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Achieving sustainable energy and material use mandates a critical focus on carbon
recycling. The imperative for an efficient carbon cycle is paramount in sustainable
energy systems and the chemical industry. Syngas, derived from waste and biomass
gasification, offers a robust foundation for such recycling efforts. Various technologies,
each with unique gas purity requirements, facilitate further refinement of syngas. This
study provides a detailed and comparative analysis of the purity specifications
necessary for both energetic and material utilization pathways.
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1 Introduction

Syngas offers a broad spectrum of applications for an efficient carbon cycle, aiming to
decarbonize sectors such as energy, fuels, and chemicals by reducing dependency on fossil
carbon. The primary constituents of syngas are hydrogen (H2), carbonmonoxide (CO), and
carbon dioxide (CO2). Various gasification technologies are employed to produce syngas.
Noteworthy among these are the entrained flow reactor (EFR), fixed bed reactor (FBR),
bubbling fluidized bed (BFB), circulating fluidized bed (CFB), rotary kiln (RK), and plasma
reactor (PR) (Tijmensen, 2002; Molino et al., 2016). For syngas generation, sustainable
carbon sources like biomass and sewage waste, or recycled fossil-based materials such as
plastic waste, can be utilized. The specific feedstock determines the primary impurities and
trace contaminants in syngas, which typically include particulate matter, tars (CxHy),
nitrogen compounds (NH3, HCN, NOx), sulfur compounds (H2S, COS, CS2), halogens
(HCl, Br, F), alkali metals (e.g., Na2CO3), and heavy metals (e.g., Pb, As).

Syngas applications can be divided broadly into two categories: material utilization,
which involves converting syngas into valuable carbonaceous products like platform
chemicals, and energetic utilization, which involves harnessing the chemically bound
energy. This paper will detail the purity requirements for the array of processes in both
the material and energetic utilization of syngas.

2 Methods

A myriad of research studies delves into the nature of impurities generated during
the gasification of carbonaceous fuels, methodologies for removing these impurities
from syngas, and the specific purity criteria required for various downstream processes in
material and energy reuse. Comprehensive analyses of all impurities and their cleanup
techniques are provided by Abdoulmoumine et al. (Abdoulmoumine et al., 2015),
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Woolcock et al. (Woolcock and Brown, 2013) and Asadullah et al.
(Asadullah, 2014). The authors Rauch et al. (Rauch et al., 2014) and
Litvinenko et al. (Litvinenko et al., 2018) offer detailed overviews of
syngases practical applications.

However, existing studies do not collectively present an exhaustive
overview of the purity requirements in the realms of material and
energy utilization, particularly overlooking sub-processes such as
biocatalysis and gas fermentation. To address this gap, this study
categorizes the most common processes into two main groups:
material utilization, and energetic utilization also called combined
heat and power (CHP). An extensive literature review was
conducted to ascertain the specific purity requirements for each
category. Figure 1 depicts a comprehensive list of all investigated
processes, categorized per the aforementioned criteria. On the left,
the ratios of gas composition are displayed, while the right side
illustrates the process products. For a direct comparison with syngas
purity, all data is categorized and graphically compared. This includes
both the highest purity requirement identified and the variance range
across all surveyed literature. It should be noted that this analysis does
not extend to evaluating the efficiency of these processes in terms of
carbon conversion and overall efficiency.

3 Description of syngas-based
material applications

3.1 Fischer-Tropsch synthesis (FTS cat)

The FTS process employs catalysts for the chemical production
of liquid hydrocarbons and oxygenated compounds. This process is

classified into two categories: low-temperature FTS, operating
at 200°C–240°C for the production of waxes and/or diesel fuel
using cobalt or iron catalysts, and high-temperature FTS,
at 300°C–350°C, primarily for the production of olefins and
gasoline with iron catalysts (Dayton et al., 2011). FTS reactors
operate under pressures ranging from 10 to 60 bar. The
exothermic nature of the reaction releases chemical energy in the
form of heat (Boerrigter et al., 2005). Iron catalysts, while cost-
effective and more impurity-tolerant, have a limited operational
lifespan of a few weeks. Cobalt catalysts, on the other hand, are more
efficient in hydrogenation and boast a longer operational lifespan of
several years. However, contaminants like NH3, HCN, H2S,
and COS can deactivate these catalysts. The literature cites
maximum tolerable concentrations ranging between 10 ppbv and
10 ppmv for NH3, and 10 ppbv to 1 ppmv for HCN. Sulfur
compounds such as H2S, CS2, and COS have concentration limits
set between 10 and 100 ppbv. HCl, at concentrations above 10 ppbv
in syngas, can cause catalyst corrosion. The presence of alkali metals,
if not kept below 10 ppbv, can lead to deposition on the catalyst
structure. Similarly, tars, especially those above the dew point or
exceeding 1 ppmv, are associated with catalyst deactivation. Fouling
from particles like dust, soot, and ash is expected at concentrations
greater than 0.26 mg Nm−3 with particle sizes exceeding 2 μm. It is
important to note that all tolerable concentrations are determined
based on the economic optimum associated with the estimated
catalyst lifetime. (Additional literature of the limits mentioned
(Abdoulmoumine et al., 2015; Boerrigter et al., 2005; E4Tech,
2009; Boerrigter, 2002; Spath and Dayton, 2003; Woolcock and
Brown, 2013; Borg et al., 2011; Hamelinck et al., 2004; Hu et al.,
2022; Leibold et al., 2008))

FIGURE 1
Syngas utilization separated in possible pathways and their products. (d.p—depends on product, d.m—depends on microorganism).
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3.2 Fermentation (FERM bio-cat)

Compared to traditional refining processes, fermentation stands out
as a biocatalytic conversion process. In this process, anaerobic microbes
or acetogenic microorganisms utilize syngas as a carbon source to
metabolize and produce various acids like acetic, butyric, and
hexanoic acid, alcohols including ethanol, isopropanol, butanol, and
hexanol, along with other chemicals such as 2,3-butanediol, acetone,
fatty acids, and fatty alcohols (Ramachandriya et al., 2016). Prominent
microbial catalysts in this domain are M. thermoacetica, B.
methylotrophicum, Clostridium ljungdahlii, Clostridium
autoethanogenum, Acetobacterium woodii, Clostridium
carboxidivorans, and Peptostreptococcus. The fermentation processes
using various microorganisms and reactor technologies are
comprehensively described by Acharya et al. (Acharya et al., 2014).
Some studies indicate that biocatalytic conversion is somewhat less
sensitive to impurities compared to chemical catalysis. Nevertheless,
impurities do influence the fermentation process, and their effect varies
significantly depending on the type of microorganism involved. For
instance, inorganic and hydrocarbon impurities can diminish the
fermentability of the gas if the particle size is smaller than 0.025 μm.
Ammonia, at very high concentrations, inhibits the alcohol
dehydrogenase (ADH) enzyme, while at lower concentrations, it
serves as a nitrogen source for the bacteria. Nitric oxide (NO) in
excess of 40 ppmv leads to the complete inhibition of hydrogenase
and ADH, thus curtailing the carbon available for product formation.
Nitrite (NO2) inhibits both formate dehydrogenase (FDH) and nitrate
reductase at a concentration of 1 mol m−3. Hydrogen sulfide (H2S) at
levels less than 30 mol m−3 impedes Thiosulfate Sulfurtransferase (TS)
and L-ascorbate oxidase (LAO), while carbonyl sulfide (COS) adversely
affects carbon monoxide dehydrogenase (CODH) and sulfur dioxide
(SO2) impacts Ascorbic acid oxidase (AAO). The production efficiency
also declines with increasing oxygen concentrations; oxygen levels
exceeding 293 ppmv inhibit the enzyme pyruvate-ferredoxin
oxidoreductase hydrogenase and lead to an increase in redox
potential (Munasinghe and Khanal, 2010; Xu et al., 2011; Daniell
et al., 2012; Acharya et al., 2014; Sun et al., 2019). In terms of solid
impurities, many studies focus on their impact on the medium, with
assumptions about gas concentration beingmade based on the complete
solubility of these impurities. Although hydrogen cyanide (HCN) is
known for its high cytotoxic impact on fermentation, comprehensive
data on its maximum concentration is limited. However, a successful
fermentation process conducted by Rückel et al. (Rückel et al., 2022) at
an HCN concentration below 1 ppmv suggests this as a feasible upper
limit. It is also important to note that the yield of fermentation products
is profoundly influenced by factors such as nutrient components,
temperature, pressure, pH, flow conditions, and the concentration of
products in the medium. (Additional literature of the limits mentioned
(E4Tech, 2009; Ahmed and Lewis, 2007; Rückel et al., 2022; Acharya
et al., 2014; Xu et al., 2011; Sun et al., 2019; Munasinghe and Khanal,
2010; Daniell et al., 2012; Ramachandriya et al., 2016))

3.3 Methanol synthesis (MeOH cat)

Large-scale methanol production is predominantly carried out
through steam reforming of natural gas. The synthesis of methanol
from syngas and steam typically utilizes catalysts based on copper

oxide, zinc oxide, or chromium oxide, operating at pressures of
50–100 bar and temperatures between 230°C–350°C (Dayton et al.,
2011). Small concentrations of CO2 can act as promoters for the
primary hydrogenation reactions, which are exothermic and result
in a reduction of molar volume. Catalyst deactivation often occurs
due to the blockage of active sites, leading to reduced activity. The
formation of inactive copper salts due to poisoning by sulfur and
halogens also contributes to a decrease in surface area (Rauch et al.,
2014). The literature specifies concentration limits for H2S and COS
(<100 ppbv), as well as halides (<1 ppbv). The presence of alkali or
other trace metals can inadvertently catalyze side reactions, such as
Fischer-Tropsch synthesis (FTS) and Mixed alcohol synthesis
(MAS) (E4Tech, 2009). To prevent this, concentrations should be
restricted to alkali <10 ppbv and heavy metals (HM) < 0.01 ppmv.
The maximum allowable concentration of nitrogen compounds is
typically set at NH3 and HCN <10 ppbv and NO < 100 ppmv.
(Additional literature of the limits mentioned (E4Tech, 2009;
Boerrigter et al., 2005; Spath and Dayton, 2003; Woolcock and
Brown, 2013))

3.4 Mixed alcohol synthesis (MAS cat)

MAS utilizes a catalytic process with catalysts similar to those
used in FTS and methanol synthesis. Cu and Zn-based catalysts,
when modified with alkali metals, can enhance alcohol-based
reactions, leading to a product mix similar to that of bio-catalytic
fermentation of syngas. The typical products include methanol,
ethanol, propanol, butanol, and longer-chain alcohols. Due to the
similarities of these catalysts with those used in FTS and methanol
synthesis, the challenges and limitations encountered are largely
comparable (Fang et al., 2009). According to adapted literature
values, the maximum concentration ranges for nitrogen impurities
should be below 0.01 ppmv, sulfur impurities between
0.06–100 ppmv, and HCl from 1–10 ppbv to avoid catalyst
deactivation. Particle deposition can occur at concentrations
greater than 0.26 mg Nm−3 with a particle size of 2 μm.
Moreover, tars need to be nearly completely removed to prevent
interference with the catalytic process. (Additional literature of the
limits mentioned (Christensen et al., 2011; E4Tech, 2009))

3.5 Synthetic natural gas (BioSNG cat)

BioSNG is produced through the methanation of syngases,
fundamentally relying on the hydration of CO and CO2 in two
separate exothermic reactions (Rönsch et al., 2016). The reactor
design, along with the catalyst used, plays a crucial role in
determining the conversion efficiency and selectivity of this
process. Mills et al. (Mills and Steffgen, 1974) have provided a
comprehensive overview of the activity and selectivity of various
active metals in these catalysts, ranking them as Ru > Fe >Ni > Co >
Mo for activity, and Ni > Co > Fe > Ru for selectivity. The choice of
support material and promoters also significantly affects the catalyst
reactivity and lifespan. Catalysts in the SNG production process are
sensitive to various impurities. H2S, for instance, can lead to
chemisorption on the catalytic sites, resulting in deactivation. Its
concentration should be maintained within 0.one to four ppmv.
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COS limits are cited in the literature as being up to 8 ppmv. Tars, at
concentrations below 1 mg/Nm³, can lead to physical deposition on
the surface area or coke deposition on the nickel surface via the
Boudouard reaction. NH3 has a maximum permissible
concentration of 1 ppmv. It is noteworthy that ammonia can also
be formed as a side reaction during the methanation process (Kiendl
et al., 2014). (Additional literature of the limits mentioned
(Kaltschmitt et al., 2016; Molino et al., 2018; E4Tech, 2009;
Fendt, 2020; Kopyscinski et al., 2010; Neubert et al., 2017; Zwart
et al., 2006))

3.6 Hydrogen (H2 cat)

Currently, themajority of hydrogen production is achieved through
steam reforming of hydrocarbons, wherein the resulting syngas is
further processed to extract hydrogen. This method is also
applicable for syngas derived from gasification processes. The
contained CO is converted into H2 and CO2 through the Water Gas
Shift (WGS) reaction (Ciferno, 2002; Rauch et al., 2014;Wagemann and
Tippkötter, 2019). However, information regarding the compatibility of
trace substances in the catalytic WGS reaction is relatively scarce.
Various catalysts are employed in WGS, including CuZn-oxide for
the low-temperature shift (LTS) at 180°C–270°C, FeCr-oxide for the
high-temperature shift (HTS) at 300°C–530°C (Wang et al., 2008), and
Co-Mo/Al-oxide for the sour gas shift (SGS) at 230°C–500°C (Babita
et al., 2011). H2S is known to negatively affect the catalysts used in LTS
and HTS (Loipersböck et al., 2017), whereas SGS catalysts exhibit
tolerance to high concentrations of sulfur components. Another avenue
for the shift reaction and hydrogen separation involves the use of
membrane reactors. For instance, a Pd-based membrane can efficiently
separate a high-purity H2 stream with notable selectivity (You et al.,
2018). However, the effects of typical impurities on such membranes
remain largely unexplored. Abdollahi et al. have investigated key
impurities like H2S and NH3, which can adversely affect the
membrane (Abdollahi et al., 2010). In their study, a carbon
molecular sieve (CMS) membrane and an impurity-tolerant
commercial Co/Mo/Al2O3 catalyst were utilized for in situ hydrogen
separation. At lower temperatures (<150°C), a decrease in permeability
was observed. Literature indicates the limits for H2S range between
0.1–220 ppmv, and for HCl between 0.001–50 ppmv. It is important to
note that impurities which may not affect WGS catalysis could be
detrimental to downstream synthesis processes. (Additional literature of
the limits mentioned (Mellor et al., 1997; Schaidle et al., 2010; Veksha
et al., 2018; Dou et al., 2019))

4 Description of syngas-based
energetic applications

4.1 Internal combustion engine (ICE)

ICEs utilize syngas as a fuel, with air typically serving as the oxidizing
medium for converting it into mechanical energy and heat. Pradhan
et al. provide comprehensive insights into the use of syngas in ICE
processes (Pradhan et al., 2015). Existing literature specifies certain limits
regarding particulates and hydrocarbons. The reviewed studies indicate
that the minimum purity requirement for particles should be 50mg

Nm−3, with particle sizes ranging between 3–10 μm. Particulates like
sand and ash primarily cause cohesive wear damage to moving parts.
Conversely, tars can condense, leading to the clogging of process
instruments and piping; thus, a maximum limit of 100mg Nm−3 for
hydrocarbons is advised. The literature, however, does not specify exact
purity requirements for trace gases. Here, the concerns are twofold:
corrosion and compliance with exhaust gas emission standards. Alkali
elements in ashes and sulfur compounds are known to cause corrosion.
A few sources suggest a maximum sulfur component concentration
of <1,150 mg Nm−3 and alkali concentration of <50 mg Nm−3. Halides,
which can react with installed materials causing damage, have a
recommended guideline value of HCl <330 ppmv, based on limited
available data. Nitrogen compounds do not pose material compatibility
issues. However, the oxidation of NH3 and HCN leads to the formation
of nitrogen oxides, which are regulated in exhaust emissions. Depending
on the combustion quality of the ICE, an upper limit for NH3

concentration is set at <78 ppmv (Hasler and Nussbaumer, 1999;
Spliethoff, 2010; Higman and van der Burgt, 2011; Kaltschmitt et al.,
2016). Whitty et al. have conducted detailed studies on emissions
resulting from syngas combustion (Whitty et al., 2008). (Additional
literature of the limits mentioned (Baratieri et al., 2022; Martínez
et al., 2012))

4.2 Gas turbine (GT)

GTs are predominantly utilized in Gas Turbine Combined-Cycle
(GTCC) systems, offering a reliable and efficient method for energy and
heat conversion. Wright et al. detail the technology involved in firing
syngas in GTs (Wright and Gibbons, 2007). GTs encounter challenges
similar to ICEs, but with stricter purity requirements for the combustion
gas. Particulates from the gasification process can damage blades and
other moving parts. It is suggested that particle concentration should be
maintained below 20–30 mg Nm−3, with a maximum particle size of
0.1–5 μm. While tars cannot condense in the high-temperature
environment of the combustion chamber, condensing hydrocarbons
can cause blockages as the process progresses. Literature indicates a
maximum concentration limit of 5 mg Nm−3 for hydrocarbons, which
is particularly problematic in heat exchangers and compressors. The
impact of trace substances in GTs can be paralleled to those in ICEs
(Baratieri et al., 2009). Examined limits for GTs include 50 ppmv for
nitrogen compounds concerning emissions and ranges of 1–20 ppmv
for sulfur compounds, 1–160 ppmv for HCl, and up to 0.24 mg Nm−3

for alkali metals. (Additional literature of the limitsmentioned (Higman
and van der Burgt, 2008; Spliethoff, 2010; Kaltschmitt et al., 2016))

4.3 Solid oxide fuel cell (SOFC)

SOFCs present an efficient alternative to combustion-based
technologies for syngas conversion in energy and heat recovery.
Operating on the principle of a galvanic cell with separate oxidation
and reduction processes, SOFCs are extensively described by
Radenahmad et al. (Radenahmad et al., 2022). There have been
numerous studies on the degradation of fuel cells utilizing coal and
biomass-derived syngas. Various material combinations can serve as
anode materials, notably Ni-Yttria stabilized Zirconia (Ni-YSZ) and
nickel-gadolinia doped ceria (Ni-GDC). Key issues for anode materials
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include carbon deposition due to hydrocarbons, and chemical
degradation by sulfur components and halides. Particle sizes of
5–10 μm at concentrations exceeding 23 mg Nm−3 can clog anode
pores, resulting in performance degradation. While tars are not
inherently detrimental to SOFCs and can undergo reforming or
oxidation, initial concentrations of 10–100 mg Nm−3 may lead to
carbon deposition and catalyst deactivation. The anode is
particularly susceptible to degradation from sulfur poisoning, carbon
deposition, and mechanical instability. Sulfur impedes the active sites
for hydrocarbon conversion and forms nickel sulfide (NiS),
progressively reducing performance. Various sources suggest a
maximum tolerance of 0.01–200 ppmv H2S. Chlorine compounds,
particularly HCl at concentrations between 1–160 ppmv HCl,
significantly diminish performance. Conversely, ammonia is
potentially beneficial, dissociating into H2 and N2, with a tolerance
threshold up to 5,000 ppmv. Some literature indicates that ammonia
removal may not be necessary for SOFC operation. (Additional
literature of the limits mentioned (Cayan et al., 2008; Hofmann
et al., 2009; Laycock et al., 2011; Cayan et al., 2012; Lorente et al.,
2012; Ud Din and Zainal, 2016; Marcantonio et al., 2022))

5 Comparison of utilization pathways

The analysis contrasts various downstream routes for material
utilization, comparing alcohol production (Figure 2A), the creation
of longer-chain hydrocarbons (Figure 2B), and the application in
energetic applications (Figure 2C). In these figures, the solid lines
represent the highest purity level required for each component as
indicated in the literature, while the colored, translucent areas depict
the range extending to the lowest required purity level.

In alcohol production, biocatalytic processing demonstrates
substantial robustness towards a wide spectrum of syngas impurities.
HCN is identified as the most critical component in the biological
process, with amaximum concentration threshold of 1 ppmv. Chemical
catalysts used in alcohol production, however, require stringent removal
of catalyst poisons like sulfur and halides, necessitating a reduction of all
listed impurities below 1 ppmv consistently.

Comparatively, in the domain of energetic applications, ICEs are
categorized as the most robust process. The highest purity
requirements for sulfur components, halogens, nitrogen
compounds, and particulate impurities in ICEs are noted to be

FIGURE 2
Based on state of the art limit values obtained from literature. (A) Material utilization pathways (methanol & mixed alcohol production) (B) Material
utilization pathways (gas, gasoline, diesel, paraffine waxes,. . .) (C) Energetic utilization pathways. *Assumed ash composition from beech wood for
converting from ppm to mg Nm−3 (Vassilev et al., 2013).
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lower than those for GTs and SOFCs. The primary challenges in
ICEs involve deposition, fouling, and corrosion caused by particles,
tars, halides, and alkalis. Table 1 outlines all values used in Figure 2
with the maximum requirement of the respective gas component.

6 Conclusion

In the changing economic environment, the utilization of carbon
sources from sustainable sectors is gaining increasing importance.
Within this context, a critical trade-off emerges between the benefits
offered by these sources and the purity requirements they necessitate.
Generally, processes aimed at generating energy and heat are considered
more robust, characterized by lower purity requirements for the utilized
syngas. However, the necessity for gas cleaning remains. The extent of
cleaning required largely depends on the gasification technology
employed and the resultant level of contamination (Dayton et al.,
2011). Crucially, the intended final product plays a pivotal role in
determining the selection of technology. Nonetheless, the cost and
complexity associated with purification should not be overlooked, as the
intricacies of the separation process can significantly impact the
economic feasibility of the overall operation.
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