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Abstract
Modal tracking plays a vital role in structural health monitoring since changes in modal parameters help us understand a
structure’s dynamic characteristics and may reflect the potential deterioration of structural performance. Although
numerous modal parameter estimation (MPE) methods exist, it is not guaranteed that an MPE process will exclude all
spurious modes and not lose any physical modes every time over a long-term monitoring period. Relatively large damp-
ing of a structure, poor data quality, and significant changes in structural modal parameters may make the estimated
modal parameters spurious, missing, or misclassified. It makes long-term modal tracking semiautomated or manual,
which constrains timely downstream applications such as anomaly detection, condition assessment, and decision making.
This research aims to propose a long-term continuous automatic modal tracking algorithm based on Bayesian inference
even when the modal parameters, damping, and data quality change significantly. Bayesian inference is used to determine
the physical modes from the results of existing MPE methods. Both the modes identified from the most recent response
set and the modal probability model from multiple previous response sets are considered in the Bayesian model to bet-
ter determine the physical modes from the results of MPE. Moreover, the proposed algorithm requires only three extra
hyperparameters compared to general modal tracking algorithms, and they can be quickly determined by a grid search
method. The performance of the proposed algorithm is verified by a numerical example and a real-world civil structure
Z24 Bridge benchmark.
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Introduction

Recently, numerous vibration-based structural health
monitoring (SHM) methods1–6 have been developed
for anomaly detection, condition assessment, and deci-
sion making. Among the various vibration properties,
modal parameters such as frequencies and mode shapes
provide vital information for understanding the char-
acteristics of a structure7 and are most widely used.8

However, a significant downside of the modal extrac-
tion process is that it usually involves a substantial
amount of user interaction, introducing a high level of
uncertainty into the results.9 Because long-term contin-
uous modal tracking is critical for timely downstream
applications, there is great interest in automating this
process.

Modal tracking includes five stages: data collection,
signal processing, system identification, determination
of a validated set of modal parameters,10 and physical

mode selection. The last two stages require significant
manual participation and are usually the most time-
consuming stages, especially when selecting a mode
through a stabilization diagram.11 Numerous modal
parameter estimation (MPE) methods have been devel-
oped to automate the fourth stage. These methods typi-
cally use specific clustering methods to determine the
validated modal parameters. Magalhães et al.12 imple-
mented automatic modal identification using hierarchi-
cal clustering of candidate modes obtained through
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stochastic subspace identification driven by covariance
(SSI-COV). Rainieri and Fabbrocino5 used k-means
clustering and statistical-threshold hierarchical cluster-
ing to filter candidate modes. Cardoso et al.4 per-
formed a second clustering after hierarchical clustering
to circumvent the detection of spurious modes or the
loss of physical modes. Some automatic MPE methods
add an additional step before clustering to eliminate
spurious or noise modes. Reynders et al.10 removed
spurious modes from the stabilization diagram using as
many relevant single-mode validation criteria as possi-
ble. Ubertini et al.6 eliminated noise modes through
similarity checking on frequencies, damping ratios, and
mode shapes. Neu et al.3 used hard validation criteria
and a k-means clustering approach to remove spurious
modes. Charbonnel1 partitioned candidate modes into
spurious modes and potential physical modes using
fuzzy c-means clustering. Tronci et al.9,13 integrated the
advantages of the above algorithms, presenting a multi-
stage strategy where unsupervised tools and three clus-
tering options are offered to a user to reach a reliable
estimation of the modal parameters. In additon to
clustering-based methods, some Bayesian modal identi-
fication methods7,14–19 have boomed in recent years.
They model the modal properties as random variables
with a probability distribution that depends on the
available information. The peak location of the distri-
bution represents the posterior most probable values of
the modal properties, which are considered to be the
ones closest to the actual modal parameters. (In this
sense, the derived parameters are no longer called esti-
mates. However, for the convenience of expression,
Bayesian modal identification method is still called a
class of MPE methods hereinafter.) The covariance
matrix of the modal properties implied by the distribu-
tion, that is, posterior covariance matrix, quantifies
their identification uncertainty, which promotes to
determine whether the identified parameters should be
tracked.

Despite the continuous development of MPE
research, it is not guaranteed that an MPE process will
exclude all spurious modes and not lose any physical
modes every time in long-term automatic continuous
monitoring. Monitoring conditions (such as data qual-
ity), damping of the structure, and other factors will
affect MPE results.20 In addition, significant variations
of modes21–25 themselves make it difficult to determine
whether they are physical modes. Suppose the MPE
results are directly used for modal tracking; in that
case, they may lead to the appearance of spurious
modes, the absence of physical modes, or mode mis-
classification, which may distort the variation charac-
teristic of the modes. The above issues directly or
indirectly challenge automatic modal tracking and

mode-based structural assessment.26 Recently,
researchers have used prior reference modes to auto-
matically select the physical modes from MPE. Cabboi
et al.27 used a clustering algorithm with low computa-
tional requirements to automatically analyze a stabili-
zation diagram. Then, an algorithm takes the modes
identified from the most recent response set as the ref-
erence modes to select the modes of the current
response sets. Mao et al.28 determined and updated the
reference modes based on modes identified from multi-
ple previous response sets. A Gaussian mixture model
was used to perform modal tracking. Ubertini et al.2

tracked the modes of a monumental masonry bell
tower using the algorithm in research.6 Tronci et al.29

tracked the dynamic characteristics of the concrete-
masonry Civic Tower in Rieti (Italy) equipped with a
passive vibration control system, a nonconventional
tuned mass damper, using a semiautomated identifica-
tion procedure.30 Yang et al.26 proposed a multistage
mode-tracking technique based on subspace correla-
tion, a technique that updates the list of reference
modes to include new modes.

However, among the above methods, a strategy that
takes the modes identified from the most recent
response set as the reference modes may be interfered
with by certain spurious modes that are not success-
fully eliminated. A strategy that takes modes identified
from multiple previous response sets as the reference
modes may not adequately track the relatively fast-
varying modal parameters. They work well when the
data are of high quality, the damping of the structure
is low (few spurious modes exist), and the variation in
modal parameters is not obvious but may work poorly
in the opposite situation. Our work aims to achieve
long-term continuous and automatic modal identifica-
tion even when the modal parameters and data quality
change significantly. Bayesian inference is used to
determine the physical modes from the results of exist-
ing MPE methods. Our algorithm combines the advan-
tages of the above two strategies. Modes identified
from the most recent response set and a modal prob-
ability model from multiple previous response sets were
considered in the Bayesian inference model. These two
considerations interact to help better select the physical
modes from MPE. In addition, the proposed algorithm
requires only three additional hyperparameters. They
can be quickly determined through parameter determi-
nation methods such as grid search.

This algorithm can be used after any MPE method.
Although there are numerous system identification
algorithms, this study uses SSI-COV as the system
identification algorithm in MPE. The following Section
‘‘Research basis and problem description’’ presents the
basics of SSI-COV and automatic MPE. Some

Sun et al. 1531



examples are given to illustrate how the problems
resulting from MPE affect modal tracking. In Section
‘‘Long-term continuous automatic modal tracking
algorithm based on Bayesian inference,’’ the algorithm
based on Bayesian inference is presented. In Section
‘‘Numerical example,’’ a numerical example is used to
verify the algorithm’s performance, and a simple modal
tracking algorithm is employed for comparison pur-
poses. Section ‘‘Empirical studies’’ reports the results
of an experiment in which the proposed algorithm and
the simple tracking algorithm are applied to a real-
world structure Z24 bridge benchmark. Finally, the last
section concludes the paper.

Research basis and problem description

For a complete introduction to the stochastic subspace
identification theory, please refer to research.31 Briefly,
the basic model for SSI-COV can be expressed as a
classical state-space form of the discrete-time equation
of motion for a linear, time-invariant n-DOF system
under the assumption of white noise excitation:

xk + 1 =Axk +wk ,
yk =Cxk + vk :

�
ð1Þ

where xk is the n 3 1 discrete-time state vector at
time k; yk is the measurement output vector of l 3 1 at
time k; l is the number of sensors; A is an n 3 n
discrete-state matrix; C is an l 3 n discrete output
matrix; and wk and vk represent the effects of unknown
inputs, that is, modeling inaccuracies and measurement
noise, respectively. The vectors are assumed to be zero-
mean implementations of stationary stochastic pro-
cesses and are independent of the actual state.

Given these assumptions, the modal parameters can
be extracted using only the output response.31 Ideally,
the number of modes identified equals the model order,
which matches the rank r of the Toeplitz matrix (con-
taining the covariance functions of the dynamic
response). Therefore, a reasonable estimate of the
model order could come from finding a gap between
two consecutive singular values of the Toeplitz
matrix.27 However, due to model error, measurement
inaccuracy, and covariance estimation accuracy in data
processing, in practice this method has not proven
effective. A possible way to overcome this is to set the
rank r of the Toeplitz matrix within a defined Nmin–
Nmax interval. The values of the physical modes are
close at different rank r. The spurious modes are dis-
crete at different rank r because of their instability.
Based on this principle, a so-called stabilization dia-
gram31 (Figure 6) is then used to help determine these

physical modes. In a stabilization diagram, the modal
parameter estimates at different rank r are represented
together (x-axis – natural frequency of the mode esti-
mates; y-axis – order of the model, i.e., rank r). Modes
that appear with consistent frequency, mode shape,
and damping are classified as stable and are likely to
be physical. Modes that only appear sporadically are
considered spurious.

The stabilization diagram alone does not solve the
problem of modal parameter identification. Rather, it
serves as a graphical tool to aid in the manual selection
of modes that are more likely to represent physical
modes. To reduce the need for user involvement, clus-
tering algorithms are employed to automatically ana-
lyze the stabilization diagram. These algorithms
typically involve two main steps: (1) clustering poles
with consistent parameters, and (2) selecting represen-
tative quantities for clusters as the modal parameters
of physical modes. However, challenges still exist. For
instance, to identify weakly excited modes (red box in
Figure 6), one may need to set a relatively large value
for Nmax to include sufficient information. However, a
large Nmax also increases computational time, and the
presence of non-physical poles (green box in Figure 6),
making it difficult to distinguish between physical and
spurious poles.27 Since automatic methods generally
aim to identify vertical alignments of the stabilization
diagram by clustering poles with consistent parameters,
they may output multiple similar modes which are sup-
posed to be spurious modes. In Figure 6, for example,
the identified modal frequencies by a hierarchical clus-
tering algorithm12 are (1.107, 1.108, 3.906, 4.418,
4.467, 4.509, 4.513, 8.587, 8.594, 8.737, 10.298, 15.229,
15.530, 15.568, 18.338, 18.502, 18.509, 18.533, 18.540,
18.686), while the analytical frequencies are (1.111,
3.914, 4.510, 8.755, 10.290, 15.267, 18.345, 18.538)
(Figure 6).

During the long-term modal tracking process, it is
likely that physical modes may not be identified and
spurious modes may also occur simultaneously. Worse
still, when the modal parameters change significantly,
it becomes more challenging to determine whether a
mode estimated from MPE is a physical mode and cor-
rectly classify the physical modes. Methods using the
last successfully tracked mode as a reference mode can
track such changes, but also be susceptible to spurious
modes, risking tracking failure. A probabilistic model
of past modal parameters can avoid this issue, but
when modes change significantly, the new results from
MPE may exceed the probability threshold, which also
results in tracking failure. Therefore, it is necessary to
develop a robust long-term continuous automatic
modal tracking algorithm to effectively select the
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physical modes from the MPE results when faced with
various complicated situations.

Long-term continuous automatic modal
tracking algorithm based on Bayesian
inference

The complete flow chart of the long-term continuous
automatic modal tracking algorithm is shown in
Figure 1. As research on MPE is relatively mature,
this study does not focus on MPE research but
adopts an existing automatic MPE algorithm. The
Bayesian inference process is performed after the
MPE process. The inference process can be divided
into two steps: (1) obtaining the physical modes,
which will be presented in Section ‘‘Obtain physical
modes using Bayesian inference’’ and (2) updating
the inference parameters, which will be presented in
Section ‘‘Update Bayesian inference parameters.’’
Section ‘‘Hyperparameters for Bayesian inference
and some details’’ describes the selection of the
hyperparameters for Bayesian inference and algo-
rithm details. Section ‘‘ Advantages of the proposed
algorithm’’ discusses the algorithm’s advantages.

Obtain physical modes using Bayesian inference

The proposed algorithm is based on a probability
model. As mentioned in the previous section, the prob-
ability model is less susceptible to spurious modes, but
it performs poorly when modal parameters change sig-
nificantly. To address this issue, this algorithm uses the
last successfully identified modal parameters as prior
knowledge for the Bayesian model to modify the prob-
ability density, which can both avoid interference from
spurious modes and track significantly changing
modes.

The Bayesian inference form is:

p uj
k

��R j

� �
=

p uj
k

� �
p R j

��uj
k

� �
p R j

� � ð2Þ

Parameter uj
k represents the k-th set of modal para-

meters from MPE corresponding to physical mode j.
Here, the modal parameters refer to the composition
of the natural frequency and mode shape. Because the
values in the mode shape vector only represent relative
magnitudes, and considering making the values in the
mode shape vector similar in size to the frequency, the
values of the mode shape vector are determined by
their root mean square being equal to the correspond-
ing frequency value. When the number of channels is
large, the root mean square of the mode shape vector
can be appropriately amplified. Modal damping is not
included because it is related to the energy of the vibra-
tion12 and has a large dispersion,16 which may interfere
with the identification. R j represents the reference
modal parameters of physical mode j. R j is also com-
posed of the natural frequency and mode shape and
therefore is an (l + 1) 3 1 vector. The value of R j will
be discussed in Section ‘‘Update Bayesian inference
parameters.’’ Parameter k = 1, 2, ., Nc where Nc is
the number of modes from MPE. Nc is a variable that
depends on the MPE results. Parameter j = 1, 2,., Nr

where Nr is the number of reference modes. It is a
hyperparameter specified according to knowledge of
the structure. The value of Nr will be discussed in
Section ‘‘Hyperparameters for Bayesian inference and
some details.’’

pðuj
k

��R jÞ is the probability density at which the k-th
set of modal parameters from MPE corresponds to
physical mode j under the condition that the reference
modal parameters of physical mode j are R j. On the
right side of Equation (2), p uj

k

� �
is the probability den-

sity at which the k-th set of modal parameters from
MPE corresponds to physical mode j. Assume that the
modal parameters of physical mode j follow a multi-
variate Gaussian distribution Nl + 1ðmj,SjÞ, then,

Figure 1. Complete flow chart of the long-term continuous automatic modal tracking algorithm.
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p uj
k

� �
=

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pð Þl + 1 Sj

�� ��q exp � 1

2
ðuk � mjÞ

T S�1
j ðuk � mjÞ

� �

ð3Þ

where uk is the k-th set of modal parameters from
MPE. Parameter mj is an (l + 1) 3 1 mean vector of
the multivariate Gaussian distribution of physical
mode j. Parameter Sj is an (l + 1) 3 (l + 1) covar-
iance matrix. Their calculations are discussed in
Section ‘‘Update Bayesian inference parameters.’’

p R j

��uj
k

� �
is the probability density at which the ref-

erence modal parameters of physical mode j is R j

under the condition that the k-th set of modal para-
meters from MPE corresponds to physical mode j. R j

also follows a multivariate Gaussian distribution
Nl + 1ðmj,SjÞ since it is a reference to physical mode j.
When the modal parameters of physical mode j is uk ,
the Gaussian distribution changes from Nl + 1ðmj,SjÞ to
Nl + 1 uk ,Sj

� �
. Sj stays the same because only the values

of the physical modal parameters change, but their
fluctuations do not change. Therefore,

p R j

��uj
k

� �
=

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pð Þl + 1 Sj

�� ��q
exp � 1

2
R j � uk

� �T
S�1

j R j�uk

� �� �
ð4Þ

p R j

� �
is the probability density at which the refer-

ence modal parameters of physical mode j are R j. As
mentioned above, R j follows a multivariate Gaussian
distribution Nl + 1ðmj,SjÞ. Hence,

p R j

� �
=

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pð Þl + 1 Sj

�� ��q exp � 1

2
ðR j � mjÞ

T S�1
j ðR j � mjÞ

� �

ð5Þ

By traversing all k and j in Equation (2), a posteriori
probability density matrix is obtained:

PNr3Nc
=

p u1
1

��R 1

� �
p u1

2

��R 1

� �
� � � p u1

Nc

��R 1

	 

p u2

1

��R 2

� �
p u2

2

��R 2

� �
� � � p u2

Nc

��R 2

	 

..
. ..

. . .
. ..

.

p uNr

1

��R Nr

� �
p uNr

2

��R Nr

� �
� � � p uNr

Nc

��R Nr

	 


2
6666664

3
7777775

ð6Þ

The mode from MPE that best matches each physi-
cal mode can be determined by maximizing each row of
the probability density matrix:

pmax =

pmax1, ind1

pmax2, ind2

..

.

pmaxNr
, indNr

2
66664

3
77775

=

max p u1
1

��R 1

� �
, p u1

2

��R 1

� �
, � � � , p u1

Nc

��R 1

	 
	 

max p u2

1

��R 2

� �
, p u2

2

��R 2

� �
, � � � , p u2

Nc

��R 2

	 
	 

..
.

max p uNr

1

��R Nr

� �
, p uNr

2

��R Nr

� �
, � � � , p uNr

Nc

��R Nr

	 
	 


2
66666664

3
77777775
ð7Þ

where pmaxj and indj are the maximum value and its
index of ½p uj

1

��R j

� �
, p uj

2

��R j

� �
, � � � , pðuj

Nc

��R jÞ�. By com-
paring each pmaxj with the threshold of probability den-
sity pthresholdj, we can decide whether to accept the
mode from MPE:

uphysicalj = uindj, pmaxj.pthresholdj ð8Þ

where uphysicalj are the selected modal parameters of
physical mode j. uindj is the indj�th mode from MPE.
The greater the value of pmaxj is, the more likely uindj is
to be a physical mode j, and vice versa.

Update Bayesian inference parameters

After modal tracking of the current response set, it is
necessary to update the Bayesian inference parameters
for modal tracking of the subsequent response set. The
parameters to be updated are R j, pthresholdj, mj, and Sj,
where all of them can be updated automatically.

For R j, if pmaxj is more than pthresholdj, it will be
updated to the combination of mode shape and fre-
quency of identified physical mode j from the current
response set, which is uphysicalj. However, if pmaxj is less
than or equal to pthresholdj, it indicates that the current
response set does not contain any identified mode for
mode j, and R j will be retained for the next set. If this
situation occurs repeatedly, it may imply a persistent
abnormal change in mode j. In such cases, it is recom-
mended to investigate the underlying cause and con-
sider manual intervention if necessary.

The probability density threshold for mode j
(pthresholdj) is set to the probability density correspond-
ing to the percentile (e.g., 95%) of the Gaussian distri-
bution Nl + 1ðmj,SjÞ mentioned in the previous section.
This value is equivalent to the probability density of
any point on the surface of a hyperellipsoid with l + 1
dimensions (Figure 2 schematically shows this with 2-d
Gaussian distribution). To represent this hyperellip-
soid, we can define a variable z as z = (x� mj)

T

S�1
j (x� mj). Since x;Nl + 1ðmj,SjÞ, we have z;x2

l + 1,
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where x2 represents the chi-squared distribution.32

Therefore, the problem can be equivalent to finding a
value c in the z space such that P(z<c) = 0:95. Since
z;x2

l + 1, c is exactly the 0.95 quantile of x2
l + 1, that is,

the hyperellipsoid can be expressed as (x� mj)
T

S�1
j (x� mj)<c. The threshold pthresholdj can be

obtained by:

pthresholdj = pp = p mj + ev(Sj)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ew(Sj)3c

q	 

ð9Þ

where p is the probability density function of the

Gaussian distribution Nl + 1ðmj,SjÞ; pp is the probability
density of any point on the hyperellipsoid surface; mj

denotes the coordinates of the center of the hyperellip-

soid; ev(Sj) represents any eigenvector of Sj, and also

the direction of the axis of the hyperellipsoid; ew(Sj) is

the corresponding eigenvalue of Sj;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ew(Sj)3c

p
repre-

sents the semi-length of that axis. Equation (9) repre-
sents the probability density of the intersection points
between any principal axis of the hyperellipsoid and
the hyperellipsoid surface for the Gaussian distribution

Nl + 1ðmj,SjÞ, which is also the pthresholdj we are seeking.

It cannot be guaranteed that when pmaxj is larger
than pthresholdj, uindj must correspond to physical mode j
(Equation (8)). A larger pthresholdj leads to more accu-
rate tracking but also reduces the number of modes
that should be tracked. A smaller pthresholdj can track
more modes but may cause spurious modes to appear.
Thus, the determination of pthresholdj is heuristic.

Parameters mj and Sj are the mean vector and cov-
ariance matrix of the multivariate Gaussian distribu-
tion of the modal parameters of physical mode j,
respectively. They can be obtained from predefined m-
set physical modal parameters successfully identified
from the past response sets:

mj =mean uphysicalj, 1, uphysicalj, 2 . . . uphysicalj,m

� �
ð10Þ

Sj = cov uphysicalj, 1, uphysicalj, 2 . . . uphysicalj,m

� �
ð11Þ

where uphysicalj, p is the modal parameters of physical
mode j successfully identified from the last p-th
response set. However, the position of one sensor may
result in very small value for an individual element of
the mode shape, causing Sj obtained from Equation
(11) to have very a small eigenvalue. This can cause
one of the ellipsoidal axes of the Gaussian model to be
very short, greatly reducing the robustness of the algo-
rithm. Therefore, Sj is modified as follows:

Sj =QTQ
L k, k½ �= max k, k½ �, lminj

� ��
ð12Þ

where L andQ are the diagonal eigenvalue matrix and
eigenvectors, respectively. L½k, k�= max L½k, k�, lminð Þ in
Equation (12) is equivalent to relaxing the constraints on
extremely small elements in the mode shape. If lminj

is set
to zero, this implies that no alterations are made to Sj. In
practical applications, it is recommended that lminj

be set
to 0.1 times the frequency of mode j. On the one hand,
these extremely small eigenvalues cannot serve as one of
the structural features, so they can be appropriately
relaxed. On the other hand, it is also necessary to relax
these constraints because it can greatly improve the
robustness of the algorithm.

Hyperparameters for Bayesian inference and some
details

There are several hyperparameters for Bayesian infer-
ence in this algorithm. They are the percentile of the
Gaussian distribution, the allowed minimum eigenva-
lue lminj

of Sj, the number m of last successfully identi-
fied response sets to update mj and Sj, the initial values
of R j, mj, and Sj. In general, setting the first two hyper-
parameters to 95% and 0.1 times the frequency of
mode j, respectively, can work well for most cases. The
choice of m does not significantly affect the results of
the algorithm and can typically be set to 50. If neces-
sary, these hyperparameters can also be quickly deter-
mined by using a grid search method. The initial values
of R j, mj, and Sj can be obtained by first clustering the
first several response sets, then selecting the clusters
that represent the physical modes. In addition, any
other knowledge of the structural can also be used to
help determine these initial values.

The pseudocode of the algorithm is shown as
Algorithm 1. Hm is an Nr3(l + 1)3m three-dimensional
array. It is used to store identified uphysical from each
response set. The count in the pseudocode is used for
removing outdated modes in Hm and HS. There is no
unique strategy for removing outdated modes, and
other reasonable strategies are acceptable. Hm(j) is an
(l + 1) 3 m two-dimensional subarray of Hm to store

Figure 2. (a) 2-d Gaussian distribution, and (b) equiprobable
density line.
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identified uphysicalj. When the number of stored uphysicalj

equals m, parameter mj will be updated.

Advantages of the proposed algorithm

Equation (2) considers the modes identified from the
most recent response set (R j) as well as the modal
probability model from multiple previous response sets
ðNl + 1ðmj,SjÞÞ. This approach combines the benefits of
both, allowing for the tracking of y changing modes
while also being resistant to interference from spurious
modes. For the sake of illustration, their advantages
are discussed below using only the frequency

component in uk , R j., mj, and Sj(i.e., uk , R j, mj and sj

in this subsection).
Figure 3 shows four scenarios for frequency varia-

tion. A significant change in frequency (orange point)
appears in Figure 3(a). If the probability density modi-
fied by Bayesian inference is higher than 95% percen-
tile of the Gaussian distribution, it can be successfully
tracked. In Figure 3(b), a frequency of similar magni-
tude reappears. Since the left orange dot has been taken
as R j in Equation (2), R j makes it easier for the algo-
rithm to identify the new frequency. Thus far, there is
no significant difference between the proposed algo-
rithm and other simpler tracking algorithms. However,

Algorithm 1. Long-term continuous automatic modal tracking algorithm based on Bayesian inference.

Input: m, initial Rj ,μj , and Σj

Output: θphysicalj
1 Initialize Hμ,HΣ, count = 0 // Hμ,HΣ are used to store the identified θphysicalj to estimate the
μj and Σj

2 while MPE results θ1,2...Nc
arrive do

3 count = count+ 1
4 // Form a posterior probability density matrix
5 for each j(1 ≤ j ≤ Nr) do
6 for each k(1 ≤ k ≤ Nc) do
7 θk = normalize(θk,Rj)

8 PNr×Nc
[j, k] = p(Rj |θj

k)p(θ
j
k)/p(Rj)

9 // Obtain θphysicalj and update data
10 for each j(1 ≤ j ≤ Nr) do
11 [pmaxj , indj] = max(PNr×Nc

[j, :])
12 θindj = normalize(θindj ,Rj)
13 get pthresholdj from Equation 9
14 if pmaxj > pthresholdj then
15 θphysicalj = θindj
16 Hμ.append(θphysicalj),HΣ.append(θphysicalj)
17 while length(Hμ) > mμ or count%mμ == 0 do // % is a redundant symbol. This

statement is used to delete early historical data that is no longer meaningful
18 Hμ.pop(1)

19 while length(HΣ) > mΣ or count%mΣ == 0 do HΣ.pop(1)

20 else
21 θspuriousj = θindj
22 while count%mμ == 0 do Hμ.pop(1)
23 while count%mΣ == 0 do HΣ.pop(1)

24 // Parameters updating
25 for each j(1 ≤ j ≤ Nr) do
26 if length(Hμ) == m then
27 μj = mean(Hμ)
28 Σj = cov(HΣ)
29 modify Σj according Equation 12
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if the new frequencies in Figure 3(c) and (d) appear
simultaneously, it is difficult for reference-mode-based
algorithms to determine which frequency is the physical
frequency based on R j alone because the distance
between the new and previous frequencies is almost the
same in both figures. Using our algorithm, the modal
probability model Nðmj,sjÞ specifies the level of the
previous frequency. Therefore, the new frequency in
Figure 3(c) is more likely to be chosen as the physical
frequency. In terms of Figure 3(d), if the red dot should
have been identified as the physical frequency, it chan-
ged quickly in a short period of time. In this situation,
the strategy that only depends on the modal probability
model may fail. With our algorithm, R j indicates that
an obviously changed orange dot has been identified.
Therefore, the red dot is more likely to be accepted. It
can be seen that the advantages of the two strategies
R j and Nl + 1 mj,Sj

	 
	 

are combined by our algo-

rithm. These two strategies interact to help better select
the physical modes from MPE.

Numerical example

A numerical example is used to test the algorithm’s
performance. Section ‘‘Structure overview’’ first intro-
duces the structure overview. Section ‘‘Numerical
example setup’’ illustrates the setup of numerical exam-
ple. The generation of response sets and MPE results is
described in Section ‘‘Generation of response sets and
MPE results.’’ Section ‘‘Continuous modal tracking
results’’ presents the results and comparison of contin-
uous modal tracking using both a simple modal track-
ing algorithm and the proposed algorithm.

Structure overview

For simplicity and without loss of generality, a simply
supported slab was used for the numerical example to
verify the effectiveness of the proposed algorithm. Its
length, width, and height are 15, 6, and 0.15 m, respec-
tively. The material density is 2600 kg/m3, and the elas-
tic modulus is 3.45 3 1010 Pa. The first eight modes
are studied. The analytical natural frequencies and
mode shapes of modes 1–8 are shown in Figure 4. The
damping ratios of each mode are set to 1%.

Numerical example setup

A total of 300 synthetic datasets from three scenarios,
were generated for the numerical example. In the first
100 datasets, the mass and stiffness of the structure
remained constant. In the second 100 datasets, all
masses underwent periodic changes to alter the fre-
quencies and mode shapes of the structure. In the final
100 datasets, beyond the impacts of the second sce-
nario, a progressive reduction of up to 50% in local
stiffness was implemented on the structure to simulate
localized damage. The abnormal area is indicated in
Figure 5. Based on the above variation, Gaussian ran-
dom variations were applied to the mass and stiffness
to provide some randomness. The following equations
provide detailed changes in mass and stiffness over
datasets:

Di(k) = D3 1 + DDi(k)ð Þ ð13Þ

Ei(k) = E3 1 + DEi(k)ð Þ ð14Þ

(a) (b) (c) (d)

Figure 3. (a) The appearance of significant frequency change, (b) the same level of significant frequency change appeared again, (c)
return to the original frequency level, and (d) more significant frequency changes appear.

DDi(k) =
GN(m = 0,s = 0:01), 0\k<100,

GN(m = 0,s = 0:01) + 0:03 sin 2p � 3 � k�100
100

� �
, k.100,

(
ð15Þ

DEi(k) =

GN(m = 0,s = 0:02), 0\k<200,
GN(m = 0,s = 0:02), k.200, normal area,
GN(m = 0,s = 0:02)� 0:5 k�200

100
, k.200, abnormal area:

8<
: ð16Þ
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where k = 1, 2, ., 300 is the index of the datasets.
Di(k) and Ei(k) are the material density and elastic
modulus, respectively. DDi(k) and DEi(k) are the
change rates at index k relative to D and E, respec-
tively. GN(m, s) represents a Gaussian number with
mean m and variance s.

Generation of response sets and MPE results

A continuous Gaussian white noise excitation is
applied to the structure. The structural response over
300 datasets at 100 Hz is calculated according to the
excitation and parameters of the structure using the
modal dynamics step of ABAQUS. The response
within a 10-min time window is taken as a response
set. The MPE method SSI-COV is then applied to each
response set in turn. According to the discussion in
Section ‘‘Research basis and problem description,’’ the
range of rank r of the Toeplitz matrix, that is, Nmin–
Nmax, is set to 20–70 to identify weakly excited modes,
such as mode 8 (Figure 4).

Continuous modal tracking results

The stabilization diagram of the first response set is
shown in Figure 6. The Figure shows that the first four
modes exhibit distinct vertical lines. However, the other
modes are plagued by numerous spurious modes,
which makes them challenging to track. Twenty modes
are obtained by automatic MPE, and their frequencies
are (1.107, 1.108, 3.906, 4.418, 4.467, 4.509, 4.513,
8.587, 8.594, 8.737, 10.298, 15.229, 15.530, 15.568,
18.338, 18.502, 18.509, 18.533, 18.540, 18.686). In fact,
eight modes corresponding to frequencies (1.111, 3.914,
4.510, 8.755, 10.290, 15.267, 18.345, 18.538) should be
identified as physical modes. (Note that since the
Gaussian random numbers were added to the density
and elastic modulus, the frequencies here are not

identical to those depicted in Figure 4.) Suppose only
the MPE method is applied iteratively for modal track-
ing on these response sets. In that case, as shown in
Figure 7(a), modal tracking may not work well. In
Figure 7(a), some spurious modes are shown.
Moreover, which physical mode the modes obtained by
MPE belong to cannot be automatically determined.
The black lines in Figure 7 represent the frequencies of
the analytical modes.

It is necessary to make modal tracking work well.
To set proper hyperparameters, a hierarchical cluster-
ing algorithm12 is applied to all the modes from the first
50 response sets, and finally 8 clusters representing
physical modes are selected. R j is taken from the repre-
sentative modal quantities of cluster j. mj and Sj are the
mean vector and modified covariance matrix of cluster
j, respectively. The value of m is set to 50. pthresholdj

takes the 95% percentile of the Gaussian distribution
N9ðmj,SjÞ. And the allowed minimum eigenvalue lminj

of Sj is set to 0.1 times the frequency of mode j.
The results of the proposed modal tracking algo-

rithm are presented in Figure 7(c), while a simple
modal tracking algorithm based on reference modes is
used for comparison, and its results are shown in
Figure 7(b). For further details on the algorithm,
please refer to the research paper.33 Figure 7(b) and (c)

Figure 5. (a) The simulated abnormal area in the third
scenario (highlighted in red), and (b) the sensor locations
(marked by red dots).

Figure 4. Analytical natural frequencies, and mode shapes of the numerical example.
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shows that both algorithms exhibit commendable per-
formance for modes 2 through 7. However, the pro-
posed algorithm outshines the simple modal tracking
algorithm when it comes to modes 1 and 8. In the case
of mode 1, for some datasets, modes that should have
been identified as mode 1 by the simple modal tracking
algorithm were overlooked. This oversight arises due
to the little variation in frequency and mode shape val-
ues for mode 1 in this numerical example, thereby
resulting in a small threshold associated with the stan-
dard deviation of historical modal parameters, as per
Equation (7) in paper.33 Consequently, even a small
deviation in the frequency and mode shape values
might lead to failed tracking. This challenge under-
scores the need for setting the allowed minimum eigen-
value, lminj

, in Equation (12).
Taking into account a special circumstance in this

numerical example, where the frequency and mode
shape values of mode 1 markedly differ from the other
modes, and considering that mode 1 can be explicitly
discerned using the MPE method, a workaround for
the simple tracking algorithm could be achieved by set-
ting a larger threshold specifically for mode 1.
However, a more complex situation arises with mode
8, where it is not always accurately identified, and
some spurious modes resembling mode 8 are recog-
nized by the MPE method. This scenario may occur
when the external load is insufficient to properly excite
this mode or when the modal damping is compara-
tively high. Figure 7 shows that the algorithm based on
reference modes misinterpreted mode 8 as mode 7 after
several datasets. Table 1 explains this occurrence: The
variability of the mode shape values across the initial

nine datasets caused the threshold of the simple track-
ing algorithm to increase. And given the closeness of
the frequencies of modes 7 and 8, the spurious modes
in datasets 10–13 were iteratively tracked, culminating
in the misinterpretation of mode 7 in dataset 14 as
mode 8. In contrast to mode 1, setting a smaller thresh-
old specifically for mode 8 could result in missed track-
ing of potential physical modes, leading to a reduced
modal tracking rate (MTR). Moreover, such misclassi-
fication could still occur even with a lower threshold.
This is because any misidentified spurious mode will be
taken as the reference mode for the subsequent dataset,
potentially leading to another misidentification. Once
one mode such as mode 8 is mistakenly tracked as the
easier-to-track one, such as mode 7, the tracking can-
not be recorrected. Such low fault tolerance contri-
butes to poor performance in this complex scenario.
On the other hand, the proposed algorithm incorpo-
rates the modal probability model ðNl + 1ðmj,SjÞÞ
derived from multiple previous datasets. As it also
encapsulates the historical information of the mode, it
is less prone to the influence of isolated spurious
modes.

MTR and some statistical characteristics (mean, var-
iance) of the modal parameter distance between the
tracked mode and analytical mode are listed in Table 2.
The MTR is calculated by dividing the number of
tracked modes by the number of datasets (300). fmean is
the mean of the natural frequency difference between
the tracked modes and the analytical modes. The other
symbols are similar. Since it is difficult to graphically
display the change in each mode shape over time,
Table 2 provides the statistics of the modal assurance

Figure 6. The stabilization diagram for the numerical example.
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criterion (MAC)34 between the tracked mode shapes
and the analytical mode shapes. As the mode shapes
approach each other, the MAC tends to 1. The rela-
tively low MTR for mode 1 and the low MACmean

for the reference-based algorithm correspond with
the depiction in Figure 7.

Figure 8 shows the tracking of the damping ratios.
The modal damping ratio of each mode has a large dis-
persion and is distinguishable. This is consistent with
what is described in Section ‘‘Obtain physical modes
using Bayesian inference.’’ In addition, it is related to
the vibration energy of a real-world structure. The con-
siderable uncertainty of the modal damping ratio
makes it difficult to reflect the algorithm’s perfor-
mance, so it will not be mentioned again.

Empirical studies

In this section, a real-world civil structure (the Z24
bridge) is used to illustrate the algorithm. The Z24
bridge was located in the canton of Bern near
Solothurn, Switzerland. It was part of a road connec-
tion between the villages of Koppigen and Utzenstorf,
overpassing the A1 highway between Bern and Zürich.
It was a classical posttensioned concrete two-cell box-
girder bridge with a main span of 30 m and two side
spans of 14 m (Figure 9). The modal parameters of the
Z24 bridge are shown in Figure 10. The bridge, which
dated from 1963, was demolished at the end of 1998
because a new railway adjacent to the highway
required a new bridge with a larger side span. More

(a)

(b)

(c)

Figure 7. Modal tracking for the numerical example by: (a) SSI only, (b) the simple modal tracking algorithm, and (c) the proposed
algorithm.
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information about the Z24 bridge can be found in
researches.35,36

A long-term continuous monitoring test was per-
formed on the Z24 bridge 1 year before demolition. In

Table 1. Modal tracking results of the two algorithms for the first 14 datasets.

index 1 2 3 4 5 6 7 8 9 10 11 12 13 14

u8 — 0.49 — 0.37 0.21 0.41 — — 0.48 0.17 20.01 20.03 0.01 20.27
— —0.62 — 20.71 20.76 20.65 — — 20.59 20.73 20.73 20.70 20.62 20.56
— 0.45 — 0.32 0.25 0.40 — — 0.49 0.24 0.03 20.13 20.25 20.30
— 20.27 — 20.36 20.39 20.32 — — 20.24 20.41 20.43 20.34 20.25 20.40
— 0.09 — 20.11 20.13 0.13 — — 0.10 20.14 20.32 20.35 20.53 20.47
— 20.31 — 20.35 20.40 20.35 — — 20.34 20.44 20.42 20.51 20.46 20.38

fn8
— 18.46 — 18.49 18.52 18.56 — — 18.52 18.51 18.53 18.33 18.65 18.35

u8 — 0.49 0.20 0.37 0.21 0.41 — — 0.48 — — — — 0.41
— 20.62 20.74 20.71 20.76 20.65 — — 20.59 — — — — 20.65
— 0.45 0.22 0.32 0.25 0.40 — — 0.49 — — — — 0.42
— 20.27 20.40 20.36 20.39 20.32 — — 20.24 — — — — 20.32
— 0.09 20.16 20.11 20.13 0.13 — — 0.10 — — — — 0.06
— 20.31 20.42 20.35 20.40 20.35 — — 20.34 — — — — 20.35

fn8
— 18.46 18.53 18.49 18.52 18.56 — — 18.52 — — — — 18.57

The upper section displays the results obtained from the algorithm based on reference modes, while the lower section showcases the results

obtained from the proposed algorithm. The mode shape and frequency of mode 8 is represented by u8 and fn. For clear representation, all mode

shape vectors are normalized to have a sum of squares equal to 1, that is, uT
8u8 = 1. The ‘‘—’’ symbol indicates that the corresponding modal

tracking method did not identify any potential modes for mode 8.

Table 2. Modal tracking rate and statistical characteristics for the numerical example.

Mode 1 2 3 4 5 6 7 8

MTR 0.7933 1.0000 1.0000 1.0000 1.0000 1.0000 0.9967 0.9867
fmean 0.0003 20.0001 0.0005 0.0036 20.0007 20.0036 0.0026 20.1403
fvar 0.0027 0.0122 0.0105 0.0190 0.0185 0.0314 0.0434 0.0783
MACmean 0.9856 0.9932 0.9971 0.9986 0.9993 0.9991 0.9786 0.2500
MACvar 0.0334 0.0101 0.0041 0.0020 0.0011 0.0011 0.1056 0.2614
MTR 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9967 0.7200
fmean 0.0002 20.0001 0.0016 0.0034 20.0001 0.0000 0.0026 20.0055
fvar 0.0026 0.0133 0.0094 0.0188 0.0171 0.0309 0.0446 0.0286
MACmean 0.9662 0.9938 0.9975 0.9988 0.9994 0.9993 0.9797 0.9161
MACvar 0.0563 0.0097 0.0034 0.0016 0.0007 0.0007 0.1026 0.1359

MAC: modal assurance criterion; MTR: modal tracking rate.

The upper section displays the indices obtained from the algorithm based on reference modes, while the lower section showcases the indices

obtained from the proposed algorithm.

Figure 8. Damping ratio tracking for the numerical example.
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the month before its complete demolition, the bridge
gradually suffered controlled damage while the

continuous monitoring system was still in operation.
The Z24 long-term monitoring and short-term progres-
sive damage test data have served as benchmark data
in numerous scientific studies.10,33,37–43

Sixteen accelerations were measured on the bridge
at different points and in different directions to moni-
tor the bridge dynamics. Each hour, 65,536 accelera-
tion samples, taken from the 16 sensors, were collected
as one response set. Although the accelerometers were
specially designed for long-term use, some sensors
failed or were damaged. In this section, five effective
lateral and vertical sensors were selected. After exclud-
ing some exception datasets, 5599 response sets from
November 10, 1997, to September 10, 1998, were
obtained.

Figure 11 displays the stabilization diagram of a
response set for the Z24 bridge. It shows both clearly
defined vertical lines as well as ‘‘crowded’’ lines that
may represent spurious modes. Furthermore, physical

Figure 9. Front view and top view of the Z24 bridge.35

Figure 10. Natural frequencies, damping ratios, and mode shapes of the Z24 bridge for damage scenario 8.10

Figure 11. Stabilization diagram for the Z24 bridge (Time: November 13, 1997, 02:00 pm).

1542 Structural Health Monitoring 23(3)



mode 3 (as shown in Figure 10) is not identified in this
response set, making it more challenging to track
modes continuously. In Figure 12(a), the results
obtained by applying the MPE method iteratively for
modal tracking on 5599 response sets are presented.
This figure illustrates that the frequencies of modes
identified by SSI even cover the frequencies of two
physical modes, such as modes 3 and 4, as well as
modes 5 and 6. This further complicates the task of
modal tracking.

The proposed tracking algorithm employed the fol-
lowing hyperparameters: a minimum allowed eigenva-
lue of 0.001 times the frequency of mode j, a percentile
value of 98% for the Gaussian distribution, and the
last 50 (m) successfully identified modes are utilized to

obtain mj and Sj. Six clusters were selected for the six
physical modes depicted in Figure 10, with the frequen-
cies (4.01, 5.16, 10.14, 10.83, 12.77, 13.07).

Figure 12(b) and (c) shows the modal tracking
results obtained by the simple algorithm and proposed
algorithm, respectively. Regretfully, since it is impossi-
ble to obtain the analytical solution of the modal para-
meters of Z24 bridge corresponding to each response
set, the table similar to tables in Section ‘‘Numerical
example’’ cannot be given here. Other studies33,36,41

also tracked the modal parameters of the Z24 bridge
manually or automatically. However, they typically
only tracked up to four modes continuously, and did
not provide information on which mode is being
tracked.

Figure 12. Modal tracking for the Z24 bridge by: (a) stochastic subspace identification (SSI) only, (b) the simple modal tracking
algorithm, and (c) the proposed algorithm.
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Figure 12(b) and (c) demonstrate that the proposed
algorithm can effectively track a complex case, whereas
the simple algorithm fails to track modes 3–6, and
there are also outliers for modes 1 and 2. Taking mode
4 as an example, in cases where it was not identified by
SSI (as shown in Figure 11), the simple algorithm may
incorrectly identify a spurious mode (if it exists) as
mode 4. This misidentification of mode 4 can then lead
to further misidentifications in subsequent response
sets. Due to the relatively close modal parameters of
modes 4 and 5, mode 4 was ultimately tracked as mode
5 after several spurious modes were tracked. The track-
ing of mode 3 exhibited similar behavior to that of
mode 4. Similar to mode 8 in the numerical example,
setting small thresholds specifically for mode 3 or mode
4 can prevent such misclassifications. However, this
might result in much fewer potential physical modes being
tracked, particularly during the period around February
1998, than there should have been. On the contrary, the
proposed algorithm can hardly identify a spurious mode
as mode 4. And even if spurious modes are identified, they
are unlikely to affect the modal tracking of the subsequent
response set. This is because the algorithm takes into
account the historical modal parameters from recent
response sets, which inform the algorithm about the char-
acteristics of mode 4 in the past.

For the period around February 1998, there was a
temporary but significant frequency increase and
recovery. This was related to a change in the asphalt
layer during a freezing period, which contributed sig-
nificantly to the stiffness of the bridge. Peeters et al.40

demonstrated the bilinear behavior of natural frequen-
cies at temperatures below and above the freezing
point. In addition, progressive damage tests were
performed on the Z24 bridge after August 1998. Figure
12(c) shows that the frequencies decreased significantly
during that period. The strategy that only considers
the modal probability model from multiple previous
response sets may fail when such significant changes in
modal parameters happen. However, our algorithm
can still perform well since it also considers the modes
identified from the most recent response set, improving
the probability density in Equation (2).

Conclusions

This paper presents an algorithm for long-term contin-
uous and automatic modal tracking. The algorithm
determines the physical modes from the results of exist-
ing MPE methods through Bayesian inference. It per-
forms well even in situations where the modal
parameters undergo significant changes, and despite
the presence of numerous spurious modes.

Two kinds of information are considered in the
Bayesian inference model. They are (1) modes identi-
fied from the most recent response set, which are also
the reference modes, and (2) the modal probability
model from multiple previous response sets. These two
considerations interact to help better select the physical
modes from the MPE. Whenever a physical mode is
identified, it is used for the update of the two kinds of
information. The update makes Bayesian inference
always run on the latest prior knowledge.

The algorithm was applied to a numerical example
and a real-world civil structure, the Z24 bridge. A simple
modal tracking algorithm was used for comparison. The
results indicate that for straightforward cases such as
modes 2 through 7 in the numerical example, both algo-
rithms demonstrate solid performance. Nevertheless, in
more complex scenarios, like modes 1 and 8 in the
numerical example or modes 3 and 4 of the Z24 bridge,
the proposed algorithm proves superior to the simple
modal tracking algorithm. Furthermore, compared to
other studies that have tracked modal parameters of the
Z24 bridge, the proposed algorithm was able to track
more modes, that is, modes 5 and 6, and accurately clas-
sified all modes.

The main time-consuming part of the algorithm lies
in SSI-COV. Bayesian inference is fast due to the small
amount of data involved and all the analytical equa-
tions. It took about 60 s with M1-chip Macbook Air
to apply the Bayesian inference in the algorithm to all
the modes obtained by MPE from the 5599 response
sets of the Z24 Bridge.

The algorithm also has some limitations. Given the
adaptive nature of the algorithm, which uses data from
previous datasets, the algorithm will produce good
results for applications on structures subjected to
operational/environmental conditions varying under a
continuous function. However, it will perform badly if
there are sudden large changes in the modal para-
meters. There will be no way to deal with such sudden
and dramatic changes when they occur frequently. But
if the mutation is rare, one could reinitialize the algo-
rithm hyperparameters and run the algorithm again. In
addition, since the algorithm determines the physical
modes from the MPE results, the performance upper
limit of the algorithm depends on the MPE method
adopted. However, from another point of view, a bet-
ter MPE method also produces better algorithm
performance.
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