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Abstract: Urbanization has profoundly reshaped the patterns and forms of modern urban landscapes.
Understanding how urban transportation and mobility are affected by spatial planning is vital.
Urban vibrancy, as a crucial metric for monitoring urban development, contributes to data-driven
planning and sustainable growth. However, empirical studies on the relationship between urban
vibrancy and the built environment in European cities remain limited, lacking consensus on the
contribution of the built environment. This study employs Munich as a case study, utilizing night-
time light, housing prices, social media, points of interest (POIs), and NDVI data to measure various
aspects of urban vibrancy while constructing a comprehensive assessment framework. Firstly,
the spatial distribution patterns and spatial correlation of various types of urban vibrancy are
revealed. Concurrently, based on the 5Ds built environment indicator system, the multi-dimensional
influence on urban vibrancy is investigated. Subsequently, the Geodetector model explores the
heterogeneity between built environment indicators and comprehensive vibrancy along with its
economic, social, cultural, and environmental dimensions, elucidating their influence mechanism.
The results show the following: (1) The comprehensive vibrancy in Munich exhibits a pronounced
uneven distribution, with a higher vibrancy in central and western areas and lower vibrancy in
northern and western areas. High-vibrancy areas are concentrated along major roads and metro
lines located in commercial and educational centers. (2) Among multiple models, the geographically
weighted regression (GWR) model demonstrates the highest explanatory efficacy on the relationship
between the built environment and vibrancy. (3) Economic, social, and comprehensive vibrancy
are significantly influenced by the built environment, with substantial positive effects from the POI
density, building density, and road intersection density, while mixed land use shows little impact.
(4) Interactions among built environment factors significantly impact comprehensive vibrancy, with
synergistic interactions among the population density, building density, and POI density generating
positive effects. These findings provide valuable insights for optimizing the resource allocation and
functional layout in Munich, emphasizing the complex spatiotemporal relationship between the built
environment and urban vibrancy while offering crucial guidance for planning.

Keywords: urban vibrancy; built environment; spatiotemporal effect; multi-source data; Geodetector;
GIS Analysis; Munich

1. Introduction

Since the beginning of the 21st century, the global urbanization process has profoundly
reshaped people’s lifestyles and living conditions. According to the United Nations, urban
residents accounted for 55% of the global population (around 4.2 billion people) in 2000,
and this proportion is projected to reach 68% (about 6.7 billion people) by 2050 [1]. The
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rapid growth of the urban population has exacerbated multiple challenges, including socio-
economic development inequalities, and has threatened ecological sustainability and urban
viability [2]. Within this context, vibrancy, innovation, and resilience have emerged as
crucial factors in urban development [3]. Urban vibrancy plays a vital role in addressing the
diverse challenges faced by urban environments and significantly impacts the livability and
developmental momentum of cities. Therefore, it is imperative to conduct comprehensive
exploration and proactively enhance urban vibrancy through focused attention on urban
spatial planning and governance [4].

Urban vibrancy is perceived through multiple dimensions, including economic (popu-
lation, employment, and economic landscape) [5], sociological (people–place interactions,
street vitality, and social dynamics) [6], cultural (cultural amenities, creative industries,
and culture innovation) [7], and ecological (environmental quality, biodiversity, and sus-
tainability) dimensions [8]. This highlights the complexity of measuring urban vibrancy.
Urban functions, characterized by diverse human activities occurring across various spa-
tiotemporal scales, have long been widely regarded as the fundamental driving force of
urban development [9]. They play a critical role in ensuring the sustained dynamism and
evolution of urban spaces [10]. A vibrant urban environment relies on a well-designed
urban morphology, effectively developed urban functions catering to residents’ needs, and
diverse activity opportunities that foster active participation [11]. Moreover, transporta-
tion infrastructure is also a significant contributor to urban vibrancy, greatly promoting
people’s mobility [12]. Drawing upon these insights, this study conceptualizes urban vi-
brancy as the dynamic and diverse activities arising from the intricate interactions between
individuals and their surrounding built environment. It emphasizes the importance of
human–environment interactions in shaping the attractiveness of urban spaces [13].

In contrast to the natural environment, the built environment is an area formed by
human production and living activities, including land use, urban design, and transporta-
tion systems [14]. In analyzing and describing the built environment, current academic
research widely adopts Cervero’s [15] 3Ds framework along with its subsequent expanded
versions: namely, the 5Ds [16,17] and 7Ds frameworks [18]. These frameworks offer effec-
tive means of comprehending the multi-dimensional attributes of the built environment.
Specifically, density factors include the population density, employment density, and build-
ing density; diversity pertains to mixed land use; and design incorporates factors like the
intersection density and sidewalk continuity. Subsequent research integrated additional
dimensions, including the distance to transit, destination accessibility, demand manage-
ment, and demographics, enabling more comprehensive and nuanced assessments of built
environments [12,19].

The growing emphasis on enhancing the quality of life in urban development has
led to a shift in focus from spatial expansion toward creating vibrant and livable urban
environments. This shift will inevitably lead to the effects of the built environment on
urban vibrancy exhibiting different characteristics across changing spatial contexts, relating
to spatial heterogeneity [20]. Furthermore, the formation of the built environment has
a certain stability and longevity; its impacts on urban vibrancy often exhibit a “lock-in
effect” that makes them resistant to rapid change [21]. Transforming the built environment
to enhance urban vibrancy often requires significant time, resources, and coordinated
efforts across multiple stakeholders. Therefore, understanding the long-term impacts of
the built environment on urban vibrancy and developing adaptable and resilient urban
planning strategies is crucial for sustainable urban development. Owing to the accessibility
of data, existing studies on the relationship between the built environment and urban
vibrancy have primarily focused on Asian countries such as China and Japan, while
empirical research in the European context remains relatively limited. The specific concerns
include (1) the indicator systems and methods for quantifying and measuring the built
environment and urban vibrancy [4,5,12]; (2) the spatial scales and heterogeneity of the
built environment that influence urban vibrancy [13,17,22,23]; (3) the relative importance
of different built environment dimensions in influencing urban vibrancy [11,17,19,24,25];
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(4) and the causal mechanisms and pathways through which built environment factors
shape urban vibrancy [9,26,27].

Based on this, this study investigates the relationship between urban vibrancy and the
built environment in Munich, utilizing high-resolution geospatial data and spatial analysis
techniques. The central hypothesis posits that the areas with a higher density, better
urban design, greater diversity, and high accessibility will exhibit higher levels of vibrancy.
Conversely, a scattered, homogeneous, and poorly designed built environment may inhibit
the urban vibrancy. Specifically, the geographically weighted regression (GWR) model is
used to quantitatively analyze distinct effects exerted by various factors within the built
environment on urban vibrancy, including economic, social, cultural, and environmental
aspects. Utilizing the Geodetector model, this study uncovers interactions among diverse
factors present within the built environment while further elucidating their collective
influence in shaping multi-dimensional urban vibrancy. These analyses not only provide
empirical support for sustainable urban planning and intelligent governance but also offer
novel insights and strategic directions for comprehending and enhancing urban vibrancy.

The remainder of this paper is organized as follows: Section 2 provides a comprehen-
sive overview of the study area and datasets. Furthermore, Section 3 outlines the research
methods and models. Section 4 discusses the results with detailed explanations. Section 5
includes a discussion of the findings and directions for future research. Finally, Section 6
presents concluding remarks and the limitations of this research.

2. Study Area and Datasets
2.1. Study Area

As an economic, political, and cultural center, Munich is recognized as one of Europe’s
rapidly expanding global cities. This study focuses on Munich, a metropolis situated in
southeastern Germany and serving as the capital of Bavaria. Ranking as the third-largest
metropolis, following Berlin and Hamburg, Munich had a population of approximately
1.56 million and covered an area of around 310.43 km2 by the end of 2022. Nestled at the
northern foothills of the Alps, about 50 km away from these majestic mountains, Munich
is situated at an elevation of approximately 520 m. Its proximity to the Alps results in a
humid continental climate characterized by pleasantly warm summers. Data obtained from
the German Meteorological Service (https://www.dwd.de/EN/Home/home_node.html,
accessed on 22 June 2023) indicate that Munich experiences average temperatures ranging
from −4 ◦C in January to 24 ◦C in July, with an annual average precipitation close to
967 mm. Moreover, between 2002 and 2022, Munich exhibited remarkable consistency in
its land use patterns [28].

To conduct a fine-grained analysis of urban vibrancy patterns, the present analysis
adopted traffic analysis zones (TAZs) provided by the Munich Transport Corporation
(MVG) as the spatial unit. These TAZs were constructed by considering the transporta-
tion network layout, land use characteristics, and population distribution, thereby better
capturing the spatial heterogeneity within the city. Compared to a regular grid (e.g.,
500 m × 500 m), the MVG TAZs offer more flexibility in terms of scale, allowing them to
accommodate the high density of the city center and the low density of the suburban areas.

To further enhance the accuracy and interpretability of subsequent analyses, the spatial
integration of multiple data sources was undertaken using the QGIS Desktop 3.30.0. First,
the TAZ data were imported into QGIS and overlaid with the administrative boundaries
of Munich. Subsequently, based on spatial relationships, the TAZs were associated with
various spatial datasets. This process enabled the enrichment of each TAZ’s attributes
by leveraging relevant information from multiple sources. By integrating these diverse
spatial data, a comprehensive representation of the built environment characteristics within
each TAZ was obtained. After the spatial integration, necessary adjustments were made to
ensure their alignment with the administrative boundary of Munich. This process resulted
in a total of 4950 TAZs, which were used as the final study units for our urban vibrancy
analysis. The specific division is shown in Figure 1.

https://www.dwd.de/EN/Home/home_node.html
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Figure 1. Study area of Munich, Germany.

Munich’s unique geographical location, coupled with Germany’s progressive immigra-
tion policies, has attracted a diverse range of immigrants from around the world who have
chosen to settle permanently in the city. These distinctive characteristics have contributed
to shaping Munich into a vibrant and multicultural urban center. The present study aims
to investigate the impact of the built environment on urban vibrancy and its influence on
human social activities. We present an overview of key features found in high-density
urban built environments that can be adapted for other compact cities while considering
local contexts. The workflow of this study is shown in Figure 2.
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This study explores the relationship between urban vibrancy and the built environment
by utilizing multi-source datasets. Four types of assessments are examined, including
economic, social, cultural, and environmental vibrancy. Each dimension is measured using
specific indicators. The basis and data for the vibrancy dimensions will be introduced in
detail in Section 2.2.1, Urban Vibrancy Data. To address the key themes of distribution
patterns, spatial heterogeneity, spatiotemporal effects, and driving mechanisms, this study
employs GWR and Geodetector models. The findings offer practical insights to urban
planners, enabling them to devise and implement strategies more effectively for enhancing
urban vibrancy in consideration of local contexts and the high-density built environments
of compact cities.
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2.2. Data Sources and Pre-Processing
2.2.1. Urban Vibrancy Data

The selection of urban vibrancy indicators is grounded in the multi-dimensional
understanding of urban vibrancy in the existing literature [29,30]. Urban vibrancy is
widely recognized as a complex and multi-faceted concept, including economic, social,
cultural, and environmental dimensions. Consequently, a vibrant city needs to fulfill
several criteria: livability, sustained economic growth, abundant public spaces for social
activities, a vibrant cultural atmosphere, and an availability of green recreational spaces [31].
To capture the diverse manifestations of urban vibrancy in Munich, this study adopts a
comprehensive indicator system that covers these four dimensions, drawing upon the
validity and reliability of various data sources as proxies for urban vibrancy.

The datasets include night-time light, housing prices, social media tweets, points of
interest (POIs), and normalized difference vegetation index (NDVI) data. Night-time light
data serve as a proxy for economic activity and urban dynamism [32], while housing prices
reflect the economic value and attractiveness of a place. Social media tweet data provide
insights into social interactions and public sentiment within the city [33]. POIs represent the
diversity and accessibility of urban amenities, which are crucial factors in fostering vibrant
urban environments [34]. Lastly, the NDVI captures the presence and distribution of urban
green spaces, contributing to the environmental dimension of urban vibrancy [24]. By
integrating these diverse data sources with varying spatiotemporal granularity, this study
facilitates a holistic and precise quantification of urban vibrancy [27]. The information of
these datasets are shown in Table 1.

Table 1. Description of various urban vibrancy datasets.

Data Source Numbers and Type Time
Period

Spatial
Resolution

Night-time
light

Annual composite imagery of night-time
light from

https://ngdc.noaa.gov, accessed on 22 June 2023
Raster tiff 2019 500 m

Housing price Munich average house price from
https://www.opengov-muenchen.de, accessed on 22 June 2023

974,393 vector
polygons 2018 /

Social media
tweets

Geotagged tweets from
https://developer.twitter.com/en/docs/twitter-api, accessed on

22 June 2023

1,176,798 vector
points 2018–2019 /

Cultural POIs
Locations of cultural venues from

https://www.openstreetmap.org/, accessed on 22 June 2023
163,505 vector

points 2019 /

NDVI value

Sentinel-2 satellite imagery from
https://sentinels.copernicus.eu/web/sentinel/sentinel-2,

accessed on 22 June 2023 Raster tiff June 2020 10 m

1. Measurement of economic vibrancy

Traditionally, night-time light data have been widely employed as a proxy for economic
activity, with higher values indicating more intensive economic activities and, consequently,
higher levels of economic vibrancy [32]. However, the academic community has gradually
recognized the limitations of relying solely on night-time light data to assess economic
vibrancy, as they only reflect the short-term and dynamic aspects of economic activities,
such as the intensity of human activities and energy consumption, and fail to effectively
capture daytime activities.

To address this limitation, the present study incorporates housing price data as an
additional data source to gain a more comprehensive understanding of economic activities
in Munich. Housing prices reflect the long-term and structural aspects of economic vibrancy,
such as the overall attractiveness and economic potential of an area [35]. They not only
mirror the income levels and consumption capabilities of local residents but also serve as
an important composite indicator for evaluating regional economies.

https://ngdc.noaa.gov
https://www.opengov-muenchen.de
https://developer.twitter.com/en/docs/twitter-api
https://www.openstreetmap.org/
https://sentinels.copernicus.eu/web/sentinel/sentinel-2
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The combination of night-time light intensity and housing price data provides a more
balanced and reliable assessment of economic vibrancy, encompassing both short-term and
long-term economic dynamics. This approach simultaneously captures economic outputs
and incomes while taking into account both the current level of economic activities and
the market’s expectations for future growth and development [36]. Consequently, this
methodology contributes to a deeper understanding of the complex interplay between
the built environment and economic vibrancy within the European context. The spatial
distribution of economic vibrancy is shown in Figure 3b, with the following formula:

Ei = α ∗ Li + β ∗ Hi (1)

where Ei represents the economic vibrancy of region i, Li is the night-time light data, Hi is
the housing price data, and α and β are weighting coefficients corresponding to Li and Hi,
respectively. To give equal importance to both indicators, the weighting coefficients α and
β are set to 1/2 in this study.
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2. Measurement of social vibrancy

With the widespread adoption of location-based services (LBSs), social media data
have emerged as a valuable source for assessing social vibrancy [37]. As an integral
component of urban vibrancy, social vibrancy is primarily driven by human activities.
Constrained by data availability, this study employs social media data reflecting residents’
real-time activities as an indicator, specifically utilizing the density of geotagged tweets as
a key metric for assessing urban social vibrancy. It should be noted that using Twitter as a
proxy for social vibrancy may introduce certain biases. Areas with lower user densities, such
as those populated by elderly residents, may also experience significant social interactions
that are not captured by Twitter. The representativeness of Twitter users and their spatial
distribution may influence the measurement of social vibrancy. The spatial distribution of
social vibrancy is shown in Figure 3d, with the following formula:

Si =
Ti
Ai

(2)

where Si indicates the social vibrancy of region i, Ti represents the total number of tweets in
that specific area, and Ai stands for the area of the TAZ. The tweet density portrays social
vibrancy by quantifying the concentration of activities from social media users, thereby
revealing the liveliness of social interactions within that particular region. A higher tweet
density indicates a greater concentration of social media activity, suggesting a more socially
vibrant area. Conversely, a lower tweet density implies a less socially active and engaging
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environment [33]. By employing the tweet density as a proxy for social vibrancy, this study
captures the intensity and distribution of social interactions across different areas of the city.

3. Measurement of cultural vibrancy

Considering data availability and limitations in existing studies, this research adopts
the density of cultural POIs as the primary indicator for assessing cultural vibrancy. Firstly,
it provides a tangible and easily quantifiable indicator of the presence and distribution of
cultural facilities across the city. Secondly, it captures the potential for cultural engagement
and interaction, as a higher concentration of cultural POIs suggests a greater likelihood
of cultural activities and events taking place in the area. However, it is important to
acknowledge that the cultural POI density alone may not fully capture the complexity and
nuances of cultural vibrancy. Factors such as the quality and diversity of cultural offerings,
the level of community participation, and the intangible aspects of cultural heritage and
traditions are not directly measured by this indicator. Nevertheless, the cultural POI density
provides a valuable starting point for assessing the spatial distribution and intensity of
cultural vibrancy within an urban context. The spatial distribution of cultural vibrancy is
shown in Figure 3c, with the following formula:

Ci =
Pi
Ai

(3)

where Ci represents the cultural vibrancy of region i, Pi denotes the number of cultural POIs,
and Ai signifies the area of the TAZs. The cultural POI density serves as a crucial metric
for quantifying the distribution of cultural facilities and residents’ inclination towards
cultural engagement within the region. A higher density of cultural POIs indicates a greater
concentration of cultural facilities, suggesting a more culturally vibrant area. These areas
are likely to attract more visitors and foster a lively cultural atmosphere [34].

4. Measurement of environmental vibrancy

Environmental vibrancy plays a crucial role in shaping urban vibrancy. A high level
of environmental quality not only enhances individuals’ inclination to engage in outdoor
activities but also attracts more participants in social events [38]. Therefore, the NDVI
is employed as an indicator for measuring environmental vibrancy. The remote sensing
data are processed with QGIS to extract relevant images based on Munich’s administrative
boundaries. The spatial distribution of environmental vibrancy is shown in Figure 3e, with
the following formula:

Vi = NDVIi (4)

where the environmental vibrancy Vi of region i is measured by the average normalized
difference vegetation index NDVIi, which is derived from remote sensing images. The
NDVI serves as a robust indicator of environmental quality, reflecting the vibrancy and
biomass of vegetation. Higher NDVI values indicate a greater presence of healthy and dense
vegetation, suggesting a more environmentally vibrant area. These areas are characterized
by lush green spaces, parks, and gardens, which provide numerous benefits, such as an
improved air quality, temperature regulation, and opportunities for outdoor recreation and
social interaction [24]. By incorporating the NDVI as a measure of environmental vibrancy,
this study provides a comprehensive understanding of the environmental dimension of
urban vibrancy.

5. Measurement of comprehensive vibrancy

To ensure consistency in the measurement of vibrancy across multiple dimensions,
z-score normalization was applied to the economic, social, cultural, and environmental
vibrancy values. Subsequently, these normalized values were averaged across the four
dimensions, assigning equal weights to reflect our conceptual understanding of urban
vibrancy as a balanced and holistic notion encompassing various aspects of urban dynamics.
Moreover, the equal weighting approach enhances the interpretability and transferability
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of the composite urban vibrancy index. The comprehensive assessment of urban vibrancy
is derived using the following formula:

Ui =
Ei + Si + Ci + Vi

4
(5)

where Ui represents the comprehensive urban vibrancy of each TAZ i, while Ei, Si, Ci, and
Vi denote the normalized values of economic, social, cultural and environmental vibrancy,
respectively. This composite index provides a balanced perspective on the comprehensive
vibrancy performance across all four dimensions and is used to obtain the final spatial
distribution of composite vibrancy, as shown in Figure 3a.

2.2.2. Built Environment Data

The measurement of the built environment in this study is based on the 5Ds framework
proposed by Ewing and Cervero [16], which provides a comprehensive and systematic
approach to operationalize the complex concept of the built environment. Despite the
existence of additional dimensions in some 7Ds formulations, the 5Ds model has been exten-
sively validated and applied in numerous built environment studies. Its well-established
nature, combined with its ability to effectively operationalize and quantify the multifaceted
concept of the built environment, makes it a robust and suitable choice for this research.

Specifically, density refers to the concentration of people, POIs, and buildings within a
given area, measured by the population density, POI density, and building density. Diver-
sity captures the mix and balance of different land uses, measured by the entropy index
of land use types. Design examines factors like the urban block layout, road intersection
configuration, and surrounding building density. The distance to transit reflects the ease of
access to public transportation services, measured by the density of bus stops and metro
stations. Destination accessibility indicates the ease of access to various destinations, mea-
sured by the distance to the city center in this study. These components pertaining to the
built environment serve as valuable references for enhancing regional vibrancy levels.

The administrative divisions, population data, and land use data required for this
study were obtained from the open data platform of the German Federal Agency for
Cartography and Geodesy (https://gdz.bkg.bund.de/index.php/default/open-data.html,
accessed on 22 June 2023). Meanwhile, the building distribution, road intersections, and var-
ious transportation infrastructures were sourced from the open datasets of OpenStreetMap
(https://www.openstreetmap.org/, accessed on 22 June 2023). These open data sources
offer advantages in terms of authoritative endorsement, timeliness, and extensive cover-
age, thereby providing reliable and detailed spatial information support for this study.
Finally, to address multicollinearity concerns, factors with a variance inflation factor (VIF)
greater than 7 or a correlation coefficient above 0.6 with any other factors were excluded.
Descriptive analysis of these factors is shown in Table 2.

Table 2. Overview of factors and descriptive analysis.

No. Factors Abb. Min Mean Max Std. VIF

1
Night-time light EI-Y1

0 2078 7,315,148 298,403.9 /
Housing price 9.3 16.80 42.70 3.70 /

2 Social media tweet density (million·km−2) SI-Y2 0 9633.9 1312.1 47,983.9 /
3 Cultural POI density (million·km−2) CI-Y3 0 53.70 1275 100.50 /
4 NDVI VI-Y4 0 0.41 0.81 0.23 /
5 Comprehensive vibrancy UI-Y5 0.025 0.349 0.679 0.190 /
6 Population density (million·km−2) RPD-X1 0 9031.40 34,300 7958 1.254
7 POI density (million·km−2) PD-X2 0 2204.70 30,750 2981.10 1.635
8 Building density (million·km−2) BD-X3 0 270 3754 285.6 2.187
9 Intersection density ID-X4 0 3194.90 72,500 5896.90 1.981

10 Mixed land use MUD-X5 0 0.11 0.93 0.14 1.473
11 Road network density RND-X6 55,786.6 36,834.6 93,112.8 139,778 1.842

https://gdz.bkg.bund.de/index.php/default/open-data.html
https://www.openstreetmap.org/
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Table 2. Cont.

No. Factors Abb. Min Mean Max Std. VIF

12 Metro station density MSD-X7 0 8.60 500 40.40 2.197
13 Bus stop density BS-X8 0 104.40 2000 175.30 2.214
14 Distance to the CBD (km) DCBD-X9 0.27 6.30 15.90 2.90 1.127
15 Distance to transit hubs (km) DTH-X10 0.26 6.30 15.00 2.90 1.564

3. Methodology
3.1. Bivariate Spatial Autocorrelation

The assessment of spatial factors’ agglomeration involves the application of spatial au-
tocorrelation analysis, including both global and local dimensions [25]. Anselin introduced
bivariate spatial autocorrelation to explore the spatial relationships among multiple factors,
extending beyond univariate spatial autocorrelation by revealing correlations between
attribute values of neighboring units [39]. In this study, bivariate global spatial autocorrela-
tion is employed to analyze the spatial characteristics of urban vibrancy across the entire
study area. The formula is as follows:

I =
N

∑N
i=1 ∑N

j=1 Wij
×

∑N
i=1 ∑N

j=1 wij(xi − x)
(
xj − x

)
∑N

i=1 (xi − x)2 , (i ̸= j), (6)

x =
1
N

n

∑
i=1

xi (7)

The observed values are represented by xi and xj, while the spatial weights matrix for
spatial units i and j (i, j = 1, 2, 3, . . . , n) is denoted as Wij. N represents the total number
of spatial units. The Global Moran’s I serves as a measure of spatial autocorrelation on
a scale ranging between −1 and 1. Positive values indicate a positive spatial correlation,
negative values suggest a negative spatial correlation, and values approaching 0 imply a
random distribution without any spatial correlation. Significance testing is often conducted
using the p-value. To further investigate the relationship between urban vibrancy and
the built environment in terms of spatial heterogeneity, this study employs bivariate local
spatial autocorrelation analysis through the Local Moran’s I. The formula is as follows:

Ii =
xi − x

S

N

∑
j=1

wij(xi − x) = zi

N

∑
j ̸=1

wijzj (8)

N

∑
S = j=1,j ̸=i

N−1
−x2

(9)

The standardized values of the factors, zi and zj, are used in the Local Moran’s I to
measure spatial autocorrelation around specific spatial units, unlike the Global Moran’s I,
which assumes uniform spatial autocorrelation within the study area. These local statis-
tics, also known as Local Indicators of Spatial Association (LISA) [40], distinguish from
global spatial association. In our research, we employed QGIS Desktop 3.30.0 and GeoDa
1.20.0.36 to calculate the Local Moran’s I values for each indicator and subsequently iden-
tified clusters with high values (high–high) and low values (low–low), as well as spatial
outliers exhibiting dissimilar neighboring values (high–low and low–high). The specific
distribution of these cluster types is shown in Figure 4.
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3.2. Regression Analysis

The present study employs global and local regression models to examine the relation-
ship between the built environment and urban vibrancy. The dependent variables are EI-Y1
(night-time light), SI-Y2 (housing price), CI-Y3 (social media tweet density), VI-Y4 (cultural
POI density), and UI-Y5 (NDVI), which collectively represent diverse facets of urban vi-
brancy. Conversely, the independent variables, encompassing various built environment
factors, are RPD-X1 (population density), PD-X2 (POI density), BD-X3 (building density),
ID-X4 (intersection density), MUD-X5 (mixed land use), RND-X6 (road network density),
MSD-X7 (metro station density), BS-X8 (bus stop density), DCBD-X9 (distance to the CBD),
and DTH-X10 (distance to transit hubs).

For global static regression analysis, the Multivariate Linear Regression (MLR) model
is utilized, assuming that the impacts of independent factors on the dependent factor
remain constant across the entire study area. Consequently, only one coefficient can be
estimated for each independent factor over all spatial units. The formula for the global
regression model is as follows:

yi = β0 + ∑k βkxik + εi (10)

where yi represents the dependent factor, β0 denotes a constant term, xik refers to the kth
independent factor (k = 1, 2, . . . , n), βk represents the regression coefficient for xik, and εi
signifies an error term assumed to follow a normal distribution with a mean of zero and
variance σ2; moreover, Cov

(
εi, ε j

)
= 0 holds true for i ̸= j.

To analyze spatial variations in relationships, spatial regression models, including the
spatial rrror model (SEM) and spatial lag model (SLM) [26], are further employed. The
SLM is represented as follows:

y = ρWy + Xβ + ε (11)

where W denotes the spatial weights matrix and ρ represents the spatial autocorrelation
coefficient. When ρ = 0, the SLM reduces to linear regression. In contrast, the SEM formula
is as follows:

y = Xβ + ε, ε = λWε + u (12)
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where ε represents spatially autocorrelated residuals, u denotes the spatially independent
residuals, and λ stands for the spatial autocorrelation coefficient. If λ = 0, ε is indepen-
dently and identically distributed, transforming the SEM into a linear regression model.

To avoid overestimating spatial dependency in residuals, it is essential to incorporate
spatial effects into the models instead of relying solely on global the MLR model. This
study employs geographically weighted regression (GWR), a local model that accounts
for spatial heterogeneity [22]. The GWR model assumes that regression coefficients vary
based on observation locations and incorporates spatial characteristics of data to examine
variations in the dependent factor across space. The GWR model is formulated as follows:

Yi = β0(ui, vi) + ∑
m

βm(ui, vi)xim + εi (13)

The research units are divided into 4950 traffic analysis zones (TAZs), as described in
Section 2.1. In each TAZ, Yi represents the urban vibrancy value, while (ui, vi) denotes the
latitude and longitude coordinates. The intercept for the ith TAZ is β0(ui, vi), and βm(ui, vi)
represents the regression coefficients for the mth built environment factor in that specific
TAZ. Additionally, xim refers to the explanatory factors of the ith TAZ, and εi accounts
for random error. To calculate the distance decay function βm(ui, vi), the weighted least
squares method is employed with the following formula:

βm(ui, vi) =
[
XTW(ui, vi)X

]−1XTW(ui, vi)Y (14)

The independent factors are represented by X, the dependent factors are denoted by Y,
and the spatial weight matrix is expressed as W(ui, vi). For an optimal bandwidth selection,
this study employs the corrected Akaike Information Criterion (AICc). The bandwidth
selection process aims to identify the value that minimizes the AICc, thereby striking a
balance between the model fit and complexity. The AICc formula is expressed as follows:

AICc =
(
2t − 2 ln

[
L
(
θ̂i, x

)])
i

(15)

where t denotes the number of independent coefficients in the GWR model, θ̂i stands for
the maximum likelihood estimate, and L

(
θ̂i, x

)
represents the likelihood function of θ.

3.3. Geodetector Model

To detect spatial heterogeneity and uncover the underlying mechanisms driving these
variations, this study employs the Geodetector model, which offers the advantage of
processing both quantitative and qualitative data to identify interactive explanatory factors
influencing a target factor. The Geodetector model consists of four sub-modules: a factor
detector for identifying driving factors; an interaction detector for exploring interaction
effects; a risk detector for assessing risk source contributions; and an ecological detector
for examining ecological pattern impacts on the dependent factor. Through synergistic
analysis of these sub-modules, this study systematically reveals the mechanisms shaping
urban vibrancy [41]. Among these, the factor detector module determines the influence
of independent factors on the dependent factor, with its explanatory ability statistically
represented by the q-value [42]. The model is formulated as follows:

q = 1 − SSW
SST

= 1 − ∑L
h=1 Nhσ2

h
Nσ2 , SSW = ∑L

h=1 Nhσ2
h , SST = Nσ2 (16)

The sum of variances within strata (Sum Squares Within, SSW) represents the vari-
ability within each stratum, while the total variance across the study area (Sum Squares
Total, SST) captures the overall variability. Here, h = 1, . . . , L denotes the stratification of
either the dependent factor Y or influencing factor X. Nh represents the number of units
in stratum h, and N represents the total number of units. σ2

h refers to the variance within
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each stratum, whereas σ2 represents the overall variance. The q-value ranges between
0 and 1 and follows a non-central F-distribution. A higher q-value indicates a stronger
explanatory power of factor X on urban vibrancy variation, explaining 100 ∗ q% of the
variance.

This study further uses the interaction detector module. This detector estimates
whether the interaction of two independent factors (X1∩X2) enhances or weakens their
respective explanatory powers on the dependent factor (Y). By comparing the q-value of
single factors (q (X1) and q (X2)) with those of paired factors (q (X1∩X2)), interactions are
categorized into five types, as shown in Table 3.

Table 3. Interactive types between two factors.

Criterion Interaction Types

q(X1∩X2) < Min(q(X1), q(X2)) Nonlinear, weakens
Min(q(X1), q(X2)) < q(X1∩X2) < Max(q(X1), q(X2)) Univariate, weakens

q(X1∩X2) > Max(q(X1), q(X2)) Bivariate, enhances
q(X1∩X2) = q(X1) + q(X2) Independent
q(X1∩X2) > q(X1) + q(X2) Nonlinear, enhances

4. Results
4.1. Spatial Distribution Patterns of Urban Vibrancy
4.1.1. Multi-Dimensional Urban Vibrancy Spatial Distribution

(1) Economic vibrancy spatial distribution

The spatial distribution of the economic vibrancy in Munich exhibits a distinct center–
periphery pattern, as shown in Figure 5. The highest levels of economic vibrancy, repre-
sented by dark orange grids, are concentrated in the city center. Moving away from the city
center, there is a gradual decline in economic vibrancy. However, notable exceptions to this
pattern are observed in the northern and eastern regions, where contiguous high values
reflect the presence of vibrant commercial enterprises, financial services establishments,
and nightlife venues. The western and southeastern regions of the city, although more spa-
tially dispersed, also maintain relatively high levels of economic vibrancy due to extensive
commercial development and mixed residential–commercial zones.
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Several areas contribute to the city’s economic vibrancy, such as Waldkolonie Pasing
in the west, known for its green spaces and shopping centers, and Postversuchssiedlung
along the S-Bahn railway, with its distinctive residential precincts. Oberwiesenfeld Süd,
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Barbarasiedlung near Olympiapark, and Am alten nordlichen Friedhof are also noteworthy
for their historical significance and vibrant lifestyles. Additionally, areas along the Isar
River enhance economic vibrancy through their natural beauty and recreational spaces.

(2) Social vibrancy spatial distribution

The spatial distribution of social vibrancy exhibits a pattern of radiation outward
from the city center, as shown in Figure 6. The deep purple areas, representing the highest
levels of social vibrancy based on the density of social media tweets, are primarily con-
centrated around the city center. Key locations contributing to this high social vibrancy
include Marienplatz, Umweltzone, Alte Pinakothek, and the main campuses of Ludwig-
Maximilians-Universität München (LMU) and Technische Universität München (TUM).
These areas foster social interaction through a combination of factors. Marienplatz, as the
historical and cultural heart of the city, integrates commercial, recreational, and cultural
facilities. Umweltzone promotes outdoor activities and social engagement with its clean
street environment. Alte Pinakothek, a world-renowned art museum, serves as a hub
for cultural exchange. LMU and TUM, as centers of knowledge and youthful vibrancy,
contribute to the social dynamism of the surrounding areas. Additionally, the Hauptbahn-
hof area, with its diversity and cosmopolitanism, is a vibrant center of social interaction
due to its role as a transportation hub and the presence of numerous commercial and
cultural activities.
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(3) Cultural vibrancy spatial distribution

The spatial distribution of cultural vibrancy, as shown in Figure 7, reveals a rela-
tively dispersed pattern, with the highest POI density areas (represented by deep blue)
encompassing the city center, extending along the northern S-Bahn line, and stretching
southwest along the Isar River. The city center stands out as the most prominent hub for
cultural exchange, with institutions such as Haus der Kunst, known for its contemporary
art exhibitions and events, reinforcing its central role in the city’s cultural landscape.

Other notable areas contributing to cultural vibrancy include Olympiapark, a versatile
hub for recreational and cultural pursuits, and museums such as the Deutsches Museum,
Neue Pinakothek, and Pinakothek der Moderne. These institutions not only showcase
artistic masterpieces and technological advancements but also serve as platforms for cross-
cultural exchanges and inspiration. Furthermore, the deep blue areas slightly extend
towards the southeast, indicating a higher concentration of cultural facilities in this direction.
Despite being further from the city center, neighborhoods like Haidhausen in the west and
Sendlinger Berg in the north also exhibit a distinctive cultural vibrancy. Haidhausen is
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known for its historic streets and diverse cultural life, while Sendlinger Berg has emerged
as an incubator for cultural innovation with its art studios and vibrant cultural events.
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(4) Environmental vibrancy spatial distribution

The spatial distribution of environmental vibrancy is shown in Figure 8. NDVI
values are represented by a gradient from green to orange, with higher values (closer to
+1) indicating dense and healthy vegetation and lower values (closer to 0 or negative)
representing lower or no vegetation cover. The suburbs and surrounding areas, particularly
Pferdewiese in the south and Moosschwaige in the west, exhibit elevated NDVI values
due to their extensive forests and green spaces. These areas not only provide abundant
ecosystems but also offer opportunities for residents to connect with nature, serving as
vital components of the city’s green lungs. The high NDVI values in these regions reflect
their significance in maintaining the urban ecological balance and providing essential
ecological services.
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In contrast, the city center and its surrounding areas display relatively lower NDVI
values, indicating a high level of urbanization and limited availability of green spaces
within the urban core. Despite the presence of some green spaces, such as Englischer
Garten and natural reserves along the Isar River, the ecological environment and vegetation
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coverage in this region are comparatively inferior to the extensive natural green spaces
found in suburban areas.

(5) Comparative analysis of spatial distribution

In summary, the city center emerges as a focal point for economic, social, and cultural
vibrancy, exhibiting the highest levels of activity and dynamism. This concentration can be
attributed to the agglomeration of commercial, recreational, and cultural facilities, as well as
the presence of historical and architectural landmarks that attract both residents and visitors.
However, the spatial distribution of environmental vibrancy stands in stark contrast to
the other dimensions. The city center, characterized by high levels of urbanization and
limited green spaces, displays relatively lower NDVI values compared to the suburbs and
surrounding areas.

Certain peripheral areas, such as those with extensive commercial development,
mixed residential–commercial zones, or unique historical and cultural attributes, manage
to maintain relatively high levels of vibrancy in their respective dimensions. The spatial
distribution of environmental vibrancy, however, exhibits a reverse pattern, with higher
NDVI values found in the suburbs and surrounding areas. This can be attributed to the
presence of expansive forests, green spaces, and natural reserves that provide essential
ecological services and contribute to the overall environmental health of the city.

4.1.2. Comprehensive Vibrancy Spatial Distribution

The spatial distribution analysis of comprehensive vibrancy, as shown in Figure 9,
reveals a concentration of high-vibrancy areas (represented by deep red grids), primarily
in the city center. This observation suggests that the city center plays a critical role in the
overall urban vibrancy, with significant contributions from economic, social, cultural, and
environmental dimensions. At a more granular scale, these high-vibrancy areas extend
concentratedly towards the east and south, following commercial and educational centers
within the city center, as well as major roads and metro lines. The southeast direction, in
particular, demonstrates exceptionally strong urban vibrancy.
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However, the comprehensive vibrancy in the northern and western parts of the city
center exhibits relatively sparse distributions compared to the southeast. This pattern
implies an imbalance in urban vibrancy across spatial dimensions, which is particularly
evident in areas such as Schwanthalerhöhe, Alter Nordfriedhof, Haidhausen, and Ober-
wiesenfeld. The vibrancy observed in these regions likely originates from the concentration
of commercial facilities, cultural institutions, and educational resources that serve as vital
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sources of urban vibrancy. In summary, Munich demonstrates a spatially uneven urban
vibrancy, with a concentration around the city core that extends towards the southeast.

4.1.3. Spatial Correlation in Various Types of Vibrancy

To deeply examine the inherent relationships between economic, social, cultural, and
environmental vibrancy as well as with comprehensive vibrancy, this study employs a
bivariate Moran’s I spatial autocorrelation analysis. The results are shown in Table 4. It
indicates that comprehensive vibrancy has the strongest spatial autocorrelation with social
vibrancy, at 0.791, indicating that social vibrancy primarily reflects comprehensive vibrancy,
with human activities and aggregation as the core manifestations of urban vibrancy.

Table 4. Moran’s I spatial correlation in various types of vibrancy.

Factors Moran’s I

Comprehensive vibrancy (Y5) Economic vibrancy (Y1) 0.714
Comprehensive vibrancy (Y5) Social vibrancy (Y2) 0.791
Comprehensive vibrancy (Y5) Cultural vibrancy (Y3) 0.431
Comprehensive vibrancy (Y5) Environmental vibrancy (Y4) −0.294

Economic vibrancy (Y1) Social vibrancy (Y2) 0.642
Economic vibrancy (Y1) Cultural vibrancy (Y3) 0.352
Economic vibrancy (Y1) Environmental vibrancy (Y4) −0.131

Social vibrancy (Y2) Cultural vibrancy (Y3) 0.639
Social vibrancy (Y2) Environmental vibrancy (Y4) 0.218

Cultural vibrancy (Y3) Environmental vibrancy (Y4) 0.167

Additionally, comprehensive vibrancy exhibits a relatively high spatial autocorrela-
tion with economic vibrancy, at 0.714. In contrast, the spatial autocorrelation between
comprehensive and cultural vibrancy is weaker, at only 0.431, suggesting that the spatial
distribution of cultural facilities alone cannot well represent comprehensive vibrancy, and
cultural vibrancy reflects the static distribution of cultural infrastructure more. Finally, the
spatial autocorrelation between comprehensive and environmental vibrancy is negative, at
−0.294, denoting discrepancies in the distribution between environmental vibrancy and
human activity centers.

Economic vibrancy positively correlates with social vibrancy, with a spatial autocorre-
lation of 0.642, indicating more vibrant social activity in economically prosperous areas.
However, economic vibrancy shows a weaker association with environmental vibrancy,
with a spatial autocorrelation of −0.131. Social vibrancy also exhibits positive correlations
with cultural and environmental vibrancy, at 0.639 and 0.218, respectively, but the degree is
lower than economic vibrancy. Additionally, the spatial autocorrelation between cultural
and environmental vibrancy is weak, at 0.167.

In summary, social and economic vibrancy are key determinants of urban comprehen-
sive vibrancy, while cultural and environmental vibrancy demonstrate weaker correlations,
with certain discrepancies. These findings provide valuable references for urban plan-
ning, while further research is still needed to deeply investigate the inherent drivers and
interactions between multiple dimensions of urban vibrancy.

4.2. Comparison of Multiple Models Validation

This study employs spatial regression models based on the global model, taking into
account the spatial dependence of various factors in addition to the traditional MLR model.
The diagnostic results are shown in Table 5. Both the lag Lagrange multiplier and error
Lagrange multiplier show significant values. When both the SLM and SEM diagnostic
statistics are simultaneously significant, their corresponding robust statistics are usually
examined comprehensively. Among them, the lag robust LM was found to be significant,
while the error robust LM was not. Therefore, the SLM should be chosen for regression
analysis. However, it should be noted that the Lagrange multiplier test and the selection
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of the spatial weight matrix are closely related to independent factors. Hence, this study
constructs both a spatial lag model (SLM) and a spatial error model (SEM) for regression
fitting.

Table 5. Diagnostic results of spatial dependence based on MLR.

Test Type Standardized Value
of Test Statistic Test Statistic p-Value

Moran’s I—error 0.0923 3.123 0.00179
Lagrange multiplier—lag 1 11.1597 0.00084

Robust LM—lag 1 8.0495 0.00455
Lagrange multiplier—error 1 5.7283 0.01669

Robust LM—error 1 2.6181 0.10565
Lagrange multiplier—SARMA 2 13.7778 0.00102

The diagnostic results indicate that the constructed SLM and SEM can better simulate
the influence of the built environment on urban vibrancy. Specifically, the adjusted R2 of the
SLM and SEM have significantly improved compared to MLR, ranging from 0.363 to 0.452
for different factors, suggesting that the explanatory power was markedly enhanced by
incorporating spatial dependence. Meanwhile, the AICc values of the two spatial models
are also lower than MLR, reflecting that the fitting effect was improved by considering
spatial autocorrelation. The spatial correlation coefficients in the SLM and SEM have passed
significance tests, validating the models’ success in capturing the spatial dependence in
the data.

This study comprehensively compares the model fitting performances of different
factors in global and local models, as shown in Table 6. Overall, the local GWR model
demonstrates a better fitting performance than the corresponding global MLR model and
SLM. The adjusted R2 and AICc metrics provide validation that incorporating spatial
factors significantly improves the explanatory power of the model.

Table 6. Comparison of model fitting between global and local models.

Global Models Adj. R2 RSS AICc Local Models Adj. R2 RSS AICc

MLR(Y1) 0.288 71.691 −127.382
GWR(Y1) 0.505 99.945 501.959SLM(Y1) 0.438 86.981 −155.962

SEM(Y1) 0.452 88.490 −160.98
MLR(Y2) 0.370 98.534 −181.068

GWR(Y2) 0.592 82.506 473.456SLM(Y2) 0.431 99.471 −180.941
SEM(Y2) 0.447 101.039 −186.078
MLR(Y3) 0.310 94.805 −173.611

GWR(Y3) 0.520 96.899 499.738SLM(Y3) 0.380 100.03 −182.061
SEM(Y3) 0.273 83.38 −150.76
MLR(Y4) 0.314 89.783 −163.566

GWR(Y4) 0.574 86.082 475.654SLM(Y4) 0.382 94.885 −171.770
SEM(Y4) 0.368 92.923 −169.847
MLR(Y5) 0.614 77.958 455.164

GWR(Y5) 0.601 80.694 476.205SLM(Y5) 0.603 80.123 476.595
SEM(Y5) 0.640 72.698 455.564

The improved performance of GWR over MLR reflects the influence of geographic
spatial autocorrelation on urban vibrancy. Furthermore, the more substantial enhancement
of GWR over the SLM indicates that incorporating spatial heterogeneity can further aug-
ment the explanatory power of local models. Compared to global models, GWR models
exhibit a lower RSS, demonstrating an advantage in fitting outliers and reducing residuals.
Additionally, the smaller corrected AICc values of GWR models suggest that they achieve
a better balance between the model complexity and goodness-of-fit.
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It is noteworthy that although GWR is generally the best-fitting model, the SEM
performs better at the global level for certain indicators, particularly in predicting economic
vibrancy (Y1) and cultural vibrancy (Y4). This implies that different aspects of urban
vibrancy may be influenced by factors operating at different spatial scales, with global
factors playing a more significant role in certain types of vibrancy.

In summary, the adoption of local models, particularly the GWR model, effectively
captures the inherent spatial complexity and heterogeneity of urban systems, thereby
enhancing the accuracy of urban vibrancy modeling. Compared to global models, the GWR
model exhibits greater adaptability in capturing local variations in the relationships between
the built environment and urban vibrancy across different TAZs within the study area.

4.3. Identification of Influencing Factors
4.3.1. Determining the Influence Factors of Built Environment on Urban Vibrancy

The Geodetector model was employed to examine the impact of various built environ-
ment factors on urban vibrancy. The results shown in Table 7 reveal the hierarchical order
of factors influencing comprehensive urban vibrancy, which is as follows: The POI density
(PD-X2) holds the greatest influence, followed by the building density (BD-X3), intersection
density (ID-X4), bus stop density (BS-X8), distance to transit hubs (DTH-X10), road density
(RND-X6), population density (RPD-X1), distance to CBD (DCBD-X9), metro station density
(MSD-X7), and mixed land use (MUD-X5).

Table 7. The detection results of built environmental factors on urban vibrancy.

Detection Factors Y1 Y2 Y3 Y4 Y5

RPD-X1 0.101 ** 0.128 ** 0.194 ** 0.048 ** 0.131 **
PD-X2 0.414 ** 0.164 ** 0.157 ** 0.106 ** 0.593 **
BD-X3 0.393 ** 0.116 ** 0.290 ** 0.169 * 0.443 **
ID-X4 0.212 ** 0.196 * 0.112 ** 0.143 * 0.199 **

MUD-X5 0.049 ** 0.161 ** 0.124 ** 0.121 ** 0.057 **
RND-X6 0.120 ** 0.139 ** 0.127 ** 0.091 * 0.141 **
MSD-X7 0.043 * 0.131 ** 0.264 ** 0.109 * 0.069 *

BS-X8 0.249 ** 0.167 * 0.101 ** 0.175 ** 0.187 **
DCBD-X9 0.101 ** 0.169 ** 0.171 ** 0.198 * 0.109 **
DTH-X10 0.099 ** 0.127 ** 0.306 ** 0.189 * 0.149 **

* and ** indicate that the variables pass the significance tests of 0.1 and 0.05, respectively.

This study demonstrates the significant impact of the built environment on compre-
hensive urban vibrancy. Notably, the POI density, building density, and road intersection
density exert substantial positive effects, with the POI density emerging as the most in-
fluential factor, exhibiting a strong positive correlation with urban vibrancy. Abundant
and diverse POIs enhance a city’s allure by providing services and amenities catering to
inhabitants’ needs. A high building density indicates a greater availability of residential
and commercial spaces in central districts, enhancing social resources, services, and the
environmental quality. An elevated road intersection density reflects an improved ur-
ban connectivity and accessibility, stimulating dynamics and vibrancy through enhanced
movement and information exchanges.

Economic vibrancy is primarily influenced by the POI density, followed by the building
density and bus station density. A high POI density offers a wide range of consumption
options, attracting customers and stimulating economic activity. A high building density pro-
vides additional commercial and residential spaces, increasing opportunities for commerce
and attracting residents and consumers. An efficient public transportation system facilitates
access to consumption locations, reducing costs and promoting economic development.

Social vibrancy is influenced by the distance to the CBD, bus stop density, and POI
density. Areas closer to the CBD, with abundant offices, shops, restaurants, and entertain-
ment facilities, exhibit higher social activities due to the influx of commuters and visitors. A
high bus stop concentration ensures better public transportation coverage and accessibility.
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Areas with a high POI density demonstrate an intensified clustering pattern, fostering an
increased participation in activities and a heightened social vibrancy.

Cultural vibrancy is primarily related to the distance to transit hubs, building density,
and subway station density. Transit hubs attract visitors and often host cultural facilities
like museums and theaters, serving as vital venues for cultural exchange. A high building
density indicates well-developed infrastructure, attracting cultural activities and diverse
facilities. An increased intersection density reflects the road system complexity and connec-
tivity, leading to improved pedestrian traffic and a better flow of information, enhancing
cultural vibrancy.

Environmental vibrancy is relatively balanced across built environment factors, with the
distances to the CBD and transit hubs having comparatively higher impacts, as areas farther
from these locations often exhibit superior environmental quality and serene surroundings.

4.3.2. Exploring the Interactive Factors of Built Environment on Urban Vibrancy

The present study employed interactive analysis to further investigate the synergistic
effects of factors on multi-dimensional urban vibrancy, as shown in Table 8. The findings
unveiled enhanced bivariate and nonlinear interactions among influencing factors.

Table 8. The influencing results of interaction factors on urban vibrancy.

A∩B Y1 Y2 Y3 Y4 Y5 A∩B Y1 Y2 Y3 Y4 Y5

X1∩X2 0.351 0.201 0.171 0.094 0.511 X3∩X10 0.354 0.115 0.251 0.151 0.401
X1∩X3 0.399 * 0.186 0.221 * 0.152 0.434 X4∩X5 0.201 0.11 0.151 * 0.123 0.220 *
X1∩X4 0.211 0.206 0.131 0.141 0.199 X4∩X6 0.221 * 0.192 * 0.184 * 0.146 * 0.241 *
X1∩X5 0.129 * 0.154 0.145 0.120 0.131 X4∩X7 0.232 * 0.221 * 0.261 * 0.169 * 0.254 *
X1∩X6 0.154 * 0.173 0.164 0.099 0.186 * X4∩X8 0.264 * 0.239 * 0.191 * 0.171 * 0.271 *
X1∩X7 0.121 * 0.164 0.21 * 0.108 0.141 X4∩X9 0.191 0.201 * 0.224 * 0.152 * 0.197
X1∩X8 0.202 * 0.182 0.152 0.171 0.181 * X4∩X10 0.194 0.216 * 0.301 0.133 0.199
X1∩X9 0.132 0.186 0.174 0.192 0.156 X4∩X6 0.119 0.151 0.117 0.111 0.127
X1∩X10 0.131 0.168 0.251 0.142 0.147 X5∩X7 0.131 * 0.161 0.241 * 0.122 * 0.171 *
X2∩X3 0.401 * 0.171 0.22 0.162 * 0.516 X5∩X8 0.161 * 0.171 * 0.154 * 0.131 * 0.179 *
X2∩X4 0.311 0.224 * 0.134 0.151 0.309 X5∩X9 0.112 0.161 0.171 0.114 0.15
X2∩X5 0.303 0.141 0.156 0.125 0.297 X5∩X10 0.141 0.159 0.289 0.148 0.154 *
X2∩X6 0.334 0.221 * 0.167 0.095 0.364 X6∩X7 0.161 * 0.139 * 0.215 * 0.112 * 0.211 *
X2∩X7 0.326 0.111 0.211 0.11 0.336 X6∩X8 0.196 * 0.201 * 0.171 * 0.144 0.221 *
X2∩X8 0.368 0.214 * 0.157 0.182 0.397 X6∩X9 0.153 * 0.184 * 0.191 * 0.161 * 0.204 *
X2∩X9 0.354 0.134 0.176 0.201 0.356 X6∩X10 0.141 0.171 * 0.294 0.177 * 0.149
X2∩X10 0.356 0.19 * 0.234 0.196 0.374 X7∩X8 0.211 0.147 * 0.273 * 0.197 * 0.265 *
X3∩X4 0.302 0.201 0.201 0.156 0.322 X7∩X9 0.171 * 0.149 0.214 0.144 0.244 *
X3∩X5 0.297 0.146 0.214 * 0.171 * 0.306 X7∩X10 0.129 0.209 * 0.317 * 0.167 * 0.106
X3∩X6 0.322 0.131 0.210 0.146 0.374 X8∩X9 0.071 0.241 * 0.161 0.172 0.104
X3∩X7 0.322 0.191 * 0.251 * 0.157 * 0.347 X8∩X10 0.141 0.234 * 0.331 * 0.221 * 0.159
X3∩X8 0.356 0.167 * 0.201 0.221 * 0.403 X9∩X10 0.131 0.112 0.302 0.141 0.148
X3∩X9 0.346 0.114 0.197 0.149 0.361

* Indicates nonlinear enhancement; no mark indicates bivariate enhancement.

This study reveals the presence of nonlinear enhancing interactions between the popu-
lation density (X1), building density (X3), mixed land use (X5), road network density (X6),
metro station density (X7), and bus stop density (X8) on economic vibrancy. This indicates
that the combination of the population density with the compactness, connectivity, and
public transportation accessibility of the built environment can generate greater economic
vibrancy benefits.

The POI density (X2) exhibits bivariate enhancing interactions with the road network
density (X6), bus stop density (X8), and distance to transit hubs (X10) on social vibrancy.
This suggests that the combination of the facility density and transportation networks
facilitates opportunities for social interaction and engagement. The population density
(X1) interacts with the building density (X3) and metro station density (X7), while the road
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intersection density (X4) interacts with the mixed land use (X5), road network density
(X6), metro station density (X7), and bus stop density (X8), exhibiting nonlinear enhancing
effects on cultural vibrancy. This implies that the confluence of population agglomeration,
a compact urban form, and favorable transportation conditions promotes the distribution
and utilization of cultural facilities.

The building density (X3) interacts with the mixed land use (X5), metro station density
(X7), and bus stop density (X8), while the road intersection density (X4) interacts with
the road network density (X6), metro station density (X7), bus stop density (X8), and
distance to CBD (X9), exhibiting nonlinear enhancing effects on environmental vibrancy.
This highlights the importance of combining compact and diverse land use patterns with
accessible transportation conditions for enhancing residents’ quality of life and satisfaction.

The road intersection density (X4) interacts with the mixed land use (X5), road network
density (X6), metro station density (X7), and bus stop density (X8), while the mixed land use
(X5) interacts with the metro station density (X7), bus stop density (X8), and distance to tran-
sit hubs (X10), exhibiting nonlinear enhancing effects on ecological vibrancy. This suggests
that the combination of street connectivity, land use diversity, and public transportation
accessibility contributes to a greener and more livable urban environment.

Overall, multiple dimensions of urban vibrancy are influenced by the interactive ef-
fects of various built environment factors. The road intersection density (X4), road network
density (X6), metro station density (X7), and bus stop density (X8) exhibit significant nonlin-
ear enhancing interactions with other factors across multiple dimensions of urban vibrancy,
highlighting the crucial role of transportation network connectivity and accessibility in
promoting urban vibrancy.

Compared to the influence of single factors, the interactive effects of built environment
factors on urban vibrancy are more substantial, reflecting the synergistic effects among
different factors. This implies that urban planning and design practices should compre-
hensively consider the combinations and configurations of multiple built environment
factors to maximize urban vibrancy. The research findings also indicate that the impacts
of different factor combinations on urban vibrancy exhibit nonlinear relationships, sug-
gesting the existence of threshold effects and optimal combinations rather than simple
linear additive effects. It highlights the need to balance the intensities and proportions of
different factors and find the optimal equilibrium when optimizing the built environment
to enhance urban vibrancy.

5. Discussion
5.1. Theoretical and Practical Implications

The findings of this study have significant theoretical and practical implications
for urban planning and management. The differentiated patterns of vibrancy spaces
identified in Munich offer valuable insights into the spatial variations of economic, social,
cultural, and environmental vibrancy across the city. These insights suggest that city
planners and managers should adopt a place-based approach when formulating urban
development strategies and allocating public resources, considering the specific vibrancy
characteristics and potentials of different areas [43]. This approach can promote a more
balanced development of urban vibrancy throughout the city, ensuring that each area’s
unique strengths and challenges are addressed effectively.

Moreover, the heterogeneous impact of built environment factors on urban vibrancy
provides guidance for urban renewal and spatial optimization [22]. The results indicate that
the mechanisms and effects of built environment factors in shaping urban vibrancy vary
across different areas, emphasizing the importance of context-specific planning and design.
Urban planners and designers should adapt the layout and design of built environment
elements to local natural, economic, and social conditions, thereby optimizing the place-
specific cultivation of urban vibrancy. This understanding is crucial for informed decision-
making in urban regeneration projects and new district development, ensuring that the
built environment is tailored to enhance the vibrancy of each area.
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5.2. Limitations and Future Research Directions

Despite the significant contributions of this study, several limitations should be ac-
knowledged. Firstly, the use of tweets as a proxy for social vibrancy and cultural POIs as
a measure of cultural vibrancy may have shortcomings. The demographic bias of social
media users, the uneven spatial distribution of users, and the inability of the cultural POI
density to capture intangible cultural aspects could affect the measurement accuracy. Sec-
ondly, the assessment of economic vibrancy, although improved by incorporating housing
price data, still has limitations. The night-time light data may not accurately reflect the
intensity and diversity of economic activities, especially during the daytime. Additionally,
the consideration of the quality and productivity of economic activities, rather than just the
quantity and density, could further enhance the economic vibrancy assessment by utilizing
more detailed data on business types, sizes, and performance. Thirdly, the cross-sectional
research design limits the ability to capture the temporal dynamics and evolution of urban
vibrancy. Future research could employ time-series analysis to examine the changes in
urban vibrancy patterns and their relationship with built environment factors over time,
providing a more comprehensive understanding of how urban vibrancy evolves in response
to urban development and policy interventions.

To address these limitations and further advance the understanding of urban vibrancy,
future research should prioritize the following aspects:

(1) Expanding data sources and analytical approaches. Future research could incorporate
more diverse data sources, such as POI utilization rates, social media check-in data,
and street view imagery, to enrich the measurement of urban vibrancy. Additionally,
the construction of the composite urban vibrancy index could be further refined by
exploring alternative weighting schemes, such as principal component analysis or
machine learning feature selection methods, and by conducting sensitivity analyses
to test the robustness of the results.

(2) Multi-regional comparisons and optimal unit selection. In the future, multi-dimensional
comparative empirical research areas can be conducted, and even cities in different
countries can be compared to reveal the differences and commonalities of urban vi-
brancy under different urban planning, cultural contexts, and policy environments. Such
cross-city comparative studies are useful for understanding the general patterns and
regional characteristics of urban vibrancy. Furthermore, the influence of different scales
of urban research units (such as block level, community level, or urban area level) on the
research results can be explored, and the scale most suitable for analyzing urban vitality
can be determined, ensuring that the modifiable areal unit problem (MAUP) is scien-
tifically feasible [44]. Determining the optimal research unit scale and division method
is crucial for understanding and comparing vibrancy between different cities.Novel
models and interpretability. Employing novel models and explanatory methods, such as
machine learning algorithms like XGBoost, could be valuable in investigating nonlinear
relationships between urban vibrancy and the built environment. However, it is crucial
to prioritize the interpretability of these models to ensure that the research findings are
easily understandable and actionable for urban planners and policymakers, enhancing
the practical application value of these outcomes in real-world urban planning and
development efforts.

(3) Novel models and interpretability. Employing novel models and explanatory methods,
such as machine learning algorithms like XGBoost, could be valuable in investigating
nonlinear relationships between urban vibrancy and the built environment. However,
it is crucial to prioritize the interpretability of these models to ensure that the research
findings are easily understandable and actionable for urban planners and policymak-
ers, enhancing the practical application value of these outcomes in real-world urban
planning and development efforts.
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6. Conclusions

Urban vibrancy plays a pivotal role in enhancing and sustaining the competitiveness
of cities. In light of the challenges faced by many European cities, such as shrinkage,
underutilized urban spaces, and insufficiently exploited infrastructure [45], this study
explores the intricate relationship between urban vibrancy and the built environment in
Munich, Germany, utilizing a multi-source data approach. By integrating multi-source
data, a comprehensive assessment framework is constructed to measure various aspects
of urban vibrancy. This study reveals the spatial distribution patterns and correlations of
different types of urban vibrancy and investigates the multi-dimensional influence of the
built environment on urban vibrancy using the 5Ds built environment indicator system.

The findings demonstrate that comprehensive vibrancy in Munich exhibits a pro-
nounced uneven distribution, with higher vibrancy in central and western areas and lower
vibrancy in northern and western regions. Highly vibrant areas are concentrated along
major roads and metro lines, particularly in commercial and educational centers. The GWR
model proves to be the most effective in explaining the relationship between the built
environment and vibrancy. Economic, social, and comprehensive vibrancy are significantly
influenced by the built environment, with substantial positive effects from the POI density,
building density, and road intersection density, while mixed land use shows little impact.
Furthermore, interactions among built environment factors, especially the synergistic inter-
actions among the population density, building density, and POI density, generate positive
effects on comprehensive vibrancy.

This study contributes to the growing body of research on urban vibrancy and its
relationship with the built environment in European cities. The multi-source data approach
and comprehensive assessment framework can be applied to other cities, enabling compar-
ative analyses and the identification of context-specific factors influencing urban vibrancy.
Future research should focus on expanding the scope of this study to include multiple
cities, incorporating additional data sources, and exploring the temporal dynamics of urban
vibrancy to gain a more comprehensive understanding of the phenomenon. By leveraging
the insights gained from this study, urban planners and policymakers can work towards
creating more vibrant, sustainable, and livable cities in Europe and beyond.
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