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ABSTRACT: Raman spectroscopy is an important characterization tool with diverse
applications in many areas of research. We propose a machine learning (ML) method for
predicting polarizabilities with the goal of providing Raman spectra from molecular dynamics
trajectories at a reduced computational cost. A linear-response model is used as a first step, and
symmetry-adapted ML is employed for the higher-order contributions as a second step. We
investigate the performance of the approach for several systems, including molecules and
extended solids. The method can reduce the training-set sizes required for accurate dielectric
properties and Raman spectra in comparison to a single-step ML approach.

■ INTRODUCTION
Atomic motions are often key to physical and chemical
phenomena occurring at finite temperature, in both solid-state
and molecular systems. Experimentally, the dynamic behavior
of such systems can be probed by Raman spectroscopy. It is a
table-top technique that is available in many laboratories
because it is less complicated and expensive than, for example,
neutron scattering.1 Raman spectroscopy plays an important
role in many areas of research, including catalysis,2−5

perovskite photovoltaics6−9 and semiconductor physics more
broadly,10 and ionic conductors.11−13 Computational predic-
tions of Raman spectra using first-principles calculations are an
important counterpart to experimental measurements. They
provide further insights into the behavior of materials, facilitate
the interpretation of measured spectra via theory−experiment
comparisons, and enable predictions of dynamic properties in
new compounds.
The central quantity for theoretical calculations of the

Raman spectra is the polarizability tensor, α. It describes the
first-order dielectric response of a system to external electric
fields. In practice, the dielectric tensor, ϵ, can be used for
periodic systems since it contains the same information;14 in
the following text, we shall use both quantities interchangeably.
Raman spectra are commonly calculated within the harmonic
approximation whereby the derivatives of α with respect to
atomic displacements, determining the intensity of peaks, are
calculated along eigenvectors of harmonic modes.15−17 But this
method is limited since it cannot capture anharmonic effects,
higher-order Raman scattering, or the explicit temperature
dependencies of Raman modes. These effects are relevant in a
variety of physical systems and scenarios. For example, a

description of phase transitions in solid materials requires
temperature-dependent phonon modes.18 While a proper
description of phase transitions and thermal behavior of
vibrational modes is certainly not an easy task also in methods
such as molecular dynamics (MD), a strictly harmonic phonon
picture prevents the capture of these effects even in principle.
By contrast, MD simulations offer a way to include these

effects and overcome the limitations of the harmonic approach.
A Raman spectrum can be computed from an MD trajectory
by calculating Fourier-transformed velocity autocorrelation
functions (VACFs) of the components of α.19−21 However,
this requires computing a time series of α values from multiple
MD snapshots. The number of data points needed in such an
MD-Raman approach depends on the desired frequency
resolution and the total range of frequencies that needs to
be covered, but typically, at least a few hundred points are
needed. Such polarizability calculations can be done from first
principles using density functional perturbation theory
(DFPT),22 but this renders MD-based Raman calculations
computationally demanding. The cost of the DFPT
computations usually far outweighs that of the MD simulation
itself and forms the main bottleneck in the MD-Raman
approach. These large computational efforts limit the range of
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physical scenarios and systems that one can investigate with
the method.
The computational cost of first-principles calculations can be

significantly reduced by machine learning (ML) techniques.
Specifically, ML can exploit redundancies and symmetries of
structures generated by MD and is now widely used for
learning and predicting energies and forces.23−25 Relevant for
MD-Raman calculations, ML force fields can greatly accelerate
the MD part of the simulations.26 Yet, the cost of computing
polarizability tensors from DFPT remains. Hence, more
recently, ML methods have also been applied to predict
tensorial properties including polarizabilities, which currently is
a very active research area.27 Both symmetry-adapted kernel-
based methods28−33 and neural-network approaches34−39 have
been used for this, as well as a physical based small parametric
model.40 In addition, ML methods have also been applied to
compute aspects of Raman spectra directly, without explicit
consideration of polarizabilities.41−43 Delta ML (Δ-ML) is a
combined approach to predicting physical quantities: a
computationally inexpensive approximation is used as a first
step and ML methods are then applied to learn only the
differences between first-step predictions and true values.44

The challenge in any Δ-ML method is the search for a physical
model to achieve sound first-step predictions that can be
seamlessly combined with the proceeding ML method. It has
been previously shown that the prediction of polarizabilities in
a molecular crystal can be improved by using the polarizability
of the molecular monomer as a first step.28 However, to the
best of our knowledge, no systematic Δ-ML approach that can
be applied beyond the case of molecular crystals has been
proposed and investigated yet for the prediction of dielectric
properties such as polarizabilities and Raman spectra.
In this paper, we propose a Δ-ML method for predicting

dielectric properties of molecules and materials. Focusing on
polarizabilities, we suggest a linear response model (LRM) that
encodes key information about the dielectric response of the
system as a first step. Combination of the LRM with ML for
tensorial properties is assessed via inspection of polarizability
components and Raman spectra. We find that the Δ-ML
method increases accuracy and reduces the required training-
set size compared to a direct ML approach where the same ML
model is applied to the polarizability data directly, i.e., without
using any first-step approximation. Applying Δ-ML to small
molecules and extended solids, including more complicated
materials, as well as discussing its inherent limitations and
potential for further improvements, we demonstrate its
predictive power for practical MD-Raman calculations across
a broad range of physical systems.

■ RESULTS AND DISCUSSION
In order to develop our method, we start from a Taylor
expansion of a component of α with respect to atomic
displacements (Δx) from their respective equilibrium positions
or any other reference structure (x0)
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Nat is the number of atoms of the system and the index i
enumerates the components of a 3Nat dimensional atomic
position vector x. Equation 1 is an exact formula which can be
approximated to arbitrary order. Here, we consider the
simplest, first-order variant: an LRM is constructed by

determining the constant term, α(x0), and the respective
derivatives, ∂ααβ/∂xi. The constant term can be determined via
a single DFPT calculation for the equilibrium structure. The
first-order derivatives can be obtained through additional
DFPT calculations of displaced structures. Applying a central
difference method, two calculations are necessary for each
atomic degree of freedom. We note that the problem of
choosing the coordinate frame in systems with rotational
degrees of freedom can easily be solved by employing
rotationally and translationally invariant internal coordinates,
as discussed in Section I.E of the Supporting Information. A
numerical demonstration that rigid rotations do not signifi-
cantly deteriorate predictions of our LRM model is given in
Section I.H of the Supporting Information. Symmetry
considerations can be used in this procedure in order to
reduce the number of required calculations since any two
symmetry-equivalent atoms imply derivatives that are related
via similar symmetry operations as position vectors of atoms.
Thus, a total of 6N + 1 calculations are required to parametrize
the LRM, where N is the number of symmetry-inequivalent
atoms in the system. Further details about the LRM are
presented in the Supporting Information, including an
overview of the number of DFPT calculations performed in
Table S5.
We parametrize the LRM via DFPT calculations45 using

VASP46 and the PBE exchange−correlation functional.47 This
allows for predicting the polarizabilities of MD snapshots by
extracting the displacements Δxij from it and applying eq 1.
Figure 1a shows the performance of predictions with the LRM

for the αxx component in SiO2 along a selected portion of an
MD trajectory at 300 K, which we obtain using density
functional theory (DFT) in VASP. Compared to the DFPT
reference data for the same MD trajectory, the LRM accurately
captures many of the αxx oscillations.
The LRM has several limitations: first, the polarizability can

have a local extremum at the reference positions, in which case
the derivatives, ∂ααβ/∂xi, vanish. This occurs when atomic
motion along the respective axis is first-order Raman-inactive.
Additionally, it is also possible that these derivatives are zero

Figure 1. (a) LRM predictions of the αxx component of the
polarizability tensor in SiO2 over a period of 2000 fs, compared to
DFPT reference data. (b) Δ-ML predictions for the same data,
obtained with Nt = 50 and Nv = 10. Note that the values shown here
are polarizability per volume.
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for only certain components of α, which will be discussed
below. In these cases, the LRM can only capture the constant
term and the predicted polarizability time series for these
components will therefore be approximately constant. These
are important limitations of the present LRM, which, in
principle, can be overcome in a straightforward way by
accounting for further terms in the expansion of eq 1. Here, we
focus on the fact that these limitations motivate an ML model
as an additional second step that can capture higher-order
displacement responses.
For the second step in our Δ-ML approach, we employ

kernel-based methods.48,49 The underlying idea is to use a
descriptor that captures relevant aspects of atomic config-
urations and a kernel function that allows one to quantify
similarities between different configurations along MD
trajectories. These similarities can then be used to perform
fitting using kernel ridge regression (KRR). For many physical
quantities, descriptors based on overlap integrals are an
appropriate choice. A common method which takes into
account symmetries is smooth overlap of atomic positions
(SOAP).50−53 For fitting tensorial quantities such as α, the
extended λ-SOAP approach is well-suited because it also takes
into account tensorial covariance properties.54 While the
choice for λ-SOAP implies no difference for some tensor
invariants such as the mean polarizability (see Section I.C in
Supporting Information), it does provide a benefit for fitting
the off-diagonal elements of α.
We perform the fitting procedure in KRR with λ-SOAP

using the DScribe55 and librascal56 packages together with
scikit-learn.57 The training data for the ML model are obtained
from DFPT calculations on a subset of MD trajectories. Note
that the 6N + 1 configurations that were required for the LRM
can, in principle, be reused as training data for the ML model,
which we did not attempt here to ease the comparison.
Furthermore, a validation data set is selected from the MD
trajectory in order to optimize ML hyperparameters with
respect to validation error. For the sizes Nt and Nv of the
training and validation set, respectively, we used a constant
ratio Nt/Nv = 5:1. This ensures that the validation set is scaled
in proportion whenever the number of training data points is
increased. In the spirit of Δ-ML, LRM predictions are always
subtracted from DFPT values before feeding them to ML, such
that only differences are learnt. Further details on the fitting
procedure can be found in Section I.F of the Supporting
Information.
Figure 2 shows scatterplots of a polarizability time series for

SiO2 predicted with Δ-ML and an otherwise identical ML
approach without the LRM (direct-ML), comparing both to
reference DFPT calculations along an MD trajectory. The
diagonal components of α are already predicted well with
direct-ML compared to the DFPT reference data. For this
particular case, even the LRM alone achieved fairly accurate
predictions (cf. Figure 1a), implying that the diagonal
components are relatively easy to capture for SiO2. However,
the off-diagonal components are predicted far less accurately in
direct-ML. Remarkably, we find that our Δ-ML method
provides similarly accurate predictions for both the diagonal
and off-diagonal components of α (see Figures 2b and 1b).
While the off-diagonal components are smaller in magnitude, it
is still important to accurately capture their fluctuations in
order to predict Raman spectra. Altogether, our findings
suggest that the Δ-ML approach allows for more efficient
learning of all components of α because the LRM provides a

good first approximation for dynamic fluctuations of this
quantity.
To assess the accuracy of our method, we compared it again

to direct-ML for the case of SiO2, using DFPT results as a
reference and calculating the coefficient of determination, R2
(see Section I.G in the Supporting Information for details). We
focus on the tensor invariants a (mean polarizability) and γ2
(anisotropy) of α (see Section I.C of the Supporting
Information), since these are directly relevant for Raman
calculations and show R2 for SiO2 as a function of Nt in Figure
3. We find that for achieving R2 close to 1 for both a and γ2, Δ-
ML requires Nt to be on the order of only 20, which
outperforms direct-ML by at least a factor of 2. Thus, the LRM
and ML methods encoded in Δ-ML complement each other
well and may offer accurate predictions of α with smaller
training-set sizes.
The size of the training set required to obtain a good

prediction performance is expected to strongly depend on the
system. Therefore, we investigate the versatility of Δ-ML by
computing R2 for a broader range of physical systems that
include extended solids and gas-phase molecules. The Nt
values that are required to achieve good prediction perform-
ance for both polarizability components and Raman spectra are
listed in Table 1 for each system. It should be noted that in
many cases, an accurate prediction of the Raman spectrum
requires much lower Nt than a prediction of the individual
polarizability components. Therefore, the Δ-ML method can
provide substantial computational savings if one is only
interested in the quality of the spectra (see Section III of the
Supporting Information for more details).
The solid AlN is an interesting, challenging example because

of its known LO/TO splitting that makes the prediction of its
dielectric and Raman properties a difficult problem.17 Thus,
AlN illustrates several complications that require an accurate
computational methodology for the prediction of its Raman
spectrum. For this case as well as for SiO2, we find that Δ-ML

Figure 2. (a) Scatterplot comparing direct-ML predictions of diagonal
(left) and off-diagonal (right) polarizability components in SiO2 to
DFPT reference data, obtained with Nt = 20 and Nv = 4. (b)
Scatterplot comparing Δ-ML predictions to DFPT, obtained with the
same training and prediction set. Note that the values shown here are
polarizability per volume.
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achieves a significant reduction of the required Nt compared to
direct-ML. The small gas-phase molecules (H2O, CH4, and
CH3OH) we consider here are found to require similarly low
Nt ∼10 in both approaches, further demonstrating the broad
applicability of the Δ-ML method.
We consider two more extended systems, Si and NaCl, in

order to demonstrate how the aforementioned inherent
limitations of the chosen LRM are compensated by the
proceeding ML step: the change of the diagonal components
of α with Δxi is approximately an even function in Si (see
Supporting Information), for which the simple LRM predicts a
constant time series for the ααα(x(t)) values that does not
capture the pertinent temporal fluctuations in the system.
NaCl is another challenging case because it is not first-order
Raman-active and the LRM therefore merely predicts
ααβ(x(t)) = const. Table 1 shows that Δ-ML and direct-ML
lie on par for these two cases; i.e., the proceeding ML can
compensate for the lack of dynamical information in the
underlying LRM. Hence, even when, for physical reasons, the
choice of our specific LRM may not provide any benefit for
learning components of α, it does not worsen prediction
performance. Therefore, the Δ-ML approach can seamlessly
integrate a simple physical model and ML procedure in order
to capture temporal and spatial fluctuations of α. These
findings suggest that Δ-ML is a promising approach for the
dielectric predictions of dynamical systems. Furthermore, since
the LRM is the simplest approximation to eq 1, it can still be
extended in a straightforward way to further improve the
prediction performance of Δ-ML if needed.
Close connections of the dielectric quantities discussed here

to Raman spectra are established via a correlation-function

analysis. Specifically, calculation of the Raman spectrum
requires the Fourier-transformed VACFs of the tensor
components of α, i.e.

+ = +t t( ) ( ) ( ) ( )d (2)

The terms aτ and γτ
2 can then be computed from the

VACFs,20,58 see Section I.D in the Supporting Information for
details. A spherically averaged Raman spectrum can then be
obtained as

+

( )
I

a
( )

( ) 1

1 exp

45 7

45
k T

in
4 2 2

B
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Note that the frequency-dependent prefactor in eq 3 is not
exact. Several other versions of this equation also exist, which
can be derived based on different approximations for taking
into account the quantum nature of the atomic motion.59

We applied our Δ-ML method to calculate MD-Raman
spectra at 300 K for the test systems described above using full
DFPT calculations as a reference. Figure 4 showcases two
examples, and the other systems are discussed in Section IV of

Figure 3. (a) Performance metrics for direct ML predictions in SiO2 as a function of training-set size Nt and the (b) same performance metrics for
Δ-ML predictions.

Table 1. Minimum Required Training-Set Sizes to Achieve
R2 > 0.8 in Both a (Mean Polarizability) and γ2
(Anisotropy) of α for Different Systemsa

direct-ML Δ-ML
SiO2 50 20
AlN 360 280
Si 60 60
NaCl 440 440
H2O 10 10
CH4 20 10
CH3OH 10 10

aNt/Nv was kept constant at 5:1, Nt was increased in steps of 20 for
AlN and NaCl and in steps of 10 for all other systems, and R2 was
evaluated on separate data sets of size 400.

Figure 4. (a) Raman spectrum for SiO2 computed from Δ-ML
predictions, compared to the DFPT reference spectrum. (b) Raman
spectrum for NaCl computed from Δ-ML predictions, compared to
the DFPT reference spectrum.

The Journal of Physical Chemistry C pubs.acs.org/JPCC Article

https://doi.org/10.1021/acs.jpcc.4c00886
J. Phys. Chem. C 2024, 128, 6464−6470

6467

https://pubs.acs.org/doi/suppl/10.1021/acs.jpcc.4c00886/suppl_file/jp4c00886_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jpcc.4c00886/suppl_file/jp4c00886_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.jpcc.4c00886?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcc.4c00886?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcc.4c00886?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcc.4c00886?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcc.4c00886?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcc.4c00886?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcc.4c00886?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcc.4c00886?fig=fig4&ref=pdf
pubs.acs.org/JPCC?ref=pdf
https://doi.org/10.1021/acs.jpcc.4c00886?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


the Supporting Information. While our focus is on the
performance of the Δ-ML method, we point out that the
spectra are also affected by other aspects of the computational
setup, such as the choice of density functional approximation.
Good agreement between Δ-ML and DFPT is obtained for
SiO2 as expected from our above findings and further
quantified through the calculated cosine similarity, SC, shown
as a spectrum overlap in Figure 3 (see Section I.G in the
Supporting Information). The case of NaCl is particularly
interesting since, as we noted above, it is a first-order Raman-
inactive material, which means that only higher-order effects
contribute to the Raman spectrum. For this reason, the
spectrum contains contributions from q-points other than Γ.60
This makes MD-Raman calculations particularly challenging,
requiring a large simulation cell in order to provide sufficient
sampling of the q-space (see Section I.A in the Supporting
Information for details). In addition, we find that the ML
procedure required a relatively large Nt in this case. We
speculate that Nt could be reduced via improvement of the first
step in the Δ-ML procedure, for example, by including higher-
order terms. With sufficient accuracy of terms a and γ, the
Raman spectrum for NaCl shows a high overlap with the
corresponding DFPT spectrum, with only some minor
discrepancies remaining. Furthermore, both the ML and
DFPT spectra also show good agreement with recent
experimental data.60 To the best of our knowledge, this is
the first ML-based MD-Raman calculation for a higher-order
Raman material.
It is interesting to note that for MD-Raman calculations, we

observed a certain insensitivity on errors in the individual
components of α. Specifically, relatively inaccurate predictions
of tensor components can still result in a relatively accurate
Raman spectrum (see spectrum overlap in Figure 3). In
addition, errors at different points along α(x(t)) are, to a good
approximation, random and independent of each other. Thus,
these errors tend to average out when computing autocorre-
lation functions. However, high accuracy of predictions of the
Raman spectra is, of course, not always guaranteed. This can be
shown even for the relatively simple gas-phase molecular
systems by considering an extremely small training set with
Nt = 5 and comparing the two ML procedures (see Section
IV.C of the Supporting Information). Indeed, a direct-ML
approach does not produce physically reasonable Raman
spectra for all three molecules as expected from our findings
(cf. Table 1). By contrast, the Δ-ML method still yields
realistic spectra even with such small training data sets for
these simpler molecules. While this is to be expected because
of the additional information contained in the LRM, it again
confirms the benefit of the Δ-ML method for predicting
Raman spectra. Here, one is not restricted to using the LRM
per se, and the Δ-ML approach provides room for further
adaptation in future work. Possibilities include use of more
advanced first-step models instead of the LRM, different
descriptors in the ML step, and changes to the hyperparameter
optimization scheme, such as employing cross validation.

■ CONCLUSIONS
In conclusion, we proposed a Δ-ML approach that unifies a
physical model with symmetry-adapted ML for prediction of
dielectric properties and Raman spectra and is applicable to a
broad range of different systems. We focused on the
polarizability tensor and chose a simple LRM as a starting
point to describe the dynamic dielectric fluctuations, which are

completed by an ML procedure in a second step. The Δ-ML
method can perform better than an otherwise identical direct-
ML approach with the same training-set size. This is especially
true because the LRM step provides a benefit for predicting
off-diagonal components of the polarizability tensor. Since the
data points needed for parametrizing the LRM can be reused
as ML training data, Δ-ML does not necessarily increase
computational costs compared to direct-ML. We also
investigated specific systems for which the LRM method
provides no benefit by design and found that it does not
deteriorate ML prediction performance for these cases. Our
findings show that Δ-ML is a promising approach for the
predictions of dielectric properties and Raman spectra of
molecules and materials at finite temperature. It provides a way
to reliably compute spectra that capture the full extent of
atomic motions in molecules and materials without relying on
the harmonic approximation at a reasonable computational
cost. We speculate that the Δ-ML approach might also be
useful for the calculation of other properties that require time-
correlation functions such as infrared spectra or transport
coefficients.
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