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Lecture on differential forms

Motivation outlook

Differential forms o generalize weiter calculus to

diff manifolds

allow to tankte topology be means of analysis
are also used in physics eg whenever gravity

is involved but also in eleitro and thermodynamics

From weiter raliulus we know for Us R open

c n s a R
rot

Cola R die Coca

Moreover rot grad v Zu Eijudsdu.vn 0
Tx Du Sihwarz's theorem

dir rotuand

p.gg
In d Eijud.sk I O

This is generalized to m dim smooth manifolds by the

de Rham complex

cm non das in
d
in d's d

MM IM

where d is the exterior derivative for which dod O

and A M is the space of differential k forms on M




























































































Sinne rotgrad O and divrot O we know that

Im grad Ker rot Im rot Ker div

are infinite dimensional Linear subspales So we can

define the quotient spares
an a

Kerl rot
Im grad

H a
Ker div
Im rot

If U is starshaped or more general contraitible then the

spaces coincide so that Lila to Hilal

In general however this is not true Eg for U litn zu

dim H n K Somehow these spares count holes

Similarly for smooth manifolds H m
erd
Im da defines the

Vith deRham cohomology group Remarkably the Vith Bettinumber

dimaltiken ß is fruite for compactM and a topological

invariant i e it does not depend on the differentiable structure

Excursion Consider a triangulation

of a manifold to which

we apply the boundary

operator d This acts

as follows




























































































OPI Pz PzPr

µ T I T

po po Pi P
p

Op Op Op

2 simplex sum of 1 simples sum of O simples

poppe papi p.p.lt pop pz pa t po pztp po
O

In fait Jod O holds in general for the chain iomplex

Er M ECM
r

Cn M T

spateof imagesof r simples

As In is linear we can again define Hr M
d

Im Arti
the singular homology group

By de Rham's theorem H.CM Hr M an dual weiter spaces

and I and d dual linear maps

This duality is rooted in Stokes theorem

Idw few for weh M ECUIM

This generalizes the fundamental than of calculus Green's then

the Zdim Stokes theorem and Gauss divergence theorem from

vector sallahs




























































































Manifolds

countable

basrssepaatroybyopensetsDef.iAfdconntabuH
spaiecn.j

is a topological manifold of dimension meNo if it is

Locally homeomorphic to R That is Upon there is an

open neighborhood UEM and a homeomorphism f U s flu IR

IIII
In coordinate functions and

f a parametrization

o A collention Unit of chats is called an atlas for M

examples o spheres S Y ER Hehe I is n dim top manifold

Two charts are given by the stereographic projetions

f S I 10 0,11 S IR

fakt
yay

I ni n

f S I 10 0 1 SIR
F

fl g aus
ten n

open subsets of a top manifold are again top manifolds of

the same dimension Eg GLIn R TAEIR detlt to

is an open subset of IR R and thus a top manifold

of dim i




























































































remarks Every top manifold can be embedded into some IR

That is there is a homeomorphism Y M TIM E IR

If m dim M then N 2m 1 suffices For smooth

manifolds N 2m is sufficient Withner's embedding then

Examples where Ne 2m with m 2 is not possible are

klein bottle projectiveplane

a r e r

r v

where opposite edges are identified glued together anording

to the arrows

The Hausdorff assumption guarantees that limits are unique

Jeiond sountability is assumed in order for a partition of

unity more on this later and an embedding into a

finite dim Euilidean spare to exist Not all authors

inihude these two assumptions in the def of a topmanifold

The second sountability assumption implies that there is a

countable atlas

If we want to diffusor Ingraham a manifold we need extra

struitwes smooth structure orientation




























































































Def An atlas A Ilanfallenof a topological m dim manifold M is

Called a C atlas kern if Keith

fifi LUnsUr R s SalurnUr IR

is a C diffeomorphism

be C iompatible if Au B is

ÄH

extend an atlas A to a unique

maximal atlas that contains all

compatible ones This max atlasFI
is called a C structure

Def A pair M A of a manifold M with structure Ais called

manifold and smoothmanifold ifk o

Examples 0 S with Un f U f stereographi projections

f of t Izu is a C diff on f Unna IR Ko

So 5 becomes a smooth manifold

o Other standard examples of smooth manifolds

SO n Sulu Spin Ghlu T SK 5 RP GP

graphs of functions




























































































Then Whitney For Kit every C structure contains a structure

o Motivated by this we only consider manifolds a.k.a smoothmanifolds

o There are top manifolds forwhich no smooth structure exists

eg the 4dim ESmanifold disiovered by Freedman

From a given smooth stature flux 9,1 we can obtain another one

LINK GoT by anting with a homeomorphism Y M M

Such smooth statues we called equivalent

For R with ne NK 4 all smooth structures are equivalent smale

For IR there are uncountable inequivalent ones Freedman Donaldson

Def Let M A and MB be smooth manifolds A map f M N

is called smooth if for all 4,1 EA and ht EB with

flu eV the map 4 fof flu e IR s THEIR is

f is called a diffeomorphism if it is smooth and has smooth

inverse M N denotes the space of smooth maps M N

and CIM M R

F f

nin Iiia

R IN R

Nofof




























































































Thus smooth partitionofunity Let M be a smooth manifold and

TU den an open lover of M Then there exist functions

flee M 0,1 een
s t

i supply peMI Glp 0 Un

ii Every pell has a neighborhood in which only

finitelymany f are non zero

iii EnStep 1 KpEM note finite sum due to iii

A related Lemma that we will need

Lemma Let Ve U be open subsets of a smooth manifold M

and T e U sompait Then there is a smooth function

f M 0,73 sit
yep f

1 PEU
O PEU

A central ingredientfor the proof of both is that g IR IR

get YETI tot

µ
is a smooth o bump function




























































































Tangent spaces

T ihn
8s Op hip

Def Let M A be a smoothmanifold and u h t A a chart

around pfM On the set of curves Kph f ge 11,11 M gut p

define the equivalence relation g g hog los hog lol

The geometric tangent space of Mat p is then

TpMS Y g gekpM

remarks o The relation is independent of the chart since

Ihop los hog g g lol
p dgipfh.ge gog lol

thain ruleIsomorphism

indip of 8

o Tp179 IR since Tpp g Ä thor 101 ER is bijective

as for any at IR galt h hip ta satisfies g ma

The Linear structure of IR then induces out on 17179 so

that Tpl 8 becomes an m dim.IR vectorspace and On a

a vectorspace isomorphism

Elements ofTp179 are called tangent vectors




























































































From tangentvectors to directional derivative operators

Suppose MEIR is smooth and ge
o ll 1 tl M s t

p plot Then jloli.ve R Lies in the plane tangent to Mat p

Am faven
at p in the direction of w is

flpttu
to Pflp us Pflp 81015

The rn.is we jiisY
smooth manifold i e not embedded into IR and ft M In this way

a tangent vector can be identified with a map M IR The

fast that a derivative like f Ifor o satisfies the Leibniz

produstrule motivates the following definition

Def Let M be a smooth manifold The lalgebrail tangentspace

TpMab of Mat pen is the space of all linearderivations at p Thatis

linear maps u M R s t for all f.ge M

fg ftpvlg t glp u f Leibnizproduit rule

remarks o TpM d becomes a weiter space with ytc.vn f y f ti glf

The derivation of a constantfunition is zero since life CM

f uff 1 n flplt ulf So v11 O




























































































I g Linear derivations are defined on algebras I here Local

Poisson brackets and commutators are also hin derivations

If U h is a chart around p and hcg xdd xdd

then J
p

n of i s d foh
na

defines

an element of TpMab If there is no confusion in sight

we may omit the p

Thm If Mis an n dimensional smooth manifold and peM

then J
p Jup form a basis of TpMatt

proof Linear independente can be seen as follows let h In n be

the coordinate functions of the chart 14,41 Then J pts S So

p
cannot be a linear combination of the others

For fe IMI define F foh in a neighborhood of some

YE hlu and assume w.l.org Glp 0 and that hlu is convex

Then Fly Flo Fltyl dt Flo t y g y where

g y f d Flty dt ispalfunction with g o 2 Flo Expf
With f g Fon gl IF o hilal g heal we get for an

arbitrary derivation u M IR

um la I
I und Ix pt A




























































































We will use TPM Tp174 as our definition of the

tangent spate

remark For M R there is a canonical isomorphism TpIR ER

via TpR F v2 p
s ve R In fait

Lemma For every finite dim R ver space V and per
a canonical i e basis independent isomorphism I V TpV
is given by V u m u f ff ptt

eEE.EE
One often exploits this and identifies Tpl with V In particular if V P

Lemma coordinate change het U In ru and Y In hl be two

charts around a point p on a C manifold M Then

I
p Ips Es

Jacobian o ordinate change you at xp

proof Ept at adf.fi IIE aanspaus

Faaitoi adf.IE

EFFET I




























































































Lemma equivalents of tangent space definitions

The map TPM
T

TpMab

j Cim f for lol

is a vertor space isomorphism sit every cure je Kph with

Ihop to i e wert a chart U hl is mapped to T 8J J
pcnet.tn

remark This is probably the easiest way to

ätärüäüIII
TW

proof Ttip is independent of the representative since

f g lol damit düftterepresentatives of 8
41583 is a derivation since it is Linear and with f Y r lt

fg Ifor gog los It g los gg lol gog los f g lol

vlt glp t vlg ftp

T is a vertorspate isomorphism since dim TpMab dim 17179

and from hop los e we obtain

f f g lo day foti Ihor lol

du foul ei d foli
up Zipf I




























































































dpF

TM Ip
F N

N N

F

Def Let F M N be smooth The differential a.k.a pushforward

of Fat pen is defined as

dpFEdpF
S TMS Trip N

9

dflulf u f F forvetpM f eCOIN

dpF Tp179 Typ v9

dpFILM Fog for g ET 179

remark o the following diagram commutes That is expressed in Coral

loordinates dpf is the usual

Am an total Freinet derivative

reprenn
seated bythe Jacobianmatrix

On dg

Tphgeom
dPF s Typ 19

TpMay dPF EIN J




























































































remarks o dpf is a linear map

o dplidis idipp

o If g ETp79 then dpf Mir G N fm IfoFog o

o If M is ionnented and dpi O then F is constant

For any Linear map F V W between finite dim

R vectorspares the following diagram commutes

I
s TpV

µ
Idpf
Ttip

Lemma For fe M and we TPM I'd dpf r Ulf

remark The isomorphism I TtpR IR is usually not written explicitly

In this sense dpflul ulf

proof Note that any element of Typ IR is a derivation OCR IR

By definition of dpf TPM TypIR this derivation maps any fo OCR

to dpflulf v11 f 1 f 8 10
117411108,11g

This coincides with I uf f dtt.at flp ttuCf vlt G fap

I

Lemma chain rule If Mats M G M are smooth then

dplgof dpp g dpf




























































































Def The disjoint union TPM TM is called

the tangent bundle of M

remark If we consider elements of TM as pairs P X MxTPM

we can define the projection IT TM M IT Ip X p

Thun Let M be an m dimensional manifold with smooth

atlas tun Then a smooth atlas for TM is given

in terms of the charts da TILLY
R

da EY Iaip alplin

Heute TM is smooth manifold with dim TM 2 dim M

Def It f MSN is smooth the derivative of f
a.k.a pushforward is the map df Map is dpf

remark df induces a smooth map TM MN that maps

TPM v1 dpf eTyp N and is sometimes also denoted

by df




























































































Alternating multilinearmaps

Let V be a finite dimensional real vertorspace throughout

Def The space V T f V IR linear

is called the dual spateof V The elements of and U are

called vertors and sovestors respeitively

remarks V is again a real vertorspate

If dim w u tu then dim r n and Y V

For fehlt well one often writes flu t.rs If

ei is a basis of V then fiel is called the dual basis

if its e Sj This always exists and is unique

Exp I If U IR sit its elements are column vectors then V can be

regarded as the spate of row vectors sit firs is the matrixproduct

i e the standard scalar produit of v with ft

2 If V L v 1 7,7 IR Jae Rd x E a x

for some degree dem then flu f viel de is an

element of the dual space Jf




























































































3 If U is a chart around PEM and pl pl alp

We define dx TM R as the differential of the

coordinate fune U IR atp composed with

the canonital isomorphism Typ IR IR That is

dx Iv x

With V TPM dx are elements of Vt M the cotangent

spare Recall that
p

M ft 2 fox
xp
form a basis of V

Thun dx TpM and ptTpm are dual bases

proof dx Esp p
dg ft 0

0 1 S

remark dx is the paradigm of a 1 form as defined in the

following




























































































Def f Vx V V s W is called multilinear or k linear if it is

linear in each of its k arguments A k linearmap is called

alternating or antisymmetric if for all ve U and all permutations

fly un sgult flying Yin

Alt KW denotes the space of all such alternating k linearmaps

and A V Alt KR is called the space of k forms

short for k linear alternating forms on V or the k th exterior

power of V

remarks Alt IV w is again a real vectorspare and AV V

A useful convention is NU IR

Corollary For a k linear map f V W the following are equivalent

it SE Alt Kw

ii f un w O if u y for some its
Iiii 11h ru O if y w are linearly dependent

proof exercise

Exp 1 The cross product IR x IR R lax b EuEinaiba
where ey is the Levi Civita tensor

is element of ALE R IR

2 For any ff EU the map V s un w t det klingt

is a k form




























































































3 dx T M IR is a 1 form on TPM

remark recall that the crossproduit and the determinant both quantify

the volume area while their sign indicates an orientation

Lemma Let les en be a basis of V and for any we A V define its

components wert that basis as wir in w ein Ciu E IR

Then AW s IR w i Wi in inei e ein is a

vector spart isomorphism

proof The map is Linear bydefinition

Injectivity if win in O for all int _ein then all components

vanish since wir in sguli win in By

mulklinearity of w this means w O

Surjestivity if win in ne
is given enables us to define

wir in for all i and from here a corresponding k form

ü v Vu Jj wjnn.juebs.ir bju.vn where

Ib but is the dual basis wert ten en i e bi es S

By ionstruitron Ölein Ciu Win in D

Corollary If dimLu n then dim A V k In particular

dim 1 Vt 1 and a n A Vt Yo




























































































Def For we 1 V and ze Art the exterior product

weg 1 V is defined as

w172 un Utc c Fünf t w via Vitus 2 Klatt Titan

remarks An alternative equivalent definition let S Kill Sa be the setof

14,1 shuffles i e permutations satisfying

x ̅ 7 TIKI n TIKTI it KtL Then

w 172 Iv Wut II Sg t whales Kcal Katy Titan

For SEIR c n W c W

Exp If we wa V then wnew un v2 willstwalk walk wily

Prop For w µ 1 V 7 1 U WE 1 V

it tutte 12 win 1m17 distributivity

ii weg 1 1 In w anti commutativity

iii waz nu wa 710 associativity

liv aw an willy i waz for any IEIR

The proofs of iil and iii are a bit longer see eg doCarmo

lil ii implies that win way is bilinear

iii implies that wenns makes sense without bratkets In fait

w 171W un 1Vktitm

K m auftritt Wilk 7 Vilktil u richtet




























































































Corollary If k is odd and we 1 V then w w 0

proof wen 1 11 we w wsw

However Wsw can be non zwo for forms of even degree Exercise

Prop If f fu is a basis of V then find fin in ein QI

form a basis of 1 V

proof Let e EnEV be the dual basis Then I a 0 implies

0 Eat egal 1es aj ja So the s art hin indep

As there are 4 dim V of them they form a basis

Prop For fr fu EV and un Vu EV

1h1 afk un vn det links

proof by induction on K We know it for 4 2 From the definition

of the exterior product we get excluded

f alt a einfallen vn 1 1 flustfin _afa un ua

The statement then follows by expanding the determinant

wert the first now as forany Kek matrix A

det A F 171ˢᵗ An det Ä

where An is the 1k 1 1k 1 matrix Ionstruited from A by omitting

the first row and 5th column




























































































Differential forms on manifolds

Def A K form w on a smooth manifold M is an

assignment of a k form wpe 1 Tp M to each pEM

That is each up is an alternating K linearmap of the form

wp IM TPM IR

Wirt a chart 4 x around pEM we know that the dei's form
a basis of Tp'M So we can write

Wp Ʃ
in in

in in IP drei ndein

where win in Ip Wp
p up

are the

components of wpw.it the short Changing the chartto V y

results in Ein in p wp inp1 1 iu p

g g
Sinj Jinju'll weg gulp

where Jig pl 2 oy is the Jacobian of the coordinate change

Sinne Ji C the following is chart independent

Def A K form on a smooth manifold is called differentiable

or of class C if the coordinates Welp are as a

function of p




























































































The set of all C differentiable K forms on M

will be denoted by 2 M and we define

IM R M with ROM CCM I'M 40

remark The def of 2M makes sense since each R M is a

natural vertor spare In fast sinie there is a scalar

multiplication M REMI 2 M

f w f w with If w ftp.lwp

RM is a module over the ring M

examples O forms on M are just smooth functions on M

If fe IM then the differential

df Map dpf is a 1 form

dpf Tpm TtipR IR

W.r.t.to a short U x around p we have

dpf F dpf 2 p
de

Eff de

dpfv1 ulf

In thissense df F dx

If n dim M and IU is a chart aroundp

then w.it that chart every wed M is of the

form Wp ftp det where fe M and

det denn Aden




























































































remark note that the notation dx for an element of Tp'M

omits the chosen PEM Then dx should be read as

dxlpordpx.tn df de however dx mean a map

M 5 17 that assigns to each PEM an element of I'M

Def Let w be a K form on M and if be an L form
The exteriorproduct way is defined as the Rtl form

determinedby wey p Wp172ps

This inherits the properties of exterior products of forms on

vector spaces That is associativity bilinearity

71 w C 1 way and if w and I are smooth then

f Iwan fw an walt y Kfe CCM

if
is the Grassmann algebra on M

bilinear 1 IM IM AM

defined by linear continuation

Note that the constant function LE M alp

serves as identity i e in w w

More generally for any fe M n 17

few f w




























































































Having in mind substitutions and coordinate transformations we define

Def For a smooth map f M N we define an IR Linearmap

ft IN 2M via ft R N R M w is ftw

for K ftw p un vn wfip dpfvn dpfvu

wherepEMandvn VuETpM

and for K O via ftw wof

ftw is called the pullback a ha induced form of w by f

remarks by definition o id w w

f g w g ft w

f way ft w ft 121

Consider the pushforward

Then the pullback ft TtipN TIM is the

corresponding dualmap in the sense that

ftw v1 w fav for we N EIN

Lemma For a smooth map f M N

i ft way ftw n 1ft

ii If fe IN then f fw f f if Lwl
pointwiseproduitfsialarprod.inRM

iii For WENN if 4 x is a chart around flplw.it which






ftp has components win in fln then

proof II WT

GGELLÜGE L

IG sgulilwfapyldpfv.tn dpfurin

f w p 1 f 7 p u unte

ii f fw f faw f f n ft w
f f f w

iiit by linearity ii i we get

Fw wir in f4lf dx n nf dxiu

Moreover f da ptv dx dpfv

dplx.io f r

example polar loordinates on IR 1110,01 consider the 1 form

wert the canonical identitychart

w die
y dy

on Riko

Let f r reus r sin on 0,0 0,21T

map from polar to Cartesian coordinates Then at p r

f.tw p rI dplxof dplyoft52

ios der rsino do

sin dir r ios do do



Prop Let f M N be smooth between two n dim manifolds

and U x and V y charts around PEM and ftp resp

For any fe N and with f y of

ft f denn ndr ff det Jagt denn n den

proof We show that both sides have the same action on the basis

p p
dual to dx

ft e denn edu p 2 p 2 p

Hi
Application to f id yields

Corollary If Un V y are two charts around pen

of an a dim manifold M then

g dynn 1dm h denn edu for gehe TM

iff h g det 2 pts

Similarly dys.ee ndy.sn det
tn

i 1 1dxin



Ihm

For any smooth manifold M there is a unique map

d AM AM set d R M R M and

i wine IM d wta du dir
ii WER M TERM d way dwnztc.tl und
Iiii fe M ROM df is the differential off
in WERM dw d dw 0

This map is called exterior derivative and wert a hart Mix

around pen dw Fildp for wer M

Henie usingmultiindex notation d Zwecke dwinde

proof Suppose wa w ERM cointide on an arbitrary

open subset U EM We first show that then

du du
u

i e that d is local

To this end for PEVE Tell let ft M be sit

9191 41 gar0 q u
Then 0 ftw w RM

and therefore 0 dto d falun we

dfnlwn.ws tfnd wa wa

il.li
o f ndw fidwa

So dwa dwa and sine this applies to an

arbitrary p U it holds on all of U



Consider WER M that within U is of the form w wedxe

We can always extend we smoothly to all of M so that the resulting

w coincides with the initial one Since d is Loral this does not

affect dw We get d Iwidx
Edlw.EE a siniewitc

Edwindie I

g Iii und Liit

Ʃ du die

This proves that du is of the Kaimed form and thus unique

It remains to show that this fulfills i ir it and iii are obvious

Due to linearity it suffices to prove ii for w fd E R M

and meget d waz d fgdxendes

lgdftfdglndxendxs

ldfndxi.tn gdxg 111 lfd In dgndy
1 T.TT

To show in ionsider again w fdx so that

dw dfendx Ʃ Esdyndx
Then dir E dxundyndy

Eu 2
dxundxstdxgndxn.tndx 0

Schwarz's thin i e 2 2H for fe



Lemma If F M N is smooth and WER N then

F dw d Ftw

proof Due to locality and linearity it suffices to consider

F dffdx.in ndx.ie F dfndxin1 ndxin

dlfoF nd x oF n ndlx yoF

d foFnd F n d F

d F f dein ndxin

Def WER M is called

closed if du O

exalt if Iyer dg w

remarks Being closed is a Local property Being exalt aglobal one

Sinne d O everyexact form is dosed Whether the

converse holds depends on the topology of M and will lead

us to Derham cohomology

For M R with W ff de fidytfjdyt.IM
wer'M w fidyndztfidzndxtfjdxndye.IM

w3 f dendyndz

we have wo is i i wirds m is equal to

wo f ts f dis f see exercise



Vertor fields

EE.EE

Def A vector field on a smooth manifold M is a map

M TM Map Xp EIN

The set of smooth verlor fields on M is denoted by ECM

remarks If 4 x is a chart around p we Ian write any

vector field Loudly as Xp I X pl p
where

the X s are the component functions of wert the chart

Lemma For a vertorfeld on a smoothM the following are equivalent

i is smooth

iil The component functions of are smooth wirst any

hart

iii For any ft MI the function Xf M R

defined by Msp Xpf is smooth

remarks By iii any EX IM induces a linear operator

IM M In fait it is a linearderivation

since f g f g g Xf Moreover for X re m

Y Kfc IMI Xf Yt

By ii M is a M module



Prop For X Y JE M there exists a unique ZEHCM

satisfying Zf IX Y Yo If for any ft TIM

Z is called the Lie bracket of and Y denotedby 2 X Y

proof sketch Zf of fox f already defines Z It remains

to show that ZE ECM This follows from

observing that Zpf Zf P is of the form

Zp XX P 2 pw.it a hart U

set exercise fordetails

remarks 1g of and f are not in KLM

The Lie brachst ACM ECM HIM makes

M a tie algebra

A differential form we R M can now be regarded as a map

w M KLM x HIM S M

w Xu s Mtp 1 S Wp Xp trip

This leads to a chartindependent formula for the exterior derivative

Prop If WER M and tut M then
omitted

dw un 1 1 w km

w i Es _tun

In particular for WER'M du X Y wer Yu x w XY



proof sketch First one verifies that the r.h.s.is a Kts form it is

alternating and Linear the latter requires the seiond summand

Then it suffices to show that it arts currently on w f den 1 1 den

with X Ja Ja Using 2 0 we get

c 1 w x ̅ 1 15 da w da Ja dann

For α tut this vanishes kippt for α a 11 k

and i Kts and thus α 4 7 So we can write

du 9 da dann da ndran

ENTE ins ggf den dennd's

Ʃ jxgfdx.sndenn nden whirl is the currentform



Orientation

Def Two ordered bases b bn and c In of a real vectorspare U

are said to have the same orientation if the automorphism A V V

defined by Ab c satisfies det A 0 Earth of the two equivalents

classes under this relation is called an orientation of V

The two orientations are sometimes called right lefthanded and

the standard basis es en of R is referred to as righthanded

Consistent definition of an

orentation on a manifold

iiEiiiiiiiii.EEE IEEE.EEEEEEEEEEiiIiii
the Moebius strip is not

orientable

Def A smooth manifold M of dim ns 7 is called orientable if one

and then both of the following equivalent statements holdlst

it There is an atlas A Un f whose charts are orientation

compatible in the sense that det dphof so Kpefa UnnfpUn

ii There is a nowhere vanishing we R M i e Wp 0 PEM

w is then called an orientation form

remarks two orient forms w w̅ ER M must be related via w̅ f w

by a nowhere vanishing f M If f 0 we set w̅ w



The resulting equivalent class w is then called an orientation ofM

A connected orientablemanifold then has two orientations

Using homology i can be extended to a definition of orientability

of topologital manifolds

proof of the equivalente

ii i Let we R M be an orient form Then wirst a chart

4 x around p wp ftp den nden for some

FE 1h that satisfies wp p u p ftp 0

W.L.org ftp 0 otherwise replace by

If V y is anotherchart aroundp with up glp drin ndr

and glp 0 then in the interseition UnV

f denn _enden gdy.ee enden geht dann enden

so that det JE 0 In this way we can

construit an atlas with orient compatible thats

Ii ii For earth chart Un EA define w deinendet

Let f M 0,13 be a partition of unity
subordinateto tun and define w I ftw

EveryPEM has a neighborhood in which this sum is finite

and using coordinate transformations we can express

w fadxin edu ladet dein edx

Fear



remarks Wirt a given orientationform w we call an ordered basis

b ba of IM positivelyoriented if w b bn 0

A smoothmap between oriented manifolds is inked

orientation preserving if it maps positively oriented basis to

positively oriented basis

To every point of a zero dim manifold we also assign two

orientations denoted 1 and 1

RP is orientable if n is odd

An a dim submanifold of IR

is orientable if there is a continuous

vertorfield of unit normalvectors E g S is orientable



Def A topological manifold with boundary M is a second

countable Hausdorffspace that is locally homeomorphic to

a half space 1H Ihn tn ER n O Its boundary

IM is the set of all points in M that are mapped onto

21H a ER 0 Int M MIOM

m i

EEEEEE m.EE

M is a smoothmanifold with boundary if it is additionally

equipped with a smooth structure In this context

a map on a subset KEIN is called smooth if it has a smooth

extension to a neighborhood of a that is open in IR

examples Every smooth manifold is a smooth manifold with

boundary albeit IM A compactmanifold with

empty boundary is called dosed manifold

M ER I 11 112 1 with IM 5

If f N IR is smooth with regular value YE IR

then EN fix Ey M is a smoothmanifold

with boundary IM f Ty



remark If M N are two smooth manifolds with boundary

and f M N is a diffeomorphism then f OM IN

and f
an

IM IN is again a diffeomorphism

Prop If M is a smooth manifold with boundary IM then

i IM is a smoothmanifold with dim OM dim MI 1

and 21dm

ii IM is orientable if M is

proof i sketch If U In n is a chart around pedM sit U is

homeomorphin to an open subset of 1H then

UnOM PEU p 0

and UnJM n is a chart of IM

ii Let U x and Ky be two orientation iompatible charts

of M around pEJMs.t.tn 70 in U and a O in V

Since the coordinate change f you has topreserve the

boundary we

if xu O
fuhr 14

so if n 0

O for it n
so 2 fu n 1 1

so for i n

Heute evaluated at a boundarypoint we get



out sie der 4 ii

ETFs
2 det die

Consequently the coordinate change f fm between the

boundary charts is orientationpreserving as well

Def Let w be an orientation of a smooth manifold M with

boundary DM 0 If wert a chart U ofM around pedM

we have w f da 1 1 den for some f 0 then the

induced orientation In of IM is defined locally via

7
1 dx 1 1 drin

remarks These Locally defined it's can then be glued together to a

1h 1 form 7 that is an orientation form on all of IM

According to w the basis TPM is positively

oriented At pedM we can regard v as outward pointing

vertor An ordered basis v 4 of TOM is then positively

IM oriented wert 7 if u u um is positivelyoriented

w.r.tw since

Il n am
1 d l en reden 1 ndxn 1EE

EEETEEII'Iii.aa

eg



Integration of n forms on n dim manifolds

Def The support of WER M is supplw PEM Wp 0

i e its complement is the largest open subset of M on whish w O

Let h h be a chart of an a dim smooth manifold

possibly with boundary and WER M

function of w ie Wp f pl den 1 enden Then

EisisiLu Etonian IEEEE
i

Q
if the Lebesgue integral on the r.h.si exists

Lemma Two orientation compatible charts 4,4 and 4,5

had to the same value of w

proof If up Ftp den 1 _ndr then f pl ftp.ldet px
where Ip is the Jacobian of the coordinate 3

change f holt at hLpt

Hu Fi lyldy foh
toflytdetlsplylldyen.ci Tenet L L

L L
changeof variable formula forLebesgue integral



Now suppose Un is a finite open lowering of M with

orientation compatible charts and I ME Un 0,13 is a

smooth partition of unity subordinate to it Then

In Eftin
Lemma The integralfw is independent of the chosen covering

and partition of unity

as long as it is a finitecovering with orient comp Charts

proof Let für be another such covering and IT a

corresponding partition of unity Then

Ltin EEEF t.in

using
Ʃ ufr.tn

w F ENTW finiteness

F ftp.w
To summarize we have defined integrals of n forms on n dim

manifolds under the assumption that the manifold is oriented

i e we chose an atlas with orient comp charts and the n form

has iompait support with is automatically satisfied if M is compact

The latter could be relaxed in principle but the central theorem

Stokes then would still require compost support



Elementary properties

Linearity flautby afp b for aber

winen M

Orientationdependence w w if M is M with

opposite orientation

Prop If f M N is an orientation preserving diffeomorphism

AEM n dim M and weh N then

meaning that one side is
welldefined if theotherside is1
in whimcasethey we eanal

The proof follows again by realizing that the change of variables

formula for the Lebesgue integral corresponds to

ft f denn ndyn Ifo f det 35 01 denn enden

All this extends to the case of O forms i e funitions over an oriented

O dim manifold M when we define ff F rlp f Ip

where rlp EY 7 is the orientation at p

This sum is finite if fis compactly supported



Stokes theorem

Thun Stokes Let M be an n dim oriented smooth manifold

with boundary JM and we R M have impart support Then

I
explanation conserving the i his OM is supposed to be equipped with

the induced orientation and w is understood as w with

L IM M the inclusion map If IM the r.h.s.is zero

proof We will ionsider three increasingly general cases that are based

on earth other

i M 1H There is an r so sit

fsuppose

II an undwe can write w Ʃ

Then dw
TEE

In 1 1 JE denn enden

so Idw E 1 1 f I E den den

For it we have I Ei Ei.EE O since f vanishes

if r Heute
mir

du 1 11 fu den_ den
M r

1 1 I fuhr n 1,0 den den



This has to be compared with w in

Since every n 1 form on JM 21H is a multipleof
denn 1dxn.es we have two fu n 1,0 da 1 adieu

so that w fulen n 0 denn nden
2M

1 1 I fuhr n 1,0 den den

1 1 dx 1 nden is the induced orientation

Consequently du w for M 1H

ii Suppose w is supported in the domain U of a single chart 4 f

where f is orientation preserving Then moredetails below

Idw ftp.tdwifdlie itw f 11 w

extder commutes withpullbank 191 dwhascompactsuppt

iii Suppose f Un 1 is an atlas of orientation compatible charts

that define the orientation of M If I ME Un 0,13 er is a

corresponding smoothpartition ofunity then

EIN E faltet

Ifdtenw Ndw

falztalnwt.IE dw 1dw



remark for a more detailed dislussion suppose In f with f hi f

is the considered hart of M UndM T with F es fm

the boundary chart of JM and I 217 17 I JH 1H the

inclusion maps Then with f toi cop we get

face fitte Ftw Ew

Corollary If M is a closed iompait boundaryless orientable smooth n dim

manifold and we IM is exact then w 0

proof Iww just
O sine an

Corollary If M is a compost orientable smooth n dim manifold and

we R M is closed then w 0

proof In L

Corollary Fund then for line integrals Let ab N be a smooth

iwves.t.Mi.gr a b is a 1 dim submanifold of N and

g a b M is an orientation preserving diffeomorphism Then

for any fe N fdf f gibt f grial

proof Idf f with 2Mt flat gibt
negative poisitive orientation



Thm No retraction then

Let M be a compait oriented smooth manifold with

boundary 2M There is no smooth map f M 2M s.t.fm id

proof Let n dim M and 2 ER JM be sit 17 0 eg an

orientation form on OM Then with the inclusion i 2M M

and an assumed retraction f M IM sit for id

f Idf It'd O
0M

dner dM 0

Corollary Brouwer's fixed point than smoothversion

Consider M ER 1 112 1 with 217 5 and a

smooth map f M M f has a fixedpoint i e FEM f x

proof Suppose there is no fixed point Then define g M 2M sit

glx t x f x for a suitable t O depending on

9 Then g would be a smooth retraction

f x

remark using Weierstrass approximation this Ian be extended to

Iontinuons functions f M M on any top space M that is

homeomorphic to a closed ball



Vectoranalysis in IR

To recover theorems of vertor analysis in IR from the generalized

Stokes them we can use the following definitions conventions

Let U ER be open and D U R On U define the

vertor valued forms

and du denndx rdx These lead to the following isomorphisms

V du ä ä di

s du bis 5 DE

n 134 s i s cdu

Then Stokes then for differential forms translates to

Gauss divergence than For any BED and any compact 3 dim

submanifold M of U with boundary 2M

dir b du 5DEM
Kelvin Stokes then For any äEV and any compact oriented

2 dim submanifold MEU with boundary 2M

rota di finds



Moreover the following diagram commutes

ru sin sin in

an
9rad

y
rot

y cola

In particular d O translates to rotgrad f 0 and divrot ä 0



Riemannian Lorentzian manifolds

Recall from LinearAlgebra If g VV R is a symmetric nondegenerate't

bilinearform on a finite dim real vectorspace

with basis b buEV then glbi.bg is

an invertiblematrix BySylvester's law of inertia

the number solo in of negative eigenvalues
thismeans

is independent of the basis We call s the
glx O y O

Index of g Note that g is an innerproduct

iff 5 0

Def Let M be a smoothmanifold and seto dim M

A pseudo Riemannian metric of index s on M is an assignment

of a symmetric nondegenerate bilinear form gp TpMxtpM R

of index s to every point PEM sit in any short

gig.li Gp p p
depends smoothly on p

M g is then called pseudo Riemannian manifold of Indus

and for s
1 dim IMI Lorentzianmanifold
0 Riemannian manifold

remarks Note that if Xp p
and Xp Y p

then

Gp Xp Ip Ig gijlply glpy

A common notation is ds for the bilinear form gp This

in turn leads to expressions of the form ds Iggig dedg



examples The Minkowskispare MIR with constantMinkowskimetric

gi n
wert the canonicalbasis of R is a

simple Lorentzianmanifold

IR with the standard innerproduct is a Riemannianmanifold

Lemma Let F M N be smooth and st Ipf is injective for all pEM

If Nig is Riemannian then so is M Ff
remarks The pullbank for symmetric bilinear forms is defined in the

same way as for anti symmetrie

Injectivity of dpf holds in particular for embeddings

proof F g p vv1 ging dpfu dpfu 0

and 0 I dpa EILE v0

Corollary For every smooth manifold there exists a Riemannian metric

proof By Within's embedding them there is an embedding

F M R If g is the standard innerproduct on R then

Ftg is a Riemannian metric on M

remark an alternativeproof would construct a Riem metric Loially

within any single chart of an atlas and then exploit a

partition of unity together with convexity of the space of

inner products



Having a manifold equipped with a Riemannian metric has two

immediate benefits

1 We can talk aboutdistanies

2 We can identify IM with Tp'M and thus D M with IM

1 Def Let Mg be a Riemannian manifold

The length of a carve ye
a b M is defined as

HEIIEEHE c

gilt f Ifor lt for faith
Thisextends to pielewise C lauesbysummingupthelengths of thepieces

The distanie between yen is defined as

dglx.ly inffhlylfispieiewiseC ionnestsxandy

remark LLg is independent of the parametrization of gr and given in

Loral coordinates by gig ritt 4,08 lt Igor A dt

Thw If Mlg is a connected Riemannian manifold then

M dg is a metrie spare whose metric topology coincides with

the manifold topology of M



2 Any pseudo Riemannianmetrie g induces an isomorphism

Y Tpm TpM v I s gp v

note that T is a linearmap that is injeitive since Hlu 0 gplr 0

for all v O As dim TM dim TIM Y is an isomorphism

Applying this pointwise we get an isomorphism between HIM and SIM

E g if fe M we can assign a vector field to df ER'm

whim then defines the gradient grad f Y Idf ECM

also allows us to define a pseudo inner product on Tp'M via

TpM Tp'M w 7 i s gp t w 4 n

Pointwise application yields s R'M IM M

w 7s pls gp 4 wp 4 Cpp

This can be extended to K forms

Def For a pseudo Riemannian manifold M g we define

R M R 17 CIM pointwise by bilinear extensionof

an edu β aß det gp t α 4 β

for α β TIM



Prop Let Mg be an oriented Riemannian manifold There

is a unique orientation form ns.t for any positively oriented

ONB v Um EIN Vplus Un 1

In local loordinates this Riemannian volume form has the form

Up 7 det lgig.li denn nden

remark In the Literature this is often written v du or dVolm This

should not misleadyou to think that it is an exactform

proof In a positively oriented chart we can write v Bin p

where orthogonality means Sig gply.us Bingulp B

and thus 1 BGB with G gulp

Consequently det B poeta and this holds for any

positively oriented OMB since these are related like I 0.3

via OESO n

Every orientation form has the form Up ftp denn nden
in Loral coordinates So Up un Un ftp.ldet

ys.t.flp VdetIGl is necessary for the claim

To show that this gives a globally well defined orientationform

we have to show consistent of the definition over different

charts So consider a differentchart given by x ̅ at p Then

G STES where Sue and Vdettät drin edu

VdetLEI detts denn nden detlef denn nden



Then A smooth manifold M admits a Lorentzian metric iff

there exist a nowhere vanishing vertorfield EX M

proof exercise class

Corollary For near even there is no Lorentzian metric on S

proof According to the hairyballthen S does not admit a

non vanishing smooth vector field if ne 2N



Hodge theory

If dim M n then dim 1 TIM K Lu dim A TIM

so that the spares are isomorphie vertorspaces If M g is an oriented

Riemannian manifold there is a natural isomorphism given by the

Hodge star operator R M 1 M that is defined pointwise

as follows Let Ok Gut On a positively oriented

ONB wert the innerproduct induced byg of TIM Then a linear

map 1 TpM 1 TIM is defined by setting
10K Gut 1 1 On

So if w Win in 0in 1 10in then

W

in
Wi _in Sgu I 3 9,1 neu

where ja ja is the complement of int _ein in 11 in and sgn I

the sign of the permutation 1 n is in in s Ju k

In this way 1 0 ER M is the Riemannian volume form

Prop For any f.ge CCM and win ER M on an orientedRiem M

i fw gz fltwltg.kz
Sinceboth sides are non

i w 1 w degenerate bilinear

thisuniquely characterizes
iii 71 w w 1 7 W 7 8 or defines theHodge

in a basisindependent way
in wat Rn w W R

v W RI Tw 7s



proof We can consider all identities pointwise i e at a PEM

i linearity holds by definition

ii If is a pasoriented ONB of TIM then

W 1 104 Wp Out 1 1On and

Wp T 0,1 10K where T is the sign of the

permutation KH n 1 K So 1

iii Due to linearity it suffices to consider 2 0in n0in

Then 72 sgu I n inQua so that

10,1 104 1 Rp O only if fin in 1 k forwhish

FAN
3 Kts n is not perunted

Here sgulII is the sign ofthe permutation in in

On the otherhand WpRp n non Qi 10in

det p sgulI
So indeed wat w 758 and using wins xp w

gives the second identity v 1 1

in wa g E twigs w ew.gs U twins in.ws

v w ps Awa g 1 1 waz

zn.tw z.ws



Def For any EXCM on an oriented Riemannian manifold M y the

divergente is defined as div X da TIX where

x E R M is the 1 form associted to X by g

remarks o div ECM IM

On standard R we get for t.pl x

pYCx1If lpldx so that

div d f p l 11 da a und _enden

Ʃ pflp dann enden

Ʃ pf as expected

On standard IR we have dx.snden Eijude

Henie w f dx leads to

du F pfudx.snden

Fü Eijn pfa dx

Ei Kurt f da

Alternative notations are wtf rotf Def
Note that for an n dim M we have d IM R 7



Def Let in be an oriented Riemannian manifold

If M is compact and we IM denotes the Riem volume form

we define the innerproduct i AM IM IR

w 72 twins v witz 7 0 and

extend it to RM by setting w y O for forms ofdifferent degree

We define the adjointexteriorderivative dt IM M as

at 1 1 Ä d 1 1 d

remarks we write w 7 ER to distinguish from swings E M

Note that Win requires iompait M or at least that the

Supports of wand 2 have compactoverlap

For a Lorentzmanifold would not be an innerproduct
The Hodge is an isometry wir_t.ci sinne tw 2 1W 7

By definition the following diagram commutes

2 M f M

un ÄHM

This implies dt 1 It and It at 0

The name adjoint is justified due to

Prop d and at are mutual adjoints wert I That is wipeAM

dw 2 w d



proof Suppose WER M RER M Then

dwa 7 d witz 11 wedt d witz wa dtz

So dw 2 Idlwn g watdty width

FEE
remarks d 1 M UM is adjoint to du MM Ü'M and similar to dn.ua

We can now formulate the remaining inhomogeneous

Maxwell equation s simply as dtf j In ordinary

components this is D E S and 75_JE 5

Def For an oriented Riemannian manifold M the

Laplace Beltrami operator Δ R M AM is defined as

Δ d at ddt did du du datdu

remarks For 4 0 we have Δ M TM

Af ddttdtdlfidtdf Y.EE divgrad f
NÄH MICH

So Δ div grad on C M

For standard IR this gives

Af dir 3x.pt de E 3 p

note that there are different conventions conserving the sign

in the definition of Δ We chose Δ positive

On compact M where hit is defined Δ is selfadjoint
Aw 2 w Δ and positive w Sw o



Def The space of harmonic k forms on an oriented Riem manifold

is defined as 7L M WER M Aw 0

Thm Let M be a compact oriented Riemannianmanifold and WER M

Then Aw O du O and dufw o

Inwords a differentialform is harmonic iff it is closed and co ilosed

proof is obvious from the definition

t Aw 0 0 w Aw lw ddtw w did w

Lemma Δ Δ In particular WE 1 17 WEH M

proof Vercise

With R M
ᵈ

2 M
dat

the adjointniss leads within IM to

Ker du Im du and Ker du Im du

Would 14M be finite dim we lould argue that

2 M Ker du Imdat Ker du Im du

and sine Im du Kerldu also that

her du lmldu.to
YjIdI

In fast the following is true



Then Hodge deiomposition For an oriented compact

Riemannian manifold dim 7 M oo and

R M Im du Im du HM

i e R M decomposes into subspaces der M 1 2 M 714M

that are orthogonal wirst wir waxy

proof 1 g the above argumentonly shows that

2 M der M dtr M 71417

is much harder to prove and requires some theory on

elliptil PDEs

remark R M der M dir M 71 M means that every

K form has a unique decomposition into an exalt form

a dual exact form and a harmonic form

For 3 dim manifolds this becomes the Helmholtz decomposition

by which each vertor field is the sum of a gradientfield
a curl fold and a harmonic field In particular there exists

a decomposition into a divergente free and a tut free part



de Rham cohomology

Def Let M be an n dim smoothmanifold and PETO We

define the pith de Rham cohomology group of M as the

quotient vertor space
HI M Metapdp

0511 P forms

exact p forms

and HIM 10 forp 71110 in For any closed form WE 2PM

we denote w the corresponding equivalent class called

cohomologyclassof w That is W w̅ w w̅ is exact

If M is compait we define the pith Bettinumber as

Bp dim HEIM

Examples HG M
FE M Idf O

40 I locally sonst funison M

So β convertedcomponents

For M IR 140 or M s the 1 form w d do

is closed but not exact since widy would imply

fw O 2T So HILMI 40

More generally if M is ilosed and orientable then there

is an orientation form that is closed but not kalt So

Hi M 40 for n dim M Note that its cohomology

lass w is all that is sein by the integral µ
since if wie wird then I A E



Def If F M N is smooth then the pullbank F R N IM

induies a map F HEIN HI M defined as FEW Ftw

remarks recall that the pullback commutes with the exterior derivative and

thus preserves closedness exactness of forms So if w wtdy
then F wtd Ftw Ftdy Ftw dFtp Ftw

is well defined between iohomology Hasses

The assignment M F is HIM Ft is a contravariant

functor from the categoryof smooth manifolds and smooth maps

to the categoryof real vector spaces and linear maps

The contro las opposed to o refers to a reversal of direction

of composition namely Fo G G F

This is also the distinction between cohomology contravariant

and homology I covariant

Thun Let M be smooth T Mx R M Ip t up and I M Mx R

P s p 0 Then

it There are linearmaps du r MR R MXR sit

id Toit dichtdu d on 2 Mx IR

Iii Tt Hü M HK MR is an isomorphism with inverse it



proof ii Toi id implies ito id so that it remains to

show that to it id on HELM R Since doof God maps

closed forms to want forms it maps HÜ MR w 1 0

Due to it this implies id To it

i Sketin

We can write WER M R in local coordinates as

Wp Wpt ein.fi int dtndxinh
ndx

u

where t is the coordinate torresponding to R p x.tl

and w̅ does not depend of dt Then

44Wp ein
min in it do drin dein

can be shown to have the desired properties

Def O f.ge X Y between top spares XY are called homotopic

f g if there is FEC 0,1 Y s.t.FC.io f Fl g
Two top spares Xy are called homotopyequivalent it if there are

continuousmaps Y sit F G id and G F idk

remarks If X Y are homeomorphic then they are homotopy egiv

However S IR 110 using FCH and G S'axnxER So

By Whitney's approximation then every cont map between

smooth manifolds is homotopi to a smooth map Moreover

homotopie smooth maps are smoothlyhomotopic i e FEC



Then Homotopy invariance of deRham cohomology For any KEN

1 If f g M IN are homotopic smoothmaps then the inducedmaps

ft gt HEIN HEIM are identical

2 If M N are homotopy equivalent smooth manifolds then

Hü M HEIN are isomorphic

proof 1 By Whitney's approxthen there is a smooth map F MxR N

s.t.FL.io f and FI.in g With it M MIR it p p.tl

we have f Foto g Foi and it it ist So

f ifo F i.to o ist F ist F gt
2 There are smooth maps M I N sit F G idee and

GOF idm Alcording to 1 the indented maps satisfy

F Gt id and Go F id So F HEIN HELMI

is an isomorphism

Example By induation on n we get

HEIR H go
R 4 0

110 K so

Corollary PoincoreLemma If M is a smooth manifold that is

contractable i e homotopy equivalent to a point e g

star shaped in IR then β 4 0 440

Everyclosed form is kalt on any iontractable domain



Then Hodge thm For a compact oriented smooth manifold M

HE M KPM are isomorphic vertor spaces In particular

Ap 0 this holds forany Riem metricunderlying 7hPM

proof This follows from the Hodge decomposition Consider the linear

map 71PM Wh 1 Wn E HÖIM This is injective since

w w̅ Wr wir daz by uniqueness of the Hodge

deiomposition implies dg O alternatively 0 d w w̅ d'dz Idyll o

It is also swjettive sinne for any closed w wat die dto we

have 0 dw dato so that dato dto O and thus d 0 0

Henie W Wr

Ihm Poiniareduality Let M be a compact oriented

smooth manifold of dimension n Then for any Keto n

w 73 1 way defines a non degenerate bilinear map

HEIM Hü M IR and thus an isomorphism

Hü M HELM In particular Bu u An

proof First note that way does only depend on the

cohomology classes w and 7 since

ftw da alptdß way dann widßt dandß
M

dw.dz 0
an weißtandß

ObyStoriesas 211 0



Next we show that it is non degenerate i e that for every w 0

there is a closedmy sit wa 0 By the Hodge them we can choose

wto harmonic wirst any Riem metric Then z w is closed

sind 17 btw Sw 0 and weg Hwk 0

Consequently the dim of HE M is at least as Large as the one

of the dual space Hülhl As the same argument also works

in the other direction the spaces are isomorphic

example For 7 5 we obtain β B Bo 1

Poincariduality Innented

Corollary If man then IR and IR are not homeomorphic

proof If f IR IR were a homeomorphism then IR 140 s and IR 149101 5

would be homotopy equivalent However Pmits Bm 47 0

Corollary Let M be a closed smooth n dim manifold

β dim HEIM and M Ist β

its Eulercharacteristic

If n is odd then ZIM 0

proof for orientablemanifolds The non orientable case can be reduced to

the orientable one by considering a double lover Sie eg Morita

In E 1 In 4 But
für

0



Corollary If M is an orientable connected ilosed smooth

2 dim manifold there is a geno called the genus

of the surface sit dim HI M 2g and

M 2 2g

proof HILMI HILMI IR w Ey IS fury is a

non degenerate bilinear form that is anti symmetrie Wert any

basis of HILMI we can represent it by a matrix A AT IRR

that has to be invertible So 0 det A dethal

which implies β 2 No

Connectedness implies Bo 1 and Poincariduality β 1 So

Z M 1 29 1

remarks Conneited orientable dosed 2 dim manifolds are completely

characterized up to homomorphisms by their genus

9 0 9 1



Lemma For any smooth manifold M and we 1 17

w exact ftw 0 g EC SIM pierewise

remark this means that a vertorfield is a gradient field if it is conservative

proof Isketihl If widf then 18 4 1 87 ja 1,87 0

For poPEM JE 0,1 M with plo po 811 p

define ftp ftw This does not depend on

the specific iwie gr between poand p since

j
O by assumption

f turns out to be smooth and sit df w

Lemma Let S be an n dim oriented closedmanifold and

M a smooth manifold Then

So f 5,17 homotopic
fröw sein

and WER M closed

proof If FE S 0,1 M FI.it get is the homotopy

and we choose the orientation sit 2 5 50,13 5 10 Sein then

Ö du
dFNI.ms riw friw

5 50,1



Def A topological space is called simply ionneited if it is

pathconverted and every f E S is homotopic to a

constant map S 1 poEX

remark for a smooth manifold we can w.l.org assume fec

not simply converted
simply Ionnested

Thun H M 10 forany simply connected smooth manifold M

proof Forany pen every pientwise smooth loop gr M is homotopic to S'axisp

By the second Lemma ftw 0 if WEM'M is closed By the

first Lemma this implies that w is kalt



Singular homology

Def The tourer hull of ntl affinity independent points von nun is called

an n simplex notated as 5 Ivo un The standard n simplex is

Δ Eig c ER I.fi 1 O with de R the standardbasis

Δ Δ Δ

The net simplex wo Un obtained from an n simplex

Vo 4 by omitting the i'th vertex is called its i'th face

We define E A Δ as the linearmap that maps Δ onto

erthe i'th face of A

for n 2 Leo

e ne es

Def Let be a topological space A singular n simplex is a cont

map T Δ X A singular n chain is a formal linear

combination c Cro of singular n simplices with coefficients er

in an abeliangroup G

If M is sin 0th manifold we denoteby C M the real vectorspare

free R module of smoothsingularn chains with G IR and by

du Culm u M the boundary operator defined on a

singular n simplex as du r F L 1 TOE



examples every triangulation

corresponds to a singular

a chain where earn

triangle simplex corresponds

to one summand in Crt

with Cp 1

o

2
0

Lemma Junidu 0

proof dudas 2 Ʃ 1 roe F 1 11 roe og

E L 1 roe gg 2,1 1 roe es

In the selond sum we can use that EjoE EGO I if sei
and thus replace it by TE C 1 roej.EE

E Es 1 1 roe o

replace by i and i byists

Def A singular K chain JE KIM is called

a cycle if Jr 0

think of Loops for 4 1 and deformedspheres S in general

a boundary if IT M JT r



For WER M and C I Cr T Cu M we define

fw Ecr tlw

Thun Stokes theorem on chains If M is a smooth manifold

CE KLM and wer n then w Idw

Def For the chain complex u M u M 5 C M so

we define the kath singular homology group

HuM.IR YIg cycles mod boundaries

For a yale E M the equivalente class I EH M R

is called its homology class and a c c c't JE

remark Ig a chain complex is a sequente of homomorphisms

between abelian groups or moduls sit didnt 0

Note that for a cycle IE 1M and a closed form weh M

the integral fw only depends on JE Hu M R and WIEHEIM

sin

fywi.dz fw flutdy

dlutdy O 12 0



Consequently there is a bilinear form HKIM.IR HELMI SIR

given by i w 1W With quite some effort this

can be shown to be non degenerate which then proves

5hm deRham's thin The map HEIM Huhn IR given

by w 51 fw is a vertorspare isomorphism

HEIM HuCM.IR

remark due to the duality closed forms are also called

cocycles and exalt forms are called coboundaries

Corollary 11 WER M is closed VCE M w O

2 WER IM is exalt k cycles c w O

proof 1 If du O then w Idw 0

If du p 0 then there is a PEM and un Wut IM st

2p m tut 0 Heute there is a chart U around

p in whish 7913mg
g

0 gell So if r Δ U

is those ns.t or embeds Δ approprietly into the

coordinate plane fy ER y O Kiski then

f w Idw fu.tl 0



2 If w die then Ich 12 0 sine 0 0

Conversely if w 0 then by de Rham's then

there must be a c Hu M IR sit w 0


