
Citation: Unlu, E.B.; Comajoan Cara,

M.; Dahale, G.R.; Dong, Z.; Forestano,

R.T.; Gleyzer, S.; Justice, D.; Kong, K.;

Magorsch, T.; Matchev, K.T.; et al.

Hybrid Quantum Vision Transformers

for Event Classification in High

Energy Physics. Axioms 2024, 13, 187.

https://doi.org/10.3390/

axioms13030187

Academic Editor: Mariam Zomorodi

Received: 27 January 2024

Revised: 7 March 2024

Accepted: 8 March 2024

Published: 13 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

axioms

Article

Hybrid Quantum Vision Transformers for Event Classification in
High Energy Physics
Eyup B. Unlu 1,* , Marçal Comajoan Cara 2 , Gopal Ramesh Dahale 3 , Zhongtian Dong 4 ,
Roy T. Forestano 1 , Sergei Gleyzer 5 , Daniel Justice 6 , Kyoungchul Kong 4 , Tom Magorsch 7 ,
Konstantin T. Matchev 1 and Katia Matcheva 1

1 Institute for Fundamental Theory, Physics Department, University of Florida, Gainesville, FL 32611, USA;
roy.forestano@ufl.edu (R.T.F.); matchev@ufl.edu (K.T.M.); matcheva@ufl.edu (K.M.)

2 Department of Signal Theory and Communications, Polytechnic University of Catalonia,
08034 Barcelona, Spain; marcal.comajoan@estudiantat.upc.edu

3 Indian Institute of Technology Bhilai, Bhilai 491001, Chhattisgarh, India; gopald@iitbhilai.ac.in
4 Department of Physics & Astronomy, University of Kansas, Lawrence, KS 66045, USA; cdong@ku.edu (Z.D.);

kckong@ku.edu (K.K.)
5 Department of Physics & Astronomy, University of Alabama, Tuscaloosa, AL 35487, USA; sgleyzer@ua.edu
6 Software Engineering Institute, Carnegie Mellon University, 4500 Fifth Avenue, Pittsburgh, PA 15213, USA;

dljustice@sei.cmu.edu
7 Physik-Department, Technische University of München, James-Franck-Str. 1, 85748 Garching, Germany;

tom.magorsch@tum.de
* Correspondence: eyup.unlu@ufl.edu

Abstract: Models based on vision transformer architectures are considered state-of-the-art when
it comes to image classification tasks. However, they require extensive computational resources
both for training and deployment. The problem is exacerbated as the amount and complexity of the
data increases. Quantum-based vision transformer models could potentially alleviate this issue by
reducing the training and operating time while maintaining the same predictive power. Although
current quantum computers are not yet able to perform high-dimensional tasks, they do offer one of
the most efficient solutions for the future. In this work, we construct several variations of a quantum
hybrid vision transformer for a classification problem in high-energy physics (distinguishing photons
and electrons in the electromagnetic calorimeter). We test them against classical vision transformer
architectures. Our findings indicate that the hybrid models can achieve comparable performance to
their classical analogs with a similar number of parameters.

Keywords: quantum computing; deep learning; quantum machine learning; vision transformers;
supervised learning; classification; large hadron collider

MSC: 68Q12; 81P68

1. Introduction

The first transformer architecture was introduced in 2017 by Vaswani et al. in a famous
paper “Attention Is All You Need” [1]. The new model was shown to outperform the
existing state-of-the-art models by a significant margin for the English-to-German and
English-to-French newstest2014 tests. Since then, the transformer architecture has been
implemented in numerous fields and has become the go-to model for many different
applications such as sentiment analysis [2] and question answering [3].

The vision transformer architecture can be considered as the implementation of trans-
former architecture for image classification. It utilizes the encoder part of the transformer
architecture and attaches a multi-layer perceptron (MLP) layer to classify images. This
architecture was first introduced by Dosovitskiy et al. in the paper “An Image is Worth
16x16 Words: Transformers for Image Recognition at Scale” [4]. It was shown that in a

Axioms 2024, 13, 187. https://doi.org/10.3390/axioms13030187 https://www.mdpi.com/journal/axioms

https://doi.org/10.3390/axioms13030187
https://doi.org/10.3390/axioms13030187
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/axioms
https://www.mdpi.com
https://orcid.org/0000-0002-6683-6463
https://orcid.org/0009-0001-2626-3752
https://orcid.org/0009-0005-8116-1950
https://orcid.org/0000-0002-1000-3454
https://orcid.org/0000-0002-0355-2076
https://orcid.org/0000-0002-6222-8102
https://orcid.org/0000-0001-5450-2207
https://orcid.org/0000-0003-4515-7303
https://orcid.org/0000-0003-3890-0066
https://orcid.org/0000-0003-4182-9096
https://orcid.org/0000-0003-3074-998X
https://doi.org/10.3390/axioms13030187
https://www.mdpi.com/journal/axioms
https://www.mdpi.com/article/10.3390/axioms13030187?type=check_update&version=1

Axioms 2024, 13, 187 2 of 13

multitude of datasets, a vision transformer model is capable of outperforming the state-
of-the-art model ResNet152x4 while using less computation time to pre-train. Similar to
their language counterparts, vision transformers became the state-of-the-art models for
a multitude of computer vision problems such as image classification [5] and semantic
segmentation [6].

However, these advantages come at a cost. Transformer architectures are known
to be computationally expensive to train and operate [7]. Specifically, their demands on
computation power and memory increase quadratically with the input length. A number
of studies have attempted to approximate self-attention in order to decrease the associated
quadratic complexity in memory and computation power [8–11]. There are also proposed
modifications to the architecture which aim to alleviate the quadratic complexity [12–14].
A recent review of the different methods for reducing the complexity of transformers can
be found in [15]. As the amount of data grows, these problems are exacerbated. In the
future, it will be necessary to find a substitute architecture that has similar performance but
demands fewer resources.

A quantum machine learning model might be one of those substitutes. Although the
hardware for quantum computation is still in its infancy, there is a high volume of research
that is focused on the algorithms that can be used on this hardware. The main appeal of
quantum algorithms is that they are already known to have computational advantages
over classical algorithms for a variety of problems. For instance, Shor’s algorithm can
factorize numbers significantly faster than the best classical methods [16]. Furthermore,
there are studies suggesting that quantum machine learning can lead to computational
speedups [17,18].

In this work, we develop a quantum-classical hybrid vision transformer architecture.
We demonstrate our architecture on a problem from experimental high energy physics,
which is an ideal testing ground because experimental collider physics data are known to
have a significant amount of complexity and computational resources represent a major
bottleneck [19–21]. Specifically, we use our model to classify the parent particle in an
electromagnetic shower event inside the CMS detector. In addition, we will test the
performance of our hybrid architecture by benchmarking it against a classical vision
transformer of equivalent architecture.

This paper is structured as follows. In Section 2, we introduce and describe the dataset.
The model architectures for both the classical and hybrid models are discussed in Section 3.
The model parameters and the training are specified in Sections 4 and 5, respectively.
Finally, in Section 6 we present our results and discuss their implications in Section 7. We
consider the future directions for study in Section 8.

2. Dataset and Preprocessing Description

The Compact Muon Solenoid (CMS) is one of the four main experiments at the Large
Hadron Collider (LHC), which has been in operation since 2009 at CERN. The CMS
detector [22] has been recording the products from collisions between beams consisting of
protons or Pb ions, at several different center-of-mass energy milestones, up to the current
13.6 TeV [23]. Among the various available CMS datasets [24], we have chosen to study data
from proton–proton collisions at 13.6 TeV. Among the basic types of objects reconstructed
from those collisions are photons and electrons, which leave rather similar signatures in
the CMS electromagnetic calorimeter (ECAL) (see, e.g., Ref. [25] and references therein). A
common task in high-energy physics is to classify the resulting electromagnetic shower in
the ECAL as a photon (γ) or electron (e−). In practice, one also uses information from the
CMS tracking system [26] and leverages the fact that an electron leaves a track, while a
photon does not. However, for the purposes of our study, we shall limit ourselves to the
ECAL only.

The dataset used in our study contains the reconstructed hits of 498,000 simulated
electromagnetic shower events in the ECAL sub-detector of the CMS experiment (photon
conversions were not simulated) [27]. Half of the events originate from photons, while

Axioms 2024, 13, 187 3 of 13

the remaining half are initiated by electrons. In each case, an event is generated with
exactly one particle (γ or e−) which is fired from the interaction point with fixed transverse
momentum magnitude | p⃗T | = 50 GeV, see Figure 1. The direction of the momentum p⃗ is
sampled uniformly in azimuthal angle −π ≤ φ ≤ π and pseudorapidity −1.4 ≤ η ≤ 1.4,
where the latter is defined in terms of the polar angle θ as η = − ln tan(θ/2).

CMS

y

z x

~pT~p

N

Jura LHC

ATLAS
ALICE

LHCb

'
✓

Figure 1. The CMS coordinate system against the backdrop of the LHC, with the location of the four
main experiments (CMS, ALICE, ATLAS and LHCb). The z axis points to the Jura mountains, while
the y-axis points toward the sky. In spherical coordinates, the components of a particle momentum
p⃗ are its magnitude | p⃗|, the polar angle θ (measured from the z-axis), and the azimuthal angle φ

(measured from the x-axis). The transverse momentum p⃗T is the projection of p⃗ on the transverse
(xy) plane. Figure generated with TikZ code adapted from Ref. [28].

For each event, the dataset includes two image grids, representing energy and timing
information, respectively. The first grid gives the peak energy detected by the crystals
of the detector in a 32 × 32 grid centered around the crystal with the maximum energy
deposit. The second image grid gives the arrival time when the peak energy was measured
in the associated crystal (in our work, we shall only use the first image grid with the energy
information.) Each pixel in an image grid corresponds to exactly one ECAL crystal, though
not necessarily the same crystal from one event to another. The images were then scaled so
that the maximum entry for each event was set to 1.

Several representative examples of our image data are shown in Figure 2. The first row
shows the image grids for the energy (normalized and displayed in log10 scale), while the
second row displays the timing information (not used in our study). In each case, the top
row in the title lists the label predicted by one of the benchmark classical models, while the
bottom row shows the correct label for that instance—whether the image was generated by
an actual electron or photon.

As can be gleaned from Figure 2 with the naked eye, electron–photon discrimination
is a challenging task—for example, the first and third images in Figure 2 are wrongly
classified. To first approximation, the e− and γ shower profiles are identical, and mostly
concentrated in a 3 × 3 grid of crystals around the main deposit. However, interactions with
the magnetic field of the CMS solenoid (B = 3.8 T) cause electrons to emit bremsstrahlung
radiation, preferentially in φ. This introduces a higher-order perturbation on the shower
shape, causing the electromagnetic shower profiles [29] to be more spread out and slightly
asymmetric in φ.

Axioms 2024, 13, 187 4 of 13

Figure 2. Four representative image grid examples from the dataset, in the (φ, η) plane. The first row
shows the image grids for the energy (normalized and displayed in log10 scale), while the second
row displays the timing information. The titles list the correct labels (real electron or real photon),
as well as the corresponding labels predicted by one of the benchmark classical models (see text for
more details).

3. Model Architectures

The following definitions will be used for the rest of the paper and are listed here
for convenience.

• nt: Number of tokens/patches
• di: Flattened patch length
• dt: Token length
• nh: Number of heads
• dh ≡ dt

nh
: Data length per head

• d f f : The dimension of the feed-forward network

3.1. General Model Structure

Both the benchmark and hybrid models utilize the same architectures except for the
type of encoder layers. These architectures are shown in Figure 3. As can be seen in the
figure, there will be two main variants of the architecture: (a) column-pooling variant and
(b) class token variant.

As the encoder layer is the main component of both the classical and the hybrid
models, they will be discussed in more detail in Sections 3.2 and 3.3, respectively. The rest
of the architecture is discussed here.

First, we start by dividing our input picture into nt patches of equal area, which are
then flattened to obtain nt vectors with length di. The resulting vectors are afterward
concatenated to obtain a nt × di matrix for each image sample. This matrix is passed
through a linear layer with a bias (called "Linear Embedding" in the figure) to change the
number of columns from di to a desirable number (token dimension, referred to as dt).

If the model is a class token variant, a trainable vector of length dt is concatenated
as the first row of the matrix at hand (module “Concat” in Figure 3b). After that, a non-
trainable vector is added to each row (called the positional embedding vector). Then the
result is fed to a series of encoder layers where each subsequent encoder layer uses its
predecessor’s output as its input.

If the model is a class token variant, the first row of the output matrix of the final
encoder layer is fed into the classifying layer to obtain the classification probabilities
(“Extract Class Token” layer in Figure 3b). Otherwise, a column-pooling method (take the
mean of all the rows or take the maximum value for each column) is used to reduce the
output matrix into a vector, then this vector is fed into the classifying layer to obtain the
classification probabilities (“Column-wise Pooling” layer in Figure 3a).

Axioms 2024, 13, 187 5 of 13

(a)

Linear
Embedding + Encoder

Layer

Column-wise Pooling
MLP

(32,LReLU,1)

Positional
Embedding

Probabilities

Sigmoid
x
N

(b)

Linear
Embedding Concat + Encoder

Layer

Extract Class Token
MLP

(32,LReLU,1)

Positional
Embedding

Class Token Probabilities

Sigmoid
x
N

Figure 3. The architecture for the (a) column-wise pooling and (b) the class-token models. For clarity,
we use an MNIST image [30] to demonstrate the process. The hybrid and the classical model differ
by the architecture of their encoder layers (see Figures 4 and 5).

3.2. The Classical Encoder Layer

The structure of the classical encoder layer can be seen in Figure 4a. First, we start by
standardizing the input data to have zero mean and a standard deviation of one. Afterward,
the normalized data are fed to the multi-head attention (discussed in the next paragraph)
and the output is summed with the unnormalized data. Then, the modified output is again
normalized to have zero mean and a standard deviation of one. These normalized modified
data are then fed into a multilayer perceptron of two layers with hidden layer size d f f and
the result is summed up with the modified data to obtain the final result.

Data Layernorm Multi-Head
Attention

+ LayerNorm
MLP

(d f f ,GELU,dt)
+

Classical Encoder Layer(a)

Multi-Head
Attention: Data Split

Attention
Head 1

Attention
Head dh

. . .

. . .

. . .
Concatenate

(b)

Figure 4. The classical encoder layer (a) and multi-head attention (b) architecture for the bench-
mark models.

The multi-head attention works by separating our input matrix into nh many nt × dh
matrices by splitting them through their columns. Afterward, the split matrices are fed to
the attention heads described in Equations (1) and (2). Finally, the outputs of the attention

Axioms 2024, 13, 187 6 of 13

heads are concatenated to obtain an nt × dt matrix, which has the same size as our input
matrix. Each attention head is defined as

Attention Head (xi; W(i)
K , W(i)

Q , W(i)
V) = SoftMax

 (xiW
(i)
K)(xiW

(i)
Q)T

√
dh

(xiW
(i)
V)

W(i)
K ∈ R(dh×dh), W(i)

Q ∈ R(dh×dh), W(i)
V ∈ R(dh×dh) dh ≡ dt/nh; (1)

where
X =

[
x1 x2 ... xnh

]
∈ R(nt×dt), xi ∈ R(nt×dh) (2)

is the input matrix.

3.3. Hybrid Encoder Layer

The structure of the hybrid encoder layer can be seen in Figure 5a. Firstly, we start by
standardizing the input data to have zero mean and standard deviation of one. Afterward,
the normalized data are fed to the hybrid multi-head attention layer (discussed in the
next paragraph). Then, the output is fed into a multilayer perceptron of two layers with
hidden layer size d f f , and the result is summed up with the unnormalized data to obtain
the final result.

Data Layernorm
Hybrid

Multi-Head
Attention

MLP
(d f f ,GELU,dt)

+

(a) Hybrid Encoder Layer

Multi-Head
Attention: Data Split

Hybrid
Attention

Head 1

Hybrid
Attention
Head dh

. . .

. . .

. . .
Concatenate

(b)

Figure 5. The hybrid encoder layer architecture (a) and multi-head attention (b) architecture for the
hybrid models.

The hybrid multi-head attention works by separating our input matrix into nh many
nt × dh matrices by splitting them through their columns. Afterward, the split matrices are
fed to the hybrid attention heads (which are described in the bulleted procedure below).
Finally, the outputs of the attention heads are concatenated to obtain an nt × dt matrix,
which has the same size as our input matrix.

The hybrid attention heads we used are almost identical to the architecture imple-
mented in [31], “Quantum Self-Attention Neural Networks for Text Classification” by Li
et al. In order to replace the self-attention mechanism of a classical vision transformer in
Equation (1), we use the following procedure:

• Define xi as the ith row of the input matrix X.

Axioms 2024, 13, 187 7 of 13

• Define the data loader operator Û(xi) as

|xi⟩ ≡ Û(xi)|0 >(dh)=
dh⊗

j=1

R̂x(xij)Ĥ |0⟩ , (3)

where Ĥ is the Hadamard gate and R̂x is the parameterized rotation around the x-axis.
• Apply the key circuit (data loader + key operator K̂(θK)) for each xi and obtain the

column vector K (see Figure 6).

Ki = ⟨xi| K̂†(θK)Ẑ0K̂(θK) |xi⟩ , 1 ≤ i ≤ dt, (4)

where Ẑi is a spin measurement of the ith qubit on the z direction.
• Apply the query circuit (data loader Û(xi) + query operator Q̂(θQ)) for each xi and

obtain the column vector Q (see Figure 6).

Qi = ⟨xi| Q̂†(θQ)Ẑ0Q̂(θQ) |xi⟩ , 1 ≤ i ≤ dt. (5)

• Obtain the so-called attention matrix using the key and the query vectors using the
following expression

Aij = −(Qi − Kj)
2; 1 ≤ i ≤ dt, 1 ≤ j ≤ dt. (6)

• Apply the value circuit (data loader + value operator V̂(θV)) to each row of the image
and measure each qubit separately to obtain the value matrix. (See Figure 7)

Vij = ⟨xi| V̂†(θV)ẐjV̂(θV) |xi⟩ , |xi⟩ = Û(xi)|0n >; 1 ≤ i ≤ dt, 1 ≤ j ≤ dh. (7)

• Define the self-attention operation as,

Hybrid Attention Head: SoftMax
(

A√
dh

)
V. (8)

Figure 6. Key and Query circuit for the dh = 8 case. The first two rows of circuits load the data to
the circuit (Û(xi) operator), while the rest are the parts of the trainable ansatz. Therefore, the total
number of parameters for each circuit is equal to 3dh + 1.

Axioms 2024, 13, 187 8 of 13

Figure 7. The value circuit used for the dh = 8 case. The first two rows of circuits load the data to
the circuit (Û(xi) operator), while the rest are the parts of the trainable ansatz. Therefore, the total
number of trainable parameters for each circuit is equal to 3dh.

4. Hyper-Parameters

The number of parameters is a function of the hyper-parameters for both the classical
and the hybrid models. However, these functions are different. Both models share the same
linear embedding and classifying layer. The linear embedding layer contains (di + 1)dt
many parameters and the classifying layer contains 32dt + 65 parameters.

For each classical encoder layer, we have nh attention heads which all contain 3d2
h

parameters from the Q, K, and V layers, respectively. In addition, the MLP layer inside
each encoder layer contains 2d f f dt + d f f + dt parameters. Overall, each classical vision
transformer has dt(33 + di) + nl(2d f f dt + d f f + dt + 3nhd2

h) parameters except for the class
token variation which has extra dt parameters.

For each hybrid encoder layer, we have nh attention heads which all contain 9dh + 2
parameters from the Q, K, and V layers, respectively. Similar to the classical model, each
encoder layer MLP contains 2d f f dt + d f f + dt parameters. Overall, each hybrid vision
transformer has dt(33 + di) + nl(2d f f dt + d f f + dt + nh(9dh + 2)) parameters except for
the class token variation which has extra dt parameters.

Therefore, assuming they have the same hyper-parameters, the difference between the
number of parameters for the classical and hybrid models is nl(dt(3dh − 9)− 2nh).

Our purpose was to investigate whether our architecture might perform similarly to
a classical vision transformer where the number of parameters are close to each other. In
order to use a similar number of parameters, we picked a region of hyperparameters such
that this difference is rather minimal. For all models, the following parameters were used:

• nl = 5
• dt = 16
• nt = 16
• nh = 4
• dh = di

dh
= 4

• d f f = 16.

Axioms 2024, 13, 187 9 of 13

Therefore, for our experiment the number of parameters for the classical models
(4785 to 4801) is slightly more than the quantum models (4585 to 4601).

5. Training Process

All the classical parts of the models were implemented in PyTorch [32]. The quantum
circuit simulations were conducted using TensorCircuit with the JAX backend [33,34]. We
explored a few different hyperparameter settings before settling on the following. Each
model was trained for 40 epochs, which was typically sufficient to ensure convergence, see
Figures 8 and 9. The criteria for the selection of the best model iteration was the accuracy
of the validation data. The optimizer used was the ADAM optimizer with learning rate
λ = 5 × 10−3 [35]. All models were trained on GPUs and the typical training times were
on the order of 10 min (5 h) for the classical (quantum) models. The batch size was 512
for all models as well. The loss function utilized was the binary cross entropy. The code
used to create and train the models can be found at the following GitHub repository:
https://github.com/EyupBunlu/QViT_HEP_ML4Sci (accessed on 7 March 2024).

(a)

(b)

Figure 8. BCE loss on the validation and training set during training for the (a) quantum and
(b) classical models. From left to right, each column corresponds to a different model variant: class
token (left column), column max (middle column) and column mean variant (right column). For
each plot, the blue (orange) line corresponds to the validation (training) set loss for the model with
positional encoding, whereas the dashed green (red) line corresponds to the validation (training) set
loss for the model without positional encoding layer.

https://github.com/EyupBunlu/QViT_HEP_ML4Sci

Axioms 2024, 13, 187 10 of 13

(a)

(b)

Figure 9. The same as Figure 8, but for the accuracy on the validation and training set during training
for the (a) quantum and (b) classical models.

6. Results

The training loss and the accuracy of the validation and training data are plotted in
Figures 8 and 9, respectively. In addition, the models were compared on several metrics
such as the accuracy, binary cross-entropy loss, and AUC (area under the ROC curve) on
the test data. This comparison is shown in Table 1.

Table 1. Comparison table for the models. The accuracy, the BCE loss and the AUC score were
calculated on the test data. For each entry, the first number corresponds to the classical model,
whereas the second one corresponds to the hybrid model. For each variant and metric, the best value
is shown in bold.

Model Positional
Embedding

Accuracy
(Cls/Hybrid)

BCE Loss
(Cls/Hybrid)

AUC Score
(Cls/Hybrid)

Trainable
Parameters
(Cls/Hybrid)

With Class Token Yes 0.717/0.502 0.564/0.6931 0.780/0.501 4801/4601

With Class Token No 0.720/0.502 0.561/0.6931 0.783/0.500 4801/4601

Column Max (CMX) Yes 0.718/0.718 0.562/0.565 0.783/0.779 4785/4585

Column Max (CMX) No 0.722/0.718 0.557/0.565 0.786/0.779 4785/4585

Column Mean (CMN) Yes 0.720/0.696 0.559/0.592 0.784/0.751 4785/4585

Column Mean (CMN) No 0.720/0.692 0.560/0.595 0.783/0.748 4785/4585

7. Discussion

As seen in Table 1, the positional encoding has no significant effect on the performance
metrics. In retrospect, this is not that surprising, since the position information is already
used in the linear embedding in Figure 3 (we thank the anonymous referee for this clarifica-
tion.). We note that the CMX variant (either with or without positional encoding) performs
similarly to the corresponding classical model. This suggests that a quantum advantage
could be achieved when extrapolating to higher-dimensional problems and datasets since
the quantum models scale better with dimensionality.

On the other hand, Table 1 shows that hybrid CMN variants are inferior to their hybrid
CMX counterparts for all metrics. This might be due to the fact that taking the mean forces
each element of the output matrix of the final encoder layer to be relevant, unlike the CMX
variant, where the maximum values are chosen. This could explain the larger number of

Axioms 2024, 13, 187 11 of 13

epochs required to converge in the case of the hybrid CMN (see Figures 8 and 9). It is
also possible that the hybrid model lacks the expressiveness required to encode enough
meaningful information to the column means.

Somewhat surprisingly, the training plots of the hybrid class token variants (upper
left panels in Figures 8 and 9) show that the hybrid class token variants did not converge
during our numerical experiments. The reason behind this behavior is currently unknown
and is being investigated.

8. Outlook

Quantum machine learning is a relatively new field. In this work, we explored a few
of the many possible ways that it could be used to perform different computational tasks
as an alternative to classical machine learning techniques. As the current hardware for
quantum computers improves further, it is important to explore more ways in which this
hardware could be utilized.

Our study raises several questions that warrant future investigations. First, we observe
that the hybrid CMX models perform similarly to the classical vision transformer models
that we used for benchmarking. It is fair to ask if this similarity is due to the comparable
number of trainable parameters or the result of an identical choice of hyper-parameter
values. If it is the latter, we can extrapolate and conclude that as the size of the data grows,
hybrid models will still perform as well as the classical models while having a significantly
fewer number of parameters.

It is fair to say that both the classical and hybrid models perform similarly at this
scale. However, the hybrid model discussed in this work is mostly classical, except for
the attention heads. The next step in our research is to investigate the effect of increasing
the fraction of quantum elements of the model. For instance, the conversion of feed-
forward layers into quantum circuits such as the value circuit might lead to an even bigger
advantage in the number of trainable parameters between the classical and hybrid models.

Although the observed limitations in the class token and column mean variants
might appear disappointing at first glance, they are also important findings of this work.
It is worth investigating whether this is due to the nature of the dataset or a sign of a
fundamental limitation in the method.

Author Contributions: Conceptualization, E.B.U.; methodology, M.C.C., G.R.D., Z.D., R.T.F., S.G.,
D.J., K.K., T.M., K.T.M., K.M. and E.B.U.; software, E.B.U.; validation, M.C.C., G.R.D., Z.D., R.T.F.,
T.M. and E.B.U.; formal analysis, E.B.U.; investigation, M.C.C., G.R.D., Z.D., R.T.F., T.M. and E.B.U.;
resources, E.B.U., K.T.M. and K.M.; data curation, G.R.D., S.G. and T.M.; writing—original draft
preparation, E.B.U.; writing—review and editing, S.G., D.J., K.K., K.T.M. and K.M.; visualization,
E.B.U.; supervision, S.G., D.J., K.K., K.T.M. and K.M.; project administration, S.G., D.J., K.K., K.T.M.
and K.M.; funding acquisition, S.G. All authors have read and agreed to the published version of
the manuscript.

Funding: This research used resources of the National Energy Research Scientific Computing Center,
a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of
Energy under Contract No. DE-AC02-05CH11231 using NERSC award NERSC DDR-ERCAP0025759.
S.G. is supported in part by the U.S. Department of Energy (DOE) under Award No. DE-SC0012447.
K.M. is supported in part by the U.S. DOE award number DE-SC0022148. K.K. is supported in part by
US DOE DE-SC0024407. Z.D. is supported in part by College of Liberal Arts and Sciences Research
Fund at the University of Kansas. Z.D., R.T.F., E.B.U., M.C.C., G.R.D. and T.M. were participants in
the 2023 Google Summer of Code.

Institutional Review Board Statement: Not applicable.

Data Availability Statement: The dataset used in this analysis is described in [27] and is available at
https://cernbox.cern.ch/index.php/s/FbXw3V4XNyYB3oA (accessed on 12 March 2024) and https:
//cernbox.cern.ch/index.php/s/AtBT8y4MiQYFcgc (accessed on 12 March 2024). The code used to
create and train the models can be found at https://github.com/EyupBunlu/QViT_HEP_ML4Sci
(accessed on 12 March 2024).

https://cernbox.cern.ch/index.php/s/FbXw3V4XNyYB3oA
https://cernbox.cern.ch/index.php/s/AtBT8y4MiQYFcgc
https://cernbox.cern.ch/index.php/s/AtBT8y4MiQYFcgc
https://github.com/EyupBunlu/QViT_HEP_ML4Sci

Axioms 2024, 13, 187 12 of 13

Conflicts of Interest: The authors declare no conflicts of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

Abbreviations
The following abbreviations are used in this manuscript:

AUC Area Under the Curve
BCE Binary Cross Entropy
CMN Column Mean
CMS Compact Muon Solenoid (experiment)
CMX Column Max
ECAL Electromagnetic Calorimeter
GPU Graphics processing unit
LHC Large Hadron Collider
MHA Multi-Head Attention
MLP Multi-Layer Perceptron
MNIST Modified National Institute of Standards and Technology database
ROC Receiver Operating Characteristic

References
1. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention is all you need. In

Proceedings of the NIPS’17: 31st International Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4–9
December 2017; Curran Associates Inc.: Red Hook, NY, USA, 2017; pp. 6000–6010.

2. Raffel, C.; Shazeer, N.; Roberts, A.; Lee, K.; Narang, S.; Matena, M.; Zhou, Y.; Li, W.; Liu, P.J. Exploring the Limits of Transfer
Learning with a Unified Text-to-Text Transformer. J. Mach. Learn. Res. 2020, 21, 1–67.

3. Jun, C.; Jang, H.; Sim, M.; Kim, H.; Choi, J.; Min, K.; Bae, K. ANNA: Enhanced Language Representation for Question Answering.
In Proceedings of the 7th Workshop on Representation Learning for NLP, Dublin, Ireland, 26 May 2022; pp. 121–132. [CrossRef]

4. Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.;
Gelly, S.; et al. An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. In Proceedings of the 2021
International Conference on Learning Representations, Virtual, 3–7 May 2021.

5. Yu, X.; Xue, Y.; Zhang, L.; Wang, L.; Liu, T.; Zhu, D. NoisyNN: Exploring the Influence of Information Entropy Change in
Learning Systems. arXiv 2023, arXiv:2309.10625.

6. Fang, Y.; Wang, W.; Xie, B.; Sun, Q.; Wu, L.; Wang, X.; Huang, T.; Wang, X.; Cao, Y. EVA: Exploring the Limits of Masked Visual
Representation Learning at Scale. In Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), Vancouver, BC, Canada, 18–22 June 2023; IEEE: Piscataway, NJ, USA, 2023. [CrossRef]

7. Tuli, S.; Dedhia, B.; Tuli, S.; Jha, N.K. FlexiBERT: Are current transformer architectures too homogeneous and rigid? J. Artif. Intell.
D 2023, 77, 39–70. [CrossRef]

8. Gupta, A.; Berant, J. Value-aware Approximate Attention. arXiv 2021, arXiv:2103.09857.
9. Xiong, Y.; Zeng, Z.; Chakraborty, R.; Tan, M.; Fung, G.; Li, Y.; Singh, V. Nyströmformer: A Nyström-Based Algorithm for

Approximating Self-Attention. arXiv 2021, arXiv:2102.03902.
10. Dao, T.; Fu, D.Y.; Ermon, S.; Rudra, A.; Ré, C. FlashAttention: Fast and Memory-Efficient Exact Attention with IO-Awareness.

arXiv 2022, arXiv:2205.14135.
11. Peng, H.; Pappas, N.; Yogatama, D.; Schwartz, R.; Smith, N.; Kong, L. Random Feature Attention. In Proceedings of the 2021

International Conference on Learning Representations, Virtual, 3–7 May 2021.
12. Kitaev, N.; Kaiser, Ł.; Levskaya, A. Reformer: The Efficient Transformer. arXiv 2020, arXiv:2001.04451.
13. Zaheer, M.; Guruganesh, G.; Dubey, A.; Ainslie, J.; Alberti, C.; Ontanon, S.; Pham, P.; Ravula, A.; Wang, Q.; Yang, L.; et al. Big

bird: Transformers for longer sequences. In Proceedings of the NIPS’20: 34th International Conference on Neural Information
Processing Systems, Vancouver, BC, Canada, 6–12 December 2020; Curran Associates Inc.: Red Hook, NY, USA, 2020.

14. Choromanski, K.; Likhosherstov, V.; Dohan, D.; Song, X.; Gane, A.; Sarlos, T.; Hawkins, P.; Davis, J.; Mohiuddin, A.; Kaiser, L.;
et al. Rethinking Attention with Performers. arXiv 2022, arXiv:2009.14794.

15. Fournier, Q.; Caron, G.M.; Aloise, D. A Practical Survey on Faster and Lighter Transformers. ACM Comput. Surv. 2023, 55, 1–40.
[CrossRef]

16. Shor, P.W. Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer. SIAM J.
Comput. 1997, 26, 1484–1509. [CrossRef]

17. Servedio, R.A.; Gortler, S.J. Equivalences and Separations Between Quantum and Classical Learnability. SIAM J. Comput. 2004,
33, 1067–1092. [CrossRef]

http://doi.org/10.18653/v1/2022.repl4nlp-1.13
http://dx.doi.org/10.1109/cvpr52729.2023.01855
http://dx.doi.org/10.1613/jair.1.13942
http://dx.doi.org/10.1145/3586074
http://dx.doi.org/10.1137/S0097539795293172
http://dx.doi.org/10.1137/S0097539704412910

Axioms 2024, 13, 187 13 of 13

18. Dunjko, V.; Briegel, H.J. Machine learning & artificial intelligence in the quantum domain: A review of recent progress. Rep. Prog.
Phys. 2018, 81, 074001. [CrossRef]

19. The HEP Software Foundation; Albrecht, J.; Alves, A.A.; Amadio, G.; Andronico, G.; Anh-Ky, N.; Aphecetche, L.; Apostolakis, J.;
Asai, M.; Atzori, L.; et al. A Roadmap for HEP Software and Computing R&D for the 2020s. Comput. Softw. Big Sci. 2019, 3, 7.

20. HSF Physics Event Generator WG; Valassi, A.; Yazgan, E.; McFayden, J.; Amoroso, S.; Bendavid, J.; Buckley, A.; Cacciari, M.;
Childers, T.; Ciulli, V.; et al. Challenges in Monte Carlo Event Generator Software for High-Luminosity LHC. Comput. Softw. Big
Sci. 2021, 5, 12.

21. Humble, T.S.; Perdue, G.N.; Savage, M.J. Snowmass Computational Frontier: Topical Group Report on Quantum Computing.
arXiv 2022, arXiv:2209.06786.

22. CMS Collaboration; Chatrchyan, S.; Hmayakyan, G.; Khachatryan, V.; Sirunyan, A.M.; Adam, W.; Bauer, T.; Bergauer, T.; Bergauer,
H.; Dragicevic, M.; et al. The CMS Experiment at the CERN LHC. JINST 2008, 3, S08004. [CrossRef]

23. CMS Heavy-Ion Public Physics Results. Available online: https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsHIN
(accessed on 6 March 2024).

24. Public CMS Data Quality Information. Available online: https://twiki.cern.ch/twiki/bin/view/CMSPublic/DataQuality
(accessed on 6 March 2024).

25. Benaglia, A. The CMS ECAL performance with examples. JINST 2014, 9, C02008. [CrossRef]
26. CMS Collaboration; Chatrchyan, S.; Khachatryan, V.; Sirunyan, A.M.; Tumasyan, A.; Adam, W.; Bergauer, T.; Dragicevic, M.; Erö,

J.; Fabjan, C.; et al. Description and performance of track and primary-vertex reconstruction with the CMS tracker. JINST 2014,
9, P10009.

27. Andrews, M.; Paulini, M.; Gleyzer, S.; Poczos, B. End-to-End Event Classification of High-Energy Physics Data. J. Phys. Conf. Ser.
2018, 1085, 042022. [CrossRef]

28. CMS Coordinate System. Available online: https://tikz.net/axis3d_cms/ (accessed on 6 March 2024).
29. Sempere Roldan, P. Quality Control and Preparation of the PWO Crystals for the Electromagnetic Calorimeter of CMS. Ph.D.

Thesis, University of Santiago de Compostela, Santiago, Spain, 2011.
30. LeCun, Y.; Cortes, C. MNIST Handwritten Digit Database. 2010. Available online: http://yann.lecun.com/exdb/mnist/

(accessed on 10 January 2024).
31. Li, G.; Zhao, X.; Wang, X. Quantum Self-Attention Neural Networks for Text Classification. arXiv 2022, arXiv:2205.05625.
32. Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. PyTorch:

An Imperative Style, High-Performance Deep Learning Library. In Advances in Neural Information Processing Systems 32; Curran
Associates, Inc.: Red Hook, NY, USA, 2019; pp. 8024–8035.

33. Bradbury, J.; Frostig, R.; Hawkins, P.; Johnson, M.J.; Leary, C.; Maclaurin, D.; Necula, G.; Paszke, A.; VanderPlas, J.; Wanderman-
Milne, S.; et al. JAX: Composable Transformations of Python+NumPy Programs. Available online: https://github.com/google/
jax (accessed on 6 March 2024).

34. Zhang, S.X.; Allcock, J.; Wan, Z.Q.; Liu, S.; Sun, J.; Yu, H.; Yang, X.H.; Qiu, J.; Ye, Z.; Chen, Y.Q.; et al. TensorCircuit: A Quantum
Software Framework for the NISQ Era. Quantum 2023, 7, 912. [CrossRef]

35. Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2017, arXiv:1412.6980.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1088/1361-6633/aab406
http://dx.doi.org/10.1088/1748-0221/3/08/S08004
https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsHIN
https://twiki.cern.ch/twiki/bin/view/CMSPublic/DataQuality
http://dx.doi.org/10.1088/1748-0221/9/02/C02008
http://dx.doi.org/10.1088/1742-6596/1085/4/042022
https://tikz.net/axis3d_cms/
http://yann.lecun.com/exdb/mnist/
https://github.com/google/jax
https://github.com/google/jax
http://dx.doi.org/10.22331/q-2023-02-02-912

	Introduction
	Dataset and Preprocessing Description
	Model Architectures
	General Model Structure
	The Classical Encoder Layer
	Hybrid Encoder Layer

	Hyper-Parameters
	Training Process
	Results
	Discussion
	Outlook
	References

