Differential forms
(Lecture by Prof. Dr. M.M. Wolf, 23/24 @ TUM)

Motivation \& outlook (p2)

Topological manifolds (p5)

Smooth manifolds \& maps (p7)
smooth partition of unity (p9)

Tangent spaces (p10)

equivalence of definitions (p14)
differential (p15)
tangent bundle (p17)

Alternating multilinear maps (p18)

exterior product (p22)

Differential forms on manifolds (p24)

Grassmann algebra (p26)
pullback (p27)
exterior derivative (p30)

Vector fields (p33)

Lie brackets (p34)

Orientation (p36)

Manifolds with boundary (p39)

Integration on manifolds (p42)

Stokes' thm. (p45)
No retraction thm. \& Brower's fixed point thm. (p48)
vector analysis in R3 (p49)

Riemannian \& Lorentzian manifolds (p51)

Hodge theory (p57)
adjoint exterior derivative (p60)
Laplace-Beltrami operator (p61)
Hodge decomposition (p63)
De Rham cohomology (p64)
functoriality (p65)
homotopy invariance \& Poincaré Lemma (p67)
Hodge thm. \& Poincaré duality (p68)
Euler characteristic (p69)
genus (p70)
simply connected manifolds (p72)
Singular homology (p73)
Stokes' thm. on chains, chain complex, homology groups (p75)
de Rham's thm. (p76)

Lecture on differential forms
Motivation \& outlook

Differential forms - generalize vector calculus to diff. manifolds

- allow to tackle topology be means of analysis
- are also used in physics (1.g. whenever gravity is involved but also in electro-and thermodynamics)

From vector calculus we know (for $u \leq \mathbb{R}^{3}$ open):

$$
C^{\infty}(u) \xrightarrow{\text { grad }} C^{\infty}\left(u, \mathbb{R}^{3}\right) \xrightarrow{\text { rot }} C^{\infty}\left(u, \mathbb{R}^{3}\right) \xrightarrow{\text { div }} C^{\infty}(u)
$$

Moreover, $(\operatorname{rot} \operatorname{grad} v)_{i}=\sum_{j k} \varepsilon_{i j k} \partial_{j} \partial_{k} v=0$

$$
\begin{aligned}
&=\nabla \times \nabla v \\
& \text { and } \quad \operatorname{div} \text { rot } v=\sum_{i j k} \partial_{i} \varepsilon_{i j k} \partial_{j} v_{k} \stackrel{\downarrow}{=}=0 \\
&=\nabla \cdot \nabla_{\times v}
\end{aligned}
$$

This is generalized to m-dim. smooth manifolds by the de Ream complex:

$$
C^{\infty}(M)=\Omega^{0} M \xrightarrow{d_{1}} \Omega^{7} M \xrightarrow{d_{2}} \Omega^{2} M \xrightarrow{d_{3}} \ldots \xrightarrow{d} \Omega^{m} M \simeq C^{\infty}(M)
$$

where d is the exterior derivative for which $\operatorname{dod}=0$ and $\Omega^{k} M$ is the space of differential k-forms on M.

Since rot grad $=0$ and diurot $=0$ we know that

$$
\operatorname{lm}(\operatorname{grad}) \subseteq \operatorname{Ker}(\text { rot }), \operatorname{lm}(\text { rot }) \leq \operatorname{Ker}(\text { div })
$$

are (infinite dimensional) linear subspaces. So we can define the quotient spaces

$$
\begin{aligned}
& H^{1}(u):=\frac{\operatorname{ker}(\text { rot })}{\operatorname{lm}(\text { grad })} \\
& H^{2}(u):=\frac{\operatorname{ker}(\operatorname{div})}{\operatorname{lm}(\text { rot })}
\end{aligned}
$$

If U is storshaped (or, more general, contractible), then the spaces coincide so that $H^{1}(u)=\{0\}=H^{2}(u)$.

In general, however, this is not true. E.g. for $U=\mathbb{R}^{2} \backslash\left\{z_{n}, \ldots, z_{k}\right\}$ $\operatorname{dim}\left(H^{\wedge}(u)\right)=k$. Somehow, these spaces 'count holes'.

Similarly, for smooth manifolds $\quad H^{k}(M):=\frac{\text { ker } d_{k}}{\operatorname{lm} d_{k-1}}$ defines the kith de Rham cohomology group. Remarkably, the kith Betti number $\operatorname{dim}_{\mathbb{R}}\left(H^{k}(M)\right)=: \beta_{k}$ is finite (for compact M) and a topological invariant (i.c. it does not depend on the differentiable structure).

Excursion: Consider a 'triangulation' of a manifold to which we apply the boundary operator ∂. This acts as follows:

'2-simplex'

'sum of 1-simplexes'
.$^{p_{2}-p_{2}}$
∂
$p_{0}-p_{0} \quad \quad-p_{1}-p_{1}$
'sum of 0 -simplexes'

In fact $\partial \circ d=0$ holds in general for the chain complex

$$
\ldots \stackrel{\partial_{r-1}}{{ }^{2}} C_{r-1}(M) \stackrel{\partial_{r}}{\text { space of limages of) r-simplexes }_{C_{r}(M)}^{\leftarrow} \underbrace{\partial_{r+1}} C_{r+1}(M) \longleftarrow ~}
$$

As ∂_{r} is linear, we can again define $H_{r}(M):=\frac{\operatorname{Ker}\left(\partial_{r}\right)}{\operatorname{lm}\left(\partial_{r+1}\right)}$, the (singular) homology group.

By de Rham's theorem $H_{r}(M) \simeq H^{r}(M)$ are dual vector spaces and ∂ and d dual linear maps.
This duality is rooted in Stokes' theorem:

$$
\int_{c} d w=\int_{\partial c} w \quad \text { for } w \in \Omega^{k-1} M, c \in C_{k}(M)
$$

This generalizes the fundamental tho. of calculus, Green's tho., the 2dim. Stokes' theorem and Gauss' divergence theorem from vector calculus.

Manifolds
countable basis separation by open sets
Def.: A second countable Hausdorff space (M, T) lopdogy Locally homeomorphic to \mathbb{R}^{m}. That is, $\forall p \in M$ there is an open neighborhood $U \subseteq M$ and a homeomorphism $f: U \rightarrow \rho(u) \subseteq \mathbb{R}^{m}$.

- (u, φ) is called a chart, $\rho_{1}, \ldots, \rho_{n}$ coordinate functions and φ^{-1} a parametrization.
- A collection $\left\{\left(u_{\lambda}, \varphi^{(\lambda)}\right)\right\}$ of charts is called an atlas for M if $\bigcup_{\lambda} u_{\lambda}=M$.
examples: spheres: $S^{n}:=\left\{x \in \mathbb{R}^{n+1} \mid\|x\|_{2}=1\right\}$ is n-dim. top. manifold.
Two charts are given by the 'stereographic projections'

$$
\begin{aligned}
& \varphi_{1}: S^{n} \backslash(0, \ldots, 0,1) \rightarrow \mathbb{R}^{n} \\
& \varphi_{1}(x):=\frac{1}{1-x_{n+1}}\left(x_{1}, \ldots, x_{n}\right) \\
& \varphi_{2}: S^{n} \backslash(0, \ldots, 0,-1) \rightarrow \mathbb{R}^{n} \\
& \varphi_{2}(x):=\frac{1}{1+x_{n+1}}\left(x_{1}, \ldots, x_{n}\right)
\end{aligned}
$$

- open subsets of a top. manifold are again top. manifolds of
the same dimension. E.g. $G L(n, \mathbb{R}):=\left\{A \in \mathbb{R}^{n \times n} \mid \operatorname{det}(A) \neq 0\right\}$ is an open subset of $\mathbb{R}^{n \times n} \simeq \mathbb{R}^{n^{2}}$ and thus a top. manifold of $\operatorname{dim} n^{2}$.
remarks: - Every top. manifold can be 'embedded' into some \mathbb{R}^{n}. That is, there is a homeomorphism $\psi: M \rightarrow \psi(M) \subseteq \mathbb{R}^{N}$. If $m:=\operatorname{dim}(M)$, then $N=2 m+1$ suffices. For 'smooth' manifolds $N=2 m$ is sufficient (Withney's embedding the.)

Examples where $N<2 m$ (with $m=2$) is not possible, are

where opposite edges are identified ('glued together') according to the arrows.

- The Hausdorff assumption guarantees that limits are unique. Second-countability is assumed in order for a 'partition of unity' (more on this late...) and an embedding into a finite-dim. Euclidean space to exist. Not all authors include these two assumptions in the def. of a top. manifold.
- The second-countability assumption implies that there is a countable atlas.

If we want to $\underbrace{\text { differentiate }}_{\downarrow}$ or $\underbrace{\text { integrate }}_{\downarrow}$ on a manifold, we need extra structwes: smooth structure \& orientation.

Def:: An atlas $A=\left\{\left(u_{\lambda}, \rho_{\lambda}\right)\right\}_{\lambda \in \Lambda}$ of a topological m-dim. manifold M is called a C^{k}-atlas $(k \in \mathbb{N})$ if $\forall \lambda, v \in \Lambda$:

$$
\rho_{\lambda} \circ \rho_{\nu}^{-1}: \rho_{\nu}\left(u_{\lambda} \cap u_{\nu}\right) \subseteq \mathbb{R}^{m} \longrightarrow \rho_{\lambda}\left(u_{\lambda} \cap u_{\nu}\right) \subseteq \mathbb{R}^{m}
$$

is a C^{k}-diffeomorphism

Remarks: A and B we said to be C^{k} - compatible if to B is a Ckatlas. One can always extend an athos of to a unique 'maximal atlas' that contains all compatible ones. This max. at has is called a C^{k}-structwe.

Def.: A pair (M, A) of a manifold M with C^{k}-structure A is called C^{k}-manifold (and smooth manifold if $k=\infty$).

Examples: " S^{n} with $\left(u_{1}, \varphi_{1}\right),\left(u_{2}, \varphi_{2}\right)$ stereographic projections. $\rho_{2} \circ \rho_{1}^{-1}(z)=\frac{z}{\|z\|^{2}}$ is a c^{∞} - diff. on $\rho_{1}\left(u_{1} \cap u_{2}\right)=\mathbb{R}^{n} \backslash\{0\}$.

So S^{n} becomes a smooth manifold.

- Other standard examples of sinooth manifolds:

$$
S O(n), S U(n), S_{p}(n), G L(n), T^{n}:=S^{1} \times \ldots \times S^{1}, \mathbb{R} P^{n}, \mathbb{C} P^{n},
$$

graphs of C^{∞}-functions, ...

Thu. [Whitney]: For $k \geqslant 1$, every C^{k}-structure contains a C^{∞}-structure.

- Motivated by this, we only consider C^{∞} manifolds (a.k.a. smooth manifolds)
- There are top. manifolds for which no smooth structure exists. (e.g. the 4-dim. E8-manifold discovered by Freedman.)
- From a given smooth structure $\left\{\left(U_{\lambda}, \varphi_{\lambda}\right)\right\}$ we can obtain another one $\left\{\left(\psi^{-1}\left(U_{\lambda}\right)_{1} l_{\lambda} \circ \psi\right)\right\}$ by acting with a homeomorphism $\psi: M \rightarrow M$. Such smooth structwes are called equivalent.

For \mathbb{R}^{n} with $n \in \mathbb{N} \backslash\{4\}$, all smooth structwes are equivalent (Small). For \mathbb{R}^{4} there are uncountable inequivalent ones (Freedman \& Donaldson).

Def.: Let (M, A) and (N, B) be smooth manifolds. A map $f: M \rightarrow N$ is called smooth if for all $(U, \varphi) \in$ of and $(\nu, \psi) \in \Im$ with $f(u) \subseteq V$ the map $\psi \circ f \circ \rho^{-1}: \rho(u) \subseteq \mathbb{R}^{m} \longrightarrow \psi(v) \leq \mathbb{R}^{n}$ is C^{∞}. f is called a diffeomorphism if it is smooth and has smooth inverse. $C^{\infty}(M, N)$ denotes the space of smooth maps $M \rightarrow N$, and $C^{\infty}(\Pi):=C^{\infty}(M, \mathbb{R})$.

Thu.: [smooth partition of unity] Let M be a smooth manifold and $\left\{U_{\lambda}\right\}_{\lambda \in \Lambda}$ an open cover of M. Then there exist functions $\left\{f_{\lambda} \in C^{\infty}(M,[0,1])\right\}_{\lambda \in \Lambda}$ sit.
(i) $\operatorname{supp}\left(\rho_{\lambda}\right):=\left\{\overline{\left.p \in M \mid \rho_{\lambda}(p) \neq 0\right\}} \subseteq u_{\lambda}\right.$
(ii) Every $p \in M$ has a neighborhood in which only finitely many ρ_{λ} are non-zero.
(iii) $\sum_{\lambda \in \Lambda} f_{\lambda}(p)=1 \quad \forall p \in M$ (note: finite sum due to (ii))

A related Lemma that we will need:

Lemma: Let $V \subseteq U$ be open subsets of a smooth manifold M and $\bar{V} \subseteq U$ compact. Then there is a smooth function

$$
f: M \rightarrow[0,1] \text { s.t. } f(p)= \begin{cases}1, & p \in V \\ 0, & p \notin U\end{cases}
$$

A central ingredient for the proof of both is that $g: \mathbb{R} \rightarrow \mathbb{R}$ $g(t):=\left\{\begin{array}{ll}\exp \left[-\frac{1}{1-t^{2}}\right], & t \in(-1,1) \\ 0, & |t| \geqslant 1\end{array}\right.$ is a smooth $((\infty)$ bump function.

Tangent spaces

Def.: Let (M, A) be a smooth manifold and $(U, h) \in A$ a chart around $p \in M$. On the set of curves $K_{p} M:=\left\{\gamma \in C^{\infty}((-1,1), M) \mid \gamma(0)=p\right\}$ define the equivalence relation $\gamma_{1} \sim \gamma_{2}: \Leftrightarrow\left(h \circ \gamma_{1}\right)^{\prime}(0)=\left(h \circ \gamma_{2}\right)^{\prime}(0)$. The (geometric) tangent space of Π at p is then

$$
T_{p} M^{\text {geom }}:=\left\{[\gamma] \mid \gamma \in K_{p} M\right\}
$$

remarks: - The relation is independent of the chart since:

$$
\begin{aligned}
& (h \circ g)^{\prime}(0)=\left(h \circ g^{-1} \circ g \circ \gamma\right)^{\prime}(0)=\underbrace{\text { chain rule }}_{\hat{\uparrow}} \underbrace{d_{g(p)}\left(h_{0} \circ g^{-1}\right)}_{\text {isomorphism, }}(g \circ \gamma)^{\prime}(0) \\
& \text { index. of } 8
\end{aligned}
$$

- $T_{p} M^{\text {geom }} \simeq \mathbb{R}^{m}$ since $T_{p} M^{\text {glom }} \ni[\gamma] \stackrel{\phi_{n}}{\mapsto}(\text { hog })^{\prime}(0) \in \mathbb{R}^{m}$ is bijectrue as for any $a \in \mathbb{R}^{m}, \gamma_{a}(t):=h^{-1}(h(p)+t a)$ satisfies $\left[\gamma_{0}\right] \mapsto a$.
- The linear structure of \mathbb{R}^{m} then induces one on $T_{p} 7^{g 10 m}$ so that $T_{p} M^{\text {goon }}$ becomes an m-dim. \mathbb{R}-vector space (and ϕ_{h} a a vector space isomorphism).

Elements of $T_{p} M^{\text {geom }}$ are called tangent vectors.

From tangent vectors to directional derivative operators:
Suppose $M \subseteq \mathbb{R}^{n}$ is smooth and $\gamma \in C^{\infty}((-1,1), M)$ s.t.
$p=\gamma^{(0)}$. Then $\dot{\gamma}(0)=: v \in \mathbb{R}^{n}$ lies in the plane tangent to M at p.

The directional derivative of a function $f \in C^{\infty}\left(\mathbb{R}^{n}\right)$
 at P in the direction of v is

$$
\begin{aligned}
\left.\frac{d}{d t} f(p+t v)\right|_{t=0}=\left\langle\left.\nabla f\right|_{p}, v\right\rangle & =\left\langle\left.\nabla f\right|_{p,} \dot{\gamma}(0)\right\rangle \\
& =\underbrace{(f \circ \gamma)^{\prime}(0)}
\end{aligned}
$$

The r.h.s. is still well-defined if M is an abstract
smooth manifold (i.e. not embedded into \mathbb{R}^{n}) and $f \in C^{\infty}(M)$. In this way, a 'tangent vector' can be identified with a map $C^{\infty}(n) \rightarrow \mathbb{R}$. The fact that a derivative like $f \mapsto(f \circ y)^{\prime}(0)$ satisfies the Leibniz product rule, motivates the following definition:

Def.: Let M be a smooth manifold. The (algebraic) tangent space $T_{p} M^{a l g}$ of M at $p \in \Pi$ is the space of all linear derivations at p. That is, linear maps v: $C^{\infty}(\Pi) \rightarrow \mathbb{R}$ s.t. for all fig $\in C^{\infty}(\Pi)$:

$$
v(f g)=f(p) v(g)+g(p) v(f)
$$

'Leibniz product rule'
remarks: - $T_{p} \Pi^{a l y}$ becomes a vector space with $\left(v_{1}+c \cdot v_{2}\right)(f):=v_{1}(f)+c \cdot v_{2}(f)$

- The derivation of a constant function is zero, since $\forall f \in C^{\infty}(M)$:

$$
v(f)=v(f \cdot 1)=v(1) f(p)+v(f) \text {. So } v(1)=0 \text {. }
$$

- 1.g. linear derivations are defined on 'algebras' (here $C^{\infty}(M)$).

Poisson brackets and commutators ave also lin. detritions.

- If (U, h) is a chart around p and $h(q)=:\left(x_{1}(q), \ldots, x_{n}(q)\right)$, then

$$
\left.\frac{\partial}{\partial x_{i}}\right|_{p}:\left.C^{\infty}(h) \ni f \mapsto \partial_{i}\left(f \circ h^{-1}\right)\right|_{h(p)} \quad \text { defines }
$$

an element of $T_{p} M^{a l g}$. If there is no confusion in sight, we may omit the "I $\left.\right|_{p}$.

Thu.: If M is an n-dimensional smooth manifold and $p \in M$, then $\left.\quad \frac{\partial}{\partial x_{1}}\right|_{p}, \cdots,\left.\frac{\partial}{\partial x_{n}}\right|_{p}$ form a basis of $T_{p} M^{a l y}$.
proof: Linear independence can be seen as follows: let $h=\left(x_{1}, \ldots, x_{n}\right)$ be the coordinate functions of the chart (u, h). Then $\left.\frac{\partial}{\partial x_{i}}\right|_{p} x_{j}=\delta_{i j}$. So $\left.\frac{\partial}{\partial x_{i}}\right|_{p}$ cannot be a linear combination of the others.

For $f \in C^{\infty}(M)$ define $F:=f \circ h^{-1}$ in a neighborhood of some $y \in h(u)$ and assume w.l.0.g. $h(p)=0$ and that $h(u)$ is convex. Then $F(y)=F(0)+\int_{0}^{1} \frac{d}{d t} F(t y) d t=F(0)+\sum_{i=1}^{n} y_{i} g_{i}(y)$, where $g_{i}(y):=\int_{0}^{1} \partial_{i} F(t y) d t$ is a c^{∞} function with $g_{i}(0)=\partial_{i} F(0)=\left.\frac{\partial}{\partial x_{i}}\right|_{p} f$ With $f(q)=(F \circ h)(q)=F(0)+\sum_{i} h_{i}(q) g_{i}(h(q))$, we get for an wbitrary derivation $v: C^{\infty}(M) \rightarrow \mathbb{R}$:

$$
\begin{aligned}
v(t) & =\sum_{i} \underbrace{h_{i}(p)}_{=0} v\left(g_{i} o h\right)+\underbrace{g_{i}(h(p))}_{=g_{i}(0)} v\left(h_{i}\right) \\
& =\left.\left.\sum_{i} v\left(h_{i}\right) \frac{\partial}{\partial x_{i}}\right|_{p}\right|_{p}
\end{aligned}
$$

We will use $T_{p} M:=T_{p} M^{\text {ald }}$ as our definition of the tangent space.
remark: For $M=\mathbb{R}^{n}$ there is a canonical isomorphism $T_{p} \mathbb{R}^{n} \cong \mathbb{R}^{n}$ via $\left.T_{p} \mathbb{R}^{n} \ni \sum_{i=1}^{n} v_{i} \frac{\partial}{\partial x_{i}}\right|_{p} \longmapsto v \in \mathbb{R}^{n}$. In fact:

Lemma: For every finite-dim. \mathbb{R}-rec. space V and $p \in V$ a canonical (i.e., basis-independent) isomorphism I: $V \rightarrow T_{p} V$ is given by: $V \ni v \mapsto(C^{\infty}(v) \ni f \mapsto \underbrace{\left.\left.\frac{d}{d t} \right\rvert\, f(p+t v)\right)}$.

One often exploits this and 'identifies' TpV with V. In particular, if $V=\mathbb{R}$.

Lemma: (coordinate change) Let $\left(u_{1}\left(x_{1}, \ldots, x_{n}\right)\right)$ and $\left(v_{1}\left(y_{1}, \ldots, y_{n}\right)\right)$ be two charts around a point p on a C^{∞}-manifold M. Then

$$
\left.\frac{\partial}{\partial x_{i}}\right|_{p}=\left.\sum_{j} \underbrace{\left(\left.\frac{\partial}{\partial x_{i}}\right|_{p} y_{j}\right)} \frac{\partial}{\partial y_{j}}\right|_{p}
$$

Jacobian of the coordinate change $\left(y^{\circ} x^{-1}\right)$ at $x(p)$
proof: $\left.\quad \frac{\partial}{\partial x_{i}}\right|_{p} f=\left.\partial_{i}\right|_{x(p)} f \circ x^{-1}=\left.\partial_{i}\right|_{x(p)}[\underbrace{}_{\substack{\text { maps between Euclidean spaces } \\\left(f \circ y^{-1}\right)} \underbrace{\left(y \circ x^{-1}\right)}]}$

$$
\begin{aligned}
& =\left.\sum_{j} \partial_{j}\right|_{y(p)}\left(f \circ y^{-1}\right) \\
& \left.\partial_{i}\right|_{x(p)} \underbrace{\left(y \circ \circ x^{-1}\right)_{j}}_{\left(y_{j} \circ x^{-1}\right)} \\
& =\sum_{j} \underbrace{\left(\left.\frac{\partial}{\partial x_{i}}\right|_{p} y_{s}\right)}_{\left(\left.\frac{\partial}{\partial y_{s}}\right|_{p} f\right)}
\end{aligned}
$$

Lemma: (equivalence of tangent space definitions)
The map $T_{p} M^{\text {groom }} \xrightarrow{\psi} T_{p} M^{a l y}$

$$
\stackrel{\psi}{[\gamma]} \quad \longmapsto \quad \psi([\gamma]): C^{\infty}(M) \ni f \mapsto(f \circ \gamma)^{\prime}(0) \text {, }
$$

is a vector space isomorphism s.t. every cave $\gamma \in K_{p} M$ with $(h \circ \gamma)^{\prime}(0)=e_{i} \quad$ w.r.t. a chart (u, h) is mapped to $\psi:\left.[\gamma] \mapsto \frac{\partial}{\partial x_{i}}\right|_{p}$. $\left(x_{1}, \ldots, x_{n}\right)$
remark: This is probably the easiest way to understand elements of $T_{P} M^{\text {ald }}$:
as 'directional derivatives along a curve'
proof: $\left.\quad \psi\left({ }_{[r}\right]^{\prime}\right)$ is independent of the representative since

$$
(f \circ \gamma)^{\prime}(0)=d_{h(p)}\left(f \cdot h^{-1}\right) \underbrace{(h \circ \gamma)^{\prime}(0)}_{\text {equal for all representatives of }[\gamma]}
$$

$\psi([f])$ is a derivation since it is linear and with $v(f):=\psi([r])(f)$:

$$
\begin{aligned}
v(f g)=((f \circ \gamma)(g \circ \gamma))^{\prime}(0) & =(f \circ \gamma)^{\prime}(0)(g \circ \gamma)(0)+(g \circ \gamma)^{\prime}(0)(f \circ \gamma)(0) \\
& =v(f) \cdot g(p)+v(g) \cdot f(p)
\end{aligned}
$$

ψ is a vector space isomorphism since $\operatorname{dim}\left(T_{p} M^{a x y}\right)=\operatorname{dim}\left(T_{p} M^{\text {rom }}\right)$
and from $(\text { hoy })^{\prime}(0)=e_{i}$ we obtain

$$
\begin{align*}
v(f) & =(f \circ \gamma)^{\prime}(0)=d_{h(p)}\left(f \circ h^{-1}\right)(h \circ \gamma)^{\prime}(0)= \\
& =d_{h(p)}\left(f \circ h^{-1}\right) e_{i}=\left.\partial_{i}\left(f \circ h^{-1}\right)\right|_{h(p)}=\left.\frac{\partial}{\partial x_{i}}\right|_{p} f . \tag{믐}
\end{align*}
$$

Def.: Let $F: M \rightarrow N$ be smooth. The differential (a.l.a. pushforword) of F at $p \in M$ is defined as

$$
\begin{aligned}
& d_{p} F \equiv d_{p} F^{a l g}: T_{p} M^{a l y} \longrightarrow T_{F(p)} N^{a l g} \\
& d_{p} F(v) f:= \\
& d_{p} F^{\text {groom }}:\left.T_{p} M^{\text {glom }} \longrightarrow F\right) \text { for } v \in T_{p} M^{a l y}, f \in C^{\infty}(N) \\
& d_{p} F([\gamma]):=[F \circ \gamma] \text { glom } \\
&
\end{aligned}
$$

remark: o the following diagram commutes: That is, expressed in local
 sentid by the Jacobian matrix.

remarks: $\quad d_{p} F$ is a linear map

- $\quad d_{p}\left(i d_{M}\right)=i d_{T_{p} \Pi}$
- If $[\gamma] \in T_{p} M^{\text {glom }}$ then $d_{p} F(\psi([\gamma])): \mathbb{C}^{\infty}(N) \ni f \mapsto(f \circ F \circ \gamma)^{\prime}(0)$
- If M is connected and $d_{p} F=0$, then F is constant.
- For any linear map $F: V \rightarrow W$ between frinite-dim. \mathbb{R}-vector spaces, the following diagram commentes:

$$
\begin{array}{rl}
V & I \\
F & T_{p} V \\
\\
W & \downarrow d_{p} F \\
& T_{F(p)} W
\end{array}
$$

Lemma: For $f \in C^{\infty}(M)$ and $v \in T_{p} \Pi: \quad I^{-1} \cdot \operatorname{dp} f(v)=v(f)$
remark: The isomorphism $I^{-1}: T_{f(p)} \mathbb{R} \rightarrow \mathbb{R}$ is usually not written explicitly. In this sense $d_{p} f(v)=v(f)$.
proof: Note that any element of $T_{f(p)} \mathbb{R}$ is a derivation $C^{\infty}(\mathbb{R}) \rightarrow \mathbb{R}$.
By definition of d pf: $T_{p} M \rightarrow T_{f(p)} \mathbb{R}$ this derivation maps any $\rho \in C^{\infty}(\mathbb{R})$

$$
\text { to } \quad d_{\rho} f(v) \rho=v(\rho \circ f)=(\rho \circ f \circ \gamma)^{\prime}(0)=\rho^{\prime}(f(p)) \underbrace{(f \circ \gamma)^{\prime}(0)}_{=v(f)}
$$

This coincides with $I(v(f)) \rho=\left.\frac{d}{d t}\right|_{t=0} \rho(f(p)+t v(f))=v(f) \cdot \rho^{\prime}(f(p))$

Lemma: (chain rule) If $M_{1} \xrightarrow{f} M_{2} \xrightarrow{g} M_{3}$ are smooth, then

$$
d_{p}(g \circ f)=d_{f(p)}(g) d_{p} f
$$

Def.: The disjoint union $\underset{p \in \Pi}{ } T_{p} M=: T M$ is called the tangent bundle of M.
remark: If we consider elements of $T M$ as pairs $(p, x) \in M x T_{p} M$ we can define the projection $\pi: T M \rightarrow M, \pi:(p, x) \mapsto P$.

Thu.: Let M be an m-diminsional manifold with smooth atlas $\left\{\left(u_{\alpha}, x_{\alpha}\right)\right\}$. Then a smooth atlas for TM is given in terms of the charts $\phi_{\alpha}: \underbrace{\pi^{-1}\left(u_{a}\right)}_{\subseteq T M} \rightarrow \mathbb{R}^{2 m}$

$$
\phi_{\alpha}\left(\left.\sum_{i=1}^{m} v_{i} \frac{\partial}{\partial x_{\alpha, i}}\right|_{p}\right):=\left(x_{\alpha}(p), v\right)
$$

Hence, TM is smooth manifold with $\operatorname{dim}(T M)=2 \cdot \operatorname{dim}(M)$.

Def.: If $f: M \rightarrow N$ is smooth, the derivative of f (a.k.a. pushforward) is the map $d f: M \ni p \mapsto d_{p} f$
remark: $d f$ induces a smooth map $\Gamma \Pi \rightarrow \Gamma N$ that maps $T_{p} \Pi \ni v \longmapsto d_{p} f v \in T_{f(p)} N$ (and is sometimes also denoted by $d f$).

Alternating multilinear maps
Let V be a finite-diminsional real vector space throughout.
Def: The space $V^{*}:=\{f: V \rightarrow \mathbb{R}$ linear $\}$
is called the dual space of V. The elements of V and V^{*} we called vectors and covectors, respectively.
remarks: V^{*} is again a real vector space.
If $\operatorname{dim}(V)=n \in \mathbb{N}$, then $\operatorname{dim}\left(V^{*}\right)=n$ and $\left(V^{*}\right)^{*}=V$.
For $f \in V^{*}, v \in V$ one often writes $f(v)=:\langle f, v\rangle$. If $\left(e_{i}\right)_{i=1}^{n}$ is a basis of V_{1} then $\left(f_{j} \in V^{*}\right)_{j=1}^{n}$ is called the dual basis if $\left\langle f_{j i} c_{i}\right\rangle=\delta_{i j}$. This always exists and is unique.

Exp.: (1) If $V=\mathbb{R}^{n}$ s.t. its elements we column vectors, then V^{+}can be regarded as the space of row vectors s.t. $\langle f, v\rangle$ is the 'matrix product', i.e. the standard scalar product of v with f^{\top}.
(2) If $v:=\left\{v:(-1,1) \rightarrow \mathbb{R} \mid \exists a \in \mathbb{R}^{d+1} v(x)=\sum_{i=0}^{d} a_{i} x^{i}\right\}$ for some degree $d \in \mathbb{N}$, then $f(v):=\int_{-1}^{1} v(x) d x$ is an element of the dual space $V^{*} \ni f$.
(3) If (U, x) is a chart around $p \in M$ and $x(p)=:\left(x_{1}(p), \ldots, x_{n}(p)\right)$,

We define $d x_{i}: T_{p} M \rightarrow \mathbb{R}$ as the differential of the coordinate pros.
coordinate func. $x_{i}: U \rightarrow \mathbb{R}, x_{i}=\frac{\downarrow}{\pi_{i}} \cdot x$ at p, composed with the canonical isomorphism $T_{x_{i}(p)} \mathbb{R} \rightarrow \mathbb{R}$. That is,

$$
d x_{i}(v):=v\left(x_{i}\right)
$$

With $V:=T_{p} M, \quad\left(d x_{i}\right)_{i=1}^{n}$ are elements of $V^{*}:: T_{p}^{*} \Pi \quad$ (the cotangent space). Recall that $\left.\frac{\partial}{\partial x_{i}}\right|_{\rho}:\left.C^{\infty}(m) \Rightarrow f \mapsto \partial_{i}\left(f \circ x^{-1}\right)\right|_{x(p)}$ form a basis of V.

Thu.: $\left(d x_{i} \in T_{p}^{A} M\right)_{i=1}^{n}$ and $\left(\left.\frac{\partial}{\partial x_{i}}\right|_{p} \in T_{p} M\right)_{i=1}^{n}$ are dual bases
proof: $d x_{i}\left(\left.\frac{\partial}{\partial x_{j}}\right|_{p}\right)=\left.\frac{\partial}{\partial x_{j}}\right|_{p} x_{i}=\left.\partial_{j}\right|_{x(p)}\left(\pi_{i} \circ x^{\circ} \cdot x^{-1}\right)=\delta_{i j}$
remark: $d x_{i}$ is the paradigm of a 1-form as defined in the following ...

Def.: $\quad \rho: V \times \ldots \times V=: V^{k} \rightarrow W$ is called multilinear or k-linear if it is linear in each of its k arguments. A k-linear map is called alternating or anti-symmetric if for all $v \in V^{k}$ and all permutations π :

$$
f\left(v_{1}, \ldots, v_{k}\right)=\operatorname{sgn}(\pi) f\left(v_{\pi(1)}, \ldots, v_{\pi(k)}\right) .
$$

Alt " V, W) denotes the space of all such alternating k-linear maps and $\Lambda^{k} V^{*}:=A l t^{k}(V, \mathbb{R})$ is called the space of k-forms (short for 'k-linear alternating forms') on V (or the k'th exterior power of V^{*}).
remarks: $A l t{ }^{k}(V, W)$ is again a real vector space and $\Lambda^{1} V^{*}=V^{*}$. A useful convention is $\Lambda^{0} V^{*}:=\mathbb{R}$.

Corollary: For a k-linear map $\rho: V^{k} \rightarrow W$ the following are equivalent:
(i) $\quad f \in A l t{ }^{*}(V, w)$
(ii) $\quad f\left(v_{7}, \ldots, v_{k}\right)=0$ if $v_{i}=v_{j}$ for some $i \neq j$.
(iii) $\varphi\left(v_{1}, \ldots, v_{k}\right)=0$ if v_{1}, \ldots, v_{k} are linearly dependent.
proof: \rightarrow exercise.

Exp.: (1) The cross product $\mathbb{R}^{3} \times \mathbb{R}^{3} \rightarrow \mathbb{R}^{3},(a \times b)_{i}:=\sum_{j, k} \varepsilon_{i j k} a_{j} b_{k}$, where $\quad \varepsilon_{i j k}=\left\{\begin{array}{l}\operatorname{sgn}(\pi),(7,2,3)=(\pi(i), \pi(j), \pi(u)) \text { is the Levi-Civita tensor, } \\ 0\end{array}\right.$ is element of $A l t^{2}\left(\mathbb{R}^{3}, \mathbb{R}^{3}\right)$.
(2) For any $\left(\rho_{i} \in V^{*}\right)_{i=1}^{k}$, the map $V^{k} \ni\left(v_{1}, \ldots, v_{k}\right) \mapsto \operatorname{det}\left(\left\langle\rho_{i}, v_{j}\right\rangle\right)_{i j}$ is a $k_{.}$-form.
(3) $d x_{i}: T_{p} M \rightarrow \mathbb{R}$ is a 1 -form on $T_{p} M$.
remark: recall that the cross product and the determinant both quantify the volume/area while their sign indicates an 'orientation'.

Lemma: Let $\left(e_{1}, \ldots, e_{n}\right)$ be a basis of V and for any $\omega \in \Lambda^{u} V^{*}$ define its components w.r.t. that basis as $\omega_{i_{1}} \ldots i_{k}:=\omega\left(c_{i_{1}}, \ldots, c_{i_{k}}\right) \in \mathbb{R}$. Then $\Lambda^{k} V^{*} \longrightarrow \mathbb{R}^{\binom{n}{k}}, \omega \mapsto\left(\omega_{i_{1} \ldots i_{k}}\right)_{i_{n}<i_{2}<\ldots<i_{k}}$ is a vector space isomorphism.
proof: The map is linear by definition.
Injectivity: if $w_{i_{1} \ldots i_{k}}=0$ for all $i_{1}<\ldots<i_{k}$, then all components vanish since $\omega_{\pi\left(i_{n}\right), \ldots, \pi\left(i_{k}\right)} \stackrel{(4)}{=} \operatorname{sgn}(\pi) \omega_{i_{n}, \ldots, i_{n}}$. By multilinearity of w this means $w=0$.

Subjectivity: if $\left(\omega_{i_{1}} \ldots i_{k}\right)_{i_{1} \text { e...eik }}$ is given, (k) enables us to define $w_{i_{1} \ldots i n}$ for all i and from here a corresponding k-form

$$
\hat{\omega}\left(v_{\imath}, \ldots, v_{k}\right):=\sum_{j_{1} \ldots j_{k}} w_{j_{\eta} \ldots j_{k}}\left\langle b_{j_{1}}, v_{\eta}\right\rangle \cdot \ldots \cdot\left\langle b_{j_{k}}, v_{k}\right\rangle \text { where }
$$

$\left(b_{1}, \ldots, b_{n}\right)$ is the dual basis w.r.t. $\left(e_{1}, \ldots, e_{n}\right)$, i.e. $\left\langle b_{i}, e_{j}\right\rangle=\delta_{i j}$.
By construction, $\quad \hat{\omega}\left(c_{i_{1}}, \ldots, e_{i_{k}}\right)=\omega_{i_{n}, \ldots i_{k}}$.

Corollary: If $\operatorname{dim}(V)=n$, then $\operatorname{dim}\left(\Lambda^{k} V^{*}\right)=\binom{n}{k}$. In particular, $\operatorname{dim} \Lambda^{n} V^{*}=1$ and $k>n \Rightarrow \Lambda^{k} V^{*}=\{0\}$.

Def.: For $\omega \in \Lambda^{k} V^{*}$ and $\eta \in \Lambda^{\iota} V^{*}$ the exterior product

$$
\begin{aligned}
& w \wedge \eta \in \Lambda^{u+L} V^{*} \text { is defined as } \\
& \omega \wedge \eta\left(v_{1}, \ldots, v_{k+L}\right):=\frac{1}{k!L!} \sum_{\pi \in S_{k+1}} \operatorname{sgn}(\pi) w\left(v_{\pi(v)}, \ldots, v_{\pi(k)}\right) \cdot \eta\left(v_{\pi(u n)}, \ldots, v_{r(k+k)}\right) .
\end{aligned}
$$

remarks:- An alternative, equivalent definition: Let $S(k, l) \leq S_{k+c}$ be the set of

$$
\begin{aligned}
& \text { '(k,l)-shuffles', ie. permutations satisfying } \\
& \pi(\eta)<\cdots<\pi(k) \wedge \pi(k+1)<\ldots<\pi(k+l) \text {. Then }
\end{aligned}
$$

$$
\omega \wedge \eta\left(v_{1}, \ldots, v_{k+1}\right)=\sum_{\pi \in S\left(h_{1}\right)} \operatorname{sgn}(\pi) \omega\left(v_{\pi, 1}, \cdots v_{\pi(n)}\right) \eta\left(v_{\pi(m, n)}, \ldots, v_{r(k, c)}\right) .
$$

$$
\text { - For } c \in \mathbb{R}: c \wedge w:=c \cdot w \text {. }
$$

Exp.: If $\omega_{1}, w_{2} \in V^{*}$, then $\omega_{1} \wedge \omega_{2}\left(v_{1}, v_{2}\right)=\omega_{1}\left(v_{1}\right) w_{2}\left(v_{2}\right)-\omega_{2}\left(v_{2}\right) \omega_{2}\left(v_{1}\right)$
Prop.: For $\omega, \mu \in \Lambda^{k} V^{*}, \eta \in \Lambda^{\iota} V^{*}, \nu \in \Lambda^{m} V^{*}$:
(i) $(\omega+\mu) \wedge \eta=(\omega \wedge \eta)+(\mu \wedge \eta) \quad$ distributivity
(ii) $\omega \wedge \eta=(-1)^{k \cdot L} \eta \wedge \omega \quad$ (anti-) commutativity
(iii) $(\omega \wedge \eta) \wedge \nu=\omega \wedge(\eta \wedge \nu) \quad$ associativity
(iv) $(c \omega) \wedge \eta=\omega \wedge(c \eta)=c(\omega \wedge \eta)$ for any $c \in \mathbb{R}$

The proofs of (ii) and (iii) we a bit longer (see eeg. [do Carmo]).
(i) + (ii) implies that $(\omega, \eta) \mapsto \omega \wedge \eta$ is bilinear.
(iii) implies that w \quad q $\wedge>$ makers sense without brackets. In fact,

$$
\begin{aligned}
& (\omega \wedge \eta \wedge v)\left(v_{1}, \ldots, v_{k+t+m}\right) \\
& \quad=\frac{1}{n!l!m!} \sum_{\pi \in S_{k+t / m}} w\left(v_{\pi(n)}, \ldots, \omega_{\pi(k)}\right) \cdot \eta\left(v_{\pi(k+1)}, \ldots\right) \cdot v\left(v_{\pi(k+l+1)}, \ldots\right)
\end{aligned}
$$

Corollary: If k is odd, and $\omega \in \Lambda^{k} V^{*}$, then $\omega \wedge \omega=0$.
proof: $\omega \wedge \omega \stackrel{(: i)}{=}(-1)^{k^{2}} \omega \wedge \omega=-\omega \wedge \omega$.

Howler, wAw can be non-zvo for forms of even degree (\rightarrow Exercise)

Prop.: If $\varphi_{1}, \ldots, \rho_{n}$ is a basis of V^{k}, then $\left(\rho_{i_{1}} \wedge \ldots \wedge \rho_{i_{k}}\right)_{i_{1}<\ldots<i_{k}}=: \phi_{I}$ form a basis of $\Lambda^{k} V^{*}$.
proof: Let $e_{2}, \ldots, e_{n} \in V$ be the dual basis. Then $\sum_{I} a_{I} \phi_{I}=0$ implies $O=\sum_{I} a_{I} \phi_{I}\left(e_{j_{n}}, \ldots, e_{j_{k}}\right)=a_{j_{n}} \cdots j_{k}$. So the ϕ_{I} 's are lin. indef.
As there we $\binom{n}{k}=\operatorname{dim}\left(\Lambda^{k} V^{*}\right)$ of them, they form a basis.

Prop.: For $f_{11}, \ldots, \varphi_{k} \in V^{*}$ and $v_{71}, \ldots, v_{k} \in V$:

$$
\left(\rho_{1} \wedge \ldots \wedge \rho_{k}\right)\left(v_{1}, \ldots, v_{k}\right)=\operatorname{det}\left(\left\langle\rho_{i}, v_{j}\right\rangle\right)_{i, j}
$$

proof: by induction on k. We know it for $k=2$. From the definition of the exterior product we get

$$
\rho_{1} \wedge\left(\varphi_{2} \wedge \ldots \wedge \rho_{k}\right)\left(v_{1}, \ldots, v_{k}\right)=\sum_{j=1}^{k}(-1)^{j+1} \varphi_{1}\left(v_{j}\right)\left(\rho_{2} \wedge \ldots \wedge \rho_{k}\right)\left(v_{1}, \ldots, v_{j}, \ldots, v_{k}\right)
$$

The statement then follows by expanding the determinant
w.r.t. the first row as for any $k_{k} k$ matixik A :

$$
\operatorname{det}(A)=\sum_{j=1}^{k}(-1)^{j+1} A_{1, j} \cdot \operatorname{det}\left(\hat{A}_{1, j}\right)
$$

where $\hat{A}_{1, j}$ is the $(k-1)_{x}(k-1)$ matrix constructed from A by omitting the first row and goth column.

Differential forms on manifolds

Def.: A K-form w on a smooth manifold M is an assignment of a k-form $\omega_{p} \in \Lambda^{k} T_{p}^{*} \Pi$ to each $p \in \Pi$.

That is, each w_{p} is an altruating k-linew map of the form

$$
\omega_{p}: T_{p} M \times \ldots \times T_{p} M \rightarrow \mathbb{R}
$$

W.r.t. a chart (u, x) around $p \in M$, we know that the $d x$'s form a basis of $T_{p}^{1} M$. So we can write

$$
w_{p}=\sum_{i_{1}<\ldots<i_{n}} w_{i_{1}, \ldots, i_{k}}(p) d x_{i_{1}} \wedge \ldots \wedge d x_{i_{k}}
$$

where $\omega_{i_{1}}, \ldots, i_{k}(p)=\omega_{p}\left(\left.\frac{\partial}{\partial x_{i_{1}}}\right|_{p}, \ldots,\left.\frac{\partial}{\partial x_{i_{k}}}\right|_{p}\right)$ are the components of w_{p} w.r.t. the chart. Changing the chart to (V, y) results in $\tilde{\omega}_{i_{n}, \ldots, i_{n}}(p)=\omega_{p}\left(\left.\frac{\partial}{\partial y_{i n}}\right|_{p}, \ldots,\left.\frac{\partial}{\partial y_{i x}}\right|_{p}\right)$

$$
=\sum_{j_{1}, \ldots, j_{k}} J_{i_{1} j_{1}}(p) \cdots 3_{i_{k j k}}(p) \omega_{j_{1}, \cdots, j_{k}}(p)
$$

where $J_{i j}(p):=\left.\partial_{i}\right|_{y(p)}\left(x \circ y^{-1}\right)_{j}$ is the Jacobian of the coordinate change.
Since $J_{i j} \in C^{\infty}$, the following is chart-independent:

Def.: A k-form on a smooth manifold is called differentiable (or of class C^{k}) if the coordinates $\omega_{工}(p)$ we as a function of p.

The set of all C^{∞}-differentiable k-forms on M will be denoted by $\Omega^{k} \Pi$ and we define

$$
\Omega M:=\bigoplus_{k=0}^{\operatorname{dim}(\Pi)} \Omega^{k} M \text { with } \Omega^{0} M:=C^{\infty}(M), \Omega^{-1} M:=\{0\} .
$$

remarle: The def. of ΩM makes sense since each $\Omega^{k} M$ is a natural vector space. In fact, since there is a scalar multiplication $C^{\infty}(M) \times \Omega^{k}(M) \rightarrow \Omega^{k}(M)$

$$
(f, w) \mapsto(f \cdot \omega) \text { with }(f \cdot w)_{p}:=f(p) \omega_{p}
$$

ΩM is a module over the ring $C^{\infty}(M)$.
examples: O-forms on M are just smooth functions on M:

- If $f \in C^{\infty}(M)$, then the differential
$d f: M \ni p \mapsto d_{p} f$ is a 1-form

$$
d_{p} f: T_{p} M \rightarrow T_{f(p)} \mathbb{R} \simeq \mathbb{R}
$$

W.r.t. to a chart (u, x) wound p we have

$$
\begin{aligned}
d_{p} f & =\sum_{i} d_{p} f\left(\left.\frac{\partial}{\partial x_{i}}\right|_{p}\right) d x_{i} \\
& =\sum_{i}\left(\left.\frac{\partial}{\partial x_{i}}\right|_{p} f\right) d x_{i} \\
d_{p} f(v) & =v(f)
\end{aligned}
$$

In this sense: $\quad d f=\sum_{i} \frac{\partial f}{\partial x_{i}} d x_{i}$

- If $n=\operatorname{dim}(M)$, and (u, x) is a chart around p, then w.r.t. that chart every $w \in \Omega^{n} M$ is of the form $\omega_{p}=f(p) \operatorname{det}$, where $f \in C^{\infty}(M)$ and $\operatorname{det}:=d x_{n} \wedge \ldots \wedge d x_{n}$.
remark: note that the notation ' $d x$ ' for an element of $T_{p}^{*} M$ omits the chosen $p \in M$. Then $d x$ should be read as $(d x)_{p}$ or $d p x$. In $d f=\sum_{i} \frac{\partial f}{\partial x_{i}} d x_{i}$, however, ' $d x_{i}$ ' mean a map $M \rightarrow T^{*} M$ that assigns to each $p \in M$ an element of $T_{p}^{\prime} M$.

Def.: Let w be a K-form on M and η be an L-form. The exterior product $\omega \wedge \eta$ is defined as the $(k+L)$-form determined by $(\omega \wedge \eta)_{p}:=\omega_{p} \wedge \eta_{p}$.

This inherits the properties of exterior products of forms on vector spaces. That is, associativity, bilinearity, $\eta \wedge \omega=(-1)^{k l} \omega \wedge \eta$ and if ω and η we smooth, then

$$
f \cdot(\omega \wedge \eta)=(f \cdot \omega) \wedge \eta=\omega \wedge(f \cdot \eta) \quad \forall f \in C^{\infty}(M)
$$

$\underbrace{(\Omega M,+1}, \wedge)$ is the Grassmann algebra on M. $C^{\infty}(\pi)$-module bilinear $\Lambda: \Omega \pi \times \Omega \pi \rightarrow \Omega \pi$ defined by linear continuation.

Note that the constant function $\iota \in C^{\infty}(M) \quad L(p)=1$ serves as identity, i.e. $\quad\llcorner\wedge \omega=\omega$.

More generally, for any $f \in C^{\infty}(M)=\Omega^{\circ} M$:

$$
\rho_{\wedge} \omega=\rho \cdot \omega
$$

Having in mind substitutions and coordinate transformations, we define:

Def.: For a smooth map $f: M \rightarrow N$, we define an \mathbb{R}-linear map

$$
f^{*}: \Omega N \rightarrow \Omega M \text { via: } f^{*}: \Omega^{k} N \rightarrow \Omega^{k} M, \quad \omega \mapsto\left(f^{*} \omega\right)
$$

for $k: 1:\left(f^{*} \omega\right)_{p}\left(v_{1}, \ldots, v_{k}\right):=w_{f(p)}\left(d_{p} f v_{1}, \ldots, d p f v_{k}\right)$
where $p \in M$ and $v_{1}, \ldots, v_{n} \in T_{p} M$.
and for $k=0$ via: $f^{*} w:=w \circ f$.
$f^{*} \omega$ is called the pullback (a.k.a. induced form) of w by f.
remarks: © by definition: . id $^{\star}(\omega)=\omega$

$$
\left.\begin{array}{rl}
\cdot(f \cdot g)^{*}(\omega) & =g^{*}\left(f^{*}(\omega)\right) \\
\cdot & f^{*}(\omega+\eta)
\end{array}\right) f^{k}(\omega)+f^{*}(\eta)
$$

- Consider the 'pushforward' $f_{*}:=d_{p} f: T_{p} M \rightarrow T_{f(p)} N$.

Then the 'pullback' $f^{*}: T_{f(p)}^{*} N \rightarrow T_{p}^{*} M$ is the corresponding dual map in the sense that

$$
\left(f^{*} w\right)(v) \equiv \omega\left(f_{k} v\right) \text { for } w \in T_{f(p)}^{k} N, v \in T_{p} M
$$

Lemma: For a smooth map $f: M \rightarrow N$:
(i) $f^{*}(\omega \wedge \eta)=\left(f^{*} \omega\right) \wedge\left(f^{*} \eta\right)$
(ii) If $\varphi \in C^{\infty}(N)$, then $f^{*}(\varphi \cdot \omega)=(\varphi \circ f) \cdot f^{*}(\omega)$ pointwise product/ scalar prod. in JM.
(iii) For $\omega \in \Omega^{k} N$ if (u, x) is a chart around $f(p)$ w.r.t. which
$w_{f(p)}$ has components $\omega_{i_{7}, \ldots, i_{k}}(f(p))$, then

$$
(f * w)_{p}=\sum_{i_{1}<. .<i_{k}} w_{i_{n} \ldots i_{n}}(f(p)) d_{p}\left(x_{i_{1}} \circ f\right) \wedge \ldots \wedge d_{p}\left(x_{i_{k}} \circ f\right)
$$

proof: $(i)\left(f^{*}\left(\omega_{\wedge} \eta\right)\right)_{p}\left(v_{1}, \ldots, v_{u+l}\right)=(\omega \wedge \eta)_{f(p)}\left(d_{p} f v_{1}, \ldots, d_{p} f v_{k+l}\right)$

$$
\begin{aligned}
& =\sum_{\pi \in S(k, l)} \operatorname{sgn}(\pi) \omega_{f(p)}\left(d_{p} f v_{\pi(\imath)}, \ldots, d_{p} f v_{\pi(k)}\right) \\
& \cdot \eta_{f(p)}\left(d_{p} f v_{\pi(k+1)}, \ldots, d_{p} f v_{\pi(k+l)}\right) \\
& =\left(f^{*}(\omega)_{p} \wedge f^{*}(\eta)_{p}\right)\left(v_{1}, \ldots, v_{k+l}\right)
\end{aligned}
$$

(ii)

$$
\begin{aligned}
f^{*}(\varphi \omega) & =f^{*}(\varphi \wedge \omega) \stackrel{(;)}{=} f^{*}(\varphi) \wedge f^{*}(\omega) \\
& =(\varphi \circ f) \cdot f^{*}(\omega)
\end{aligned}
$$

(iii) by linearity, (ii) \& (i) we get:

$$
\left(f^{*} \omega\right)_{p}=\sum_{i_{1}<\ldots<i_{k}} \omega_{i_{1} \ldots i_{n}}(f(p)) f^{*}\left(d x_{i_{1}}\right)_{\left.\wedge \ldots \wedge f^{*}\left(d x_{i_{u}}\right)\right)}
$$

Moreover, $f^{*}\left(d x_{i}\right)_{p}(v)=\left(d x_{i}\right)_{f(p)}\left(d f_{p} v\right)$
chain rule

$$
\stackrel{\text { rule }}{=} d_{p}\left(x_{i} \circ f\right)(v)
$$

example: (polar coordinates) on $\mathbb{R}^{2} \backslash\{(0,0)\}$ consider the 1-form
(w.r.t. the canonical/identity chart):
$\omega:=-\frac{y}{x^{2}+y^{2}} d x+\frac{x}{x^{2}+y^{2}} d y$ on $\mathbb{R}^{2} \backslash\{0\}$.
Let $f(r, \theta):=(r \cos \theta, r \sin \theta)$ on $(0, \infty) \times(0,2 \pi)$
map from 'polar' to 'Cartesian' coordinates. Then at $p=(r, \theta)$

$$
\begin{aligned}
\left(f^{*} \omega\right)_{p}= & -\frac{r \sin \theta}{r^{2}} d_{p}(x \circ f)+\frac{r \cos \theta}{r^{2}} d_{p}(y \circ f) \\
= & -\frac{r \sin \theta}{r^{2}}(\cos \theta d r-r \sin \theta d \theta) \\
& +\frac{r \cos \theta}{r^{2}}(\sin \theta d r+r \cos \theta d \theta)=d \theta
\end{aligned}
$$

Prop.: Let $f: M \rightarrow N$ be smooth between two n-dim. manifolds and (u, x) and (v, y) chats around $p \in M$ and $f(p)$, resp. For any $f \in C^{\infty}(N)$ and with $f_{i}:=y_{i} \circ f$:

$$
f^{*}\left(\rho \cdot d y_{1} \wedge \ldots \wedge d y_{n}\right)=(\rho \circ f) \cdot \operatorname{det}\left(\frac{\partial}{\partial x_{j}} f_{i}\right) d x_{1} \wedge \ldots \wedge d x_{n}
$$

proof: We show that both sides have the same action on the basis $\left(\left.\frac{\partial}{\partial x_{n}}\right|_{p}, \cdots,\left.\frac{\partial}{\partial x_{n}}\right|_{p}\right)$ dual to $d x_{i}$: Lemma

$$
\begin{aligned}
& \left(f^{*}\left(l \cdot d y_{1} \wedge \ldots \wedge d y_{n}\right)\right)_{p}\left(\left.\frac{\partial}{\partial x_{n}}\right|_{p}, \ldots,\left.\frac{\partial}{\partial x_{n}}\right|_{p}\right) \stackrel{\downarrow}{=} \underbrace{(f \circ f)(p) \underbrace{}_{p} d_{1} \wedge \ldots \wedge d_{p} f_{n})\left(\left.\frac{\partial}{\partial x_{n}}\right|_{p}, \ldots,\left.\frac{\partial}{\partial x_{n}}\right|_{p}\right)} \\
& \left.d_{p} f_{i}\left(\left.\frac{\partial}{\partial x_{j}}\right|_{p}\right)\right)=\operatorname{det}\left(\left.\frac{\partial}{\partial x_{j}}\right|_{p} f_{i}\right) .
\end{aligned}
$$

Application to $f=i d$ yields:

Corollary: If $(u, x),(V, y)$ are two charts around $p \in M$ of an n-dim. manifold M, then
$g \cdot d y_{1} \wedge \ldots \wedge d y_{n}=h \cdot d x_{1} \wedge \ldots \wedge d x_{n} \quad$ for $g, h \in C^{\infty}(n)$
iff $h=g \cdot \operatorname{det}\left(\left.\frac{\partial}{\partial x_{i}}\right|_{p} y_{j}\right)$.
Similarly: $\quad d y_{j_{1}} \wedge \ldots \wedge d y_{j_{k}}=\sum_{i_{1} \wedge \ldots i_{k}} \operatorname{det}\left(\frac{\partial y_{i_{s}}}{\partial x_{i_{t}}}\right)_{s_{, k}=1 . \ldots k} d x_{i_{1}} \wedge \ldots \wedge d x_{i_{k}}$

Thu:
For any smooth manifold M there is a unique map
$d: \Omega M \rightarrow \Omega M$ st.
(i) $\forall \omega, \eta \in \Omega M$:
(ii) $\quad \forall \omega \in \Omega^{k} M, \eta \in \Omega M$:
(iii) $\quad \forall f \in C^{\infty}(M) \equiv \Omega^{0} M$:
(iv) $\forall \omega \in \Omega M$:

$$
\begin{aligned}
& d\left(\Omega^{k} M\right) \subseteq \Omega^{k+1} \Pi \text { and } \\
& d(\omega+\eta)=d \omega+d \eta \\
& d(\omega \wedge \eta)=d \omega \wedge \eta+(-1)^{k} \omega \wedge d \eta
\end{aligned}
$$

$d f$ is the differential of f

$$
d^{2} w:=d(d w)=0
$$

This map is called exterior derivative and w.r.t. a chart (u, x) around $p \in M: \quad(d \omega)_{p}=\sum_{i_{1}, \ldots<i_{k}}(d \underbrace{\omega_{i_{1}, \ldots i_{k}}}_{\omega_{I}}) \wedge \underbrace{d x_{i_{1}} \wedge \ldots \wedge d x_{i_{k}}}_{d k_{I}}$ for $\omega \in \Omega^{k} M$.
Hence, using multiindex notation: $d\left(\sum_{I} w_{I} d x_{I}\right)=\sum_{I} d w_{I} \wedge d x_{I}$
proof: Suppose $\omega_{1}, \omega_{2} \in \Omega M$ coincide on an arbitrary open subset $U \leq M$. We first show that then $\left.d \omega_{1}\right|_{u}=\left.d \omega_{2}\right|_{u}$, i.e., that d is 'local'.
To this end, for $p \in V \subseteq \bar{V} \subseteq U$ let $\rho \in C^{\infty}(M)$ be sot.

$$
f(q)=\left\{\begin{array}{l}
1, q \in V \\
0, q \notin U
\end{array} \quad \text { Then } 0=f\left(\omega_{1}-\omega_{2}\right) \in \Omega M\right.
$$

and therefore $0 \stackrel{(\text { (ii) }}{=} d(0)=d\left(\rho_{\wedge}\left(\omega_{1}-\omega_{2}\right)\right)$

$$
\begin{aligned}
& \text { (ii) } \rho_{\wedge}\left(\omega_{1}-\omega_{2}\right)+\rho \wedge d\left(\omega_{1}-\omega_{2}\right) \\
& =(\text { (iii), (i) } \\
& =0+\rho_{\wedge} d w_{1}-\rho_{\wedge} d w_{2}
\end{aligned}
$$

So $\left.\left(d \omega_{1}\right)\right|_{V}=\left.\left(d \omega_{2}\right)\right|_{V}$ and since this applies to an arbitrary $p \in U$ it holds on all of U.

Consider $\omega \in \Omega^{k} M$ that within U is of the form $\omega=\sum_{I} w_{I} d x_{I}$.
We can always extend w_{I} smoothly to all of M so that the resulting ω coincides with the initial one. Since d is local this does not affect sw. We get: $d\left(\sum_{I} w_{I} d x_{I}\right)$

$$
\begin{aligned}
& \text { (i) } \sum_{I} d(\underbrace{w_{I} d x_{I}}_{=w_{I} \wedge d x_{I}}) \\
& \text { since } w_{I} \in C^{\infty}(M) \\
& \stackrel{\text { (i) }}{=} \sum_{I} d w_{I} \wedge d x_{I}+w_{I} \wedge \underbrace{d\left(d x_{I}\right)}_{=0} \\
& =\sum_{I} d w_{I} \wedge d x_{I}
\end{aligned}
$$

This proves that $d w$ is of the claimed form and thus unique.
It remains to show that this fullfills $(i)-(i v)$. (i) and (iii) are obvious.
Due to linearity it suffices to prove (ii) for $\omega=f d x_{I} \in \Omega^{k} M$

$$
\text { and } \begin{aligned}
\eta \in g d x_{3}: & d(\omega \wedge \eta)=d\left(f g d x_{I} \wedge d x_{3}\right) \\
& =(g d f+f d g) \wedge d x_{I} \wedge d x_{3} \\
& =\underbrace{\left(d f \wedge d x_{I}\right)}_{d \omega} \wedge \underbrace{\left(g d x_{3}\right)}+(-1)^{k}(\underbrace{\left(f d x_{I}\right)} \wedge \underbrace{(-1)^{k} \underbrace{\left(d g \wedge d x_{3}\right)}_{\omega}} \underbrace{\left(d \eta^{\prime}\right.})
\end{aligned}
$$

To show (iv) consider again $\omega=f d x_{I}$ so that

$$
d \omega=d f \wedge d x_{I}=\sum_{j} \frac{\partial f}{\partial x_{j}} d x_{j} \wedge d x_{I}
$$

Then

$$
\begin{aligned}
d^{2} \omega & =\sum_{j k} \frac{\partial^{2} f}{\partial x_{j} \partial x_{k}} d x_{k} \wedge d x_{j} \wedge d x_{I} \\
& =\sum_{j<k} \frac{\partial^{2} f}{\partial x_{j} \partial x_{k}}\left(d x_{k} \wedge d x_{j}+d x_{j} \wedge d x_{k}\right) \wedge d x_{I}=0
\end{aligned}
$$

Schwartz's the. ie. $\frac{\partial^{2} f}{\partial x_{j} \partial x_{k}}=\frac{\partial^{2} f}{\partial x_{k} \partial x_{j}}$ for $f \in C^{\infty}$

Lemma: If $F: \Pi \rightarrow N$ is smooth and $\omega \in \Omega^{k} N$, then

$$
F^{*}(\alpha \omega)=\alpha\left(F^{*} \omega\right)
$$

proof: Due to locality and linearity it suffices to consider

$$
\begin{aligned}
& F^{*} d\left(f d x_{i} \wedge \ldots \wedge d x_{i_{k}}\right)=F^{*}\left(d f \wedge d x_{i,} \wedge \ldots \wedge d x_{i_{k}}\right) \\
& =d(f \circ F) \wedge d\left(x_{i} \circ F\right) \wedge \ldots \wedge d\left(x_{i_{k}} \circ F\right) \\
& =d\left(f \circ F \wedge d\left(x_{i} \circ F\right) \wedge \ldots \wedge d\left(x_{i_{k}} \circ F\right)\right) \\
& =d\left(F^{*}\left(f d x_{i,} \wedge \ldots \wedge d x_{i_{k}}\right)\right) .
\end{aligned}
$$

Def.: $\omega \in \Omega^{k} M$ is called

- closed if $d \omega=0$,
- exact if $\exists \eta \in \Omega^{k-1}: d \eta=\omega$.
remarks:- Being 'closed' is a local proputy. Being 'exact' a global one. Since $d^{2}=0$, every exact form is closed. Whether the converse holds depends on the topology of M and will lead us to 'DeRham cohomology'...

$$
\begin{aligned}
& \text { - For } M=\mathbb{R}^{3} \text { with } \omega^{1}:=f_{1}^{n} d x+f_{2}^{1} d y+f_{3}^{1} d y \in \Omega^{1} \Pi \\
& \omega^{0} \in \Omega^{0} M, \quad \omega^{2}:=f_{1}^{2} d y \wedge d z+f_{2}^{2} d z \wedge d x+f_{3}^{2} d x \wedge d y \in \Omega^{2} M \\
& \omega^{3}:=f^{3} d x \wedge d y \wedge d z \\
& \text { we have } \omega^{0} \stackrel{d}{\bullet} \omega^{2} \stackrel{d}{\mapsto} \omega^{2} \stackrel{d}{\longmapsto} \omega^{3} \text { is equal to } \\
& \omega^{\circ} \stackrel{\text { good }}{\longmapsto} f^{1} \stackrel{\text { rot }}{\longmapsto} f^{2} \xrightarrow{\text { div }} f^{3} \quad \text { (see excise) }
\end{aligned}
$$

Vector fields

Def.: A vector field x on a smooth manifold M is a map $x: M \rightarrow T M, \quad M \ni \rho \mapsto x_{p} \in T_{p} M$

The set of smooth vector fields on M is denoted by $x(M)$.
remarks: - If (u, x) is a chart wound p, we can write any vector field x locally as $X_{p}=\left.\sum_{i} X_{i}(p) \frac{\partial}{\partial x_{i}}\right|_{\rho}$ where the x_{i} 's are the component functions of X w.r.t. the chart.

Lemma: For a vector field X on a smooth M the following are equivalent:
(i) x is smooth.
(ii) The component functions of x we smooth (w.r.t. any chart).
(iii) For any $f \in C^{\infty}(\pi)$, the function $x f: M \rightarrow \mathbb{R}$ defined by $\Pi \geqslant p \mapsto X_{p} f$ is smooth.
remarks: By (iii) any $x \in \mathscr{X}(M)$ induces a linear operator $X: C^{\infty}(M) \rightarrow C^{\infty}(M)$. In fact, it is a linear derivation since $X(f \cdot g)=f \cdot X_{g}+g \cdot X f$. Moreover, for $X, Y \in \mathcal{H}(m)$:
$x=y \quad \Leftrightarrow \quad \forall f \in C^{\infty}(n): x_{f}=y_{f}$. - By (ii) $\forall(M)$ is a $C^{\infty}(M)$-module.

Prop: For $x, y \in X(M)$ there exists a unique $Z \in X(M)$ satisfying $\quad z f=(x \cdot y-y \circ x) f$ for any $f \in C^{\infty}(m)$. Z is called the Lie bracket of x and y, denoted by $z=:[x, y]$.
proof (sketch): $z f=(x \circ y-y \circ x) f$ already defines z. It remains to show that $z \in x(M)$. This follows from
observing that $z_{p} f:=\left(z_{f}\right)(p)$ is of the form
$z_{p}=\left.\sum_{i}\left(x y_{i}-y x_{i}\right)(p) \frac{\partial}{\partial x_{i}}\right|_{p} \quad$ w.r.t. a chart (u, x). (see exercise for details)
remarks: - I.g., $X \cdot y$ and $Y \cdot x$ are not in $X(M)$.

- The Lie bracket $[\cdot \cdot]: \mathscr{H}(m) \times \mathscr{H}(n) \rightarrow \mathscr{H}(M)$ makes $X(17)$ a Lie algebra.

A differential form $\omega \in \Omega^{k} M$ can now be regarded as a map

$$
\begin{aligned}
\omega: \notin(M)^{k}=\sharp(M) \times \cdots \times \forall(M) & \mapsto C^{\infty}(M) \\
\omega\left(x_{1}, \ldots, x_{k}\right) & \mapsto\left(M \ni p \mapsto \omega_{p}\left(x_{1, p}, \ldots, x_{k, p}\right)\right)
\end{aligned}
$$

This leads to a chart-independent formula for the extentor derivative:

Prop.: If $\omega \in \Omega^{k} M$ and $x_{1}, \ldots, x_{k+1} \in \notin(M)$, then:

$$
\begin{aligned}
d \omega\left(x_{1}, \ldots, x_{k+1}\right)= & \sum_{i=1}^{n+1}(-1)^{i+1} x_{i}\left(\omega\left(x_{1}, \ldots, \hat{x}_{i}, \ldots, x_{k+1}\right)\right) \\
& +\sum_{1 \leq i<j \leq k+1}(-1)^{i+j} \omega\left(\left[x_{i}, x_{j}\right], x_{1}, \ldots, \hat{x}_{i}, \ldots, \hat{x}_{j}, \ldots, x_{k+1}\right) \\
\text { In particular, for } \omega \in \Omega^{1} \Pi: \quad & d \omega(x, y)=x_{\omega}(y)-y \omega(x)-\omega([x, y])
\end{aligned}
$$

proof (sketch): First, one verifies that the r.h.s. is a $k+1$-form: it is alternating and C^{∞}-linear (the latter requires the second summand).

Then it suffices to show that it acts correctly on $w=f d x_{1}, \ldots 1 d x_{k}$ with $x_{i}=\frac{\partial}{\partial x_{\alpha_{i}}}=: \partial_{\alpha_{i}}$. Using $\left[\partial_{i}, \partial_{j}\right]=0$, we get

$$
\sum_{i=1}^{k+1}(-1)^{i+1} x_{i} \omega\left(\ldots \hat{x}_{i} \ldots\right)+\ldots=\sum_{i=1}^{k+1}(-1)^{i+1} \partial_{\alpha_{i}} \omega\left(\partial_{\alpha_{1}}, \ldots, \hat{\partial}_{\alpha_{i}}, \ldots \partial_{\alpha k+1}\right)
$$

For $\alpha_{1}<\ldots<\alpha_{k+1}$ this vanishes except for $\left(\alpha_{1}, \ldots, \alpha_{k}\right)=(1, \ldots, k)$ and $:=k+1$ and thus $\alpha_{i} \geqslant k+1$. So we can write

$$
d w=\sum_{\alpha_{n}<\ldots<\alpha_{k+1}} d w\left(\partial_{\alpha_{n}}, \ldots, \partial_{\alpha_{k+1}}\right) d x_{k_{n}} \wedge \ldots \wedge d x_{\alpha_{k}}
$$

assumption

$$
\stackrel{!}{=} \sum_{j>k}(-1)^{k} \partial_{j} f \quad d x_{1} \wedge \ldots \wedge d x_{k} \wedge d x_{j}
$$

$=\sum_{j} \frac{\partial}{\partial x_{j}} f d x_{j} \wedge d x_{,} \wedge \ldots \wedge d x_{k}$, which is the correct form.

Orientation

Def.: Two ordered bases b_{1}, \ldots, b_{n} and c_{1}, \ldots, c_{n} of a real vector space V are said to have the same orientation if the automorphism $A: V \rightarrow V$ defined by $A b_{i}=c_{i}$ satisfies $\operatorname{det}(A)>0$. Each of the two equivalence classes under this relation is called an orientation of V.

The two orientations we sometimes called right-/efthanded and the standard basis e_{1}, \ldots, e_{n} of \mathbb{R}^{n} is referred to as right-handed.

Consistent definition of an orentation on a manifold is not always possible (e.g. the Moebins strip is not orientable).

Def.: A smooth manifold M of dim. $n \geqslant 1$ is called orientable if one (and then both) of the following equivalent statements hold(s):
(i) There is an atlas $A=\left\{\left(U_{\lambda}, \varphi_{\lambda}\right)\right\}_{\lambda}$ whose charts are orientation compatible in the sense that $\operatorname{det}\left(d_{\rho}\left(\rho_{\lambda} \circ \rho_{\mu}^{-1}\right)\right)>0 \quad \forall \rho \in \rho_{\lambda}\left(u_{\lambda}\right) \cap \rho_{\mu}\left(u_{\mu}\right)$.
(ii) There is a nowhere vanishing $\omega \in \Omega^{n} M$ (i.e., $w_{p} \neq 0 \forall p \in M$). ω is then called an orientation form.
remarks: - iwo orient. forms $\omega, \tilde{\omega} \in \Omega^{n} \Pi$ must be related via $\tilde{\omega}=f \cdot \omega$ by a nowhere vanishing $f=C^{\infty}(M)$. If $f>0$, we set $\tilde{\omega} \sim w$.

The resulting equivalence class $[\omega]$ is then called an orientation of M.
A connected, orientable manifold then has two orientations.

- Using homology, (i) can be extended to a definition of orientability of topological manifolds.
proof: (of the equivalence)
(ii) $\Rightarrow(i)$ Let $\omega \in \Omega^{n} M$ be an orient, form. Then w.r.t. a chart (u, x) wound p : $\omega_{p}=f(p) d x_{1} \wedge \ldots \wedge d x_{n}$ for some $f \in C^{\infty}(u)$ that satisfies $\omega_{p}\left(\left.\frac{\partial}{\partial x_{n}}\right|_{p}, \cdots,\left.\frac{\partial}{\partial x_{n}}\right|_{p}\right)=f(p) \neq 0$.
W.L.o.g. $f(p)>0$ (otherwise replace x_{1} by $-x_{n}$).

If (v, y) is another chart wound p with $\omega_{p}=g(p) d y \wedge \ldots \wedge d y_{n}$ and $g(p)>0$, then, in the intersection $U \cap V$:

$$
f d x_{n} \wedge \ldots \wedge d x_{n}=g d y_{1} \wedge \ldots \wedge d y_{n}=g \operatorname{det}\left(\frac{\partial y_{i}}{\partial x_{i}}\right) d x_{1} \wedge \ldots \wedge d x_{n}
$$

so that $\operatorname{det}\left(\frac{\partial y_{i}}{\partial x_{j}}\right)=\frac{f}{g}>0$. In this way, we can construct an atlas with orient. compatible charts.
(i) \Rightarrow (ii) For each chat $\left(u_{\lambda}, x^{\lambda}\right) \in \notin$ define $\omega^{\lambda}:=d x_{1}^{\lambda} \wedge \ldots \wedge d x_{n}^{\lambda}$.

Let $\left\{\varphi_{\lambda} \in C^{\infty}(M,[0,1])\right\}$ be a partition of unity subordinate to $\left\{u_{\lambda}\right\}$ and define $\omega:=\sum_{\lambda} f_{\lambda} \omega^{\lambda}$.

Every pe has a neighborhood in which this sum is finite and using coordinate transformations we can express

$$
\omega=\sum_{\lambda} f_{\lambda} d x_{1}^{\lambda} \wedge \ldots \wedge d x_{n}^{\lambda}=\underbrace{\sum_{\lambda} p_{\lambda} \operatorname{det}\left(\frac{\partial x_{i}^{\lambda}}{\partial x_{i}^{\wedge}}\right)}_{>0 \text { near } p} d x_{1}^{\wedge} \wedge \ldots \wedge d x_{n}^{\wedge}
$$

remarks: - W.r.t. a given orientation form w we call an ordered basis $\left(b_{1}, \ldots, b_{n}\right)$ of $T_{p} M$ 'positively oriented' if $\omega\left(b_{1}, \ldots, b_{n}\right)>0$.

- A smooth map between oriented manifolds is called orientation preserving if it maps positively oriented bases to positively oriented bases.
- To every point of a zero-dim. manifold we also assign two orientations, denoted +1 and -1 .
- $\mathbb{R} P^{n}$ is orientable of n is odd.
- An n-dim submanifold of \mathbb{R}^{n+1} is orientable if there is a continuous
 vector field of 'unit normal vectors'. E.g. S^{n} is orientable.

Def.: A topological manifold with bound wy M is a secondcountable Hausdorff space that is locally homeomorplic to a half space $\mathbb{H}^{n}:=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n} \mid x_{n} \geq 0\right\}$. Its boundary ∂M is the set of all points in M that are mapped onto $\partial \mathbb{H}^{n}:=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n} \mid x_{n}=0\right\} . \quad \ln +(\pi):=\pi \backslash \partial \quad$.

M is a smooth manifold with bounder if it is additionally equipped with a smooth stoncture. (In this context, a map on a subset $U \leq \mathbb{H}^{n}$ is called smooth if it has a smooth extension to a neighborhood of U that is open in \mathbb{R}^{n}.)
examples: Every (smooth) manifold is a (smooth) manifold with boundary, albeit $\partial M=\varnothing$. A compact manifold with empty boundary is called closed manifold.

- $M:=\left\{x \in \mathbb{R}^{n} \mid\|x\|_{2} \leq 1\right\}$ with $\partial M=S^{n-1}$
- If $f: N \rightarrow \mathbb{R}$ is smooth with regular value $y \in \mathbb{R}$,
then $\{x \in N / f(x) \leqslant y\}=: M$ is a smooth manifold with boundary $\partial M=f^{-1}(\{y\})$.
remark: If M, N are two smooth manifolds with boundary and $f: M \rightarrow N$ is a diffeomorphism, then $f(\partial M)=\partial N$ and $\left.f\right|_{\partial M}: \partial M \rightarrow \partial N$ is again a diffeomorphism.

Prop.: If M is a smooth manifold with boundary $\partial \Pi \neq \varnothing$, then:
(i) ∂M is a smooth manifold with $\operatorname{dim}(\partial M)=\operatorname{dim}(\Pi)-1$ and $\partial(\partial M)=\varnothing$.
(ii) ∂M is orientable if M is.
proof: (i) (sketch): If $\left(u_{1}\left(x_{1}, \ldots, x_{n}\right)\right)$ is a chart around $p \in \partial M$ s.t. u is homeomorphic to an open subset of \mathbb{M}^{n}, then $U \cap \partial \Pi=\left\{p \in u \mid x_{n}(p)=0\right\}$ and $\left(U \cap \partial M,\left(x_{1}, \ldots, x_{n-1}\right)\right)$ is a chart of ∂M
(ii) Let (u, x) and (v, y) be two orientation compatible charts of M around $p \in \partial M$ s.t. $x_{n} \geqslant 0$ in U and $y_{n} \geqslant 0$ in V. Since the coordinate change $f:=y^{\circ} x^{-1}$ has to preserve the boundary, we have:

$$
\begin{aligned}
& \quad \ln _{n}\left(x_{n}, \ldots, x_{n}\right) \begin{cases}=0 & \text { if } x_{n}=0, \\
>0 & \text { if } x_{n}>0 .\end{cases} \\
& \text { So } \quad \partial_{i} \rho_{n}\left(x_{n}, \ldots, x_{n-1}, 0\right) \begin{cases}=0 & \text { for } i<n \\
\geqslant 0 & \text { for } i=n\end{cases} \\
& \text { Hence, evaluated at a boundary point, we get : }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Consequently, the coordinate change }\left(\varphi_{1}, \ldots, \varphi_{n-1}\right) \text { between the } \\
& \text { boundary charts is orientation preserving as will. }
\end{aligned}
$$

Def.: Let $[\omega]$ be an orientation of a smooth manifold M with boundary $\partial \Pi * \varnothing$. If w.r.t. a chart (u, x) of M around $p \in \partial M$ we have $w=f d x_{1} \wedge \ldots \wedge d x_{n}$ for some $f>0$, then the induced orientation $[\eta]$ of $\partial \Pi$ is defined locally via

$$
\eta:=(-1)^{n} d x_{1} \wedge \ldots \wedge d x_{n-1}
$$

remarks: - These locally defined η 's can then be glued together to a $(n-1)$-form η that is an orientation form on all of ∂M.

- According to ω, the basis $\frac{\partial}{\partial x_{1}}, \ldots, \frac{\partial}{\partial K_{n}} \in T_{p} M$ is positively oriented. At $p \in \partial \Pi$ we can regard $v:=-\frac{\partial}{\partial x_{n}}$ as outward pointing vector. An ordered basis V_{n}, \ldots, V_{n-1} of $T_{p} \partial M$ is then positively
 oriented w.r.t. η if $v, v_{1}, \ldots, v_{n-1}$ is positively oriented w.r.t w since

$$
\begin{aligned}
d\left(-x_{n}\right) \wedge \eta & =(-1)^{n} \cdot d\left(-x_{n}\right) \wedge d x_{n} \wedge \ldots \wedge d x_{n-1} \\
& =d x_{1} \wedge \ldots \wedge d x_{n} .
\end{aligned}
$$

Integration of n-forms on n-dim. manifolds

Def.: - The support of $\omega \in \Omega^{n} M$ is $\operatorname{supp}(\omega):=\left\{p \in M \mid \omega_{p} \neq 0\right\}$
(ie. its complement is the largest open subset of M on which $w=0$)

- Let (U, h) be a chart of an n-dim. smooth manifold (possibly with boundary), and $\omega \in \Omega^{n} M$.

For $p \in U$ let $f(p):=\omega\left(\left.\frac{\partial}{\partial x_{n}}\right|_{p}, \ldots,\left.\frac{\partial}{\partial x_{n}}\right|_{p}\right) \in \mathbb{R}$ define the component function of ω, i.e. $\omega_{p}=f(p) d x, \wedge \ldots \wedge d x_{n}$. Then

$$
\int_{u} w:=\underbrace{\left.\int_{h(u)} f \circ h^{-1}(x) d x\right)^{\swarrow}}_{\text {Lebesgue integral in } \mathbb{R}^{n}}
$$

no 1-form! merely a symbol in Lebesgue - integral
if the Lebesgue integral on the r.h.s. exists.

Lemma: Two orientation compatible charts (u, n) and (u, \bar{h})
Lead to the same value of $\int_{u} w$.
proof: If $\omega_{p}=\tilde{f}(p) d y_{1} \wedge \ldots \wedge d y_{n}$ then $\tilde{f}(p)=f(p) \operatorname{det} \underbrace{\left(\left.\frac{\partial}{\partial y_{i}}\right|_{p} x_{j}\right)}$
where ζ_{ρ} is the Jacobian of the coordinate change $f:=h \circ \tilde{h}^{-1}$ at $\tilde{h}(p)$.

$$
\begin{aligned}
\int_{\tilde{h}(u)} \tilde{f} \circ \tilde{h}^{-1}(y) d y & =\int_{\rho:=h \circ \tilde{h}^{-1}} f \circ \tilde{h}(u) \\
& =\int_{>0} f \circ \rho(y) \mid \underbrace{\text { compatibility }}_{\text {due to orientation }} \\
\operatorname{det}\left(\zeta_{\rho}(y)\right) \mid & d y \\
& \hat{h}(u)=h^{-1}(x) d x
\end{aligned}
$$

change of variable formula for Lebesgue integral

Now suppose $\left\{U_{\lambda}\right\}_{\lambda}$ is a finite open coring of M with orientation compatible charts and $\left\{\psi_{\lambda} \in C^{\infty}\left(u_{\lambda},[0,1]\right)\right\}_{\lambda}$ is a smooth partition of unity subordinate to it. Then

$$
\int_{\Pi} \omega:=\sum_{\lambda} \int_{u_{\lambda}} \psi_{\lambda} \cdot \omega
$$

Lemma: The integral $\int_{\Pi} \omega$ is independent of the chosen covering and partition of unity.
(as long as it is a finite covering with orient. comp. charts.)
proof: Let $\left\{\tilde{u}_{\mu}\right\}_{\mu}$ be another such covering and $\left\{\tilde{\psi}_{\mu}\right\}$ a corresponding partition of unity. Then

$$
\begin{aligned}
& \sum_{\lambda} \int_{u_{\lambda}} \psi_{\lambda} \cdot \omega=\sum_{\lambda} \int_{u_{\lambda}} \sum_{\mu} \tilde{\psi}_{\mu} \cdot \psi_{\lambda} \cdot \omega \\
& \quad=\sum_{\mu} \sum_{\lambda} \int_{u_{\lambda} \cap \tilde{u}_{\mu}} \tilde{\psi}_{\mu} \cdot \psi_{\lambda} \cdot \omega=\sum_{\mu} \int_{\tilde{u}_{\mu}} \sum_{\lambda} \psi_{\lambda} \cdot \tilde{\psi}_{\mu} \cdot \omega \left\lvert\, \begin{array}{l}
\text { using } \\
\text { finitiniss }
\end{array}\right. \\
& \quad=\sum_{\mu} \int_{\widetilde{u}_{r}} \tilde{\psi}_{\mu} \cdot \omega .
\end{aligned}
$$

To summarize, we have defined integrals of n-forms on n-dim. manifolds under the assumption that the manifold is oriented (ie. we chose an atlas with orient. comp. charts) and the n-form has compact support (which is antomatically satisfied if M is compact).

The latter could be relaxed in principle, but the central theorem (Stokes' the.) would still require compact support.

Elementary properties:

Linearity:

$$
\begin{array}{r}
\int_{M}(a w+b \eta)=a \int_{M} w+b \int_{M} \eta \quad \text { for } a, b \in \mathbb{R}, \\
w, \eta \in \Omega^{n} M
\end{array}
$$

Orientation dependence:

$$
\int_{-M} w=-\int_{M} w
$$ if " $-M$ " is M with opposite orientation

Prop.: If $\ell: M \rightarrow N$ is an orientation preserving diffeomorphism, $A \subseteq M, n:=\operatorname{dim}(M)$, and $w \in \Omega^{n} N$, then:

$$
\int_{A} \varphi^{*} \omega=\int_{\varphi(A)} \omega
$$

(meaning that one side is well-defined if the other side is. in which case they we equal)

The proof follows again by realizing that the change of variables formula for the Lebesgue integral corresponds to

$$
\rho^{*}\left(f \cdot d y_{1} \wedge \ldots \wedge d y_{n}\right)=(f \circ \rho) \cdot \operatorname{det}\left(\frac{\partial}{\partial x_{j}} y_{i} \circ \rho\right) d x_{1} \wedge \ldots \wedge d x_{n}
$$

All this extends to the case of 0 -forms (i.e. functions) over an oriented O. dim. manifold M, when we define $\int_{M} f:=\sum_{\rho \in M} \sigma(p) f(p)$, where $\sigma(p) \in\{ \pm 1\}$ is the orientation at p.

This sum is finite if f is compactly supported.

Stokes' theorem

Thu:: [Stokes] Let M be an n-dim. oriented smooth manifold with boundary ∂M and $\omega \in \Omega^{n-1} M$ have compact support. Then

$$
\int_{M} d w=\int_{\partial M} w
$$

explanation concerning the r.h.s.: ∂M is supposed to be equipped with the 'induced' orientation and ω is understood as $L^{*} \omega$ with $\iota: \partial \Pi \rightarrow M$ the inclusion map. If $\partial \Pi=\varnothing$, the r.h.s. is zero.
proof: We will consider three increasingly general cases that we based on each other:
(i) $M=\psi_{1}^{n}$. There is an $r>0$ s.t.
$\operatorname{supp}(\omega) \subseteq[-r, r]^{n-1} \times[0, r]$ and

we can write $\omega=\sum_{i=1}^{n} f_{i} d x_{1} \wedge \ldots \wedge \underbrace{\hat{d x_{i}}}_{\text {omitted }} \wedge \ldots \wedge d x_{n}$

$=\sum_{i=1}^{n}(-1)^{i-1} \frac{\partial f_{i}}{\partial x_{i}} d x_{1}, \ldots \wedge d x_{n}$
So $\quad \int_{\Pi} d \omega=\sum_{i=1}^{n}(-1)^{i-1} \int_{0}^{r} \int_{-r}^{r} \cdots \int_{-r}^{r} \frac{\partial f_{i}}{\partial x_{i}} d x_{1} \cdots d x_{n}$
For $i \neq n$ we have $\int_{-r}^{r} \frac{\partial f_{i}}{\partial x_{i}} d x_{i} ;\left.f_{i}\right|_{x_{i}=-r} ^{x_{i}=r}=0$ since f_{i} vanishes
$\int_{M} d w=\left.(-1)^{n-1} \int_{-r}^{r} \cdots \int_{-r}^{r} f_{n}\right|_{x_{n}=0} ^{x_{n}=r} d x_{1} \cdots d x_{n-1}$
$=(-1)^{n} \int_{-r}^{r} \ldots \int_{-r}^{r} f_{n}\left(x_{n}, \ldots, x_{n-1}, 0\right) d x_{1} \cdots d x_{n-1}$

This has to be compared with $\int_{\partial M} w=\int_{\partial \Pi} L^{*} \omega$
Since every $(n-1)$-form on $\partial M=\partial H^{n}$ is a C^{∞}-multiple of
$d x_{n} \wedge \ldots \wedge d x_{n-1}$, we have $L^{*} \omega=f_{n}\left(x_{1}, \ldots, x_{n-1}, 0\right) d x_{1} \wedge \ldots \wedge d x_{n-1}$
so that $\int_{\partial \Pi} w=\int_{\partial \Pi} f_{n}\left(x_{n}, \ldots, x_{n-1}, 0\right) d x_{n} \wedge \ldots \wedge d x_{n-1}$
$=(-1)^{n} \int_{-r}^{r} \ldots \int_{-r}^{r} f_{n}\left(x_{1}, \ldots, x_{n-1}, 0\right) d x_{1} \cdots d x_{n-1}$
$(-1)^{n} d x_{n} \wedge \ldots \wedge d x_{n}$ is the induced orientation.
Consequently, $\int_{M} d w=\int_{\partial M} w$ for $M=H H^{n}$.
(ii) Suppose w is supported in the domain U of a single chart (u, ρ) where l is orientation preserving. Then

$$
\int_{M} d \omega=\int_{H 1^{n}}\left(\varphi^{-1}\right)^{*} d \omega=\int_{H+1 n} d\left(\left(\varphi^{-1}\right)^{*} \omega\right) \stackrel{\text { more details below }}{\stackrel{(i)}{=} \int_{\partial H H^{n}}\left(\varphi^{-1}\right)^{*} \omega \stackrel{\downarrow}{=} \int_{\partial M} \omega}
$$

(iii) Suppose $\left\{\left(u_{\lambda}, \varphi_{\lambda}\right)\right\}_{\lambda \in \Lambda}$ is an atlas of orientation compatible charts that define the orientation of M. If $\left\{\psi_{\lambda} \in C^{\infty}\left(u_{\lambda},[0,1]\right)\right\}_{\lambda \in \Lambda}$ is a corresponding smooth partition of unity, then:

$$
\begin{aligned}
\int_{\partial M} \omega & =\sum_{\lambda} \int_{\partial M} \psi_{\lambda} \omega \stackrel{(i i)}{=} \sum_{\lambda} \int_{M} d\left(\psi_{\lambda} \omega\right) \\
& =\sum_{\lambda} \int_{M} d \psi_{\lambda} \wedge \omega+\psi_{\lambda} d \omega \\
\text { linewity } & =\int_{M} d \underbrace{\left(\sum_{\lambda}^{\sum \psi_{\lambda}}\right)}_{=0} \wedge \omega+\int_{M} \underbrace{\sum_{\lambda} \psi_{\lambda}}_{=1} d \omega=\int_{M} d \omega .
\end{aligned}
$$

remark: for a more detailed discussion suppose (n, φ) with $\varphi=\left(\ell_{n}, \ldots, \ell_{n}\right)$ is the considered chart of $M,\left(U_{n} \partial M, \tilde{\rho}\right)$ with $\tilde{\varphi}=\left(\varphi_{1}, \ldots, \rho_{n-1}\right)$
the boundary chart of ∂M and $\quad: \partial M \rightarrow M, \tilde{L}: \partial H l^{n} \rightarrow H^{n}$ the inclusion maps. Then with $\rho^{-1} \circ \tilde{\imath}=\iota \circ \tilde{\rho}^{-1}$ we get:

$$
\int_{H_{1}^{n}} d\left(\rho^{-1}\right)^{*} \omega \stackrel{(i)}{=} \int_{\partial H 1^{n}} \tilde{L}^{*}\left(\varphi^{-1}\right)^{*} \omega \stackrel{\swarrow}{=}\left(\int_{\partial H+1^{n}}\left(\tilde{\rho}^{-1}\right)^{*} \iota^{*} \omega=\int_{M} \iota^{*} \omega .\right.
$$

Corollary: If M is a closed (= compact \& boundary less), orientable smooth $n-d i m$. manifold and $\omega \in \Omega^{n} M$ is exact, then $\int_{M} w=0$.

Corollary: If M is a compact, orientable smooth n-dim manifold and $\omega \in \Omega^{n-1} M$ is closed, then $\int_{\partial M} \omega=0$. proof: $\quad \int_{\partial M} \omega=\int_{\hat{i}}^{\text {stokes }} M \quad d \omega=0$.

Corollary: [Fund. the. for line integrals] $L e t \quad j:[a, b] \rightarrow N$ be a smooth curve s.t. $M:=\gamma([a, b])$ is a 1 -dim. Submanifold of N and $\gamma:[a, b] \rightarrow M$ is an orientation preserving diffeomorphism. Then for any $f \in C^{\infty}(N): \quad \int_{M} d f=f(\gamma(b))-f(\gamma(a))$

$$
\text { proof: } \int_{M} d f=\int_{\partial n} f \quad \text { with } \partial \Pi=\left\{\begin{array}{c}
\hat{i}, \gamma(a), \gamma(b)\} \\
\text { negative } / \text { positive }
\end{array}\right.
$$ negative / positive orientation

Thu.: [No retraction tho.]
Let M be a compact, oriented smooth manifold with boundary $\partial M * \phi$. There is no smooth map $f: M \rightarrow \partial M$ s.t. $\left.f\right|_{\partial M}=i d$.
proof: Let $n:=\operatorname{dim}(M)$ and $\eta \in \Omega^{n-1} \partial M$ be s.t. $\int_{\partial M} \eta \neq 0$ leg. an orientation form on ∂M). Then with the inclusion $: 2 M \rightarrow M$ and an assumed retraction $f: M \rightarrow \partial M$ s.t. $f \circ\llcorner=$ id :

Corollary: [Brouwer's fixed point the - smooth version]
Consider $M:=\left\{x \in \mathbb{R}^{n} \mid\|x\|_{2} \leqslant 1\right\}$ with $\partial M=S^{n-1}$ and a smooth map $f: M \rightarrow M$. f has a fixed point (i.e. $\exists x \in M: f(x)=x$).
proof: Suppose there is no fixed point. Then define $g: M \rightarrow \partial M$ s.t. $g(x):=x+t(x-f(x)$ for a suitable $t \geqslant 0$ depending on x. Then g would be a smooth retraction. \&
remark: using Weierstrass approximation this can be extended to continuous functions $f: M \rightarrow M$ on any top. space M that is homeomerphic to a closed ball.

Vector analysis in R^{3}

To recover theorems of vector analysis in \mathbb{R}^{3} from the generalized Stokes' the. we can use the following definitions \& conventions:

Let $u \subseteq \mathbb{R}^{3}$ be open and $\nu:=C^{\infty}\left(u, \mathbb{R}^{3}\right)$. On u define the vector-valued forms

$$
d \vec{s}:=\left(\begin{array}{l}
d x_{1} \\
d x_{2} \\
d x_{3}
\end{array}\right) \quad d \vec{F}:=\left(\begin{array}{l}
d x_{2} \wedge d x_{3} \\
d x_{3} \wedge d x_{1} \\
d x_{1} \wedge d x_{2}
\end{array}\right)
$$

and $d V:=d x_{1} \wedge d x_{2} \wedge d x_{3}$. These lead to the following isomorphisms:

$$
\begin{array}{ll}
\nu \leadsto \Omega^{n} U, & \vec{a} \mapsto \vec{a} \cdot d \vec{s} \\
\nu & \simeq \Omega^{2} U, \\
\vec{b} \mapsto \vec{b} \cdot d \vec{F} \\
c^{\infty}(u) \longrightarrow \Omega^{3} U, & c \mapsto c d V
\end{array}
$$

Then Stokes' tho. for differential forms translates to:

Gauss' divegtuce the: For any $\vec{b} \in \nu$ and any compact 3-dim. submanifold M of U with boundary ∂M :

$$
\int_{\Pi} \operatorname{div} \vec{b} d V=\int_{\partial M} \vec{b} \cdot d \vec{F}
$$

Kelvin- Stokes tho: For any $\vec{a} \in \nu$ and any compact, ariented 2-dim. submanifolds $M \subseteq U$ with boundary ∂M :

$$
\int_{\Pi} \operatorname{rot} \vec{a} \cdot d \vec{F}=\int_{\partial \Pi} \vec{a} \cdot d \vec{s}
$$

Moreover, the following diagram commutes:

In particular, $d^{2}=0$ translates to rot grad $f=0$ and diurot $a=0$.

Riemannian \& Lorentzian manifolds

Recall from Linear Aldabra: If $g: V_{x} V \rightarrow R$ is a symmetric, nou-degenercate* bilinew form on a finite dim. real vector space V with basis $b_{2}, \ldots, b_{n} \in V$, then $\left(g\left(b_{i}, b_{j}\right)\right)_{i, j=1}^{n}$ is an invertible matrix. By Sylvester's Law of inurisa the number $s \in\{0, \ldots, n\}$ of negative eigenvalues
${ }^{*}$ this means:
$g(x, y)=0 \forall x \Rightarrow y=0$
is independent of the basis. We call s the Index of g. Note that g is an inner product rf $s=0$.

Def.: Let M be a smooth manifold and $s \in\{0, \ldots, \operatorname{dim}(T)\}$. A psendo-Riemannian metric of index s on M is an assignment of a symmetric, nondegencate, bilinear form $g_{p}: T_{p} M \times T_{p} M \rightarrow \mathbb{R}$ of index s to every point $p \in M$, s.t. in any chart $g_{i j}(p):=g_{p}\left(\left.\frac{\partial}{\partial x_{i}}\right|_{p},\left.\frac{\partial}{\partial x_{j}}\right|_{p}\right)$ depends smoothly on p. (M, g) is then called psendo-Riemannian manifold of Index s and for $s=\left\{\begin{array}{l}1<\operatorname{dim}(M): \text { Lorentzian manifold } \\ 0: \text { Riemannian manifold }\end{array}\right.$
remarks: - Note that if $x_{p}=\left.\sum_{i} x_{i} \frac{\partial}{\partial x_{i}}\right|_{p}$ and $y_{p}=\left.\sum_{i} y_{i} \frac{\partial}{\partial x_{i}}\right|_{p}$, then

$$
g_{p}\left(x_{p}, y_{p}\right)=\sum_{i j} x_{i} g_{i j}(p) y_{j}=\left\langle x_{i} g(p) y\right\rangle .
$$

- A common notation is $d s^{2}$ for the bilinear form ge. This, in turn, leads to expressions of the form " $d s^{2}=\sum_{i j} g_{1 s} d x_{i} d x_{j}$ ".
examples: - The Minkowski space $\Pi=\mathbb{R}^{4}$ with constant Minkowski metric $\left(g_{i j}\right)=\left(\begin{array}{ccc}-1 & & \\ & 1 & \\ & & 1\end{array}\right)$ w.r.t. the canonical basis of \mathbb{R}^{4} is a simple Lorentzian manifold.
- \mathbb{R}^{n} with the standard inner product is a Riemannian manifold.

Lemma: Let $F: M \rightarrow N$ be smooth and s.t. $d_{p} F$ is infective for all $p \in M$. If (N, g) is Riemannian, then so is $\left(M_{1} F^{*} g\right)$.
remarks: - The pullback for symmetric bilinear forms is defined in the same way as for anti-symmentric $\rightarrow \cdots$...

- Injectiovity of dp holds in particular for embeddings.
proof: $\quad\left(F^{*} g\right)_{p}(v, v)=g_{F(p)}\left(d_{p} F v, d_{p} F v\right) \geq 0$

$$
\text { and } \ldots=0 \stackrel{g \text { R. metric }}{\Longleftrightarrow} d_{p} F_{v}=0 \underset{+ \text { lineN }}{d_{p} F_{\text {ind. }}} v=0
$$

Corollary: For every smooth manifold there exists a Riemannian metric. proof: By Withney's embedding the. there is an embedding $F: M \rightarrow \mathbb{R}^{2 n}$. If g is the standard inner product on $\mathbb{R}^{2 n}$, then $F^{*} g$ is a Riemannian metric on 17 .
remark: an alternative proof would construct a Rem. metric Locally within any single chart of an atlas and then exploit a partition of unity together with convexity of the space of inner products.

Having a manifold equipped with a Riemaunian metric has two immediate benefits:
(1) We can talk about distances
(2) We can identify $T_{p} M$ with $T_{p}^{*} M$ and thus $\notin(M)$ with $\Omega^{1} M$.

1: Def.: Let (M, g) be a Riemanuian manifold.

- The length of a curve $\gamma \in C^{1}([a, b], M)$ is defined as

$$
\begin{aligned}
& L(\gamma):=\int_{a}^{b} \underbrace{\left[g_{r}(t)(\dot{\gamma}(t), \dot{\gamma}(t))\right]^{\frac{1}{2}}} d t \\
&=\|\dot{\gamma}(t)\| \text { where } \dot{\gamma}(t) \in T_{\mu(t)^{M} \text { is s.t. }} \\
& \quad \dot{\gamma}(t) f:=(f \circ \gamma)^{\prime}(t) \text { for } f \in C^{\infty}(17)
\end{aligned}
$$

This extends to piecewise $-C^{1}$ cares by summing up the lengths of the pieces.

- The distance between $x, y \in M$ is defined as

$$
d_{g}(x, y):=\inf \left\{L(\gamma) \mid \gamma \text { is piecewise } C^{1} \& \text { connects } x \text { and } y\right\}
$$

remark: $L(\gamma)$ is independent of the parametrization of σ and given in Local coordinates by $\int_{a}^{b}\left[\sum_{i j} g_{i j}(\gamma(t))\left(x_{i} \circ \gamma\right)^{\prime}(t)\left(x_{j} \circ \gamma\right)^{\prime}(t)\right]^{1 / 2} d t$

Thu.: If (M, g) is a connected Riemannian manifold, then $\left(M, d_{g}\right)$ is a metric space whose metric topology coincides with the manifold topology of M.

2: Any psendo-Riemannian metric g induces an isomorphism

$$
\psi: T_{p} \Pi \longrightarrow T_{p}^{*} \Pi, \quad v \quad \longmapsto g_{p}\left(v_{1} \cdot\right)
$$

(note that ψ is a linear map that is infective since $\psi(v)=0 \Rightarrow g_{p}(v, x)=0$
for all $x \Rightarrow v=0$. As $\operatorname{dim}\left(T_{p} M\right)=\operatorname{dim}\left(T_{p}^{+} M\right), \psi$ is an isomorphism.)
Applying this pointwise we get an isomorphism between $\notin(M)$ and $\Omega^{\top}(M)$.
Egg. if $f \in C^{\infty}(M)$ we can assign a vector field to $d f \in \Omega^{n}(M)$, which then defines the gradient $\operatorname{grad}(f):=\psi^{-1} d f \in \notin(M)$.
ψ also allows us to deffer a (psindo-) inner product on $T_{p}^{*} M$ via

$$
T_{p}^{*} M \times T_{p}^{*} M \rightarrow(\omega, \eta) \mapsto g_{p}\left(\psi^{-1}(\omega), \psi^{-1}(\eta)\right)
$$

Point wise application yields: $\langle\cdot \cdot\rangle=\Omega^{\top} \Pi \times \Omega^{\top} \Pi \rightarrow C^{\infty}(M)$

$$
\left\langle\omega_{1} \eta\right\rangle:=\left(p \mapsto g_{p}\left(\psi^{-1}\left(\omega_{p}\right), \psi^{-1}\left(\eta_{p}\right)\right)\right)
$$

This can be extended to k-forms:
Def.: For a psendo-Riemannian manifold (M, g) we define R. . >: $\Omega^{k} \Pi \times \Omega^{k} \Pi \rightarrow C^{\infty}(M)$ pointwise by bilinear extension of

$$
\left\langle\alpha_{1} \wedge \ldots \wedge \alpha_{k}, \beta_{\imath} \wedge \ldots \wedge \beta_{k}\right\rangle:=\operatorname{det}\left(g_{p}\left(\psi_{\alpha_{i}}, \psi^{-1} \beta_{j}\right)\right)
$$

for $\alpha_{i}, \beta_{j} \in T_{p}^{*} M$.

Prop.: Let (M, g) be an oriented Riemannian manifold. There is a unique orientation form ν s.t. for any positively oriented ORB $v_{n}, \ldots, v_{n} \in T_{p} M$: $p_{p}\left(v_{1}, \ldots, v_{n}\right)=1$

In local coordinates this Riemannian volume form has the form

$$
\nu_{p}=\sqrt{\operatorname{det}\left(\left(g_{i j}(p)\right)_{i, j}\right)} \quad d x_{1} \wedge \ldots \wedge d x_{n}
$$

remark: In the literature this is often written $D: d V$ or $d V o C_{n}$. This should not mislead you to think that it is an exact form.
proof: In a positively oriented chart we can write $v_{i}=\left.\sum_{k} B_{i k} \frac{\partial}{\partial x_{k}}\right|_{p}$ where orthogonality means $\delta_{i j}=g_{p}\left(v_{i}, v_{j}\right)=\sum_{k l} B_{i k} g_{k i}(p) B_{j c}$ and thus $\mathbb{1}=B G B^{T}$ with $G:=\left(g_{u c}(p)\right)_{k, t o v}^{n}$. Consequently, $\quad \operatorname{det}(B)=\sqrt{\frac{1}{\operatorname{det}(G)}}$ and this holds for any positively oriented ONB since these are related like $\tilde{B}=0 . B$ via $O \in S O(n)$.

Every orientation form has the form $\nu_{p}=f(p) d x, 1 \ldots, d x_{n}$ in local coordinates. So $\nu_{p}\left(v_{1}, \ldots, v_{n}\right)=f(p) \operatorname{det}\left(\left(d x_{i}\left(v_{j}\right)\right)\right)$
s.t. $f(p)=\sqrt{\operatorname{det}(G)}$ is necessary for the claim.

To show that this gives a globally well-defined orientation form we have to show consistency of the definition our different charts. So consider a different chart given by \tilde{y} at p. Then $G_{G}=S^{\top} \tilde{G}_{T} S$ where $S_{k c}:=\left.\frac{\partial \tilde{x}_{k}}{\partial x_{c}}\right|_{\text {p }}$ and $\sqrt{\operatorname{det}\left(\tilde{G}_{T}\right)} d \tilde{x}_{,} \wedge \ldots \wedge d \tilde{x}_{n}=$ $=\sqrt{\operatorname{det}(\widetilde{G})} \operatorname{det}(S) d x_{1} \wedge \ldots \wedge d x_{n}=\sqrt{\operatorname{det}(G)} d x_{n} \wedge \ldots \wedge d x_{n}$.

Thu.: A smooth manifold M admits a Lorentzian metric iff there exist a nowhere vanishing vector field $X \in J(M)$.
proof: \rightarrow exercise class...

Corollary: For $n \in \mathbb{N}$ even, there is no Lorentzian metric on S^{n}. proof: According to the 'hairy ball thu. ' S" does not admit a non-vanishing smooth vector field if $n \in 2 \mathbb{N}$.

Hodge theory
If $\operatorname{dim}(M)=n$, then $\operatorname{dim}\left(\Lambda^{k} \Gamma_{p}^{*} M\right)=\binom{n}{k}=\binom{n}{n-k}=\operatorname{dim}\left(\Lambda^{n-k} \Gamma_{p}^{*} M\right)$
so that the spaces are isomorphic vectorspaces. If (M, g) is an oriented Riemannian manifold, there is a natural isomorphism given by the Hodge star operator $*: \Omega^{k} M \longrightarrow \Omega^{n-k} M$ that is defined pointwise as follows: Let $\theta_{n}, \ldots, \theta_{k}, \theta_{u r i}, \ldots, \theta_{n}$ a pasitively oriented ONB (w.r.t. the inner product induced by g) of $T_{p}^{*} M$. Then a linear $\operatorname{map} *: \Lambda^{k}\left(T_{p}^{*} M\right) \longrightarrow \Lambda^{n-k}\left(T_{p}^{*} M\right)$ is deffued by setting

$$
*\left(\theta_{1} \wedge \ldots \wedge \theta_{k}\right)=\theta_{k+1} \wedge \ldots \wedge \theta_{n}
$$

So if $\omega=\sum_{i_{1}<\ldots<i_{k}} \omega_{i_{1} \ldots i_{k}} \theta_{i_{1}} \wedge \ldots \wedge \theta_{i_{k}}$ then

$$
* \omega=\sum_{i_{1}<\ldots<i_{n}} \omega_{i_{1} \ldots i_{k}} \operatorname{sgn}(I, 3) \theta_{j_{1}} \wedge \ldots \wedge \theta_{s_{n-k}}
$$

where $j_{1}<\ldots<j_{n-k}$ is the complement of $i_{7}<\ldots<i_{n}$ in $\{1, \ldots, n\}$ and $\left.\operatorname{sgn}(I\},\right)$ the sign of the permutation $(1, \ldots, n) \mapsto\left(i_{1}, \ldots, i_{n}, j_{1}, \ldots, j_{n-k}\right)$. In this way, $* 1=\nu \in \Omega^{n} M$ is the Riemannian volume form.

Prop.: For any $f, g \in C^{\infty}(M)$ and $\omega, \eta \in \Omega^{4} \eta$ on an oriented Riem. M:
i) $*(f \omega+g \eta)=f(* \omega)+g(* \eta)$
ii) $* * \omega=(-1)^{k(n-k)} \omega$

Since both sides are non. degenerate bilinear.
iii) $\eta^{\wedge * \omega}=\omega \Lambda * \eta=\langle\omega, \eta\rangle \nu$ this uniquely characterizes (or defines) the Hodye-k (in a basis-independent way)
iv) $*(\omega \wedge * \eta)=*(\eta \wedge * \omega)=\langle\omega, \eta\rangle$
v) $\langle * \omega, * \eta\rangle=\langle\omega, \eta\rangle$
proof: We can consider all identities pointwise (i.e. at a $p \in M$)
i) linearity holds by deffuitron.
ii) If $\theta_{11}, \ldots, \theta_{n}$ is a pos.oriented $O N B$ of $T_{p}^{*} M$, then

$$
w_{p}=\theta_{1} \wedge \ldots \wedge \theta_{k} \Rightarrow * \omega_{p}=\theta_{k+1} \wedge \ldots \wedge \theta_{n} \quad \text { and }
$$

** $\omega_{p}=\sigma \theta_{1} \wedge \ldots \wedge \theta_{k}$ where σ is the sign of the
permutation $(k+1, \ldots, n, 1, \ldots, k)$. So $\sigma=(-1)^{k(n-k)}$
iii) Due to linearity it suffices do consider $\eta_{p}=\theta_{i_{1}} \wedge \ldots \wedge \theta_{i_{k}}$.

Thin $* \eta_{p}=\operatorname{sgn}(I, \xi) \theta_{j_{n}} \wedge \ldots \wedge \theta_{j_{n-k}}$ so that

$$
\begin{aligned}
& \underbrace{\left(\theta_{1} \wedge \ldots \wedge \theta_{k}\right)}_{\omega_{p} \wedge * \eta_{p}} \wedge * \eta_{p} \neq 0 \text { only if }\left\{i_{1}, \ldots, i_{k}\right\}=\{1, \ldots, k\} \text { for which } \\
&=\underbrace{\operatorname{sgn}_{n}^{\hat{i}}(I, \zeta)}_{=\operatorname{sgn}(I)} \underbrace{\theta_{1} \wedge \ldots \wedge \theta_{k} \wedge \theta_{k+1} \wedge \ldots \wedge \theta_{n}}_{=\nu_{p}}
\end{aligned}
$$

Here, $\operatorname{sgn}(I)$ is the sign of the permutation $\left(i_{11}, \ldots, i_{k}\right)$.
On the other hand, $\left\langle\omega_{p, 1} \eta_{p}\right\rangle=\left\langle\theta_{1} \wedge \ldots \wedge \theta_{k}, \theta_{i,} \wedge \ldots \wedge \theta_{i k}\right\rangle$

$$
=\operatorname{det}\left(\left\langle\Theta_{i}, \Theta_{i j}\right\rangle\right)_{i, j=1}^{k}=\operatorname{sgn}(I) .
$$

So, indeed, $\omega \wedge * \eta=\langle\omega, \eta\rangle \nu$ and using $\langle\omega, \eta\rangle=\langle\eta, \omega\rangle$ gives the second identity.
iv) $*(\omega \wedge * \eta) \stackrel{\text { (iii) }}{=} *(\langle\omega, \eta\rangle \nu) \stackrel{(i)}{=}\langle\omega, \eta\rangle * \nu \stackrel{\downarrow}{=}\langle\omega, \eta\rangle=\langle\eta, \omega\rangle=\ldots$
v) $\langle * \omega, * \eta\rangle \stackrel{(i v)}{=} *(* \omega \wedge * * \eta)_{(i)}^{(i)}(-1)^{k(n-k)} *(* \omega \wedge \eta)$

$$
=*(\eta \wedge * \omega)=\langle\eta, \omega\rangle
$$

Def.: For any $x \in \notin(M)$ on an oriented Riemannian manifold (M, g), the divergence is defined as $\operatorname{div} x:=* d * \psi(x)$ where $\psi(x) \in \Omega^{1} M$ is the 1 -form associted to x by g.
remarks: - div: $\notin(M) \longrightarrow C^{\infty}(M)$

- On standard \mathbb{R}^{n} we get for $x=\left.\sum_{i} f_{i}(p) \frac{\partial}{\partial x_{i}}\right|_{p}$ $\psi(x)=\sum_{i} f_{i}(p) d x_{i}$ so that

$$
\operatorname{div} x=* d \sum_{i} f_{i}(p)(-1)^{i+1} d x_{1} \wedge \ldots \wedge d \hat{x}_{i} \wedge \ldots \wedge d x_{n}
$$

$$
=\left.* \sum_{i} \frac{\partial}{\partial x_{i}}\right|_{p} f(p) \quad d x_{1}, \ldots \wedge d x_{n}
$$

$$
=\left.\sum_{i} \frac{\partial}{\partial x_{i}}\right|_{p} f_{i} \text { as expected. }
$$

- On standard \mathbb{R}^{3} we have $*\left(d x_{j} \wedge d x_{k}\right)=\sum_{i} \varepsilon_{i j k} d x_{i}$

Hence, $w=\sum_{i=1}^{3} f_{i} d x_{i}$ leads to

$$
* d w=\left.k \sum_{j k=1}^{3} \frac{\partial}{\partial x_{j}}\right|_{p} f_{k} d x_{j} \wedge d x_{k}
$$

$$
=\left.\sum_{i j k=1}^{3} \varepsilon_{i j k} \frac{\partial}{\partial x_{j}}\right|_{p} f_{k} d x_{i}
$$

$$
=\sum_{i=1}^{3}(\operatorname{curl} f)_{i} d x_{i}
$$

Alternative notations are calf \equiv rot $f \equiv \nabla \times f$. Note that for an n-dim. M we have $* d: \Omega^{n} \Pi \rightarrow \Omega^{n-2} M$

Def.: Let 14 be an oriented Ricmannian manifold.

- If M is compact and $\nu \in \Omega^{n} M$ denotes the Rem. volume form, we define the inner product $(\cdot, \cdot): \Omega^{k} \Pi \times \Omega^{k} \Pi \rightarrow \mathbb{R}$

$$
(\omega, \eta):=\int_{M}\langle\omega, \eta\rangle v=\int_{M} \omega \wedge * \eta=\int_{M} \eta \wedge * \omega \text { and }
$$

extend it to ΩM by setting $(\omega, \eta):=0$ for forms of different degree.

- We define the adjoint exterior derivative $d^{+}: \Omega^{k} M \rightarrow \Omega^{n-1} M$ as

$$
d^{+}:=(-1)^{k} *^{-1} d *=(-1)^{n(k+1)+1} * d *
$$

remarks: - we write $(\omega, \eta) \in \mathbb{R}$ to distinguish from $\langle\omega, \eta\rangle \in C^{\infty}(M)$.

- Note that (ω, η) requires compact M or at least that the supports of w and η have compact overlap.
- For a Lorentz manifold, (.,.) would not be an inner product.
- The Hodge - $*$ is an isometry w.r.t. (...) since $\left(* \omega_{1} * \eta\right)=(\omega, \eta)$
- By definition the following diagram commutes:

- This implies $* d^{+}=(-1)^{k} d *$, and $d^{+} d^{+}=0$
- The name 'adjoint' is justified due to:

Prop.: d and d^{t} are mutual adjoint w.r.t. (\cdot, \cdot). That is, $\forall \omega, \eta \in \Omega M$:

$$
(d w, \eta)=\left(w, d^{+} \eta\right) .
$$

proof: Suppose $\omega \in \Omega^{n} \Pi, \eta \in \Omega^{k+1} \Pi$. Then

$$
d w \wedge * \eta=d(\omega \wedge * \eta)-(-1)^{k} \omega \wedge d * \eta=d(\omega \wedge * \eta)+w \wedge * d^{\dagger} \eta
$$

So $\int_{\Pi}(d \omega, \eta)=\underbrace{\int_{\Pi} d(\omega \wedge * \eta)}+\int_{\Pi} \omega \wedge * d^{+} \eta=\left(\omega, d^{+} \eta\right)$.

$$
=0 \text { by stokes as } \partial M=\varnothing
$$

remarks: $\left(d_{k}\right)^{\dagger}: \Omega^{k+1} M \rightarrow \Omega^{k} M$ is adjoint to $d_{k}: \Omega^{k} M \rightarrow \Omega^{k+1} M$ and similar to $\pm d_{n-k-1}$.

- We can now formulate the remaining/inhomogenevns Maxwell equation (s) simply as $d^{+} F=j$. In ordinary components this is $\nabla \cdot \vec{E}=\rho$ and $\nabla \times \vec{B}-\frac{\partial \vec{E}}{\partial t}=\vec{j}$.

Def.: For an oriented Riemannian manifold M the
Laplace-Beltrami operator $\Delta: \Omega^{k} M \rightarrow \Omega^{k} M$ is defined as

$$
\Delta:=\left(d+d^{+}\right)^{2}=d d^{+}+d^{+} d=d_{k-1} d_{k-1}^{+}+d_{k}^{+} d_{k}
$$

remarks: \quad For $K=0$ we have $\Delta: C^{\infty}(M) \rightarrow C^{\infty}(M)$:

So $\Delta=-$ divograd on $C^{\infty}(M)$.

- For standard \mathbb{R}^{n} this gives:

$$
\Delta f=-\left.\operatorname{div} \sum_{i=1}^{n} \frac{\partial}{\partial x_{i}}\right|_{p} f d x_{i}=-\left.\sum_{i=1}^{n} \frac{\partial^{2} f}{\partial x_{i}^{2}}\right|_{p}
$$

(note that there are different conventions concerning the sign in the defrustion of Δ. We chose Δ positive.)

- On compact M (where (\cdot, \cdot) is defined) Δ is selfadjoint

$$
((\Delta w, \eta)=(w, \Delta \eta)) \text { and positive }((w, \Delta w) \geqslant 0) \text {. }
$$

Def.: The space of harmonic k-forms on an oriented Diem. manifold is defined as $\mathcal{C}^{k} \Pi:=\left\{\omega \in \Omega^{k} M \mid \Delta \omega=0\right\}$.

Thu.: Let M be a compact, oriented Riemannian manifold and $w \in \Omega^{k} M$.
Then $\Delta \omega=0 \Leftrightarrow \quad\left(d_{k} \omega=0\right.$ and $\left.d_{k-1}^{+} \omega=0\right)$
(In words: a differential form is harmonic of it is closed and 'co-closed'.)
proof: ' \notin ' is obvious from the definition.

$$
\begin{aligned}
& \\
&{ }^{\prime} \Rightarrow^{\prime}: \Delta \omega=0 \Rightarrow 0=(\omega, \Delta \omega)=\left(\omega, d d^{+} w\right)+\left(w, d^{+} d w\right) \\
&=\underbrace{\left(d^{+} \omega, d^{+} w\right)}_{\text {positive definite! }}+\underbrace{(d w, d w)} .
\end{aligned}
$$

Lemma: $\Delta *=* \Delta$. In particular, $\left.\omega \in)^{k} \Pi \Rightarrow * \omega \in\right)^{n \cdot k} M$.
proof: \rightarrow exercise.

With $\Omega^{k} M \underset{d_{k}^{\dagger}}{\stackrel{d_{k}}{\rightleftarrows}} \Omega^{k+1} M$ the adjointness leads within $\Omega^{k} M$ to :

$$
\operatorname{ker}\left(d_{k}\right)=\operatorname{lm}\left(d_{k}^{+}\right)^{\perp} \text { and } \operatorname{ker}\left(d_{k-1}^{+}\right)=\operatorname{lm}\left(d_{k-1}\right)^{\perp}
$$

Would $\Omega^{k} M$ be finite-dim., we could argue that

$$
\Omega^{u} M=\operatorname{ker}_{e \sigma} d_{u} \oplus \lim d_{u}^{+}=\operatorname{ker}\left(d_{u-1}^{\dagger}\right) \oplus \operatorname{lm}\left(d_{k-1}\right)
$$

and since $\operatorname{lm}\left(d_{k-1}\right) \leqslant \operatorname{ker}\left(d_{k}\right)$ also that

$$
\operatorname{ker} d_{u}=\operatorname{lm}\left(d_{k-1}\right) \oplus \underbrace{\operatorname{ker}\left(d_{u}\right) \cap \operatorname{ker}\left(d_{k-1}^{+}\right)}_{=-^{k M}}
$$

In fact, the following is true:

Thu.: [Hodge decomposition] For an oriented, compact
Riemannian manifold, $\left.\operatorname{dim}()^{k} M\right)<\infty$ and

$$
\left.\Omega^{k} M=\ln \left(d_{k-1}\right) \oplus \operatorname{lm}\left(d_{k}^{+}\right) \oplus\right)^{k} \Pi
$$

i.e., $\Omega^{k} M$ decomposes into subspaces $d \Omega^{k-1} M \oplus d^{+} \Omega^{k+1} M \oplus 7^{k} M$ that are orthogonal w.r.t. $(\omega, \eta)=\int_{\square} \omega \wedge * \eta$.
proof: l.g. the above argument only shows that

$$
\left.\Omega^{k} M \geq d \Omega^{k-1} M \oplus d^{+} \Omega^{k+1} M \oplus\right)-C^{k} M .
$$

' =' is much harder to prove and requires some theory on 'elliptic TOEs'....
remark: $\left.\quad \Omega^{k} M=d \Omega^{k-1} M \oplus d^{+} \Omega^{k+1} M \oplus\right)-c^{k} M$ means that every k-form has a unique decomposition into an exact form, a dual exact form and a harmonic form.

For 3-dim. manifolds this becomes the Helmholtz decomposition by which each vector freed is the sum of a gradient field, a col field and a harmonic freed. In particular, there exists a decomposition into a 'divergence-free' and a 'cwe-free' part.

de Ram cohomology

Def.: Let M be an n-dim. smooth manifold and $p \in\{0, \ldots, n\}$. We define the $p^{\prime t h}$ de Ream cohomology group of M as the quotient vector space $H_{\Omega}^{p}(M):=\frac{\operatorname{ker}\left(\alpha_{p}\right)}{\operatorname{lm}\left(\alpha_{p-1}\right)}=\frac{\{\text { closed } p \text {-forms }\}}{\{\text { exact } p \text {-forms \}}}$
and $H_{\Omega}^{p}(M):=\{0\}$ for $p \in \mathbb{Z} \backslash\{0, \ldots, n\}$. For any closed form $\omega \in \Omega^{p} M$ we denote $[\omega]$ the corresponding equivalence class, called cohomology class of ω. That is, $[\omega]=[\tilde{\omega}] \Leftrightarrow \omega-\tilde{\omega}$ is exact.
If M is compact, we define the $p^{\prime}+h$ Betti number as

$$
\beta_{p}:=\operatorname{dim} H_{\Omega}^{p}(M)
$$

Examples: - $H_{\Omega}^{\circ}(M)=\frac{\left\{f \in C^{\infty}(M) \mid d f=0\right\}}{\{0\}}=\{$ locally cost. func.s on $M\}$

$$
\text { So } \beta_{0}=\# \text { connected components }
$$

- For $M=\mathbb{R}^{2} \backslash\{0\}$ or $M=S^{1}$ the 1 - form $\omega:=\frac{x d y-y d x}{x^{2}+y^{2}} \equiv d \theta$

$$
\text { is closed but wot exact I since } \omega=d \eta \text { would imply }
$$

$$
\left.\int_{s^{\prime}} \omega=0 \neq 2 \pi\right) \text {. So } H_{\Omega}^{1}(M) \neq\{0\} \text {. }
$$

- More generally, if M is closed and crientable, then there is an orimitation form that is closed but not wack. So $H_{\Omega}^{n}(M) \neq\{0\}$ for $n:=\operatorname{dim}(M)$. Note that its cohomology class $[\omega]$ is all that is 'seen' by the integral $\int_{M} \omega$ since if $\omega^{\prime}=\omega+d \eta$, then $\int_{M} \omega^{\prime}=\int_{M} \omega+\underbrace{\int_{M} d \eta}_{=0 \text { by Stokes }}$.

Def: If $F: M \rightarrow N$ is smooth, then the pullback $F^{*}: \Omega^{k} N \rightarrow \Omega^{k} M$ induces a map $F^{*}: H_{\Omega}^{k}(N) \rightarrow H_{\Omega}^{k}(T)$ defined as $F^{*}[\omega]:=\left[F^{*} \omega\right]$.
remarks: - recall that the pullback commutes with the exterior deriuntive and thus preserves closedness/exactuess of forms. So if $\omega^{\prime}=\omega+d \eta$, then $\left[F^{*}(\omega+d \eta)\right]=\left[F^{*} \omega+F^{*} d \eta\right]=\left[F^{*} \omega+d F^{*} \eta\right]=\left[F^{*} \omega\right]$ is well-defined between cohomology classes.

- The assignment $(M, F) \mapsto\left(H_{\Omega}^{k}(M), F^{*}\right)$ is a contravaisant functor from the category of smooth manifolds and smooth maps to the category of real vector spaces and linear maps.
- The 'contra' (as opposed to 'co'-) refers to a reversal of direction -f composition, namely: $(F \circ G)^{*}=G^{*} \circ F^{*}$ This is also the distinction between 'cohomology' (contravariant) and 'homology' (covariant).

Thu.: Let M be smooth, $\pi: M \times \mathbb{R} \rightarrow M,(p, t) \mapsto p$ and $i: M \rightarrow M \times \mathbb{R}$, $p \mapsto(p, 0)$. Then
(i) There are linear maps $\phi_{k}: \Omega^{k}(\Pi \times \mathbb{R}) \rightarrow \Omega^{k-1}(\Pi \times \mathbb{R})$ s.t.

$$
i d-\pi^{*} \cdot i^{*}=d \cdot \phi_{k}+\phi_{k+1} \cdot d \quad \text { on } \Omega^{k}(\Pi \times \mathbb{R}) \text {. }
$$

(ii) $\pi^{*}: H_{\Omega}^{k}(H) \rightarrow H_{\Omega}^{k}(M \times \mathbb{R})$ is an isomorphism with inverse i^{*}.
proof: (ii) $\pi \circ i=i d_{\pi}$ implies $i^{*} \circ \pi^{*}=$ id so that it remains to show that $\pi^{*} \cdot i^{*}=$ id on $H_{\Omega}^{k}(M \times \mathbb{R})$. Since $d \circ \phi+\phi \circ d$ maps closed forms to exact forms it maps $H_{\Omega}^{k}(M \times \mathbb{R}) \geqslant[\omega] \mapsto[0]$. Due to (i) this implies id $=\pi^{*} \cdot i^{*}$.
(i) [Sketch]

We can write $\omega \in \Omega^{k}(\Pi \times \mathbb{R})$ in local coordinates as
$\omega_{p}=\tilde{w}_{p}+\sum_{i_{1}<\ldots<i_{k-1}} m_{i_{1}} \ldots i_{k}(p) d t \wedge d x_{i_{1}} \wedge \ldots \wedge d x_{i_{k-1}}$
where t is the coordinate corresponding to $\mathbb{R}, p=(x, t)$
and $\tilde{\omega}$ does not depend on $d t$. Then

$$
\left(\phi_{k} \omega\right)_{p}=\sum_{i_{1}<\ldots<i_{k-1}} \int_{0}^{t} m_{i_{1} \ldots i_{k}}(x, \tau) d \tau d x_{i_{\imath}} \wedge \ldots \wedge d x_{i_{k-1}}
$$

can be shown to have the desired proputies.

Def.:- $f, g \in C(x, y)$ between top. spaces x, y are called homotopic ($f \simeq g$) if there is $F \in C(x \times[0,1], y)$ s.t. $F(\cdot, 0)=f_{1} F(\cdot, 1)=g$.

- Two top. spaces x, y are called homotopy equivalent $(x \simeq y)$ if there are continuous maps $X \underset{G}{\stackrel{F}{\rightleftarrows}} y$ s.t. $F \cdot G_{G} \simeq i d y$ and $G \circ F \simeq i d_{x}$.
remarks: - If x, y we homeomorphic, then they are homotopy equiv. However, $S^{1} \simeq \mathbb{R}^{2} \backslash\{0\}$ (using $F(x)=\frac{x}{\|x\|}$ and $G: S^{1} \pm \times \mapsto x \in \mathbb{R}^{2} \backslash\{0\}$)
- By Whitney's approximation the. every cont. map between smooth manifolds is homotopic to a smooth map. Moreover, homotopic smooth maps we 'smoothly homotopic' (i.e. $F \in C^{\infty}$).

The: [Homotopy invariance of de Cham cohomology] For any $k \in N_{0}$:

1) If $f, g: M \rightarrow N$ are homotopic smooth maps, then the induced maps $f^{*}=g^{*}: H_{\Omega}^{k}(n) \longrightarrow H_{\Omega}^{k}(n)$ we identical.
2) If $M_{1} N$ we homotopy equivalent smooth manifolds, then $H_{\Omega}^{k}(M) \simeq H_{\Omega}^{k}(N)$ are isomorphic.
proof: 1) By Whitney's approx, then, there is a smooth map $F: M \times \mathbb{R} \rightarrow N$
s.t. $F(, 0)=f$ and $F(-, \eta)=g$. With $i_{t}: M \rightarrow M \times \mathbb{R}, i_{t}(p):=(p, t)$
we have $f=F \cdot i_{0}, g=F \cdot i_{1}$ and $i_{0}^{*}=\pi^{*-1}=i_{1}^{*}$. So
$f^{*}=i_{0}^{*} \circ F^{*}=i_{0}^{*} \circ \cdot \pi^{*-1} \circ i_{n}^{*} \circ F^{*}=i_{n}^{*} \circ F^{*}=g^{*}$.
3) There we smooth maps $M \underset{G}{\stackrel{F}{\rightleftarrows}} N$ s.t. $F \circ G \simeq i d{ }_{N}$ and $G \circ F \simeq i d_{M}$. According to 1) the induced maps satisfy $F^{*} \circ G^{*}=$ id and $G^{*} \circ F^{*}=$ id . So $F^{*}: H_{\Omega}^{k}(N) \rightarrow H_{\Omega}^{k}(M)$ is an isomorphism.

Example: By induction on n we get:

$$
H_{\Omega}^{k}\left(\mathbb{R}^{n}\right)=H_{\Omega}^{k}(\{0\})= \begin{cases}\mathbb{R}, & k=0 \\ \{0\} & k>0\end{cases}
$$

Corollary: [Poincare Lemma] If M is a smooth mani fold that is contractable (i.e. homotopy equivalent to a point, e.g. star-shaped in $\left.\mathbb{R}^{n}\right)$, then $\beta_{k}=\left\{\begin{array}{l}1, k=0 \\ 0, k \neq 0\end{array}\right.$.
\rightarrow Every closed form is exact on any contractable domain.

Thu.: [Hodge thm.] For a compact, oriented smooth manifold M:
$H_{\Omega}^{P}(M) \simeq H^{P} M$ are isomorphic vector spaces. In particular, $\beta_{p}<\infty$. (this holds for any Riem. metric underlying J-liM)
proof: This follows from the Hodge decomposition: Consider the linear map $\quad-C^{P} \Pi \ni \omega_{H} \longmapsto\left[\omega_{H}\right] \in H_{\Omega}^{P}(\Pi)$. This is infective since $\left[\omega_{H}\right]=\left[\tilde{\omega}_{H}\right] \Leftrightarrow \omega_{H}=\tilde{\omega}_{H 1}+d \eta$, by uniqueness of the Hodge decomposition, implies $d \eta=O$ (alternatively: $\left.0=d^{+}(\omega-\tilde{\omega})=d^{+} d \eta \Rightarrow\left\|d_{\eta}\right\|^{2}=0\right)$ It is also swjective since for any closed $\omega=\omega_{H}+d \eta+d^{+} \theta$ we have $0=d \omega=d d^{+} \theta$ so that $\left(\theta, d d^{+} \theta\right)=\left\|d^{+} \theta\right\|^{2}=0$ and thus $d^{+} \theta=0$. Hence, $[\omega]:\left[\omega_{H}\right]$.

Thu.: [Poincaré duality] Let M be a compact, oriented
smooth manifold of dimension n. Then for any $k \in\{0, \ldots, n\}$ $([\omega],[\eta]) \longmapsto \int_{M} \omega \wedge \eta$ defines a non-degenerate bilinear map $H_{\Omega}^{k}(M) \times H_{\Omega}^{n-k}(H) \rightarrow \mathbb{R}$ and thus an isomorphism $H_{\Omega}^{n-k}(M) \simeq H_{\Omega}^{k}(M)^{*}$. In particular, $\beta_{n-k}=\beta_{k}$.
proof: First note that $\int_{M} w \wedge \eta$ does only depend on the cohomology classes $[\omega]$ and $[\eta]$ since

$$
\begin{aligned}
\int_{M}(\omega+d \alpha) \wedge(\eta+d \beta) & =\int_{M} \omega \wedge \eta+d \alpha \wedge \eta+w \wedge d \beta+d \alpha \wedge d \beta \\
& =\int_{M} w \wedge \eta+\int_{\eta}+\underbrace{\int_{M} d\left(\alpha \wedge \eta+(-1)^{k} w \wedge \beta+\alpha \wedge d \beta\right)}_{=0}
\end{aligned}
$$

Next, we show that it is non-degenerate, i.e., that for every $[\omega] \neq 0$ there is a closed η s.t. $\int_{M} w 1 \eta \neq 0$. By the Hodge thm. we can choose $\omega \neq 0$ harmonic (w.r.t. any Rim. metric). Then $\eta:=* w$ is closed since $\Delta \eta=\Delta * \omega=* \Delta \omega=0$ and $\int \omega \wedge \eta=\|\omega\|^{2} \neq 0$.
Consequently, the dim. of $H_{\Omega}^{n-k}(M)$ is at least as large as the one of the dual space $\left(H_{\Omega}^{k}(M)\right)^{*}$. As the same argument also works in the other direction, the spaces are isomorphic.
example: For $M=S^{1}$ we obtain $\beta_{1}=\beta_{1-1}=\beta_{0}=1$.
poincare duality connected

Corollary: If $m>n$, then \mathbb{R}^{m} and \mathbb{R}^{n} are not homeomorphic.
proof: If $f: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ were a homeomorphism, then $\mathbb{R}^{m} \backslash\{0\} \simeq S^{m-1}$ and $\mathbb{R}^{n} \backslash\{\varphi(0)\} \simeq S^{n-1}$ would be homotopy equivalent. Howler, $\beta_{m-1}\left(s^{m-1}\right): \beta_{0}\left(s^{m-1}\right)=1 \neq \beta_{m-1}\left(s^{n-1}\right)=0$.

Corollary: Let M be a closed smooth n-dim. manifold

$$
\beta_{k}:=\operatorname{dim}\left[H_{\Omega}^{k}(M)\right] \text { and } \chi(M):=\sum_{k=0}^{n}(-1)^{k} \beta_{k}
$$

its Euler characteristic.
If n is odd, then $\chi(m)=0$.
proof: (for orientable manifolds. The non-orientable case can be reduced to the orientable one by considering a double cover. See e.g. [Morita].)

$$
\chi(\sqcap)=\sum_{k=0}^{n}(-1)^{k} \beta_{k}=\frac{1}{2} \sum_{k}((-1)^{k} \beta_{k}+\underbrace{(-1)^{n-k}}_{-(-1)^{k}} \underbrace{\beta_{n-k}}_{\beta_{k}})=0
$$

Corollary: If M is an orientable, connected closed smooth 2-dim. manifold, there is a $g \in \mathbb{N}_{0}$ (called the genus of the surface) sit. $\quad \operatorname{dim} H_{\Omega}^{1}(M)=2 g \quad$ and

$$
x(17)=2-2 g
$$

proof: $H_{\Omega}^{1}(\Pi) \times H_{\Omega}^{1}(\eta) \rightarrow \mathbb{R},([\omega],[\eta]) \mapsto \int_{\Pi} \omega \wedge \eta$ is a nou-degenerate bilinear form that is anti-symmetric. W.r.t. any basis of $H_{\Omega}^{1}(M)$ we can represent it by a matrix $A:-A^{\top} \in \mathbb{R}^{\beta_{n} \times \beta_{n}}$ that has to be inurtible. So $O \neq \operatorname{det}(A)=(-1)^{\beta_{n}} \operatorname{det}(A)$. which implies $\beta_{n} \in 2 \cdot N_{0}$.

Connectedness implies $\beta_{0}=1$ and Poincare duality $\beta_{2}=1$. So $x(M)=1-2 g+1$.
remarks:- Connected, orientable closed 2-dim. manifolds are completely characterized (up to homeomorphisms) by their genus:

Lemma: For any smooth manifold M and $\omega \in \Omega^{1} M$
ω exact $\Leftrightarrow \int_{S^{1}} \gamma^{*} \omega=0 \quad \forall \gamma \in C\left(S^{n}, M\right)$ piecewise C^{∞}
remark: this means that a vector field is a 'gradient field' if it is 'conservative'.
 define $f(p):=\int_{[0,1]} \gamma^{*} \omega$. This does not depend on the specific curve γ between p_{0} and p since

$$
\int_{\gamma_{1}[0,1]} w-\int_{\gamma_{2}[0,1]} \omega=0 \text { by assumption. }
$$

f turns out to be smooth and s.t. $d f=\omega$.

Lemma: Let S be an n-dim. oriented closed manifold and Ma smooth manifold. Then

$$
\left.\begin{array}{l}
\gamma_{0}, \gamma_{1} \in C^{\infty}(S, M) \text { homotopic } \\
\text { and } \omega \in \Omega^{n} M \text { closed }
\end{array}\right\} \Rightarrow \int_{s} \gamma_{0}^{*} \omega=\int_{s} \gamma_{i}^{*} \omega \text {. }
$$

proof: If $F \in C^{\infty}(S \times[0,1], M), F(\cdot, t)=\alpha_{t}$ is the homotopy and we choose the orientation s.t. " $\partial\left(S_{\times}[0,1\}\right)=S_{k}\{0\}-S_{\times}\{n\}$ ", then

$$
O \stackrel{d \omega=0}{\stackrel{\downarrow}{\bullet}} \int_{S \times[0,1]} F^{*} d \omega=\int_{S \times[0,1]} d F^{*} \omega \underset{S}{i}=\int_{S \text { Soke }} \gamma_{0}^{*} \omega-\int_{s} \gamma_{1}^{*} \omega .
$$

Def.: A topological space X is called simply connected if it is path-connected and every $f \in C\left(S^{1}, x\right)$ is homotopic to a constant map $S^{1} \ni \times \mapsto p_{0} \in X$.
remark: for a smooth manifold we can w.l.o.g. assume $f \in C^{\infty}$.

not simply connected
simply connected
Thu.: $H_{\Omega}^{1}(M)=\{0\}$ for any simply connected smooth manifold M.
proof: For any $p \in M$, every (piecewise) smooth loop $\gamma: s^{1} \rightarrow M$ is homotopic to $s^{1} \exists x \mapsto p$. By the second Lemma, $\int_{S^{\prime}} \gamma^{*} \omega=0$ if $\omega \in \Omega^{7} \Pi$ is closed. By the frost Lemma, this implies that w is exact.

Singular homology

Def.: The convex hull of $n+1$ affinely independent points v_{0}, \ldots, v_{n} is called
an n-simplex, notated as $\sigma=\left(v_{0}, \ldots, v_{n}\right)$. The standard n-simplex is $\Delta^{n}:=\left\{\sum_{i=0}^{n} x_{i} e_{i} \in \mathbb{R}^{n+1} \mid \sum_{i=0}^{n} x_{i}=1, x_{i} \neq 0\right\}$ with $\left\{e_{i}\right\}_{i=0}^{n} \subseteq \mathbb{R}^{n+1}$ the standard basis.

- The $n-1$ simplex $\left(v_{0}, \ldots, \hat{v}_{i}, \ldots, v_{n}\right)$ obtained from an n-simplex $\left(v_{0}, \ldots, v_{1}\right)$ by omitting the ith vertex is called its i'th face.
- We define $\varepsilon_{i}^{n}: \Delta^{n-1} \rightarrow \Delta^{n}$ as the linear map that maps Δ^{n-1} onto the isth face of Δ^{n}.
for $n=2$:

Def.: - Let X be a topological space. A singular n-simplex is a cont.
$\operatorname{map} \sigma: \Delta^{n} \rightarrow X$. A singular n-chain is a formal linear combination $c=\sum_{\sigma} c_{\sigma} \sigma$ of singular n-simplices with coefficients c_{σ} in an abelian group G.

- If M is smooth manifold, we denote by $C_{n}(M)$ the real vector space ('free \mathbb{R}-module') of smooth singular n-chains with $G=\mathbb{R}$ and by $\partial_{n}: C_{n}(M) \rightarrow C_{n-1}(M)$ the boundary operator defined on a singular n-simplex as $\quad \partial_{n}(\sigma):=\sum_{i=0}^{n}(-1)^{i} \sigma 0 \varepsilon_{i}^{n}$
examples: - every triangulation

$$
\begin{aligned}
& \text { corresponds to a singular } \\
& \text { n-chain, where each } \\
& \text { 'friance'/simplex corresponds } \\
& \text { to one summand in } \sum_{\sigma} c_{\sigma} \sigma \\
& \text { with } c_{\sigma}=1 \text {. }
\end{aligned}
$$

- $\xrightarrow{\partial}$.

Lemma

$$
\partial_{k-1}^{0} \partial_{k}=0 .
$$

proof: $\partial_{k-1} \partial_{k} \sigma=\partial\left(\sum_{i}(-1)^{i} \sigma \circ \varepsilon_{i}^{k}\right)=\sum_{i, j}(-1)^{i+j} \sigma \circ \varepsilon_{i}^{k} \circ \varepsilon_{j}^{k-1}$

$$
=\sum_{i \leqslant j}(-1)^{i+j} \sigma \circ \varepsilon_{i}^{k} \circ \varepsilon_{j}^{k-1}+\sum_{j<i}(-1)^{i+j} \sigma \circ \varepsilon_{i}^{k} \circ \varepsilon_{j}^{k-1}
$$

In the second sum we can use that $\varepsilon_{i}^{k} \cdot \varepsilon_{j}^{n-1}=\varepsilon_{j}^{k} \cdot \varepsilon_{i-1}^{k-1}$ if $j^{<i}$ and thus replace it by $\sum_{j<i}(-1)^{i+j} r \circ \varepsilon_{j}^{k} \cdot \varepsilon_{i-1}^{k-1}$

$$
=-\sum_{i \in j}(-\eta)^{n+j} r 0 \varepsilon_{i}^{k} \cdot \varepsilon_{j}^{k-1} .
$$

replace $;$ by i and i by $j+1$
Def.: A singular k-chain $\sigma \in C_{k}(M)$ is called - a cycle if $\partial_{\sigma}=0$.

$$
\text { (think of 'loops' for } k=1 \text { and deformed spheres } s^{k} \text { in general) }
$$

- a boundary if $\exists \tilde{\sigma} \in C_{k+1}(M): \partial \tilde{\sigma}=\sigma$
- For $\omega \in \Omega^{k}(M)$ and $c=\sum_{\sigma} c_{\sigma} \sigma \in C_{n}(M)$ we define:

$$
\int_{c} \omega:=\sum_{\sigma} c_{\sigma} \int_{\Delta^{k}} \sigma^{*}(\omega)
$$

Thu.: (Stokes' theorem on chains) If M is a smooth manifold, $c \in C_{k}(M)$, and $\omega \in \Omega^{k-1}(M)$ then $\int_{\partial c} \omega=\int_{c} d \omega$.

Def.: For the chain complex $C_{n}(M) \xrightarrow{\partial_{n}} C_{n-1}(M) \xrightarrow{\partial_{n-1}} \ldots \xrightarrow{\partial_{n}} C_{0}(M) \xrightarrow{\partial_{0}} 0$ we define the k-th singular homology group:

$$
H_{n}(M, \mathbb{R}):=\frac{\text { her } \partial_{k}}{\operatorname{lm} \partial_{k-1}}=\text { 'cycles mod boundaries' }
$$

For a cycle $c \in C_{k}(M)$ the equivalence class $[c] \in H_{k}(M, \mathbb{R})$ is called its homology class and $c \sim c^{\prime}: \Leftrightarrow c=c^{\prime}+\partial \tilde{c}$.
remark: 1.g. a chain complex is a sequence of homomorphisms between abelian groups (or moduls) s.t. $\partial_{k} \cdot \partial_{k+1}=0$.

Note that for a cycle $c \in C_{k}(M)$ and a closed form $w \in \Omega^{k}(M)$ the integral $\int_{c} \omega$ only depends on $[c] \in H_{k}(H, \mathbb{R})$ and $[\omega] \in H_{\Omega}^{k}(H)$
since

$$
\begin{array}{r}
\int_{c+\partial \tau}(\omega+d \eta)=\int_{c} \omega+\underbrace{\int_{\partial c} d(w+d \eta)=0 \quad \int_{c}^{\prime \prime}=0 .}_{\underbrace{}_{\tilde{c}} w \underbrace{\int_{\tilde{c}}(w+d \eta)}+\underbrace{\int_{c}^{\prime \prime} d \eta} .} .
\end{array}
$$

Consequently, there is a bilinear form $H_{k}(\Pi, \mathbb{R}) \times H_{\Omega}^{k}(M) \rightarrow \mathbb{R}$ given by $\quad([c],[\omega]) \mapsto \int_{c} \omega$. With quite some effort this can be shown to be non-degenerate, which then proves:

Thu.: (de Ram's tho.) The map $H_{\Omega}^{k}(M) \rightarrow H_{k}(M, \mathbb{R})^{k}$ given by $[\omega] \mapsto\left([c] \mapsto \int_{c} \omega\right)$ is a vectorspace isomorphism:

$$
H_{\Omega}^{k}(M)=H_{k}(M, \mathbb{R})^{t}
$$

remark: due to the duality, closed forms are also called cocycles and exact forms are called coboundaries.

Corollary: 1) $\omega \in \Omega^{k}(M)$ is closed $\Leftrightarrow \forall c \in C^{k+1}(M): \int_{\partial c} \omega=0$
2) $\omega \in \Omega^{k}(17)$ is exact $\Leftrightarrow \forall$-cycles $c: \int_{c} \omega=0$
proof: 1) If $d \omega=0$, then $\int_{\partial c} \omega=\int_{c} d \omega=0$.
If $d \omega=\eta \neq 0$, then there is a $p \in M$ and $v_{1}, \ldots, v_{k+1} \in T_{p} M$ s.t. $\eta_{p}\left(v_{1}, \ldots, v_{k+1}\right)>0$. Hence, there is a chart (u, x) around p in which $\eta_{q}\left(\left.\frac{\partial}{\partial x_{1}}\right|_{q}, \ldots,\left.\frac{\partial}{\partial x_{k+1}}\right|_{q}\right)>0 \quad \forall q \in U$. So if $\sigma: \Delta^{k+1} \rightarrow u$ is chosen s.t. $x \circ \sigma$ embeds Δ^{k+1} approprietly into the coordinate plane $\left\{y \in \mathbb{R}^{\operatorname{dim}(n)} \mid y_{i}=0 \forall i=k+1\right\}$, then

$$
\int_{\partial c} \omega=\int_{c} d \omega=\int_{\Delta^{u+1}} \sigma^{*}(\eta) \neq 0 .
$$

2) If $\omega=d \eta$ then $\int_{c} d_{\eta}=\int_{\partial c} \eta=0$ since $\partial c=0$. Conversely, if $[\omega] \neq 0$, then by de Rhain's the. there must be a $[c] \in H_{k}(M, \mathbb{R})$ s.t. $\int_{c} w \neq 0$.
