Differential forms

(Lecture by Prof. Dr. M.M. Wolf, 23/24 @ TUM)

Motivation & outlook (p2)

Topological manifolds (p5)

Smooth manifolds & maps (p7)

smooth partition of unity (p9)

Tangent spaces (p10) equivalence of definitions (p14) differential (p15) tangent bundle (p17)

Alternating multilinear maps (p18) exterior product (p22)

Differential forms on manifolds (p24)

Grassmann algebra (p26) pullback (p27) exterior derivative (p30)

Vector fields (p33) Lie brackets (p34)

Orientation (p36)

Manifolds with boundary (p39)

Integration on manifolds (p42)

Stokes' thm. (p45) No retraction thm. & Brower's fixed point thm. (p48) vector analysis in R3 (p49)

Riemannian & Lorentzian manifolds (p51)

Hodge theory (p57)

adjoint exterior derivative (p60) Laplace-Beltrami operator (p61) Hodge decomposition (p63)

De Rham cohomology (p64)

functoriality (p65) homotopy invariance & Poincaré Lemma (p67) Hodge thm. & Poincaré duality (p68) Euler characteristic (p69) genus (p70) simply connected manifolds (p72)

Singular homology (p73)

Stokes' thm. on chains, chain complex, homology groups (p75) de Rham's thm. (p76)

Lecture on differential forms

Motivation & outbook

From vector calculus we know (for $U \in \mathbb{R}^3$ open):

$$C^{\infty}(u) \xrightarrow{\operatorname{grad}} C^{\infty}(u, \mathbb{R}^3) \xrightarrow{\operatorname{rot}} C^{\infty}(u, \mathbb{R}^3) \xrightarrow{\operatorname{div}} C^{\infty}(u)$$

Moreover, $(rot grad v)_i = \sum_{jk} \epsilon_{ijk} \partial_j \partial_k v = 0$ $= \nabla \times \nabla v$ Schwarz's theorem and div rot $v = \sum_{jk} \partial_j \epsilon_{ijk} \partial_j v_k = 0$ $= \nabla \cdot \nabla \times v$

This is generalized to m-dim. smooth manifolds by the de Rham complex:

$$C^{\infty}(H) = \mathcal{N}^{\circ}\Pi \xrightarrow{d_{1}} \mathcal{N}^{\circ}\Pi \xrightarrow{d_{2}} \mathcal{N}^{\circ}\Pi \xrightarrow{d_{3}} \dots \xrightarrow{d} \mathcal{N}^{\circ}\Pi \simeq C^{\infty}(H)$$

where d is the exterior drivative for which $d \circ d = 0$ and $\mathcal{R}^{k} \mathcal{M}$ is the space of differential k-forms on \mathcal{M}_{-} Since rot grad = 0 and divrot = 0 we know that $lm(grad) \in kw(rot)$, $lm(rot) \in ker(div)$ we (infinite dimensional) linear subspaces. So we can define the quotient spaces $H^{2}(u) := \frac{ker(rot)}{lm(grad)}$ $H^{2}(u) := \frac{ker(div)}{lm(rot)}$

If U is starshaped (or, more general, contractible), then the spaces coincide so that $H^{2}(U) = \{0\} = H^{2}(U)$. In genual, however, this is not true. E.g. for $U = \mathbb{R}^{2} \setminus \{\frac{1}{2}, \dots, \frac{1}{2}_{K}\}$ dim $(H^{2}(U)) = K$. Somehow, these spaces 'count holes'.

Similarly, for smooth manifolds $H^{k}(M) := \frac{ker d_{k}}{Im d_{k-1}}$ defines the k'th de Rham cohomology group. Remarkably, the k'th Belti number $\dim_{\mathbb{R}}(H^{k}(M)) := \beta_{k}$ is finite (for compact M) and a topological invariant (i.e. it does not depend on the differentiable structure).

Excursion: Consider a triangulation of a manifold to which we apply the boundary operator d. This acts as follows:

In fact
$$\partial \circ \partial = 0$$
 holds in general for the chain complex
 $\cdots \stackrel{\partial_{r-1}}{\leftarrow} C_{r-1}(M) \stackrel{\partial_{r}}{\leftarrow} C_{r}(M) \stackrel{\partial_{r+1}}{\leftarrow} C_{r+1}(M) \stackrel{\partial_{r-1}}{\leftarrow} \cdots$
space of (images of) r-simplexes

As
$$\partial_r$$
 is linear, we can again define $H_r(M) := \frac{k(r(\partial_r))}{Im(\partial_{r+1})}$,
the (singular) homology group.

By de Rham's theorem $H_r(H) \cong H^r(H)$ are dual vector spaces and ∂ and d dual linear maps. This duality is rooted in Stokles' theorem : $\int dw = \int w \qquad \text{for } w \in \mathcal{R}^{n-1}H, \ c \in C_n(H)$

This generalizes the fundamental thm. of calculus, Green's thm., the Zdim. Stokes' theorem and Games' divegence theorem from vector calculus.

Manifolds

countrible basis separation by open sets
Def.: A second countable (Hansdorff) space
$$(\Pi, T)$$

is a topological manifold of dimension me No if it is
locally homeomorphic to \mathbb{R}^m . That is, $\forall p \in \Pi$ there is an
open neighborhood $U \cong \Pi$ and a homeomorphism $f: U \rightarrow f(U) \subseteq \mathbb{R}^m$.
• (U, P) is called a chort, $f_{n_1, \dots, n_l} f_u$ coordinate functions and
 q^{-1} a parametrization.
• A collection $\{(U_{n,1}f^{(n)})\}$ of chorts is called an atlas for Π
if $\bigcup U_n \equiv \Pi$.
Examples: $examples:$ $S^m := \{x \in \mathbb{R}^{m+1} \mid \|x\|_{L^{\frac{n}{2}}} \}$ is undim. top. manifold.
Two chorts are given by the "streegraphic projections"
 $f_n : S^m \setminus (e_1, \dots, e_n) \to \mathbb{R}^m$
 $f_n(x) := \frac{\pi}{\pi - x_{mn}} (x_{n_1, \dots, x_n})$
 $f_n(x) := \frac{\pi}{\pi + x_{mn}} (x_{n_1, \dots, x_n})$

• <u>open subsets</u> of a top. manifold are again top. manifolds of the same dimension. E.g. $GL(n, \mathbb{R}) := \{A \in \mathbb{R}^{h \times n} | det(A) \neq 0\}$ is an open subset of $\mathbb{R}^{n \times n} \cong \mathbb{R}^{n^2}$ and thus a top. manifold of dim n^2 . <u>remarks</u>: • Every top. manifold can be 'embedded' into some \mathbb{R}^N . That is, there is a homeomorphism $\Psi: M \rightarrow \Psi(M) \in \mathbb{R}^N$. If $m := \dim(M)$, then N = 2m + 1 suffices. For 'smooth' manifolds N = 2m is sufficient (Withney's embedding thm.) Examples where N < 2m (with m = 2) is not possible, are

where opposite edges are identified ('glued together') according to the arrows.

- The Hansdorff assumption guarantees that limits are unique. Second-countability is assumed in order for a 'partition of unity' (more on this later...) and an embedding into a finite-dim. Euclidean space to exist. Not all outhors include these two assumptions in the def. of a top. manifold.
 - · The second-countability assumption implies that there is a countable atlas.

If we want to differentiate or integrate on a manifold, we need extra structures: smooth structure & orientation. <u>Def.</u>: An atlas $\mathbf{A} = \left\{ (\mathcal{U}_{\lambda}, f_{\lambda}) \right\}_{\lambda \in \Lambda}$ of a topological m-dim. manifold M is called a C^{k} -atlas (kear) if $V_{\lambda, \nu \in \Lambda}$: $f_{\lambda} \circ f_{\nu}^{-1} : f_{\nu}(\mathcal{U}_{\lambda} \cap \mathcal{U}_{\nu}) \in \mathbb{R}^{m} \longrightarrow f_{\lambda}(\mathcal{U}_{\lambda} \cap \mathcal{U}_{\nu}) \in \mathbb{R}^{m}$

is a C^k-diffeomorphism

Remarks: A and B are said to be C^k- compatible if truB is a C^k atlas. One can always extend an atlas to to a unique 'maximal atlas' that contains all compatible ones. This max. atlas is called a C^k-structure.

<u>Def.</u>: A pair (M, Φ) of a manifold M with $(^{k}-structure A is called <math>(^{k}-manifold (and smooth manifold if <math>k=\infty)$.

<u>Examples</u>: \circ Sⁿ with $(U_1, \ell_1), (U_2, \ell_2)$ storeographic projections. $f_2 \circ f_1^{-1}(z) = \frac{z}{\|z\|^2}$ is a $(\circ - diff. on f_1(U_1 \cap U_2) = \mathbb{R}^n \setminus \{\circ\}.$ So Sⁿ becomes a smooth manifold.

Thm. [Whitney]: For k >1, every CK-structure contains a C[∞]-structure.

- · Motivated by this, we only consider C⁰⁰ manifolds (a.k.a. smooth manifolds)
- · Thue are top. Manifolds for which no smooth structure exists. (e.g. the 4-dim. E8-manifold discovered by Freedman.)
- From a given smooth structure $\{(U_{\lambda}, f_{\lambda})\}\$ we can obtain another one $\{(\Psi'(U_{\lambda}), f_{\lambda} \circ \Psi)\}\$ by acting with a homeomorphism $\Psi: \Pi \rightarrow \Pi$. Such smooth structures are called <u>equivalent</u>. For \mathbb{R}^n with $n \in \mathbb{N} \setminus \{4\}$, all smooth structures are equivalent (Smale). For \mathbb{R}^4 there are uncountable inequivalent ones (Freedman & Donaldson).
- <u>Def.</u>: Let (Π, Λ) and (N, \mathbb{R}) be smooth manifolds. A map $f: \Pi \to N$ is called smooth if for all $(U, f) \in \Lambda$ and $(V, f) \in \mathbb{R}$ with $f(U) \in V$ the map $\Psi \circ f \circ f^{-1}: f(U) \in \mathbb{R}^m \longrightarrow \Psi(U) \in \mathbb{R}^n$ is C^∞ . f is called a diffeomorphism if it is smooth and has smooth inverse. $C^\infty(\Pi, N)$ denotes the space of smooth maps $\Pi \to N$, and $C^\infty(\Pi) := C^\infty(\Pi, \mathbb{R})$.

Thus: [smooth partition of unity] Let M be a smooth manifold and

$$\{U_{\lambda}\}_{\lambda\in\Lambda}$$
 an open cour of M. Then there exist functions
 $\{f_{\lambda} \in C^{\infty}(M, to_{1}1)\}_{\lambda\in\Lambda}$ s.t.
(i) $\sup p(f_{\lambda}) := \{p \in M \mid f_{\lambda}(p) \neq 0\} \in U_{\lambda}$
(ii) Every $p \in M$ has a neighborhood in which only
finitely many f_{λ} are non-zoro.
(iii) $\sum_{\lambda\in\Lambda} f_{\lambda}(p) = 1$ Vp $\in M$ (note: finite sum due to (ii))

A related Lemma that we will need:

Lemma: Let
$$V = U$$
 be open subsets of a smooth manifold M
and $\overline{V} = U$ compart. Then there is a smooth function
 $f: M \Rightarrow [0,1]$ s.t.
 $f(p) = \begin{cases} 1 & p \in V \\ 0 & p \notin U \end{cases}$

A central ingredient for the proof of both is that $g: \mathbb{R} \to \mathbb{R}$ $g(t) := \begin{cases} exp[-\frac{1}{1-t^2}], t \in (-1, 1) \\ 0, t \in [3, 1] \end{cases}$ is a smooth ((*) bump function. $\int_{-1}^{1-\frac{1}{2}} \int_{-1}^{1-\frac{1}{2}} \int_{-1}^{1-\frac{1}{2}}$

Tangent spaces

 $\frac{\operatorname{remarks:}}{\operatorname{(h \circ g)'(o)}} = (\operatorname{h \circ g' \circ g \circ g'})'(o) = d_{g(p)}(\operatorname{h \circ g'}) (g \circ g)'(o) = (\operatorname{h \circ g' \circ g \circ g'})'(o) = d_{g(p)}(\operatorname{h \circ g'}) (g \circ g)'(o) = (\operatorname{h \circ g' \circ g \circ g'})'(o) = \operatorname{chain rule} (\operatorname{sounorphism}, \operatorname{indep. of g'}) (g \circ g \circ g')'(o) = \operatorname{R}^{m} \operatorname{since} \operatorname{T_{p}\Pi}^{g(o)} \ni [g] \xrightarrow{\phi_{h}} (\operatorname{h \circ g})'(o) \in \operatorname{R}^{m} \operatorname{is bijechive}$ as for any $a \in \operatorname{R}^{m}, g_{a}(e) := \operatorname{h}^{-1}(\operatorname{h(p)} + ta) \operatorname{satisfies} [g \circ] \mapsto a.$

> • The linear structure of R^m then induces one on Tp17^{310m} so that Tp17^{300m} becomes an m-dim. R-vector space (and \$\phi\$ a a vector space isomorphism). Elements of Tp11^{310m} are called tangent vectors.

From tangent vectors to directional durivative operators:
Suppose
$$M \in \mathbb{R}^{n}$$
 is smooth and $y \in C^{\infty}(C^{(1,1)}, \Pi)$ s.t.
 $p = y^{(0)}$. Then $\dot{y}^{(0)} =: v \in \mathbb{R}^{n}$ lies in the plane tangent to Π at p .
The directional durivative of a function $f \in C^{\infty}(\mathbb{R}^{n})$
at p in the direction of v is
 $\frac{d}{dt} f(p+tv) \Big|_{t=0} = \langle \nabla f|_{p}, v \rangle = \langle \nabla f|_{p}, \dot{y}^{(0)} \rangle$
 $= (f \circ y)^{1}(0)$
The r.h.s. is still well-defined if Π is an abstract

smooth manifold (i.e. not embedded into R") and fe ("(17). In this way, a 'tangent vector' can be identified with a map ("(1) -> R. The fact that a durivative like f to (fog)'(0) satisfies the Leibniz product rule, motivates the following definition:

Def .: Let M be a smooth manifold. The (algebraic) tangent space TpMala of M at pEM is the space of all linear derivations at p. That is, linear maps u: C°(17) -> R s.t. for all fige C°(17):

v(fg) = f(p)v(g) + g(p)v(f) Leibniz product rule

• TpΠ a'd becomes a vector space with (v+c·v,)(f) := v,(f)+c·v,(f) remarks: · The derivation of a constant function is zero, since $\forall f \in C^{\infty}(H)$: $v(f) = v(f \cdot 1) = v(1)f(p) + v(f)$. So v(1) = 0.

· I.g. linner durivations are defined on 'algebras' (hure (~ (17)). Poisson brackets and commutators are also lin. dutvations.

• If
$$(U, h)$$
 is a chart around p and $h(q) =: (x_{1}(q), ..., x_{n}(q))$,
then
$$\frac{\partial}{\partial x_{i}}\Big|_{p}: C^{\infty}(n) \rightarrow f \rightarrow \partial_{i}(f \circ h^{-1})\Big|_{h(p)} defines$$
an element of $T_{p}\Pi^{alg}$. If there is no confusion in sight,
we may omit the $\|p\|^{u}$.

- <u>Thm.</u>: If M is an n-dimensional smooth manifold and $p \in \Pi$, then $\frac{\partial}{\partial x_{\eta}}\Big|_{p}$, ..., $\frac{\partial}{\partial x_{u}}\Big|_{p}$ form a basis of $T_{p}M^{ab}$.
- <u>proof</u>: Linear independence can be seen as follows: let $h = (x_1, ..., x_n)$ be the coordinate functions of the chart (u_1h) . Then $\frac{\partial}{\partial x_i}\Big|_p x_j = S_{ij}$. So $\frac{\partial}{\partial x_i}\Big|_p$ cannot be a linear combination of the others.

For $f \in C^{\infty}(\Pi)$ define $F := f \circ h^{-1}$ in a neighborhood of some $\gamma \in h(U)$ and assume w.l.o.g. h(p) = O and that h(U) is convex. Then $F(y) = F(o) + \int_{0}^{1} \frac{d}{dt} F(ty) dt = F(o) + \sum_{i=1}^{n} \gamma_{i} g_{i}(y)$, where $g_{i}(y) := \int_{0}^{1} \partial_{i} F(ty) dt$ is a C^{∞} function with $g_{i}(o) = \partial_{i} F(o) = \frac{\partial}{\partial x_{i}} \Big|_{p} f$ With $f(q) = (F \circ h)(q) = F(o) + \sum_{i} h_{i}(n) g_{i}(h(q))$, we get for an arbitrary derivation $v : C^{\infty}(H) \to R$:

$$v(t) = \sum_{i} \underbrace{h_{i}(p)}_{i} v(g_{i}\circ h) + \underbrace{g_{i}(h(p))}_{i} v(h_{i})$$

$$= \sum_{i} v(h_{i}) \frac{\partial}{\partial x_{i}} \Big|_{p} f$$

$$\Box$$

We will use $T_p H := T_p \Pi^{alg}$ as our definition of the tangent space.

remark: For
$$M = \mathbb{R}^n$$
 there is a canonical isomorphism $\mathbb{T}_p \mathbb{R}^n \cong \mathbb{R}^n$
via $\mathbb{T}_p \mathbb{R}^n \ni \sum_{i=1}^n v_i \frac{\partial}{\partial x_i} \mapsto v \in \mathbb{R}^n$. In fact:

Lemma: For every finite-dim.
$$\mathbb{R}^{-}$$
 vec. space V and $p \in V$
a canonical (i.e., basis-independent) isomorphism $I: V \rightarrow T_p V$
is given by: $V \ni V \mapsto (C^{\infty}(V) \ni f \mapsto \frac{d}{dt} | f(p+tv))$.
 $= \sum_{i=1}^{n} v_i \frac{\partial f}{\partial x_i} |_p$

One offen exploits this and 'identifies' TpV with V. In particular, if V=R.

<u>Lemma:</u> (coordinate change) Let $(U_1(x_1,...,x_n))$ and $(V_1(y_1,...,y_n))$ be two charts around a point p on a C^{∞} -manifold M. Then $\frac{\partial}{\partial x_i}\Big|_p = \sum_{i} \left(\frac{\partial}{\partial x_i}\Big|_p Y_i\right) \frac{\partial}{\partial y_i}\Big|_p$ Jacobian of the coordinate change $(y^{\circ}x^{-1})$ at x(p)

$$\frac{p \operatorname{roof}:}{\partial_{x_{i}}} = \frac{\partial}{\partial_{x_{i}}} \Big|_{p} f = \frac{\partial}{\partial_{x_{i}}} \Big|_{x_{(p)}} f = \frac{\partial}{\partial_{x_{i}}} \Big|_{x_{(p)}} \underbrace{\int_{y_{(p)}} \int_{y_{(p)}} \int_{y_{$$

Ц

Lemma: (equivalence of tangent space definitions)
The map
$$T_{p}\Pi^{goom} \xrightarrow{\Psi} T_{p}\Pi^{alg}$$

 $E_{g}\Pi \longrightarrow \Psi(E_{g}\Pi) : C^{o}(M) \rightarrow f \mapsto (f \circ g)'(0)$
is a vector space isomorphism s.t. ever curve $gr \in k_{p}\Pi$ with
 $(h \circ g')'(0) = e_{i}$ w.r.t. a chart $(U_{i}h)$ is mapped to $\Psi: E_{g}\Pi \mapsto \frac{\partial}{\partial x_{i}}|_{p}$.
 $(x_{a_{1},...,x_{n}})$
remork: This is probably the easiest wory to
understand elements of $T_{p}\Pi^{alg}:$
as 'directional derivatives along a curve'

$$\frac{proof:}{(f \circ g^{2})} = d_{h(p)}(f \circ h^{-1}) \underbrace{(h \circ g^{2})'(o)}_{equal for all representatives of [g]}$$

$$\Psi(Ig2) \text{ is a derivation since it is linear and with $v(f) := \Psi(Ig2)(f):$$$

$$v(fg) = ((foy)(goy))'(o) = (foy)'(o) (goy)(o) + (goy)'(o) (foy)(o)$$

= $v(f) \cdot g(p) + v(g) \cdot f(p)$

 Ψ is a vector space isomorphism since dim $(T_p \Pi^{alg}) = \dim (T_p \Pi^{glow})$ and from $(h \circ g)'(o) = e_i$ we obtain

$$v(f) = (f \circ g')'(o) = d_{n(p)}(f \circ h'') (h \circ g)'(o) =$$

$$= d_{n(p)}(f \circ h'') e_i = \partial_i(f \circ h'') \Big|_{h(p)} = \frac{\partial}{\partial x_i} \Big|_p f . \square$$

$$\frac{remark:}{remark:} \circ \text{ the following diagram commutes:}} That is, expressed in local coordinates, dpF is the usual R^{m} $\frac{d_{n(p)}(g \circ F \circ h^{-1})}{R^{n}} R^{n}$ $\frac{d_{p}F}{Fréchet}$ $\frac{d_{p}re^{-s}}{sentral by He}$ $\frac{d_{p}re^{-s}}{sentral by He}$ $\frac{d_{p}re^{-s}}{r_{p}\pi^{2}} T_{p}\pi^{2} \frac{d_{p}F}{T_{p}\pi^{2}} T_{p}\pi^{2} \frac{d_{p}F}{T_{p}\pi^{2}} T_{F(p)} N^{2} N^{2}$$$

remarks:
•
$$d_p F$$
 is a linear map
• $d_p (id_M) = id_{T_p \Pi}$
• $lf [g] \in T_p \Pi^{grow}$ then $d_p F(f(E_T \Pi)) : C^{\infty}(N) \ni f \mapsto (f \circ F \circ gr)'(0)$

- · If M is connected and dpF=0, then F is constant.
- · For any linear map F: V > W between finite-dim. R-vector spaces, the following diagram commutes:

$$V \xrightarrow{I} T_{P}V$$

$$F \downarrow \qquad \qquad \downarrow d_{P}F$$

$$W \xrightarrow{I} T_{F(P)}W$$

This coincides with $I(v(f)) f = \frac{d}{dt} \Big|_{t=0} f(f(p) + t v(f)) = v(f) \cdot f'(f(p))$

Lemma: (chain rule) If
$$M_1 \xrightarrow{f} M_2 \xrightarrow{3} M_3$$
 are smooth, Hen
 $d_p(3^{\circ}f) = d_{f(p)}(3) d_pf$

$$\frac{Dcf.:}{Petition} = TT is called$$
the tangent bundle of T .

remark: If we consider elements of TM as pairs
$$(p, x) \in M \times T_pM$$

we can define the projection $\pi: TM \to M$, $\pi: (p, x) \mapsto p$.

Hance, TM is smooth manifold with dim (TM) = 2. dim (M).

- <u>Def.</u>: If $f: M \to N$ is smooth, the durivative of f(a.k.a. pushforward) is the map $df: M \to p \mapsto dpf$
- <u>remark</u>: df induces a <u>smooth</u> map $\Gamma\Pi \rightarrow \Gamma N$ that maps $T_{\rho}\Pi \ni v \longmapsto d\rho f v \in \overline{T_{f(\rho)}N}$ (and is sometimes also denoted by df).

Alternating multilinear maps

Let V be a finite-dimensional real vector space throughout.

remarks:
$$V^*$$
 is again a real vector space.
If $\dim(V) = n \in \mathbb{N}$, then $\dim(V^*) = n$ and $(V^*)^* = V$.
For $f \in V^*$, $v \in V$ one often writes $f(v) = : \langle f, v \rangle$. If
 $(e_i)_{i=1}^n$ is a basis of V_i then $(f_i \in V^*)_{i=1}^n$ is called the dual basis
if $\langle f_{i}, e_i \rangle = S_{ij}$. This always exists and is unique.

<u>Exp.</u>: (1) If $V = IR^{n}$ s.t. its elements are column vectors, then V^{+} can be regarded as the space of row vectors s.t. $\langle f, v \rangle$ is the 'matrix product', i.e. the standard scalar product of v with f^{T} .

(2) If
$$V := \{ v: (-7,7) \rightarrow R \mid \exists a \in R^{d+1} v(x) = \sum_{i=0}^{d} a_i x^i \}$$

for some degree $d \in \mathbb{N}$, then $f(v) := \int_{-7}^{7} v(x) dx$ is an element of the dual space $V^* \ni f$.

(3) If $(U_1 \times)$ is a chart around $p \in M$ and $\times (p) =: (\times_n (p), ..., \times_n (p))$, We define $dx_i : T_p M \to \mathbb{R}$ as the differential of the coordinate proj. coordinate func. $x_i : U \to \mathbb{R}$, $x_i = \overline{T_i} \cdot x$ at p_i composed with the canonical isomorphism $T_{x_i(p)} \mathbb{R} \to \mathbb{R}$. That is, $dx_i(v) := v(x_i)$.

With
$$V := T_p \Pi$$
, $(d\kappa_i)_{i=1}^n$ are elements of $V^* := T_p^* \Pi$ (the cotangent
space). Recall that $\frac{\partial}{\partial \kappa_i} \Big|_p : C^{\infty}(\Pi) \ni f \mapsto \partial_i (f \circ \kappa^{-1}) \Big|_{\kappa(p)}$ form a basis of V.

$$\frac{Thm.:}{(d\kappa_{i} \in T_{p}^{*}M)_{i=1}^{n}} \text{ and } \left(\frac{\partial}{\partial \kappa_{i}}\right|_{p} \in T_{p}\Pi\right)_{i=1}^{n} \text{ are dual bases}$$

$$\frac{proof:}{d\kappa_{i}}\left(\frac{\partial}{\partial \kappa_{i}}\right|_{p}\right) = \frac{\partial}{\partial \kappa_{i}}\left|_{p} \times_{i} = \partial_{i}\left|_{\kappa(p)}^{(\pi_{i} \circ \times \circ \times^{-1})}\right| = \delta_{i};$$

$$\frac{remark:}{d\kappa_{i}} d\kappa_{i} \text{ is the paradigm of a 1-form as defined in the following ...}$$

- <u>Def.</u>: $f: V \times ... \times V =: V^{k} \rightarrow W$ is called multilinear or k-linear if it is linear in each of its k arguments. A k-linear map is called alternating or anti-symmetric if for all $v \in V^{k}$ and all permutations π : $f(v_{n}, ..., v_{k}) = sgn(\pi) f(v_{\pi(n)}, ..., v_{\pi(k)})$. Alt^k(V, W) denotes the space of all such alternating k-linear maps and $\Lambda^{k} V^{*} := Alt^{k}(V, R)$ is called the space of k-forms (short for 'k-linear alternating forms') on V (or the kith exterior power of V*).
- <u>remarks</u>: $Alt^{\kappa}(V,W)$ is again a real vector space and $\Lambda^{\gamma}V^{*} = V^{*}$. A useful convention is $\Lambda^{\circ}V^{*} := \mathbb{R}$.
- <u>Corollory</u>: For a k-linear map $f: V^{k} \rightarrow W$ the following are equivalent: (i) $f \in Alt^{k}(V, W)$ (ii) $f(v_{1}, ..., v_{k}) = 0$ if $v_{i} = v_{i}$ for some $i \neq j$. (iii) $f(v_{1}, ..., v_{k}) = 0$ if $v_{1} - v_{i}$ are linearly dependent.

proof: -> exercise.

- remark: recall that the cross product and the determinant both quantify the volume/area while their sign indicates an 'orientation'.
- <u>Lemma:</u> Let $(e_{i_1}, ..., e_u)$ be a basis of V and for any $w \in \Lambda^u V^*$ define its components w.r.t. that basis as $w_{i_1} ... i_k := w(e_{i_1}, ..., e_{i_k}) \in \mathbb{R}$. Then $\Lambda^k V^* \longrightarrow \mathbb{R}^{\binom{n}{k}}$, $w \mapsto (w_{i_1} ... i_k)_{i_1 \in i_1 \in \cdots \in i_k}$ is a

vector space isomorphism.

proof: The map is linear by definition.

Injectivity: if
$$w_{i_1 \cdots i_k} = 0$$
 for all $i_1 \cdots < i_k$, then all components
vanish since $w_{\pi(i_1), \cdots, \pi(i_k)} \stackrel{(*)}{=} sgn(\pi) w_{i_1, \cdots, i_k}$. By
multimeasity of w this means $w = 0$.

Surjectivity: if
$$(w_{i_1}...i_K)_{i_1}<... is given, (4) enables us to define
 $w_{i_1...i_K}$ for all i and from here a corresponding K-form
 $\hat{\omega}(v_1,...,v_K) := \sum_{j_1...j_K} w_{j_1...j_K} < b_{j_1}.v_1 > ... < b_{j_K}.v_K >$ where
 $(b_1,...,b_K)$ is the dual basis w.r.t. $(e_1,...,e_K)$, i.e. $< b_i,e_j > = S_{ij}$
By construction, $\hat{\omega}(e_{i_1},...,e_{i_K}) = w_{i_1..i_K}$.$$

Corollary: If dim
$$(V) = u$$
, then dim $(\Lambda^{\kappa}V^{*}) = \binom{n}{\kappa}$. In particular,
dim $\Lambda^{\mu}V^{*} = 1$ and $k > u => \Lambda^{\kappa}V^{*} = \{o\}$.

Def.: For
$$w \in \Lambda^{k} V^{*}$$
 and $\eta \in \Lambda^{c} V^{*}$ the exterior product
 $w \wedge \eta \in \Lambda^{u+c} V^{*}$ is defined as
 $w \wedge \eta (v_{\eta}, \dots, v_{k+c}) := \frac{\eta}{k! l!} \sum_{\pi \in S_{k+c}} s_{\eta} (\pi) w (v_{\pi(\eta)}, \dots, v_{\pi(k)}) \cdot \eta (v_{\pi(k+1)} \dots, v_{\pi(k+c)}).$

Exp.: If
$$w_1, w_2 \in V^*$$
, then $w_1 \wedge w_2 (v_1, v_2) = w_1(v_1) w_2(v_2) - w_1(v_2) w_2(v_1)$

Prop.:For
$$\omega, \mu \in \Lambda^{\mu} V^{*}$$
, $\eta \in \Lambda^{\nu} V^{*}$, $\nu \in \Lambda^{m} V^{*}$:(i) $(\omega + \mu) \land \eta = (\omega \land \eta) + (\mu \land \eta)$ distributivity(ii) $\omega \land \eta = (-1)^{\mu \iota} \eta \land \omega$ (anti-) commutativity(iii) $(\omega \land \eta) \land \nu = \omega \land (\eta \land \nu)$ associativity(iv) $(\omega \land \eta) \land \nu = \omega \land (\eta \land \nu)$ for any ce R

The proofs of (ii) and (iii) are a bit longer (see e.g. [do Carmo]). (i) + (ii) implies that (w, 7) H> WAZ is bilinear.

(iii) implies that $\omega \wedge \eta \wedge \nu$ makes sense without brackets. In fact, $(\omega \wedge \eta \wedge \nu)(v_{\eta}, ..., v_{k+l+m})$ $= \frac{1}{k! \iota! m!} \sum_{\pi \in S_{k+l+m}} \omega(v_{\pi(\eta)}, ..., \omega_{\pi(k)}) \cdot \eta(v_{\pi(k+l+1)}, ...) \cdot \nu(v_{\pi(k+l+1)}, ...)$

<u>Corollary:</u> If k is odd, and $w \in \Lambda^{k}V^{*}$, then $w \wedge w = 0$. <u>proof:</u> $w \wedge w = (-7)^{k^{2}} w \wedge w = -w \wedge w$.

However, where can be non-evo for forms of even degree (-> Exercise)

Prop.: If
$$f_{1}, \dots, f_{n}$$
 is a basis of V^{k} , then $(f_{i_{1}} \wedge \dots \wedge f_{i_{K}})_{i_{n} < \dots < i_{K}} =: \phi_{\mathbf{I}}$
form a basis of $\Lambda^{K} V^{*}$.

proof: Let
$$e_1, \dots, e_n \in V$$
 be the dual basis. Then $\sum_{I} a_{I} \Phi_{I} = 0$ implies
 $\mathcal{O} = \sum_{I} a_{I} \Phi_{I}(e_{i_1}, \dots, e_{i_n}) = a_{i_1} \dots i_{N}$. So the Φ_{I} 's are lin, indep.
As there are $\binom{n}{k} = dim(\Lambda^{k}V^{*})$ of them, they form a basis. \square

$$\frac{Prop.:}{\left(f_{1} \wedge \ldots \wedge f_{k}\right)\left(v_{1}, \ldots, v_{k}\right)} = det \left(\langle f_{i}, v_{j} \rangle\right)_{i,j}$$

proof: by induction on K. We know it for
$$k=2$$
. From the definition
of the exterior product we get
 $excluded$
 $f_n \land (f_2 \land \dots \land f_k)(v_1, \dots, v_k) = \sum_{j=1}^{k} (-1)^{j+1} f_n(v_j)(f_2 \land \dots \land f_k)(v_1, \dots, v_j, \dots, v_k)$
The statement then follows by expanding the determinant
w.r.t. the first row as for any kak matrix A:

$$det(A) = \sum_{\underline{s=1}}^{k} (-\eta)^{\underline{s+1}} A_{\eta,\underline{s}} \cdot olt(\widehat{A}_{\eta,\underline{s}})$$

where $\hat{A}_{1,\hat{s}}$ is the $(k-1) \times (k-1)$ matrix constructed from A by omitting the first row and \hat{s} th column.

Differential forms on manifolds

<u>Def.</u>: A k-form w on a smooth manifold M is an assignment of a k-form $w_p \in \Lambda^k T_p^* \Pi$ to each $p \in \Pi$.

That is, each wp is an altouating k-linear map of the form wp: Tp17 x ... x Tp17 -> R

W.r.t. a chart (U,x) around pet, we know that the dx;'s form a basis of TptM. So we can write

$$\omega_p = \sum_{i_1 < \dots < i_N} \omega_{i_1, \dots, i_N}(p) dx_{i_1} \wedge \dots \wedge dx_{i_N}$$

where
$$\sum_{i,j} (p) := \partial_i | (x \circ y^{-1})_j$$
 is the Jacobian of the coordinate change

Def.: A k-form on a smooth manifold is called differentiable (or of class
$$C^{k}$$
) if the coordinates $w_{\underline{r}}(p)$ we as a function of p .

The set of all
$$C^{\infty}$$
-differentiable k-forms on M
will be denoted by $\mathcal{X}^{k}\mathcal{M}$ and we define
 $\mathcal{N}\mathcal{M} := \bigoplus_{k=0}^{\dim(n)} \mathcal{X}^{k}\mathcal{M}$ with $\mathcal{X}^{\circ}\mathcal{M} := C^{\infty}(\mathcal{M})$, $\mathcal{X}^{\uparrow}\mathcal{M} := \{o\}$.

remark: The def. of RM makes sense since each
$$\mathcal{R}^{k}\mathcal{M}$$
 is a
natural vector space. In fact, since there is a scalar
multiplication $\mathcal{C}^{\infty}(\mathcal{M}) \times \mathcal{R}^{k}(\mathcal{M}) \to \mathcal{R}^{k}(\mathcal{M})$
 $(f, \omega) \mapsto (f \cdot \omega)$ with $(f \cdot \omega)_{p} := f(p) \omega_{p}$
RM is a module over the ring $\mathcal{C}^{\infty}(\mathcal{H})$.

$$\frac{examples:}{} \circ O \text{-forms on } M \text{ are just smooth functions on } M:$$

$$\circ \text{ If } f \in C^{\infty}(M) \text{, then the differential}$$

$$df: M \ni p \mapsto dpf \text{ is a } 1 \text{-form}$$

$$dpf: T_{p}M \Rightarrow T_{fep}R \cong R$$

$$W.r.t. \text{ to a chart } (U,x) \text{ around } p \text{ we have}$$

$$dpf = \sum_{i} dpf(\frac{\partial}{\partial x_{i}}|_{p}) dx_{i}$$

$$= \sum_{i} \left(\frac{\partial}{\partial x_{i}}|_{p}f\right) dx_{i}$$

$$\int_{dpf(v)=v(f)} df = \sum_{i} \frac{\partial f}{\partial x_{i}} dx_{i}$$

• If
$$n = \dim(M)$$
, and (u, x) is a chart around p ,
then w.r.t. that chart every $w \in \mathcal{Q}^{m}M$ is of the
form $w_{p} = f(p) \det$, where $f \in C^{\infty}(M)$ and
 $det := dx_{n} \wedge \dots \wedge dx_{n}$.

- remark: note that the notation 'dx' for an element of $T_p^*\Pi$ omits the chosen $p \in \Pi$. Then dx should be read as $(dx)_p$ or dpx. In $df = \sum_{i=0}^{i=0} \frac{\partial f}{\partial x_i} dx_i$, however, 'dx',' mean a map $\Pi \to T^*\Pi$ that assigns to each $p \in \Pi$ an element of $\overline{T_p^*\Pi}$.
 - <u>Def.</u>: Let where a k-form on the and the an L-form. The exterior product whith is defined as the (k+L)-form detomined by (whith) = wphitp.

This inhuits the proputtes of exterior products of forms on vector spaces. That is, associativity, bilinearity, $\pi w = (-1)^{kc} w \pi \pi$ and if w and π are smooth, then $f(w \pi \pi) = (fw) \pi \pi = w\pi (f \pi)$ $\forall f \in C^{\infty}(\pi)$

Having in mind substitutions and coordinate transformations, we define:

Def.: For a smooth map
$$f: \Pi \rightarrow N$$
, we define an R -linear map
 $f^*: \Sigma N \rightarrow \Sigma M$ via: $f^*: \Sigma^K N \rightarrow \Sigma^K M$, $\omega \mapsto (f^*\omega)$
for $k \ge 1$: $(f^*\omega)_p (v_n, ..., v_u) := \omega_{f(p)} (d_p f v_n, ..., d_p f v_u)$
where $p \in \Pi$ and $v_n, ..., v_n \in T_p \Pi$.
and for $k=0$ via: $f^*\omega := \omega \circ f$.
 $f^*\omega$ is called the pullback (a.h.a. induced form) of ω by f .

remodes: • by definition: •
$$id^{+}(\omega) = \omega$$

• $(f \cdot g)^{+}(\omega) = g^{+}(f^{+}(\omega))$
• $f^{*}(\omega + \eta) = f^{*}(\omega) + f^{+}(\eta)$

• Consider the 'pushforward'
$$f_{\kappa} := d_{p}f : T_{p}M \longrightarrow T_{f(p)}N$$
.
Then the 'pullback' $f^{*}: T_{f(p)}^{*}N \longrightarrow T_{p}^{*}M$ is the
corresponding dual map in the sense that
 $(f^{*}\omega)(v) \equiv \omega(f_{\kappa}v)$ for $\omega \in T_{f(p)}^{*}N$, $v \in T_{p}M$

Lemma: For a smooth map
$$f: M \rightarrow N$$
:
(i) $f^*(w \wedge \eta) = (f^*w) \wedge (f^*\eta)$
(ii) If $f \in C^{\infty}(N)$, then $f^*(f \cdot w) = (f \circ f) \cdot f^*(w)$
pointwise product/scalar prod. in 217.
(iii) For $w \in \mathcal{R}^K N$ if (U, κ) is a chart around $f(p)$ w.r.t. which

$$\begin{aligned}
\omega_{f(p)} \text{ has components } \omega_{i_{n},\dots,i_{k}}(f(p)) + f(p) \\
(f^{*} \omega)_{p} &= \sum_{i_{n}} \omega_{i_{n}\dots,i_{k}}(f(p)) d_{p}(x_{i_{n}}\circ f) \wedge \dots \wedge d_{p}(x_{i_{k}}\circ f) \\
\underbrace{f^{*}(\omega)_{p}}_{i_{n}} &= \sum_{i_{n}} \omega_{i_{n}\dots,i_{k}}(f(p)) d_{p}(x_{i_{n}}\circ f) \wedge \dots \wedge d_{p}(x_{i_{k}}\circ f) \\
&= \sum_{\pi \in S(k,i)} s_{3}\omega(\pi) \omega_{f(p)}(d_{p}f v_{\pi(n)},\dots,d_{p}f v_{\pi(k)}) \\
&= (f^{*}(\omega)_{p} \wedge f^{*}(\eta)_{p})(v_{n},\dots,v_{k+i}) \\
&= (f^{*}(\omega)_{p} \wedge f^{*}(\eta)_{p})(v_{n},\dots,v_{k+i}) \\
&= (f^{*}(\psi) = f^{*}(f \wedge \psi) \stackrel{(i)}{=} f^{*}(f) \wedge f^{*}(\psi) \\
&= (f^{*}(\psi) = f^{*}(f \wedge \psi) \stackrel{(i)}{=} f^{*}(f) \wedge f^{*}(\psi) \\
&= (f^{*}\omega)_{p} = \sum_{i_{n}} \omega_{i_{n}\dots,i_{k}}(f(p)) f^{*}(dx_{i_{n}}) \wedge \dots \wedge f^{*}(dx_{i_{k}}) \\
&= (f^{*}(\psi) = f^{*}(f \wedge \psi) \stackrel{(i)}{=} (f^{*}(\psi)) \stackrel{(i)}{=} (f^{*}(\psi)) \\
&= (f^{*}(\psi) = f^{*}(f \wedge \psi) \stackrel{(i)}{=} (f^{*}(\psi)) \\
&= (f^{*}(\psi) = f^{*}(f \wedge \psi) \stackrel{(i)}{=} (f^{*}(\psi)) \\
&= (f^{*}(\psi) = f^{*}(f \wedge \psi) \stackrel{(i)}{=} (f^{*}(\psi)) \\
&= (f^{*}(\psi) = f^{*}(f \wedge \psi) \stackrel{(i)}{=} (f^{*}(\psi)) \\
&= (f^{*}(\psi) = f^{*}(f \wedge \psi) \stackrel{(i)}{=} (f^{*}(\psi)) \\
&= (f^{*}(\psi) = f^{*}(f \wedge \psi) \stackrel{(i)}{=} (f^{*}(\psi)) \\
&= (f^{*}(\psi) = f^{*}(f \wedge \psi) \stackrel{(i)}{=} (f^{*}(\psi)) \\
&= (f^{*}(\psi) = f^{*}(f \wedge \psi) \stackrel{(i)}{=} (f^{*}(\psi)) \\
&= (f^{*}(\psi) = f^{*}(f \wedge \psi) \stackrel{(i)}{=} (f^{*}(\psi)) \\
&= (f^{*}(\psi) = f^{*}(f \wedge \psi) \stackrel{(i)}{=} (f^{*}(\psi)) \\
&= (f^{*}(\psi) = f^{*}(f \wedge \psi) \stackrel{(i)}{=} (f^{*}(\psi)) \\
&= (f^{*}(\psi) = f^{*}(f \wedge \psi) \stackrel{(i)}{=} (f^{*}(\psi)) \\
&= (f^{*}(\psi) = f^{*}(f \wedge \psi) \stackrel{(i)}{=} (f^{*}(\psi)) \\
&= (f^{*}(\psi) = f^{*}(f \wedge \psi) \stackrel{(i)}{=} (f^{*}(\psi)) \\
&= (f^{*}(\psi) = f^{*}(\psi) \stackrel{(i)}{=} (f^{*}(\psi)) \\
&= (f^{*}(\psi) = (f^{*}(\psi)) \stackrel{(i)}{=} (f^{*}(\psi)) \\
&= (f^{*}(\psi) = (f^$$

$$Moreover_{i} \quad f^{*}(dx_{i})_{p}(v) = (dx_{i})_{f(p)} \quad (d_{p}fv)$$

$$Chain \quad rule \quad Y = d_{p}(x_{i} \circ f)(v) \qquad \square$$

 $\frac{example:}{(polar coordinates)} \quad on \quad \mathbb{R}^{2} \setminus \{(0,0)\} \quad consider \quad the \quad 1-form$ $(w.r.t. \ the \ convolutional/identity \ chart \):$ $w := -\frac{y}{x^{2}+y^{2}} \ dx \ + \ \frac{x}{x^{2}+y^{2}} \ dy \quad on \quad \mathbb{R}^{2} \setminus \{0\}.$ $Let \quad f(r, \Theta) := (r \cos \Theta, r \sin \Theta) \quad on \quad (0, \infty) \times (0, 2\pi)$ $map \quad from \ 'polar' \ fo \ 'Cortesian' \ coordinates. \ Then \ at \ p = (r, \Theta)$ $(f^{*} w)_{p} = -\frac{r \sin \Theta}{r^{2}} \ d_{p}(x \circ f) \ + \ \frac{r \cos \Theta}{r^{2}} \ d_{p}(y \circ f)$ $= -\frac{r \sin \Theta}{r^{2}} \left(\cos \Theta \ dr - r \sin \Theta \ d\Theta \right)$ $+ \ \frac{r \cos \Theta}{r^{2}} \left(\sin \Theta \ dr \ + \ r \cos \Theta \ d\Theta \right) = d\Theta$

Prop.: Let
$$f: \Pi \to N$$
 be smooth between two n-dim. manifolds
and $(U_i x)$ and $(V_i y)$ chosts around $p \in \Pi$ and $f(p)$, resp.
For any $f \in C^{\infty}(N)$ and with $f_i := y_i \circ f$:
 $f^*(f \cdot dy_1 \wedge \dots \wedge dy_n) = (f \circ f) \cdot det(\frac{\partial}{\partial x_j} f_i) dx_1 \wedge \dots \wedge dx_n$

$$\frac{proof:}{\left(\frac{\partial}{\partial x_{n}}\right|_{p}, \dots, \frac{\partial}{\partial x_{n}}\right|_{p}} dual to dx_{i} : Lemma \left(\frac{\partial}{\partial x_{n}}\right|_{p}, \dots, \frac{\partial}{\partial x_{n}}\right|_{p} dual to dx_{i} : Lemma \left(f^{*}\left(\left(\frac{\partial}{\partial y_{n}} \wedge \dots \wedge dy_{n}\right)\right)_{p}\left(\frac{\partial}{\partial x_{n}}\right|_{p}, \dots, \frac{\partial}{\partial x_{n}}\right|_{p}\right) \stackrel{I}{=} \left(f\circ f\right)(p) \left(\frac{d_{p} f_{n} \wedge \dots \wedge d_{p} f_{n}\right)\left(\frac{\partial}{\partial x_{n}}\right|_{p}, \dots, \frac{\partial}{\partial x_{n}}\right|_{p}\right) = det \left(d_{p} f_{i}\left(\frac{\partial}{\partial x_{i}}\right|_{p}\right) = det \left(\frac{\partial}{\partial x_{i}}\right|_{p} f_{i}\right). \square$$

Application to f=id yields:

Corollory: If
$$(U, \kappa)$$
, (V, γ) are two charts around pett
of an u-dim. manifold M , then
 $g \cdot dy_1 \wedge \dots \wedge dy_n = h \cdot d\kappa_1 \wedge \dots \wedge d\kappa_n$ for $g, h \in C^{\infty}(n)$
iff $h = g \cdot det \left(\frac{\partial}{\partial \kappa_i}\Big|_p Y_i\right)$.

Similarly: dy, ... r dy; =
$$\sum_{i_1 < ... < i_N} det \left(\frac{\partial y_{i_s}}{\partial x_{i_t}}\right)_{s,t=1..k} dx_{i_n} A ... A dx_{i_N}$$

Thm .:

For any smooth manifold Π there is a unique map $d: \Omega\Pi \rightarrow \Omega\Pi$ s.t. $d(\Omega^{k}\Pi) \subseteq \Omega^{k+1}\Pi$ and (i) $\forall w, \eta \in \Omega\Pi$: (ii) $\forall w, \eta \in \Omega\Pi$: (iii) $\forall w \in \Omega^{k}\Pi, \eta \in \Omega\Pi$: $d(w, \eta) = dw + d\eta$ $d(w, \eta) = dw \wedge \eta + (-1)^{k} w \wedge d\eta$ (iii) $\forall f \in C^{\infty}(\Pi) \equiv \Omega^{\circ}\Pi$: df is the differential of f(iv) $\forall w \in \Omega\Pi$: $d^{2}w := d(dw) = 0$

This map is called exterior derivative and w.r.t. a chart $(U_1 \times)$ asound pet: $(dw)_p = \sum_{i_1 < \dots < i_k} (d_p \underbrace{w_{i_1 \dots i_k}}_{w_I}) \wedge \underbrace{dx_{i_1} \wedge \dots \wedge dx_{i_k}}_{dx_I}$ for we $\mathcal{X}^k \Pi$. Hence, using multiindex notation: $d(\underbrace{\Sigma}_{\mathbf{I}} w_{\mathbf{I}} dx_{\mathbf{I}}) = \underbrace{\Sigma}_{\mathbf{I}} dw_{\mathbf{I}} \wedge dx_{\mathbf{I}}$

proof: Suppose
$$w_{n}, w_{2} \in \mathcal{R}M$$
 coincide on an arbitrary
optin subset $\mathcal{U} \in \mathcal{M}$. We first show that then
 $dw_{n}|_{\mathcal{U}} = dw_{2}|_{\mathcal{U}}$, i.e., that d is 'local'.
To this end, for $p \in V \in \overline{V} \subseteq \mathcal{U}$ let $f \in C^{\infty}(\mathcal{H})$ be s.t.
 $f(q) = \begin{cases} 1, q \in V \\ 0, q \notin \mathcal{U} \end{cases}$. Then $0 = f(w_{n} - w_{2}) \in \mathcal{R}\Pi$
and therefore $0^{(iii)} d(0) = d(f \wedge (w_{n} - w_{2}))$
 $\stackrel{(iii)}{=} df \wedge (w_{n} - w_{2}) + f \wedge d(w_{n} - w_{2})$
 $\stackrel{(iii)}{=} df \wedge (w_{n} - w_{2}) + f \wedge d(w_{n} - w_{2})$
 $\stackrel{(iii)}{=} (dw_{2})|_{V}$ and since this applies to an
arbitrary $p \in \mathcal{U}$ it holds on all of \mathcal{U} .

Consider we $\mathcal{Q}^{k}M$ that within \mathcal{U} is of the form $w = \sum_{I} w_{I} dx_{I}$. We can always extend w_{I} smoothly to all of M so that the resulting w coincides with the initial one. Since d is local this does not affect dw. We get: $d\left(\sum_{I} w_{I} dx_{I}\right)$ $\stackrel{(i)}{=} \sum_{I} d\left(\frac{w_{I} dx_{I}}{x}\right)$ $\stackrel{(ii)}{=} \sum_{I} d\left(\frac{w_{I} dx_{I}}{x}\right)$ $\stackrel{(iii)}{=} \sum_{I} dw_{I} dx_{I} + w_{I} \wedge d(dx_{I})$ $\stackrel{(iii)}{=} \sum_{I} dw_{I} \wedge dx_{I}$

This proves that dw is of the claimed form and thus unique. It remains to show that this fullfills (i)-(iv). (i) and (iii) are obvious. Due to linewity it suffices to prove (ii) for $w = f dx_{I} \in \mathcal{R}^{K}M$ and $\eta \in g dx_{I}$: $d(wn\eta) = d(fg dx_{I} \wedge dx_{I})$ $= (g df + f dg) \wedge dx_{I} \wedge dx_{I}$ $= (df \wedge dx_{I}) \wedge (g dx_{I}) + (-1)^{K} (f dx_{I}) \wedge (dg \wedge dx_{I})$ $= dw \wedge \eta + (-1)^{K} w \wedge d\eta$

To show (iv) consider again w= f dx_I so that

 $d \omega = df \wedge dx_{I} = \sum_{j} \frac{\partial f}{\partial x_{j}} dx_{j} \wedge dx_{I}$ Then $d^{2}\omega = \sum_{jk} \frac{\partial^{2} f}{\partial x_{j} \partial x_{k}} dx_{k} \wedge dx_{j} \wedge dx_{I}$ $= \sum_{j < k} \frac{\partial^{2} f}{\partial x_{i} \partial x_{k}} (dx_{k} \wedge dx_{j} + dx_{j} \wedge dx_{k}) \wedge dx_{I} = 0$ $\int_{j}^{2} \frac{\partial^{2} f}{\partial x_{i} \partial x_{k}} \frac{\partial^{2} f}{\partial x_{j} \partial x_{k}} = \frac{\partial^{2} f}{\partial x_{k} \partial x_{j}} \text{ for } fec^{\infty}$

口

<u>Lumma:</u> If $F: \Pi \Rightarrow N$ is smooth and $\omega \in \mathbb{R}^{k}N$, then $F^{*}(dw) = d(F^{*}w)$

$$\frac{proof:}{F^*} \quad Due \ to \ locality \ and \ linearity \ it \ suffices \ to \ consider$$

$$F^* d\left(f \ dx_{i_n} \land \dots \land dx_{i_k}\right) = F^* \left(df \land dx_{i_n} \land \dots \land dx_{i_k}\right)$$

$$= d\left(f \circ F\right) \land d\left(x_{i_n} \circ F\right) \land \dots \land d\left(x_{i_k} \circ F\right)$$

$$= d\left(f \circ F \land d\left(x_{i_n} \circ F\right) \land \dots \land d\left(x_{i_k} \circ F\right)\right)$$

$$= d\left(F^* \left(f \ dx_{i_n} \land \dots \land dx_{i_k}\right)\right).$$

Def.:
$$w \in \mathcal{N}^k M$$
 is called

• For $M = R^3$ with $w^2 := f_n^2 dx + f_2^2 dy + f_3^2 dy \in R^2 M$ $w^2 \in R^2 M$, $w^2 := f_n^2 dy \wedge dz + f_2^2 dz \wedge dx + f_3^2 dx \wedge dy \in R^2 M$ $w^3 := f^3 dx \wedge dy \wedge dz$ we have $w^2 \stackrel{d}{\mapsto} w^2 \stackrel{d}{\mapsto} w^2 \stackrel{d}{\mapsto} w^3$ is equal to $w^2 \stackrel{g^{red}}{\mapsto} f^2 \stackrel{rot}{\mapsto} f^2 \stackrel{div}{\mapsto} f^3$ (see exercise)

Vector fields

- <u>Def</u>.: A vector field X on a smooth manifold M is a map X: M→ TH, M>p → Xp ∈ TpH The set of smooth vector fields on M is denoted by ¥(M).
- <u>remarks</u>: If (U, x) is a chart around p, we can write any vector field X becally as $X_p = \sum_i X_i(p) \frac{\partial}{\partial x_i}\Big|_p$ where the X_i 's are the component functions of X w.r.t. the chart.
- Lemma: For a vector field X on a smooth M the following are equivalent:
 - (i) X is smooth.
 - (ii) The component functions of X are smooth (w.r.t. any chart).
 - (iii) For any f∈ C[∞](H), the function Xf: H → R defined by H ⇒ p → Xpf is smooth.

remarks: • By (iii) any X ∈ X (M) induces a linear operator X: C[∞](M) → C[∞](M). In fact, it is a linear derivation since X (f·g) = f·Xg + g·Xf. Moreover, for X, Y ∈ X (M): X = Y ⇔ V f ∈ C[∞](M): Xf = Yf. • By (ii) X (M) is a C[∞](M)-module.

Prop.: For
$$X, y \in \mathcal{X}(M)$$
 there exists a unique $\mathbb{Z} \in \mathcal{X}(M)$
satisfying $\mathbb{Z} f = (X \cdot Y - Y \cdot X) f$ for any $f \in C^{\infty}(M)$.
 \mathbb{Z} is called the Lie bracket of X and Y, denoted by $\mathbb{Z} =: [X, Y]$.
proof (sketch): $\mathbb{Z} f = (X \cdot Y - Y \cdot X) f$ already defines \mathbb{Z} . It remains
to show that $\mathbb{Z} \in \mathcal{X}(M)$. This follows from
observing that $\mathbb{Z}_{p} f := (\mathbb{Z} f)(p)$ is of the form
 $\mathbb{Z}_{p} = \sum_{i} (X \cdot Y_{i} - Y \cdot X_{i})(p) \stackrel{\partial}{\rightarrow}_{X_{i}}|_{p}$ w.r.t. a chart (U_{i}, X) .
(see exercise for details)

remarks: • I.g., XoY and YoX are not in
$$\mathcal{K}(M)$$
.
• The Lie brachet $[\cdot, \cdot]: \mathcal{H}(M) \times \mathcal{H}(M) \longrightarrow \mathcal{H}(M)$ makes
 $\mathcal{H}(M)$ a Lie algebra.

A differential form
$$\omega \in \mathcal{R}^{k} \mathcal{M}$$
 can now be regarded as a map
 $\omega : \mathfrak{X}(\mathcal{H})^{k} = \mathfrak{X}(\mathcal{H}) \times \cdots \times \mathfrak{X}(\mathcal{H}) \longrightarrow \mathcal{C}^{\infty}(\mathcal{H})$
 $\omega (X_{n}, \dots, X_{k}) \longmapsto (\mathcal{H}_{p} \mapsto \omega_{p} (X_{n,p}, \dots, X_{k,p}))$

This leads to a chart-independent formula for the exterior derivative:

$$\frac{Prop.:}{d\omega(X,Y)} \quad \text{If} \quad \omega \in \mathcal{R}^{k} \Pi \text{ and } X_{n_{1}} \dots X_{k+n} \in \mathcal{L}(\Pi) \text{ , then :} \qquad \text{omitted} \\ d\omega(X_{n_{1}} \dots X_{k+n}) = \sum_{i=1}^{k+1} (-1)^{i+n} X_{i} (\omega(X_{n_{1}} \dots X_{i+n})) \\ + \sum_{n \leq i < j \leq k+n} (-1)^{i+j} \omega ([X_{i_{1}} X_{j}], X_{n_{1}} \dots X_{j}], X_{n_{i}} \dots X_{k+n}) \\ \text{In particular, for } \omega \in \mathcal{R}^{n} \Pi : \quad d\omega(X,Y) = X \omega(Y) - Y \omega(X) - \omega([X_{1}Y])$$

proof (sketch): First, one verifies that the r.h.s. is a k+1-form : it is

alternating and
$$C^{\infty}$$
-linear (the later requires the second summand).
Then it suffices to show that it acts correctly on $\omega = \int dx_{n} \wedge \dots \wedge dx_{k}$
with $X_{i} = \frac{\partial}{\partial x_{n_{i}}} =: \partial_{x_{i}}$. Using $[\partial_{i}, \partial_{j}] = 0$, we get
 $\sum_{i=n}^{k+1} (-\eta)^{i+n} X_{i} \omega (\dots \hat{X}_{i} \dots) + \dots = \sum_{i=n}^{k+1} (-\eta)^{i+n} \partial_{x_{i}} \omega (\partial_{x_{n}}, \dots, \partial_{x_{k+1}})$.
For $k_{n} < \dots < \alpha_{k+1}$ this vanishes $\alpha_{i} \geq k+1$. So we can write
 $dw := k+n$ and thus $\alpha_{i} \geq k+1$. So we can write
 $dw = \sum_{k_{n} < \dots < \alpha_{k+1}} d\omega (\partial_{\alpha_{n}}, \dots, \partial_{\alpha_{k+n}}) dx_{k_{n}} \wedge \dots \wedge dx_{\alpha_{k}}$
 $= \sum_{j>k} (-\eta)^{k} \partial_{j} f dx_{n} \wedge \dots \wedge dx_{k} \wedge dx_{j}$

Orientation

<u>Def.</u>: Two ordered bases $b_1, ..., b_n$ and $c_1, ..., c_n$ of a real vector space V are said to have the same orientation if the automorphism $A: V \Rightarrow V$ defined by $Ab_i = c_i$ satisfies det(A) > 0. Each of the two equivalence classes under this relation is called an orientation of V.

The two orientations are sometimes called right-/lefthanded and the standard basis en,..., en of Rⁿ is referred to as right-handed.

Consistent definition of an orentation on a manifold is not always possible (e.g. the Moebins strip is not orientable).

- <u>Def.</u>: A smooth manifold M of dim. n > 7 is called orientable if one (and then both) of the following equivalent statements hold(s):
 - (i) There is an atlas A = {(U₁, f₁)}, whose charts are orientation compatible in the sense that det (d_p(f₁ o f_p⁻¹)) > 0 ∀ p ∈ f₁(U₁) o f_p(U_p).
 (ii) There is a nowhere vanishing w ∈ Rⁿ M (i.e., wp ≠ 0 ∀ p ∈ M).

<u>remarks</u>: • two orient. forms w, $\tilde{w} \in \mathcal{D}^{\vee}\Pi$ must be related via $\tilde{w} = f \cdot w$ by a nowhere vanishing $f = C^{\infty}(\Pi)$. If f > 0, we set $\tilde{w} \sim w$.
The resulting equivalence class [w] is then called an orientation of 17. A connected, orientable manifold then has two orientations.

· Using homology, (i) can be extended to a definition of orientability of topological manifolds.

proof: (of the equivalence)

- (ii) => (i) Let we R^mM be an orient. form. Then w.r.t. a chart (U,x) around p: $w_p = f(p) dx_n \wedge \dots \wedge dx_n$ for some $f \in C^{\infty}(U)$ that sakisfies $w_p(\frac{\partial}{\partial x_n}|_p, \dots, \frac{\partial}{\partial x_n}|_p) = f(p) \neq 0$. W.L.O.g. f(p) > 0 (otherwise replace $x_n by - x_n$). If (V,y) is another chart around p with $w_p = g(p) dy_n \dots \wedge dy_n$ and g(p) > 0, then, in the intersection $U \wedge V =$ $f dx_n \wedge \dots \wedge dx_n = g dy_n \wedge \dots \wedge dy_n = g det(\frac{\partial y_n}{\partial x_s}) dx_n \wedge \dots \wedge dx_n$ so that $det(\frac{\partial y_n}{\partial x_s}) = \frac{f}{g} > 0$. In this way, we can construct an atlas with orient. compatible charts.
- (i) => (ii) For each chost $(U_{\lambda_1} x^{\lambda_1}) \in t$ define $w^{\lambda} := dx_{\lambda}^{\lambda_1} \dots dx_{u}^{\lambda_{\lambda_{\lambda}}}$. Let $\{f_{\lambda} \in C^{\infty}(M, E^{0}, 1)\}$ be a partition of unity subordinate to $\{U_{\lambda}\}$ and define $w := \sum_{\lambda} f_{\lambda} w^{\lambda}$. Every pett has a neighborhood in which this sum is finite and using coordinate transformations we can express $w = \sum_{\lambda} f_{\lambda} dx_{\lambda}^{\lambda} \dots dx_{u}^{\lambda} = \sum_{\lambda} f_{\lambda} det(\frac{\partial x_{\lambda}^{\lambda}}{\partial x_{u}^{\lambda}}) dx_{\lambda}^{\lambda} \dots dx_{u}^{\lambda}$

- remorks: " W.r.t. a given orientation form w we call an ordered basis (b_1,..., b_n) of TpTT 'positively oriented' if w(b_1,..., b_n) >0.
 - A smooth map between oriented manifolds is called
 orientation preserving if it maps positively oriented bases to
 positively oriented bases.
 - To every point of a zero-dim. manifold we also assign two orientations, denoted +1 and -1.
 - · RP" is orientable iff n is odd.
 - An n-dim submanifold of Rⁿ⁺¹
 is orientable if there is a continuous
 vector field of 'unit normal vectors'. E.g. Sⁿ is orientable.

<u>Def.</u>: A topological manifold with boundary Π is a second countable Housdorff space that is locally houncomorphic to a half space $H^{n} := \{(x_{n}, ..., x_{n}) \in \mathbb{R}^{n} \mid x_{n} \neq 0\}$. Its boundary $\partial \Pi$ is the set of all points in Π that are mapped onto $\partial |H^{n} := \{(x_{n}, ..., x_{n}) \in \mathbb{R}^{n} \mid x_{n} = 0\}$. $|ht(\Pi) := \Pi \setminus \partial \Pi$.

It is a smooth manifold with boundary if it is additionally equipped with a smooth stoncture. (In this context, a map on a subset $U \in H^{n}$ is called smooth if it has a smooth extension to a neighborhood of U that is open in \mathbb{R}^{n} .)

- examples: Every (smooth) man; fold is a (smooth) manifold with boundary, albeit 217 = Ø. A compact manifold with empty boundary is called closed manifold.
 - ο Π := { × ∈ ℝ ' | ||× || ε 1 } with ∂Π = 5"-1
 - If $f: N \to \mathbb{R}$ is smooth with regular value $y \in \mathbb{R}$, then $\{x \in N \mid f(x) \leq y\} =: 17$ is a smooth manifold with boundary $\partial 17 = f^{-1}(\{y\})$.

- <u>remark</u>: If M, N are two smooth manifolds with boundary and $f: M \rightarrow N$ is a diffeomorphism, then $f(\partial M) = \partial N$ and $f \Big|_{\partial M} : \partial M \rightarrow \partial N$ is again a diffeomorphism.
- <u>Prop.</u>: If Π is a smooth manifold with boundary $\partial \Pi \neq \emptyset$, then: (i) $\partial \Pi$ is a smooth manifold with $\dim(\partial \Pi) = \dim(\Pi) - 1$ and $\partial(\partial \Pi) = \emptyset$.
 - (ii) ∂M is orientable if M is.

$$\frac{proof}{(i) (sketch): If (U, (x_1, ..., x_n))} is a chart around pedM s.t. U is homeomorphic to an open subset of IHn, then
$$U \cap \partial \Pi = \left\{ p \in U \mid x_n (p) = 0 \right\}$$
and $(U \cap \partial \Pi, (x_1, ..., x_{n-1}))$ is a chart of $\partial \Pi$...$$

(ii) Let (U, x) and (V, y) be two orientation compatible charts of M around $p \in \partial M$ s.t. $x_n \ge 0$ in U and $y_n \ge 0$ in V. Since the coordinate change $f := y \circ x^{-1}$ has to preserve the boundary, we have:

$$\begin{aligned}
f_{n}\left(x_{n_{1}},\ldots,x_{n}\right) &\begin{cases} = 0 & \text{if } x_{n} = 0 \\ > 0 & \text{if } x_{n} > 0 \\ \end{cases} \\
\frac{\partial}{\partial_{i}} f_{n}\left(x_{n_{1}},\ldots,x_{n-1_{i}},0\right) &\begin{cases} = 0 & \text{for } i < n \\ > 0 & \text{for } i = n \end{cases}
\end{aligned}$$

So

Hence, evaluated at a boundary point, we get :

$$O < det (\partial_i f_i)_{i,i=1}^{m} = det \left(\begin{array}{c} (\partial_i f_i)_{i,i=1}^{n-1} & 0 \\ 0 & 1 \\ 0$$

Def.: Let
$$[w]$$
 be an orientation of a smooth manifold M with
boundary $\partial \Pi \neq \emptyset$. If w.r.t. a chart (U, x) of Π around $p \in \partial \Pi$
we have $w = f dx_1 \wedge \dots \wedge dx_n$ for some $f > 0$, then the
induced orientation $[\eta]$ of $\partial \Pi$ is defined locally via
 $\eta := (-\eta)^n dx_1 \wedge \dots \wedge dx_{n-1}$

<u>remarks</u>: • These locally defined η 's can then be glued together to a (n-1)-form η that is an orientation form on all of ∂H . • According to ω , the basis $\frac{\partial}{\partial x_{n}}$, ..., $\frac{\partial}{\partial k_{m}} \in T_{p}H$ is positively oriented. At $p \in \partial H$ we can regard $v := -\frac{\partial}{\partial x_{m}}$ as outward pointing vector. An ordered basis $v_{1}, ..., v_{n-1}$ of $T_{p} \partial H$ is then positively oriented w.r.t. η if $v_{1}v_{1}, ..., v_{n-1}$ is positively oriented wr.t ω since $d(-x_{m}) \wedge \eta = (-1)^{m} \cdot d(-x_{m}) \wedge dx_{n} \wedge ... \wedge dx_{m-1}$

= dx, 1 ... 1 dx, .

Integration of n-forms on n-dim. manifolds

- <u>Def.</u>: The support of wer"M is supp(w) = {pem | wp * 0} (i.e. its complement is the largest open subset of M on which w= 0)
 - Let (U, h) be a chart of an n-dim. smooth manifold (possibly with boundary), and $w \in \mathcal{R}^n \Pi$. For $p \in U$ let $f(p) := w(\frac{\partial}{\partial x_n} \Big|_p, \dots, \frac{\partial}{\partial x_n} \Big|_p) \in \mathbb{R}$ define the component function of w, i.e. $w_p = f(p) dx_n \dots n dx_n$. Then

$$\frac{\sum (mmn:}{\sum} Two \text{ orientation- compatible charts } (U,h) \text{ and } (U,h)$$

$$\frac{\log d}{\log d} = \int f(p) \text{ dyn} + \int f(p) = \int f(p) \text{ dit}\left(\frac{\partial}{\partial y_i} \Big|_{x_j}\right)$$

$$\frac{\operatorname{proof:}}{\operatorname{proof:}} = \int f(p) \text{ dyn} + \int f(p) + \int f(p) + \int f(p) \text{ dit}\left(\frac{\partial}{\partial y_i} \Big|_{x_j}\right)$$

$$\frac{\operatorname{proof:}}{\operatorname{where}} = \int f(p) \text{ dyn} + \int f(p) + \int f(p$$

D

Now suppose $\{U_{\lambda}\}_{\lambda}$ is a finite open covering of Π with orientation compatible charts and $\{\Psi_{\lambda} \in C^{\infty}(U_{\lambda}, [0, 1])\}_{\lambda}$ is a smooth partition of unity subordinate to it. Then

$$\int_{\Pi} \omega := \sum_{\lambda} \int_{\mathcal{U}_{\lambda}} \Psi_{\lambda} \omega$$

<u>Lemma</u>: The integral $\int_{\Pi} w$ is independent of the chosen covering and partition of unity.

[as long as it is a finite covering with orient. comp. charts.] proof: Let $\{\tilde{u}_{\mu}\}_{\mu}$ be another such covering and $\{\tilde{\psi}_{\mu}\}$ a corresponding partition of unity. Then

To summarize, we have defined integrals of n-forms on n-dim. manifolds under the assumption that the manifold is oriented li.e. we chose an atlas with orient.comp.chorts) and the n-form has compact support (wich is antomatically satisfied if M is compact). The latter could be relaxed in principle, but the central theorem (Stokes' thm.) would still require compact support. Elementary properties:

Linearity:

$$\int_{\Pi} (a w + b \eta) = a \int_{M} w + b \int_{\Pi} for a | b \in \mathbb{R}, \\
w, \eta \in \mathbb{R}^{n} \\
w, \eta \in \mathbb{$$

<u>Prop.</u>: If $f: \Pi \rightarrow N$ is an orientation preserving diffeomorphism, $A \in \Pi$, $n := \dim(\Pi)$, and $\omega \in \mathcal{L}^{n}N$, then:

$$\int f^* \omega = \int \omega \qquad \text{(means of a general or a general of a general or a general of a$$

meaning that one side is well-defined if the other side is, n which case they are equal)

The proof follows again by realizing that the change of variables formula for the Lebesque integral corresponds to

f* (f· dy, A... A dy,) = (fof)· det (
$$\frac{\partial}{\partial x_{i}}$$
 Yof) dx, A... A dx,

All this extends to the case of O-forms (i.e. functions) over an oriented O-dim. manifold M, when we define $\int_{M} f := \sum_{p \in \Pi} \tau(p) f(p),$ where $\tau(p) \in \{\pm 1\}$ is the orientation at p.

This sum is finite if f is compactly supported.

Stokes' theorem

<u>Thm.</u>: [Stokes] Let T be an n-dim. oriented smooth manifold with boundary 217 and we Rⁿ⁻¹M have compact support. Then

$$\int dw = \int w$$

$$n = \partial n$$

<u>explanation</u> concerning the r.h.s.: $\partial \Pi$ is supposed to be equipped with the 'induced' orientation and ω is undustood as $\iota^* \omega$ with $\iota: \partial \Pi \rightarrow \Pi$ the inclusion map. If $\partial \Pi = \emptyset$, the r.h.s. is zero. <u>proof:</u> We will consider three increasingly general cases that are based

on each other:

- (i) $\Pi = H^{n}$. There is an r > 0 s.t. $supp(w) \in [-r, r]^{n-1} \times [0, r]$ and $we can write <math>w = \sum_{i=1}^{n} f_{i} dx_{1} \wedge \dots \wedge dx_{i} \wedge \dots \wedge dx_{n}$. Then $dw = \sum_{i=1}^{n} df_{i} dx_{1} \wedge \dots \wedge dx_{i} \wedge \dots \wedge dx_{n}$ $= \sum_{i=1}^{n} (-1)^{i-1} \frac{\partial f_{i}}{\partial x_{i}} dx_{n} \wedge \dots \wedge dx_{n}$
 - $\sum_{i=1}^{n} (-1)^{n-1} \int_{0}^{\infty} \int_{-r}^{r} \cdots \int_{-r}^{r} \frac{\partial f_{i}}{\partial x_{i}} dx_{n} \cdots dx_{n}$ So $\int_{\Pi} dw = \sum_{i=r}^{n} (-1)^{i-1} \int_{0}^{\infty} \int_{-r}^{r} \cdots \int_{-r}^{r} \frac{\partial f_{i}}{\partial x_{i}} dx_{n} \cdots dx_{n}$ For $i \neq n$ we have $\int_{-r}^{r} \frac{\partial f_{i}}{\partial x_{i}} dx_{i} \approx f_{i} \Big|_{\substack{x_{i} \approx -r \\ x_{i} \approx -r \\ fund. How. colc.}}^{x_{i} \approx + r} = 0$ since f_{i} vanishes $\int_{\Pi} dw = (-1)^{n-1} \int_{-r}^{r} \cdots \int_{-r}^{r} f_{n} \Big|_{\substack{x_{n} \approx T \\ x_{n} \approx 0}}^{x_{n} \approx r} dx_{n} \cdots dx_{n-1}$ $= (-1)^{n} \int_{-r}^{r} \cdots \int_{-r}^{r} f_{n} \Big|_{\substack{x_{n} \approx 0 \\ x_{n} \approx 0}}^{x_{n-1}} dx_{n} \cdots dx_{n-1}$

This has to be compared with $\int \omega = \int \iota^* \omega$ Since every (n-1)-form on $\partial \Pi = \partial \Pi^n$ is a C^∞ -multiple of $dx_n \wedge \ldots \wedge dx_{n-n}$, we have $\iota^* \omega = f_n(x_n, \ldots, x_{n-1}, 0) dx_1 \wedge \ldots \wedge dx_{n-1}$ so that $\int \omega = \int_{\partial \Pi} f_n(x_n, \ldots, x_{n-1}, 0) dx_n \wedge \ldots \wedge dx_{n-1}$ $= (-1)^n \int_{-r}^{r} \ldots \int_{-r}^{r} f_n(x_n, \ldots, x_{n-1}, 0) dx_n \cdots dx_{n-1}$ $(-1)^n dx_n \wedge \ldots \wedge dx_n$ is the induced orientation.

Consequently, J dw = J w for n= H".

- (ii) Suppose ω is supported in the domain \mathcal{U} of a single chart (\mathcal{U}, f) where f is orientation preserving. Then more details below $\int_{H} d\omega = \int_{H^{m}} (f^{-1})^{*} d\omega = \int_{H^{m}} d((f^{-1})^{*}\omega) = \int_{\Pi} (f^{-1})^{*}\omega = \int_{\Pi} \omega$ $= \int_{H^{m}} ext. dv. commutes with pullback <math>(f^{-1})^{*} d\omega$ has compact supp.
- (iii) Suppose $\{(U_{\lambda}, f_{\lambda})\}_{\lambda \in \Lambda}$ is an atlas of orientation compatible charts that define the orientation of M. If $\{\Psi_{\lambda} \in C^{\infty}(U_{\lambda}, E0, i]\}_{\lambda \in \Lambda}$ is a corresponding smooth partition of unity, then :

$$\int_{\partial M} \omega = \sum_{\lambda} \int_{\partial \Pi} \Psi_{\lambda} \omega = \sum_{\lambda} \int_{\Pi} d(\Psi_{\lambda} \omega)$$

$$= \sum_{\lambda} \int_{\Pi} d\Psi_{\lambda} \wedge \omega + \Psi_{\lambda} d\omega$$

$$\lim_{\lambda \to \Pi} \int_{\Pi} d(\sum_{\lambda} \Psi_{\lambda}) \wedge \omega + \int_{\Pi} \sum_{\lambda \to \Pi} \Psi_{\lambda} d\omega = \int_{\Pi} d\omega.$$

$$\prod_{\mu \to \Pi} \prod_{\mu \to \Pi}$$

<u>remark</u>: for a more detailed discussion suppose (U, ℓ) with $\ell = (\ell_1, ..., \ell_n)$ is the considured chart of Π , $(U \cap \partial \Pi, \tilde{\ell})$ with $\tilde{\ell} = (\ell_1, ..., \ell_{n-1})$ the boundary chart of $\partial \Pi$ and $\iota : \partial \Pi \to \Pi$, $\tilde{\iota} : \partial H^{\ell} \to H^{\ell}$ the inclusion maps. Then with $\ell^{-1} \circ \tilde{\iota} = \iota \circ \tilde{\ell}^{-1}$ we get : $\int_{H^{\ell}} d(\ell^{-1})^{*} w \stackrel{(i)}{=} \int \tilde{\iota}^{*} (\ell^{-1})^{*} w \stackrel{t}{=} \int (\tilde{\ell}^{-1})^{*} \iota^{*} w = \int \iota^{*} w$.

- <u>Corollary</u>: If M is a closed (= compact & boundary less), orientable smooth n-dim. manifold and $\omega \in \mathcal{R}^n M$ is exact, then $\int_M \omega = 0$. $\int_M \omega = \int_M d\eta = \int_M \eta = 0$ since $\partial \Pi = \emptyset$. $\lim_{M \to \infty} \int_M d\eta = \int_M \eta = 0$ since $\partial \Pi = \emptyset$.
- <u>Corollary</u>: If M is a compact, orientable smooth n-dim manifold and $w \in \mathbb{R}^{n-r} \Pi$ is closed, then $\int_{\partial \Pi} w = 0$. <u>Proof</u>: $\int_{\Omega} w = \int_{\Omega} dw = 0$. <u>Proof</u>: $\int_{\Omega} w = \int_{\Omega} dw = 0$. $\int_{\Omega} w = 0$.
- $\frac{\text{(orollory:}}{\text{(orollory:}} [Fund. thm. for line integrals] Let y: [a,b] \rightarrow N be a smooth$ $cuve s.t. <math>\Pi := yr([a,b])$ is a 1-dim. submanifold of N and $yr: [a,b] \rightarrow \Pi$ is an orientation preserving diffeomorphism. Then for any $f \in C^{\infty}(N)$: $\int_{\Pi} df = f(y(w)) - f(y(w))$ $\prod_{n \in \mathbb{R}^{n}} \int_{\Pi} df = \int_{\Pi} f \quad \text{with} \quad \partial \Pi = \{y(a), yr(b)\}$ $n \in \mathbb{R}^{n}$ $n \in \mathbb{R}^{n}$ \mathbb{R}^{n}

Thm .: [No retraction thm.]

Let I be a compact, oriented smooth manifold with

boundary $\partial \Pi \neq \emptyset$. There is no smooth map $f: \Pi \rightarrow \partial \Pi$ s.t. $f |_{\partial \Pi} = id$. proof: Let use dim (M) and $\eta \in \mathcal{R}^{n-1} \partial \Pi$ be s.t. $\int_{\partial \Pi} \eta \neq 0$ (e.g. an orientation form on $\partial \Pi$). Then with the inclusion $\iota: \partial \Pi \rightarrow \Pi$ and an assumed retraction $f: \Pi \rightarrow \partial \Pi$ s.t. $f \circ \iota = id$: $\int_{\partial \Pi} \eta = \int_{\Omega} \iota^{*} f^{*} \eta = \int_{\Omega} d(f^{*} \eta) = \int_{\Pi} f^{*} d\eta = 0$ if $d\eta \in \mathcal{R}^{*} \partial \Pi = \{0\}$

- $\frac{Corollary:}{Corollary:} \begin{bmatrix} Brouwer's fixed point them smooth version \end{bmatrix}$ $Consider \quad M := \{ x \in \mathbb{R}^n \mid \|x\|_x \in I \} \text{ with } \partial \Pi = S^{n-1} \text{ and } \alpha$ $smooth \quad map \quad f: \Pi \Rightarrow \Pi, \quad f \text{ has a fixed point (i.e. } \exists x \in \Pi: f(x) = x).$ $\frac{proof:}{Suppose there is no fixed point. Then define \quad g: \Pi \Rightarrow \partial \Pi \quad s.t.$ $g(x) := x + t(x f(x)) \quad for \quad \alpha \quad suitable \quad t \ge 0 \quad depending \quad on \quad x.$ $\int_{X} \frac{g(x)}{f(x)} \quad Then \quad g \quad would \quad be \quad \alpha \quad smooth \quad retraction. \quad f(x) \in X$
- <u>remark</u>: using Weiustrass approximation this can be extended to continuous functions f: M-> M on any top, space M that is homeomorphic to a closed ball.

Vector analysis in
$$R^3$$

To recover theorems of vector analysis in \mathbb{R}^3 from the generalized Stokles' thm. we can use the following definitions & conventions:

Let
$$U \in \mathbb{R}^{5}$$
 be open and $\mathcal{V} := C^{\infty}(U, \mathbb{R}^{3})$. On \mathcal{U} define the vector - valued forms
 $ds^{2} := \begin{pmatrix} dx_{1} \\ dx_{2} \\ dx_{3} \end{pmatrix} \qquad dt^{2} := \begin{pmatrix} dx_{2} \wedge dx_{3} \\ dx_{3} \wedge dx_{4} \\ dx_{3} \wedge dx_{2} \end{pmatrix}$

and dV = dx, 1 dx, 1 dx3. These lead to the following isomorphisms:

Then Stokes' thm. for differential forms translates to:

Gauss' divergence then .: For any $\vec{b} \in \mathcal{V}$ and any compact 3-dim. submanifold M of \mathcal{U} with boundary ∂M :

kelvin-Stokes thm.: For any a e 2 and any compact, oriented

2- dim. submanifolds MEU with boundary 271:

$$\int rot \vec{a} \cdot d\vec{F} = \int \vec{a} \cdot d\vec{s}$$

$$\Pi = \partial \Pi$$

Moreover, the following diagram commutes:

$$\mathcal{R}^{\circ} \mathcal{U} \xrightarrow{d} \mathcal{R}^{\circ} \mathcal{U} \xrightarrow{d} \mathcal{R}^{\circ} \mathcal{U} \xrightarrow{d} \mathcal{R}^{\circ} \mathcal{U}$$

$$= \begin{bmatrix} & a \\ & a \end{bmatrix} \xrightarrow{rot} & a \end{bmatrix} \xrightarrow{rot} \begin{bmatrix} a \\ & a \end{bmatrix} \xrightarrow{rot} \xrightarrow{div} \xrightarrow{rot} \mathcal{V} \xrightarrow{div} (\tilde{}^{\circ}(u))$$

In particular, $d^2 + 0$ translates to rotgrad f = 0 and divrot $a^2 = 0$.

Riemannian & Lorentzian manifolds

Recall from Lincor Algebra: If g:
$$V \times V \rightarrow R$$
 is a symmetric, non-degenerate *
bilinear form on a finite dim. real vector space V
with basis $b_{n_1,...,b_n} \in V$, then $(g(b_i, b_j))_{i,j=1}^n$ is
an invulible matrix. By Sylvester's law of invita
the number $s \in \{0,...,n\}$ of negative eigenvalues
is independent of the basis. We call s the
holder of g. Note that g is an inner product
iff $s=0$.

Def.: Let
$$\Pi$$
 be a smooth manifold and $se \{0, ..., dim(\Pi)\}$.
A pseudo-Riemannian metric of index s on Π is an assignment
of a symmetric, nondegenvate, bilinear form $g_p: T_p\Pi \times T_p\Pi \Rightarrow R$
of index s to every point $p \in \Pi$, s.t. in any chart
 $g_{ij}(p):=g_p(\frac{\partial}{\partial x_i}|_{p_i}, \frac{\partial}{\partial x_j}|_p)$ depends smoothly on p .
 (Π, g) is then called pseudo-Riemannian manifold of Index s
and for $s = \begin{cases} 1 < \dim(\Pi) : Lorentzian manifold \\ 0 : Riemannian manifold \end{cases}$

remarks: o Note that if
$$X_{p} = \sum_{i} x_{i} \frac{\partial}{\partial x_{i}} \Big|_{p}$$
 and $Y_{p} = \sum_{i} y_{i} \frac{\partial}{\partial x_{i}} \Big|_{p}$, then
 $g_{p}(X_{p}, Y_{p}) = \sum_{ij} x_{i} g_{ij}(p) y_{j} = \langle x_{i}, g^{(p)} y \rangle$.
• A common notation is ds^{2} for the bilinear form g_{p} . This,
in turn, leads to expressions of the form " $ds^{2} = \sum_{ij} g_{ij} dx_{i} dx_{j}$ ".

- <u>examples:</u> The Minkowski space $\Pi = \mathbb{R}^4$ with constant Minkowski metric $\begin{pmatrix} g_{ij} \end{pmatrix} = \begin{pmatrix} -7 \\ 7 \\ 7 \end{pmatrix}$ w.r.f. the canonical basis of \mathbb{R}^4 is a simple Lorentzian manifold.
 - · R" with the standard inner product is a Riemannian manifold.
- <u>Lemma</u>: Let $F: \Pi \rightarrow N$ be smooth and s.t. $d_p F$ is injective for all $p \in \Pi$. If (N, g) is Riemannian, then so is (Π, F_g^*) .
- remarks: The pullback for symmetric bilinear forms is defined in the same way as for anti-symmetric ---.
 - · Injectovity of dpF holds in particular for embeddings.

$$\frac{\text{proof:}}{\text{proof:}} \quad (F^*g)_p(v,v) = g_{F(p)}(d_pFv, d_pFv) \ge 0$$
and ... = 0
$$\stackrel{g \text{R.metric}}{\iff} d_pFv = 0 \quad \stackrel{d_pF \text{ in j.}}{\iff} v = 0 \quad \square$$

Corollary: For every smooth manifold three exists a Riemannian metric.
proof: By Withney's embedding thm. there is an embedding

$$F: \Pi \rightarrow R^{2n}$$
. If g is the standard inner product on R^{2n} , then
 F_{g}^{*} is a Riemannian metric on Π .

<u>remark</u>: an alternative proof would construct a Ricm. metric locally within any single chart of an atlas and then exploit a partition of unity together with convexity of the space of inner products. Having a manifold equipped with a Riemannian metric has two immediate benefits:

We can talk about distances
 We can identify TpH with Tp#H and thus X(M) with R^M.

1:
$$\underline{Def.:}$$
 Let (Π, g) be a Riemannian manifold.
• The length of a curve $y \in C^{2}([0,b],\Pi)$ is defined as
 $L(y) := \int_{a}^{b} \frac{\left[g_{Y(t)}\left(\dot{y}(t), \dot{y}(t)\right)\right]^{\frac{1}{2}}}{\left[g_{Y(t)}\left(\dot{y}(t)\right)\right]^{\frac{1}{2}}} dt$
 $= ||\dot{y}(t)||$ where $\dot{y}(t) \in T_{Y(b)}\Pi$ is s.t.
 $\dot{y}(t)f := (f \circ y)^{\frac{1}{2}}(t)$ for $f \in C^{\infty}(\Pi)$

This extends to piecewise - C' curves by summing up the lengths of the pieces.

• The distance between x, y e T is defined as $d_g(x, y) := inf \{ L(y) \mid y is piecewise C^2 d connects x and y \}$

remark:
$$L(y)$$
 is independent of the parametrization of yr and given in
local coordinates by $\int_{a}^{b} \left[\sum_{ij} g_{ij}(y(t))(x_{j}\circ y)'(t)(x_{j}\circ y)'(t) \right]^{t_{2}} dt$

<u>Thm.</u>: If (II,g) is a connected Riemannian manifold, Hen (II, dg) is a metric space whose metric topology coincides with the manifold topology of M. 2: Any pseudo-Riemannian métric g induces an isomorphism

$$\begin{split} & \Psi: T_{p}\Pi \longrightarrow T_{p}^{*}\Pi, \quad v \longmapsto g_{p}(v, \cdot) \\ & (\text{ note that } \Psi \text{ is a linear map that is injective since } \Psi(v) = 0 \Rightarrow g_{p}(v, \kappa) = 0 \\ & \text{ for all } \kappa \implies v = 0 \text{ . As dim}(T_{p}\Pi) = \dim(T_{p}^{*}\Pi), \quad \Psi \text{ is an isomorphism.}) \\ & \text{Applying this pointwise we get an isomorphism between } \mathfrak{K}(\Pi) \text{ and } \mathfrak{L}^{2}(\Pi) \text{ .} \\ & \text{ E.g. if } f \in C^{\infty}(\Pi) \text{ we can assign a vector field to df } \mathfrak{e} \mathfrak{L}^{2}(\Pi), \\ & \text{ which then defines the gradient } grad(f) := \Psi^{-1}df \in \mathfrak{K}(\Pi) \text{ .} \end{split}$$

$$\begin{aligned} \Psi & also & allows us to define a (psindo-) inner product on Tp^*\Pi via \\ Tp^*\Pi \times Tp^*\Pi \Rightarrow (\omega, \eta) \mapsto g_P(\Psi^{-1}(\omega), \Psi^{-1}(\eta)) \end{aligned}$$

$$Pointwise application yields: <\cdot,\cdot>: R^{2}\Pi \times R^{2}\Pi \Rightarrow C^{\infty}(\Pi) \\ <\omega, \eta>:= (p \mapsto g_P(\Psi^{-1}(\omega_P), \Psi^{-1}(\eta_P))) \end{aligned}$$

This can be extended to k-forms:

Def.: For a pseudo-Riemannian manifold
$$(M,g)$$
 we define
 $\langle \cdot, \cdot \rangle : \mathcal{X}^k \Pi \times \mathcal{R}^k \Pi \rightarrow C^{\infty}(H)$ pointwise by bilinear extension of

$$\langle \alpha_n \wedge \dots \wedge \alpha_{K_1}, \beta_n \wedge \dots \wedge \beta_K \rangle := det (g_p (\psi^{-1}\alpha_1, \psi^{-1}\beta_2))$$

Prop.:Let (Π, g) be an oriented Riemannian manifold. Thereis a unique orientation form γ s.t. for any positively orientedONB $v_1, \ldots, v_n \in T_p \Pi$: $\gamma_p(v_1, \ldots, v_n) = 1$ In local coordinates this Riemannian volume form has the form

$$V_{p} = \sqrt{det\left((g_{ij}(p))_{i,j}\right)} d\kappa_{n} \wedge \dots \wedge d\kappa_{n}$$

remark: In the literature this is often written V = dV or dVoly. This should not mislead you to think that it is an exact form.

<u>proof</u>: In a positively oriented chart we can write $v_i = \sum_{k} B_{ik} \frac{\partial}{\partial k_k} \Big|_p$ where orthogonality means $S_{ij} = g_p(v_i, v_j) = \sum_{kl} B_{ik} g_{kl}(p) B_{jl}$ and thus $I = B G B^T$ with $G := (g_{kl}(p))_{kl=l}^n$. Consequently, $det(B) = \sqrt{\frac{\gamma}{det(G)}}$ and this holds for any positively oriented ONB since these are related like $\tilde{B} = O \cdot B$ via $O \in SO(n)$.

> Every orientation form has the form $V_p = f(p) dx_1 \dots dx_n$ in local coordinates. So $V_p(v_1, \dots, v_n) = f(p) det((dx_i(v_{ij})))$ s.t. $f(p) = \sqrt{det(G)}$ is necessary for the claim. B To show that this gives a globally well-defined orientation form we have to show consistency of the definition our different charts. So consider a different chart given by \tilde{x} at p. Then $G_i = S^T \tilde{G} S$ where $S_{KL} := \frac{3\tilde{x}_{kL}}{3\kappa_k}|_p$ and $\sqrt{det(G_k)} d\tilde{x}_1 \wedge \dots \wedge d\tilde{x}_n =$ $= \sqrt{det(G_k)} det(S) dx_1 \wedge \dots \wedge dx_n = \sqrt{det(G_k)} dx_n \wedge \dots \wedge dx_n$.

<u>Thm.</u>: A smooth manifold M admits a Lorentzian metric iff there exist a nowhere vanishing vector field X & X (M). <u>proof</u>: -> exercise class...

<u>Corollary</u>: For new even, there is no Lorentzian metric on Sⁿ. <u>proof</u>: According to the 'hairy ball thm.' Sⁿ does not admit a non-vanishing smooth vector field if ne 2N.

Hodge theory

If $\dim(\Pi) = n$, then $\dim\left(\Lambda^{k}T_{p}^{*}\Pi\right) = \binom{n}{k} = \binom{n}{n-k} = \dim\left(\Lambda^{n-k}T_{p}^{*}\Pi\right)$ so that the spaces are isomorphic vectorspaces. If (M,A) is an oriented Riemannian manifold, there is a natural isomorphism given by the Hodge star operator *: $\mathcal{N}^{\mu}\Pi \longrightarrow \mathcal{N}^{\mu-\mu}\Pi$ that is defined pointwise as follows : Let On, ..., Ou, Our, ..., On a positively oriented ONB (w.r.t. the inner product induced by g) of Tp"M. Then a linear *: $\Lambda^{k}(T^{*}_{\rho}\Pi) \longrightarrow \Lambda^{n-k}(T^{*}_{\rho}\Pi)$ is defined by setting map $* \left(\Theta_{\gamma} \wedge \ldots \wedge \Theta_{\kappa} \right) = \Theta_{\kappa + i} \wedge \ldots \wedge \Theta_{\kappa}$ So if $\omega = \sum_{i_n \in \dots \in i_k} \omega_{i_n \dots i_k} \Theta_{i_n} \wedge \dots \wedge \Theta_{i_k}$ then $\star \omega = \sum_{i_1, \dots, i_k} \omega_{i_1, \dots, i_k} \operatorname{sgn}(I, 7) \, \theta_{i_1} \wedge \dots \wedge \theta_{i_{N-k}}$ where jn < ... < ju-k is the complement of in < ... < in in {1,..., n} and sqn (I,3) the sign of the pumutation (1,..., n) >> (i, ..., iu, s, ..., su.k). In this way, *1 = > E IM is the Riemannian volume form.

$$\frac{Prop.:}{For any fige C^{\infty}(n)} and w, \eta \in \mathcal{L}^{k} \Pi \text{ on an oriented Riem. } H:$$

$$i) * (f w + g\eta) = f(*w) + g(*\eta)$$
Since both sides are non-
degenerate bilinear,
this uniquely characterizes
(or obefines) He Hodge * k
(in a basis-independent way)

$$v) < *w, *\eta > = < w, \eta >$$

proof: We can consider all identifies pointwise (i.e. at a per) i) linearity holds by definition.

ii) If
$$\Theta_{n_1,...,}\Theta_n$$
 is a postoriunted ONB of $T_p^*T_1$, then
 $w_p = \Theta_n \wedge ... \wedge \Theta_k \implies * w_p = \Theta_{k+1} \wedge ... \wedge \Theta_n$ and
 $** w_p^* = \nabla \Theta_n \wedge ... \wedge \Theta_k$ where ∇ is the sign of the
permutation $(k_{r1},...,n_1,1,...,k)$. So $\nabla^* (-1)^{k(n-k)}$

Hure, sgn(I) is the sign of the permutation (i_1, \dots, i_k) . On the other hand, $\langle w_{p_1} \pi_{p_1} \rangle = \langle \Theta_{n_1} \dots \dots \Theta_{k_1} \Theta_{i_n} \dots \dots \Theta_{i_k} \rangle$ = $det (\langle \Theta_{i_1}, \Theta_{i_2} \rangle)_{i_2 = i_1}^k = sgn(I)$.

So, indued, wx * 7 = < w, 7 > > and using < w, 7 >= < 7, w>

gives the second identity.

$$*v = *(*1) = 1$$

 $iv) *(wn*\eta) = *(\langle w,\eta \rangle v) = \langle w,\eta \rangle = \langle w,\eta \rangle = \langle \eta,w \rangle = \dots$

Def.: For any XEX(M) on an oriented Riemannian manifold (M,g), the divergence is defined as div X := * d * Y(X) where Y(X) E R^tM is the 1-form associted to X by g.

Funarhs: • div:
$$\mathcal{X}(M) \longrightarrow C^{\infty}(M)$$

• On standard \mathbb{R}^{n} we get for $X = \sum_{i} f_{i}(p) \frac{\partial}{\partial x_{i}}\Big|_{p}$
 $\Psi(x) = \sum_{i} f_{i}(p) dx_{i}$ so that
 $div X = * d \sum_{i} f_{i}(p) (-1)^{i+1} dx_{n} \dots n dx_{n}$
 $= * \sum_{i} \frac{\partial}{\partial x_{i}}\Big|_{p} f(p) dx_{n} \dots n dx_{n}$
 $= \sum_{i} \frac{\partial}{\partial x_{i}}\Big|_{p} f_{i}$ as expected.

• On standard \mathbb{R}^3 we have $\#(dx_{\underline{i}} \wedge dx_{\underline{i}}) = \sum_{i} \varepsilon_{i\underline{j}} \wedge dx_{i}$ Hence, $\omega = \sum_{j=1}^{3} f_i dx_i$ leads to $\#d \omega = \# \sum_{\underline{i} \leq i}^{3} \frac{\partial}{\partial x_{\underline{i}}} \Big|_{p} f_{\underline{k}} dx_{\underline{i}} \wedge dx_{\underline{k}}$ $= \sum_{i\underline{j} \leq i_{\underline{i}}}^{3} \varepsilon_{i\underline{j}} \frac{\partial}{\partial x_{\underline{i}}} \Big|_{p} f_{\underline{k}} dx_{i}$ $= \sum_{\underline{i} \leq i_{\underline{i}}}^{3} (\operatorname{curl} f)_{\underline{i}} dx_{i}$

Alternative notations are culf = rot $f = \nabla \times f$. Note that for an n-dim. It we have $*d: \mathcal{R}^{17} \to \mathcal{R}^{n-2} \pi$ Def.: Let Π be an oriented Riemannian manifold. • If Π is compact and $\forall \in \mathcal{R}^n \Pi$ denotes the Riem. volume form, we define the inner product $(\cdot, \cdot) : \mathcal{R}^n \Pi \times \mathcal{R}^n \to \mathbb{R}$ $(\omega, \eta) := \int_{\Pi} \langle \omega, \eta \rangle \vee = \int_{\Pi} \omega \wedge \star \eta = \int_{\Pi} \eta \wedge \star \omega$ and extend it to $\mathcal{R}\Pi$ by setting $(\omega, \eta) := 0$ for forms of different degree.

We define the adjoint exterior derivative of ^t: Ω^kΠ → Ω^{k-1}M as

$$ol^{+} := (-1)^{k} * ol^{+} * (-1)^{n(k+1)+1} * ol^{+}$$

remarks: " we write (w, 7) & R to distinguish from < w, 7 > E C (17).

- · Note that (W, M) requires compact M or at least that the supports of wand of have compact overlap.
- · For a Lorentz manifold, (.,.) would not be an inner product.
- The Hodge * is an isometry w.r.t. (:) since (*w, *7) = (w,7)

• By definition the following diagram commutes: $\mathcal{R}^{k}\Pi \xrightarrow{*} \mathcal{R}^{n-k}\Pi$

$$\mathcal{A}^{k-1} \mathcal{T} \xrightarrow{(-1)^{k} \mathcal{K}} \mathcal{D}^{n-k+1} \mathcal{M}$$

· This implies * dt = (-1) K d*, and dt dt = 0

o The name 'adjoint ' is justified due to :

<u>Prop.</u>: d and d^t are mutual adjoints w.r.t. (\cdot, \cdot) . That is, $\forall w, \eta \in \mathcal{M}$: $(dw, \eta) = (w, d^{\dagger}\eta)$.

$$\frac{proof:}{dw \wedge \pi \eta} = d(w \wedge \pi \eta) - (-\eta)^{k} w \wedge d \pi \eta = d(w \wedge \pi \eta) + w \wedge \pi d^{\dagger} \eta$$

$$So \int_{\Pi} (dw, \eta) = \int_{\Pi} d(w \wedge \pi \eta) + \int_{\Pi} w \wedge \pi d^{\dagger} \eta = (w, d^{\dagger} \eta) \cdot \frac{\pi}{\eta}$$

$$= 0 \text{ by Stokes as } \partial \pi = d$$

remarks: • (du) to 2" M is adjoint to du: NM - NM and similar to ± dn-k-1.

o We can now formulate the remaining / inhomogeneous Maxwell equation(s) simply as $d^{\dagger}F = \dot{s}$. In ordinary components this is $\nabla \cdot \vec{E} = S$ and $\nabla x \vec{B} - \frac{\partial \vec{E}}{\partial t} = \vec{s}$.

Def .: For an oriented Riemannian manifold M the

Laplace - Beltrami operator
$$\Delta : \mathcal{R}^{k} \mathcal{M} \to \mathcal{R}^{k} \mathcal{M}$$
 is defined as

$$\Delta := (d+d^{+})^{2} = dd^{+} + d^{+} dd = d_{k-1} d_{k-1} + d_{k}^{+} d_{k}$$

<u>remarks</u>: • For k = 0 we have $\Delta : C^{\infty}(n) \rightarrow C^{\infty}(n)$:

$$\Delta f = (\operatorname{old}^{t} + \operatorname{ol}^{t} \operatorname{ol}) f = \operatorname{ol}^{t} \operatorname{ol} f = - \operatorname{*ol} \operatorname{*\psi} \operatorname{\psi}^{-1} (\operatorname{ol} f) = -\operatorname{oliv} \operatorname{grad}(f)$$

$$\mathfrak{r}^{n} \to [0] \qquad \mathfrak{r}^{n} \to \mathcal{C}^{n}(n) \qquad \operatorname{div} \operatorname{grad} f$$

$$S_{0} \qquad \Delta = -\operatorname{oliv} \circ \operatorname{grad} \qquad \operatorname{on} \ \mathcal{C}^{\infty}(n) \ .$$

• For standard \mathbb{R}^n this gives: $\Delta f = -\operatorname{div} \sum_{i=1}^n \frac{\partial}{\partial x_i} \Big|_p f dx_i = -\sum_{i=1}^n \frac{\partial^2 f}{\partial x_i^2} \Big|_p$ (note that there are different conventions concruing the sign in the definition of Δ . We chose Δ positive.)

• On compact M (where (:,:) is defined) Δ is selfadjoint ($(\Delta w, \gamma) = (w, \Delta \gamma)$) and positive ($(w, \Delta w) > 0$).

Def.: The space of hormonic k-forms on an oriented Riem. manifold
is defined as
$$\mathcal{H}^{k}\Pi := \{ w \in \mathcal{X}^{k}\Pi \mid \Delta w = 0 \}$$
.

Thm.: Let M be a compact, oriented Riemannian manifold and $w \in \mathcal{R}^{K}M$. Then $\Delta w = 0 \iff (d_{k}w = 0 \text{ ond } d_{k-1}^{+}w = 0)$

(In words: a differential form is harmonic iff it is closed and 'co-closed'.) proof: '\e' is obvious from the definition.

 $\frac{Lemma:}{proof:} \rightarrow workise.$

With $\Omega^{k}M \rightleftharpoons_{du}^{du} \Omega^{k+1}M$ the adjointness leads within $\Omega^{k}M$ to: $ker(d_{k}) = lm(d_{k}^{+})^{\perp}$ and $ker(d_{k-1}) = lm(d_{k-1})^{\perp}$ Would $\Omega^{k}M$ be finite olim., we could argue that $\Omega^{k}M = ker d_{k} \oplus lm d_{k}^{+} = ker(d_{k-1}^{+}) \oplus lm(d_{k-1})$ and since $lm(d_{k-1}) \in ker(d_{k})$ also that $ker d_{k} = lm(d_{k-1}) \oplus ker(d_{k}) \wedge ker(d_{k-1}^{+})$

In fact, the following is true:

<u>Thm.</u>: [Hodge decomposition] For an oriented, compact Riemannian manifold, $\dim(\mathcal{H}^{k}\Pi) < \varpi$ and $\mathcal{R}^{k}\Pi = \lim(d_{k-1}) \oplus \lim(d_{k}^{+}) \oplus \mathcal{H}^{k}\Pi$,

i.e., $\mathcal{M}^{k}M$ decomposes into subspaces $d \mathcal{R}^{k-1}M \oplus d^{\dagger} \mathcal{R}^{k+1}M \oplus \mathcal{H}^{k}M$ that are orthogonal w.r.t. $(w, \eta) = \int_{M} w u * \eta$.

<u>remark</u>: $\Omega^{k} \Pi = d \Omega^{k-1} \Pi \oplus d^{\dagger} \Omega^{k+1} \Pi \oplus \mathcal{H}^{k} M$ means that every *k*-form has a unique decomposition into an exact form, a dual exact form and a hormonic form. For 3-dim. manifolds this becomes the Helmholtz elecomposition by which each vector field is the sum of a gradient field, a curl field and a hormonic field. In particular, there exists a decomposition into a 'divergence-free' and a 'cwl-free' part.

de Rham cohomology

<u>Def.</u>: Let Π be an n-dim. smooth manifold and $p \in \{0, ..., n\}$. We define the p'th de Rham cohomology group of Π as the quotient vector space $H_{J_2}^{P}(\Pi) := \frac{ker(d_p)}{Im(d_{p-1})} = \frac{\{closed \ p-forms\}}{\{exact \ p-forms\}}$

and $H_{\mathcal{D}}^{p}(H) := \{0\}$ for $p \in \mathbb{Z} \setminus \{0, \dots, n\}$. For any closed form $w \in \mathcal{D}^{p}H$, we denote [w] the corresponding equivalence class, called cohomology class of w. That is, $[w] = [\tilde{w}] \iff w - \tilde{w}$ is exact. If M is compact, we define the p'th Betti number as

Bp := dim H^p₂(H)

Examples: •
$$H_{\mathcal{R}}^{\circ}(M) = \frac{\{f \in C^{\circ}(M) \mid df \neq 0\}}{\{0\}} = \{ locally const. functs on M\}$$

So $\beta_{\circ} = \# connected components$.

• For
$$\Pi = \mathbb{R}^2 \setminus \{0\}$$
 or $\Pi = S^2$ the 1-form $w = \frac{\times dy - y \, dx}{x^2 + y^2} = d\theta$
is closed but not exact (since $w = d\eta$ would imply
 $\int_{S'} w = 0 \neq 2\pi$). So $H^1_{\mathcal{R}}(\Pi) \neq \{0\}$.
• These approaches if Π is closed and originately then there

is an orientation form that is closed but not exact. So

$$H_{32}^{n}(M) \neq \{0\}$$
 for $n := \dim(M)$. Note that its cohomology
class Ewl is all that is 'seen' by the integral $\int_{M} w$
since if $w' = w + d\eta$, then $\int_{M} w' = \int_{M} w + \int_{M} d\eta$.
 $= 0$ by Shokes

Def:: If
$$F: M \to N$$
 is smooth, then the pullback $F^*: \Omega^k N \to \Omega^k M$
induces a map $F^*: H^k_{\mathcal{R}}(N) \to H^k_{\mathcal{R}}(M)$ defined as $F^*Ew] \coloneqq EF^*w]$

- The assignment (M, F) → (H^u_n(M), F^{*}) is a contravariant functor from the category of smooth manifolds and smooth maps to the category of real vector spaces and linear maps.
- The 'contra' (as opposed to 'co'-) refus to a revusal of direction of composition, namely: $(F \circ G)^* = G^* \circ F^*$ This is also the distinction between 'cohomology' (contravariant) and 'homology' (covariant).
- Thm.: Let M be smooth, $\pi: M \times \mathbb{R} \to M$, $(p,t) \mapsto p$ and $i: M \to M \times \mathbb{R}$, $p \mapsto (p, o)$. Then
 - (i) There are linear maps $\phi_{k} : \mathcal{J}^{k}(\Pi \times \mathbb{R}) \to \mathcal{J}^{k-1}(\Pi \times \mathbb{R})$ s.t. id- $\pi^{*} \circ i^{*} := d \circ \phi_{k} + \phi_{k+1} \circ d$ on $\mathcal{J}^{k}(\Pi \times \mathbb{R})$. (ii) $\pi^{*} : H^{k}_{\mathcal{A}}(H) \to H^{k}_{\mathcal{J}}(M \times \mathbb{R})$ is an isomorphism with invase i^{*} .

proof: (ii)
$$\pi \circ i = id_{\pi}$$
 implies $i^* \circ \pi^* = id$ so that it remains to
show that $\pi^* \circ i^* = id$ on $H_{\mathcal{R}}^k(\mathcal{M} \times \mathbb{R})$. Since $d \circ \phi + \phi \circ d$ maps
closed forms to exact forms it maps $H_{\mathcal{R}}^k(\mathcal{M} \times \mathbb{R}) \ni E \omega] \mapsto E \circ]$.
Due to (i) this implies $id = \pi^* \circ i^*$.

(i) [Sketch]

Def.: • fige
$$C(X,Y)$$
 between top. spaces X,Y are called homotopic
 $(f \approx g)$ if there is $F \in C(X \times E^{0}, i^{2}, Y)$ s.t. $F(\cdot, 0) = f_{1} F(\cdot, 1) = g_{1}$
• Two top. spaces X,Y are called homotopy equivalent $(X \approx Y)$ if there are
continuous mops $X \xleftarrow{F}_{G} Y$ s.t. $F \cdot G \approx id_{Y}$ and $G \cdot F \approx id_{X}$.

remarks:
$$\circ$$
 If X, Y are homeomorphic, then they are homotopy equiv.
However, $S^{2} \simeq \mathbb{R}^{2} \setminus \{0\}$ (using $F(\kappa) = \frac{\kappa}{\|\kappa\|}$ and $G: S^{2} \Rightarrow \kappa \Rightarrow \kappa \in \mathbb{R}^{2} \setminus \{0\}$)

 By Whitney's approximation then, every cont. map between smooth manifolds is homotopic to a smooth map. Horeever, homotopic smooth maps are 'smoothly homotopic' (i.e. FeC[®]). Them .: [Homotopy invariance of de Phan cohomology] For any ke No:

- 1) If $f,g: \Pi \to N$ are homotopic smooth maps, then the induced maps $f^* = g^* : H^k_{\mathcal{R}}(N) \longrightarrow H^k_{\mathcal{R}}(\Pi)$ are identical.
 - 2) If M, N are homotopy equivalent smooth manifolds, then $H_{\mathcal{X}}^{\mu}(M) \cong H_{\mathcal{X}}^{\mu}(N)$ are isomorphic.

proof: 1) By Whitney's approx. Hun. there is a smooth map
$$F: H \times R \to N$$

s.t. $F(\cdot, \circ) = f$ and $F(\cdot, \cdot) = g$. With $i_{\theta}: H \to H \times R$, $i_{\theta}(p) := (p, t)$
we have $f = F \circ i_{\theta}, g = F \circ i_{\eta}$ and $i_{\theta}^{*} = \pi^{*-1} = i_{\eta}^{*}$. So
 $f^{*} = i_{\theta}^{*} \circ F^{*} = i_{\theta}^{*} \circ \pi^{*-1} \circ i_{\eta}^{*} \circ F^{*} = i_{\eta}^{*} \circ F^{*} = g^{*}$.
2) There are smooth maps $H \xleftarrow{F}_{G} N$ s.t. $F \circ G \cong id_{N}$ and
 $G \circ F \cong id_{H}$. According to 1) the induced maps satisfy
 $F^{*} \circ G^{*} = id$ and $G^{*} \circ F^{*} = id$. So $F^{*} : H_{2}^{k}(N) \to H_{R}^{k}(n)$

is an isomorphism.

Example: • By induction on n we get:

$$H_{\mathcal{L}}^{\kappa}(\mathbb{R}^{n}) = H_{\mathcal{L}}^{\kappa}(\{o\}) \cong \begin{cases} \mathbb{R} & | \ k = 0 \\ \{o\} & | \ k > 0 \end{cases}$$

<u>Corollary</u>: [Poincaré Lemma] If M is a smooth manifold that is contractable (i.e. homotopy equivalent to a point, e.g. star-shaped in Rⁿ), then $\beta_{k} = \begin{cases} 1, k=0\\ 0, k\neq 0 \end{cases}$. -> Every closed form is exact on any contractable domain. Thm.: [Hodge thm.] For a compact, oriented smooth manifold M: $H^{P}_{x}(\Pi) \cong \mathcal{H}^{P}\Pi$ are isomorphic vector spaces. In particular, $\beta_{P} < \infty$. (this holds for any Riem. metric underlying $\mathcal{H}^{P}\Pi$)

$$\frac{\text{proof:}}{\text{map}} \quad \text{This follows from He Hodge alcomposition: Consider the linear} \\ \text{map} \quad \mathcal{H}^{P}\Pi \Rightarrow \omega_{H} \mapsto E\omega_{H}I \in H^{P}_{a}(\Pi) \ . \ \text{This is injective since} \\ E\omega_{H}I = E\widetilde{\omega}_{H}I \iff \omega_{H} = \widetilde{\omega}_{H} + d\eta \ , \ by uniqueness of the Hodge \\ decomposition, implies d\eta = O (albenatively : O = d^{+}(\omega - \widetilde{\omega}) = d^{+}d\eta = > II d\eta I^{2} = O) \\ It is also swijective since for any closed $\omega = \omega_{H} + d\eta + d^{+}\theta we \\ have O = d\omega = dd^{+}\theta \text{ so that } (\Theta, dd^{+}\Theta) = IId^{+}\Theta I^{2} = D \text{ and thus } d^{+}\theta = O. \\ Hence, E\omega_{H}I = E\omega_{H}I. \qquad \Pi$$$

Thm.: [Poincaré duality] Let
$$\Pi$$
 be a compact, oriented
smooth manifold of dimension n . Then for any $k \in \{0, ..., n\}$
 $(I w], [T]) \mapsto \int_{\Pi} w \wedge T$ defines a non-degenerate bilinear map
 $H_{\mathcal{R}}^{k}(\Pi) \times H_{\mathcal{R}}^{n-k}(\Pi) \longrightarrow \mathbb{R}$ and thus an isomorphism
 $H_{\mathcal{R}}^{n-k}(\Pi) \cong H_{\mathcal{R}}^{k}(\Pi)^{*}$. In particular, $\beta_{n-k} = \beta_{k}$.

proof: First note that
$$\int_{\Pi} w \wedge \eta$$
 does only depend on the
cohomology classes $[w]$ and $[\eta]$ since
 $\int_{\Pi} (w + d \kappa) \wedge (\eta + d \beta) = \int_{\Pi} w \wedge \eta + d \kappa \wedge \eta + w \wedge d \beta + d \kappa \wedge d \beta$
 $= \int_{\Pi} w \wedge \eta + \int_{\Pi} d(\kappa \wedge \eta + (-\eta)^{\kappa} w \wedge \beta + \kappa \wedge d \beta)$
 $dw, d\eta = 0 - \int_{\Pi} M + \int_{\Pi} d(\kappa \wedge \eta + (-\eta)^{\kappa} w \wedge \beta + \kappa \wedge d \beta)$
 $= 0$ by Stokes as $\partial \Pi = \emptyset$

Next, we show that it is non-degenerate, i.e., that for every $[w] \neq 0$ there is a closed η s.t. $\int_{\Pi} w \wedge \eta \neq 0$. By the Hodge than we can choose $w \neq 0$ harmonic (w.r.t. any Riem. metric). Then $\eta := \pm w$ is closed since $\Delta \eta = \Delta \pm w = \pm \Delta w = 0$ and $\int w \wedge \eta = \|w\|^2 \pm 0$. Consequently, the dim. of $H_{\mathcal{R}}^{w,k}(\Pi)$ is at least as large as the one of the dual space $(H_{\mathcal{R}}^{w}(\Pi))^{\pm}$. As the same argument also works in the other direction, the spaces are isomorphic. \square

Corollary: If m>n, then R and R are not homeomorphic.

 $\frac{\text{proof:}}{\text{proof:}} \quad \text{If } f: \mathbb{R}^m \to \mathbb{R}^n \text{ were a homeomorphism, then } \mathbb{R}^m \setminus \{\circ\} \cong S^{m-1} \text{ and } \mathbb{R}^n \setminus \{\uparrow(\circ)\} \cong S^{n-1} \text{ would be homotopy equivalent. However, } \beta_{m-1}(S^{m-1}) = \beta_0(S^{m-1}) = 1 \neq \beta_{m-1}(S^{m-1}) = 0.$ $\frac{1}{\text{Poinceve duality}} \qquad \square$

Corollory: Let
$$\Pi$$
 be a closed smooth n-dim. manifold,
 $\beta_{k} := \dim \left[H_{\mathcal{D}}^{k}(\Pi) \right]$ and $\chi(\Pi) := \sum_{k=0}^{n} (-1)^{k} \beta_{k}$
its Euler characteristic.

If n is odd, then
$$X(M) = 0$$

proof: (for orientable manifolds. The non-orientable case can be reduced to the orientable one by considering a double cover. See e.g. [Horita].)

$$\chi(m) = \sum_{k=0}^{n} (-1)^{k} \beta_{k} = \frac{1}{2} \sum_{k} \left((-1)^{k} \beta_{k} + \underbrace{(-1)^{n-k}}_{-(-1)^{k}} \underbrace{\beta_{n-k}}_{\beta_{k}} \right) = 0$$

<u>Corollary</u>: If M is an orientable, connected closed smooth 2-dim. manifold, there is a geNo (called the genus of the surface) s.t. $\dim H^{1}_{\mathcal{R}}(M) = 2g$ and $\chi(M) = 2-2g$

proof:
$$H_{n}^{2}(H) \times H_{n}^{2}(H) \longrightarrow \mathbb{R}$$
, $([w], [n]) \mapsto \int_{H} wnn$ is a
non-degenerate bilinear form that is anti-symmetric. W.r.t. any
basis of $H_{n}^{2}(H)$ we can represent it by a matrix $A = -A^{T} \in \mathbb{R}^{\beta_{n} \times \beta_{n}}$
that has to be involvible. So $\mathcal{O} \neq det(A) = (-1)^{\beta_{n}} det(A)$,
which implies $\beta_{n} \in 2 \cdot N_{0}$.
Connectedness implies $\beta_{0} = 1$ and Poincaré duality $\beta_{n} = 1$. So
 $\mathcal{Z}(H) = 1 - 2g + 1$.

<u>remarks</u>: • Connected, orientable closed 2-dim. manifolds are completely characterized (up to homeomorphisms) by their genus: g=0 g=1 g=2 ...

Lemma: For any smooth manifold M and we 2 M

$$\omega$$
 exact $\iff \int_{S^1} g^* \omega = 0 \quad \forall g \in C(S^1, \Pi) \text{ piecewise } C^\infty$

<u>remark</u>: this means that a vector field is a 'gradient field' if it is 'consumptive'. <u>proof</u>: (sketch) '=>': If w= df, then $\int_{S'} g^* df = \int_{S'} dg^* f = \int_{S'} g^* f = O$

$$\stackrel{!}{\leftarrow} \stackrel{!}{:} \quad For \quad p_{01} p \in \Pi_{1} \quad \mathcal{F} \in C^{\infty}(\mathsf{Eo}_{1}; \mathsf{I}, \mathsf{T}) \quad \text{with } \mathcal{F}(\mathsf{o}) = p_{0}, \mathcal{F}(\mathsf{I}) = p_{0}$$

$$define \qquad f(p) := \int \mathcal{F}^{*} \omega \quad This \quad does \quad not \quad depend \quad on \\ F_{0}; \mathsf{I} \\ the \quad specific \quad cove \quad \mathcal{F} \quad between \quad p_{0} \quad and \quad p \quad since \\ \int \omega \quad \int \omega \quad = \quad O \quad b_{\mathcal{F}} \quad assumption \\ \mathcal{F}_{n} \mathsf{Eo}_{1}; \mathsf{I} \\ \mathcal{F}_{n} \mathsf{Eo}_{1}; \mathsf{I} \\ f \quad turns \quad ont \quad bo \quad be \quad smooth \quad ond \quad s.t. \quad df = \omega .$$

Ц

Lemma: Let S be an n-dim. oriented closed manifold and

M a smooth manifold. Then

$$S_{0}, F_{n} \in C^{\infty}(S, \pi)$$
 homotopic
and $\omega \in \mathcal{R}^{n} \mathcal{M}$ closed $\int S^{*} = \int \mathcal{S}_{0}^{*} \omega = \int \mathcal{S}_{n}^{*} \omega$

$$\frac{proof:}{proof:} \quad If \quad F \in C^{\infty}(S \times E^{o_{1}}; 17), \quad F(\cdot, \epsilon) = \forall \epsilon \quad is \quad the \quad homology$$
and we choose the order-takion s.t. $\partial (S \times E^{o_{1}}; 2) = S \times \{0\} - S \times \{n\}^{n}, \quad then$

$$\frac{dw_{2}o}{D} = \int F^{*}olw = \int ol F^{*}w = \int V^{*}ow - \int V^{*}w \quad D$$

$$S \times E^{o_{1}}; \quad S \times E^{o_{1}}; \quad Stokes \quad S \quad S \quad S$$

<u>Def.</u>: A topological space X is called simply connected if it is path-connected and every feC(S¹, X) is homotopic to a constant map S² > X +> po EX.

remark: for a smooth manifold we can w.l.o.g. assume fec.

not simply connected

simply connected

<u>Thm.</u>: $H_{\mathfrak{X}}^{\gamma}(\Pi) = \{0\}$ for any simply connected smooth manifold Π . <u>proof</u>: For any peth, every (piecewise) smooth loop $g^{-1}S^{\gamma} \rightarrow \Pi$ is homotopic to $S^{\gamma} \rightarrow K \rightarrow P$. By the second Lemma, $\int_{S'} g^{+}w = 0$ if $w \in \mathfrak{X}^{\gamma}\Pi$ is closed. By the first Lemma, this implies that w is exact. Π
Singular homology

- <u>Def.</u>: The convex hull of n+1 affinely independent points V_{0}, \dots, V_{n} is called an n-simplex, notated as $\sigma = (v_{0}, \dots, v_{n})$. The standard n-simplex is $\Delta^{m} := \left\{ \sum_{i=0}^{n} x_{i} e_{i} \in \mathbb{R}^{n\times i} | \sum_{i=0}^{n} x_{i} = 1, x_{i} \neq 0 \right\} \text{ with } \left\{ e_{i} \right\}_{i=0}^{n} \in \mathbb{R}^{n\times i} \text{ the standard basis.}$ $A^{n} = \left\{ \Delta^{n} = \Delta^{n} \right\} = \left\{ \Delta^{2} = \Delta^{2} \right\}$
 - The n-1 simplex (vo, ..., v, ..., vn) obtained from an n-simplex (vo, ..., vn) by omitting the ith votex is called its ith face.
 - We define $\varepsilon_i^n : \Delta^{n-1} \to \Delta^n$ as the linear map that maps Δ^{n-1} onto the ith face of Δ^n . for n=2:
 - <u>Def.</u>: Let X be a topological space. A singular n-simplex is a cont. map $\tau : \Delta^n \to X$. A singular n-chain is a formal linear combination $c = \sum_{\sigma} c_{\sigma} \sigma$ of singular n-simplices with coefficients c_{σ} in an abelian group G.
 - If Π is smooth manifold, we denote by $C_n(\Pi)$ the real vector space ('free \mathbb{R} -module') of smooth singular n-chains with $G = \mathbb{R}$ and by $\partial_n : C_n(\Pi) \rightarrow C_{n-1}(\Pi)$ the boundary operator defined on a singular n-simplex as $\overline{\partial_n(\sigma)} := \sum_{i=0}^n (-1)^i \ \sigma \circ \mathcal{E}_i^n$

examples: • every triangulation corresponds to a singular n-chain, where each 'triangle'/simplex corresponds to one summond in $\sum_{r} c_r r$ with $c_r = 1$.

Ц

$$\overset{\sigma}{\longrightarrow} \bullet \bullet \bullet$$

$$\bigvee \xrightarrow{\circ} \bigvee \xrightarrow{\circ} \circ$$

<u>Lemma:</u> $\partial_{\kappa-i}^{\circ} \partial_{\kappa} = 0$,

 $\frac{\text{proof:}}{\text{proof:}} \quad \partial_{k-1} \partial_{k} \sigma = \partial \left(\sum_{i} (-\tau)^{i} \sigma \circ \varepsilon_{i}^{k} \right)^{i} = \sum_{i,j} (-\tau)^{i+j} \sigma \circ \varepsilon_{i}^{k} \circ \varepsilon_{j}^{k-1}$ $= \sum_{i \leq j} (-\tau)^{i+j} \sigma \circ \varepsilon_{i}^{k} \circ \varepsilon_{j}^{k-1} + \sum_{j \leq i} (-\tau)^{i+j} \sigma \circ \varepsilon_{i}^{k} \circ \varepsilon_{j}^{k-1}$ $= \sum_{i \leq j} (-\tau)^{i+j} \sigma \circ \varepsilon_{i}^{k} \circ \varepsilon_{j}^{k-1} + \sum_{j \leq i} (-\tau)^{i+j} \sigma \circ \varepsilon_{i}^{k} \circ \varepsilon_{j}^{k-1}$ $= \sum_{i \leq j} (-\tau)^{i+j} \sigma \circ \varepsilon_{j}^{k} \circ \varepsilon_{j}^{k-1} \quad \text{if } j \leq i$ and thus replace if by $= \sum_{i \leq j} (-\tau)^{i+j} \sigma \circ \varepsilon_{i}^{k} \circ \varepsilon_{j}^{k-1}$ $= \sum_{i \leq j} (-\tau)^{i+j} \sigma \circ \varepsilon_{i}^{k} \circ \varepsilon_{j}^{k-1}$ $= \sum_{i \leq j} (-\tau)^{i+j} \sigma \circ \varepsilon_{i}^{k} \circ \varepsilon_{j}^{k-1}$ $= \sum_{i \leq j} (-\tau)^{i+j} \sigma \circ \varepsilon_{i}^{k} \circ \varepsilon_{j}^{k-1}$ $= \sum_{i \leq j} (-\tau)^{i+j} \sigma \circ \varepsilon_{i}^{k} \circ \varepsilon_{j}^{k-1}$

Def .: A singular k-chain ve CK(M) is called

- a cycle if $\partial \sigma = 0$, (think of 'loops' for k=1 and deformed spheres S^{K} in general)
- · a boundary if ∃ F ∈ C_{K+1}(n) : δF = σ

• For
$$\omega \in \mathcal{R}^{k}(M)$$
 and $C = \sum_{\tau} C_{\tau} \tau \in C_{n}(M)$ we define:
$$\int_{C} \omega := \sum_{\tau} C_{\tau} \int_{\Delta^{k}} \tau^{*}(\omega)$$

Thm.: (Stokes' theorem on chains) If M is a smooth manifold,

$$c \in C_k(M)$$
, and $w \in \mathcal{N}^{k-1}(M)$ then $\int w = \int dw$.
 $\partial c = c$

 $\frac{Def.:}{Def.:} \quad For the chain complex <math>C_n(M) \xrightarrow{\partial_n} C_{n-1}(M) \xrightarrow{\partial_{n-1}} \dots \xrightarrow{\partial_n} C_0(M) \xrightarrow{\partial_0} 0$ we define the letth singular homology group: $H_n(H, R) := \frac{ker \partial_k}{lm \partial_{k-1}} = 'crcles \mod boundaries'$ For a cycle $c \in C_k(M)$ the equivalence class $[c] \in H_k(M, R)$ is called its homology class and $c \sim c' : \Leftrightarrow c = c' + \partial \overline{c}$.

<u>remark</u>: I.g. a chain complex is a sequence of homomorphisms between abelian groups (or module) s.t. $\partial_{k} \circ \partial_{k+1} = 0$.

Note that for a cycle $c \in C_{k}(H)$ and a closed form $w \in \mathcal{D}^{k}(H)$ the integral $\int_{c} w$ only depends on $F \in J \in H_{k}(H, \mathbb{R})$ and $EwJ \in H_{\mathcal{R}}^{k}(h)$ since $\int_{c} (w + d\eta) = \int_{c} w + \int_{c} (w + d\eta) + \int_{c} d\eta$. $\int_{c} \int_{c} \int_{c} \frac{d\eta}{\eta} = 0$. Consequently, there is a bilinear form $H_{\kappa}(\Pi, \mathbb{R}) \times H_{\kappa}^{\kappa}(\Pi) \longrightarrow \mathbb{R}$ given by $(\mathbb{C}c], \mathbb{E}w] \longrightarrow \int_{c} w$. With quite some effort this can be shown to be non-degenerate, which then proves:

Thm.: (de Rham's thm.) The map
$$H_{\mathcal{R}}^{k}(\Pi) \rightarrow H_{k}(\Pi, R)^{*}$$
 given
by $[\omega] \mapsto (E_{1} \mapsto \int_{c} \omega)$ is a vector space isomorphism:
 $H_{\mathcal{R}}^{u}(\Pi) \cong H_{u}(\Pi, R)^{*}$

$$\frac{\text{(orollary: 1)}}{2} \quad \omega \in \mathcal{R}^{k}(M) \text{ is closed } \iff \forall c \in C^{k+1}(M) : \int_{\partial c} \omega = 0$$

$$\frac{1}{2} \quad \omega \in \mathcal{R}^{k}(M) \text{ is exact } \iff \forall k \text{-cycles } c : \int_{c} \omega = 0$$

proof: 7) If
$$dw = 0$$
, then $\int_{\partial c} w = \int_{c} dw = 0$.
If $dw = \eta \neq 0$, then there is a pet and $v_{\eta}, \dots, v_{u+1} \in T_{p} \cap S_{q}$.
 $\eta = (v_{\eta}, \dots, v_{u+1}) > 0$. Hence, there is a chart (u, x) around
p in which $\eta = (\frac{\partial}{\partial x_{\eta}}|_{q}, \dots, \frac{\partial}{\partial x_{u+1}}|_{q}) > 0$ $\forall q \in U$. So if $\sigma : A^{u+1} \rightarrow U$
is chosen s.t. $x \circ \sigma$ embeds A^{u+1} approprietly into the
coordinate plane $\{y \in \mathbb{R}^{dim(H)} | y_{i} = 0 \forall i \geq k+1\}$, then

$$\int \omega = \int d\omega = \int_{\Delta^{k+1}} \nabla^*(\eta) = 0.$$

2) If
$$w = d\eta$$
 then $\int_{C} d\eta = \int_{\partial C} \eta = 0$ since $\partial c = 0$.
Conversely, if $[w] \neq 0$, then by dc Rham's then.
three must be a $[c] \in H_k(\eta, R)$ s.t. $\int_{C} w \neq 0$.