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ABSTRACT: The commercial development of perovskite solar
cells (PSCs) has been significantly delayed by the constraint of
performing time-consuming degradation studies under real
outdoor conditions. These are necessary steps to determine the
device lifetime, an area where PSCs traditionally suffer. In this
work, we demonstrate that the outdoor degradation behavior of
PSCs can be predicted by employing accelerated indoor stability
analyses. The prediction was possible using a swift and accurate
pipeline of machine learning algorithms and mathematical
decompositions. By training the algorithms with different indoor
stability data sets, we can determine the most relevant stress
factors, thereby shedding light on the outdoor degradation
pathways. Our methodology is not specific to PSCs and can be
extended to other PV technologies where degradation and its
mechanisms are crucial elements of their widespread adoption.

Single-junction perovskite-based solar cells (PSCs) have
demonstrated certified power conversion efficiencies
(PCEs) above 26%.1 With PCEs on par with those of

well-established commercial PV technologies, the research
focus is now aimed at improving PSCs’ operational stability,
which is approximately 20 years for commercial silicon PV.
Although a consensus on accelerated stability tests including
various stress factors has been published,2 a strategy that
permits the prediction of the PSCs’ outdoor performance and
lifetime from accelerated indoor aging tests is currently
missing. Operational conditions outdoors include diurnal
light/dark cycling and varying temperatures, illumination
intensity, and spectrum during sunlight hours. While the
PSC performance dependence on each of these factors was
determined, it is highly sensitive to combinations of them,3

making predictions of outdoor daily energy yield rather
complex.4 Further complication arises from well-known PSC
transient performance variations on time scales from seconds
to days, superimposed on nonreversible, long-term degrada-
tion.5−7

Several attempts to predict PSC lifetimes based on indoor
tests have been published, such as testing under constant
illumination,8 a combination of continued 1 sun illumination

(ISOS-L1 protocol) tests and dark storage (ISOS-D protocol)
tests,9 or damp heat testing at 85 °C and 85% relative
humidity.10 These works predicted lifetimes of 5−20 years for
PSCs of various architectures, demonstrating the need for
accelerated testing. A recent publication described good
correlation between modeling based on PSC indoor tests of
light intensity and temperature-dependent performance
dynamics and its long-term, nonreversible outdoor degrada-
tion.11 Several studies simulated outdoor conditions in lab
tests.12,13 However, direct predictions of the detailed time- and
climate conditions- dependent outdoor PSC performance
including both daily power output and nonreversible
degradation, based on accelerated indoor tests, are currently
lacking.
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Machine learning (ML) is a specialized area within artificial
intelligence that focuses on the development of algorithms that
acquire knowledge and make predictions or decisions by
discerning patterns and insights within the data used for their
training. ML can be applied to the development of solar cells,
including PSCs, in predicting material composition−properties
relations, optimization of device structure and fabrication
processes, and reconstruction of measurement data.14−23 Few
published works utilized ML tools to study factors affecting
PSC stability.24,25,25 Herein we apply multiple ML algorithms
for correlating indoor and outdoor performance testing of
PSCs, successfully predicting outdoor time- and weather-
dependent PCE patterns based on indoor constant illumina-
tion (ISOS-L) tests. The crucial aspect of the pipeline lies in
training the algorithm with a different combination of indoor
tests. Thus, we provide a robust way of determining the
relevant outdoor degradation factors from specialized indoor
accelerated tests.
The experimental data are generated from devices similarly

fabricated and aged indoors and outdoors in two different
laboratories: BGU and ICN2. PSCs were fabricated in the nip
configuration of FTO/c-TiO2/m-TiO2/CsMAFAPb(IBr)3/
Spiro-OMeTAD/Au, and the solar cells were subjected to
indoor (constant illumination, in Air or N2) and outdoor
photostability tests at maximum power point (MPP,
encapsulated) conditions using an MPP tracker. The details
of device fabrication and testing are provided in the Supporting
Information. Photographs of the devices are shown in Figure
S1. Further, herein we present the results of the best
performing machine learning algorithms. The results of
additional algorithms can be found in the Supporting
Information.
The core of our method is the prediction of the outdoor

behavior given the outdoor environmental conditions and a set
of indoor accelerated degradation tests, at different light
intensities and environments (Figure 1a). Each indoor test
contains a level of relevance to the outdoor behavior, as well as
a level of overlap with other indoor tests. This is not always

trivial to determine, which hinders the analysis of real-world
degradation through accelerated tests. Our pipeline attempts to
account for both effects. Initially, the prediction algorithm was
trained using a single type of indoor test as input. This was
repeated for all indoor tests. The test that produced the lowest
error, i.e., the difference between the predicted and actual
outdoor performance tracks, bears the most relevance to the
outdoor degradation mechanisms. As a second step the
algorithm was trained using combinations of indoor tests as
input. Training a machine learning algorithm with data that are
strongly correlated leads to either inefficiency or at worse an
accuracy decrease in the prediction. However, viable
combinations of uncorrelated inputs can significantly enhance
the quality of the predictions. To this end, we have
implemented a Frechet distance metric26 that determines
whether two curves are correlated or not. This is achieved
taking into account both the positions and the ordering of the
curve points to account for stretching effects. The prediction
errors and their relation to the errors of the previous step
allowed us to determine dependencies between indoor tests.
The entire pipeline is summarized in Figure 1a. This pipeline
has two major outcomes. The first is a robust prediction of
outdoor behavior based on indoor tests, combined with the
actual environmental conditions of the area the panels were
deployed. The second is the determination of the most
relevant indoor tests for outdoor behavior prediction and their
interdependence.
The measurements of maximum power output versus time

(see Figure 1b for a representative curve) were performed on
devices fabricated with six different annealing temperatures.
Since annealing temperature has been shown to affect the final
PCE and by extension the maximum power output,27 altering
this value provides a natural data set that allows for different
behaviors. Four identical devices were fabricated per annealing
temperature to ensure the reproducibility of results. The
performance tracks (maximum power output vs time) of PSCs
devices with the same fabrication process were averaged to
decrease the noise to signal ratio as much as possible. This

Figure 1. Methodology (a) and typical input (b).
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process was applied both to the outdoor and indoor curves.
This allowed us to capture the average trend but entirely
discards the intrinsic deviations that are present in the
perovskite fabrication process. To mitigate this, a follow-up
work will include uncertainty quantification of predictions as
well as the predictions themselves. Six unique data points
present a challenging start for any machine learning endeavor,
while using all 24 would involve highly noisy measurements.
To ensure that the algorithm was fairly tested despite the
limited numbers of samples, we implemented a 6-fold
validation strategy as outlined in Figure S2. Additionally,
during the measurements of the outdoor conditions (irradiance
and temperature), the sensor failed for some hours. To fill the
data gaps, a K-nearest neighbor data imputation method was
employed, along with a classification that determined the night
and day cycle and set the irradiance values to zero during the
night. Lastly, to extract more concentrated information from
the data, we transformed the time series using the Daubechies
2 wavelet. The wavelet transformation was favored over the
Fourier one as the time series in question show a degrading
character which would not be present at the pure frequency
domain. Short-time Fourier transform was also considered over
wavelets, but the wavelet’s flexibility of representation
ultimately proved a crucial advantage that enhanced
predictions significantly. Multiple wavelets were tested, and
the final choice of the specific wavelet was done based on the
k-fold test set prediction error.
At present, the best performing method was proven to be

Kernel Ridge Regression (KRR).28 It combines the kernel trick
and L2 regularization with a linear regression algorithm. The
kernel trick is the process of projecting the data into a more
informative data space by means of a kernel function. An
additional term is added to the error expression, specifically,
the euclidean norm of the model parameters, to counter
overfitting. The parameters of the models were optimized
using Bayesian optimization, which outperformed the next best
hyperparameter tuning method by at least 20%. This
optimization provides a very efficient way of determining the
hyperparameter values as it learns from previous hyper-
parameters and makes a more educated guess after every
iteration. This ensures both faster convergence and higher
probability at finding a better optimum point. The loss
function chosen was the Mean Square Error. This can be
interpreted as the average squared distance of every true point
from its predicted relevant value. The methods have been
implemented in Python with the sklearn library.29 Multiple
additional algorithms were tested, notably Gaussian Pro-
cesses,30 bidirectional Long Short-term Memory Networks,31

and Transformers.32 The results can be seen in the SI in
Figures S3−S5. After the Frechet distance is calculated, the
results can be seen in Table 1. As a cut-off we have chosen 0.95
and will therefore not test the combinations of 1.4 sun and 1
sun as they are considered highly correlated and therefore
redundant.

Since we expect a certain smoothness from the results, they
have been denoised using Impulse Response (IIR) filter. The
first half of the core results are shown in Figure 2, reflecting the

relative relevance of the indoor tests in relation to the outdoor
behavior. Specifically, encapsulated devices were tested out-
doors, while nonencapsulated devices were tested in the indoor
setup in air or N2 atm. Therefore, it is natural to expect that the
indoor tests performed in air have the least relevance to the
outdoor tests. This is indeed verified with the air measure-
ments (indoor test 3 in Figure 1a) generating predictions that
are more than twice worse than the best ones. Further, the
light intensity of 1 sun is expected to be the most relevant
indoor tests. This is consistent with the results presented, with
the 1 sun in nitrogen (indoor test 1) results outperforming the
next best by 30%. As is evident, our pipeline provides not only
qualitative evaluations but also quantitative ones, which allows
for the precise determination of the stress factor importance.
Using the conformity of the results to our expectations as proof
of concept, we can now expand the algorithm to tests that are
nontrivially correlated with the outdoor behavior in a future
work. Compounding on this, if tests of combined different
stress factors provide better accuracy than separate ones, then
we can assume that the degradation paths are nontrivially
intertwined, which will affect our rationalization of the
mechanism.
The second half of the core results are shown in Figure 3a

and provide a strong proof that the algorithm has learned the
real device behavior. The algorithm reconstruction of the
outdoor behavior is quite remarkably accurate with an average
mean square error of 0.24, and the reconstructed curve fits
almost perfectly the measured one, in data that is not used
during training. Further, as can be seen in Figure 3b, when the
trained algorithm was presented with test data generated from
another lab, without UV protection during aging (see the
Supporting Information) and with significantly different
environmental conditions (Mediterranean and desert climates
at ICN2 and BGU, respectively), the prediction was accurate

Table 1. Frechet Distance Denoting Curve Similaritya

1.4 sun in N2 1 sun in N2 1.0 sun in air

1.4 sun in N2 1 0.96 0.86
1 sun in N2 0.96 1 0.89
1 sun in air 0.86 0.89 1

a1 indicates identical curves.

Figure 2. Comparative accuracy of predictions with different
indoor tests as inputs.
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within 1 order of magnitude. In fact, the discrepancy could be
credibly attributed to the differences in aging protocols,
especially the lack of UV protection. This is despite the fact
that the indoor measurements at ICN2 were conducted
without UV light. The existence of double peaks in the
prediction curve of Figure 3b can be attributed to the existence
of a high-frequency noise component from the wavelet
decomposition due to the difference in measuring frequencies

across laboratories. This part of the pipeline not only verifies
the results of the first part shown in Figure 2 but also provides
important value in the form of predicting outdoor PCE
evolution. It further proves that so long as the indoor and
outdoor measurements are consistent with each other, a
generally well-behaving prediction can be expected. By utilizing
this functionality, the stability of new device types can be
evaluated in a matter of days rather than months.

Figure 3. Predictions (red) and true (blue) performance tracks of maximum power evolution in outdoor conditions. The true tracks are
generated by averaging over the measured curves of all the devices with the same fabrication procedure. (a) Tracks measured in Barcelona,
Spain, and (b) tracks measured in Sede Boqer, Israel
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In conclusion, we have presented a robust pipeline that
identifies the relevant stress factors of perovskite solar cell
degradation in a qualitative and quantitative fashion. Further, it
allows direct predictions of outdoor solar cell stability based on
accelerated indoor stability tests without further modeling.
Subsequently, the same pipeline is used to reconstruct the
outdoor behavior based only on the relevant indoor tests.
These findings are extremely important, as they can rationalize
outdoor degradation mechanisms from relatively quick tests as
well as provide insight into the degradation mechanisms as a
whole. Further, given the quantitative nature of our factor
importance, the laboratories can choose to test a device with a
less relevant indoor test if they judge that the accuracy loss is
sufficiently compensated by the decreased test duration.
Further, by identifying the relevant stress factors, the syntheses
can move toward the direction that mitigates these specific
effects. The pipeline’s results were achieved using only six
different device types to train the algorithms. Nevertheless,
with an expanded data set, we could have efficiently utilized
more complex algorithms such as Transformers and bidirec-
tional Long Short-Term Memory (bLSTM) networks. These
algorithms have proven robust and accurate when trained with
large data sets. In a data set of the size that we are currently
investigating, the additional complexity is proven to decrease
the quality of the prediction. In contrast, the kernel methods
have a lower parametric load and are therefore better suited to
our case study. Our pipeline can be applied without loss of
generality both to low-throughput and high-throughput
laboratories by choosing a suitable method. Since our pipeline
is general and can be applied across technologies and
laboratories, it can be used to provide general intuition that
will combine the findings of many independent and disjoint
laboratories.

■ ASSOCIATED CONTENT
*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acsenergylett.4c00328.

Experimental Methods (preparation of triple cation
perovskite precursor solution, perovskite solar cell
fabrication, encapsulation, and indoor and outdoor
photostability studies) and Algorithms and Data
Processing Methods (algorithm testing strategy and
results of different algorithms) (PDF)

■ AUTHOR INFORMATION
Corresponding Authors
Iris Visoly-Fisher − Ben-Gurion Solar Energy Center, Swiss
Inst. for Dryland Environmental and Energy Research, The
Jacob Blaustein Institutes for Desert Research (BIDR), Ben-
Gurion University of the Negev, Midereshet Ben-Gurion
84990, Israel; orcid.org/0000-0001-6058-4712;
Email: irisvf@bgu.ac.il

Monica Lira-Cantu − Catalan Institute of Nanoscience and
Nanotechnology (ICN2), CSIC and The Barcelona Institute
of Science and Technology, 08193 Barcelona, Spain;
orcid.org/0000-0002-3393-7436; Email: monica.lira@

icn2.cat
Alessio Gagliardi − Department of Electrical Engineering,
School of Computation, Information and Technology,
Technical University of Munich, 85748 Garching bei Munich,
Germany; Munich Data Science Institute, TUM, 85748

Garching, Germany; orcid.org/0000-0002-3322-2190;
Email: alessio.gagliardi@tum.de

Authors
Ioannis Kouroudis − Department of Electrical Engineering,
School of Computation, Information and Technology,
Technical University of Munich, 85748 Garching bei Munich,
Germany

Kenedy Tabah Tanko − Catalan Institute of Nanoscience and
Nanotechnology (ICN2), CSIC and The Barcelona Institute
of Science and Technology, 08193 Barcelona, Spain

Masoud Karimipour − Catalan Institute of Nanoscience and
Nanotechnology (ICN2), CSIC and The Barcelona Institute
of Science and Technology, 08193 Barcelona, Spain

Aziz Ben Ali − Department of Electrical Engineering, School of
Computation, Information and Technology, Technical
University of Munich, 85748 Garching bei Munich, Germany

D. Kishore Kumar − Ben-Gurion Solar Energy Center, Swiss
Inst. for Dryland Environmental and Energy Research, The
Jacob Blaustein Institutes for Desert Research (BIDR), Ben-
Gurion University of the Negev, Midereshet Ben-Gurion
84990, Israel

Vediappan Sudhakar − Ben-Gurion Solar Energy Center,
Swiss Inst. for Dryland Environmental and Energy Research,
The Jacob Blaustein Institutes for Desert Research (BIDR),
Ben-Gurion University of the Negev, Midereshet Ben-Gurion
84990, Israel

Ritesh Kant Gupta − Ben-Gurion Solar Energy Center, Swiss
Inst. for Dryland Environmental and Energy Research, The
Jacob Blaustein Institutes for Desert Research (BIDR), Ben-
Gurion University of the Negev, Midereshet Ben-Gurion
84990, Israel

Complete contact information is available at:
https://pubs.acs.org/10.1021/acsenergylett.4c00328

Author Contributions
∥I.K. and K.T.T. contributed equally.
Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
The authors acknowledge funding from the project Proper-
PhotoMile, supported under the umbrella of SOLAR-
ERA.NET Cofund 2 by The Spanish Ministry of Science and
Education and the AEI under project PCI2020-112185 and
CDTI project number IDI-20210171; the Federal Ministry for
Economic Affairs and Energy on the basis of a decision by the
German Bundestag project number FKZ 03EE1070B and FKZ
03EE1070A; and the Israel Ministry of Energy with project
number 220-11-031. SOLAR-ERA.NET is supported by the
European Commission within the EU Framework Programme
for Research and Innovation HORIZON 2020 (Cofund ERA-
NET Action, N◦ 786483). Further, A.G. acknowledges
financial support from TUM Innovation Network for Artificial
Intelligence powered Multifunctional Material Design (ARTE-
MIS) and funding in the framework of Deutsche Forschungs-
gemeinschaft (DFG, German Research Foundation) under
Germany’s Excellence Strategy − EXC 2089/1-390776260 (e-
conversion). D.K.K. is grateful for the Blaustein postdoctoral
fellowship at BGU. V.S. is grateful for the Krietman
Postdoctoral fellowship at BGU. R.K.G. is grateful for the
Swiss Inst. for Dryland Environmental and Energy Research

ACS Energy Letters http://pubs.acs.org/journal/aelccp Letter

https://doi.org/10.1021/acsenergylett.4c00328
ACS Energy Lett. 2024, 9, 1581−1586

1585

https://pubs.acs.org/doi/10.1021/acsenergylett.4c00328?goto=supporting-info
https://pubs.acs.org/doi/suppl/10.1021/acsenergylett.4c00328/suppl_file/nz4c00328_si_001.pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Iris+Visoly-Fisher"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0001-6058-4712
mailto:irisvf@bgu.ac.il
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Monica+Lira-Cantu"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0002-3393-7436
https://orcid.org/0000-0002-3393-7436
mailto:monica.lira@icn2.cat
mailto:monica.lira@icn2.cat
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Alessio+Gagliardi"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0002-3322-2190
mailto:alessio.gagliardi@tum.de
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Ioannis+Kouroudis"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Kenedy+Tabah+Tanko"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Masoud+Karimipour"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Aziz+Ben+Ali"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="D.+Kishore+Kumar"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Vediappan+Sudhakar"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Ritesh+Kant+Gupta"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/doi/10.1021/acsenergylett.4c00328?ref=pdf
http://SOLAR-ERA.NET
http://SOLAR-ERA.NET
http://SOLAR-ERA.NET
http://pubs.acs.org/journal/aelccp?ref=pdf
https://doi.org/10.1021/acsenergylett.4c00328?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


postdoctoral fellowship at BGU. Part of this work is under
Materials Science Ph.D. degree for K.T.T. of the Universitat
Autonoma de Barcelona (UAB, Spain). ICN2 is supported by
the Severo Ochoa Centres of Excellence programme (grant no.
SEV-2017-0706) and was funded by the CERCA Programme/
Generalitat de Catalunya, Grant CEX2021-001214-S, funded
by MCIN/AEI/10.13039.501100011033.

■ REFERENCES
(1) National Renewable Energy Laboratory. Best research-cell
efficiencies chart https://www.nrel.gov/pv/assets/pdfs/best-
research-cell-efficiencies.pdf (accessed Feb 29, 2024).
(2) Khenkin, M. V.; Katz, E. A.; Abate, A.; Bardizza, G.; Berry, J. J.;
Brabec, C.; Brunetti, F.; Bulovic,́ V.; Burlingame, Q.; Di Carlo, A.;
others.; et al. Consensus statement for stability assessment and
reporting for perovskite photovoltaics based on ISOS procedures.
Nature Energy 2020, 5, 35−49.
(3) Ali, M. U.; Mo, H.; Li, Y.; Djurisǐc,́ A. B. Outdoor stability
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