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Transfer Matrix Model for Emission Profile Optimization of
Radial Gratings

Stefan Appel,* Viviana Villafane, Jonathan J. Finley, and Kai Müller

Radial Bragg gratings are commonly used to enhance light extraction from
quantum emitters, but lack a well-suited, fast simulation method for
optimization beyond periodic designs. To overcome this limitation, an
algorithm based on the transfer matrix model (TMM) to calculate the
free-space emission of such gratings is proposed and demonstrated. Using
finite difference time domain (FDTD) simulations, free-space emission, and
transfer matrices of single grating components are characterized. The TMM
then combines any number of components to receive the total emission.
Randomized benchmarks verify that results from this method agree within
98% with FDTD while reducing simulation time by one to two orders of
magnitude. The speed advantage of this approach is shown by maximizing
emission of a fifteen-trench circular grating into a Gaussian mode. It is
expected that this novel algorithm will facilitate the optimization of radial
gratings, enabling quantum light sources with unprecedented
collection efficiencies.

1. Introduction

Radial symmetric structures such as radial Bragg gratings or
Bullseye resonators are of great interest to enhance collec-
tion efficiency and emission rate of single quantum emitters.
They are especially promising for spin-photon-interfaces and bi-
frequency polarization-entangled photon pair sources, as they are
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insensitive to light polarization and provide
Purcell enhancement over a wide spectral
range.[1–3] Most designs thereby employ a
periodic grating design.[1,2,4–9]

Transfer matrix models (TMMs) have
been used for decades to predict the behav-
ior of flat, stratified optical systems, such as
distributed Bragg reflectors (DBRs), subject
to plane wave illumination.[10–12] Already in
the 1990s, TMMs were adapted for radially
curved layers with impinging radial propa-
gating waves.[13–15] This has also led to im-
proved designs for radial DBRs, deviating
from the strict periodicity of planar DBRs
to compensate for effects only occurring in
radial wave propagation.[15–18] In the non-
curved case, it was also shown that non-
periodic linear grating couplers can scat-
ter light into a target mode more efficiently
than periodic ones.[19–21]

Even though both the curved geometry and the results for lin-
ear waveguide couplers therefore suggest a non-periodic design
for radial Bragg gratings, most publications today still revert to
use a plane wave TMM and/or periodic radial structure.[1,2,4–9]

The large computational cost of simulating any radial structure
using the most common, rectangular, three-dimensional finite
difference time domain (FDTD) method hinders the develop-
ment of non-periodic radial geometries, and thus, their imple-
mentation in optical nanostructures. To make optimization fea-
sible, a periodic design is preferred with a small number of free
parameters. This reduces the number of design iterations needed
for optimization, such that the total computational requirements
remain manageable.
For an alternative simulation method, Li et al.[22] introduced

the idea to use TMM to predict the field scattered into free-space
from structures such as non-periodic gratings. Their 2D method
is fast and shows excellent overlap with 2D FDTD simulation.
Their TMM however is limited to non-curved, linear geometries
and cannot predict the emission of a circular or radial grating.
Since they aim at optimizing a radial grating, they therefore only
use their TMM method to find a starting point for their struc-
ture. From this starting point, they drop the TMM approach and
instead employ 3D FDTD combined with a gradient descent al-
gorithm to find the optimal design for their radial grating.[22]

To overcome the computational hurdles associated with non-
periodic radial grating designs and expand on the work of Li
et al.[22] we present here a radial scatter-field TMM (rsTMM).
In contrast to Li et.al, our rsTMM is capable of predicting the
scattered field not for linear but for radial structures, and can
deal with more than one guided modes in the substrate. The
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Figure 1. Concept of the the radial scatter transfer matrix model (rsTMM) a) Sketch of the structure to be simulated. A centered source is embedded into
a (stratified) substrate, with concentric shells l of arbitrary scatterers surrounding it. b) Basic concept of the rsTMM. The substrate of interest supports
modes (orange arrows), propagating inward or outward. The complex vectors a, a′ give the mode amplitudes at a fixed radius r, r′. Propagation (P, left),
as well as scattering (S, right) between the modes is described by transfer matrices T. Emission into free-space from modes impinging on a scatterer
is described by fields f , which are calculated as linear combination scaled by the impinging mode amplitudes b (for details: see main text). c) The
modes we consider are guided modes, characterized by the combination of their azimuthal symmetry (left) and their vertical profile (right) governed by
the substrate. d) Transfer matrices are calculated from sets of simulations i, employing single mode sources at either the inner or outer position. The
undisturbed substrate (left) yields all propagation transfer matrices P, a substrate with a single scatterer yields the scatterer transfer matrix S for this
scatterer with geometry q at radius r (right). Simulations have to be repeated to form a database of different scatterers. e) The complete structure is
assembled by multiplying the scatter S and propagation P transfer matrices, then applying boundary conditions for the source s, center reflection C and
side-loss l. Finally, the coherent sum over the emission of all scatter shells gives the total free-space emission f tot.

performance of the rsTMM is confirmed by comparing results
of simulations to 2D radial FDTD (rFDTD)[23] for various struc-
tures. Here, an error of less than 2% is achieved while saving a
factor of 10 to 100 in computation time.

2. Method Definition

Our rsTMM aims to describe a structure as presented in
Figure 1a. In a planar substrate with a centered source, M cir-
cular shells of scatterers are placed, where both the radius rl and

parameters or shape ql of any scatter layer lmay be changed inde-
pendently within a set of allowed radii R and parametersQ . Such
devices are commonly known as a Bullseye resonators, respec-
tively as a circular, radial or cylindrical DBRs or gratings.[1,2,16,17,22]

To explore the parameter space of the complete device, e.g., for
optimization, the computational effort will scale unfavorably ac-
cording to |R|M ⋅ |Q|M. As such, we describe this system using
a TMM instead and will demonstrate this approach to be quick
in assembling any combination of scattering shells. Most of the
computational effort is then only needed to characterize a single
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shell in its 2D parameter space, a computation effort scaling as|R| ⋅ |Q|. Our results show that when iterating throughmany dif-
ferent structures with many shell parameters to vary, our TMM
method is faster than directly simulating the structures. Impor-
tantly, this approach is not only valid for radial structures as de-
scribed here, but any kind of structure with many parts that can
be separated in a TMM.
The basic concept of TMM is shown in Figure 1b. Individual

scatterers (right), as well as mode propagation paths in the sub-
strate (left) are expressed by transfer matrices T , which relate
mode amplitudes a, a′ at different radial positions r < r′, or on
the inside and outside of a thin scatterer where r → r′ [24,25]

a′ = T ⋅ a (1)

Both a and a′ thereby are 2N-dimensional vectors, where N is
the total number of different modes j considered. One half of
the entries for each vector represent outward (+) and the other
half inward (−) traveling mode amplitudes. We determine T for
any object by running a set of simulations i, recording ai and a

′
i

for each. If there is a vector base for the mode amplitude space
among ai, then we can calculate T by representing the according
amplitude vectors by matrices

A =
[
a1… ai … a2N

]
, A′ =

[
a′1 … a′i … a′2N

]
(2)

and inverting the transfer matrix Equation (1)

T = A′ ⋅ A−1 (3)

where the existence of thematrix inverseA−1 is guaranteed by the
vectors ai spanning a complete basis. In practice, we find such a
basis by running 2N simulations, where for every simulation i,
we inject only onemode j, once on the inside and once on the out-
side of the object of interest as indicated in Figure 1d. As inward
and outward propagation and scattering behavior is different due
to the curved geometry,[13,14] one cannot assume symmetry to re-
duce the number of simulations by half (see Supporting Infor-
mation, for further details on the simulation methods).
The modes we consider, as sketched in Figure 1c, are guided

modes of the planar waveguide substrate at a single vacuum
wavelength 𝜆 of the electro-magnetic field. Substrate examples
may be single freestanding slabs or stratified dielectrics, possi-
bly also including metals or dispersive media. All the following
expressions depend on 𝜆 which we omit for clarity. Since we ex-
clude non-linear effects, the vacuum wavelength will not change
by propagation or scattering.
As the structure of interest is radially symmetric, each guided

mode decomposes further into cylindrical modes with symmetry
numberm.[26] The symmetry number defines the azimuthal field
dependence ∝ eim𝜑 with 𝜑 the azimuth angle. In total, we collect
N individual propagatingmodes j each characterized by their ver-
tical mode profile and their azimuth propagation symmetry.[26,27]

Since, we are only interested in electric dipole-like excitation
and expect no scattering into modes having higher azimuthal
symmetry indices due to the continuous radial symmetry of the
structure, we can limit ourselves to m = 0 for vertical dipoles
exciting Ez modes and m = ±1 for in-plane dipoles exciting Hz
modes.[27] Furthermore, without loosing generality we can com-

bine m = ±1 to a cos(𝜑) dependence to represent the symmetry
of an in-plane dipole oriented along 𝜑 = 𝜋∕2.[27] Note that struc-
tures with discrete radial symmetries may be simulated if modal
symmetry m is not limited.
To describe the propagation of radial waves in the substrate be-

tween two radii r, r′, we require the propagation transfer matrices
P(r, r′). Figure 1d (left) shows how to obtain them: One set of sim-
ulations i is run without any scatterers present in the substrate,
recording themode amplitudes a(r) at regular spacing. Following
Equation (1), we then calculate propagation matrices between ar-
bitrary positions

P(r, r′) = A(r′) ⋅ A(r)−1 (4)

Close to a source at r = 0, we receive non-zero inward propa-
gating mode amplitudes due to the reactive near field known
from antenna theory.[28] This effect does not appear in flat geome-
tries, since the corresponding plane wave sources are infinitely
extended. Also, we observe a non-linear phase evolution close to
r = 0 due to the wavefront curvature. These propagation simula-
tions are also used to detect undesired stray fields ̃f ′i(𝜌,𝜑) emit-
ted by imperfect sources into free-space.
Similar, in order to describe a single scatter shell p at radius

r, we compute a transfer matrix S(r, p) by running a set of sim-
ulations with the respective shell as shown in Figure 1d (right).
We record themode amplitudes inside a(rin) and outside a(rout) of
the shell, with rin < r < rout. The total transfer matrix T describ-
ing both the scatter as well as the propagation to and from it is
then obtained from Equation (1):

T(r, q, rout, rin) = A(rout) ⋅ A(rin)
−1

= P(r, rout) ⋅ S(r, q) ⋅ P(rin, r) (5)

Left and right multiplying the inverse of the according propaga-
tion matrices P, we can then extract S(r, q).
In addition, each shell may emit into free-space when a propa-

gating mode is incident upon it as sketched in Figure 1b, such
that the total emitted fields are given by the coherent sum of
the fields emitted by all shells combined.[22] As the field emitted
per shell is dependent on which mode was incident from which
side, we represent it by a position- and parameter-dependent 2N-
element vector 𝝍 (r, q, 𝜌,𝜑), with every entry 𝝍±j(r, q, 𝜌,𝜑) repre-
senting all electric E and magnetic H field components. One
half of the entries thereby give the fields emitted for a mode im-
pinging from inside outward (+), the other for a mode imping-
ing from outside inward (−). To recover these free-space fields,
we employ the simulations i used to determine S(r, q) before. As
shown in Figure 1d, we record the field f ′i (r, q, 𝜌,𝜑) at a fixed dis-
tance z above the substrate.[22] For continuous rotational sym-
metric scatterers, the azimuthal symmetry will be the same as
the symmetry of the impinging mode, such that the field may be
restored from a record at a single azimuthal angle𝜑 only. The pre-
viously determined stray fields are then subtracted from imper-
fect sources to end up with f i(r, q, 𝜌,𝜑) = f ′i (r, q, 𝜌,𝜑) −

̃f ′i(𝜌,𝜑).
However, the field retrieved in this way may still be created by a
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multitude of modes impinging on the scatterer from inside and
outside like sketched in Figure 1b, such that

f i(r, q, 𝜌,𝜑) = bi ⋅ 𝝍 (r, q, 𝜌,𝜑) (6)

with bi the impinging mode amplitude vector defined as

bi =
[
a+i (r), a

′−
i (r)

]
(7)

To obtain 𝝍 (r, q, 𝜌,𝜑), we first calculate the mode amplitudes
ai(r), a

′
i (r) on the inside respectively outside of the shell using

the propagation matrices

ai(r) = P(rin, r)ai(rin)

a′i (r) = P(r, rout)
−1ai(rout) (8)

to extract the impinging amplitudes bi. Stacking the results from
the set of simulations i to build a matrix B from bi and a position-
dependant vector f (𝜌,𝜑) from f i(𝜌,𝜑), we can invert Equation (6)
to calculate

𝝍 (r, q, 𝜌,𝜑) = B−1 ⋅ f (r, q, 𝜌,𝜑) (9)

By repeating this procedure for any number of different scatterers
q at different radii r as indicated in Figure 1d, we build a look-up
table for transfer matrices S(r, q) and free-space fields𝝍 (r, q, 𝜌,𝜑).
Linear interpolation allows us to also retrieve results in between
the sampled radii.
Using both propagation- and scattering-type transfer matrices,

we can now assemble any combination of scatterers at various po-
sitions into a multi-shell structure as sketched in Figure 1e. The
according total transfer matrix Ttot is the product of the alternat-
ing scatter and propagation matrices

a(rmax) = Ttot ⋅ a(rmin)

= P(rM, rmax) ⋅ S(rM, qM) ⋅ P(rM−1, rM)⋯

P(r1, r2) ⋅ S(r1, q1) ⋅ P(rmin, r1) ⋅ a(rmin) (10)

The total transfer matrix therefore relates mode amplitudes on
the inside a(rmin) and outside a(rmax) of the structure. To fix the
actualmode amplitudes, we employ open or impedance-matched
boundary conditions on the outside

a+j (rmax) = lj a−j (rmax) = 0 (11)

with the per-mode side losses lj remaining as free parameters.
On the inside, we inject only outward propagating modes rep-

resenting the source, initially with zero reflection:

ã+j (rmin) = sj ã−j (rmin) = 0 (12)

The complex source amplitudes sj may be determined by an-
other simulation recording mode amplitudes at rmin with only
the desired source present. Note that a multi-mode source may
be used, however, the amplitude ratio between the modes may
be changed by Purcell effect that will be addressed in future
work.

So far, we have not addressed inward reflections from the
structure, and the boundary conditions ã(rmin), a(rmax) cannot be
satisfied except for the trivial, scatter-free case. To account for re-
flections, we have to consider that any reflected, inward prop-
agating mode amplitude, at the center r = 0, will change into
an outward propagating mode amplitude, which then is sub-
ject to reflections again. Therefore, we sum up all infinite reflec-
tions in a Neumann series and end up with an inner boundary
condition

a(rmin) =
∞∑
n=0

Cn ⋅ ã(rmin) = (I − C)−1 ⋅ ã(rmin) (13)

with the identity I and the center reflection matrix C

Cj+,k+ = 0, Cj+,k− = 𝛿j,k𝜑j, Cj−,k− = 0

Cj−,k+ = −
N∑
l=0

(
Θ−1
tot

)
j−,l− ⋅

(
Ttot

)
l−,k+ (14)

Cj−,k+ describes the reflection of outward-traveling mode k+ into
inward-traveling mode j− by the structure with Θtot = ((Ttot)−j,−k)
a N × N sub-matrix of the transfer matrix Ttot. Cj+,k− is the trans-
mission through the center with some phase shift 𝜑j depending
on the mode j, which would vanish 𝜑j → 1 for rmin → 0. We de-
termine the phase shift as 𝜑j = a+j (rmin)∕a−j (rmin) using one of the
previous simulations with mode injection from the outside.
Now that we have taken care of all reflections, the boundary

conditions can be fulfilled and we solve for the side-losses lj using
Equation (10).
Finally, we can now calculate the scattered free-space field of

the structure. For this, we first calculate the mode amplitudes
inside (a(ri)) and outside (a

′(ri)) of all scattering shells i by suc-
cessively applying Equation (1), alternating between P and Sma-
trices and starting from the injected amplitudes a(rmin). Using
Equation (7), we can then retrieve the impinging amplitudes b(ri)
and from there calculate the emitted fields f (ri, pi, 𝜌) for every
shell by Equation (6). Coherently adding up all fields, we obtain
the total free-space field

f tot(𝜌,𝜑) =
M∑
i=1

f (ri, qi, 𝜌,𝜑) (15)

3. Benchmark Results and Discussion

To verify our such-defined rsTMM, we simulate a benchmark
system and compare the results to established rFDTD.[23] The
benchmark substrate consists of a freestanding, dielectric dia-
mond membrane with refractive index of 2.4114 and thickness
of 140nm, surrounded by air. It is fully penetrated by rectangu-
lar cross-section trenches of varying width and radii. The wave-
length of interest is 620nm, leading to one guided Ez and Hz
mode each, with effective refractive indices of 1.551 and 2.023,
respectively. Radial symmetry is limited to m = 0 (m = 1) for the
Ez (Hz) mode. For all benchmark situations, centered Ez and Hz
sources, coupling to the respective modes, are simulated sepa-
rately. We record the free-space field at a distance of z =620nm
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Figure 2. Benchmark of rsTMM for varying radii r1. a) Error in field overlap
Δ𝜎 for E and H fields between rsTMM and rFDTD for a centered Ez or Hz
mode source. b) Example for one of the benchmark structures. The inner
trench radius r1 is varied while choosing random trench widths.

above the membrane, and compare it to the results by rFDTD
using the normalized squared field overlap[22]

𝜎(f rsTMM, f rFDTD) =

||∬ f rsTMM(𝜌,𝜙)◦f
∗
rFDTD(𝜌,𝜙)𝜌d𝜑d𝜌

||2
∬ ||f rsTMM(𝜌,𝜙)||2𝜌d𝜑d𝜌 ⋅ ∬ ||f rFDTD(𝜌,𝜙)||2𝜌d𝜑d𝜌 (16)

For similar results, the overlap should tend toward 1, such that
we focus on the difference or error Δ𝜎 = 1 − 𝜎. We separately
investigate both the electric f =: E and magnetic f =: H fields.
For the first benchmark series, we place two trenches as

sketched in Figure 2b. The inner trench radius is varied con-
tinuously while choosing random trench widths, while the outer
trench radius is fixed and the trench width is optimized for max-
imum mode reflection. Using this arrangement, we can test the
amplitude and phase relation between free-space fields created
by inner versus outer trench, as well as inward versus outward
mode impingement. The error in the field overlap for this series
is presented in Figure 2a, with blue (orange) triangles showing
the case for an excitation with theHz (Ez) mode. Upward (down-
ward) pointing triangles show the error in the E (H) field, respec-
tively.
Importantly, for the data plotted in Figure 2a the average sim-

ulation time was 0.60 ± 0.03 s for rsTMM and 100 ± 85s for
rFDTD, i.e., the rsTMM simulations were more than a factor of
100 faster. For most radii, we find an error of below 1% between

Figure 3. Benchmark of rsTMM for varying trench distances d. a) Error
in field overlap Δ𝜎 for E and H fields between rsTMM and rFDTD for a
centered Ez or Hz mode source. b) Example for one of the benchmark
structures. The trench distance d is varied with the trench widths fixed.

standard computation techniques and the approach presented in
this manuscript. In general, the Hz mode agrees better than the
Ez mode. For large radii of the inner trench, especially the Ez
mode shows larger errors. We suspect that this does not stem
from the large trench radius but rather from the small distance
between the two trenches.
To investigate this effect with a second benchmark, we place

two wide trenches around 1 µm radius at varying distance to
each other as sketched in Figure 3b. We choose wide trenches to
maximize emission into free-space, as we think the effect may
be caused by absorption of free-space modes by the neighbor-
ing trench. We do not cover this free-space coupling path with
our rsTMM, as we do not include absorption from free-space. As
free-spacemodes should propagate away with distance, we expect
a recovery in field overlap with increasing trench distance. The
corresponding error in field overlap for varying trench distances
is shown in Figure 3a, again with blue (orange) triangles repre-
senting excitationwith theHz (Ez)mode and upward (downward)
pointing triangles relating to errors in the E (H) field.
As expected, both modes show increased errors up to 10%

for trenches placed at small distances, but recover below 1% for
larger distances. Superimposed, we observe a beating in the er-
ror, which we attribute to resonances in the combined free-space
and guided mode coupling. For sufficiently large radial spacing
between scattering elements, our rsTMMmethod therefore only
deviates within 1% from the established rFDTD method. Sim-
ilar to before, the rsTMM simulations were much faster with
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Figure 4. Benchmark of rsTMM for varying trench number M. a) Error
in field overlap Δ𝜎 for E and H fields between rsTMM and rFDTD for a
centered Ez or Hz mode source. b) Simulation time required to run the
benchmark with rFDTD or rsTMM, for both sources, respectively. c) Ex-
ample for one of the benchmark structures. The number of trenchesM is
varied with trench widths and distances fixed.

simulation times per data point of 0.60 ± 0.03 s for rsTMM and
21 ± 10 s for rFDTD.
For a final benchmark, we investigate the scaling of computa-

tion time and error with increasing number of scattering shells.
Thin trenches are chosen to minimize the emission and reflec-
tion per trench, such that the contribution of each trench to the
total free-space field is comparable. As sketched in Figure 4c, the
trenches are placed at a distance of 400nm to each other, in order
to minimize the free-space coupling effect, and are added from
the center outward. The error and time requirements are shown

in Figure 4a,b, respectively. The color scheme follows the previ-
ous figures, with blue (orange) representing the excitation with
theHz (Ez) mode.
For an increasing number of scatterers, the error between

rsTMM and rFDTD levels off for theHz-mode but keeps increas-
ing for the Ez-mode, both for the E fields (upward triangles) and
H fields (downward triangles). We attribute this to the generally
higher error rate in previous benchmarks for the Ez mode. With
an initially higher error for two trenches, the combined error will
scale worse with increasing trench number. Importantly, the er-
ror still remains within the single-digit percent range.
The time for rsTMM (star symbols in Figure 4b) grows ap-

proximately linear with the number of trenches, but stays within
the few-second regime. We therefore assume that most time in
our rsTMMmethod is spent on interpolations from the scatterer
look-up table and possibly on matrix multiplications, while the
contribution from thematrix inversion to solve the boundary con-
ditions is small. In contrast, rFDTD simulations on the samema-
chine (open squares in Figure 4b) take between a factor of 10
to 100 longer. The growth law cannot be clearly identified here,
but data suggests a significant minimum time requirement. As
rFDTD simulations function by propagating fields time step by
time step until most of the energy has been emitted from the
structure, any extra scatterer reflecting back to the center addi-
tionally increases the simulation time.

4. Optimization Results and Discussion

With rsTMM established as much faster but possibly less exact
than rFDTD simulations, we now aim to showcase the speed ad-
vantage for simulating a large number of structures including
lots of scatter shells. To this end, we optimize a Bullseye res-
onator with M = 15 fully etched trenches for maximal emission
rate from a single mode source centered in the slab into a Gaus-
sianmode, similar as described by Li et al.[22] The numerical aper-
ture of the target mode is fixed to NA = 0.4 and both radius ri
and width wi of each trench are varied individually. In order to
account for fabrication constraints in future experimental real-
izations, the minimum feature size is set to 50nm and the max-
imum radius rM is set to 5 µm. Trench distances Δri = ri+1 − ri
are varied between 150 and 450 nm, and the trench widths are
limited to < 240 nm.
Our figure ofmerit is the power emitted upward into the target

Gaussian mode:

FOM =
ℜ𝔢

[
𝜉Target,rsTMM ⋅ 𝜉rsTMM,Target

]
⋅ ΓTop|||𝜉Target,Target||| ⋅ ||𝜉rsTMM,rsTMM
|| (17)

with the overlap integral

𝜉i,j = ∬ Ei(𝜌,𝜙) ×H∗
j (𝜌,𝜙)◦ẑ 𝜌 d𝜑d𝜌 (18)

and the upward emission ratio

ΓTop = 0.5 ⋅

(
1 −

∑
j |a+j (rmin)|2∑

j |lj|2
)

(19)
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Figure 5. a Emission profile (top) achieved with a) bullseye structure (bottom), as optimized and simulated using rsTMM. b) Radial field profiles
comparing results from rsTMM and rFDTD against the target Gaussian mode. The emission into the targeted Gaussian with N.A. = 0.4 is 42.44%, the
overlap between rFDTD and rsTMM 98%.

The fraction thereby gives the ratio of power lost through the side,
and the pre-factor of 0.5 accounts for the zmirror symmetry, lead-
ing to equal top and bottom emission. For the optimization, we
use a surrogate algorithm delivered with MATLAB. After simu-
lating 2896 different structures within 1.75h we achieve 42.44%
top emission into the target Gaussian mode, of 50% theoretically
possible. The corresponding, optimized structure and its emit-
ted E𝜑-field are shown in Figure 5a. Interestingly, the optimized
structure (Figure 5a bottom) shows no sign of radial periodic-
ity. To verify our optimization result, we again compare the field
profile obtained using rsTMM and rFDTD simulation. Field pro-
file cuts are plotted in Figure 5b as solid (rsTMM) and dashed
(rFDTD) lines, along the x-axis (𝜑 = 0) for the E𝜑 component
(blue) and along the y-axis (𝜑 = 𝜋) for theE𝜌 component (orange).
The absolute error between the curves is small; only on the loga-
rithmic scale the relative errors at small field amplitudes become
visible. We calculate the error in field overlap between rFDTD
and rsTMM to quantify the deviation and find Δ𝜎 =2% both for
E andH fields. The small increase in error compared to the previ-
ous benchmarks results from combining more scattering shells
at closer distances.
Finally, we take a look at the time requirements of the two dif-

ferent methods. The simulation time for the final structure was
1.5s for rsTMM and 180s for rFDTD on the same machine. As-
suming a constant simulation time throughout the optimization,
we find that the 1.75h total simulation time contains an over-
head of 0.5h from the optimization algorithm. Strikingly, if we
had used rFDTD simulations for the optimization, the estimated
total optimization timewould therefore have been 145h, again as-
suming a constant simulation time for each structure. For a fair
comparison, the time required to create the look-up tables for the
scatterers has to be considered as well, which for this benchmark
was 63h. This means that even in the worst case, more than 80h

of simulation time was saved for one optimization run. However,
since the look-up table can be re-used for any further optimiza-
tion using the same set of scatterers and the same substrate, the
time advantage per actual use case is significantly higher.

5. Conclusion

To summarize, we have introduced a new simulation method for
radial symmetric scattering shell structures in planar substrates
supporting few guided modes. Our rsTMM agrees within 98%
with established rFDTD methods except for free-space coupling
effects occurring for closely spaced scattering shells. Themethod
is up to 100 times faster than rFDTD, allowing for fast structure
optimization in large parameter spaces. We expect that our novel
simulation technique will lead to the implementation of more
non-periodic and curved nano-photonic grating structures, and
may grant access to new collection efficiency records for photonic
quantum emitters.
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