pulses.

In the this chapter, the different steps of the field calculation and the pulse-shape sim-
ulation as well as their implementation in SSD are presented.

5.1 Constructive solid geometry

Solid-state detectors can have complex geometries. Therefore, SSD provides a simple
way to easily define general geometries.

Geometries in SSD are defined via constructive solid geometry [182]. A small set of
basic volume primitives are implemented, i.e. tubes, cones, spheres, boxes, tori and
polygonal prisms. These volume primitives can be combined to form more complex
geometries using boolean operators, i.e. unions, differences and intersections as shown
in Fig. 5.2, as well as translations and rotations. Constructive solid geometry provides
the possibility to define a wide range of complex geometries, especially everything
needed to describe germanium detectors.

Union
A

B
A∪B∪ = r⃗ ∈ (A∪B)⇔

r⃗ ∈ A∨ r⃗ ∈ B

Difference
A

B A \ B\ = r⃗ ∈ (A \ B)⇔
r⃗ ∈ A∧ r⃗ /∈ B

Intersection
A

B
A∩B∩ = r⃗ ∈ (A∩B)⇔

r⃗ ∈ A∧ r⃗ ∈ B

Figure 5.2: Boolean operators, union (∪), difference (\) and intersection (∩), used to combine
volumes using constructive solid geometry, as well as their mathematical definitions. Example
geometries using differently shaped tubes are shown for demonstration purposes.
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SSD provides a number of example detector geometries. One of them is an inverted
coaxial point-contact, ICPC, detector [183] which is the baseline detector geometry
for the LEGEND-1000 experiment [12]. Figures 5.4 and 5.4 show how constructive
solid geometry is used to define the detector and contact geometry of an ICPC detector
in SSD. The corresponding configuration file is listed in Appendix C on page 188.

The mother volume of the semiconductor is a full tube. The ICPC detector is tapered at
the top outer corner and has a borehole that penetrates from the top. These two features
are implemented by subtracting a hollow cone for the tapering and a small-radius tube
for the borehole, see Fig. 5.3.

\ \ =

Figure 5.3: Definition of the geometry of the bulk of an ICPC detector as implemented in SSD
using constructive solid geometry.

The ICPC detector has two contacts: one small point contact at the bottom of the
detector, and one contact that covers the large outer surface including the top, the inner
borehole and part of the bottom, see Fig. 5.4. The small point contact is defined simply
as a tube. The outer contact is defined as a union of six primitives, one for each part of
the surface that it covers.

Figure 5.4: Composition of the contacts of the ICPC detector implemented in SSD from their
primitive parts. The outer contact is defined as a union of six primitive parts. The point contact
is shown in blue, the outer contact and parts thereof are shown in orange.
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5.2 Calculation of the electric potential

The electric potential is numerically computed from Gauss’s law, see Eq. (3.14), which
is a time-independent equation which has to be solved only once at the beginning of a
detector field calculation. For this, the simulation "world" is mapped on a grid in either
Cartesian coordinates, x, y and z, or cylindrical coordinates, r, ϕ and z.

In cylindrical coordinates, each axis is divided into a finite number of ticks, i.e. ri with
i ∈ {1, . . . ,Nr}, ϕ j with j ∈ {1, . . . ,Nϕ} and zk with k ∈ {1, . . . ,Nz}. The combinations
of these ticks, r⃗i, j,k = (ri,ϕ j,zk), are a set of Np = Nr ·Nϕ ·Nz points that form the grid.

Each grid point is assigned a small volume element, see Fig. 5.5. This so-called voxel
is defined as the set of all points, (r,ϕ,z) where each of the coordinates are closest to
the tick of the grid point, i.e. r is closest to ri, ϕ is closest to ϕ j and z is closest to zk.
The resulting voxel is a sector of a tube, see Fig. 5.5a. The boundaries of the voxel are
given by the midpoints, see Fig. 5.5b, where

rmp,i =
1
2
· (ri + ri+1) , ϕmp, j =

1
2
· (ϕ j +ϕ j+1) and zmp,k =

1
2
· (zk + zk+1) .

Points in the voxel assigned to r⃗i, j,k fulfill rmp,i−1 < r ≤ rmp,i, ϕmp, j−1 < ϕ ≤ ϕmp, j
and zmp,k−1 < z ≤ zmp,k.

(a)

r

z

ϕ
r⃗i+1, j,kr⃗i+1, j,kr⃗i+1, j,kr⃗i+1, j,kr⃗i+1, j,kr⃗i+1, j,kr⃗i+1, j,kr⃗i+1, j,kr⃗i+1, j,kr⃗i+1, j,kr⃗i+1, j,kr⃗i+1, j,kr⃗i+1, j,kr⃗i+1, j,kr⃗i+1, j,kr⃗i+1, j,kr⃗i+1, j,k

r⃗i−1, j,kr⃗i−1, j,kr⃗i−1, j,kr⃗i−1, j,kr⃗i−1, j,kr⃗i−1, j,kr⃗i−1, j,kr⃗i−1, j,kr⃗i−1, j,kr⃗i−1, j,kr⃗i−1, j,kr⃗i−1, j,kr⃗i−1, j,kr⃗i−1, j,kr⃗i−1, j,kr⃗i−1, j,kr⃗i−1, j,k

r⃗i, j+1,kr⃗i, j+1,kr⃗i, j+1,kr⃗i, j+1,kr⃗i, j+1,kr⃗i, j+1,kr⃗i, j+1,kr⃗i, j+1,kr⃗i, j+1,kr⃗i, j+1,kr⃗i, j+1,kr⃗i, j+1,kr⃗i, j+1,kr⃗i, j+1,kr⃗i, j+1,kr⃗i, j+1,kr⃗i, j+1,k

r⃗i, j−1,kr⃗i, j−1,kr⃗i, j−1,kr⃗i, j−1,kr⃗i, j−1,kr⃗i, j−1,kr⃗i, j−1,kr⃗i, j−1,kr⃗i, j−1,kr⃗i, j−1,kr⃗i, j−1,kr⃗i, j−1,kr⃗i, j−1,kr⃗i, j−1,kr⃗i, j−1,kr⃗i, j−1,kr⃗i, j−1,k

r⃗i, j,k+1r⃗i, j,k+1r⃗i, j,k+1r⃗i, j,k+1r⃗i, j,k+1r⃗i, j,k+1r⃗i, j,k+1r⃗i, j,k+1r⃗i, j,k+1r⃗i, j,k+1r⃗i, j,k+1r⃗i, j,k+1r⃗i, j,k+1r⃗i, j,k+1r⃗i, j,k+1r⃗i, j,k+1r⃗i, j,k+1

r⃗i, j,k−1r⃗i, j,k−1r⃗i, j,k−1r⃗i, j,k−1r⃗i, j,k−1r⃗i, j,k−1r⃗i, j,k−1r⃗i, j,k−1r⃗i, j,k−1r⃗i, j,k−1r⃗i, j,k−1r⃗i, j,k−1r⃗i, j,k−1r⃗i, j,k−1r⃗i, j,k−1r⃗i, j,k−1r⃗i, j,k−1

r⃗i, j,kr⃗i, j,kr⃗i, j,kr⃗i, j,kr⃗i, j,kr⃗i, j,kr⃗i, j,kr⃗i, j,kr⃗i, j,kr⃗i, j,kr⃗i, j,kr⃗i, j,kr⃗i, j,kr⃗i, j,kr⃗i, j,kr⃗i, j,kr⃗i, j,k

(b)

r

z

r⃗i+1, j,kr⃗i−1, j,k

r⃗i, j,k+1

r⃗i, j,k−1

r⃗i, j,k rmp,irmp,i−1

zmp,k

zmp,k−1

Figure 5.5: Sketch of (a) a voxel around the grid point r⃗i, j,k and (b) the two-dimensional cut in
r and z at ϕ j, with the midpoints defining the voxel boundaries, adapted from [184].

Dividing the world into voxels allows for the determination of the electric potential for
the corresponding individual grid point, φi, j,k = φ (⃗ri, j,k). In the voxel belonging to the
grid point r⃗i, j,k, Eq. (3.14) can be rewritten in integral form, i.e.˚

Vi, j,k

d3r ∇⃗
(

ε (⃗r)⃗∇φ (⃗r)
)
=−
˚

Vi, j,k

d3r
ρ (⃗r)
ε0

, (5.1)

where Vi, j,k is the volume of the voxel.
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The term on the right side becomes

−
˚

Vi, j,k

d3r
ρ (⃗r)
ε0

≈−
ρw

i, j,k

ε0

˚

Vi, j,k

d3r =−
ρw

i, j,k

ε0
Vi, j,k =: Qeff

i, j,k , (5.2)

where ρw
i, j,k is the geometrically weighted space charge density obtained by averaging

over the values at the eight corners of the voxel. The effective charge, Qeff
i, j,k, is defined

as the charge, ρw
i, j,k Vi, j,k, contained in the volume of the voxel divided by −ε0.

The left side of Eq. (5.1) can be rewritten [184] using the divergence theorem:

Qeff
i, j,k =

˚

Vi, j,k

d3r ∇⃗
(

ε (⃗r)⃗∇φ (⃗r)
)
=

‹

∂Vi, j,k

dS⃗ εr (⃗r)⃗∇φ (⃗r) =
¨

r+

+

¨

r−

+

¨

ϕ+

+

¨

ϕ−

+

¨

z+

+

¨

z−

≈ φi+1, j,k −φi, j,k

ri+1 − ri
εw,r+

i, j,k Ar+
i, j,k −

φi, j,k −φi−1, j,k

ri − ri−1
εw,r−

i, j,k Ar−
i, j,k

+
φi, j+1,k −φi, j,k

ri(ϕ j+1 −ϕ j)
εw,ϕ+

i, j,k Aϕ+

i, j,k −
φi, j,k −φi, j−1,k

ri(ϕ j −ϕ j−1)
εw,ϕ−

i, j,k Aϕ−
i, j,k

+
φi, j,k+1 −φi, j,k

zk+1 − zk
εw,z+

i, j,k Az+
i, j,k −

φi, j,k −φi, j,k−1

zk − zk−1
εw,z−

i, j,k Az−
i, j,k . (5.3)

Each term in the final approximation in Eq. (5.3) corresponds to the flux through one of
the six surfaces, S ⊂ ∂Vi, j,k, in positive and negative directions for all three dimensions,
i.e. S ∈ {r+,r−,ϕ+,ϕ−,z+,z−}, and depends on three quantities: the forward differ-
ence of ∇⃗φ (⃗r) perpendicular to the surface, the geometrically weighted mean of εr (⃗r),
εw,S

i, j,k, evaluated at the four corners of the surface, and the area AS
i, j,k of the surface.

Rearranging Eq. (5.3) provides a formula to calculate φi, j,k from the values of its direct
neighbors.

φi, j,k = a0
i, j,k (Qeff

i, j,k +ar+
i, j,kφi+1, j,k +ar−

i, j,kφi−1, j,k +aϕ+

i, j,kφi, j+1,k

+aϕ−
i, j,kφi, j−1,k +az+

i, j,kφi, j,k+1 +az−
i, j,kφi, j,k−1 ) . (5.4)

The coefficients a0
i, j,k and aS

i, j,k depend on εr (⃗r) and the grid geometry, see Eq. (5.3).
The values Qeff

i, j,k are given by ρ (⃗r) and the geometry of the grid, see Eq. (5.2). There-
fore, for fixed ε (⃗r) and ρ (⃗r) and a given grid, Qeff

i, j,k, a0
i, j,k and all aS

i, j,k are constant.

Some grid points are located in or on contacts, Sν . In this case, the corresponding
electric potential value is fixed to the potential, VB,ν , applied to this contact, i.e.

φi, j,k =VB,ν if r⃗i, j,k ∈ Sν . (5.5)
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The linear equations for the non-fixed potential values of individual grid points can be
mapped into a matrix equation changing to linear indexing, i.e. (i, j,k)→ 1, . . . ,Np:




φ1

φ2
...

φNp




︸ ︷︷ ︸
φ⃗ ∈ RNp

=




a1,1 a1,2 . . . a1,Np

a2,1 a2,2 . . . a2,Np
...

... . . . ...

aNp,1 aNp,2 . . . aNp,Np




︸ ︷︷ ︸
A ∈ RNp×Np

·




φ1

φ2
...

φNp




︸ ︷︷ ︸
φ⃗ ∈ RNp

+




a0
1Qeff

1

a0
2Qeff

2
...

a0
Np

Qeff
Np




︸ ︷︷ ︸
b⃗ ∈ RNp

(5.6)

The electric potential is numerically calculated by finding φ⃗ that fulfills Eq. (5.6). This
is realized by starting with an initial state, φ⃗ 0, and solving Eq. (5.6) iteratively using
the Gauss-Seidel method, i.e.

φ⃗ t+1 = A · φ⃗ t + b⃗ (5.7)

with the iteration index t ∈ {0,1,2, . . . ,Nt −1}, where Nt is the number of iterations.

The initial state φ⃗ 0 is chosen such that the values of the electric potential on grid points
on contacts and grounded parts are set to their fixed potential, and all other poten-
tial values are set to zero. This is shown for the example ICPC detector in Fig. 5.6a
on an initial grid with 24×1×20 = 480 grid points. The values of φ⃗ are iteratively
updated using Eq. (5.7) until reaching convergence, i.e. |φ t+1

i −φ t
i |< φthreshold for all

i ∈ {1, . . . ,Np}, or exceeding the maximally allowed number of iteratios. The electric
potential calculation for the example ICPC detector using the default φthreshold = 10−7VB
converges after 426 iterations and the resulting φ⃗ is shown in Fig. 5.6b.
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Figure 5.6: (a) Initial state, φ⃗0, and (b) final state, φ⃗ , after 426 iterations for the example ICPC
detector in SSD shown in the r-z-plane at ϕ = 0◦. The contacts of the detector are shown in the
same color as in Fig. 5.4.
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The potential value at a grid point with even i+ j + k only depends on the potential
values of grid points with odd i+ j + k and vice versa, see Eq. (5.4). Thus, the grid
can be divided into two subgrids with red (odd i+ j+k) and black (even i+ j+k) grid
points, see Fig. 5.5. Then, Eq. (5.7) becomes

φ⃗ t+1
R = ARφ⃗ t

B + b⃗R and φ⃗ t+1
B = ABφ⃗ t+1

R + b⃗B (5.8)

where the subscripts R and B denote red and black grid points, respectively. The red-
black division results in lower dimensional matrices AR,AB ∈ RNp/2×Np/2 and faster
convergence because the updated values for φ⃗ t+1

R enter the determination of φ⃗ t+1
B [184].

Faster convergence is also obtained in SSD by extending the basic Gauss-Seidel method
in Eq. (5.7) to the so-called successive over-relaxation, SOR, method [185], i.e.

φ⃗ t ′ = Aφ⃗ t + b⃗ ⇒ φ⃗ t+1 = φ⃗ t +ωSOR(φ⃗ t ′ − φ⃗ t) (5.9)

where ωSOR is the SOR-constants which is chosen from 0 < ωSOR < 2. The SOR
method with 1 < ωSOR < 2 usually converges faster than the Gauss-Seidel method
(ωSOR = 1). The default values for ωSOR in SSD are between 1.4 and 1.85.

Technically, the iteration steps are optimized to ensure fast and efficient execution.
Each iteration step only comprises additions and multiplications, which can be exe-
cuted in parallel on modern CPUs. SSD also supports GPU-accelerated programming
which speeds up the electric potential calculation significantly for large Np.

SSD performs the potential calculation on an adaptive grid. At the beginning, the grid
is very coarse and consists of a few points in each dimension. Therefore, convergence
is reached quickly. After convergence, the grid is refined, i.e. additional grid points
are added in regions where |φi, j,k −φi+1, j,k|> φr where φr is a user-defined refinement
threshold. This is done for all three indices i, j and k separately. The grid refinement
ensures additional precision in regions with high field gradients or small structures.
For the initial values φ⃗ 0 of the next iteration, the old grid points are kept at their values
and the newly added grid points are assigned values as determined from a linear inter-
polation between the neighboring grid points. Then, φ⃗ is updated until convergence.
The number of refinements and the refinement limits can be provided by the user.

In Figure 5.7, φ⃗ as numerically calculated with SSD is shown for different numbers
of refinements. As the ICPC detector is rotationally symmetric, a 2D calculation is
sufficient. The effect of the grid spacing becomes less pronounced with an increasing
number of refinements and the result for φ⃗ becomes smoother.

In order to test the numerical calculation of φ⃗ in SSD, several test cases with known
analytical solutions [37] are run by SSD as test cases every time the source code is
modified. Two of them are listed in Appendix A on page 185.
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Figure 5.7: Electric potential as calculated with SSD for the example ICPC detector (a) after
two refinements with a final grid with 38×1×44 = 1672 grid points and (b) after four refine-
ments with a final grid with 150×1×210 = 31500 grid points.

5.3 Depletion handling

For a fully-depleted detector, all electrically active impurities are ionized and the
charge density is given as ρ (⃗r) =±eNI (⃗r) with "+" for an n-type and "−" for a p-
type bulk. For a partially depleted detector, φ (⃗r) would have local extrema in the bulk,
e.g. a local minimum for a p-type bulk, if all impurities were ionized. In reality, this
local minimum would not form because it would attract free holes which would recom-
bine with the ionized impurities and neutralize them, resulting in undepleted volumes
with a net charge density of ρ (⃗r) = 0. Prior to the potential calculation, it is not known
which volumes of the detector are depleted (ρ (⃗r) =±eNI (⃗r)) and which ones are not
(ρ (⃗r) = 0) and the exact form of ρ (⃗r), i.e. the depletion level, is unclear.

SSD can determine the depletion level of a detector using so-called depletion handling:
In the initial state φ⃗ 0, all impurities are assumed to be ionized. After updating φ⃗ using
Eq. (5.9), SSD checks for each r⃗i, j,k if the new value φi, j,k is a local extremum with re-
spect to its six nearest neighbors, i.e. if φi, j,k > φ max

i, j,k = max{φi±1, j,k,φi, j±1,k,φi, j,k±1}
for an n-type bulk or if φi, j,k < φ min

i, j,k = min{φi±1, j,k,φi, j±1,k,φi, j,k±1} for a p-type bulk.
If this is the case, this grid point is considered to belong to an undepleted volume of
the detector, which means that the impurities are partially or not at all ionized. SSD
accounts for this by scaling Qeff

i, j,k in Eq. (5.4) by a factor 0 ≤ fi, j,k < 1 such that φi, j,k
becomes φ max

i, j,k or φ min
i, j,k, respectively. This scale factor fi, j,k is 0 for grid points in unde-

pleted volumes (0% ionized), 1 for grid points in depleted volumes (100% ionized) and
0 < fi, j,k < 1 for grid points at the boundary between depleted and undepleted volumes.

Figure 5.8 shows the calculated depletion level of the ICPC detector for bias voltages of
600 V and 1200 V applied to the mantle contact. The ICPC detector is simulated with a
p-type impurity density profile that increases linearly from 1.0 ·1010 cm−3 at the bottom
to 1.8 · 1010 cm−3 at the top of the detector with no r-dependence. Equation (3.13)
provides a rough estimate for the depletion width of 10.3mm at 600 V and 14.6mm at
1200 V. This agrees well with the calculated depletion levels shown in Fig. 5.8.
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Figure 5.8: Depletion levels of the example ICPC detector as determined by SSD for bias
voltages of (a) 600 V and (b) 1200 V applied to the mantle contact. The depleted volumes are
shown in green, the undepleted volumes are shown in yellow.

5.4 Calculation of the electric field

The electric field is calculated from the electric potential based on E⃗ (⃗r) =−∇⃗φ (⃗r),
where ∇⃗φ (⃗r) is approximated using finite differences. For each grid point r⃗i, j,k, the
electric field, E⃗i, j,k, is determined for each dimension by averaging the finite difference
in the positive and in the negative direction, i.e.
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Figure 5.9: Electric field in the ex-
ample ICPC detector as determined
by SSD, together with electric field
lines shown in white. For clarity, the
electric field is shown only for points
inside the detector.

E⃗i, j,k = E r
i, j,k e⃗r +Eϕ

i, j,k e⃗ϕ +E z
i, j,k e⃗z ,

where e⃗r, e⃗ϕ and e⃗z are the unit vectors in r-, ϕ-
and z-direction, respectively, and

E r
i, j,k =−1

2

(
φi+1, j,k −φi, j,k

ri+1 − ri
+

φi, j,k −φi−1, j,k

ri − ri−1

)
,

Eϕ
i, j,k =−1

2

(
φi, j+1,k −φi, j,k

ri(ϕ j+1 −ϕ j)
+

φi, j,k −φi, j−1,k

ri(ϕ j −ϕ j−1)

)
,

E z
i, j,k =−1

2

(
φi, j,k+1 −φi, j,k

zk+1 − zk
+

φi, j,k −φi, j,k−1

zk − zk−1

)
.

The electric field of the example ICPC detector is
shown in Fig. 5.9. The electric field is strongest
close to the surface of the detector and weakest
in the parts of the bulk that are the furthest away
from the surface and in the bottom corners.

5.5 Calculation of the weighting potentials

The SOR algorithm is also used to calculate the weighting potentials for all contacts of
the detector. As there is no ρ (⃗r) term present in Eq. (3.18), all Qeff

i, j,k and, therefore, b⃗ in
Eq. (5.6) are zero. The weighting potentials for the two contacts of the fully-depleted
example ICPC detector are shown in Fig. 5.10.
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Figure 5.10: Weighting potentials for (a) the point contact, W1, and (b) the mantle contact, W2,
of the fully-depleted ICPC detector for a bias voltage of 3500V applied to the mantle contact
as calculated with SSD. The gradients of the color bar are chosen as (a) logarithmic and (b) ex-
ponential. Equipotential lines are shown for every 10% level.

The impurity density does not directly enter the calculation of the weighting potentials.
However, for partially depleted detectors, undepleted volumes determined as described
in section 5.3 have to be considered in the calculation of the static weighting potentials.
Undepleted volumes are expected to be conductive, i.e. the weighting potentials should
be constant within each of the connected undepleted volumes. In SSD, this is effec-
tively achieved by scaling εr (⃗r) in the undepleted volumes up by several orders of
magnitude, e.g. by 105, before calculating the weighting potentials. Large values for
εr (⃗r) are compensated by almost vanishing ∇⃗Wi(⃗r), see Eq. (3.18), automatically re-
sulting in nearly constant Wi(⃗r) in the undepleted volumes.

In Fig. 5.11, the weighting potentials for the example ICPC detector are shown for a
bias voltage of 600V applied to the mantle contact. The undepleted volume, shown in
Fig. 5.8a, is directly connected to the point contact, where W1(⃗r) = 1 and W2(⃗r) = 0.
Therefore, these weighting potential values extend way further into the bulk than for
the fully-depleted ICPC detector, see Fig. 5.10.
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Figure 5.11: Weighting potentials for (a) the point contact, W1, and (b) the mantle contact,
W2, of the partially depleted ICPC detector for a bias voltage of 600V applied to the mantle
contact as calculated with SSD. Equipotential lines are shown for every 10% level.
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5.6 Capacitances

The capacitance, c jk, between two contacts, S j and Sk, can be calculated from the
weighting potentials, see section 3.4.3. The weighting potentials W j and Wk are de-
termined independently of each other, possibly on different grids, depending on the
detector geometry and the grid refinement. Therefore, both weighting potentials have
to be mapped onto the same grid, e.g. by interpolating Wk onto the grid of W j. Then,
the volume integral in Eq. (3.22) can be evaluated over all voxel volumes. The gradi-
ents of the weighting potentials are computed numerically using finite differences as
shown for the electric field in section 5.4.

5.7 Charge drift simulation

The charge drift simulation in SSD is based on the electric field obtained from the
field calculation and on charge drift models, e.g. the ones presented in chapter 4. The
simulation of electron and hole drift paths, r⃗e(t) and r⃗h(t), requires the user to pass
energies and locations of energy deposits to SSD. This can either be done manually
by the user or by reading in output files from computational tool-kits which simulate
the passage of particles through matter, e.g. GEANT4 [177]. The deposited energy,
Edep, defines the expected number of electron-hole pairs, see Eq. (3.12). The charges
expected in the electron and hole clouds are −qe = qh = e⟨Neh⟩= eEdep/Eeh.

The subsequent drift of the electron and hole clouds is described in this section. For
simplicity, the event is assumed to consist of only one energy deposit. However, the
following description also applies to events with multiple energy deposits.

5.7.1 Basic charge drift simulation

In the basic charge drift simulation, the electron and hole clouds are each described
as single point charges. For each step, the electric fields at r⃗e and r⃗h are linearly in-
terpolated from the electric field values at the six closest grid points. Then, the drift
velocities υ⃗e and υ⃗h are determined from the electric field, e.g. using drift models pre-
sented in sections 4.4.1 and 4.4.2. The drift step is calculated as the product of υ⃗e/h
and ∆t, resulting in a new position of

r⃗e/h(t +∆t) = r⃗e/h(t)+ υ⃗e/h(E⃗ (⃗re/h(t))) . (5.10)

If the new position is still inside the bulk of the detector, the position is updated and the
next step is initiated. Otherwise, the intersection between the surfaces of the detector
and the line that connects r⃗e/h(t) and r⃗e/h(t +∆t) is determined. If the intersection is a
contact, then the charge is moved into the contact and the drift for that point charge is
completed. If the intersection is not contacted, then the drift step is projected parallel
to the surface and scaled by a factor if wanted by the user. The latter can account for
differently fast surface drifts compared to the drifts in the bulk.

The basic charge drift simulation procedure captures the dominant contribution to the
charge drift given by the static electric field inside of the detector. However, it neglects
effects arising from the substructure of the charge clouds, see section 4.5.
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5.7.2 Charge drift simulations including charge cloud effects

Charge cloud effects, e.g. diffusion and Coulomb self-repulsion of the charge carri-
ers, within one charge cloud cannot be modeled if the cloud is described as a single
point charge. SSD offers the possibility to simulate a charge cloud using multiple point
charges which can diffuse independently and repel from other charge carriers within
the same charge cloud. The number of point charges is set by the user.

In SSD, two models for the initial distribution of the point charges within one charge
cloud are implemented, see Fig. 5.12. Both start with a point charge at the position
of the energy deposit. Around that center charge, additional point charges are placed
on shells. If the number of point charges is ≲ 50, point-like objects are placed on the
vertices of platonic solids in each shell, see Fig. 5.12a. For higher numbers of point
charges, each shell consists of point-like objects that are evenly distributed on spheres,
see Fig. 5.12b. The number and the radius of the shells can be set by the user. If point
charges are placed outside of the detector volume, they are moved inside along the
direction towards the center charge.

The charge resulting from Edep is distributed onto the individual point charges. SSD
provides functions to distribute the charge equally onto all point charges or exponen-
tially decreasing with distance to the center charge. Other charge distribution methods
can easily be implemented by the user.

(a) (b)
Figure 5.12: Example initial configurations of charge clouds consisting of a center charge and
(a) 40 charges distributed on two shells, each of which consists of vertices of a dodecahedron,
and (b) 200 charges evenly distributed on two spherical shells. Charges as shown as red points.
Dashed lines are shown to guide the eye.
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5.7.2.1 Diffusion

In SSD, diffusion is modeled using a random-walk algorithm [186]: For each time
step and point charge, a diffusion step vector with fixed length

√
6De/h∆t but random

orientation is added onto the step vector resulting from the electric field. The default
values in SSD for the diffusion coefficients in germanium are De = 101cm2/s and
Dh = 49cm2/s. The user can also pass custom values for De/h to SSD.

Figure 5.13 shows the result of a diffusion simulation, where charge clouds consisting
of 50 electrons and holes were diffusing in the absence of an external electric field for
1000 ns in time steps of ∆t = 1ns using the default values for De/h. As De > Dh, the
electron cloud expands faster than the hole cloud, see Figs. 5.13a and 5.13b. The size
evolution of the electron and the hole charge cloud shown in Fig. 5.13c agrees very
well with the analytical expression for the root mean square of

√
6De/h t expected in

three dimensions, see section 4.5.1.
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Figure 5.13: Two-dimensional projection of the distribution of (a) 50 electrons and (b) 50 holes
starting at the origin of the coordinate system and diffusing for 1000 ns as simulated with SSD.
(c) Size evolution of diffusing charge clouds consisting of 1000 point charges as a function of
time, t. The size, σ , was calculated from the simulated drift paths as the root mean squared
distance of all electrons/holes to the center of the charge cloud. The analytical expectations
σe/h =

√
6De/h t are shown as dashed lines for comparison. All simulations were performed

with ∆t = 1ns and the default values De = 101cm2/s and Dh = 49cm2/s.
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5.7.2.2 Coulomb self-repulsion

The implementation of the Coulomb self-repulsion in SSD is very straightforward. In
each step, the distance between each pair of point charges is determined. Each point
charge, P, at position, r⃗P, with charge qP creates an additional electric field,

E⃗ (⃗r) = qP

4πε0εr (⃗r)|⃗r− r⃗P|2
· r⃗− r⃗P

|⃗r− r⃗P|
. (5.11)

This electric field is added onto the static electric field. Then, the drift velocity vector
is determined and the charges are drifted as explained is section 5.7.1.

Figure 5.14 depicts the effects of Coulomb self-repulsion onto charge clouds consist-
ing of 500 point charges each with a charge corresponding to 500 eV. For E < E0,
the charge-carrier mobilities are µe ≈ 38570cm2/Vs and µh ≈ 61500cm2/Vs, see
Tab. 4.1. Thus, the hole cloud expands faster than the electron cloud, see Figs. 5.14a
and 5.14b. The analytical expression for the root mean square of

√
3/5 3
√

3µe/hQt/4πε0εr
is very well reproduced by the charge drift simulation, see Fig. 5.14c.
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Figure 5.14: Two-dimensional projection of the distribution of (a) 500 electrons and
(b) 500 holes starting on a sphere with radius 1 µm around the origin and self-repelling for
1000 ns as simulated with SSD. (c) Size evolution of these charge clouds as a function of
time, t. The analytical expectations σe/h =

√
3/5 3
√

3µe/hQt/4πε0εr are shown as dashed lines
for comparison. All simulations were performed with ∆t = 1ns and Edep = 250keV. The en-
ergy is equally distributed onto all 500 point charges.
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5.7.2.3 Initial charge-cloud size

In interactions of gammas with germanium, the initial size of the electron and hole
clouds depend on the energy of the recoil electron, see section 4.5.3. The initial charge-
cloud size defines an initial condition for the solution of the continuity equation.

For a spherical charge cloud with initial size, σ0, the root mean square of the expanding
cloud due to diffusion, σdiff

e/h , and due to Coulomb self-repulsion, σSR
e/h, are

σdiff
e/h =

√
6De/ht +σ2

0 (5.12)

σSR
e/h =

3
√√

27/125 ·3µe/hQt/4πε0εr +σ3
0 . (5.13)

Figure 5.15 depicts the size evolution of the electron and hole clouds for energy de-
posits, Edep, of 300 keV, 662 keV and 1020 keV. The initial charge clouds are modeled
as 2000 point charges, evenly distributed on a spherical shell with a diameter equal to
the practical range of electrons at the respective energy [181], see Tab. 4.3.
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Figure 5.15: Simulated size evolution of spherical charge clouds as a function of time, t,
resulting from (a) diffusion only and (b) Coulomb self-repulsion only, resulting from SSD sim-
ulations (solid) and the analytical expressions in Eqs. (5.12) and (5.13) (dashed). The diameters
of the initial charge clouds are set to the practical range for the annotated energies, see Tab. 4.3.
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Fig. 5.15a depicts the charge-cloud expansion due to diffusion. For Edep = 300keV,
the charge-cloud size increases by a factor of 4 for electrons and a factor of 3 for holes
after diffusing for 1000 ns. The relative increase after diffusion for 1000 ns is 67%
for electrons 42% for holes for Edep = 662keV, and 26% for electrons and 12% for
holes for Edep = 1020keV. The relative importance of diffusion effects decreases with
Edep due to the expansion rate not depending on Edep but exclusively on the diffusion
coefficients De/h.

The size evolution of the charge clouds due to Coulomb self-repulsion is shown in
Fig. 5.15b. In this case, Edep does not only affect the initial size of the charge clouds
but also the expansion rate via the charge Q contained within the clouds, see Eq. (5.13).
For Edep = 300keV, the electron and hole clouds expand to approximately 7 and
6 times their initial size after 1000 ns, respectively. For Edep = 1020keV, the elec-
tron cloud is more than twice and the hole cloud is slightly less than twice the initial
size due to Coulumb self-repulsion after 1000 ns. While the relative increase in charge-
cloud size decreases with Edep, the absolute increase in charge-cloud size is 350 µm for
electrons and 300 µm for holes.

5.8 Pulse-shape simulation

The charge pulses induced on the contacts are computed from the drift paths of the
charges and the weighting potentials of the contacts using the Schockley-Ramo theo-
rem, see section 3.4. For each point-like object, P, with charge qP and drift path, r⃗P(t),
the induced charge on the contact Si is given by

Qi(t) = ∑
P

qPWi(⃗rP(t)) , (5.14)

where Wi(⃗rP(t)) is linearly interpolated from the values at the closest grid points.
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Figure 5.16: (a) Electron and hole drift paths as simulated with SSD for a point-like energy
deposit at r =−2mm and z = 8mm in the example ICPC detector, together with the weighting
potential W1(⃗r) of the point contact in logarithmic color scale. The location of the energy
deposit is shown as an orange dot, the electron drift path as a red line and the hole drift path as
a green line. (b) Induced charges by the electrons (red) and holes (green), as well as the final
charge pulse (blue) on the point contact, normalized to its amplitude.
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Figure 5.16a depicts the results from the basic charge drift simulation of a single-site
event in the example ICPC detector. The energy is deposited close to the point contact,
where W1(⃗rdep)≈ 0.3. Therefore, the electron cloud induces a negative charge of
0.3qe and the hole cloud induces a positive charge of 0.3qh on the point contact. As
qh =−qe, both contributions cancel and the net induced charge on the point contact at
the time of the electron-hole pair creation is zero, see Fig. 5.16b. As the mantle contact
is at a positive potential, it attracts the electrons, which drift into a region where W1(⃗r)
becomes smaller. The holes drift towards the point contact where W1(⃗r) becomes
larger. Thus, the hole contribution to the point-contact pulse shape increases and the
electron contribution decreases with time, see Fig. 5.16b.

Kinks are observed in the simulated pulse shapes shown in Fig. 5.16b when the holes
or the electrons are collected on the contacts. The hole drift towards the point contact
results in a steep slope of the pulse compared to the still ongoing electron drift after the
holes are collected after around 60 ns. This is because the gradient of W1(⃗r) is steeper
close to the point contact than close to the mantle contact. For the ICPC detector
geometry, kinks preceded by steep slopes are attributed to hole collections and kinks
with preceding moderate slopes are attributed to electron collections.
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Figure 5.17: Electron and hole drift paths as simulated with SSD (a) for a single-site event and
(b) for a multi-site event in the example ICPC detector. The electron and hole charge clouds
each consist of 250 point charges. The locations of the energy deposits are shown as orange
dots, the electron drift paths as red lines and the hole drift paths as green lines. (b, d) Resulting
normalized charge signals on the point contact for different Edep as given in the legend.

64



Felix Hagemann

In Figs. 5.17a and 5.17c, events with energy deposits far away from the point contact,
where W1(⃗rdep) < 0.01, are depicted. Each energy deposit was simulated as a charge
cloud consisting of 250 electrons and 250 holes, allowing for diffusion and Coulomb
self-repulsion of the charge carriers within the charge clouds.

In Fig. 5.17b, the core pulse shapes for single-site events with different Edep in the
ICPC detector are shown. The electron contribution is below the percent level, i.e. the
pulse shapes are almost exclusively given by the hole contribution. At first, the holes
drift in regions with low E⃗ (⃗r) and small W1(⃗r), resulting in an almost flat beginning of
the pulse. Shortly before the holes reach the point contact, they pass through a region
where E⃗ (⃗r) and W1(⃗r) are strong, resulting in a very steep rise of the core pulse. The
kink observed at t = 1300ns for Edep = 200keV, preceded by the sharp rise, implies
that the holes are collected 1300 ns after they were created.

Figure 5.17d depicts the pulse shape for a multi-site event in the ICPC detector. It
features two kinks preceded by sharp rises at around 650 ns and 1300 ns. These can
be associated with the two times at which the respective hole cloud reaches the point
contact: 650 ns for the closer, and 1300 ns for the more distant cloud.

Figure 5.17 also demonstrates the effects of diffusion and Couloumb self-repulsion on
the charge-drift and the shape of the pulse. The effects of diffusion on the pulse shape
are expected to depend only on the diffusion coefficients De/h but not on the deposited
energy Edep. In contrast, the effects of Coulomb self-repulsion on the pulse shapes
increase with Edep. This is because the electric field created by a charge cloud itself
scales with E ∝

√
Q ∝
√

Edep. The more the charge cloud expands, the earlier the first
holes and the later the last holes reach the point contact. Therefore, the rise begins
earlier and ends later with increasing Edep, see Figs. 5.17b and 5.17d.
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Figure 5.18: Duration of the hole collec-
tion, tcoll, as a function of deposited energy,
Edep, for the single-site event at r = 20mm
and z = 60mm shown in Fig. 5.17a. The
electron and hole clouds each consist of 250
point charges. Diffusion and self-repulsion
are added to the simulation. The point at
Edep = 0keV corresponds to diffusion only.

The duration of the hole collection, tcoll,
is the time between the first and the last
hole reaching the point contact. If the
hole charge cloud is modeled as a single
point charge, tcoll becomes zero by defini-
tion. The charge cloud in the single-site
event shown in Fig. 5.17a was modeled
consisting of 250 point charges evenly dis-
tributed on a spherical shell with a diame-
ter of the practical range at a given energy,
see Eq. (4.48). Allowing for an indepen-
dent drift of the individual point charges
and including diffusion in the simulation
already results in tcoll = 14ns. The effect
of Coulomb self-repulsion on tcoll depends
on Edep and is shown in Fig. 5.18. From 0
to 2.5 MeV, Coulomb self-repulsion results
in an increase of tcoll to 82 ns.
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5.9 Post-processing of simulated pulses

5.9.1 Influence of the read-out electronics on the pulse shapes

The simulated charge pulses, Qi(t), for events with Edep of up to a few MeV tend
to have pronounced edges and kinks which occur on time scales of a few ns, see
Figs. 5.17b and 5.17d. These features are smoothed out in measurements due to the
limited bandwidth of the read-out electronics. In order to simulate data-like pulses,
Qmeas

i (t), the effects of the electronics on the pulses have to be properly modeled and
applied to the simulation output.
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Figure 5.19: Simulated charge pulse from the
multi-site event with Edep = 2MeV shown in
Fig. 5.17d, convolved with Gaussian response
functions with FWHM as given in the legend.

The effects of the read-out electronics on
charge pulses can be expressed via the
so-called response function, ζ (t). It de-
scribes what would be measured by the
read-out electronics for a Dirac δ -like
pulse as input and is typically determined
experimentally when characterizing the
read-out electronics.

Mathematically, the influence of the
read-out electronics is described as the
convolution of the simulated Qi(t) with
the response function, ζi(t), of the read-
out of contact i, plus random noise, n(t):

Qmeas
i (t) = (ζi ∗ Qi)(t)+n(t) . (5.15)

To demonstrate the effect of the response function on the final pulse shapes, Gaussian
response functions with different full widths at half maximum, FWHM, were con-
volved with the example pulse with Edep = 2MeV from Fig. 5.17d. The results are
shown in Fig. 5.19.

The electronics to read out pulses from germanium detectors typically have bandwidths
of 10 to 15 MHz, corresponding to a FWHM between 20 and 40 ns. For the response
function with a FWHM of 25 ns, the pulse shape looks almost identical to the raw pulse
obtained from the SSD simulation. The only observable differences are the smoothed-
out kinks directly after the sharp rises of the pulse.

The smoothing of the kinks becomes more pronounced with increasing FWHM. The
time difference between the charge collection time at 1300 ns and the pulse reaching
its final amplitude is approximately the FWHM of the response function. The fast
rises can only be resolved if the FWHM of the response function is comparable to
the time scale within which the fast rise is expected. For the example pulse shown in
Fig. 5.19, a response function with a FWHM of 500 ns almost completely smooths out
the double-kink structure, hiding characteristic features of the pulse relevant for pulse
shape analysis.
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5.9.2 Cross-talk models

The number of pulses obtained per event corresponds to the number of read-out con-
tacts of the detector, N. These N pulses are not only subject to the limited bandwidth
of the read-out electronics but also to possible cross-talk effects, see section 3.4.4.

The relation between the simulation output, Qi(t), and the pulses after applying cross-
talk, QC

i (t), can be modeled via two cross-talk matrices, CL and CD:



QC
1 (t)
...

QC
N(t)




︸ ︷︷ ︸
= Q⃗C(t)

=




CL
1,1 . . . CL

1,N
... . . . ...

CL
N,1 . . . CL

N,N




︸ ︷︷ ︸
=CL




Q1(t)
...

QN(t)




︸ ︷︷ ︸
= Q⃗(t)

+




CD
1,1 . . . CD

1,N
... . . . ...

CD
N,1 . . . CD

N,N




︸ ︷︷ ︸
=CD




d
dt Q1(t)

...
d
dt QN(t)




︸ ︷︷ ︸
= d

dt Q⃗(t)

. (5.16)

The non-diagonal matrix elements, CL
j,k and CD

j,k, describe the linear and differential
cross-talk on contact S j originating from contact Sk. The diagonal elements of the
linear cross-talk matrix, CL

j, j, describe the amplification of the pulse Q j(t) given by
the read-out of the contact S j. The diagonal elements of the differential cross-talk
matrix, CD

j, j, are zero as the concept of cross-talk of a contact onto itself would imply
a self-amplification which is non-physical here.

The models for the limited bandwidth of the read-out electronics and for cross-talk can
also be combined. If ζ j is the response function of contact S j, then

QC
j (t) = ζ j ∗

(
N

∑
k=1

CL
i,k Qk +

N

∑
k=1

CD
i,k

d
dt
(ζk ∗Qk)

)
(t) , (5.17)

where the response functions are applied to the pulses entering the differential cross-
talk and the final set of pulses.
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6 The segmented Broad Energy germanium detector
The charge-drift models and mobility parameters used in SSD are tested against data
to examine their validity. This is done by simulating existing detectors and comparing
the output of the simulation to data. For this thesis, a p-type segmented Broad Energy
germanium, segBEGe, detector was chosen as test detector.

6.1 Detector geometry and specifications

The p-type segBEGe detector is a research detector designed at the Max Planck Insti-
tute for Physics in Munich and produced by Mirion Technologies, formerly Canberra
France. The geometry of the p-type segBEGe detector is depicted in Fig. 6.1 and its
specifications are listed in Tab. 6.1. Its geometry resembles that of regular unsegmented
p-type BEGe detectors as used in the LEGEND experiment but its segmentation allows
for more detailed studies.

Core contact Passivated surface Segment 1Segment 2 Segment 3

Segment 4
r in mm

0−R R

z in mm

0

H

(a) (b)
Figure 6.1: Schematic of the segBEGe detector geometry: (a) top view and (b) bottom view. In
(a), the cylindrical coordinate system to describe positions in the segBEGe detector is shown.

Table 6.1: Specifications of the p-type segBEGe
detector as provided by Mirion Technologies [187].

Core contact material p+ boron

Segment contact material n+ lithium

Diameter 2R 74.5 mm

Height H 39.5 mm

Core contact diameter 15.0 mm

Passivation outer diameter 39.0 mm

Net impurity density (top) 6.5 ·109 cm−3

Net impurity density (bottom) 5.8 ·109 cm−3

Recommended VB at core −3000 V

The p-type segBEGe detector has a
diameter of 74.5 mm and a height of
39.5 mm. It features a 15 mm-diameter
p+ point contact, i.e. the core contact,
on the top surface and a four-fold seg-
mented n+ contact on the mantle sur-
face of the detector. The core contact is
surrounded by a passivated area with a
diameter of 39 mm, see Fig. 6.1a. Seg-
ments 1, 2 and 3 each extend over an
arc of 60◦ and cover the outer 30 mm
on the bottom surface. Segment 4 cov-
ers the remaining regions and has a
closed bottom end-plate, see Fig. 6.1b.
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The core contact of the p-type segBEGe detector was fabricated using boron implanta-
tion. Thus, the core contact is expected to extend only up to 500 nm into the bulk. The
segment contacts were fabricated using lithium diffusion. Therefore, they are expected
to penetrate up to 1 mm into the bulk of the detector [187, 188]. To ensure that the
segments do not overlap, the segments are more than 1 mm apart. The segment con-
tacts are coated with a thin film of aluminum to provide easy contacting and to achieve
better field stability.

The manufacturer recommends applying a bias voltage of −3000V to the core contact
in order to fully deplete the detector. The segment contacts are kept at ground. The
full-depletion voltage was measured to be VD = −1275V.The manufacturer also pro-
vided values for the net impurity density at the top and at the bottom of the detector
determined from Hall measurements, see Tab. 6.1. According to these values, impurity
density increases by 12.1% from the bottom to the top.

In this thesis, positions in the p-type segBEGe detector are described using the cylin-
drical coordinates, r, ϕ and z, shown in Fig. 6.1a. The center of the detector in the
horizontal plane is defined as r = 0mm. The polar angle has its origin ϕ = 0◦ at the
boundary between the segments 1 and 4 which is closer to segment 3 and increases
counterclockwise, looking from the top. The bottom of the detector corresponds to
z = 0mm. The color scheme used in Fig. 6.1 for the contacts is used throughout this
thesis. Whenever subscripts are used for variables, the subscript 0 refers to the core,
while the subscripts 1, 2, 3 and 4 refer to the segment with the respective number.

6.2 Detector cryostat K2 and data-acquisition system

The p-type segBEGe detector is installed inside the cryostat K2 depicted in Fig. 6.2.
The cryostat facilitates the operation in a vacuum environment and at stable tempera-
tures, allowing for the investigation of the temperature dependence of pulse shapes.

(a) (b) Infrared
shield
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Holding
structure

Temperature
sensors

Preamplifier
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≲
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Figure 6.2: (a) Photo and (b) schematic cross-section of the top part of the detector cryostat K2.
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The detector is embedded in a holding structure which keeps the detector at a stable
position inside the cryostat, see Fig. 6.2b. The bottom part of this holding structure is
connected to a copper cold finger which thermally connects the detector to the electric
cooling system which is externally supported by water cooling. The cooling system
constantly reads out the temperature via a temperature sensor installed at the tip of the
cold finger and keeps the temperature stable to ±0.5K through a feedback loop. In
addition, the temperature can also be read out by a set of three temperature sensors
which are attached to the bottom of the detector holding structure, see Fig. 6.2b.

The volume surrounding the detector is pumped to a vacuum of ≲ 10−5 mbar. In ad-
dition, molecular sieves installed inside the cryostat absorb extraneous gases. This
prevents contaminations on the surface of the detector resulting from cold trapping or
from attracting small charged particles which can lead to surface leakage currents and
increased electronic noise.

For each event, the p-type segBEGe detector produces one charge pulse for each of
the five contacts, see section 3.4. Charge-sensitive read-outs [189] are used to convert
these charge pulses to voltage pulses which are then further processed by the data
acquisition system, DAQ. The charge-sensitive preamplifier system used for the p-type
segBEGe detector is depicted in Fig. 6.3.

ADCRB

VB

CC

−
+

R f

C f

Test inputHigh-voltage supply IR shield & holding structure

Segment output

Figure 6.3: Schematic of the data acquisition system of the p-type segBEGe detector. The
simplified RC feedback charge-sensitive preamplifier circuit used for the core output is high-
lighted in green. The bias voltage VB is applied through a bias resistor RB and decoupled from
the core preamplifier system by the coupling capacitor, CC. The segments are kept at ground
through their preamplifiers. The preamplifier systems reading out the segments are not shown.

In charge-sensitive amplifiers, the charges from the detector are collected on the feed-
back capacitor, C f . The output voltage is proportional to the integrated charge on C f .
If the detector contact collects charge carriers, charge accumulates on C f . To reset the
output voltage to the initial baseline value, a resistor, R f , is included in the feedback
loop. This ensures the exponential discharge of the feedback capacitor with a charac-
teristic 1/e decay time, τ = R fC f , which is around 50 µs for all contact read-outs.
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Each contact of the p-type segBEGe detector is connected to its own PSC823C pream-
plifier [190]. The complete preamplifier boards for processing the segment outputs are
placed in a ring around the cryostat below the vacuum cap housing the detector, see
Fig. 6.2. The preamplifier ring is covered by an aluminum cage to screen against elec-
tromagnetic radiation and flushed with gaseous nitrogen to prevent corrosion damage.

For the core contact, C f and R f as well as a part of the preamplifier are installed very
close to the core contact in the cold part of K2. This prevents electronic noise result-
ing from the capacitance of a long cable, improving the energy resolution of the core
contact. The coaxial wire connected to the core contact is used both to apply the bias
voltage, VB, through a bias resistor, RB, and to the read out the pulses. The constant
offset in the electric potential of VB is filtered out by inserting a coupling capacitor, CC,
of 1.2 nF between the core contact and the core preamplifier, see Fig. 6.3. The remain-
ing preamplifier read-out electronics for the core are placed at room temperature in the
preamplifier ring together with the segment amplifiers.

The amplified voltage pulses are accessed from the outside through cable feed-throughs
at the bottom of the preamplifier ring and passed to a 16-channel analog-to-digital con-
verter, ADC, STRUCK SIS3316-250-14 [191]. Pulses from events exceeding a prede-
fined threshold in the core are recorded with a sampling frequency of 250 MHz, i.e. a
sampling time of 4 ns. The voltage values for every sample are converted to 14 bit in-
teger numbers between 0 and 16383 which are referred to as ADC units. In addition
to the trigger threshold, the gain and time interval in which the pulses are recorded
can be set. As the segments collect electrons, all segment pulses were inverted by the
STRUCK ADC to store them with positive pulse amplitudes.

6.3 Simulation results with manufacturer specifications

Figure 6.4: Geometry of the segBEGe
detector, its holding structure and its
infrared shield as defined in SSD.

The detector specifications and the geometry of
the structures inside the K2 cryostat are needed as
input to calculate the electric field and to simulate
pulse shapes for the p-type segBEGe detector.

For the K2 setup, it is sufficient to simulate the
detector together with its holding structure and
the grounded infrared shield, see Fig. 6.4. These
metallic parts shield the detector from electric po-
tentials further away. Including these parts in the
simulation changes the electric potential in the
bulk by only a few volts [192, p. 133].

As only two impurity density values at the top and
at the bottom of the detector were provided by the
manufacturer, a linear z-dependence but no r- and
ϕ-dependence of the impurity density profile are
initially assumed. The values are scaled to 89% to match the measured full-depletion
voltage of VD = −1275V. The thickness of the segment contacts is assumed to be
0.75 mm. These assumptions will be tested in comparison to data later in this thesis.
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6.3.1 Electric potential and electric field

The electric potential and the electric field inside the p-type segBEGe detector result
from the bias voltage applied to the core contact and from the space charge density
resulting from the ionized impurities in the detector bulk, see section 3.3.2. The con-
tributions to φ (⃗r) and E⃗ (⃗r) are shown in Fig. 6.5.
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Figure 6.5: Electric potential and electric field in the p-type segBEGe detector in the r-z-plane
at ϕ = 30◦ as calculated with SSD using the impurity density values listed in Tab. 6.1 scaled
to 89%, assuming only a linear z-gradient. In (a) and (b), φV and EV only result from the bias
voltage of −3000V applied to the core contact. In (c) and (d), φρ and Eρ only result from
the ionized impurities in the detector bulk. In (e) and (f), the φ and E resulting from the sum
of both contributions are depicted. The electric potential is shown with equipotential lines for
every 250 V level. The electric field is shown together with electric field lines.
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In Figs. 6.5a and 6.5b, the electric potential, φV (⃗r), and field, E⃗V (⃗r), arising from the
bias voltage applied to the core contact, see Eq. (3.15), are shown. The electric field
E⃗V (⃗r) predominantly points towards the core contact and is strong close to the core
contact and very weak at the mantle and the bottom of the detector. If E⃗V (⃗r) was the
only contribution to the total electric field, the charge-collection times for events from
the bottom of the detector would exceed the lifetimes of the charge carriers, resulting
in inefficient charge collection.

The ionized impurities inside the depleted detector lead to an additional contribution
to the electric potential and electric field, see Eq. (3.16), shown in Figs. 6.5c and 6.5d.
The slight increase of the impurity density towards higher z results in the peak value
of φρ (⃗r) of −1017V being reached slightly above the center of the detector bulk. Ac-
cordingly, E⃗ρ (⃗r) points towards the center of the detector and is strongest close to the
detector surface and weakest in the middle of the detector. In the volume underneath
the core contact, E⃗ρ (⃗r) points in the opposite direction as E⃗V (⃗r).

The overall electric potential, φ (⃗r), and field, E⃗ (⃗r), are shown in Figs. 6.5e and 6.5f.
The electric field underneath the core contact is dominated by E⃗V (⃗r) and in the rest of
the detector by E⃗ρ (⃗r). The bias voltage, VB, needs to be high enough such that E⃗V (⃗r)
fully compensates E⃗ρ (⃗r), which points away from the core contact. This requirement
defines the full-depletion voltage, which was determined as VD =−1275V from mea-
surements of energy-peak positions and detector capacitances at different VB. The de-
tector efficiently collects charge carriers on the core contact for VB above VD. If charge
carriers are created close to the detector surface, E⃗ρ (⃗r) pulls the holes to the center of
the detector where they are accelerated upwards towards the point contact by E⃗V (⃗r).

6.3.2 Performance of the point contact
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Figure 6.6: Weighting potential, W0, of the core
contact of the p-type segBEGe detector in the r-
z-plane at ϕ = 30◦ as calculated with SSD, with
equipotential lines for every 10% level.

The weighting potential of the core con-
tact, W0(⃗r), and φV (⃗r) differ only by a
scaling factor, VB. As shown in Fig. 6.6,
W0(⃗r) increases rapidly close to the core
contact and is very weak in the rest of the
detector. The structure of W0(⃗r) leads to
the characteristic core pulse shapes from
BEGe detectors, see Fig. 6.7.

In Fig. 6.7a, the charge drift paths re-
sulting from a single-site event in the
outer part of the detector are depicted.
The electrons are quickly collected on
the mantle surface and do not contribute
noticeably to the core charge pulse as
W0(⃗re) is very weak along their path. The holes drift towards the center of the detector
before moving upwards towards the core contact. During the early hole drift, W0(⃗rh)
increases slowly, leading to a slow rise of the core pulse. Below the core contact,
W0(⃗rh) has a high gradient, resulting in a steep rise at the end of the core charge pulse.
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The derivative of the charge signal is the current signal. For a single-site event, the
current initially has an almost constant value and features a peak shortly before the
holes reach the core contact, see Fig. 6.7b. The characteristic shape of the current
pulse with a slow beginning and a steep end, as expected from single-site events, is
observed multiple times in a multi-site event if the holes from each energy deposition
reach the core contact at different times, see Fig. 6.7d. Hence, pulse shape analysis
allows to classify events as single-site or multi-site.

One way to discriminate pulse shapes is the A/E-method [31], used in the analysis
of data from the BEGe detectors in the GERDA and LEGEND experiments. When
normalized to the charge pulse amplitude, E0, the maximum current amplitude, A0, is
typically smaller for multi-site events than for single-site events. Hence, a threshold
for the ratio A0/E0 can be determined, above which events are classified as single-site.
More complex techniques based on deep learning algorithms [193] currently under de-
velopment require less tuning and might recognize background events more efficiently.
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Figure 6.7: Drift paths from (a) a single-site event and (c) a multi-site event in the p-type
segBEGe detector in the r-z-plane at ϕ = 30◦ with corresponding pulse shapes in (b) and (d)
as simulated with SSD. The electron and hole clouds each consist of 250 point charges. The
charge signal shown in blue and the corresponding current signal shown in pink are both nor-
malized to the amplitude of the core charge pulse, E0.
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6.3.3 Segmentation

The n+ contact of the p-type segBEGe detector is divided into four segments, see
Fig. 6.1. In Fig. 6.8, the weighting potentials in the r-z-plane at ϕ = 30◦ of the four
segments are shown. At ϕ = 30◦, segments 1 and 4 cover part of the detector surface
and, thus, W1(⃗r) and W4(⃗r) are large. In contrast, W2(⃗r) and W3(⃗r) are comparatively
small with peak values of around 0.18. This means that a charge cloud at ϕ = 30◦ will,
during the drift, induce a maximum of 18% of its charge on segments 2 and 3.

The weighting potentials of segments 1, 2 and 3 increase steadily close to the respective
contact. However, the large area of the segments prevents the formation of gradients
in the bulk as steep as the one observed in W0(⃗r). The weighting potentials of the seg-
ments also increase steadily towards the core contact along the passivated area. Very
steep gradients are seen at the boundaries of adjacent segments. Further away from
the segment contacts, the weighting potentials are comparatively small. Thus, charges
drifting far from the three small segment contacts will only be seen weakly. Resulting
from the contact geometry of segment 4, W4(⃗r) extends wide into the detector bulk.
Figure 6.8d shows that W4(⃗r) is still 0.5 in the center of the detector. Hence, charges
drifting inside the detector will, during their drift, always induce a noticeable amount
of charge on segment 4, even if the electron-hole pairs were created close to the contact
of one of the smaller segments.
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Figure 6.8: Weighting potentials of the four segments of the p-type segBEGe detector in the
r-z-plane at ϕ = 30◦ as calculated with SSD. Equipotential lines are shown for every 5% level.
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Figure 6.9: Drift paths from (a) a single-site event and (c) a multi-site event in the p-type
segBEGe detector in the r-z-plane at ϕ = 30◦. The electron and hole clouds each consist of
250 point charges. The corresponding charge pulses as simulated with SSD are shown in (b)
and (d). The pulses are normalized to the amplitude of the core pulse and depicted in the color
scheme introduced in Fig. 6.1.

The electrons are collected on the segment contact that is closest to their point of
creation. In most single-site events, the electrons are collected on a single segment,
see Fig. 6.9a. Thus, the pulse of the collecting segment Si has the same amplitude, Ei,
as the core pulse, i.e. Ei = E0, see Fig. 6.9b. The other segments produce mirror pulses
which return to their baseline value after all charges have been collected.

In multi-site events, the electrons are collected on different segments if the energy
deposits are sufficiently separated, see Fig. 6.9c. In that case, the amplitudes of the
charge pulses in all segments Si will be lower than the amplitude of the core charge
pulse, i.e. Ei < E0, see Fig. 6.9d. Events with multiple collecting segments result from
either multi-site events or from single-site events close to a segment boundary. De-
manding all charge carriers to be collected on a single segment can be used to inde-
pendently discriminate against multi-site events, especially those with similar r and z,
but different ϕ .
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6.3.4 Depletion behavior
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Figure 6.10: Depleted volumes of the
p-type segBEGe detector as determined
with SSD for different VB using the ρ val-
ues listed in Tab. 6.1 scaled to 89%, as-
suming only a linear z-gradient. The de-
pleted volumes are shown in green, the
undepleted volumes are shown in yellow.

The p-n-junction in the p-type segBEGe de-
tector forms between the bulk and the seg-
ments. Thus, the detector is expected to de-
plete from the segments into the bulk.

The development of the depleted volume for
the p-type segBEGe detector was simulated
with SSD using the values for the impurity
density ρ as provided by the manufacturer, see
Tab. 6.1, scaled to 89%. The depleted volumes
predicted by full 3D simulations and by faster
2D simulations neglecting the segmentation of
the n+ contact were seen to be identical for
all relevant purposes. Therefore, these sim-
ulations were performed in 2D and only val-
idated with 3D simulations before final con-
clusions were drawn. The simulation results
are shown in Fig. 6.10 and discussed quantita-
tively in Appendix D on page 189.

For VB below −300 V, the depleted volume
penetrates with similar widths from the top,
bottom and outer surface into the bulk of the
detector, see Fig. 6.10a. The bottom interface
between the depleted and the undepleted vol-
umes is mainly flat. The outer interface is ba-
sically cylindrical.

At VB = −600V, the undepleted volume is
significantly smaller, see Fig. 6.10b. The bot-
tom interface is still mainly flat while the outer
interface becomes bottle-shaped. The unde-
pleted volume fully covers the core contact.

With increasing VB, the undepleted volume
becomes more drop-shaped, see Figs. 6.10c
and 6.10d. At VB = −900V, a part of the
core contact is in direct contact with depleted
germanium. The undepleted volume becomes
smaller and moves further up until completely
disappearing at the full-depletion voltage.

In large-volume detectors, the undepleted volume can disconnect from the contacts,
resulting in an isolated undepleted volume in the bulk of the detector. This is known
as pinch-off [11]. Based on the SSD simulations, the undepleted volume is always con-
nected to the core contact and no pinch-off is expected for the p-type segBEGe detector.
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6.3.5 Simulated CV curve

The capacitance matrix for the fully-depleted p-type segBEGe detector is obtained
from the weighting potentials of the core contact and the four segments:

c =




5.54 −0.89 −0.89 −0.89 −2.78

−0.89 35.18 −0.58 −0.58 −32.99

−0.89 −0.58 35.18 −0.58 −32.99

−0.89 −0.58 −0.58 35.18 −32.99

−2.78 −32.99 −32.99 −32.99 101.38




pF . (6.1)

This capacitance matrix is defined by the geometry of the detector and the contacts and
is not influenced by the impurity density profile in the bulk of the detector.

One characteristic of a germanium detector is its capacitance-voltage curve, CV-curve.
It describes how the detector capacitance, Cd , evolves with VB below the full-depletion
voltage VD. For the segBEGe detector, the detector capacitance, Cd , is defined as
the capacitance between the core contact and all segments, i.e. the single n+ contact
obtained by connecting all segments together.

The detector capacitance can be calculated from the weighting potentials of the con-
tacts. The depleted volumes shown in Fig. 6.10 enter the weighting potential calcu-
lation and, thus, influence Cd , see section 5.6. There were no noticeable differences
between the results from full 3D simulations and faster 2D simulations.

The CV-curve for the p-type segBEGe detector as determined from 2D simulations
using the impurity density values in Tab. 6.1 scaled to 89% is shown in Fig. 6.11. For
VB = −120V, Cd is 258.4 pF. With increasing VB, Cd decreases monotonously until
reaching its minimal value of 5.54 pF at VD = −1275V. Above VD, the weighting
potential calculation is not affected by VB, resulting in a constant Cd .
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Figure 6.11: CV-curve for the p-type segBEGe detector as calculated with SSD using the
impurity density values listed in Tab. 6.1 scaled to 89%, assuming only a linear z-gradient.
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7 Pulse processing
The physical observables of germanium detectors are charge pulses. The charges col-
lected on the contacts and, thus, the deposited energies can be determined from the
amplitudes of the pulses. The shapes of the pulses provide information about the event
topologies.

Unfortunately, the read-out electronics have a significant impact on the measured pulses.
First of all, the finite bandwidth of the preamplifiers limits the capabilities to resolve
fast changes in the pulse shapes. In addition, an exponential decay in the tail of the
pulses is caused by from the RC feedback in the preamplifier circuit, see Fig. 6.3.
Finally, measured pulse shapes are subject to noise and are recorded in uncalibrated
ADC units that need to be converted to charge or energy units.

In this chapter, methods to correct for these electronics effects, to determine the pulse
amplitudes and to calibrate these pulse amplitudes to true energies are presented.

7.1 Basic determination of pulse amplitudes

A basic procedure to determine the pulse amplitudes is explained using the output
pulses resulting from injecting voltage pulses into the test input of each preampli-
fier circuit, see Fig. 6.3. Rectangular voltage pulses with peak-to-peak amplitudes
of 150 mV were generated at a rate of 66.7 Hz. The rise times of these rectangular
pulses were determined with an oscilloscope to be 2 ns.

For each preamplifier circuit, the output pulses were recorded for 5 min. Each out-
put pulse was recorded over a time interval of 20 µs. An example output pulse is
shown in Fig. 7.1. The amplitude of the pulse corresponds to the charge collected
on the feedback capacitor of the preamplifier circuit. The charge values are stored as
14 bit unsigned integer numbers in uncalibrated ADC units.
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Figure 7.1: Example output pulse from the core preamplifier in response to a rectangular volt-
age pulse on the test input of the preamplifier. The dashed lines separate three parts of the
pulse: the baseline window, the signal window and the tail window.
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Pulses were divided into three parts: the baseline window, the signal window and the
tail window. The baseline window covers the part of the pulse before the rise and
is ideally flat. The signal window is set around the part of the pulse in which the
rise is observed. The tail window covers the part of the pulse in which the pulse
has reached its final amplitude and only the exponential decay from the preamplifier
feedback is observed.

The baseline of the example pulse shown in Fig. 7.1 is flat. The mean value of the
baseline corresponds to no charge collected on the feedback capacitor of the pream-
plifier system, i.e. Q(t) = 0. The mean baseline values are non-zero and different for
the different preamplifier circuits. These offsets are corrected for by subtracting the
mean baseline value as determined from the baseline window from the pulses on an
event-by-event basis, see Fig. 7.2.
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Figure 7.2: Baseline-corrected pulse from Fig. 7.1 with an exponential fit to the tail shown in
red used to extract the decay time τ0 of the core preamplifier circuit.

The exponential decay of the output signal is clearly visible in the tail window of the
pulses, see Fig. 7.2. The output pulse has already decayed to around 80% of the initial
pulse amplitude 10 µs after the end of the rise. To measure the pulse amplitude, the
pulses need to be corrected for this decay.

For each contact read-out i ∈ {0,1,2,3,4}, the decay times τi are assumed to be con-
stant for a given configuration. Their values are determined by fitting an exponential
function to the tails of the baseline-corrected pulses. The fits are performed via linear
regression to the logarithm of the pulse tail to ensure stable and fast computation. The
decay time τi is then given by the inverse negative slope of the fit:

Qi(t) = Qmax
i exp(− t

τi
) ⇒ ln(Qi(t)) = ln(Qmax

i )− t
τi

. (7.1)

The fit results for the τi fluctuate on an event-by-event basis due to electronic noise.
Their distributions are well described by Gaussian distributions, see Fig. 7.3a. The mean
decay times, τ̄i, and the full widths at half maximum, FWHM, determined by Gaussian
fits are listed in Fig. 7.3b. The decay times are around 50 µs. The τ0 distribution for the
core is the narrowest, directly followed by the ones for τ3 and τ1. Higher noise levels
in the read-out of segments 2 and 4 lead to broader distributions in τ2 and τ4.
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Figure 7.3: (a) Distribution of τi of the preamplifier output pulses from 5 min pulser mea-
surements for the p-type segBEGe detector. (b) Mean decay times, τ̄i, and full widths at half
maximum, FWHM, as determined from Gaussian fits to the distributions.

The mean values for the decay times, τ̄i, are used to filter out the exponential decay
on a sample-by-sample basis throughout the whole length of the output pulses. The
decay correction has no noticeable effect on the flat baseline but compensates for the
exponential decay in the tail window, resulting in a flat tail. In Fig. 7.4, the decay-
corrected pulse corresponding to Fig. 7.1 is shown.
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Figure 7.4: Decay-corrected pulse from Fig. 7.2 using τ̄0 = 50.723µs from Fig. 7.3, resulting
in a flat tail of the pulse. The measured pulse amplitude, M0, in ADC units is given by the
difference between the mean value of the pulse in the tail window and in the baseline window.

After baseline and decay correction, the measured charge pulses ideally start with a flat
baseline and end with a flat tail. The measured pulse amplitude, Mi, i.e. the difference
between the average values in the tail window and the baseline window, are measures
for the total charge collected on the feedback capacitor of the preamplifier circuit of
the contact Si. The shape of the corrected pulse in the signal window can be analyzed
to extract information about the event topology.
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7.2 Pile-up and improved determination of pulse amplitudes

For pulses starting on a flat baseline, the procedure described in section 7.1 provides
a sufficient estimate of the pulse amplitudes Mi. However, it is possible that a pulse
starts on the decaying tail of the previous pulse or is distorted by a rapidly following
pulse. This is referred to as pile-up.

Pulses from pile-up events start with a negative slope in the baseline window or feature
a sudden rise in the tail window. For pile-up events, the baseline and decay correc-
tion described in section 7.1 does not result in pulses with flat baselines and tails, see
Fig. 7.5. As a consequence, the values for Mi are underestimated for pile-up in the
baseline window and overestimated for pile-up in the tail window.

Pile-up can be rejected by discarding pulses with negative slopes above a given thresh-
old. However, this reduces the statistics. Therefore, the pulse correction procedure and
the determination of Mi were improved to also work for pile-up events.
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Figure 7.5: (a) Example pile-up pulse as measured by the core contact of the p-type segBEGe
detector, (b) after subtracting the mean value in the baseline window and (c) after correcting
with the exponential decay constant as determined from the tail window.
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The mean baseline value for pile-up pulses is different from the zero-baseline value
corresponding to Qi(t) = 0. Therefore, the baseline correction was not performed by
subtracting the mean baseline values from the pulses on an event-by-event basis, but by
subtracting the same zero-baseline value from all pulses. This zero-baseline value was
determined for each 5 min measurement separately. Assuming no significant baseline
shifts, the zero-baseline value can be determined from the baseline mean spectrum for
each contact.

Figure 7.6 shows the distribution of mean baseline values for pulses measured in the
core contact of the p-type segBEGe detector from a 5 min measurement with no sig-
nificant baseline shifts. The zero-baseline value is determined as the peak position of
the Gaussian distribution fitted to the main peak that contains most of the events.
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Figure 7.6: Example spectrum of the mean baseline values as determined for core pulses from
the baseline window. The zero-baseline value can be determined as the mean of the Gaussian
distribution fitted to the main peak.

In some measurements, the zero-baseline value was not constant within a 5 min mea-
surement but subject to sudden changes. This is referred to as common ground. In
these measurements, time-dependent zero-baseline values were determined and sub-
tracted from the individual pulses.

The pulse correction for an example pile-up pulse is depicted in Fig. 7.7. Instead of
subtracting the mean value in the baseline window, the zero-baseline value is sub-
tracted. Then, the exponential decay is corrected for over the whole pulse length using
the mean decay time of the core contact, τ̄0. The corrected pulse features a flat baseline
at a non-zero value and a flat tail, from which the measured pulse amplitude M0 can be
determined.
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Figure 7.7: (a) Example pile-up pulse shown in Fig. 7.5a, (b) after subtracting the zero-baseline
value of 8116.3, see Fig. 7.6, and (c) after correcting the exponential decay with τ̄0 = 50.723µs.

7.3 Response functions

The preamplifier circuits do not only lead to an exponential decay of the pulses. They
also have a limited capability to process high-frequency signals, i.e. their bandwidth is
limited, such that abrupt changes in the charge signal are smoothed out.

The effect of the limited bandwidth on the measured pulses can be quantified by study-
ing the output pulses from the pulser measurement. The output pulses expected in re-
sponse to the rectangular input pulses are expected to occur every 15 ms and to have
similar measured pulse amplitudes. For example, 18 171 measured output signals from
the core were selected imposing a cut on the pulser frequency and the measured pulse
amplitudes. The baseline- and decay-corrected pulses are shown in Fig. 7.8.

The output signals are very reproducible, implying that the influence of the read-out
electronics on the measured pulse shapes is not subject to significant statistical fluctua-
tions. The only differences between the individual pulses result from electronic noise.
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Figure 7.8: Baseline- and decay-corrected output pulses in response to rectangular voltage
pulses on the test input of the core preamplifier. The pulses are time-aligned to reach their
maximum slope at the same time. Shown as a dashed line is the input signal.

The 5-95% rise times of the output pulses, which are defined as the times in which the
pulses rise from 5 to 95% of their final amplitude, are in average (63.2± 0.4)ns and
significantly longer than the 2 ns rise times of the input pulses. This illustrates that the
limited bandwidth does not allow for the observation of extremely fast changes in the
pulses which might be predicted by simulations for specific cases.

For each detector contact Si, i ∈ {0,1,2,3,4}, the influence of the read-out electronics
on the raw pulse shapes Qi(t) can be described by the respective response function
ζi(t), see section 5.9.1. The narrower the response function, the higher the bandwidth
of the preamplifier and the less influence on the pulse shapes is expected.

The rectangular input pulses rise faster than the 4 ns sampling time of the STRUCK
ADC and follow approximately the course of a Heaviside step function, H(t) [194].
The distributional derivative of the Heaviside step function is the Dirac-δ -distribution.
Therefore, the expected output pulse in response to a step input pulse, i.e. Qi(t)≈ H(t),
assuming a negligible noise level, i.e. n(t)≈ 0, is given by Eq. (5.15) as

Qmeas
i (t)≈ (ζi ∗ H)(t) =

∞̂

−∞

dt ′ζi(t ′)H(t − t ′) (7.2)

⇒ d
dt

Qmeas
i (t)≈

∞̂

−∞

dt ′ ζi(t ′)
d
dt

H(t − t ′) =

∞̂

−∞

dt ′ ζi(t ′)δ (t − t ′) = ζi(t) . (7.3)

In other words: the response functions ζi(t) can be identified with the derivatives of
the baseline- and decay-corrected output signals from the pulser measurement. For
individual output pulses, the noise level is too large to determine ζi(t). However, the
statistical fluctuations caused by electronic noise can be removed by creating super-
pulses from approximately 20 000 pulses for each read-out channel.

The response functions determined from the derivatives of the low-noise superpulses
have to be normalized to unit area to preserve the pulse amplitude. The response
functions for the core and segment preamplifier circuits of the p-type segBEGe detector
are depicted in Fig. 7.9.
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Figure 7.9: Response functions of the preamplifiers of the p-type segBEGe detector. The pulses
are aligned to reach their maximum at t = 0ns and normalized to unit area.

The core response function has a FWHM of 40.6 ns and is the narrowest of all response
functions. This results from the fact that a part of the core preamplifier is installed
inside the cold part of K2, which reduces the input capacitance to the preamplifier.
Thus, the core pulse shapes are influenced the least by the read-out electronics.

The segment response functions show broader and more asymmetric shapes. They
have a small negative dip at the beginning, followed by a comparatively fast rise and a
slow end. Especially, the response function of segment 4 shows a long tail. This is due
to the large capacitance of segment 4. This means that the pulse shapes of segment 4
are most affected by the bandwidth of the system.

7.4 Energy calibration

Figure 7.10 shows the spectra of measured pulse amplitudes for all contacts of the p-
type segBEGe detector resulting from a 2 h measurement with an uncollimated 133Ba
source on top of the K2 cryostat. The peaks observed in the spectra can be associated
with radioactive decays with known gamma energies [119]. The positions of the peaks
in the uncalibrated spectra mostly depend on the amplification and the input ranges of
the preamplifiers. While the position of the peaks are quite similar in the four segment
spectra, the uncalibrated core spectrum peaks at larger ADC values.

In experiments, the true energies are not directly measurable but can be reconstructed
from the measured pulse amplitudes. To first order, the measured pulse amplitudes can
be calibrated to true energies by scaling them with raw calibration factors. This ac-
counts for the different gains of the preamplifier circuits. These factors are determined
by fitting the peaks observed in the spectrum to the known characteristic energies [119]
of the associated radioactive decays. The values for the core and the four segment read-
out chains are listed in Fig. 7.10. However, due to linear cross-talk between the detector
contacts, simply scaling the measured pulse amplitudes by raw calibration factors does
not lead to an accurate reconstruction of the true energies.
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Figure 7.10: Uncalibrated energy spectra for all contacts of the p-type segBEGe detec-
tor, obtained from a 2 h measurement with an uncollimated 133Ba source on top of the
K2 cryostat. Labeled are the most dominant peaks associated with the decays of 133Ba
(80.997 keV, 276.398 keV, 302.853 keV, 356.017 keV, 383.851 keV), 137Cs (661.660 keV),
207Bi (569.702 keV, 1063.662 keV) and 214Bi (609.312 keV, 1120.287 keV) [119].
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7.4.1 Linear cross-talk

In the absence of linear cross-talk, the pulses from the core and the collecting segments
have a non-zero amplitude and the mirror pulses from non-collecting segments return
to their baseline. However, linear cross-talk and different preamplifier gains alter the
amplitudes of the measured charge pulses, QC

i (t), see section 5.9.2. As a consequence,
mirror pulses do not necessarily return to the baseline. Their final amplitude depends
on the magnitude of the linear cross-talk between the contacts.

The relationship between the measured pulse amplitudes, Mi, and the true energies, Ei,
can be expressed through the linear cross-talk matrix, CL, as




M0

M1

M2

M3

M4




︸ ︷︷ ︸
= M⃗

=




CL
0,0 CL

0,1 CL
0,2 CL

0,3 CL
0,4

CL
1,0 CL

1,1 CL
1,2 CL

1,3 CL
1,4

CL
2,0 CL

2,1 CL
2,2 CL

2,3 CL
2,4

CL
3,0 CL

3,1 CL
3,2 CL

3,3 CL
3,4

CL
4,0 CL

4,1 CL
4,2 CL

4,3 CL
4,4




︸ ︷︷ ︸
=CL




E0

E1

E2

E3

E4




︸ ︷︷ ︸
= E⃗

. (7.4)

If core contact of the p-type segBEGe detector collects all holes in an event, the true
energy to be seen in the core contact is equal to the deposited energy, i.e. E0 = Edep.
The electrons are not necessarily collected on a single segment. However, the sum of
the true energies to be seen in the segments should be equal to Edep and, therefore, to
the true energy to be seen in the core contact, i.e. ∑4

i=1 Ei = E0.

For single-segment events in segment i, i.e. when all electrons are collected in seg-
ment i, Ei = E0 = Edep and E j = 0 for j ̸= i. According to Eq. (7.4), the measured
pulse amplitude in the core contact is

M0 =
4

∑
j=0

CL
0, jE j =CL

0,0E0 +CL
0,iEi = (CL

0,0 +CL
0,i)Edep , (7.5)

i.e. the measured pulse amplitude not only depends on the deposited energy Edep but
also on which segment collected the electrons. For the fully-depleted p-type segBEGe
detector, CL

0,i is several orders of magnitude smaller than CL
0,0 such that M0 ≈CL

0,0E0.

For a single-segment event in segment i, the measured pulse amplitude Mi is given by

Mi =
4

∑
j=0

CL
i, jE j =CL

i,0E0 +CL
i,iEi = (CL

i,0 +CL
i,i)Edep , (7.6)

where CL
i,0 denotes the core-to-segment cross-talk and CL

i,i denotes the amplification
factor of segment i.
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For events with full charge collection, where E0 = ∑4
i=1 Ei, core-to-segment cross-talk

always interferes with segment amplification and segment-to-segment cross-talk, i.e.

Mi =
4

∑
j=0

CL
i, jE j =CL

i,0E0 +
4

∑
j=1

CL
i, jE j =CL

i,0

4

∑
j=1

E j +
4

∑
j=1

CL
i, jE j =

4

∑
j=1

(CL
i,0 +CL

i, j)E j .

(7.7)
As CL

i,0 and CL
i, j always appear in a sum, CL can be rewritten as

C =




C0,0 C0,1 C0,2 C0,3 C0,4

0 C1,1 C1,2 C1,3 C1,4

0 C2,1 C2,2 C2,3 C2,4

0 C3,1 C3,2 C3,3 C3,4

0 C4,1 C4,2 C4,3 C4,4




, (7.8)

where C0,i =CL
0,i and Ci, j =CL

i,0 +CL
i, j for i, j ∈ {1,2,3,4} such that M⃗ =C E⃗.

7.4.2 Determination of the linear cross-talk matrix

The top-left element of the linear cross-talk matrix C in Eq. (7.8), C0,0, is set to the in-
verse of the raw core calibration factor, see Fig. 7.10. The remaining 20 elements of C
are determined experimentally from single-segment events. For single-segment events
in segment i, where E0 = Ei = Edep and E j = 0 for j ̸= i, the measured pulse ampli-
tudes are M0 = (C0,0 +C0,i)Edep, Mi =Ci,i Edep and M j =C j,i Edep for j ̸= i. Thus,
〈

M0

Edep

〉

i
=C0,0 +C0,i ,

〈
Mi

M0

〉

i
=

Ci,i

C0,0 +C0,i
and

〈
M j

M0

〉

i
=

C j,i

C0,0 +C0,i
, (7.9)

where ⟨x⟩i denotes the expectation value of any quantity x for single-segment events
in segment i. The relations in Eq. (7.9) allow for the determination of the top-row, the
diagonal and the off-diagonal elements of C, respectively. In order to determine the
expectation values in Eq. (7.9), single-segment events in all four segments need to be
selected first.

Single-segment events can be selected from the Mi/M0 spectra. In Fig. 7.11, the Mi/M0
spectra determined from the measured spectra shown in Fig. 7.10 are shown. The two
peaks observed in each of the spectra correspond to events in which the segment i
collected none, i.e. Mi/M0 ≈ 0 and Ei/E0 = 0, or all of the electrons, i.e. Mi/M0 ≈ 0.6
and Ei/E0 = 1. The region between the two peaks originates from multi-segment
events. Single-segment events are selected for each of the four segments by fitting
a Cauchy distribution to the peak at Mi/M0 ≈ 0.6 and keeping only the events with
Mi/M0 in the FWHM of the resulting fit function, see Fig. 7.11.
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Figure 7.11: Ratios between the measured pulse amplitudes of the segment i, Mi, and the core,
M0, for the segment (a) 1, (b) 2, (c) 3 and (d) 4. Single-segment events can be selected by
fitting a Cauchy distribution to the right peak at Mi/M0 ≈ 0.6 and keeping only the events in
the FWHM shown with dashed lines. The mean values of Mi/M0 for single-segment events in
segment i, ⟨Mi/M0⟩i, and the FWHM as determined from the fits are listed in the legends.

The four top-row elements C0,i with i ̸= 0 describe the segment-to-core cross-talk. For
different segment-to-core cross-talk, the value of M0 does not only depend on Edep
but also on which segment collected the electrons. This results in segment-specific
core calibration factors, ⟨M0/Edep⟩i, which can be determined by calibrating the core
spectrum resulting from single-segment events in segment i. Their deviations from the
mean core amplification factor C0,0 are accounted for in C0,i.

The four diagonal elements of C, Ci,i with i ∈ {1,2,3,4} describe the segment amplifi-
cation factors. They are determined by multiplying ⟨Mi/M0⟩i as determined from the
Cauchy fits in Fig. 7.11 with the segment-specific core-calibration factors, i.e.

Ci,i =

〈
Mi

M0

〉

i
·
〈

M0

Edep

〉

i
. (7.10)

The 12 off-diagonal elements C j,i with j ̸= i describe the segment-to-segment cross-
talk. For single-segment events in segment i, the measured pulse amplitudes M j in the
non-collecting segments j ̸= i peak around 0. As for the core spectrum, the mean value
of M j/M0 depends on which segment collected the electrons, see Fig. 7.12. By fitting
Cauchy functions to the subpeaks resulting from selecting single-segment events in
segment i, the values for ⟨M j/M0⟩i listed in Fig. 7.12 were determined.

90



Felix Hagemann

0.0 0.1 0.2
M2/M0

〈M2/M0〉1= 0.00003

〈M2/M0〉3= 0.00135

〈M2/M0〉4= 0.01283

0.0 0.1 0.2
M3/M0

102

103

104

105

C
ou

nt
s

pe
r0

.0
01

〈M3/M0〉1=−0.00035

〈M3/M0〉2= 0.00004

〈M3/M0〉4= 0.00562

0.0 0.1 0.2
M1/M0

102

103

104

105

C
ou

nt
s

pe
r0

.0
01

〈M1/M0〉2= 0.00014

〈M1/M0〉3= 0.00116

〈M1/M0〉4= 0.00715

0.0 0.1 0.2
M4/M0

〈M4/M0〉1= 0.00798

〈M4/M0〉2= 0.01651

〈M4/M0〉3= 0.00871

(a) (b)

(c) (d)

Figure 7.12: Mi/M0 from Fig. 7.11, zoomed into the left peak around Mi/M0 ≈ 0, for all events
(blue), as well as for single-segment events (in the color of the collecting segment, see Fig. 6.1).
The values for ⟨Mi/M0⟩ j with j ̸= i as determined from Cauchy fits are given in the legend.

The 12 off-diagonal elements result from multiplying the values for ⟨M j/M0⟩i with the
segment-specific core amplification factor, i.e.

C j,i =

〈
M j

M0

〉

i
·
〈

M0

Edep

〉

i
(7.11)

Overall, the linear cross-talk matrix for the p-type segBEGe detector as determined
from the measured spectra in Fig. 7.10 is

C =




1.54274 0.00009 −0.00002 0.00054 −0.00020

0 0.92316 0.00005 −0.00054 0.01231

0 0.00022 0.90394 0.00006 0.02546

0 0.00179 0.00209 0.91898 0.01344

0 0.01103 0.01979 0.00867 0.82170




. (7.12)

The diagonal elements of C represent the raw calibration factors extracted from the
uncalibrated spectra in Fig. 7.10. The segment-to-core cross-talk is at the sub-permille
level. The segment-to-segment cross-talk is at the percent level if segment 4 is in-
volved, and at the sub-percent level if segment 4 is not involved.
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To correct for linear cross-talk and to calibrate the measured pulse amplitudes to true
energies, the inverse of the linear cross-talk matrix, C−1, is needed:

C−1 =




0.64820 −0.00007 −0.00002 −0.00038 0.00017

0 1.08343 0.00029 0.00079 −0.01625

0 0.00015 1.10702 0.00025 −0.03431

0 −0.00190 −0.00212 1.08832 −0.01771

0 −0.01453 −0.02664 −0.01150 1.21822




. (7.13)

The true energies are obtained using E⃗ =C−1M⃗.

The calibrated energy spectra using the calibration matrix C−1 in Eq. (7.13) are shown
in Fig. 7.13. The peaks associated with the decays of 133Ba, 207Bi, 214Bi and 137Cs are
located at their respective energies for all contacts of the detector.
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Figure 7.13: Calibrated energy spectra for VB =−3000V, obtained by correcting for the linear
cross-talk using the cross-talk matrix listed in Eq. (7.13).

7.4.3 Energy resolution

The energy resolution qualifies the ability to reliably reconstruct Edep. Deviations of
the measured energies from the true Edep result from statistical fluctuations of the num-
ber of electron-hole pairs, incomplete charge collection and electronic noise, see sec-
tion 3.4.5.

Characteristic gamma lines in the energy spectrum are typically observed as Gaussian-
shaped peaks with certain widths representing the energy resolution, see Fig. 7.13. The
relative energy resolution is defined as the ratio between the FWHM of a peak and its
mean. The energy resolutions as determined from Gaussian fits to the gamma lines
associated with 133Ba and 137Cs decays are listed in Tab. 7.1.
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Table 7.1: Mean energy, FWHM and energy resolution for the p-type segBEGe detector,
obtained from Gaussian fits to the 133Ba and 137Cs peaks in the calibrated energy spectra for
VB =−3000V, see Fig. 7.13. The literature values for the decay energies are taken from [119].

Decay energy Quantity Core Seg. 1 Seg. 2 Seg. 3 Seg. 4
133Ba (80.997 keV) E in keV 80.98 80.85 80.57 80.91 80.44

FWHM in keV 1.40 3.26 9.95 3.27 11.11

Resolution in % 1.73 4.03 12.35 4.05 13.81
133Ba (276.398 keV) E in keV 276.42 276.37 276.02 276.36 275.43

FWHM in keV 1.45 3.35 10.46 3.61 11.53

Resolution in % 0.52 1.21 3.79 1.31 4.19
133Ba (302.853 keV) E in keV 302.85 302.92 302.39 302.94 301.85

FWHM in keV 1.46 3.27 10.90 3.26 12.64

Resolution in % 0.48 1.08 3.60 1.08 4.19
133Ba (356.017 keV) E in keV 356.01 356.22 355.74 356.02 355.34

FWHM in keV 1.49 3.27 9.73 3.22 10.88

Resolution in % 0.42 0.92 2.73 0.90 3.06
133Ba (383.851 keV) E in keV 383.90 384.04 383.60 383.79 383.03

FWHM in keV 1.52 3.34 10.55 3.43 12.79

Resolution in % 0.39 0.87 2.75 0.89 3.34
137Cs (661.660 keV) E in keV 662.41 662.06 661.42 662.10 661.80

FWHM in keV 1.71 3.19 10.09 3.10 10.57

Resolution in % 0.26 0.48 1.53 0.47 1.60

The core contact has by far the best energy resolution of all the contacts. Thus, the
core pulses are used to determine Edep. The energy resolutions of segments 1 and 3 are
similar to each other and around twice as large as the core energy resolution. Segments
2 and 4, which already showed the broadest distribution of τi and higher noise levels,
have much worse resolutions. Segment 2 has shown some symptoms of a bad contact.
Segment 4 is more than three times larger than the other segments and has the largest
capacitance of more than 100 pF, see Eq. (6.1).

In general, the relative energy resolution decreases with increasing energy. This is
due to the fact that the relative influence of statistical fluctuations of the number of
electron-hole pairs decreases with Edep.
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7.5 Pulses from the undepleted detector

Core pulses from the fully-depleted p-type segBEGe detector typically feature a very
fast rise before approaching their final amplitude, see section 6.3.2. Core pulses from
the undepleted p-type segBEGe detector do not reach their final amplitude immediately
but approach it exponentially with a characteristic time constant, τu, which depends on
the depletion level of the detector.
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Figure 7.14: Typical pulses from the core contact of the depleted and the undepleted p-type
segBEGe detector, (a) before and (b) after baseline- and decay-correction using τ̄0 determined
at VB =−3000V.

Figure 7.14 depicts typical core pulses from the p-type segBEGe detector at different
bias voltages. As the exponential decay of the pulses is a feature depending only on
the read-out electronics, the values of τ̄i do not depend on the bias voltage applied to
the detector. Therefore, the values for τ̄i determined at VB = −3000V were used to
correct the pulses for the undepleted detector.

The corrected core pulses from the undepleted detector still feature a slight rise in the
tail window, see Fig. 7.14b. Therefore, the mean value of the pulse in the tail window
is not a good approximation for the final pulse amplitude. For undepleted detectors,
the core pulse amplitude, M0, is extracted by fitting an exponential function

Q0(t) = M0 · (1− exp(−(t − t0)/τu)) (7.14)

to the tail window of the core pulse.

The resulting core energy spectra for different VB are shown in Fig. 7.15. The gamma
lines associated with the decays of 133Ba and 137Cs are visible in all these spectra.
However, the widths of the peaks increase and the peaks shift towards smaller ADC
units with decreasing depletion level.
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Figure 7.15: Uncalibrated energy spectrum for the core contact of the p-type segBEGe de-
tector for different bias voltages VB obtained from 20 min measurements with an uncolli-
mated 133Ba source on top of the K2 cryostat. Labeled are the peaks associated with the
decays [119] of 133Ba (80.997 keV, 276.398 keV, 302.853 keV, 356.017 keV, 383.851 keV) and
137Cs (661.660 keV).

The measured pulse amplitudes determined from the undepleted detector can be cali-
brated using the procedure described in section 7.4. The resulting calibration matrix
for the measurement at VB =−300V is

C =




1.39563 0.00611 0.00498 0.00294 −0.00422

0 0.91826 0.00188 0.00180 0.01111

0 −0.00076 0.91395 −0.00086 0.01645

0 0.00470 0.00511 0.89817 0.01427

0 −0.01621 −0.00702 −0.01574 0.81048




(7.15)

C−1 =




0.71652 −0.00469 −0.00385 −0.00227 0.00391

0 1.08876 −0.00234 −0.00245 −0.01484

0 0.00051 1.09398 0.00066 −0.02223

0 −0.00604 −0.00636 1.11304 −0.01938

0 0.02166 0.00930 0.02157 1.23297




. (7.16)

The raw core calibration factor C−1
0,0 at VB = −300V is more than 10% higher than

for VB = −3000V, see Eq. (7.13). In addition, the values for C−1
0,i corresponding to

segment-to-core cross-talk differ more than for VB =−3000V.

The calibrated energy spectrum for VB =−300V is shown in Fig. 7.16. The energy
resolutions determined at the 133Ba and 137Cs peaks are listed in Tab. 7.2. The peaks
in the core energy spectrum are around seven times wider compared to the peaks at
VB =−3000V, see Fig. 7.13. In contrast, the FWHMs of the peaks in the energy
spectra of the segments increase by only around 50%. For VB = −300V, the energy
resolutions of segments 1 and 3 are around twice as good as the ones for the core and
segments 2 and 4. Thus, for single-segment events in segment 1 and 3, Edep can be
reconstructed around twice as accurately from the segments than from the core. In
general, the detector works quite well when not fully depleted, although the active
volume is reduced compared to the fully-depleted case.
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Figure 7.16: Calibrated energy spectrum for VB =−300V obtained by correcting for the linear
cross-talk using the cross-talk matrix listed in Eq. (7.16).

Table 7.2: Mean energy, FWHM and energy resolution for the p-type segBEGe detector, ob-
tained from Gaussian fits to the 133Ba and 137Cs peaks in the calibrated energy spectra for
VB =−300V, see Fig. 7.16. The literature values for the decay energies were taken from [119].

Decay energy Quantity Core Seg. 1 Seg. 2 Seg. 3 Seg. 4
133Ba (80.997 keV) E in keV 80.95 80.94 80.73 80.91 80.97

FWHM in keV 9.82 4.84 11.00 5.12 13.46

Resolution in % 12.13 5.99 13.63 6.33 16.62
133Ba (276.398 keV) E in keV 275.80 276.32 275.45 276.88 274.31

FWHM in keV 10.53 5.03 14.15 5.66 15.21

Resolution in % 3.82 1.82 5.14 2.04 5.54
133Ba (302.853 keV) E in keV 302.12 302.79 301.92 303.51 301.20

FWHM in keV 11.88 5.07 13.76 5.33 17.76

Resolution in % 3.93 1.67 4.56 1.76 5.90
133Ba (356.017 keV) E in keV 355.67 355.93 355.84 356.74 355.18

FWHM in keV 9.67 4.74 10.77 5.08 13.11

Resolution in % 2.72 1.33 3.03 1.42 3.69
133Ba (383.851 keV) E in keV 383.36 383.79 383.57 384.61 381.95

FWHM in keV 11.17 4.79 12.50 5.31 19.20

Resolution in % 2.91 1.25 3.26 1.38 5.03
137Cs (661.660 keV) E in keV 662.01 661.54 661.97 663.12 660.07

FWHM in keV 9.77 4.76 10.76 5.25 14.27

Resolution in % 1.48 0.72 1.63 0.79 2.16
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8 Determination of the impurity density profile from
capacitance measurements

The extraction of charge drift mobility values from measured charge pulses requires
the electric field in the detector to be known. In point-contact detectors, the electric
field in most parts of the detector is defined by the impurity density profile in the bulk
of the detector, whose exact nature is not provided by the detector manufacturer.

The impurity density profile defines the depletion behavior of the detector and can,
thus, be determined from the capacitance measurements below the depletion volt-
age [34, 195–197]. In this chapter, the measurement of a capacitance-voltage curve,
CV-curve, of the p-type segBEGe detector and the results for the impurity density pro-
file and the electric field in the bulk of the detector are presented.

8.1 Experimental setup

One way to measure the CV-curve of a detector with two contacts is to apply voltage
step pulses with known amplitude to one contact and to measure the increase of charge
on the other contact. The schematic of the experimental setup to measure a CV-curve
of the p-type segBEGe detector is shown in Fig. 8.1. All segments were connected
together to form a single n+ contact. The bias voltage VB was applied to the core
contact and the n+ contact was kept at ground over a termination resistor R2.

IR shield & holding structure

VB
RB

High-voltage supply

R1 R2RPG

VPG

Pulse generator

Vin

CC

−
+

R f

C f

ADC

Figure 8.1: Schematic of the setup to measure a CV-curve of the p-type segBEGe detector in
K2. The read-out electronics of the core were not modified with respect to Fig. 6.3.

A pulse generator was used to inject voltage pulses into the n+ contact at a frequency
of 200 Hz. A voltage divider consisting of the two resistors, R1 = (6170±70)Ω and
R2 = (51.1±0.7)Ω, and the internal resistor of the pulse generator, RPG = 50Ω, was
used to reduce the peak-to-peak amplitude of these pulses of VPG = 200mV to

Vin =VPG
R2

RPG +R1 +R2
= (1.630±0.028)mV . (8.1)

This measurement will be referred to as pulser measurement.
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8.2 Determination of the CV-curve

The detector capacitance, Cd , is defined as the capacitance of the depleted volume. It is
connected in series to the coupling capacitor, CC, resulting in a total capacitance, Ctot, of

1
Ctot

=
1

Cd
+

1
CC

⇒ Ctot =
Cd · CC

Cd +CC
, (8.2)

The fully-depleted detector is well described by Cd , see Fig. 8.2a. In the partially
depleted detector, the depleted and the undepleted volume must be modeled differ-
ently [198], see Fig. 8.2b. The depleted volume is well modeled by Cd which is higher
than the full-depletion capacitance. In the undepleted volume, the concentration of
free holes is higher than in the depleted volume. This results in a finite resistance, Ru,
of the undepleted volume in addition to its capacitance Cu.

=̂ Cd

|VB|> |VD|

(a)

or

|VB|< |VD|

Cd

RuCu

(b)
Figure 8.2: Schematic of the electronic circuits describing the p-type segBEGe detector with
connected segments as in Fig. 8.1 for a (a) fully-depleted and (b) partially-depleted detector.
The depleted volume is shown in green, the undepleted volume is shown in yellow.

The voltage Vin applied to the n+ contact leads to charges being collected on the
feedback capacitor, C f , of the charge-sensitive preamplifier. In the fully-depleted
detector, the charge pulses from pulser events quickly reach their final amplitude of
Qout =−VinCtot. In the partially depleted detector, the undepleted volume leads to a
slow-down of the charge collection. Based on the formula derived for a setup without
a coupling capacitor [195], pulses from pulser events are expected to take the form

Q(t) =−Vin Ctot︸ ︷︷ ︸
= Qout

·
(

1− Ctot

Cu +Ctot
exp
(
− t

Ru(Cu +Ctot)

))
, (8.3)

where Ctot is again defined as Cd and CC connected in series, see Eq. (8.2). Thus,
the output pulses for a partially depleted detector exponentially approach their final
amplitudes Qout =−VinCtot with a time constant of τu = Ru(Cu+Ctot), which depends
on the geometry of the undepleted volume.

The values of Ctot are determined from Qout for different VB applied to the point contact
of the segBEGe detector. The CV-curve is corrected for CC = 1.2nF using Eq. (8.2).
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8.2.1 Charge calibration

At a pulse generation frequency of 200 Hz, 120 000 pulser events were recorded for
each 10 min measurement. The spectra of the uncalibrated measured pulse amplitudes
from the core contact, determined as explained in chapter 7, are shown in Fig. 8.3 for a
selection of bias voltages VB. Each spectrum features a dominant peak associated with
pulser events. Smaller peaks resulting from physical events, e.g. from 208Tl decays,
are also present as the detector DAQ was not time-coupled to the pulse generator.
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Figure 8.3: Uncalibrated core energy spectra from 10 min pulser measurements for a selection
of bias voltages VB as given in the legend. The peak at around 4030.2 ADC units corresponds
to 2614.533 keV gammas associated with the decay of 208Tl [119].

The ADC values for M0 have to be calibrated to the corresponding charge Qout. For
the capacitance measurement, the segment contacts are connected and, therefore, there
is no segment-specific cross-talk onto the core contact. This allows for a precise cali-
bration of M0 by simply multiplying M0 with a core calibration factor.

The core calibration factor is determined from the peaks resulting from energy deposits
in the detector, e.g. the 2614.533 keV peak from 208Tl decays [119], see Fig. 8.3. The
energies are converted to charges based on the ionization energy of germanium of
Eeh = 2.95eV [129]. For example, an energy deposit of 2614.533 keV corresponds
to a charge of 0.142 pC. From the measurement at VB = −3000V, the core calibra-
tion factor is 3.527 ·10−17 C / ADC unit or 0.6487keV / ADC unit. The latter agrees
with the raw core calibration factor for standard operation, where the segments are not
connected, see Fig. 7.10.

The overall core calibration factor increases with decreasing depletion level, see sec-
tion 7.5. However, this is due to higher cross-talk between the core and the segments
resulting from higher capacitances at lower depletion levels. The conversion from M0
to Qout is assumed to be independent of the depletion level of the detector. There-
fore, the core calibration factor determined at VB =−3000V was applied for all pulser
measurements.
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8.2.2 Pulser event selection

The amplitudes measured from individual pulses were subject to fluctuations due to
electronic noise. Therefore, averaged superpulses were determined to mitigate the
influence of electronic noise. Pulser events were selected by applying three cuts:

• Amplitude cut
The dominant peaks in the M0 spectra in Fig. 8.3 were classified as pulser event
candidates. Events in the highest peak in the M0 spectrum were selected by finding
the bin with the most counts and keeping events in surrounding bins with M0 values
of ±1.2

1.0%. This asymmetric interval was always wider than the FWHM of the peak.

• Frequency cut
Most of the events selected by the amplitude cut are pulser events. However, some
pulses from physics events also pass the amplitude cut and need to be identified and
discarded. For this, the time stamps of the events are used.

Pulser events occur every 5 ms. Figure 8.4a shows the distribution of the time differ-
ence between two consecutive pulses that passed the amplitude cut. The main peak is
observed at 5 ms. Smaller peaks at multiples of 5 ms correspond to cases where the
amplitude cut removed pulser events between two non-consecutive pulser events.
Events with time differences deviating more than 100 ns from multiples of 5 ms,
see Fig. 8.4b, were discarded. As the time window of 100 ns is significantly shorter
than the pulse lengths of 20 µs, this frequency cut discards all non-pulser events.

0 5 10 15 20
∆t in ms

0

30000

60000

90000

C
ou

nt
s

pe
rµ

s

−100 0 100
(∆t−5ms) in ns

0

10000

20000

30000

C
ou

nt
s

pe
r1

0
ns

Figure 8.4: (a) Time difference ∆t between pulses passing the amplitude cut from the 10 min
pulser measurement at VB =−3000V, (b) zoomed into the peak at ∆t = 5ms.

• Similarity cut
All events selected by the amplitude and the frequency cuts are pulser events. How-
ever, pile-up can led to additional rises in the pulses if energy was deposited during
the baseline or the tail window, see Figs. 8.5a and 8.5b. To discard pile-up events, an
additional cut was imposed on the similarity between the pulses.

Two pulses are considered to be similar if they agree within their noise levels. All
pulses were time-aligned to reach 50% of their final amplitude at the same time and a
preliminary superpulse was determined, see Figs. 8.5a and 8.5b. Events with pulses
that deviate by χ2/ndf ≥ 7 from this preliminary superpulse were discarded. This
similarity cut efficiently discarded remaining outliers.
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Figure 8.5: Example pulses passing the amplitude and frequency cut for (a) VB =−3000V and
(b) VB = −300V. Final selection of pulses for (c) VB = −3000V and (d) VB = −300V after
the similarity cut. Shown as black dashed lines are the preliminary superpulses in (a) and (b),
and the final superpulses in (c) and (d).

The events that passed the amplitude, frequency and similarity cuts comprise the fi-
nal selection of pulser events. Their pulses are averaged to obtain the final superpulse
for the respective VB, see Figs. 8.5c and 8.5d, from which M0 and Qout were deter-
mined. The usage of superpulses provided more accurate Qout values than averaging
individually determined Qout, especially at low VB, where the noise level is substantial.

8.2.3 Determination of the capacitance values

The tail of the final superpulses in Fig. 8.5 should ideally be flat for the fully-depleted
detector and follow an exponential function for the partially depleted detector as shown
in Eq. (7.14). When zooming into the tails of the final superpulses in Fig. 8.6, ringing is
visible which is well described by a damped oscillation. The amplitude of this ringing
is less than 0.5% of the final pulse amplitude M0. However, it was considered when
composing a fit function to extract M0 from the tail of the final superpulses:

Q0(t) =





M0 · (1+A · exp(− t
τr
)sin(ωt +Φ)) , if |VB|> |VD| ,

︸ ︷︷ ︸
Tail

M0 · (1− exp(−t − t0
τu

)) ·
︸ ︷︷ ︸

Ringing

(1+A · exp(− t
τr
)sin(ωt +Φ)) , if |VB|< |VD| ,

(8.4)

where the fit parameters A, τr, ω and Φ denote the amplitude, the decay time, the
angular frequency and the phase of the damped oscillation.
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Figure 8.6: Zoom into the tails of the final superpulses shown in Figs. 8.5c and 8.5d for
(a) VB =−3000V and (b) VB =−300V. The fit results with and without the ringing factor in
Eq. (8.4) are shown in blue and red, respectively.

The final pulse amplitudes are extracted by fitting the function in Eq. (8.4) to the tail
of the pulses for t > 10µs, see Fig. 8.6. This provides a more accurate result for M0
compared to just taking the average in the tail window.

The fit results for M0 of the final superpulses were converted to Qout by multiplying
them by the core calibration factor of 3.527 ·10−17 C / ADC units. The total measured
capacitance Cmeas

tot was then determined by dividing by Vin = (1.630±0.028)mV. The
resulting CV-curve for Cmeas

d is shown in Fig. 8.7. Also shown are the values of Cmeas
tot

before correcting for the coupling capacitor CC = 1.2nF using Eq. (8.2). With decreas-
ing depletion level, Cd increases and, therefore, the influence of CC = 1.2nF on Ctot
increases from less than 1% at full depletion to almost 16% at VB =−120V.

The simulation predicts a constant capacitance at full depletion of 5.54pF. In the
measurement, the capacitance values for VB above VD fluctuate around a mean value of
5.58pF with a standard deviation of 0.17%. This mean value is 0.8% higher than the
simulated value.
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Figure 8.7: Measured CV-curve for the p-type segBEGe detector, Cmeas
tot , and capacitance of the

depleted volume, Cmeas
d , correcting for CC = 1.2nF using Eq. (8.2). Shown as a red dashed line

is the simulated CV-curve, Csim
d , from Fig. 6.11.
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The systematic uncertainties, ∆Cmeas
sys , are mostly defined by the uncertainties on Vin, on

τ̄0 and on the core calibration factor. The 1.7% uncertainty on Vin results in a systematic
relative uncertainty on Cmeas

d , which is expected to be identical for all VB. Variations of
τ̄0 result in systematic shifts of M0 towards higher or lower ADC units. However, these
deviations also result in a lower or higher core calibration factor, respectively, such that
they are compensated and do not contribute significantly to ∆Cmeas

sys compared to Vin.

The statistical uncertainties, ∆Cmeas
stat , result from the remaining noise level in the final

superpulses and the uncertainties on the fit result for M0. Based on the observed 0.17%
fluctuation around the physically constant full-depletion capacitance, ∆Cmeas

stat was esti-
mated to be 10% of ∆Cmeas

sys . Thus, the uncertainties shown in Fig. 8.7 are dominated
by ∆Cmeas

sys and are highly correlated.

8.3 Fitting an impurity density profile to the measured CV-curve

The measured CV-curve was used to determine the impurity density profile of the p-
type segBEGe detector. To do so, a parameterization for the impurity density profile
had to be chosen. Then, CV-curves were simulated for different sets of parameters.
The impurity density profile, for which the simulated CV-curve matches the measured
CV-curve best, was chosen as the result.

In total, 98 capacitance values for bias voltages in the range from −120V to −3000V
were extracted. Given a parameterization for the impurity density profile with a set of
parameters, the CV-curve for all 98 bias voltages can be simulated using SSD.

The p-type segBEGe detector was implemented in SSD as described in chapter 6, as-
suming a segment contact thickness of 0.75 mm*. All simulations were run with refine-
ment limits of [0.2,0.1,0.05,0.03,0.02,0.01] and a convergence limit of 10−7. These
refinement limits ensure that the numerically calculated potential values of neighbor-
ing grid points do not differ more than 1% of VB for the electric potential, and 0.01 for
the weighting potentials.

The values for the simulated capacitances, Csim
d , are also subject to uncertainties. Sys-

tematic uncertainties, ∆Csim
sys , arise from uncertainties on the geometry of the detector,

e.g. its radius R, height H and the thicknesses of the segment contacts, as well as from
the simulation settings, e.g. the grid refinement or the convergence limit. However,
they are small compared to the systematic uncertainty ∆Cmeas

sys of 1.7%. Statistical un-
certainties on the simulated capacitance values, ∆Csim

stat , are also negligible compared to
the statistical uncertainties ∆Cmeas

stat .

The fit routine to determine the impurity density profile must account for the systematic
and statistical uncertainties. The overall systematic uncertainty, ∆Csys, is dominated
by ∆Cmeas

sys of 1.7%. It allows for a correlated, systematic shift of the values for Cmeas
d

which can be parameterized by a relative offset, Ξ. The statistical uncertainties, ∆Cstat,
are dominated by ∆Cmeas

stat and allow for random fluctuations in the residuals between
the shifted values for Cmeas

d and Csim
d .

*The measured dead-layer thickness from radial scans is (0.75±0.06)mm, see page 123.
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The likelihood, L, of observing the measured CV-curve Cmeas
d (VB), given a simulated

CV-curve Csim
d (VB) for given parameters, can be defined as

L=∏
VB

N (0, ∆Csys(VB)/Cmeas
d (VB))(Ξ)︸ ︷︷ ︸

Likelihood for Ξ

· N (Cmeas
d (VB) · (1+Ξ),∆Cstat(VB))(Csim

d (VB))︸ ︷︷ ︸
Likelihood for the capacitance value at VB

.

The goal is to find a set of parameters that result in a CV-curve Csim
d (VB) with maximum

likelihood L. Mathematically, this is equivalent to finding the minimum of

− ln(L) = ∑
VB

(
(Ξ ·Cmeas

d (VB))
2

2∆Csys(VB)2 +
(Csim

d (VB)−Cmeas
d (VB) · (1+Ξ))2

2∆Cstat(VB)2

)
. (8.5)

The negative log-likelihood in Eq. (8.5) consists of an addition of logarithms rather
than a multiplication of individual probabilities as in Eq. (8.3). This allows for a more
efficient determination of the set of parameters with maximum likelihood when using
an optimizer based on the gradient descent method, e.g. Optim.jl [199].

For each new set of parameters, the simulation of the CV-curve is redone. Starting
with a given initial set of parameters, the optimizer estimates the gradients of − ln(L)
by varying the parameters. It, then, updates the parameters to advance towards smaller
values of − ln(L) until reaching a local minimum. If the negative log-likelihood has
multiple local minima, different initial parameters can lead to different results. There-
fore, fits are to be run with different sets of initial parameters to test that they always
provide the same best-fit result.

The fit is essentially a frequentist maximum-likelihood fit with one improvement: The
fit is performed in a transformed space to prevent the optimizer from moving to un-
physical parts of the parameter space and to guide the optimizer toward faster conver-
gence. A very conservative prior for the parameters is chosen which does not exclude
any physically sensible parameters completely. The transformation function between
this prior distribution and a standard multivariate normal distribution is applied to the
parameter space during the maximum-likelihood search. This way, the optimizer runs
in an unconstrained space. The likelihood function is not modified and the prior only
reshapes the space. Thus, no bias beyond the exclusion of unphysical parameter values
is introduced.

8.4 Parameterization of the impurity density profile

For the parameterization of the impurity density profile of the p-type segBEGe detec-
tor, the cylindrical detector coordinates r, ϕ and z introduced in Fig. 6.1a are used. In
addition, the following assumptions about the parameterization, ρ(r,ϕ,z), were made:

• The impurity density profile is assumed to be independent of ϕ , i.e. ρ(r,ϕ,z) = ρ(r,z).
• The r and z-dependence are assumed to be factorizable, i.e. ρ(r,z) = ρr(r) ·ρz(z).
• According to the detector manufacturer, the impurity density increases by 12.1%

from the bottom to the top, see Tab. 6.1. This overall gradient is fixed for ρz(z).
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The z-dependence in the impurity density profile mostly influences the extent of the
depleted volume in z. Different parameterizations for ρz(z) resulting in a depletion
voltage of VD = −1275V were simulated. It was observed that the choice of the pa-
rameterization for the z-dependence does not have a significant influence on the sim-
ulated capacitance values, as long as it is monotonous. Therefore, ρz(z) = (1+β z

H ),
i.e. a linear z-dependence with a fixed increase of β = 12.1%, was chosen.

The detector manufacturer provided no information on the radial component ρr(r).
However, a simulation of the CV-curve assuming a constant value ρ0 in r, chosen such
that it matches the depletion voltage of VD =−1275V, the values of the capacitance at
voltages below −900V are significantly overestimated, see Fig. 8.7. This means that
the extent of the depleted volume is underestimated. As the detector depletes from the
outside to the inside, this means that the impurity density at outer r is overestimated.

8.4.1 Piecewise constant parameterization

To get a first impression, a simplistic parameterization of ρr(r) as a piecewise constant
function with intervals of width ∆r = 5mm was chosen:

ρ(r,z) = ρr(r) · (1+β
z
H
) with ρr(r) =





ρ1, for 0 ≤ r < ∆r
ρ2, for ∆r ≤ r < 2∆r

...
ρN , for (N −1)∆r ≤ r ≤ R

, (8.6)

where β = 12.1% is fixed. The fit parameters ρk with k ∈ {1, . . . ,8} were restricted to
negative values, corresponding to p-type germanium.

The result for ρr(r) as obtained from the maximum-likelihood fit to the measured CV-
curve is shown in Fig. 8.8a. It features an almost constant plateau at 97% of the manu-
facturer values for r < 30mm and decreases steeply to almost zero for r > 30mm. The
decrease in impurity density at large r requires the impurity density in the center of the
detector to be higher than the previous scaling of 89% to still predict the full-depletion
voltage of VD =−1275V.

In Fig. 8.8b, the simulated CV-curve for the best-fit result is compared to the measured
CV-curve. The difference between the simulated and the measured value for the full-
depletion capacitance is accounted for by the relative offset Ξ =−0.8%. This relative
offset is still well within the expected systematic uncertainty of 1.7%. The best-fit
result predicts the measured CV-curve in the range between −1050V and −550V
within less than two standard deviations. The prediction is more than 2σ above the
measured CV-curve in the range from −300V to −500V and below by more than 2σ
for VB below −180V. This means that the impurity density is underestimated close
to the outer surface at r ≲ R and overestimated in the transition region between the
constant plateau and the steep gradient around r ≈ 30mm. This shows the limits of
this simplistic parameterization.
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Figure 8.8: (a) Impurity density profile of the p-type segBEGe detector obtained from a
maximum-likelihood fit to the measured CV-curve, see Eq. (8.5), using the parameterization
in Eq. (8.6) with ∆r = 5mm. (b) Measured CV-curve for the p-type segBEGe detector with the
best-fit result for the parameterization in Eq. (8.6).
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8.4.2 Hyperbolic tangent parameterization

A smooth parameterization based on results in section 8.4.1 was built as

ρ(r,z) = (ρout +(ρin · (1−α · r
R
)−ρout)

︸ ︷︷ ︸
Linear r-dependence

· 1
2
(tanh(−r− r0

λ
)+1)

︸ ︷︷ ︸
Transition at r = r0

) · (1+β · z
H
)

︸ ︷︷ ︸
Linear z-dependence

. (8.7)

with the fit parameters θ = (ρout,ρin,α,r0,λ ) and fixed β = 12.1%.

• The radial impurity density profile in the center of the detector was modeled as a
linear function, where ρin is the impurity density value at r = 0mm and α is the
decrease of impurity density in % from the inside to the outside.

• A constant impurity density ρout was assumed in the very outer part of the detector
to represent the unclear contact.

• The transition between ρin(1−α · r
R) and ρout was modeled as a hyperbolic tangent

function with fit parameters r0 and λ , i.e. 1
2(tanh(− r−r0

λ )+1), which approaches one
for r ≪ r0 and zero for r ≫ r0.

The fit parameter ρin was restricted to negative values, corresponding to p-type germa-
nium. The parameter r0 was limited to values inside of the detector, i.e. 0 ≤ r0 ≤ R.
Additional restrictions are α < 1 and λ > 0.

The best-fit result for the parameterization in Eq. (8.7) is shown in Fig. 8.9a. The
impurity density value in the center of the detector again corresponds to 97% of the
values provided by the manufacturer. For the center of the detector, only a minor
decrease of 0.8% from the inside to the outside is obtained. The transition between
the high impurity density ρin in the inner part and the low impurity density ρout at the
outer part of the detector is detected at r0 = 33.2mm with a width of λ = 4.86mm.
The impurity density still decreases steeply at r = R and ρout is not reached.

The best-fit result for the hyperbolic tangent parameterization in Eq. (8.7) provides a
better estimate for the impurity density profile than the result for the piecewise constant
parameterization in Eq. (8.6). The residuals are almost exclusively within 2σ , see
Fig. 8.9b. The impurity density appears to be mildly overestimated for VB between
−250V and −500V and slightly underestimated for VB below −150V.

The standard uncertainties, ∆θ , on the maximum-likelihood estimators, θ̂ , were deter-
mined using the Hessian matrix, H, of the log-likelihood function, i.e.

∆θi =

√
H−1

ii (θ̂) where H =−∂ 2 ln(L)
∂θi∂θ j

. (8.8)

From these, the 2σ -uncertainty bands on the impurity density profile shown in Fig. 8.9a
were calculated. The uncertainty on the impurity density profile for r < 20mm is
mostly defined by the uncertainty on ρin and, thus, at the permille level. For r > 20mm,
where the strong radial dependence is observed, the uncertainty on the impurity density
is significantly larger.
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Figure 8.9: (a) Impurity density profile of the p-type segBEGe detector obtained from a
maximum-likelihood fit to the measured CV-curve, see Eq. (8.5), using the parameterization
in Eq. (8.7). The bands indicate 2σ -uncertainties on the best-fit result. Indicated as dashed
lines are the linear functions describing the impurity density in the central part of the detector.
(b) Measured CV-curve for the p-type segBEGe detector with the best-fit result for the param-
eterization in Eq. (8.7).
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8.5 Implications for the p-type segBEGe detector

From the best-fit result for the impurity density parameterization in Eq. (8.7) shown in
Fig. 8.9a, the electric field and the depletion behavior can be predicted using SSD.

8.5.1 Predicted depletion behavior

The predicted depletion volumes of the p-type segBEGe detector using the impurity
density profile shown in Fig. 8.9a are shown in Fig. 8.10. Shown as reference are
the boundaries obtained from the impurity density model with no r-dependence and a
linear increase of 12.1% in z, scaling the manufacturer values for ρtop and ρbot to 89%
to match the depletion voltage.
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Figure 8.10: Depleted volumes of the p-type segBEGe detector as predicted by SSD using the
impurity density profile shown in Fig. 8.9a for different bias voltages VB. The depleted volumes
are shown in green, the undepleted volumes are shown in yellow. The black lines depict the
boundaries between depleted and undepleted volumes obtained from the values provided by
the manufacturer scaled to 89%.

The z-dependence of the impurity density profile mostly influences the depletion from
the bottom and from the top into the bulk. As the values for ρbot and ρtop are almost
identical for both impurity density models, the depletion in z is almost identical.

The r-dependence depicted in Fig. 8.9a results in faster depletion from the outside
into the bulk. For VB between −50V and −300V, the depletion width for the best-fit
increases by about 1 mm compared to the scaled manufacturer values. At VB =−600V,
this difference becomes smaller and basically disappears for VB =−900V and above.
This agrees well with the observation that the simulated capacitances Csim

d with the
scaled impurity density values agree well with the measured capacitances Cmeas

d for VB
above −900V, see Fig. 8.7.
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8.5.2 Predicted electric field

The contributions of the best-fit result for the impurity density to the electric potential,
φρ (⃗r), and the electric field, E⃗ρ (⃗r), are shown in Fig. 8.11. For r < 15mm, φρ (⃗r) and
E⃗ρ (⃗r) are almost identical to the ones shown in Figs. 6.5c and 6.5d, obtained from
the scaled manufacturer values and assuming no r-dependence. However, the electric
fields differ significantly in the outer part, especially for r > 30mm, where the impurity
density profile decreases significantly.
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Figure 8.11: (a) Electric potential φρ (⃗r) and (b) electric field E⃗ρ (⃗r) resulting from the best-fit
result for the impurity density profile shown in Fig. 8.9a as calculated with SSD for the r-z-
plane at ϕ = 30◦. The electric potential is shown with equipotential lines for 250 V levels. The
electric field is shown with electric field lines.

The total electric field obtained from the best-fit result is shown in Fig. 8.12a. In all
simulations, the measured dead-layer thickness of 0.75 mm was used. To account for
the uncertainty on the impurity density profile, the electric field was calculated for
multiple sets of parameters (ρin,ρout,α,r0,λ ) randomly drawn based on the Hessian
matrix for the best-fit result. The resulting variations in the electric field are shown in
Figs. 8.12b and 8.12c.

In the center of the detector at r = 0mm, the electric field points upwards, i.e. |E⃗ |= Ez,
where Ez is the z-component of E⃗ . The z-dependence of Ez at r = 0mm is shown
in Fig. 8.12b. It is basically identical to the dependence calculated from the scaled
impurity density values provided by the manufacturer and assuming no r-dependence.
The electric field features a minimal value of around 380 V/cm at z = 21.5mm. It
is strongest at the top, i.e. close to the core contact, where Ez ≈ 1700V/cm. It also
increases from the center towards the bottom, reaching a maximum value of around
1100 V/cm at the closed bottom end-plate of segment 4 at z = 0mm.

At z = 21.5mm and r > 20mm, E⃗ points radially inwards and Ez ≈ 0, i.e. |E⃗ | ≈ Er,
where Er is the r-component of E⃗ . The r-dependence of Er and |E⃗ | are shown in
Fig. 8.12c. The total electric field strength at z = 21.5mm is around 400 V/cm for
r ≲ 18mm and increases slightly to 600 V/cm towards the outer surface of the detector.
The electric field differs significantly from that obtained from the scaled manufacturer
values, which is almost constant for r < 20mm and rises more steeply for r > 25mm
to around 750 V/cm at the surface of the detector.
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Figure 8.12: (a) Total electric field E⃗ (⃗r) resulting from the best-fit result for the impurity density
profile shown in Fig. 8.9a as calculated with SSD for a bias voltage of VB = −3000V for the
r-z-plane at ϕ = 30◦. (b) z-component of the electric field, Ez(z), in the center of the detector
at r = 0mm. (c) r-component, Er(r), and total electric field strength, |E⃗(r)|, at z = 21.5mm.
Predictions based on the best-fit result are shown as solid lines. Predictions based on the
manufacturer values, scaled to 89% and assuming no r-dependence, are shown as dashed lines.

This difference in Er(r) is especially important when analyzing charge-carrier drifts
in the outer part of the detector. For events with energy deposits close to the outer
surface of the detector, the initial inward drift of the holes is slower than what would be
expected from an impurity density profile without an r-dependence. Likewise, the final
part of the outward electron drift is slower in events where the electrons are collected
on the segments at the outer surface.

The electric field strengths expected in the p-type segBEGe detector fall into the tran-
sition region between linear and saturated behavior of the drift velocities, see Fig. 4.1.
Thus, the electron and hole drift velocities do not increase linearly with E but depend
on both the mobility µ0 in the linear region and the saturation drift velocity υsat.
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8.6 Limitations of the result for the impurity density profile

The CV-curve was only measured down to VB =−120V. Therefore, any maximum-
likelihood fit to the measured CV-curve is not capable of testing the impurity density
profile in volumes that are already depleted at VB =−120V.

According to the SSD simulations, the detector is already depleted for VB =−120V at
r > 29.5mm and at z < 6.8mm, see Fig. 8.13. Therefore, multiple parameterizations
for the impurity density profile can result in similar CV-curves as long as the impurity
density profile is similar for r < 29.5mm and results in a similar depleted volume
for VB =−120V as shown in Fig. 8.13.
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Figure 8.13: Depletion level of the p-type
segBEGe detector at VB =−120V, as calcu-
lated with SSD for the impurity density profile
in Fig. 8.9a. The depleted volume is shown in
green, the undepleted volume in yellow.

Another limitation is that the impu-
rity density values are limited to nega-
tive values to model p-type germanium
throughout the detector bulk. Any ex-
tension of the segment contacts into the
bulk of the detector other than the mea-
sured dead-layer thickness of 0.75 mm
is not modeled. Increasing the dead-
layer thickness for the segment contacts
in the simulation naturally shifts the p-
n-junction towards the center of the de-
tector, resulting in a higher full-depletion
capacitance.

Maximum-likelihood fits based on the
impurity density model in Eq. (8.7) were
performed for different dead-layer thick-
nesses. Assuming that the measured capacitances are not subject to large systematic
uncertainties, the dead-layer thickness would have to be 1.3 mm to match the simu-
lated to the measured full-depletion capacitance. However, the exact choice of the
dead-layer thickness does not significantly influence the results for the electric field,
see Fig. 8.14.
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Figure 8.14: (a) Ez(z) at r = 0mm and (b) Er(r) at z = 21.5mm, as calculated with SSD for a
bias voltage of VB =−3000V and different dead-layer thicknesses as listed in the legends.
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9 Compton Scanner
The Compton Scanner is a novel experimental setup at the Max Planck Institute for
Physics in Munich used to create pulse shape libraries for the bulk of germanium de-
tectors. A detailed description of the Compton Scanner has already been published in
2022 [38]. At that time, it was equipped with a single pixelated camera and character-
ized based on measurements conducted on an n-type segBEGe detector [200]. Within
the framework of this thesis, this setup was upgraded with a second camera [201] and
measurements were conducted on the p-type segBEGe detector introduced in chapter 6.
Most of the text in this chapter is quoted verbatim from the original publication [38]
and updated to account for recent changes where necessary.

9.1 Basic working principle

(x,y,z)

(xc,yc,zc)

(x0,y0,z0)

x y

z

Figure 9.1: Schematic of a typical gamma trajectory
in the Compton Scanner: The gamma is emitted by
the source at (x0,y0,z0), Compton scatters inside the
detector at (x,y,z) and is fully absorbed in the camera
at (xc,yc,zc). The origin of the Cartesian coordinate
system is located at the center of the bottom surface
of the detector.

In the Compton Scanner, the de-
tector under test is irradiated ver-
tically from the top with a colli-
mated gamma beam. A schematic
of a typical gamma trajectory is
shown in Fig. 9.1. The figure
also depicts the Cartesian coor-
dinate system, x, y and z, used
throughout this chapter. Gammas,
which deposit part of their energy,
Edet, through Compton scattering
in the detector, are deflected by the
Compton angle, θ , with

cos(θ) = 1− mec2Edet

Ein (Ein −Edet)
, (9.1)

where Ein is the energy of the incoming gammas.

If a scattered gamma is fully absorbed in one of the cameras placed nearby, which
measures both energy and position, the location of the scattering point in the detector
under test, (x,y,z), can be reconstructed. Assuming there is exactly one scattering
point on axis, i.e. x = x0 and y = y0, where (x0,y0,z0) is the position of the center of
source, the unknown z coordinate can be calculated as

z = zθ := zc +
√

(xc − x0)2 +(yc − y0)2 cot(θ) , (9.2)

where zθ is the z coordinate of the scattering point as reconstructed from the Compton
angle θ and from the position of the hit in the camera, (xc,yc,zc). The relation z = zθ
in Eq. (9.2) is true as long as the beam is parallel to the z axis.

Pulse shape libraries are created by moving the source to different positions x0 and y0.
Note that with this setup, for any position of the source, data are collected for the whole
range in z at the same time.
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9.2 Requirements

The purpose of this Compton Scanner setup is to create pulse shape libraries from bulk
events with an intrinsic spatial resolution of less than ±1mm in all dimensions. This
volume is compatible with the volume of the charge clouds at energies around 2 MeV
as expected in events from neutrinoless double-beta decay [110]. This results in a set
of physical requirements on the components of the Compton Scanner:

• The gamma source should be monoenergetic, with a single gamma line at an energy
that has a high penetration power into germanium and a high probability for Comp-
ton scattering. The gammas should predominantly scatter into an interval around
90°.

• The diameter of the collimated beam needs to be less than 2 mm throughout the de-
tector volume to reach the target resolution in the x and y directions. The collimation
of gammas with energies suitable for Compton scattering requires several centime-
ters of high-density material [202], e.g. lead or tungsten.

• For each position of the source, the data taking should only take up to a few hours,
such that multiple detectors per year can be scanned at multiple temperatures. For
this, a highly active source with an activity of several hundred MBq is required.

• The cameras need to have a spatial and energy resolution good enough to reconstruct
z using Eq. (9.2) with an uncertainty of less than ±1mm.

• The Compton Scanner setup is to accommodate arbitrary detector cryostats, demand-
ing it to be modular and to have a framework to mount and move the components.
Enough space in the center of the setup is required where the detector cryostat can
be installed.

In addition, the reconstruction based on Eq. (9.2) requires that the positions of the main
components of the Compton Scanner, i.e. source, detector and cameras, are all known
and aligned within a common coordinate system to much better than 1 mm.

9.3 Components

The individual components are mounted on a common frame as shown in Fig. 9.2. The
frame consists of a circular base plate with four vertical MayTec aluminum profiles,
two of which are connected via a fifth horizontal profile. The source and the camera
are attached to a horizontal and a vertical translation motor stage (STANDA® 8MT50-
200BS1-MEn1), respectively, which allow to move them with a precision of 5 µm.
The base plate is fixed onto a rotational motor stage (STANDA® 8MRB450-360-60-
MEn2), which allows to rotate it with a precision of 0.15°. The rotational motor stage
is mounted on a 600mm× 600mm aluminum breadboard, with a 300mm× 300mm
cutout in the center, which is located on a table with a circular hole. The detector
in its cryostat is inserted through this hole. The Compton Scanner can accommodate
cryostats with diameters of up to 130 mm. Two line lasers, attached to two adjacent
vertical MayTec profiles, are used to roughly align the center of the Compton Scanner
frame with respect to the center of the detector cryostat.
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Figure 9.2: (a) 3D model and (b) photo of the Compton Scanner setup. The vertical motor is
used to place the pixelated cameras at an optimal height with respect to the detector under test.
The horizontal motor allows to move the 137Cs source along the line which connects the centers
of the detector cryostat and the reference point of the camera assembly. The rotational motor
is used to rotate the whole frame, along with the pixelated cameras and the source, around
the cryostat.

10
0m

m

50mm

W95NiCu
surrounding
structure

137Cs source
(740MBq)

W95NiCu
collimator
disks

Borehole
(∅ 0.9 mm)

Figure 9.3: Schematic cross-section of the rotation-
ally symmetric 137Cs source collimator.

The source used in the Compton
Scanner is a cylindrical 740 MBq
137Cs source with an active diam-
eter of 0.9 mm. It emits gam-
mas with a characteristic energy of
661.660 keV [119] and fulfills the
requirements listed in section 9.2.
The emission of the gammas is
isotropic. To create a narrow verti-
cal beam, the source is embedded in
a collimator.

The collimator used in the Compton
Scanner is shown in Fig. 9.3. It con-
sists of 13 disks and a three-piece
surrounding structure made out of
W95NiCu tungsten alloy. Nine of the disks form a 100 mm long, massive colli-
mator with a borehole of 0.9 mm in diameter. At the top, the collimator assembly
provides a shielding of at least 50 mm of tungsten for radiation safety. The geome-
try of the collimator ensures that downwards but not vertically emitted 661.660 keV
gammas have to pass through at least 100 mm of tungsten. This reduces the frac-
tion of downward gammas that do not pass through the borehole to less than 10−7.
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The diameter of the borehole leads to an aperture angle of the collimated beam of 0.26°.
The collimated source is mounted as close to the detector cryostat as possible in order
to minimize the width of the beam reaching the detector. If the detector inside the
cryostat is placed within 100 mm underneath the bottom of the collimator, the beam
spot diameter is less than 1.8 mm.

The cameras used to detect the Compton scattered gammas are customized OEM
modules produced by H3D, Inc. [203]. The cameras each consist of four pixelated
cadmium-zinc-telluride (CdZnTe) detectors. The mean free path of 289 keV gammas
in CdZnTe is around 11.2 mm [112]. Each detector is based on a 22×22×10mm3

CdZnTe crystal. The four detectors are mounted inside an aluminum box in a 2×2 con-
figuration with 2 mm gaps between them. For each CdZnTe detector, the 22×22mm2

surface facing the germanium detector is fully covered by the cathode. The back
22×22mm2 surface is covered by the anode which consists of 11×11 pixels with a
center-to-center distance of 1.9 mm. This contact geometry allows for a three-dimen-
sional reconstruction of the positions of the energy depositions (hits) in each camera.
The lateral and depth position resolution of the cameras are both less than 0.5 mm
full width at half maximum, FWHM. The sub-pixel lateral resolution is reached by
considering the effect of charge sharing between neighboring pixels [204]. The depth
resolution is achieved by comparing the anode and cathode pulse amplitudes [205].

The camera readout system, trigger and reconstruction algorithms are proprietary tech-
nology of H3D, Inc. [203]. The cameras were bought together with software providing
a data stream consisting of deposited energy, time and position values for each event.
The energy resolution of the pixelated cameras at energies relevant for Compton Scan-
ner measurements were determined by irradiating the cameras directly with gammas
emitted from a 133Ba source, selecting only events with a single energy deposition.
The resolution was observed to be homogeneous across the pixels, varying by less
than 10%. The average values for the measured FWHM of the characteristic gamma
peaks of 133Ba are listed in Tab. 9.1.

Table 9.1: Absolute and relative energy resolution of the pixelated cameras used in the Comp-
ton Scanner, determined from events with the characteristic 133Ba gamma energies [119] and
only one energy deposition in the respective camera. The width of the peak, ∆E, corresponds
to the FWHM.

E in keV ∆E in keV ∆E/E

276.398 2.91 1.05%

302.853 2.83 0.93%

356.017 3.04 0.85%

383.851 3.11 0.81%

E in keV ∆E in keV ∆E/E

276.398 2.74 0.99%

302.853 2.68 0.89%

356.017 2.89 0.81%

383.851 2.89 0.75%
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9.4 Upgrade of the Compton Scanner with a second camera

At the time of the original publication [38], the Compton Scanner was equipped with
a single pixelated camera, see Fig. 9.4. The vertical centers of the p-type segBEGe
detector and the camera were aligned. Within the framework of this thesis, the Comp-
ton Scanner was upgraded with a second pixelated camera [201] to further increase the
acceptance of Compton Scanner measurements.

Pixelated
camera

Aluminum box

Camera read-
out electronics

Detector
under test
(in cryostat)

Vertical
MayTec
profile

Camera rail

Figure 9.4: Top view of the geometry of the Comp-
ton Scanner setup with a single pixelated camera as
presented in [38]. The axis of movement of the 137Cs
source is shown as a red dashed line.

The second camera was placed at
the same height as the first one
to maximize the number of de-
tectable perpendicularly scattered
gammas. Due to mechanical limi-
tations, placing the second camera
directly behind the first one was
not possible. In total, four config-
urations to incorporate the second
camera into the existing Compton
Scanner setup were simulated us-
ing GEANT4 [177], see Fig. 9.5.
The aim of this study was to find
the optimal configuration to max-
imize the number of perpendicu-
larly scattered gammas with a fo-
cus on increasing acceptance in the
center of the bulk, where the ac-
ceptance is the lowest due to ab-
sorption of the scattered gammas.

The first two configurations are symmetric with respect to the axis of movement of the
137Cs source. The vertical MayTec profiles restricted the choice of the angle between
the cameras. For the upgrade, symmetric configurations with an angle between the
cameras of 0◦ and 90◦ were considered, see Figs. 9.5a and 9.5b, respectively. In the
other two configurations, the first camera was kept at its original position. The second
camera was placed facing the center of the detector. Two such asymmetric configu-
rations, with an angle between the cameras of 45◦ and 90◦, were selected as upgrade
candidates, see Figs. 9.5c and 9.5d.

For the initial camera configuration depicted in Fig. 9.4 and for the four upgrade can-
didates depicted in Fig. 9.5, 1 million 137Cs decays were simulated for r between 0 mm
and 36 mm in steps of 2 mm along the path of movement of the source. For each r,
the number of events with exactly one Compton scatter in the germanium detector and
fully-contained energy within the setup, i.e. with the scattered gamma being fully ab-
sorbed in either one of the cameras, were counted. For each two-camera configuration
and each r, the increase in acceptance compared to the configuration with a single
camera was determined. The results are shown in Fig. 9.6.
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(a) (b)

(c) (d)
Figure 9.5: Top view of four possible geometries for placing the second pixelated camera to
upgrade the Compton Scanner. The top row depicts symmetric, the bottom row asymmetric
configurations with respect to the axis of movement of the source shown as a red dashed line.
In the bottom row, one of the cameras is placed at its original position shown in Fig. 9.4.

The maximum increase in acceptance is achieved when the solid angle of acceptance
is maximal and the scattered gammas have to pass through as little material as possible
on their way to the cameras. For measurements at r = 0mm, the camera in the original
configuration and both cameras in the asymmetric configurations have a maximal solid
angle of acceptance. Therefore, the acceptance in the asymmetric configurations is
doubled compared to the single-camera configuration*, see Fig. 9.6. For the symmet-
ric configurations, the solid angle of acceptance for measurements at r = 0mm is not
maximal and the increase in acceptance is only around 65%.

*In fact, the acceptance increase by slightly more than a factor of two. In addition to the doubled
acceptance resulting from having two cameras with maximum acceptance, fully-contained events where
the gamma Compton scatters in one camera and is fully absorbed in the other are counted as well.
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Figure 9.6: Increase in acceptance of the two-camera configurations shown in Fig. 9.5 com-
pared to the single-camera setup shown in Fig. 9.4 as a function of the radius, r, at which the
detector was irradiated.

During radial scans, the vertical beam moves from the center of the detector towards
the rail on which the cameras are mounted. Therefore, the second camera should be
placed as close to the rail as possible to also significantly increase the acceptance for
measurements close to the surface of the detector. For the asymmetric configuration
at an angle of 90◦, the vertical beam moves away from the second camera when ap-
proaching the first one. The decrease in acceptance and the increased probability of
additional interactions of the scattered gammas in the detector on their way to the cam-
era significantly reduces the increase of acceptance with r to only 5% at r = 36mm.
For the other camera configurations in Fig. 9.5, the collimated beam moves towards
both cameras with r, increasing the solid angle of acceptance and decreasing the prob-
ability of additional interactions after the first Compton scatter in the detector. The
increase in acceptance for measurements at r = 36mm is significant, i.e. around 30%
for the symmetric configurations and around 50% for the asymmetric configuration at
an angle of 45◦, see Fig. 9.6.

The asymmetric configuration with an angle between the cameras of 45◦ was found to
have the highest increase of acceptance for all r. It was, thus, chosen as the optimal
camera configuration for the Compton Scanner upgrade.
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9.5 Data acquisition

The reconstruction of the scattering point for charge pulses measured in the Compton
Scanner is only valid for events in which gammas emitted by the 137Cs source Compton
scatter in the detector and are absorbed in one of the cameras. These events have to be
selected from all events recorded independently in the detector and the cameras.

A flowchart depicting the event selection and the z-reconstruction is shown in Fig. 9.7.
The data streams from the detector under test and from the pixelated cameras were
recorded independently and stored separately. There was no online event building.
The p-type segBEGe detector recorded events with a rate of around 3.3 kHz. The rate
of recorded events in the cameras varied between 100 Hz and 150 Hz, depending on
the position of the source. After offline synchronization of the camera and detector
data streams, events with coincident energy deposits in the detector and the cameras
with a total recorded energy compatible with 661.660 keV were selected. For these
events, the z coordinate of the scattering point was reconstructed from the position of
the source, the hits in the cameras and the Compton angle θ .

7.4

9.6.1

9.6.2

9.1

9.1

Collimated
137Cs source

Detector
under test

Pixelated
cameras

Motor positions,
H and A

Charge pulses

Time stamps,
tdet

Time stamps,
tcam

Hits

Reconstructed
energy, Edet

Hit energies,
Ecam

Event selection

Local positions,
x(A)c ,y(A)c ,z(A)c

Source position,
x0 and y0

Compton angle,
θ

Global positions,
xc,yc,zc

Reconstructed
zθ

Reconstructed
zα

Full containment:
Edet +Ecam = Ein

Coincidence:
|tdet − tcam| ≤ 50µs

For events with two
hits in the cameras

Validation:
|zθ − zα | ≤ 2mm

z-reconstruction

Compton Scanner components Quantities recorded during measurements Calculated quantities

Figure 9.7: Flowchart of the Compton Scanner data processing, consisting of event selection
and z-reconstruction. Arrows pointing to calculated quantities are labeled with the number of
the section in which the respective calculation is explained in detail.

9.5.1 Synchronization of data streams

The camera and detector data streams were recorded with independent time stamps
and had to be synchronized. For this, 50 ns long rectangular voltage pulses generated
by each camera in time intervals of 2 ns were sent to the ADC also used in the detector
read-out. From these pulses, the offset between time stamps of the detector ADC, tdet,
and of the camera DAQ system, tcam, was determined and corrected for. Detector and
camera events with no respective counterpart within 50 µs in the cameras or detector
were discarded. This resulted in a rate of coincident events of around 60 Hz when the
detector was irradiated in the center, and of around 200 Hz when it was irradiated close
to the edge of the detector.
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9.6 Spatial alignment

The z-reconstruction requires the positions of the source and the cameras to be ex-
pressed in a common coordinate system. For this, all components were aligned with
respect to the center of the Compton Scanner frame. In this section, the alignment of
the components of the Compton Scanner is presented.

9.6.1 Spatial alignment of the detector

After inserting the K2 cryostat through the hole in the table, the center alignment was
of the order of a few millimeters. Line lasers, which produced a laser cross at the center
of the Compton Scanner frame, were used to further align the centers. Moving the rota-
tional motor stage on the aluminum breadboard until the laser cross matched the center
of the cryostat allowed for a center alignment to several hundreds of micrometers.

The position of the source was set by the horizontal stage position, H, and the rota-
tional stage angle, A, in the local motor coordinate system shown in Fig. 9.8. The
origin of this cylindrical coordinate system was located at the center of the Compton
Scanner frame. The position of the source had to be expressed in the polar coordi-
nates, r and ϕ , of the segBEGe detector coordinate system introduced in Fig. 6.1a. If
the centers were perfectly aligned, the source position, H, in the local motor coordi-
nate system and r in the detector coordinate system would only differ by an offset,
i.e. r =H−H0. The same would apply to the rotational stage angle, A, and the polar
angle ϕ , i.e. ϕ =A−A0. However, the unavoidable mismatch of the centers made
the conversion from local motor coordinates to detector coordinates non-trivial and
required further alignment measurements.

He,1

He,2

∆H

∆A

HA

Figure 9.8: Schematic of the movement of the source
in the local motor coordinate system of the Compton
Scanner, H and A. Also shown are the misalignment
quantities, ∆H and ∆A, that define the misalignment
between the center of the Compton Scanner frame
(white point) and the center of the segBEGe detector
(black point).

Figure 9.8 introduces the quanti-
ties that define a possible misalign-
ment of the center of the Comp-
ton Scanner frame with respect to
the center of the segBEGe detec-
tor. For a non-zero mismatch, ∆H,
the detector edge is reached at dif-
ferent horizontal stage positions,
He, for different A. There ex-
ists a rotational stage angle, ∆A,
at which He reaches its maximum
value, He,1. Accordingly, the min-
imum, He,2, is reached after a ro-
tation of 180°. The misalignment
quantities, ∆H = 1

2(He,1 − He,2)
and ∆A, as well as the offset,
H0 = 1

2(He,1 + He,2) + R, where
R is the radius of the segBEGe de-
tector, were determined from data.
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An alignment scan was performed to determine ∆H and ∆A. In this scan, A was
increased from 0° to 360° in steps of 5°. For every A, the horizontal motor stage was
moved over a range of 11 mm in steps of 1 mm across the edge of the detector. At each
point, a 1 min measurement was taken.
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Figure 9.9: Rate of events in the p-type segBEGe detector as determined from 1 min measure-
ments as a function of the horizontal motor position, H, at A = 0◦, together with a fit of the
data to the function in Eq. (9.3).

Figure 9.9 shows the rate of events, N, recorded in the p-type segBEGe detector as a
function of H for A = 0◦. At low H, the vertical beam does not intersect with the
detector and only background events are observed. At higher H, the beam is fully con-
tained within the detector volume, resulting in a higher count rate. Once the detector
edge on the other side is passed, the count rate drops again. The two detector edges,
H∓

e , can be determined by fitting the data to a Gauss error function, i.e.

N(H) =
N0

2
+

N0

2
erf

(
±
√

2(H−H∓
e (A))

Rb

)
+B, (9.3)

where Rb is the average 2σ -radius of the beam spot, N0 is the event rate expected when
the beam spot is fully contained throughout the detector and B is the rate of background
events. The rate of events from the 137Cs source was measured to be around 3 kHz,
while the rate of background events was around 300 Hz. The average beam-spot radius
was measured to be Rb = (1.33±0.04)mm.

For cylindrical detectors, the relation between H∓
e and A as derived from the geometry

depicted in Fig. 9.8 is [38]

H∓
e (A) =H0 −∆Hcos(A−∆A)∓

√
R̃2 − (∆H)2 sin2(A−∆A) . (9.4)

with "−" for the edge around H−
e ≈ 45mm closer to the cameras and "+" for the edge

around H+
e ≈ 118mm further away from the cameras. The quantity R̃ describes the

active radius of the detector, which is smaller than the crystal radius of R = 37.25mm
because of the thickness of the dead layer at the outer surface of the detector.
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Figure 9.10: Horizontal stage position determined as the locations of the detector edges H∓
e

depending on the rotational stage angle A. The misalignment quantities ∆H and ∆A are indi-
cated. The error bars correspond to the uncertainties obtained from the fits to determine H∓

e .

The misalignment quantities were obtained from fitting the function in Eq. (9.4) to the
measured H∓

e , see Fig. 9.10. The center of the Compton Scanner frame was reached
at H0 = (82.0±0.6)mm. The mismatch of the centers was ∆H= (0.19±0.06)mm
at ∆A= (353.5±3.9)◦. The active radius of the detector was R̃ = (36.50±0.06)mm,
implying a dead-layer thickness at the outer surface of (0.75±0.06)mm. This supports
the assumed thickness of the segment contacts of 0.75 mm in the simulation performed
for the p-type segBEGe detector, see section 6.3.

For measurements with the Compton Scanner, the collimated source is moved only
between the center of the detector and the detector edge closest to the cameras, i.e. in
the range H−

e ≤H≤H0. The conversion of local motor coordinates with H≤H0 to
r and ϕ becomes

r =
√

|H−H0|2 +(∆H)2 −2∆H|H−H0|cos(A−∆A), (9.5)

ϕ = asin
( |H−H0|sin(A−∆A)

r

)
+∆A−A0 , (9.6)

where A0 = (173.0±1.5)◦ is the offset between ϕ = 0◦ and the zero of the rotational
motor stage. The value of A0 was previously determined by measuring the position
of the segment boundaries in rotational motor coordinates [128]. In the following, for
all Compton Scanner measurements on the p-type segBEGe detector, all motor stage
positions were converted to detector coordinates using Eqs. (9.5) and (9.6).
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9.6.2 Spatial alignment of the cameras

⊗

⊙

z(A) y(A)

x(A)
z(B)

y(B)
x(B)

Figure 9.11: Schematic top view of the camera
rail with the positions of the camera crystals de-
picted in green. The local coordinate systems
of the two cameras are also shown.

For the measurements on the p-type
segBEGe detector, the camera rail was in-
stalled with the surface of camera (A) at
a shortest possible distance of 70.5 mm to
the center of the Compton Scanner frame,
see Fig. 9.12. The vertical motor stage was
used to align the centers of the segBEGe
detector and camera (A). The distance be-
tween the top of the detector and the bot-
tom of the source collimator was 31 mm.
The horizontal motor stage was installed
such that the 137Cs source could irradiate
not only the detector but also camera (A)
vertically from the top.

Based on the simulation studies presented in section 9.4, the sec-
ond pixelated camera was installed on the rail next to the first
one at an angle of approximately 45◦, see Fig. 9.11. The first
camera will be referred to as camera (A), the second one as cam-
era (B). After the installation of camera (B), both cameras were
kept at their fixed position on the camera rail. Thus, the relative
alignment between the two cameras, i.e. the transformation be-
tween the coordinate systems of camera (A) and (B), remained
unchanged for all measurements on the p-type segBEGe detector.

The cameras recorded hits in the local camera coordinates de-
picted in Fig. 9.11, i.e. x(A), y(A) and z(A) for camera (A) and
x(B), y(B) and z(B) for camera (B). The origins of the coordi-
nate systems are placed at the centers of the gaps between
the camera crystals, aligned with the surfaces that face
the camera rail. The x(A)-axis points along the cam-
era rail towards camera (B). The z(A)-axis points
perpendicular to the camera rail.

⊙
x

yz ⊗
x(A)

y(A)z(A)

⊙
x(B)

y(B)
z(B)

Figure 9.12: Top view of the Compton
Scanner setup with the p-type segBEGe
detector in the K2 cryostat and with
two cameras installed. The axis of
movement of the 137Cs source is shown as
a red dashed line. The global coordinate
systems and local coordinate systems of
the cameras are also shown.
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9.6.2.1 Spatial alignment of camera (A)

The orientation of the global coordinate system, x, y and z, is based on the orientation
of the coordinate system of camera (A). The global x-axis is parallel to the x(A)-axis,
the global y-axis is antiparallel to the z(A)-axis and the global z-axis is antiparallel to
the y(A)-axis, see Fig. 9.12.

Local coordinates of camera (A) are transformed to global coordinates as


x

y

z


=




x(A)

−z(A)

−y(A)


+




∆x

∆y

∆z


 , (9.7)

where ∆x, ∆y and ∆z are the components of the translation vector between the center
of the camera and the center of the Compton Scanner frame.
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Figure 9.13: Measured beam spot positions in the
local coordinate system of camera (A). Values for H
are given on the red dashed line depicting the recon-
structed axis of movement of the 137Cs source.

The components ∆x and ∆y were de-
termined experimentally by irradiat-
ing camera (A) directly. Figure 9.13
depicts measured beam spot posi-
tions in the local coordinates of cam-
era (A) for a set of horizontal stage
positions H. From these beam spot
positions, the axis of movement of
the 137Cs source was reconstructed.
It was seen to be parallel to the z(A)-
axis with H= 0mm being reached at
z(A) =−1.46mm.

The center of the Compton Scanner
frame is located at H0 = 82.0mm,
see section 9.6.1. In the local coordi-
nate system of camera (A), this cor-
responds to ∆x = x(A) =−4.50mm
and ∆y = z(A) = 80.54mm.

The vertical motor stage was used to place the origin of camera (A) at the z of the center
of the detector, i.e. ∆z = H/2 = 19.75mm. Thus, the translation vector in Eq. (9.7) for
measurements on the p-type segBEGe detector is


∆x

∆y

∆z


=




−4.50mm

80.54mm

19.75mm


 . (9.8)
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9.6.2.2 Spatial alignment of camera (B)

The coordinate system of camera (B) can be transformed to the camera (A) by invert-
ing the signs of x(B) and y(B), rotating around the y(B)-axis by an angle of 45◦, and
translating from the origin of camera (B) to the origin of camera (A), i.e.


x(A)

y(A)

z(A)


=




cos(α) 0 9sin(α)

0 1 0

sin(α) 0 cos(α)




︸ ︷︷ ︸
rotate by α around y(B)




91 0 0

0 91 0

0 0 1




︸ ︷︷ ︸
invert x(B) and y(B)




x(B)

y(B)

z(B)


+




∆x(A)

∆y(A)

∆z(A)




︸ ︷︷ ︸
translate origin (B) to (A)

. (9.9)

The relative alignment between the two cameras is defined by four quantities: the
precise value of the angle α ≈ 45◦ between the x(A)- and x(B)-axes and the translation
vector, ∆x(A), ∆y(A) and ∆z(A), which describes the translation between the origins of
camera (A) and camera (B) in coordinates of camera (A).

The relative alignment between the two cameras was determined experimentally using
the setup depicted in Fig. 9.14. After placing the camera rail in the center of the
Compton scanner frame, the collimated 137Cs source was moved across both cameras.
This allowed each camera to be irradiated vertically from the top, i.e. parallel to the
y(A)- and y(B)-axes, see Fig. 9.11. The position of the source was set by the horizontal
stage position, H. If one of the cameras was irradiated directly for a given H, the
position of the beam spot in the x-z-plane could be measured in the local coordinate
system of that camera [201]. A selection of measured beam spot positions is listed
in Tab. 9.2.

Camera (A)

Camera (B)

Horizontal
motor stage

Collimated
137Cs source

Camera
read-out
electronics

Collimated
137Cs source

(a) (b)
Figure 9.14: (a) Photo and (b) schematic top view of the configuration of the camera rail used
to determine the relative spatial alignment of the two cameras. In (b), the axis of movement of
the 137Cs source is shown as a red dashed line.
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Table 9.2: Measured beam spot position
in the x-z-plane of the camera coordinate sys-
tems for different horizontal stage positions,
H. The uncertainty on H is 0.05 mm and on x0
and z0 as measured by the cameras is 0.1 mm.

H in mm x(A)0 in mm z(A)0 in mm

76.3 15.9 8.4

79.3 13.2 7.2

81.3 11.4 6.4

84.3 8.7 5.1

H in mm x(B)0 in mm z(B)0 in mm

34.4 11.3 3.0

36.4 13.2 3.7

38.4 15.1 4.5

40.4 16.9 5.1

From the values in Tab. 9.2, two normal-
ized vectors, H⃗(A) and H⃗(B), describing
the movement of the 137Cs source in the
x-z-plane of the local coordinate systems
are determined using linear regression:

H⃗(A)=




0.9088

0

0.4173


 H⃗(B)=




0.9354

0

0.3536




Inverting the signs of x(B) and y(B), the pre-
cise angle between by the two vectors is

α = 180◦− acos(H⃗(A) ·
[

91 0 0

0 91 0

0 0 1

]
· H⃗(B))

= (45.37±0.12)◦ (9.10)

which is close to the envisioned 45◦ angle.
The uncertainty given is purely statistical.

Based on H⃗(A), the beam spot positions in the coordinate system of camera (A) can be
predicted for a given H, see Fig. 9.15. Doing this for the values of H in Tab. 9.2, for
which camera (B) was directly irradiated, allows to find ∆x(A) and ∆z(A). The values

∆x(A) = (64.13±0.03)mm and ∆z(A) = (31.86±0.02)mm (9.11)

were determined such that the transformed beam spot positions measured in cam-
era (B) result in the least mean squared difference to the positions expected from H.
Again, the uncertainties provided are purely statistical. The beam spot positions mea-
sured in camera (B), transformed to the coordinate system of camera (A) using Eq. (9.9),
α = (45.37 ± 0.12)◦ and the determined values for ∆x(A) and ∆z(A), are shown in
Fig. 9.15. As the beam is parallel to the y(A)- and y(B)-axes, ∆y(A) cannot be deter-
mined from this particular analysis.

The missing alignment quantity ∆y(A) describes the difference in height of the cameras
on the rail depicted in Fig. 9.11. As the cameras were installed at approximately the
same height on the camera rail, ∆y(A) is expected to be close to zero. The value of ∆y(A)

was determined from the same dataset as used for Fig. 9.15, selecting events where the
characteristic 661.660 keV gammas Compton scattered exactly once in one camera and
were fully absorbed in the other. For these events, y(A) can be both directly measured
in camera (A), i.e. y(A)meas, and reconstructed from the hit in camera (B), i.e. y(A)rec , as
presented in section 9.1. For the latter, the coordinates from camera (B) have to be
transformed to the coordinate system of camera (A) using Eq. (9.9). The value of ∆y(A)

is chosen such that the distribution of the difference y(A)rec − y(A)meas is centered at zero.
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Figure 9.15: Measured beam spot positions in camera (A) and (B), as well as beam spot posi-
tions expected from the horizontal motor position, H. Values for H are given on the red dashed
line depicting the reconstructed axis of movement of the 137Cs source. The coordinates of cam-
era (B) are transformed using Eq. (9.9) with α = (45.37±0.12)◦, ∆x(A) = (64.13±0.03)mm
and ∆z(A) = (31.86±0.02)mm.
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Figure 9.16: Distribution of energies, E(A)
cam in

camera (A) and E(B)
cam in camera (B), for coin-

cident events (∆t < 50µs) from a 10 min mea-
surement at H = 79.3mm. Both axes are di-
vided into bins of 5 keV. The solid lines indi-
cate the region containing events with a sum
energy of E(A)

cam +E(B)
cam = (662±8)keV.

After synchronizing the two data streams
from the cameras, coincident events,
i.e. events with time differences of less
than 50 µs, were selected. Events were
further selected if they comprised ex-
actly one hit in each camera and if
the total energies detected in cameras
(A) and (B), E(A)

cam and E(B)
cam, added

up to the characteristic energy of the
gammas emitted by the 137Cs source,
i.e. E(A)

cam +E(B)
cam = (662±8)keV. This

selection ensured that most of the events
originated from gammas which were
emitted by the 137Cs source, Compton
scattered exactly once in the irradiated
camera and were absorbed in the other.

Figure 9.16 shows a correlation plot for
E(A)

cam and E(B)
cam obtained from a 10 min

measurement at H = 79.3mm, where
camera (A) was irradiated directly, see Fig. 9.15. Most events populate the diagonal
line corresponding to fully-contained gammas from the 137Cs source.
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Figure 9.17: (a) Correlation between y(A)rec reconstructed using the hits in camera (B) and y(A)meas
directly measured in camera (A) for a 10 min measurement at H= 79.3mm. For the former,
coordinates of camera (B) were transformed using Eq. (9.9) with ∆y(A) = 0mm. The green
dashed line depicts y(A)rec = y(A)meas. (b) Distribution of the difference y(A)rec − y(A)meas, together with a
fit of a Cauchy distribution, from which a median value of (0.55±0.03)mm and a FWHM of
3.21mm were determined.

The hits in camera (B) were transformed to the coordinate system of camera (A) us-
ing Eq. (9.9) with ∆y(A) = 0mm and the values for α , ∆x(A) and ∆z(A) as listed in
Eqs. (9.10) and (9.11). Then, the reconstructed

y(A)rec = y(A)+
√

(x(A)− x(A)0 )2 +(z(A)− z(A)0 )2 cot(θ) (9.12)

for the hits measured in camera (B) and y(A)meas from hits measured directly in camera (A)
were compared for all selected events. The correlation between y(A)rec and y(A)meas for the
same 10 min measurement at H= 79.3mm is shown in Fig. 9.17a.

In Fig. 9.17b, the distribution of the differences y(A)rec − y(A)meas for all selected events are
shown. The distribution is well described by a Cauchy distribution with a median value
of (0.55±0.03)mm and a FWHM of 3.21mm. The median value describes how much
the coordinate transformation from camera (B) to camera (A) overestimates y(A) when
choosing ∆y(A) = 0mm. From this, the missing alignment quantity was determined as

∆y(A) = (−0.55±0.03)mm , (9.13)

where the uncertainty provided is purely statistical.
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9.7 Intrinsic spatial resolution

The results of the alignment are input to the determination of the intrinsic spatial reso-
lution. The intrinsic spatial resolution of the Compton Scanner configuration depicted
in Fig. 9.12 was determined from Monte Carlo simulations performed with the sim-
ulation toolkit GEANT4 [177]. Two scenarios with different positions of the vertical
beam were simulated:

(i) r = 0mm, i.e. the vertical beam placed at the center of the detector and the Compton
Scanner frame.

(ii) r = 36mm, i.e. the vertical beam placed 36 mm away from the center of the Comp-
ton Scanner frame at a minimal distance of 34.5 mm to the surface of camera (A).

Only events with exactly one Compton scatter in the germanium detector and at least
one hit in the pixelated camera were selected. The lateral and depth position reso-
lutions of the camera of 0.5 mm FWHM were used in the Monte Carlo simulation
for smearing the hit positions. The energy resolutions of cameras (A) and (B) of
0.85% and 0.81% FWHM at 356.017 keV, see Tab. 9.1, were added as uncertainty
on the hit energies. The z coordinates were reconstructed for all selected events using
Eqs. (9.1) and (9.2). The results are shown in Fig. 9.18.
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Figure 9.18: (a) Beam spot profile as determined from a Monte Carlo simulation performed
with GEANT4 [177]. (b) Deviation, ∆z, of the reconstructed zθ using Eq. (9.2) from the true z in
the simulation using the energy and spatial resolutions from the camera as listed in section 9.7.
(c) FWHM of the ∆z distribution, ∆z (FWHM), as a function of the energy resolution, ∆E/E,
of the detector at 356.017 keV. The dashed line in (c) depicts the upper limit for the precision
of the reconstruction, achieved when the energy reconstructed by the camera is used.
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The size of the beam spot in the xy-plane does not depend on the xy-position of the
source. The beam spot diameter at the top (bottom) of the detector was 1.23 mm
(1.61 mm) for all radii, resulting in an average of 1.40 mm, see Fig. 9.18a. This agrees
well with the diameters expected from the aperture of the beam.

During measurements, the Compton angles cannot be measured directly but are calcu-
lated from the energies deposited in the detector or in the camera. For cases in which
a germanium detector has a poor energy resolution, Edet can be determined from the
energy deposited in the camera, Ecam, via Edet = Ein −Ecam with a resolution given by
the uncertainties on Ecam. The resulting Gaussian distributions of the differences, ∆z,
between the reconstructed zθ and the true z for this case are shown in Fig. 9.18b. The
resolution for reconstructing z is 1.64 mm FWHM at r = 0mm and 1.09 mm FWHM at
r = 36mm. This defines an upper limit for the intrinsic ∆z resolution of the Compton
Scanner configuration depicted in Fig. 9.12.

Alternatively, Edet can be determined directly from the core pulses recorded from the
germanium detector. If the energy resolution of the detector is better than the resolution
on Edet determined via Ecam, the intrinsic spatial resolution is further improved. The
dependence of the ∆z resolution on the energy resolution of the detector is shown in
Fig. 9.18c. For the p-type segBEGe detector, the energy resolution at 356.017 keV is
0.42% FWHM, see Tab. 7.1. When reconstructing θ using the energy deposited in the
segBEGe detector, the ∆z resolution is improved to 1.29 mm FWHM at r = 0mm and
to 1.02 mm FWHM at r = 36mm.

9.8 Data processing

9.8.1 Event selection
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Figure 9.19: Distribution of energies mea-
sured in the core of the p-type segBEGe detec-
tor, Edet, and in the pixelated cameras, Ecam,
for coincident events during a 10 min Comp-
ton Scanner measurement on the ⟨110⟩ axis in
segment 3 at r = 32.2mm. The solid lines in-
dicate the region containing events with a sum
energy of Edet +Ecam = (662±8)keV.

The event selection for the Compton re-
construction of z was performed using
only coincident events. Events were se-
lected if the energy in the segBEGe de-
tector, Edet, as determined from the core
pulse, see section 7.4, and the total energy
detected in the pixelated cameras, Ecam,
added up to the characteristic energy
of the gammas from the 137Cs source,
i.e. Edet +Ecam = (662±8)keV. This se-
lection of fully-contained events ensured
that most of the events originated from
gammas emitted by the 137Cs source and
that the gammas did not undergo addi-
tional Compton scattering on their way
from the segBEGe detector to the camera,
e.g. off the cryostat wall or off the alu-
minum boxes of the pixelated cameras.
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Figure 9.19 shows a correlation plot for Edet and Ecam obtained from a 10 min measure-
ment, for which the p-type segBEGe detector was irradiated at r = 32.2mm, i.e. at a
distance of around 5 mm to the edge. The diagonal line corresponds to fully-contained
gammas from the 137Cs source and is densely populated. The fraction of fully-contained
events varies from 12% when irradiated in the center to 25% when irradiated close to
the detector edge.

9.8.2 Reconstruction of the interaction point

The reconstruction of z presented in section 9.1 applies only to events in which the
gamma Compton scatters exactly once in the detector, i.e. single-site events. Eq. (9.2)
does not hold for events in which the gamma scatters multiple times in the detector,
i.e. multi-site events. In these cases, the interaction point is misreconstructed and the
pulses are attributed to the wrong z.

Misreconstructed pulses can be identified for events with two well-separated hits in
the pixelated cameras. This approach was inspired by the procedures employed for
Compton cameras used to image gamma sources [206–208]. The reconstruction of the
origin of a gamma requires an assumption on which of the camera hits was the first
hit, i.e. the Compton scatter. According to the Monte Carlo simulation, the first hit is
expected to be the one with the lower energy. The Compton angle, α , between the path
of the gamma entering the camera and the line connecting both hits, see Fig. 9.20a, is
calculated using Eq. (9.1). This requires replacing θ by α , Ein by Ecam,1 +Ecam,2, and
Eout by Ecam,2, where Ecam,1 and Ecam,2 are the energy deposited in the first and the
second hit in the camera, respectively. Geometrically, α and the line connecting the
two hits define a Compton cone. The gamma entering the camera propagated along
the surface of this Compton cone. Thus, the last interaction point of the gamma in the
germanium detector has to lie on the surface of the Compton cone which intersects
with the beam axis in up to two points, zα,1 and zα,2.

(a) (b)
Figure 9.20: Schematic of the trajectory of a fully-contained gamma for (a) a single-site event
and (b) a multi-site event in the germanium detector. Interaction points in the germanium de-
tector and in the camera are shown as dots, the reconstructed interaction point using Eq. (9.2) is
shown as a triangle, and possible candidates obtained from the Compton cone using only cam-
era information are shown as crosses. In (a), the dot, the triangle and one of the crosses overlap.

132



Felix Hagemann

For single-site events, see Fig. 9.20a, there is only one interaction point in the germa-
nium detector and it is located on the beam axis. The surface of the Compton cone
intersects with the beam axis in this interaction point, i.e. z = zθ = zα , where zα is
either zα,1 or zα,2. For multi-site events, see Fig. 9.20b, the last interaction point in
the germanium detector is typically not located on the beam axis. The surface of the
Compton cone passes through the last interaction point of the gamma in the germa-
nium detector and intersects with the beam axis in so-called ghost points. These ghost
points are often outside of the germanium detector and typically none of them agrees
with the misreconstructed interaction point, i.e. zθ ̸= zα .

Reconstructing zθ as described in section 9.1 and demanding one of the zα,i to agree
with zθ within 2 mm allows to reject multi-site events without the need of pulse shape
analysis. In the case that the reconstruction is rejected, the time order of the two hits
is swapped. Only if both scenarios are rejected, the event is classified as a multi-site
event and is discarded. The uncertainty of this validation is too large when the two hits
in the cameras are too close to each other. The method works reliably for events with a
minimum distance of 3 mm between the two hits. This distance is also larger than 1.5
times the center-to-center distance of the anode pixels which ensures that the cameras
can reliably separate multiple hits from each other.

9.9 Event statistics

The increase in acceptance resulting from the upgrade of the Compton Scanner with
a second camera was also determined from data. A radial scan was performed along
the ⟨110⟩ axis in segment 3 in steps of 2 mm. For each r, the rate of validated two-
hit events in the detector volume was determined for all events and for a selection of
events with only hits in camera (A). The increase in acceptance is shown in Fig. 9.21.
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Figure 9.21: (a) Rate of validated two-hit events recorded with both cameras and selecting only
events in camera (A) for reference. Also shown are exponential fits to the data. (b) Increase in
acceptance as determined from the data and from the Monte Carlo simulation shown in Fig. 9.6.
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In the center of the detector at r = 0mm, the rate of validated two-hit events is 0.014 Hz
for only camera (A) and 0.031 Hz for both cameras. This corresponds to an increase
of acceptance of more than 120%. The rate of validated two-hit events increases ex-
ponentially with r, see Fig. 9.21a. Close to the edge of the detector, at r = 34mm, the
rate is more than 10 times higher than at the center. The setup with two cameras shows
a rate of 0.35 Hz while, only using camera (A), the rate of validated two-hit events
is 0.24 Hz.

In general, the increase in acceptance as determined from data is slightly higher than
the expectation from Monte Carlo simulations, see Fig. 9.21b. An explanation is that
the cameras cannot resolve some events with two hits in the same camera. If the two
hits are less than 1 mm apart, the camera classifies the event as a one-hit event, for
which the reconstructed zθ cannot be validated, and which does not pass the event
selection for Fig. 9.21. However, the predicted doubling of acceptance in the center
and 50% increase close to the edge of the detector describes the data reasonably well.
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10 Determination of the impurity density profile from
depletion images

The impurity density profile of a given detector can be determined from capacitance
measurements, see chapter 8. However, the measured capacitances only represent inte-
grated values over the depleted volumes of the detector, see Eq. (3.22). Thus, the best-
fit result for the impurity density profile is not necessarily unique. Different impurity
density profiles might result in similar CV-curves, despite having differently shaped
undepleted volumes. One way to resolve this ambiguity is to image the undepleted
volumes of the detector for a set of bias voltages and to use them to independently
determine the impurity density profile.

In this chapter, a novel method to image the undepleted volumes of a given detector
using the Compton Scanner is presented. From the analysis of the images for different
bias voltages, the impurity density profile of the p-type segBEGe detector is inferred.
This allows for an independent validation of the impurity density profile obtained from
capacitance measurements.

10.1 Basic working principle

If a germanium detector is operated well above its full-depletion voltage VD, energy
deposits in the bulk are detected with an efficiency of basically 100%. If it is operated
below VD, energy deposits in the undepleted volumes are theoretically not detected as
the electron-hole pairs are not (fully) separated by the vanishing electric field. In real-
ity, some events have been observed in undepleted volumes of silicon detectors [209].
However, the rate of recorded events in germanium is significantly lower in the unde-
pleted volumes of a detector.

The Compton Scanner setup provides the possibility to reconstruct and validate the
interaction points of single-site events recorded in the detector with two hits in the
cameras, see section 9.8.2. The distribution of reconstructed and validated events is
determined for the fully-depleted detector and for a set of bias voltages VB below VD.
In the depleted volumes, the event rates are expected to be the same as at full depletion
if the energy is reconstructed correctly. In the undepleted volumes, a deficiency of re-
constructed events with respect to the fully-depleted detector is to be observed. Divid-
ing the detector bulk into small volumes and determining volumes with high detection
deficiencies should, thus, allow to image the undepleted volumes of the detector.

10.2 Data taking and processing

The data to image the undepleted volumes of the p-type segBEGe detector was taken
along the ⟨110⟩ axis in segment 3 at ϕ = 275.8◦, see Fig. 10.1. The measurement
times were increased exponentially towards the center of the detector to compensate
for the observed exponential decrease in acceptance, see Fig. 9.21. Measurements
were performed for bias voltages of −900V, −600V, −300V, −150V, −100V and
−50V. The reference data for the fully-depleted detector was taken at VB =−3000V.
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〈100〉

Segment 1Segment 2

Segment 3

〈110〉

r in mm 0.2 2.2 4.2 6.2 8.2 10.2

t in min 1385 1200 1040 900 780 675

r in mm 12.2 14.2 16.2 18.2 20.2 22.2

t in min 585 510 440 380 330 285

r in mm 24.2 26.2 28.2 30.2 32.2 34.2

t in min 250 215 185 160 140 120

Figure 10.1: Top view of the scan points and a
table of the measurement times, t, at the differ-
ent radii, r, used to image the undepleted vol-
umes of the p-type segBEGe detector. The solid
and dashed black lines indicate the locations of
the ⟨100⟩ and ⟨110⟩ axes, respectively.
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Figure 10.2: Core calibration factors for differ-
ent r and VB as listed in the legend.

The data acquisition was described in
section 6.2 and is depicted in Fig. 6.3.
As Compton Scanner events were not
built at runtime, all events from the de-
tector had to be recorded. For this mea-
surement, charge pulses were recorded
with 3000 samples each, corresponding
to an extended pulse length of 12 µs. This
was required to capture the exponential
convergence towards the final pulse am-
plitude. An event rate of 3.3 kHz and
16 bits per sample caused data rates of
almost 160 Mbit/s per read-out channel.
The bandwidth of the network connec-
tion was too low to record the charge
pulses from all contacts of the p-type
segBEGe detector. The dead time of the
measurement was kept ≪ 1% by record-
ing only core pulses.

Compton Scanner event building was de-
scribed in section 9.5 with a schematic
shown in Fig. 9.7. The measured pulse
amplitudes from the core pulses were
converted to energies by multiplying
them with the VB-dependent core calibra-
tion factor, see Fig. 10.2.

At VB below −300V, an additional r-
dependence of the core calibration factor
was observed. This is due to the differ-
ence in cross-talk from segment 3 and 4
to the core. For r < 7mm, the electrons
were collected on the closed bottom end-
plate of segment 4. The cross-talk from
segment 4 to the core was significantly
higher than from segment 3, where the
electrons were collected for r > 7mm.
The reduced core pulse amplitudes when
segment 4 collected the electrons were
compensated by a higher core calibration
factor. For bias voltages of −600V and
above, this effect was negligible and the
core calibration factor was independent
of the collecting segment.
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Figure 10.3: Correlation of the energies Edet and Ecam for coincident events (∆t < 50µs) from
a 120 min measurement at r = 34.2mm for different bias voltages VB. The solid blue lines
indicate the regions containing events with Edet +Ecam = (662±50)keV.
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Figure 10.4: Rate of validated events with
two hits in the cameras for VB =−3000V,
determined from the data from the scan
shown in Fig. 10.1.

Because of the poor energy resolution at
low VB, Edet as determined from the core
contact of the p-type segBEGe detector was
only used for a first-level event selection, i.e.
Edet +Ecam = (662±50)keV, see Fig. 10.3.
This energy window of 100 keV was wide
enough to select all fully-contained events.
For further analysis, the detector energy was
determined from Edet = 661.660keV−Ecam.
This minimized the influence of the different
performance of the detector at different VB.

The distribution of validated two-hit events
in the r-z-plane at ϕ = 275.8◦ is shown in
Fig. 10.4. The r coordinates are defined by
the position of the 137Cs source, which was
moved in steps of 2 mm. The reconstructed
z values were binned into 2 mm bins. Event
rates were determined by dividing the number
of events in each bin by the dead-time cor-
rected measurement time at the respective r.
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The collimated beam irradiates the detector from the top and the pixelated cameras
are placed at the side of the detector. Therefore, the event rates are generally higher
at the top and close to the outer surface of the detector. The maximum event rate of
1.75 counts/min is reached in the bin close to the surface at a height of z ≈ 28mm. For
this bin, the product of the probabilities of a 661.660 keV gamma reaching this part of
the detector, the scattered gamma escaping from the detector and being absorbed in the
cameras is the highest. The lowest event rate of 0.025 counts/min is observed in the
bin at the bottom center of the detector.

The distributions of validated events with two hits in the cameras for VB below the
full-depletion voltage are shown in Fig. 10.5. For all VB, the highest event rate is
observed in the same region as for the fully-depleted detector, see Fig. 10.4. However,
bins towards the top center have significantly lower event rates than at VB =−3000V.
At VB = −900V, the rate deficiency is concentrated in the upper half of the detector
around r = 0mm. With decreasing VB, the region featuring a rate deficiency becomes
larger in r and z.
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Figure 10.5: Rate of validated events with two hits in the cameras for VB below the full-deple-
tion voltage as listed in the legends, determined from the data from the scan shown in Fig. 10.1.
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10.3 Determination of depletion images

The relative efficiency is defined as the ratio of the event rate at a given VB to the rate
at the reference voltage of VB =−3000V. Figure 10.6 depicts the relative efficiencies
for the six event rate distributions shown in Fig. 10.5. These images will be called
depletion images.
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Figure 10.6: Depletion images as determined from the data shown in Figs. 10.4 and 10.5.

The values for the relative efficiency range from 0%, associated with undepleted vol-
umes, up to 100%, associated with depleted volumes. In the depleted volumes at larger
r, the relative efficiency fluctuates around the expected value of 100% with a standard
deviation of around 10%.

At very low VB, the transition between the depleted and undepleted volumes is abrupt
in r. This is correlated precisely to specific positions of the beam. This requires the
boundary between the depleted and undepleted volume to be very thin, i.e. ≪ 1mm. At
higher VB, the boundary in r is softened, indicating that some events in the undepleted
volume survive.
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The transition between the depleted and the undepleted volumes in z is soft for all VB.
In addition, presumably depleted volumes underneath the undepleted volume do not
reach a relative efficiency of 100%. Both of these observations most likely arise from
the nature of the z-reconstruction. The deviation of the reconstructed zθ to the true
z was observed to follow a Cauchy distribution, see Fig. 9.17b. Some events are re-
constructed at a zθ far away from their true z. These events are referred to as catas-
trophic events. At r = 0mm, around half of the z-range of the detector is undepleted
at VB = −900V, and more than 75% is undepleted for VB below −150V. This does
not only lead to the observed rate deficiencies in the undepleted volume but also to
a decrease in catastrophic events in the depleted volumes. As event rates are gener-
ally expected to be higher for larger values of z, see Fig. 10.4, the contamination with
catastrophic events is expected to be higher for bins at lower z. This also explains why
the relative efficiencies for volumes above the undepleted volume do not show large as
deviations from 100%.

10.4 Fitting an impurity density profile to the depletion images

For the field calculation in SSD, the impurity density values around grid points r⃗i, j,k
in undepleted volumes are scaled by factors fi, j,k, see section 5.3. For each VB, these
fi, j,k describe the fraction of ionized impurities and would translate to the relative
efficiencies depicted in Fig. 10.5 if the z-reconstruction was perfect and the boundary
between the depleted and undepleted volumes was thin for all VB.

The predicted depletion level of the detector can be determined and mapped onto a grid
resembling the binning in Fig. 10.6 for a given impurity density model. The impurity
density profile is determined from a fit, for which the predicted fi, j,k(VB) describes the
observed depletion images for all VB best. In the fit,

• the impurity density profile was parameterized as given in Eq. (8.7), i.e. the hyper-
bolic tangent parameterization. The parameters ρin, ρout, α , r0 and λ were limited
such that they reproduce the full-depletion voltage of VD =−1275V.

• the bin at r⃗i, j,k is classified as depleted (di, j,k(VB) = 1) or undepleted (di, j,k(VB) = 0),
depending on whether its measured relative efficiency exceeds a threshold of 50%.

• regions below the undepleted volume, where the relative efficiency significantly de-
viates from 100%, see Fig. 10.7a, are excluded.

The fit is performed by minimizing the loss function,

L = ∑
VB

∑
i, j,k

( fi, j,k(VB)−di, j,k(VB))
2 , (10.1)

i.e. the sum over the squared differences between the simulated scale factors for the im-
purity density fi, j,k(VB) and the measured depletion fraction commensurate di, j,k(VB)
over all bins for all VB. The result for the impurity density profile is shown in Fig. 10.7b.
Uncertainties on the fit result were estimated from the variations of the parameter val-
ues when performing the fit with threshold values of 40% and 60%, accounting for the
10% standard deviation of the fluctuations seen in the depleted volumes.
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Figure 10.7: (a) Classification of volumes of the p-type segBEGe detector into depleted (green)
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shown in Fig. 10.6. The horizontal red line shows the minimum z-value for each VB included
in the impurity density profile fit. (b) Impurity density profile of the p-type segBEGe detector
obtained from minimizing the loss function in Eq. (10.1) for the hyperbolic tangent parame-
terization in Eq. (8.7) using a threshold value of 50% (solid), 40% (dotted) and 60% (dashed).
In (a), the shapes of the undepleted volumes, obtained from the impurity density profile shown
in (b), are indicated as blue lines.
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10.5 Comparison to the result from capacitance measurements

The impurity density profile of the p-type segBEGe detector was determined in two
completely independent ways. Either the profile was fitted to a measured CV-curve,
see Fig. 8.9, or to measured depleted volumes at voltages below full depletion, see
Fig. 10.7. The best-fit results for the hyperbolic-tangent parameterization in Eq. (8.7)
are shown in Fig. 10.8 with the parameters listed in Tab. 10.1. In both fits, a linear
z-gradient with a fixed increase of β = 12.1% from the bottom to the top was assumed.

Table 10.1: Best-fit result for the parameters in the hyperbolic-tangent parameterization in
Eq. (8.7) for the impurity density profile of the p-type segBEGe detector, determined from fits
to the measured CV-curve and from fits to measured depletion images.

Parameter Values from CV-curve Values from depletion images

ρin (−5.61±0.01) ·109 cm−3 (−5.68±0.22) ·109 cm−3

ρout (−6.30±0.34) ·106 cm−3 (+0.42+1.06
−1.10) ·109 cm−3

α (0.81±0.01)% (1.20+0.16
−0.13)%

r0 (33.2±0.4)mm (32.9+0.3
−0.4)mm

λ (4.86±0.02)mm (5.56+0.62
−0.92)mm

0 10 20 30
r in mm

−6 ·109

−4 ·109

−2 ·109

0

ρ
in

cm
−

3

Manufacturer values
(scaled to 89%)
From CV-curve
From depletion images

Figure 10.8: Impurity density profile of the p-type segBEGe detector for the parameters listed
in Tab. 10.1 at the bottom of the detector, i.e. z = 0mm. For reference, the impurity density
provided by the manufacturer and scaled to 89% to match the measured depletion voltage
assuming no r-dependence is shown in gray.

The best-fit results for ρin, ρout and r0 agree within uncertainties. Both methods predict
an almost constant impurity density profile of approximately ρin for r < 20mm, and a
significant decrease in the outermost centimeter to almost zero with an inflection point
at r0 = 33mm. In comparison with the manufacturer values on the impurity density
scaled to 89%, the impurity density profile from both methods is significantly higher
for r ≲ 25mm and lower for r ≳ 28mm.
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In direct comparison, the impurity density profile fitted to the CV-curve is subject to
smaller uncertainties, especially at small r. The impurity values at small r mostly
influence the depletion levels of the detector at VB close to the depletion voltage. The
voltage closest to the depletion voltage at which the capacitance was measured was
VB = −1250V, whereas the first depletion image was taken only at VB = −900V. In
addition, the measured capacitances are subject to smaller statistical fluctuations than
the relative efficiencies in the depletion images.

A drawback of the fit to the measured CV-curve is that the capacitances were only
measured down to VB =−120V. Therefore, it is not sensitive to the exact form of the
impurity density for r ≳ 30mm, see section 8.6. An advantage of the fit to the depletion
images is that smaller bias voltages were probed. Two depletion images were taken at
VB = −50V and VB = −100V, which is below the lowest bias voltage VB = −120V
at which the detector capacitance was measured. While the fit to the CV-curve has to
extrapolate the impurity density to large values for r, it can be determined from the fit
to the depletion images.
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Figure 10.9: Depletion images shown in Figs. 10.6, together with predicted depleted volumes
for the best-fit results of the impurity density.
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In Fig. 10.9, the measured depletion images are shown together with the undepleted
volumes predicted using the impurity density profiles shown in Fig. 10.8. The un-
depleted volumes agree for all three impurity density profiles for VB =−600V and
above. This is expected because the fitted impurity density profiles are basically flat up
to r = 20mm. For VB =−300V and below, the impurity profile using the scaled manu-
facturer values results in a depletion volume thinner in r compared to the fitted profiles.
The predicted undepleted volumes using the impurity density profiles obtained from
the capacitance measurements and from the depletion images agree very well. Even at
VB = −50V and VB = −100V, where no capacitance values were measured, the pre-
diction using the impurity density profile from the capacitance measurements provides
a significantly better agreement than the impurity density profile assuming no radial
dependence.

10.6 Discussion

Both, the capacitance measurements and the depletion images imply an almost flat
impurity density profile in the center of the detector and a strong radial decrease in
the last centimeter close to the surface of the detector. This is not the first time that
a strong radial decrease in the impurity density profile has been observed in a large-
volume detector produced by Mirion Technologies [34]. There are several explanations
for the observed impurity density, see also section 3.5.

The radial component of the impurity density profile could have been introduced dur-
ing crystal growth:

• The solid-liquid interface during crystal growth is not necessarily flat [145].
Outer parts of the crystal might have been grown before the inner parts. Impurities
in the germanium melt with low segregation coefficients kS ≪ 1 would then have
accumulated at later times in the crystal growth, resulting in a radially decreasing
impurity density profile.

• During crystal growth, copper contamination could not be avoided.
In n-type germanium detectors, copper contamination from the gas phase leads to
so-called coring, i.e. the bulk being n-type and the surface being p-type [146]. In
p-type germanium, copper contamination can also result in an r-dependence in the
impurity density profile.

The radial component of the impurity density profile could have been introduced dur-
ing the fabrication of the segment contacts:

• The n+ segment contacts are fabricated by lithium diffusion.
Lithium atoms diffusing up to 1 cm into the bulk of the detector could partly compen-
sate for the p-type impurities in the center, resulting in a lower net impurity density
at the surface compared to the bulk. However, if lithium atoms had diffused this deep
into the bulk of the detector, it would have been impossible to realize the segmenta-
tion of the contacts. Therefore, this explanation is highly unlikely.

• The temperatures needed to fabricate lithium-diffused contacts facilitate copper con-
tamination [149], which mostly accumulates close to the detector surface.
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As the exact temperature history and the crystal growth conditions are not disclosed
by the manufacturer, it is not possible to provide a certain explanation for the observed
r-dependence of the impurity density profile. However, the excellent agreement be-
tween the impurity density profiles determined from capacitance measurements and
from depletion images allows to confirm the existence of an r-dependence in the im-
purity density profile and to validate the predictions for the electric field of the p-type
segBEGe detector presented in section 8.5, which will be used for pulse-shape studies
in the last part of this thesis.
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11 Creation of Compton pulse shape libraries
The charge-carrier mobilities in germanium can be determined from charge pulses if
their origin and the electric field in the detector are known. The Compton Scanner
makes it possible to reconstruct the origin of pulses. For each small volume inside the
detector, the pulse shape from energy deposits within that volume can be determined
from data. Such a set of pulse shapes is called pulse shape library. The electric field
in the p-type segBEGe detector was determined from capacitance measurements and
validated using Compton images of undepleted volumes.

Pulses from individual events are too noisy to be used in a pulse shape library, on which
pulse shape analysis algorithms are to be trained. Thus, in the order of 100 pulses for
each detector volume are necessary to form superpulses which are less affected by
statistical fluctuations and electronic noise. The creation of a Compton pulse shape li-
brary for the bulk of a detector was described in section 5 of the publication introducing
the Compton Scanner in 2022 [38]. Within the framework of this thesis, the creation
of pulse shape libraries was further improved, especially by increasing the number of
pulses in the center of the detector. As before, part of the text in this chapter is quoted
verbatim from this publication [38] and updated to account for recent changes where
necessary.

11.1 Events with one hit in the cameras

Figure 11.1 shows pulses from events with one hit in the cameras from a 140 min
measurement at a typical detector temperature of 78 K, for which the detector was
irradiated at r = 18.2mm and ϕ = 275.8◦, i.e. close to the ⟨110⟩ axis in segment 3.
In total, 4142 events were reconstructed at z = (21±1)mm. All pulses were shifted to
a zero baseline and the tail of the pulses was corrected for the exponential decay of the
charge in the preamplifiers, see chapter 7. In addition, the pulses were normalized by
Edet as measured in the core. The pulses from any given event were collectively time-
shifted such that the core pulses reached 50% of their final amplitude at the same time.
Segment 3 is the collecting segment. The other segments show so-called mirror pulses
which return to the baseline as soon as the charge carriers are collected at the contacts.

The shapes of the 4142 pulses recorded in the core vary significantly. At the same time,
the lengths of the pulses recorded in segment 3 show a wide spread. These variations
result from misreconstructed events which most probably are multi-site events in the
segBEGe detector. Especially the multiple turning points observed in some core pulses
are known to be an indication for multi-site events [30, 31]. As events with only one
hit in the cameras do not allow for a validation of the reconstructed interaction point, it
is expected that some events are assigned to the wrong z. The pulses from these events
should not enter the averaging to create superpulses.

146



Felix Hagemann

0 200 400 600 800 1000
t in ns

0.0

0.5

1.0
N

or
m

al
iz

ed
ch

ar
ge

Core

0 200 400 600 800 1000
t in ns

−0.1

0.0

0.1

N
or

m
al

iz
ed

ch
ar

ge Segment 2

0 200 400 600 800 1000
t in ns

0.0

0.5

1.0

N
or

m
al

iz
ed

ch
ar

ge Segment 3

0 200 400 600 800 1000
t in ns

−0.1

0.0

0.1

N
or

m
al

iz
ed

ch
ar

ge Segment 1

0 200 400 600 800 1000
t in ns

−0.4

−0.2

0.0

0.2

N
or

m
al

iz
ed

ch
ar

ge Segment 4

Figure 11.1: Individual pulses from events assigned to the interaction point at r = 18.2mm,
ϕ = 275.8◦ and a reconstructed z = (21± 1)mm, with one hit in the pixelated cameras, from
a 140 min Compton Scanner measurement at a detector temperature of 78 K. All pulses are
time-shifted such that the core pulses are aligned to 50% of their amplitude.

11.2 Events with two hits in the cameras

Events with two hits in the cameras, which additionally passed the Compton cone
validation presented in section 9.8.2, were collected for all volumes. Figure 11.2 shows
all pulses from validated events with two hits in the cameras for the same volume as
considered for Fig. 11.1. From the same 140 min measurement, 74 pulses remain. In
contrast to Fig. 11.1, most of the lengths and shapes of all pulses agree except for
statistical fluctuations.
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Figure 11.2: Individual pulses from events assigned to the interaction point at
r = 18.2mm, ϕ = 275.8◦ and a reconstructed z = (21±1)mm, using only events with two
hits in the pixelated cameras that passed the Compton cone validation, see section 9.8.2, from
a 140 min Compton Scanner measurement at a detector temperature of 78 K. All pulses are
time-shifted such that the core pulses are aligned to 50% of their amplitude. Shown as black
lines are the median pulses. For each channel, pulses that do not agree with these intermediate
reference superpulses with χ2/ndf ≤ 3 are shown in gray.

Some events with two hits in the cameras feature a significant deviation at the end of
the core pulses or a significantly different rise time in the collecting segment 3, see
Fig. 11.2. One way to discard these outlier events is to perform a self-similarity cut
on the pulses from all two-hit events for a given detector volume. This requires the
determination of intermediate reference superpulses for all channels.
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Originally [38], the intermediate reference superpulses for the self-similarity cut were
determined for each channel by taking the mean of the respective pulses from all
events. This method of creating reference superpulses is reasonable for volumes in
which the number of misreconstructed events is very small. However, the fraction
of falsely validated events was seen to increase for smaller r. These outliers distort
especially the beginning and the end of any superpulse formed by averaging.

The determination of intermediate superpulses for the self-similarity cut was improved
to more effectively discard outliers. Assuming that at least half of the events are cor-
rectly validated, the median of all validated pulses for a given channel is a good first
step in constructing an intermediate superpulse, see Fig. 11.2. Events with pulses
that deviate by χ2/ndf ≥ 10 from the median pulse in the 1000 ns long signal win-
dow were classified as outliers and discarded, see Fig. 11.2. The reference superpulses
were, then, determined as the mean of the remaining pulses. Only events where the
pulses in the core and the collecting segment had a χ2/ndf ≤ 3 with respect to these
intermediate superpulses were averaged to form the final two-hit superpulses for the
given volume.

11.3 Final superpulses

0 1 2 3 4
χ2/ndf

0

50

100

150

200 Core
Segment 1
Segment 2
Segment 3
Segment 4

Figure 11.3: χ2/ndf distribution of the
pulses from all events with one hit in the cam-
eras, see Fig. 11.1, with respect to the super-
pulses obtained from events with two hits in
the cameras.

The superpulses obtained using only
events with two hits in the cameras are less
noisy compared to the individual pulses.
However, the limited number of pulse
shapes is not sufficient to reduce the influ-
ence of noise enough to observe tiny fea-
tures in the pulse shapes.

The superpulses from two-hit events were
used as a reference to select the correctly
reconstructed one-hit events. Events with
one hit in the camera were selected if the
individual pulses in all channels agreed
within χ2/ndf ≤ 2 with the respective two-
hit superpulses, see Fig. 11.3. The 348
pulses from one-hit events that passed the
similarity cut are highlighted in Fig. 11.4.
The final superpulses, determined as the
mean of all pulses from selected one- and
two-hit events, are also shown.

The individual pulses that enter the superpulse averaging have reconstructed zθ -values
which spread around a targeted z value, e.g. 21 mm for the pulses shown in Fig. 11.4.
Due to the finite resolution of the Compton Scanner and the limited sample size of
two-hit events, the actual z value of the final superpulses might differ from this targeted
z value by up to 1 mm.
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Figure 11.4: Pulses from events assigned to the interaction point at r = 18.2mm, ϕ = 275.8◦

and a reconstructed z = (21±1)mm, with one hit in the cameras and selected as described in
section 11.3. All pulses are time-shifted such that the core pulses are aligned to 50% of their
amplitude. Shown in gray are the pulses that did not agree with the two-hit superpulse with
χ2/ndf ≤ 2. Shown in black are the final superpulses.

An estimate for the actual z value of the final superpulses is the most likely zθ value
of all similar events. An individual event is defined as similar if the pulses in the core
and all segments agree with the respective superpulses with χ2/ndf ≤ 3 in the signal
window. For these similar events, the distribution of zθ follows a Cauchy distribution
that peaks around the nominal z value. Figure 11.5 depicts the distribution of zθ of
events with pulses similar to the superpulses shown in Fig. 11.4. The actual z value
is then determined as the median value, z̄θ , of the Cauchy distribution fitted to the
measured zθ distribution. For the superpulses shown in Fig. 11.4, the actual z value of
z̄θ = (21.35±0.05)mm is slightly higher than the nominal z value of 21 mm.
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Figure 11.5: Distribution of the reconstructed zθ values from all similar one-hit events from
the 140 min measurement at r = 18.2mm and ϕ = 275.8◦, i.e all one-hit events with pulses
that agree with the final superpulses determined for z = (21±1)mm, see Fig. 11.4, with
χ2/ndf ≤ 3. Also shown is a fit of a Cauchy distribution, from which a median value of
z̄θ = (21.35±0.05)mm was determined.

11.4 First comparison of simulated to measured superpulses

The superpulses from the pulse shape library serve to test pulse shape simulations.
Figure 11.6a depicts the distributions of 5−95% rise times and A0/E0 as determined
from the core contact, see section 6.3.2, for the p-type segBEGe detector at ϕ = 275.8◦.
Shown in Fig. 11.6b are simulation results from SSD, using the impurity density pro-
file obtained from the capacitance measurement, see section 8.5, and the charge-drift
models described in chapter 4. The simulated raw pulses were convolved with the
preamplifier response functions to account for the bandwidths of the preamplifiers.

The general distributions of the 5− 95% rise times and A0/E0 are well predicted by
this simulation. The smallest rise times are observed in the region forming a shell
around the point contact. The largest rise time values are observed at the bottom and in
the outer parts of the p-type segBEGe detector. The distribution of A0/E0 is basically
constant over a large part of the detector and increases only in regions very close to
the point contact. However, the 5− 95% rise times are generally underestimated and
the values for A0/E0 are overestimated by approximately 10%. This implies that the
charge-drift mobilities used in the simulation are too large by around 10%.

A better agreement between simulated and measured pulse shape library is achieved
when scaling µ0 for holes to 90% of the values listed in Tab. 4.1, see Fig. 11.6c. This
agrees well with previous findings [210–212], where µ0 values had to be scaled to
between 85% and 90% to match the measured pulse lengths. For r ≥ 20mm or for
z ≤ 20mm, the simulated A0/E0 distribution does not significantly deviate from the
measured one for this change of input to the simulation. The rise time distribution is
also well predicted in that part of the detector. However, at r = 0mm, the simulation
underestimates the rise times by up to 10%, and in the region just below the point
contact, deviations of up to 42% in the rise times and down to −18% in the values for
A0/E0 are observed, see Fig. 11.7.
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Figure 11.6: (Top) 5− 95% rise times and (bottom) A0/E0 for the ⟨110⟩ axis in segment 3
at ϕ = 275.8◦, as determined for the core contact: (a) from the superpulses obtained from
Compton Scanner data at T0 = 78K, and (b) simulated with SSD using the mobility parameters
listed in Tab. 4.1 and (c) with µ0 for holes scaled to 90%. In all simulations, the electric field
resulting from the capacitance measurements shown in Fig. 8.12 and the hole- and electron-
drift models introduced in sections 4.4.1 and 4.4.2.3 were used.

The deviations depicted in Fig. 11.7 imply that simply scaling µ0 for holes to 90%
is not sufficient to fully predict the performance of the p-type segBEGe detector, de-
spite significantly improving the agreement between simulation and data. In order to
determine values for the longitudinal drift velocities along the ⟨100⟩ and the ⟨110⟩
axes and to test the charge-drift anisotropies for electric field strengths between 400
and 1200 V/cm, the superpulses in the high-quality pulse shape library obtained from
Compton Scanner data are analyzed in more detail in the final part of this thesis.
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Figure 11.7: Relative deviation of the simulated (a) 5−95% rise times and (b) A0/E0 values,
using µ0 for holes scaled to 90%, to the measured values as shown in Fig. 11.6.
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12 Determination of charge-carrier mobilities
The longitudinal drift of electrons and holes can be studied in regions where the electric
field is parallel to a crystallographic axis. In the p-type segBEGe detector, there are
several regions where this is the case, see Fig. 8.12:

• In the center at r = 0mm, the electric field points upwards along the [001] axis with
an electric field strength of 400V/cm ≲ E ≲ 1700V/cm.

• At z = 21.5mm, the electric field for r > 20mm points radially inwards and horizon-
tal drifts along the ⟨100⟩ and ⟨110⟩ axes can be studied at electric field strengths of
470V/cm ≲ E ≲ 620V/cm.

In this chapter, the determination of the longitudinal drift velocities and corresponding
mobilities of electrons and holes, as well as their temperature dependence, is presented
for vertical and horizontal drifts along the ⟨100⟩ and ⟨110⟩ axes. The longitudinal
anisotropy is used to test the assumptions made for the electron-drift model.

12.1 Longitudinal charge-carrier drift along the [001] direction
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Figure 12.1: Electron and hole drift paths for
two events at r = 0mm as simulated with SSD.
Lines depict the upward hole drift for the event
at z = 1mm (gold) and the downward electron
drift for the event at z = 17mm (pink). Also
shown is the weighting potential W0 of the
core contact.

For events at r = 0mm, the charge-carrier
drift is fully vertical, i.e. longitudinal
along the [001] axis, see Fig. 12.1. The
longest hole drift paths are obtained for
events at the bottom of the detector, where
the electrons are almost immediately col-
lected on the closed bottom end-plate of
segment 4 and the holes drift upwards
through the whole detector. With increas-
ing z, the hole drift path and, thus, the
hole drift time becomes shorter, while the
electron drift path becomes longer. This
is shown exemplarily in Fig. 12.1 for two
events at z = 1mm and z = 17mm.

The simulated pulses shown in Fig. 12.2
demonstrate the dependence of the drift
time on the z-position of the event. The
longest pulse is obtained for the event at
z = 1mm, which features almost exclusively hole drift. With increasing z, the influ-
ence of the electron drift on the pulse shape increases, resulting in steeper slopes at the
beginning of the pulses, see Fig. 12.2b. As long as the electrons are collected before
the holes, i.e. z < 21mm, the pulses become shorter and end with a sharp rise. This
sharp rise of the pulses shown in Fig. 12.2a results from the final approach of the holes
to the core contact. For z ≥ 21mm, the sharp rise is followed by a moderate slope
associated with an ongoing downward drift of the electrons.
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Figure 12.2: Simulated core pulses for events at r = 0mm and z as given in the legend using
the electric field depicted in Fig. 8.12 and the mobility parameters listed in Tab. 4.1: (a) full
amplitude and (b) zoom-in. The pulses are convolved with the response function of the core
contact, normalized to their amplitude and time-aligned to 65% of their amplitude.

The exact shapes of the simulated pulses shown in Fig. 12.2 depend on

• the electric field E⃗(z) at r = 0mm, see Fig. 8.12, which was determined from capac-
itance measurements and from depletion images,

• the weighting potential of the core contact for the fully-depleted detector, see Fig. 12.2,
which depends only on the geometry of the detector and its contacts,

• the response function for the core read-out, see Fig. 7.9, which was determined from
pulser measurements as described in section 7.3,

• the linear segment-to-core cross-talk, see Eq. (7.8), which was determined from
background measurements as described in section 7.4.2,

• the differential segment-to-core cross-talk, which was set to be −0.06/ns for seg-
ment 4 and zero for all other segments based on the observation of segment-specific
core rise times, see Appendix F on page 192, and

• the mobility parameters µ0, E0 and β of the longitudinal electron and hole drift along
the [001] direction used in υ100

L,e (E) and υ100
L,h (E), see Eq. (4.2). .

The parameters for υ100
L,e (E) and υ100

L,h (E) were determined from data taken at r = 0mm
by finding sets of µ0, E0 and β for electrons and holes that minimize the deviations
between simulated and measured pulses.
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12.1.1 Data taking and processing

〈100〉

Segment 1Segment 2

Segment 3

〈110〉

Figure 12.3: Top view of the scan point used
to measure the longitudinal charge-carrier drift
along the [001] axis. The solid and dashed
black lines indicate the locations of the hori-
zontal ⟨100⟩ and ⟨110⟩ axes, respectively.

Compton Scanner data was taken at
r = 0mm with a measurement time of
100 h, see Fig. 12.3. The pulses from
the core contact and the segments were
recorded with a pulse length of 4.8 µs
for all events registered in the core con-
tact with an energy evaluated to be above
50 keV by the trigger. The pulses were
processed as described in chapter 7. The
z-reconstruction was performed for all
events with one or two hits in the cam-
eras as described in section 9.8. Then,
pulse shape libraries were created as out-
lined in chapter 11.

Figure 12.4 depicts the Compton super-
pulses at r = 0mm for a detector temper-
ature of 77.9 K. The trend predicted by
the simulation in Fig. 12.2 is clearly ob-
served in the data. However, the mea-
sured pulses are significantly longer than the simulated pulses. An additional feature
observed in the data is that the pulses are not as evenly spread out in time as predicted
by the simulation. This is due to the finite position resolution of the z-reconstruction
and the limited number of two-hit events used as reference in the similarity cuts, which
cause the superpulses to be representative of a z-value up to 1 mm different from the
targeted z-value.
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Figure 12.4: Measured core superpulses from events at r = 0mm and targeted z as given in
the legend at a detector temperature of T = 77.9K. The pulses are time-aligned to 65% of their
amplitude.
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12.1.2 Extraction of mobility parameters from pulses

Mobility parameters for the longitudinal drift along the [001] direction for electric
field strengths of 400V/cm ≲ E ≲ 1700V/cm were extracted from the measured pulses
shown in Fig. 12.4. The longitudinal drift velocities υ100

L,e and υ100
L,h were parameterized

according to Eq. (4.2). For the electric field strengths tested here, the Gunn effect for
electrons can be neglected. Thus, µn was set to zero.

The fit was built with six mobility parameters, i.e. µ0, E0 and β for electrons and for
holes. As the actual z can vary from the targeted z, additional nuisance parameters
were added, allowing for variations around the targeted z of up to 2 mm. The fit rou-
tine adjusted the mobility parameters by minimizing the global χ2/ndf between the
simulated and the measured pulses in the rise-time window of 0.5 to 95%. The best-fit
results for the mobility parameters are listed in Tab. 12.1 and shown in Fig. 12.6.

Simulated pulses based on these mobility values are compared to selected Compton
superpulses in Fig. 12.5. The simulated pulses agree extremely well with the mea-
sured pulses throughout the whole pulse length. The largest deviations of up to 1.5%
are seen right after the sharp rise, which is associated with the final upward drift of the
holes at the highest electric field of E ≈ 1700V/cm. These deviations are reproducible
for z ≤ 19mm. The shape of the deviations implies that the bandwidth of the pream-
plifier read-out is slightly better than what is suggested by the core response function.
The observed deviations could also be explained by small inaccuracies in the differ-
ential cross-talk matrix or in the electric field close to the core contact. However, the
deviation has no influence on the result.
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Figure 12.5: Comparison of simulated pulses based (dashed) on the best-fit result for the
charge-carrier drift along the [001] direction listed in Tab. 12.1 to selected measured pulses
(solid) from Fig. 12.4. Also shown are deviations as simulated minus the measured pulses.
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Table 12.1: Best-fit values for the mobility parameters in Eq. (4.2) for electrons and holes along
the [001]-direction for 400V/cm ≲ E ≲ 1700V/cm determined for T = 77.9K.

Charge carrier Axis µ0 in cm2

Vs E0 in V
cm β

Electrons [001] 37511 507 0.805

Holes [001] 56804 210 0.704
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Figure 12.6: Longitudinal (a) electron- and (b) hole-drift velocity as a function of E along the
[001] direction as determined from data (solid), in comparison to the curves obtained from the
literature values [135] listed in Tab. 4.1 (dashed).

The drift velocities along the vertical [001] axis and along the ⟨100⟩ axis should be
identical, as the two axes are equivalent by symmetry. The mobility parameters along
the [001] axis obtained from fits to the Compton superpulses result in 4% slower elec-
trons and 20% slower holes compared to what would be predicted by the literature
values for the ⟨100⟩ axis listed in Tab. 4.1.

The drift velocities are extracted with uncertainties of approximately 1%. However,
the conversion of drift velocities to mobility parameters requires dividing by E . Any
systematic uncertainty on E directly translates into a systematic uncertainty on the
mobility parameters. If the true electric field strength, E , would be a factor κ higher
than the electric field strength, Esim, assumed in the simulation, i.e. E = κEsim, Eq. (4.2)
is invariant under the following transformation:

µ0 = µ0,sim/κ, E0 = κE0,sim, β = βsim and µn = µn,sim/κ (12.1)

However, the electron- and hole-drift velocities were determined in the same region of
the detector. Thus, a 5% inaccuracy in the electric field might explain the deviation
for the electrons, but not for the holes. In addition, the uncertainty on the electric field
along the vertical [001] axis shown in Fig. 8.12b is too small to explain the deviations
depicted in Fig. 12.6.
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12.1.3 Temperature dependence determined from the vertical drift

Table 12.2: Different Compton Scanner data
sets: K2 controlling temperature, TCT, detector
temperature, T , and bias voltage, VB, applied to
the core contact. Uncertainties on the tempera-
tures are ∆T =±0.7K.

Scan set TCT in ◦C T in K VB in V

V78 −201.4 77.9 −3000

V80 −199.6 80.2 −3000

V83 −196.6 83.3 −3000

V87 −193.6 86.9 −3000

V89 −191.6 89.3 −3000

V95 −186.6 94.8 −3000

V98 −183.6 98.1 −3000

The temperature dependence of the lon-
gitudinal drift mobilities along the [001]
direction was studied by retaking the
measurement presented in section 12.1.1
for different temperatures in the range
between 77 K and 99 K, see Tab. 12.2.
The mobility parameters were deter-
mined by fitting simulated pulses to
the selected Compton superpulses at the
same z locations as shown in Fig. 12.5.

Figure 12.7 depicts the resulting longi-
tudinal electron and hole drift velocities
along the [001] axis at the reference elec-
tric field strength of E = 500V/cm. The
electron-drift velocities are on average
(23.2± 0.8)% higher than the hole-drift
velocities.

The electron- and hole-drift velocities decrease with increasing temperature. Fitting a
power-law to the measured drift velocities, the temperature dependence at E = 500V/cm
is υ100

L,e ∝ T−0.52 for the electrons and υ100
L,h ∝ T−0.53 for the holes. This T -dependence

is significantly less pronounced than the expectation for scattering off acoustic phonons,
see section 4.3, i.e. the theoretical prediction of µA ∝ T−3/2 or the previously measured
dependencies of µe ∝ T−1.68 for electrons and µh ∝ T−2.40 for holes [167–170].
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Figure 12.7: Temperature dependence of the electron and hole drift velocity along the [001] di-
rection, determined from Compton superpulses taken at the temperatures T listed in Tab. 12.2
and evaluated at E = 500V/cm. The lines depict fits of a power-law (dashed) and of the ex-
pressions in Eq. (12.2) (solid) to the data.
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The difference between the temperature dependence of υ100
L,e/h measured for this thesis

and for previous publications at low electric field strengths is related to the saturation
of the drift velocities at high electric fields. For E ≲ 100V/cm, the drift velocities
increase linearly with the electric field strength and the temperature dependence of
the drift velocities is defined exclusively by the temperature dependence of µ0 ∝ T−p,
i.e. υ100

L,e/h ∝ T−p. However, the electric field strengths in the p-type segBEGe detec-
tor are significantly higher, resulting in the drift velocities approaching saturation. In
this case, the temperature dependence of the drift velocities is defined by an interplay
between the T -dependence of µ0 and of υsat = µ0E0.

Under the assumption that acoustic phonons are the dominant scattering centers and
the temperature dependence of µ0 in the linear region is approximately a power-law,
e.g. µA ∝ T−3/2 [161], this implies that υsat depends significantly less on T than µ0.
This is in agreement with previous findings [152].

In 1987, M.A. Omar and L. Reggiani [170] proposed the following parameterizations
for the temperature dependence of µ0 and of υsat, i.e.

µ0(T ) = A ·T−p υsat(T ) = µ0(T )E0(T ) = B ·
√

tanh(θ/2T ) , (12.2)

where the values of p = 1.68 for electrons, p = 2.40 for holes and θ = 200K were
determined from data in the temperature range from 130 K to 300 K. The parameter A
defines the absolute values of the low-field mobility µ0, whereas the parameter B is a
measure for the maximal saturation-drift velocity reached in the limit T → 0K.

Table 12.3: Best-fit results for the parameters A and B in Eq. (12.2) in the temperature range
from 77 K to 99 K as extracted from the measured drift velocities evaluated at E = 500V/cm
shown in Fig. 12.7.

A B

Electrons [001] 2.741 ·106 K1.68 cm2/Vs 11.38 ·106 cm/s

Holes [001] 8.672 ·107 K2.40 cm2/Vs 8.43 ·106 cm/s

The parameters A and B were determined from a fit of Eq. (12.2) to the measured drift
velocities, fixing p = 1.68 and β = 0.805 for electrons, p = 2.40 and β = 0.704 for
holes and θ = 200K. The fit results are listed in Tab. 12.3. The resulting υ001

L,e/h(E)-
dependence shows a similarly good agreement with the data than the fits based on a
power-law, see Fig. 12.7.

The p-type segBEGe detector could not be operated stably at temperatures below 77 K
due to the limited cooling power of the K2 cryostat, or above 100 K due to high leakage
currents. This temperature range is not large enough to make accurate predictions
for lower or higher temperatures. However, the expressions in Eq. (12.2) result in an
upper bound on υ100

L,e and υ100
L,h at low T which would provide an explanation for the

Boltzmann-like temperature dependence of rise times observed in an n-type coaxial
germanium detector over a temperature range from 77 K to 130 K [35].
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12.2 Longitudinal anisotropy between the ⟨100⟩ and ⟨110⟩ axes

The analysis in section 12.1 is limited to longitudinal drifts along the [001] axis and
does not allow to study anisotropic effects and their temperature dependence. For this,
events with drifts along the ⟨100⟩ and ⟨110⟩ axes have to be used.
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Figure 12.8: Electron and hole drift paths
for two events at z = 21.5mm as simulated
with SSD. Lines depict the inward hole drift
for the event at r = 36mm (gold) and the out-
ward electron drift for the event at r = 20mm
(pink). Also shown is the weighting potential
W0 of the core contact.

At z = 21.5mm, the electric field in the
outer part of the detector points radially
inwards. Thus, for events at z = 21.5mm
and r > 20mm, the first part of the hole
drift and the whole electron drift is hor-
izontal, see Fig. 12.8, i.e. along the
⟨100⟩ axis at ϕ = 50.8◦ and along the
⟨110⟩ axis at ϕ = 5.8◦. Here, events close
to the mantle surface have the longest
hole drift. The hole drift becomes shorter
and the electron drift longer with decreas-
ing r. The final part of the hole drift at
r < 20mm is identical for all events.

The corresponding core pulses are shown
in Fig. 12.9. The longest pulse is obtained
for the event at r = 36mm, which is domi-
nated by the hole drift. With decreasing r,
the shorter hole drift and the simultaneous
contribution from the outward electron drift result in shorter pulses and steeper slopes
at the beginning of the pulse. The sharp rises at the end of the pulses are identical
for all events because all the hole drift paths are identical at the end and because the
electrons are collected before the holes reach the vicinity of the core contact.

If the pulses are time-aligned at the sharp rise at 65% of their final amplitude, the
differences between the pulses from different r represent the electron and hole drift in
the horizontal plane. The subtraction of pulses originating at smaller r from the pulse
originating at r = 36mm is depicted in Fig. 12.10.

The subtraction results in triangular shapes with increasing lengths and amplitudes for
decreasing r. The time at which a triangle leaves the baseline is associated with the
charge-carrier creation for the event at r = 36mm. The rising slope of the triangle
is identical to the rise of the reference pulse at r = 36mm, see Fig. 12.10a, due to
the inwards drift of the holes. The maximum of each triangle is associated with the
time at which the event at smaller r is created. From then on, the hole contribution
to the charge pulses is identical and cancels when subtracted. Therefore, the falling
slope is exclusively defined by the outward drift of the electrons. At the time, at which
the triangle returns to its baseline, the electrons are collected on the segment contact.
Therefore, the falling slopes agree if the triangles are time-aligned at the point of return
to the baseline, see Fig. 12.10b.
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Figure 12.9: Simulated core pulses for events on the ⟨100⟩ axis at ϕ = 50.8◦, z = 21.5mm
and r as given in the legend, using the electric field depicted in Fig. 8.12, the mobility pa-
rameters listed in Tab. 4.1 and the hole- and electron-drift models introduced in sections 4.4.1
and 4.4.2.3: (a) full amplitude and (b) zoom-in. The pulses are convolved with the response
function of the core contact, normalized and time-aligned to 65% of their amplitude.
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Figure 12.10: Subtraction of pulses as shown in Fig. 12.9 from the core pulse for an event
at r = 36mm, ϕ = 50.8◦ and z = 21.5mm (gold). The resulting triangles are time-aligned to
0.005 on (a) the rising slope or (b) the falling slope.
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The construction of triangles has the advantage that the change of the drift from inward
to upward drift of the holes, which can only be described model-dependently, cancels
and only the electron and hole drifts along the horizontal axes contribute. This allows
to determine the mobility parameters for υ100

L,e (E), υ100
L,h (E), υ110

L,e (E) and υ110
L,h (E) for

electric field strengths in the range 470V/cm ≲ E ≲ 620V/cm.

12.2.1 Data taking and processing

〈100〉

Segment 1Segment 2

Segment 3

〈110〉

r in mm 20 22 24 26 28

t in min 330 285 250 215 185

r in mm 30 32 34 36

t in min 160 140 120 120

Figure 12.11: Top view of the scan points and a
table of the measurement times, t, at the dif-
ferent radii, r, used to measure the horizon-
tal charge-carrier drift. The solid and dashed
black lines indicate the locations of the ⟨100⟩
and ⟨110⟩ axes, respectively.

Data was taken in segment 1 on the ⟨110⟩
axis at ϕ = 5.8◦ and on the ⟨100⟩ axis at
ϕ = 50.8◦, see Fig. 12.11. The measure-
ment times per source position were in-
creased towards the center of the detector
to compensate for the loss in acceptance,
see section 9.9.

For each source position, Compton su-
perpulses were determined for the tar-
geted z-value of 21.5 mm. Figure 12.12
depicts measured superpulses for this tar-
geted value on the ⟨100⟩ axis for a detec-
tor temperature of T = 77.9K. The mea-
sured pulses follow the predicted trend as
shown in Fig. 12.9. However, the Comp-
ton superpulses are significantly longer
than the simulated pulses.

Figure 12.13 depicts the result of the
subtraction of pulses originating from
smaller r from the reference pulse orig-
inating from r = 36mm. These dif-
ferences have similar triangular shapes
as predicted by the simulation, see
Fig. 12.10. The measured triangles return
to a baseline value of zero. This implies
that the contribution from the final hole
drift from both events is indeed identical and cancels when subtracting the pulses from
each other. Similar observations are made for the pulses and triangles extracted from
the measurement on the ⟨110⟩ axis, see Figs. 12.14 and 12.15.

The triangles from the ⟨110⟩ axis are slightly longer than from the ⟨100⟩ axis. As the
electric field is ϕ-symmetric, this difference is due to the longitudinal anisotropy of
the charge-carrier mobilities, resulting in different longitudinal drift velocities along
the ⟨100⟩ and ⟨110⟩ axes.
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Figure 12.12: Core superpulses from events on the ⟨100⟩ axis at ϕ = 50.8◦, targeted
z = 21.5mm and r as given in the legend, as measured with the Compton Scanner at a detector
temperature of T = 77.9K, (a) full amplitude and (b) zoom-in. The pulses are time-aligned to
65% of their amplitude.
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Figure 12.13: Subtraction of pulses on the ⟨100⟩ axis at ϕ = 50.8◦ as shown in Fig. 12.12 from
the reference core pulse for the event at rout = 36mm, ϕ = 50.8◦ and a targeted z = 21.5mm.
The resulting triangles are time-aligned to (a) 0.005 on the rising slope and (b) 0.003 on the
falling slope.

164



Felix Hagemann

0.0

0.5

1.0
N

or
m

al
iz

ed
ch

ar
ge

.

Core

r = 36mm
r = 32mm
r = 30mm
r = 28mm

r = 26mm
r = 24mm
r = 22mm
r = 20mm

0 200 400 600 800 1000
t in ns

0.0

0.1

0.2

0.3

N
or

m
al

iz
ed

ch
ar

ge
.

Core

r = 36mm
r = 32mm
r = 30mm
r = 28mm

r = 26mm
r = 24mm
r = 22mm
r = 20mm

(a)(a)

(b)(b)

Figure 12.14: Core superpulses from events on the ⟨110⟩ axis at ϕ = 5.8◦, targeted
z = 21.5mm and r as given in the legend, as measured with the Compton Scanner at a detector
temperature of T = 77.9K, (a) full amplitude and (b) zoom-in. The pulses are time-aligned to
65% of their amplitude.
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Figure 12.15: Subtraction of pulses on the ⟨110⟩ axis at ϕ = 5.8◦ as shown in Fig. 12.14 from
the reference core pulse for the event at rout = 36mm, ϕ = 5.8◦ and a targeted z = 21.5mm.
The resulting triangles are time-aligned to (a) 0.005 on the rising slope and (b) 0.003 on the
falling slope.

165



Felix Hagemann

12.2.2 Extraction of mobility parameters from triangles

The drift velocities along the ⟨100⟩ and ⟨110⟩ axes were extracted from fits to the
measured triangles shown in Figs. 12.13 and 12.15. The longitudinal drift velocities
υ100

L,e and υ100
L,h were parameterized as in Eq. (4.2) with µn = 0. Triangles were simu-

lated as described at the beginning of section 12.2. The hole mobility parameters were
extracted from the rising slope and the electron mobility parameters from the falling
slope of the triangles.

The electric field strengths probed in this horizontal drift are in the range from 470 V/cm
to 620 V/cm with the largest uncertainty of around 5% at the largest r, see Fig. 8.12c.
This range of E is significantly smaller than the range assessed by the vertical [001]
drift. It is so restricted that different sets of mobility parameters can result in similar
triangles. Stable fits required fixing the values for β . The best-fit results obtained from
the vertical drift were inserted for β and only µ0 and E0 were free parameters. In ad-
dition, µ0 was restricted to be equal for the ⟨100⟩ and ⟨110⟩ axes to ensure isotropic
drift at low E . For each measurement, the value of r was fixed to the source position
and the value of z could vary up to ±1mm around the targeted z-value of 21.5 mm*.

The mobility parameters were varied such that the global χ2/ndf between the simu-
lated and measured triangles above a threshold of 0.005 was minimal. This threshold
was chosen to exclude the beginning and the end of the triangles from the fit because
they are significantly influenced by differential cross-talk and the limited bandwidth of
the preamplifiers. The results for the mobility parameters are listed in Tab. 12.4.
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Figure 12.16: Comparison of simulated triangles based on the best-fit result for the charge-
carrier drift along the ⟨100⟩ direction to the measured triangles from Fig. 12.13. The measured
triangle for rin = 32mm did not enter the fit because it does not exceed the threshold of 0.005.

In Fig. 12.16, simulated triangles based on these mobility parameters are shown to-
gether with the measured triangles. The simulated curves describe the data well for
all rin ≥ 20mm. The triangles return to their baseline at zero with a slight undershoot
which arises from differential segment-to-core cross-talk.

*As the statistics were higher for the measurements along the horizontal than for the vertical direc-
tion and the z resolution is better for larger r, z was only allowed to vary by ±1mm instead of ±2mm.
The pulses in Figs. 12.12 and 12.14 are quite evenly spread out in time, indicating that the targeted
z-value was reached quite accurately.
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The simulation predicts a slightly more convex rise than observed in the data. Two
possible effects are:

• Outlier pulses passing the similarity cut can alter the beginning of the Compton
superpulses, where the similarity cut is the least effective, up to the permille level.

• The largest uncertainty on the electric field of ≈ 5% applies to the region where the
triangles were determined, see Fig. 8.12c. The exact electric field might be slightly
stronger close to the mantle surface and slightly weaker further inside. This could be
due to a radial impurity density slightly less r-dependent as extracted from the ca-
pacitance measurements, which is not sensitive to the outermost part of the detector.

Table 12.4: Best-fit values for the mobility parameters in Eq. (4.2) for electrons and holes along
the ⟨100⟩ and ⟨110⟩-direction for 470V/cm ≲ E ≲ 620V/cm determined for T = 77.9K. The
β values were input to the fits.

Charge carrier Axis µ0 in cm2

Vs E0 in V
cm β (fixed)

Electrons ⟨100⟩ 37995 504 0.805

⟨110⟩ 37995 422 0.805

Holes ⟨100⟩ 56542 225 0.704

⟨110⟩ 56542 213 0.704

102 103

E in V/cm

106

107

υ L
,e

in
cm

/s

modified
drift model

default
drift model

υ100
L,e

υ110
L,e

υ111
L,e

102 103

E in V/cm

106

107

υ L
,h

in
cm

/s

υ100
L,h

υ110
L,h

υ111
L,h

(a) (b)

Figure 12.17: Longitudinal (a) electron- and (b) hole-drift velocity as a function of E along
the ⟨100⟩ and ⟨110⟩ direction as determined from data taken at T = 77.9K and for ⟨111⟩ as
calculated using the charge drift models introduced in section 4.4 (solid). The electron-drift ve-
locity along the ⟨111⟩ direction was calculated using both the default electron-drift model from
section 4.4.2.3 (dash-dotted) and the modified electron-drift model from section 4.4.2.4 (solid).
The dashed lines depict the curves obtained from the literature values [135] at T0 = 78K listed
in Tab. 4.1 and shown in Fig. 4.1.

In general, the electrons are 3% slower and the holes are 17% slower than predicted
using the literature mobility parameters at T0 = 78K [135]. The longitudinal anisotropy
between the ⟨100⟩ and the ⟨110⟩ axes is defined by the different values of E0. In the
electric field range probed here, the longitudinal anisotropy at T = 77.9K is 10% for
the electrons and 6% for the holes.
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According to the values in Tab. 4.1, the anisotropy at E = 500V/cm is predicted to
be 5.9% for the electrons and 21.5% for the holes. The longitudinal anisotropy ob-
served here is significantly lower for holes and significantly higher for electrons. This
agrees well with past observations [36, 128] of higher-amplitude rise-time oscillations
for electrons and lower-amplitude rise-time oscillations for holes compared to the pre-
diction using the literature values.

Using the charge drift models introduced in section 4.4, the drift velocities along the
⟨111⟩ axis can be calculated from υ100

L,e/h and υ110
L,e/h.

The default electron-drift model predicts υ110
L,e = 0.7858υ100

L,e +0.2002υ111
L,e , see sec-

tion 4.4.2.3, i.e. a small anisotropy between the ⟨100⟩ and ⟨110⟩ axes and a large
anisotropy between these axes and the ⟨111⟩ axis. The observation of a larger than
predicted anisotropy between the ⟨100⟩ and ⟨110⟩ axes leads to the prediction of un-
physically large anisotropies with respect to the ⟨111⟩ axis for both other axes, see
Fig. 12.17a. Such low mobilities for the ⟨111⟩ axes have never been observed. This
shows that the default electron-drift model does not describe the relation between the
drift velocities along the different axes correctly.

The modified electron-drift model introduced in section 4.4.2.4 yield another relation
between the drift velocities of υ110

L,e = 0.3860υ100
L,e +0.6901υ111

L,e . This predicts υ111
L,e to

be only 6% smaller than the standard literature values compared to 38% for the default
model. The literature values are based on measurements along the ⟨111⟩ axes and a
38% shift is highly unlikely.

The hole-drift model in section 4.4.1 predicts υ110
L,h = 1

4υ100
L,h + 3

4υ111
L,h . Combined with

the small hole anisotropy of 6%, υ111
L,h is slightly smaller but very similar to υ110

L,h , see
Fig. 12.17b.

12.2.3 Charge-carrier drift between the axes

〈100〉

Segment 2

Segment 3

〈110〉

Figure 12.18: Top view of the scan points used
to test the charge-drift models. The solid and
dashed black lines indicate the locations of the
⟨100⟩ and ⟨110⟩ axes, respectively.

In the p-type segBEGe detector, the
electric field lines are not parallel to a
⟨111⟩ axis long enough to measure υ111

L,e/h
and test the different predictions from
the two charge-drift models shown in
Fig. 12.17a. However, the two charge-
drift models were tested by studying
charge-carrier drifts between the axes.

An additional radial scan was taken at
T = 77.9K on the line bisecting the
⟨100⟩ and ⟨110⟩ axes in segment 1, see
Fig. 12.18. From the on-axis measure-
ments, mobility parameters for υ100

L,e/h and
υ110

L,e/h were determined from the triangles
as presented in section 12.2.2. Triangles
were also created from the Compton su-
perpulses taken off-axis, see Fig. 12.19.
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Figure 12.19: Comparison of predictions to measured triangles for drifts between the ⟨100⟩ and
⟨110⟩ axes in segment 1. The predictions are based on the best-fit result for the charge-carrier
drift along the ⟨100⟩ and ⟨110⟩ direction at T = 77.9K listed in Tab. 12.4, the hole-drift model
introduced in section 4.4.1 and (a) the default electron-drift model introduced in section 4.4.2.3
and (b) the modified electron-drift model introduced in section 4.4.2.4.

The hole-drift anisotropy is small and the hole-drift between the ⟨100⟩ and ⟨110⟩ axis
is quasi-longitudinal, i.e. there is almost no transverse anisotropy. Thus, the inner
events are expected to follow the hole drift path of the event at rout = 36mm and the
hole contribution cancels when the triangles are extracted by subtraction. Figure 12.19
depicts the measured triangles together with predictions based on the values listed in
Tab. 12.4 and the charge-drift models presented in section 4.4.

The rising slopes of the triangles are defined by the horizontal inwards drift of the
holes and are very well predicted by the hole-drift model presented in section 4.4.1.
This implies that the hole-drift model provides a more accurate description of the small
transverse anisotropy of the hole drift for 470V/cm ≲ E ≲ 620V/cm.

The falling slopes of the triangles are defined by the horizontal outwards drift of the
electrons. Figures 12.19a and 12.19b depict simulated triangles using the default
and the modified electron-drift model, see sections 4.4.2.3 and 4.4.2.4, respectively.
The default electron-drift model underestimates the drift velocity of the electrons be-
tween the axes, resulting in slower falling slopes shown in Fig. 12.19a. The modified
electron-drift model predicts faster electron drifts between the axes. The falling slopes
of the measured triangles are significantly better predicted using the modified electron-
drift model. This implies that the modified electron-drift model provides a more accu-
rate description of the electron-drift anisotropy for 470V/cm ≲ E ≲ 620V/cm.
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12.2.4 Temperature dependence determined from the horizontal drift

Table 12.5: Different Compton Scanner data
sets: K2 controlling temperature, TCT, detector
temperature, T , and bias voltage, VB, applied to
the core contact. Uncertainties on the tempera-
tures are ∆T =±0.7K.

Scan set TCT in ◦C T in K VB in V

H78 −201.4 77.9 −3000

H80 −199.6 80.2 −3000

H83 −196.6 83.3 −3000

H87 −193.6 86.9 −3000

H89 −191.6 89.3 −3000

H95 −186.6 94.8 −3000

H98 −183.6 98.1 −3000

The determination of the mobility param-
eters from horizontal drifts was repeated
at the same temperatures as for the ver-
tical drift, see Tab. 12.5. The electron-
and hole-drift velocities were again eval-
uated at a reference electric field strength
of E = 500V/cm like in section 12.1.3.

All drift velocities and, thus, mobilities
decrease with increasing T . The ab-
solute differences between the electron-
and hole-drift mobilities also decrease
with the temperature. However, the lon-
gitudinal anisotropy between the ⟨100⟩
and ⟨110⟩ axes remains at (10.0±0.5)%
for the electrons, while for holes it de-
creases from (6.0±0.5)% at 77.9 K to
(3.5±0.4)% at 98.1 K. The values for the longitudinal anisotropy are in contradic-
tion with the widely used charge-drift mobility values listed in Tab. 4.1, which predict
a longitudinal anisotropy of 5.9% for electrons and 21.5% for holes. This is, however,
in good agreement with the observations in recent publications [128, 192].
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Figure 12.20: Temperature dependence of the electron- and hole-drift velocity along the hori-
zontal ⟨100⟩ and ⟨110⟩ axes in segment 1, determined from Compton superpulses taken at the
temperatures T listed in Tab. 12.5 and evaluated at E = 500V/cm. The lines depict fits of a
power-law (dashed) and of the expressions given in Eq. (12.2) (solid) to the data.
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From a power-law fit to the measured drift velocities, the temperature dependence is
determined as υ100

L,e ∝ T−0.52, υ110
L,e ∝ T−0.53, υ100

L,h ∝ T−0.61 and υ110
L,h ∝ T−0.53. The

differences between the measured temperature dependencies and the expectation for
the low-field mobility µ0 resulting from scattering off acoustic phonons are again at-
tributed to the onset of saturation effects below E = 500V/cm, see section 12.1.3.

Table 12.6: Best-fit results for the parameters A and B in Eq. (12.2) in the temperature range
from 77 K to 99 K as extracted from the measured drift velocities evaluated at E = 500V/cm
shown in Fig. 12.20.

A B

Electrons ⟨100⟩ 2.757 ·106 K1.68 cm2/Vs 11.64 ·106 cm/s

⟨110⟩ 2.423 ·106 K1.68 cm2/Vs 10.60 ·106 cm/s

Holes ⟨100⟩ 6.712 ·107 K2.40 cm2/Vs 9.15 ·106 cm/s

⟨110⟩ 9.387 ·107 K2.40 cm2/Vs 8.09 ·106 cm/s

Figure 12.20 also depicts fits of the expressions in Eq. (12.2) to the measured drift
velocities with fixed exponents p = 1.68 for electrons and p = 2.40 for holes, as well
as θ = 200K. The results for the fit parameters are listed in Tab. 12.6.

The parameter A defines the absolute value of the low-field mobility. Under the as-
sumption that the charge-carrier drift is isotropic at low electric field strengths, A
should be identical for the ⟨100⟩ and the ⟨110⟩ axes. For the electrons, the fit results for
A differ only by 12% between the two axes. For the holes, the deviation between the
fit results for A for the two axes is more than 40%. In both cases, this reflects the dif-
ference in T -dependence of the drift velocities along the ⟨100⟩ and ⟨110⟩ axes which
is much more pronounced for the holes. The assumption that the drift is isotropic at
low E might not be correct at all T .

The parameter B defines the maximal saturation drift velocities in the limit T → 0K.
For electrons, the values on the ⟨100⟩ axis is 10% higher than on the ⟨110⟩ axis. This
is in good agreement with the observed longitudinal anisotropy of the electron drift
of 10% between the ⟨100⟩ and ⟨110⟩ axes. For the holes, the fit results for B differ
by 13%, which is significantly higher than the observed longitudinal anisotropy of the
hole drift of between 3.5 and 6%. This is because, in the fit, the values for B partly
compensate for the anisotropy in µ0 as indicated by different values for A. The fit
results listed in Tab. 12.6 describe the observed temperature dependencies for temper-
atures from 77 K to 99 K quite well. However, the resulting functional dependencies
should be handled with care when extrapolating to higher or lower temperatures.
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12.3 Final results on charge-carrier mobilities

Figure 12.21 depicts the measured electron- and drift velocities from the vertical and
horizontal drifts at the reference electric field strength of E = 500V/cm. The vertical
[001] axis and the horizontal ⟨100⟩ axes are equivalent by symmetry. Therefore, υ001

L,e/h
and υ100

L,e/h should be identical. However, throughout the whole temperature range from
77 K to 99 K, the values of υ100

L,e/h extracted at E = 500V/cm are (2.8± 0.8)% and
(2.0±0.5)% higher for electrons and holes, respectively.
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Figure 12.21: Temperature dependence of electron- and hole-drift velocities along the horizon-
tal ⟨100⟩ and ⟨110⟩ axes in segment 1 and the vertical [001] axis in segment 4 at the temper-
atures T listed in Tab. 12.5 and evaluated at E = 500V/cm. The solid lines depict fits of the
expressions given in Eq. (12.2) to the data.

In the outer region, where the horizontal drift was measured, the electric field strength
has its highest uncertainty of up to 5%. This is significantly higher than the uncertain-
ties on the drift velocities extracted from the triangles of approximately 1%. Therefore,
the systematic uncertainty on the mobility parameters results mostly from the system-
atic uncertainty on E , see Eq. (12.1).

Table 12.7 summarizes the mobility parameters as extracted from the vertical [001] drift
and the horizontal ⟨100⟩ drift. For the electrons, the values of E0 are almost identical
for the [001] and ⟨100⟩ axes, but the value of µ0 is noticeably smaller, resulting in
smaller values for υ001

L,e compared to υ100
L,e . For the holes, µ0 is slightly higher but E0 is

significantly lower for the vertical [001] drift compared to the horizontal ⟨100⟩ drift. In
combination, this also yields smaller values for υ001

L,h compared to υ100
L,h for the holes.

In the temperature range from 77 K to 99 K, the electrons drift (22.2±1.4)% faster
on the horizontal ⟨100⟩ axis than the holes. This agrees well with the (23.2±0.8)%
determined from the vertical [001] drift, see section 12.1.3.
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Table 12.7: Best-fit values for the mobility parameters in Eq. (4.2) for electrons and holes along
the [001] and the ⟨100⟩ direction, determined for T = 77.9K.

Charge carrier Axis µ0 in cm2

Vs E0 in V
cm β (fixed)

Electrons [001] 37511 507 0.805

⟨100⟩ 37995 504 0.805

Holes [001] 56804 210 0.704

⟨100⟩ 56542 225 0.704

The difference in absolute values along the ⟨100⟩ axis can have multiple origins:

• The model for differential segment-to-core cross-talk in the simulation could be in-
accurate. However, different values for the differential cross-talk from segment 4 to
the core could only improve the agreement for one type of charge carrier by worsen-
ing it for the other. Thus, any adjustment of the cross-talk model would not improve
the agreement.

• The dead-layer thickness of the segments was set to 0.75 mm in the simulation, as
determined from a radial scan at the mantle surface of the detector, see section 9.6.1.
A different dead-layer thickness at the bottom of the detector would have an influ-
ence on the strength of the upward electric field. However, the region along the
vertical [001] axis, at which E = 500V/cm, is not significantly influenced by vari-
ations in the dead-layer thickness of up to 0.5 mm, see section 8.6. Significantly
higher variations in the dead-layer thickness are technically not possible.

• In all impurity density fits, a linear increase in impurity density from the bottom to
the top of the detector of 12.1% was assumed. A deviation from this z-gradient would
influence the electric field, mostly in the center and partly close to the mantle surface.
However, the deviation required to fully explain the discrepancy between υ001

L,e and
υ100

L,e would be so significant that the excellent agreement in the capacitances and
depletion images between measurement and simulation would be lost.

• The uncertainties on the electric field strengths obtained from capacitance measure-
ments allow for deviations in the outer part of the detector of up to 5%, see Fig. 8.12c.
It is likely that the electric field strengths for the horizontal drifts are underestimated
in the simulation and that the data shown in Fig. 12.21 was taken at a slightly higher
electric field strength than 500 V/cm.

As the best-fit result for the electric field from the capacitance measurement has a
smaller systematic uncertainty along the vertical [001] axis than for the horizontal
⟨100⟩ axis, see Fig. 8.12, the absolute values of the mobility parameters along the
[001] direction are considered as the final result for these axes.

As there is no ϕ-dependence in E (⃗r), the radial profile of the electric field on the ⟨100⟩
and ⟨110⟩ axis in segment 1 is identical. Thus, the velocities extracted for the ⟨110⟩
axis should be scaled down by the same factor as observed for the ⟨100⟩ axis. The
mobilities extracted are listed in Tab. 12.8 and depicted in Fig. 12.22.
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Table 12.8: Final results on the mobility parameters in Eq. (4.2) for electrons and holes for T =
77.9K.. Values for the [001] axis are taken from Tab. 12.1, whereas values for the ⟨110⟩∗ axis
were determined by scaling υ110

L,e/h by the same factor needed for υ100
L,e/h to match υ001

L,e/h and
repeating the fit to the triangles presented in chapter 12.

Charge carrier Axis µ0 in cm2

Vs E0 in V
cm β

Electrons [001] 37511 507 0.805

⟨110⟩∗ 37511 425 0.805

Holes [001] 56804 210 0.704

⟨110⟩∗ 56804 196 0.704
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Figure 12.22: Longitudinal (a) electron- and (b) hole-drift velocity as a function of E along
the ⟨100⟩ and ⟨110⟩ direction as calculated using the mobility parameters in Tab. 12.8 and
the charge drift models introduced in section 4.4 (solid). The electron-drift velocity along the
⟨111⟩ direction was calculated using both the default electron-drift model from section 4.4.2.3
(dash-dotted) and the modified electron-drift model from section 4.4.2.4 (solid). The dashed
lines depict the curves obtained from the literature values [135] at T0 = 78K listed in Tab. 4.1
and shown in Fig. 4.1.

12.4 Final comparison of simulated to measured superpulses

The final results on the mobility parameters were tested using the pulse shape library
collected with the Compton Scanner on the ⟨110⟩ axis in segment 3 at ϕ = 275.8◦, see
section 11.4. The distributions of 5−95% rise times and A0/E0 as determined from the
core pulses are shown in Fig. 12.23a. Also shown are predictions for these distributions
based on the mobility parameters listed in Tab. 12.8 and using the default and modified
electron-drift model in Figs. 12.23b and 12.23c, respectively. The general trend and
the absolute values of the rise times and A0/E0 values are well described using either
the default or the modified electron-drift model. However, significant differences are
observed for the vicinity of the core contact.
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Figure 12.23: (Top) 5− 95% rise times and (bottom) A0/E0 for the ⟨110⟩ axis in segment 3
at ϕ = 275.8◦, as determined for the core contact (a) from the superpulses in the pulse shape
library obtained from Compton Scanner data at T0 = 78K, and simulated with SSD using the
electric field resulting from the capacitance measurements, see Fig. 8.12, using the mobility
values listed in Tab. 12.8 and (b) the default electron-drift model from section 4.4.2.3 and
(c) the modified electron-drift model from section 4.4.2.4.

Figure 12.24 shows the relative deviation of the simulated values from the data. In the
lower and outer parts of the detector, the average 5−95% rise time and A0/E0 values
extracted from the core pulses are both well predicted by the simulation. For events in
these regions, the weighting potential of the core contact is weak and the electrons are
collected on the segments before the holes reach the vicinity of the core contact. Thus,
the contribution of the electron drift to the core pulses is too small to noticeably influ-
ence the rise time or the A0/E0 values. The good agreement between simulation and
data implies that the hole drift is accurately described by the hole mobility parameters
in Tab. 12.8 and the hole-drift model presented in section 4.4.1.

The rise time values for events originating in the vicinity of the core contact are not
so well predicted by either of the two electron-drift models. For the default electron-
drift model, the core rise times at r = 4mm and r = 6mm are up to 58% higher than
the data. Using the modified electron-drift model, the maximum deviation is 36% at
r = 6mm and z = 33mm, see Figs. 12.24a and 12.24b.
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Figure 12.24: Relative deviation of the predicted (top) 5−95% rise time and (bottom) A0/E0
values using the final results on the mobility parameters listed in Tab. 4.1 and (left) the default
and (right) the modified electron-drift model, with respect to the measured values. The distri-
butions in the top and middle rows are identical shown with different color bar limits.

In Figs. 12.24c and 12.24d, the color bar limits are adjusted to reveal a diagonal line
parallel to a ⟨111⟩ axis where the simulation predicts 5% longer rise times than mea-
sured. The electrons in these events are predicted to drift parallel to this ⟨111⟩ axis. The
effect is more pronounced for the default than for the modified electron-drift model.
However, υ111

L,e seems still to be underestimated by the modified electron-drift model.
It is most likely closer to the literature values for the ⟨111⟩ axis, see Fig. 12.22.
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Figure 12.25: (a) 5−95% rise times for the ⟨110⟩ axis in segment 3 at ϕ = 275.8◦ as measured
in the core contact. (b) Superpulses for events at r = 4mm and a targeted z as given in the
legend as constructed from Compton Scanner data, time-aligned to 50% of their amplitude.
The boxes in (a) depict the origins of the pulses with the same color as in (b).

The A0/E0 values are underestimated by both electron-drift models in the region form-
ing a shell around the core contact, by up to −15% at r = 10mm and z = 35mm,
Figs. 12.24e and 12.24f. Larger rise times and smaller A0/E0 values imply that the
electrons leave the vicinity of the core contact faster and are collected on the segments
earlier than predicted. This means that either the electron-drift velocity is underesti-
mated by the simulation or the electrons take a shorter drift path than predicted. Both of
these conclusions can arise from an inaccurate description of the longitudinal electron-
drift velocity along the ⟨111⟩ axis.

Figure 12.25 depicts the measured superpulses from events originating at r = 4mm and
targeted z ≥ 27mm, where a large deviation in the 5−95% rise time and A0/E0 values
between simulation and measurement is observed. All superpulses start with a sharp
rise followed by a moderate slope. The sharp rise is caused by the holes approaching
the core contact, while the moderate slope is caused by the electrons drifting away
from the core contact, see section 12.1. In all of the events, the holes are collected on
the core contact before the electrons are collected on the segments.

The electron- and hole-drift times can be estimated from the pulses in Fig. 12.25b.
The times at which the pulses leave the baseline are associated with the creation of the
electron-hole pairs. For each pulse, the holes are collected on the core contact when
the steepest slope is reached and the electrons are collected on the segments when the
pulses reach their final amplitude.

The longest hole-drift time of approximately 150 ns is observed for z = 27mm. With
increasing z, the first part of the pulse becomes steeper until reaching the steepest slope
at z = 35mm. At z ≥ 37mm, the sharp rise is slightly less pronounced. The length of
the final part of the pulse increases until reaching its maximum at z = 31mm and
becomes noticeably shorter for even higher z. The latter implies that the electron-drift
times become significantly shorter for the events at z > 31mm.
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Figure 12.26: Electron-drift paths for events originating at r = 4mm on the ⟨110⟩ axis in seg-
ment 3 at ϕ = 275.8◦ and z from 27 mm to 39 mm in 2 mm steps as simulated using the mobility
parameters listed in Tab. 12.8 and (a) the default electron-drift model from section 4.4.2.3 and
(c) the modified electron-drift model from section 4.4.2.4. The hole-drift paths are not shown.
Shown in (b) and (d) are the corresponding core pulses, time-aligned to 50% of their amplitude.

Figure 12.26 depicts the simulated electron-drift paths and pulse shapes corresponding
to the measured pulses shown in Fig. 12.25. For the simulations, the electric field
shown in Fig. 8.12, the mobility parameters listed in Tab. 12.8, and either the default
or the modified electron-drift model were used.

The choice of the electron-drift model has a very significant impact on the electron-
drift paths and, thus, the shapes of the final part of the pulses. The electrons from the
event at r = 4mm and z = 27mm are predicted to be collected on the bottom plate of
segment 3 by both models, see Figs. 12.26a and 12.26c. However, the electrons are
collected at r = 20mm using the modified electron-drift model compared to r = 8mm
for the default electron-drift model. The longer electron-drift path results in a longer
pulse using the modified electron-drift model, see Figs. 12.26b and 12.26d.

For 29mm ≤ r ≤ 33mm, the default electron-drift model predicts the electrons to be
collected on the bottom surface, see Fig. 12.26a, while the modified electron-drift
model predicts a collection on the mantle surface, see Fig. 12.26c. Again, the longer
electron-drift paths using the modified electron-drift model result in longer pulses with
respect to the default electron-drift model, see Figs. 12.26b and 12.26d.
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For r ≥ 35mm, the default electron-drift model predicts the electrons to be collected
on the mantle surface, see Fig. 12.26a. In fact, the default electron-drift model never
predicts electrons from events at r = 4mm to be collected on the top plate of segment 3.
This results in longer pulses with respect to r ≤ 33mm, see Fig. 12.26b. The modified
electron-drift model predicts the electrons to be collected on the top plate of segment 3,
see Fig. 12.26c. With increasing z, the electrons are collected closer to the core contact,
resulting in the final part of the pulse to become significantly shorter, see Fig. 12.26d.
This results in the cross-over between the pulses at r = 27mm and r = 39mm when
time-aligning all pulses to 50% of their final amplitude. This prediction of the mod-
ified electron-drift model agrees with the data while the default electron-drift model
completely fails at this point.

The simulated pulses shown in Fig. 12.26d generated with the modified electron-drift
model correctly feature the cross-over as measured and depicted in Fig. 12.25b. This
implies that the electrons in the uppermost events at r = 4mm are collected on the top
surface of segment 3. The default electron-drift model cannot predict the cross-over
observed in the data and does not accurately describe the anisotropic electron-drift in
germanium. The cross-over is qualitatively well described using the modified electron-
drift model. However, the simulated pulses are still 20% longer than observed in the
data. This suggests that the simulation underestimates the electron-drift velocity along
some part of the drift or predicts too long electron-drift paths.

The observation of higher rise times along the diagonal line in Fig. 12.24 already sug-
gests that υ111

L,e is underestimated and is most likely closer to the measured literature
values listed in Tab. 4.1. The assumptions in the electron-drift model and small vari-
ations in the values for υ100

L,e and υ110
L,e have a strong influence on the exact values of

υ111
L,e in the simulation. At r = 4mm, the electron-drift paths all feature a significant

contribution from drifts along the ⟨111⟩ direction, see Fig. 12.26c. Therefore, any un-
derestimate of υ111

L,e in the simulation will have a large influence on the pulse shapes
originating from regions close to the core contact.
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Figure 12.27: (a) Electron-drift paths for the same events as in Fig. 12.26 simulated for charge
clouds consisting of 100 charges each, using the mobility parameters listed in Tab. 12.8 and
the modified electron-drift model from section 4.4.2.4. (b) Corresponding charge pulses, time-
aligned to 50% of their amplitude.
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The electron-drift paths also heavily depend on the exact position of the energy de-
posit. Figure 12.27 depicts the electron-drift paths and pulses for the same events
as in Fig. 12.26 but with each event being simulated as a charge cloud consisting of
100 electrons and with an initial radius of 0.2 mm. The electron cloud diverges dur-
ing the drift towards the segment contacts and, for some events, the electrons reach
the segment contact up to 1 cm apart. However, the charge-cloud divergence happens
mostly in regions where the core weighting potential is weak. Thus, the influence on
the pulse shapes is negligible.

Finally, it should be noted that the strong dependence of the pulse shape on the position
of the event could have an influence on the determination of Compton superpulses as
presented in chapter 11. In the vicinity of the core contact, significant changes in
the pulse shapes occur already at length scales smaller than the position resolution
of the Compton Scanner. Thus, differently shaped pulses enter the determination of
intermediate superpulses as explained in sections 11.2, which might have an influence
on the quality of the final superpulses. However, averaging differently shaped pulses
would result in the first and last parts of the pulses being washed out and the overall
pulse becoming longer. As this was not observed in the data, the effect must be small.

12.5 Conclusion

In conclusion, the hole drift in high-purity germanium seems to be accurately described
by the mobility parameters listed in Tab. 12.8 and the general hole-drift model pre-
sented in section 4.4.1. The anisotropy of the electron drift is not well described by
the default-electron drift model from section 4.4.2.3. The modifications to the electron-
drift model proposed in section 4.4.2.4 result in better prediction of the data, especially
qualitatively for events close to the point contact. Quantitatively, the largest deviations
are observed for events with a long electron drift along the ⟨111⟩ direction. This im-
plies that the modified electron-drift model does not perfectly predict the electron-drift
velocity along the ⟨111⟩ axis and, thus, the anisotropy between the ⟨111⟩ axis and
all other axes. A more accurate description of the electron drift would require fur-
ther electron-drift models to be tested against data, ideally using further detectors with
different geometries to probe a wider range of electric field strengths.

In p-type point-contact detectors, the electron drift significantly influences pulse-shape
quantities as the 5− 95% rise times and A0/E0 for events close to the point contact.
Therefore, an improved model of the electron drift and its anisotropy is essential to ac-
curately predict pulse shapes for these events. The findings on the electron-drift model
should, in principle, be applicable to all high-purity germanium detectors. This is
especially important for simulation studies for the LEGEND experiment to tune pulse-
shape discrimination techniques to accurately estimate cut efficiencies and fiducial vol-
umes of the detectors, and to improve background suppression while preserving a high
signal efficiency in regions close to the point contact. The thereby-increased discovery
sensitivity would allow for exploring lower values of ⟨mββ ⟩ with the same exposure.
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13 Summary and outlook
The search for neutrinoless double-beta decay is the most promising endeavor to search
for a lepton-number-violating effect beyond the Standard Model. The real challenge
for state-of-the-art germanium-based experiments is to reduce background, which, on
the analysis side, is met with pulse-shape discrimination. These techniques have to be
tested and tuned on pulse shape libraries, either measured under controlled conditions
or simulated with validated models.

The pulse-shape studies performed for this thesis were based on data from a p-type
segmented point-contact germanium detector. The geometry of this test detector re-
sembles one of the detector geometries used in the LEGEND experiment but its seg-
mentation provides additional information on the event topology. The goals to obtain
an accurate description of the electric field in the detector and to determine electron
and hole mobilities in germanium, as well as the anisotropy and temperature depen-
dence of the mobilities, were achieved. The results improve the input to pulse shape
simulation frameworks and, thus, improve background identification techniques for
rare-event searches using germanium detectors.

The electric field in a germanium detector and the mobilities of the charge carriers de-
termine the shape of the pulses coming from the detector. It is important to realize that
the electric field in most of the volume of a point-contact detector is dominated by the
density of ionized impurities and their distribution. Therefore, an accurate description
of the electric field heavily relies on an accurate description of the impurity density
profile in the bulk of the detector, which is not provided by the detector manufacturer.

The impurity density profile of the test detector was determined from a sequence of
measurements of the capacitance of the partially depleted detector. It was found that
the measured dependence of the capacitance on the bias voltage cannot be reproduced
by simulations for impurity density profiles with only a gradient in z. An impurity
density profile with an additional r-dependence, which was found to be almost constant
in the center of the detector and to have a strong radial decrease towards the outer
surface, was needed. The electric field close to the mantle surface of the detector was
determined to be up to 25% lower than under the assumption of no radial dependence.

For the first time, images of the undepleted volumes of a segmented point-contact ger-
manium detector were taken with the Compton Scanner at the Max Planck Institute
for Physics in Munich. This experimental setup was commissioned within the frame-
work of this thesis to determine the origin of events in the full detector volume with a
resolution of ±1mm FWHM in each spatial dimension. To accomplish this, the Comp-
ton Scanner underwent a hardware and software upgrade, resulting in an increase of
acceptance by 100% in the center and by 50% in the outer part of the detector. The
depletion images confirm the existence of a radial component of the impurity density
profile. The profiles determined from fits are very compatible for the two methods.
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The Compton Scanner was also used to collect high-quality pulse shape libraries con-
sisting of superpulses from events with charge-carrier drifts along the vertical [001] axis,
and the horizontal ⟨100⟩ and ⟨110⟩ axes. Pulses simulated with the software package
SolidStateDetectors.jl were compared to selected superpulses to determine the mobil-
ities of electrons and holes in germanium. The vertical drift allowed to determine
absolute values of mobilities over a wide range of electric field strengths while the
horizontal drift allows to study the anisotropy between the axes.

At the reference temperature of 78 K, the measured hole mobility was 20% lower and
the measured electron mobility approximately 3% lower than the values widely used in
simulations so far. This is, however, in good agreement with the observations in recent
publications. At an electric field strength of 500 V/cm, the longitudinal anisotropy be-
tween the ⟨100⟩ and the ⟨110⟩ direction was measured to be 6% for holes and 10% for
electrons. While the widely used hole-drift model provided a good description of the
measured transverse anisotropy of the hole-drift, the anisotropy of the electron-drift
was significantly underestimated by the widely used electron-drift model. A modifi-
cation of the electron-drift model that incorporates the proportionality on the effective
electron mass expected for scattering off acoustic phonons was developed and tested.
While this modified electron-drift model mildly underestimates the electron-drift ve-
locity along the ⟨111⟩ direction, it describes the measured transverse anisotropy of the
electron drift in germanium significantly better. This is especially relevant to accu-
rately simulate pulse shapes for events close to the point contact in p-type germanium
detectors.

The temperature dependence of the drift velocities determined at a reference electric
field strength of 500 V/cm is ∝ T−0.52 for electrons and ∝ T−0.53 for holes. These
exponents are significantly smaller than the theoretically expected T−3/2-dependence
of the mobility resulting from scattering off acoustic phonons. The deviation is well
explained by saturation effects limiting the electron- and hole-drift velocities for elec-
tric field strengths above 100 V/cm. These saturation effects are shown to be signifi-
cantly less temperature-dependent than scattering at low electric field strengths. Both
the measured transverse anisotropy of the electron drift and the measured temperature
dependence provide strong evidence for acoustic phonons being the main scattering
centers and the main limitation for the drift mobilities.

The methods presented in this thesis are applicable to all detectors in the LEGEND
experiment. The presence of a radial component in the impurity density profile ob-
served in this thesis and in previous works [34] emphasizes the need to determine the
r-dependencies of the impurity density profiles of all LEGEND detectors in order to
accurately simulate electric fields. These radial components can be determined from
capacitance measurements, which can easily be taken in a few hours and should be-
come part of the standard characterization measurements upon detector acceptance.
Compton Scanner measurements would only be required for detectors, for which no r-
dependence in the impurity density profile describes the measured capacitance-voltage
curve well and for which more insight into the impurity density would be needed.
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The updated values of the longitudinal charge-drift velocities along the ⟨100⟩ and ⟨110⟩
axes and the modified electron-drift model are material properties and should, in prin-
ciple, be applicable to all LEGEND detectors. The latter would be especially important
to better predict pulse shapes from events close to the point contact in p-type germa-
nium detectors. This is essential to tune pulse-shape discrimination techniques to fur-
ther decrease the background level without decreasing the signal efficiency in regions
close to the point contact, increasing the fiducial volume of the detectors and further-
increasing the discovery sensitivity with the same exposure. This is essential for the
LEGEND experiment to reach the goal of probing values more than 1028 years for the
half-life of neutrinoless double-beta decay in 76Ge.
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Appendix

A Depletion widths in simple-geometry detectors

In this appendix, the dependence of the depletion width, w, of an infinite-extension
planar detector with height H and an infinitely long cylindrical detector with radius
R on the applied voltage, VB, and the density of electrically active impurities, NI , is
derived. For simplicity, NI is assumed to be constant throughout the detector volume.

A1 Infinite-extension planar detector

Assume a planar detector that extends infinitely in x and y and is contacted at z = 0 and
at z = H, which depletes from the bottom to the top. The depletion width, w, is defined
as the height z, below which the detector is depleted, i.e.

ρ (⃗r) =

{
eNI, if 0 < z < w

0, if w < z < H
. (A.1)

The undepleted volume is conductive and the electric field vanishes. Therefore, the
electric potential is constant in the undepleted volume, i.e. φ(z > w) =VB, where VB is
the potential applied to the top contact at z = H. In the depleted volume, the ionized
impurities lead to space charges that contribute to the electric potential:

∆φ (⃗r) =− ρ (⃗r)
ε0εr (⃗r)

φ(z ≥ w) =VB φ(z = 0) = 0 , (A.2)

where ρ (⃗r) is the charge density resulting from ionized impurities, ε0 is the vacuum
permittivity and εr (⃗r) is the relative permittivity at a given position r⃗. The bottom
contact of the detector is grounded.

Solving Eq. (A.2) using the impurity density requirement in Eq. (A.1) results in

φ(z) =− eNI

2ε0εr
z2 +

(
eNIw
2ε0εr

+
VB

w

)
z . (A.3)

The electric field at the boundary between depleted and undepleted volumes van-
ishes, i.e.

0 =
∂φ
∂ z

(z = w) =−eNIw
2ε0εr

+
VB

w
. (A.4)

The bias voltage needed to obtain a given depletion width becomes

VB(w) =
eNIw2

2ε0εr
. (A.5)

To deplete the whole detector, i.e. for w = H, the full-depletion voltage, VD, is

VD =VB(w = H) =
eNIH2

2ε0εr
. (A.6)

Solving Eq. (A.5) for w results in

w(VB) =

√
2ε0εrVB

eNI
. (A.7)

185



Felix Hagemann

A2 Infinitely long cylindrical detector

A cylindrical detector is contacted at the mantle surface at r = R and depletes from the
outside towards the inside. The depletion width, R−w, is defined as the radius, below
which the detector is undepleted, i.e.

ρ (⃗r) =

{
0, if 0 < r < w

eNI, if w < r < R
. (A.8)

For r <w, the electric field is zero, resulting in a constant electric potential of φ(r ≤ w) =VB.
In the depleted volume, φ (⃗r) can be determined by solving Gauss’ law:

∆φ (⃗r) =− ρ (⃗r)
ε0εr (⃗r)

φ(r ≤ w) =VB φ(r = R) = 0 , (A.9)

where ρ (⃗r) is the charge density resulting from ionized impurities, ε0 is the vacuum
permittivity and εr (⃗r) is the relative permittivity at a given position r⃗. The mantle
contact of the cylindrical detector is grounded.

Solving Eq. (A.9) using the impurity density requirement in Eq. (A.8), assuming no ϕ-
and z-dependence of φ (⃗r) in cylindrical coordinates results in

φ(r) =− eNI

4ε0εr
(r2 −R2)+

(
VB −

eNI

4ε0εr

(
R2 −w2)

)
ln(r/R)
ln(w/R)

. (A.10)

The electric field at the boundary between depleted and undepleted volumes van-
ishes, i.e.

0 =
∂φ
∂ r

(r = w) =−eNIw
2ε0εr

+

(
VB −

eNI

4ε0εr

(
R2 −w2)

)
1

w ln(w/R)
. (A.11)

The bias voltage needed to obtain a given depletion width becomes

VB(w) =
eNI

4ε0εr

(
R2 +w2 (2ln(w/R)−1)

)
, (A.12)

with a full-depletion voltage of

VD =VB(w = 0) =
eNIR2

4ε0εr
. (A.13)

Solving Eq. (A.12) for w results in

w(VB) = R

√
exp
(

W−1

(
1
e

(
4ε0εrVB

eNIR2 −1
))

+1
)

(A.14)

where e is Euler’s number and W−1(x) describes the −1 branch of the Lambert-W func-
tion [213] which satisfies W−1(x)exp(W−1(x))= x with −1

e ≤ x ≤ 0 and W−1(x)≤−1.
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B Derivation of the diffusion equation

In this appendix, Eq. (4.41) is derived from Eq. (4.38). For a spherical coordinate
system with an origin at the center of the charge cloud and ne/h(⃗r, t) with only radial
dependence, i.e. ne/h(⃗r, t) = ne/h(r, t), the total charge, Q(r, t), contained in a sphere,
S(r), with radius r is given by

Q(r, t) =±e
˚

S(r)

d3r ne/h(r, t) =±e

rˆ

0

dr ne/h(r, t)4πr2 , (B.1)

with + for holes and − for electrons.

Equation (B.1) allows to express ne/h(r, t) and ∂
∂ r ne/h(r, t) in terms of Q(r, t):

∂Q
∂ r

=±ne/h(r, t) 4πer2

⇒ ne/h(r, t) =± 1
4πer2

∂Q
∂ r

and
∂
∂ r

ne/h(r, t) =± 1
4πer2

∂ 2Q
∂ r2 ∓ 2

4πer3
∂Q
∂ r

.

(B.2)

Starting with Eq. (4.38), the charge-carrier density, ne/h(⃗r, t) can be substituted by the
charge Q(⃗r, t) performing a volume integral over S(r):

0 =±e
˚

S(r)

d3r
∂
∂ t

ne/h(r, t)± e
˚

S(r)

d3r ∇⃗(−De/h(r)⃗∇ne/h(r, t)+ne/h(r, t)µe/h(r)E⃗(r, t))

=±e
˚

S(r)

d3r
∂
∂ t

ne/h(r, t)± e
¨

∂S(r)

dA⃗ (−De/h(r) e⃗r
∂
∂ r

ne/h(r, t)+ne/h(r, t)µe/h(r)E⃗(r, t))

(B.1)
=

∂
∂ t

Q(r, t)± 4πer2⃗er · (−De/h(r) e⃗r
∂
∂ r

ne/h(, t)+ne/h(, t)µe/h(r)E⃗(r, t))

=
∂
∂ t

Q(r, t)± 4πer2(−De/h(r)
∂
∂ r

ne/h(r, t)+ne/h(, t)µe/h(r)Er(r, t))

(B.2)
=

∂
∂ t

Q(r, t)−De/h(r)
(

∂ 2

∂ r2 Q(r, t)− 2
r

∂
∂ r

Q(r, t)
)
+

∂
∂ r

Q(r, t)µe/h(r)Er(r, t)

(4.40)
=

∂
∂ t

Q(r, t)−De/h(r)
(

∂ 2

∂ r2 Q(r, t)− 2
r

∂
∂ r

Q(r, t)
)
−Q(r, t)

∂
∂ r

Q(r, t)
µe/h(r)

4πε0εrr2

= − 1
De/h(r)

∂
∂ t

Q(r, t)+
∂ 2

∂ r2 Q(r, t)− 2
r

∂
∂ r

Q(r, t)+Q(r, t)
∂
∂ r

Q(r, t)
µe/h(r)
De/h(r)

1
4πε0εrr2

(4.37)
= − 1

De/h(r)
∂
∂ t

Q(r, t)+
∂ 2

∂ r2 Q(r, t)− 2
r

∂
∂ r

Q(r, t)
︸ ︷︷ ︸

Diffusion

−Q(r, t)
∂
∂ r

Q(r, t)
e

kBT
1

4πε0εrr2
︸ ︷︷ ︸

Coulomb self-repulsion

.
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C Example configuration file for SolidStateDetectors.jl

In this appendix, the configuration file that defines the example p-type inverted-coaxial
point-contact detector for the SolidStateDetectors.jl simulations in section 5 is listed.

name: Public Inverted Coax
units:

length: mm
angle: deg
potential: V
temperature: K

grid:
coordinates: cylindrical
axes:

r:
to: 40
boundaries: inf

phi:
from: 0
to: 0
boundaries: periodic

z:
from: -10
to: 90
boundaries:

left: inf
right: inf

medium: vacuum
detectors:

- semiconductor:
material: HPGe
temperature: 78
impurity_density:

name: cylindrical
z:

init: -1e7
gradient: -1e5

geometry:
difference:

- tube:
r: 35
h: 80
origin:

z: 40
- cone:

r:
bottom:

from: 35
to: 36

top:
from: 23.71
to: 36

h: 64
origin:

z: 52
- tube:

r: 5
h: 80
origin:

z: 65

contacts:
- material: HPGe

id: 1
potential: 0
geometry:

tube:
r: 3
h: 2
origin:

z: 1
- material: HPGe

id: 2
potential: 3500
geometry:

union:
- tube:

r:
from: 15
to: 35

h: 0
- tube:

r:
from: 35
to: 35

h: 20
origin:

z: 10
- cone:

r:
bottom:

from: 35
to: 35

top:
from: 24.42
to: 24.42

h: 60
origin:

z: 50
- tube:

r:
from: 5
to: 24.42

h: 0
origin:

z: 80
- tube:

r:
from: 5
to: 5

h: 55
origin:

z: 52.5
- tube:

r: 5
h: 0
origin:

z: 25
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D Simulation of undepleted volumes in the segBEGe detector

The p-type segBEGe detector depletes from the segments into the bulk of the detector
in three parts: from the bottom up, from the top down and from the outside in.

For low bias voltages well below the full-depletion voltage, i.e. VB ≪ VD, these three
parts can be treated as being almost independent. The depletion from the bottom and
the top surface can each be approximated as in a planar parallel plate capacitor, see
Appendix A1, and the depletion from the outside can be treated as in a cylindrical
detector, see Appendix A2.

If the impurity is expected to be ρ(z) = ρbot +(ρtop −ρbot) z/H, i.e. constant in r and
linear in z with ρbot at the bottom surface and ρtop at the top surface of the detector, the
depletion widths for all three parts becomes

wbot(VB) =

√
2ε0εrVB

ρbot
, wtop(VB) = H −

√
2ε0εrVB

ρtop
and

wout(VB,z) = R

√
exp(W−1

(
−1

e
+

4ε0εrVB

eR2(ρbot +(ρtop −ρbot) z/H)

)
+1) .

(D.1)

If ρtop > ρbot, the detector depletes faster from the bottom than from the top, i.e. wtop
< wbot. In addition, the depletion from the outside has a z-dependence that arises from
the z-dependence of ρ (⃗r).

Figure D.1 depicts simulation results for the depleted volumes of the p-type segBEGe
detector at different VB together with the analytical estimates for the depletion widths
shown in Eq. (D.1), assuming only a linear z-gradient for ρ(r).

For VB below −450V, the expressions in Eq. (D.1) describe the results of the full
simulation well. The shape of the undepleted volume is almost perfectly described
except for the rounded corners.

For VB = −600V, the outer edge of the undepleted volume stops being vertical over
the z range. While wout still describes the radial extent of the undepleted volume well
at VB =−450V, it is not a good estimate for VB above −600V.

The bottom edge is well described by wbot until VB =−900V. For VB =−1050V, the
bottom edge of the undepleted volume deviates from the flat geometry and the lowest
point is not well described by wbot. For VB =−1200V and above, neither wbot, wtop
nor wout are good estimates for the geometry of the simulated undepleted volume.
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Figure D.1: Depletion volumes of the p-type segBEGe detector as predicted by SSD using
all values listed in Tab. 6.1 scaled to 89%, assuming only a linear z-gradient for the impurity
density profile for different VB applied to the core contact. The depleted volumes are shown in
green, the undepleted volumes are shown in yellow. The dashed lines depict depletion width
estimates, wbot, wtop and wout, calculated using Eq. (D.1).
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E Similarity between charge pulses

In this appendix, one method to quantify the similarity between two pulses is presented.

The pulses from all contacts of the segBEGe detector, Si with i ∈ {0,1,2,3,4}, are
sampled by the STRUCK ADC in steps of 4 ns. Hence, the continuous pulse shapes,
Qi(t), are stored as sets of points, (Qi,n)n∈N , where N is a set of discretized times.

Two pulses are defined to be similar if they agree with each other in the signal window
within a few standard deviations of their noise levels. The noise level of a pulse is
defined by the standard deviation, σ(Qi), of the sampled values of the pulse in the
baseline window from the mean baseline value, Qi. The baseline window consists of a
set of discretized times, n ∈ {1, . . . ,B}. This results in

σ(Qi)
2 =

1
B−1

B

∑
n=1

(
Qi,n −Qi

)2 with Qi =
1
B

B

∑
n=1

Qi,n. (E.1)

A measure for the deviation between two pulses, Qi(t) and qi(t), is the χ2 value. In
the signal window, n ∈ {B+1, . . . ,B+S}, it is given by

χ2 =
B+S

∑
n=B+1

(Qi,n −qi,n)
2

σ(Qi)2 +σ(qi)2 . (E.2)

The expression in Eq. (E.2) effectively sums up the squared differences at all sampled
times in units of the combined variance of the two pulses. Divided by the degrees of
freedom, ndf = S−1, this gives a value which indicates how many standard deviations
of the noise levels the two pulses differ from each other:

χ2

ndf
=

1
S−1

B+S

∑
n=B+1

(Qi,n −qi,n)
2

σ(Qi)2 +σ(qi)2 . (E.3)

The relation χ2/ndf ≤ 1 can be identified with the 1σ -interval of a Gaussian distribu-
tion, i.e. when cutting on χ2/ndf ≤ 1, around 68% of similar pulses are expected to
pass the cut and around 32% are discarded. Pairs of pulses that are visibly similar usu-
ally show values of χ2/ndf ≤ 3. Pairs of pulses that are clearly seen not to be similar
have values of χ2/ndf that are usually orders of magnitude higher.
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F Determination of the position of the crystal axes

The text in this section is quoted verbatim from my Master’s thesis [128]:

The positions of the crystal axes were determined by looking at the pulse shapes re-
sulting from hits close to the mantle and at the center height of the detector, i.e. r ≲ R
and z ≈ H/2. According to the simulation results shown in Fig. 6.7a, the charge carrier
trajectories resulting from those hits are expected to move almost horizontally in the
x-y-plane to the center of the detector bulk before drifting in z-direction. As the electric
field does not change with ϕ , the horizontal part of the charge drift is expected to be
the fastest when the charge carriers move along the ⟨100⟩ axis and the slowest when
they move along the ⟨110⟩ axis. Thus, the two axes are also referred to as fast and slow
axis, respectively.

Figure F.1a shows the scan points to determine the position of the crystal axes of the
p-type segBEGe detector. The detector was irradiated 5.5 mm away from the man-
tle and in steps of 5◦, taking into account the misalignment results in section 9.6.1.
At each scan point, a total 1 h of data were taken to determine the superpulses at
z = (21±1)mm using the reconstruction algorithm presented in section 11. A mea-
sure for the speed of the drift is the rise time, tr, which is the time, in which the pulse
rises from 5 to 95% of its amplitude. The determination of tr for the core superpulse at
r = 31.7mm and ϕ = 12.2◦ is depicted in Fig. F.1b.

Figure F.1c depicts tr as a function of ϕ . As expected, the rise time values oscillate
with a periodicity of 90◦. The function shows discontinuities at the segment boundaries
which result from segment-to-core cross-talk at pulse shape level, see section 3.4.4.
The discontinuities cannot be compensated by only correcting for linear cross-talk with
the cross-talk matrix C obtained from the background measurement, see Eq. (7.12).
This implies that the differential segment-to-core cross-talk is not negligible in the flat
part of the core signal. To determine the position of the ⟨110⟩ axis, ϕ110, Fig. F.1c is
divided into six parts of 60◦, which are each fitted to

tr(ϕ) = Acos
(

2π
90◦

(ϕ −ϕ110)

)
+O, (F.1)

where A and O describe the amplitude and the offset of the oscillation, respectively,
and ϕ110 describes the angle at which the rise time reaches its maximum, i.e. when
the charge carriers drift along the slow ⟨110⟩ axis. For the fitting procedure, A and O
are chosen to be completely independent for the different partial fits. However, ϕ110 is
forced to be the same for all parts of the fit to obtain a combined result. For the p-type
segBEGe detector, the slow axis is situated at ϕ110 = (5.8±1.8)◦.
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Figure F.1: (a) Scan points to determine the position of the crystal axes of the p-type segBEGe
detector. The run was taken at a crystal temperature of T = 85K and with an operating voltage
of VB =−3000V. (b) Illustration of the determination of the 5 to 95% rise time, tr, of the core
superpulse at r = 31.7mm, ϕ = 12.2◦ and z = (21±1)mm. (c) Core rise time tr as a function
of ϕ . Partial fits to tr in each segment are shown in the color of the respective segment.
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