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Abstract

Abstract

The amount of globally installed stationary battery energy storage systems (BESSs) has been increas-
ing steadily in recent years. Following economy-of-scale induced cost reductions and technological
advancements, lithium-ion batteries have emerged as the most frequently used technology for new in-
stallations. However, lithium-ion batteries are subject to degradation due to various cell-internal aging
mechanisms, which affect the lifespan and profitability of BESSs. Since the degradation rate depends
on stress factors such as the state of charge and the charge rate, it can be directly influenced with the
operation strategy. This publication-based thesis focuses on developing methods and providing guide-
lines for the aging aware operation of BESSs to prolong the lifespan of lithium-ion cells, increase the
long-term profitability of BESSs, and thereby enable a more resource-efficient energy storage sector.
First, a comprehensive review of the state of the art in the field of aging aware operation of BESSs is
presented. Following that, a Python-based model predictive control framework is proposed for design-
ing and benchmarking aging aware operation strategies. Using this framework, the significant increase
in profitability that can be achieved by accounting for aging stress factors as part of the operation
strategy and by determining the optimal aging cost is quantified. In addition, an aging aware operation
strategy for peak shaving applications that accounts for the uncertainty of load forecasts is developed.
Uncertainty is also investigated in the context of degradation modeling uncertainty and its impact on
the techno-economic assessment of BESSs. Lastly, a physicochemical aging model is developed and
parameterized to investigate the nonlinear aging phase with its increased degradation rate in typical
stationary applications. It is shown that by adapting the operating conditions of a BESS towards the
end-of-life, the nonlinear aging phase can be delayed, and the generated profit can be significantly
increased.
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Zusammenfassung

Die Anzahl der weltweit installierten stationären Batteriespeichersysteme (battery energy storage sys-
tems, BESS) hat in den letzten Jahren stetig zugenommen. Durch technologische Fortschritte und
Kostensenkungen haben sich Lithium-Ionen-Batterien dabei als die am häufigsten genutzte Batteri-
etechnologie hervorgetan. Allerdings unterliegen Lithium-Ionen-Batterien einer Vielzahl an zellinter-
nen Alterungsmechanismen, die sich auf die Lebensdauer und Profitabilität von BESS auswirken. Da
das Alterungsverhalten von Stressfaktoren wie dem Ladezustand und der Laderate abhängt, kann die
Degradationsrate jedoch direkt durch die Betriebsstrategie beeinflusst werden. In dieser publikations-
basierten Dissertation werden Methoden und Richtlinien für den alterungsoptimierten Betrieb von
BESS entwickelt, um die Lebensdauer der genutzten Lithium-Ionen-Zellen zu verlängern sowie die
langfristige Profitabilität von BESS zu erhöhen, und dadurch eine ressourcenschonendere Energiespe-
icherung zu ermöglichen. Zunächst wird ein umfassender Überblick zum Stand der Technik präsentiert.
Anschließend wird eine auf Python basierende Simulationsumgebung vorgestellt, die es ermöglicht, ver-
schiedene alterungsoptimierte Betriebsstrategien zu vergleichen und zu bewerten. Mit Hilfe der Simula-
tionsumgebung wird der signifikante Profitabilitätsanstieg quantifiziert, welcher durch die Berücksich-
tigung von Alterungsstressfaktoren in der Betriebsstrategie sowie durch die Ableitung der optimalen
Alterungskosten erzielbar ist. Darüber hinaus wird eine alterungsoptimierte Betriebsstrategie für die
Anwendung Peak Shaving entwickelt, die die Unsicherheit von Lastprognosen berücksichtigt. Unsicher-
heit wird auch im Zusammenhang mit Modellierungsfehlern bei der Alterungsmodellierung und ihren
Auswirkungen auf die techno-ökonomische Bewertung von BESS betrachtet. Des Weiteren wird ein
physikochemisches Alterungsmodell entwickelt und parametrisiert, um die nichtlineare Alterungsphase
mit ihrer erhöhten Degradationsrate in typischen stationären Anwendungen zu untersuchen. Es wird
gezeigt, dass durch eine Anpassung der Betriebsbedingungen eines BESS gegen Ende der Lebensdauer
die nichtlineare Alterungsphase hinausgezögert und der in der Anwendung erwirtschaftete Profit erhe-
blich gesteigert werden kann.
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1 Introduction

1.1 Background and motivation

Renewable energy sources have gained significant traction in the past decades with the paradigm
shift towards a sustainable electricity supply. Hydroelectric power has already been in use for over
a century [1]. However, in the last decades, the share of photovoltaic (PV) and wind energy in the
global electricity mix has increased significantly. While the global electricity production for 2000 was
estimated at 17.51 % hydroelectric, 0.21 % wind, and less than 0.01 % PV, for 2022 these shares were
estimated at 15.17 %, 7.50 %, and 4.52 %, respectively [2]. When accounting for other renewable elec-
tricity sources such as bioenergy, the total percentage of renewable energy in the world’s electricity mix
increased from 19.07 % in 2000 to 29.91 % in 2022 [2]. The United Nations’s sustainable development
goals from 2015 list a substantial increase of the share of renewable energy in the global energy mix as
a target for 2030 [3]. The European Union agreed on the more quantifiable goal of 42.5 % renewable
energy generation by 2030 over all energy sectors [4]. However, integrating wind and PV into the
electricity grid creates new but manageable challenges due to their volatility and intermittency of sup-
ply [5]. In this context, stationary battery energy storage systems (BESSs) can stabilize the grid and
balance out the intermittency of the supply of wind and PV energy to further advance the integration
of renewable energy sources [6, 7].

The globally installed capacity of BESSs has been increasing steadily in recent years [8, 9]. While
estimates and forecasts for the currently installed capacity and future growth vary, the agreed-upon
trajectory in the vast majority of reports and studies is strongly upwards [10–12]. The market research
organization BloombergNEF estimated the globally installed capacity of BESSs at the end of 2021 at
56 GWh and forecasted this number to grow to 1143 GWh until 2030 [10]. BESSs are used for various
applications which are often categorized based on their location in the electricity grid. In behind-
the-meter applications such as peak shaving [13] or as home storage systems [14], they create cost
savings for the electricity consumer. In front-of-the-meter applications such as frequency containment
reserve [15] or energy arbitrage [16], BESSs generate revenue on the respective electricity markets. If
operated directly by a grid operator, they can relieve the existing transmission lines, thereby allowing to
defer lengthy grid reinforcement [17]. Lastly, in off-grid and microgrid settings, a BESS combined with
renewable energy sources can be a cost-competitive option over relying solely on diesel generators [18].

While lead-acid batteries were the battery technology of choice for many early BESSs [19], lithium-ion
batteries have been the most commonly used technology for new BESS installations for a number of
years [9, 11]. Lithium-ion batteries promise high cycle life and high energy efficiency compared to
other battery technologies and have been subject to economies of scale-induced cost reductions over
the past years [20]. Out of the 23.9 GWh of operational large-scale BESSs in the United States of
America which were part of a survey by the U.S. Energy Information Administration in 2022, 99.5 %
were lithium-ion based [21]. Out of the total BESS capacity installed in Germany between 2013 and
2019, 87 % was estimated to be lithium-ion based [22].
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1 Introduction

Like other battery types as well, lithium-ion batteries are subject to degradation over their lifetime.
Multiple cell internal aging mechanisms, such as the loss of cyclable lithium to the growth of the solid
electrolyte interphase (SEI) layer or active material loss from particle cracking, lead to, among others, a
decrease in cell capacity and an increase of the cell resistance [23–25]. On a system level, battery aging
manifests itself in decreasing usable capacity and power for the intended application and increasing
charge/discharge losses over the lifetime of a BESS [26, 27]. In addition, it is often assumed that after
a certain extent of degradation, the battery cells reach their end-of-life (EOL). A common assumption
is that the EOL of the cells is reached once the remaining capacity is at 70 % [28] or 80 % [15, 29, 30] of
the initial capacity. The physical rationale behind this assumption is that lithium-ion cells can show a
rapid increase in their degradation rate past this point, which is often referred to as an aging knee or
nonlinear aging [24, 31]. Manufacturers often provide warranties that cover cells that fall below this
range of remaining capacity within the warranty period [32].

It is well understood and validated through cell aging studies that the rate of degradation depends
on stress factors such as the temperature (T cell), charge-discharge rate (Crate), state of charge (SOC),
and the depth of cycle (DOC) [33–38]. It has also been shown that the operating conditions influence
the onset of the nonlinear aging phase towards the EOL [39, 40]. Accounting for these stress factors
as part of the operation strategy is referred to as aging aware operation in this thesis. Compared to
other applications of lithium-ion cells, such as electric vehicles (EVs) or consumer goods, the stationary
applications that BESSs are used for have several key differentiating properties in terms of battery
degradation and the potential for aging aware operation:

• The cycle life requirements for many stationary applications exceed those of many EVs, especially
privately used ones: For residential storage systems used for self-consumption increase and large-
scale storage systems used for frequency containment reserve, Kucevic et al. identified a yearly
number of FECs in the range of 200 to 300 full equivalent cycles (FECs) per year, depending
on system sizing [41]. For privately used EVs, between 25 and 64 FECs per year were simulated
by Tepe et al. [42]. With regards to calendar life, large-scale BESSs are typically planned as
long-term assets of up to decades, as opposed to short-lived consumer goods such as cellphones
and laptops.

• A primary objective of the owner or operator in most stationary BESS applications is either
a form of revenue generation, like is the case for energy arbitrage or frequency containment
reserve, or cost reduction, such as for peak shaving or home storage systems. This provides an
incentive to directly account for degradation effects as part of the operation strategy and to
thereby optimize the long-term profitability of BESSs.

• Stationary applications have long been envisioned as a second-life usage scenario for decommis-
sioned batteries from EVs [43, 44]. While the future economic viability of this concept remains
uncertain today, detailed modeling and mitigation of degradation effects have been described
as one of the key areas that require more investigation to enable the profitability of second-life
applications [45, 46].

To summarize, aging aware operation promises longer lifetimes for lithium-ion cells, higher long-term
profitability of BESSs, and can be seen as an accelerator for successfully adopting second-life EV
batteries in stationary applications. In addition, while lithium-ion cell costs have decreased from an
estimated 535 $/kWh in 2013 to 107 $/kWh in 2023 [47], the carbon footprint of cell production and
the environmental impact of mining for the required resources remains a concern [48]. In this context,
the aging aware operation of BESSs can contribute to a more resource-efficient energy storage sector.
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1.2 Scope and outline of this work

This publication-based thesis focuses on developing methods and providing guidelines for the aging
aware operation of BESSs to prolong the lifespan of lithium-ion cells, increase the long-term prof-
itability of BESSs, and thereby enable a more resource-efficient energy storage sector. In particular,
contributions are made to the below four key areas:

• Comprehensive review: There is a significant amount of individual contributions in the field
of aging aware operation of BESSs, which mostly propose operation strategies for individual
applications with varying considered aging mechanisms. A comprehensive review can make the
topic accessible and actionable to a large audience and highlight gaps for future research.

• Framework for designing aging aware operation strategies: Since the existing literature focuses
on operation strategies for individual applications, a framework for designing and benchmarking
aging aware operation strategies can create comparability and simplify the validation process.
Furthermore, additional lifetime benefit is created by deriving the optimal aging cost with the
here developed framework as opposed to the prevalent assumption of basing aging cost on battery
or BESS investment cost.

• Consideration of uncertainty: While perfect foresight of future time series, e.g., electric load
forecasts, is a frequent assumption and deterministic aging models are often used in the existing
literature, real-world applications are subject to uncertainty in both.

• Nonlinear aging behavior towards the EOL: The nonlinear aging behavior of lithium-ion cells has,
to the knowledge of the author, not yet been considered in any previously existing publications
in the field of aging aware operation, but is gaining increasing importance with the ever-growing
and aging fleet of globally installed BESSs.

Figure 1.1 summarizes the overall structure of this work. Following this introduction, Chapter 2
describes the concepts and methods relevant to this thesis as well as the existing scientific literature of
the field. The individual publications which are part of this work are then presented in the subsequent
chapters.

Chapter 3 presents the first publication of this work: Aging aware operation of lithium-ion battery
energy storage systems: A review. In this publication, a literature review is performed that focuses
on the aging of lithium-ion batteries, degradation modeling approaches, and conclusions on both for
the aging aware operation of BESSs. Furthermore, the plentiful literature in the field of aging aware
operation of BESSs is summarized and categorized. Lastly, a case study is conducted to identify the
most relevant aging stress factors in different stationary energy storage applications.

In Chapter 4, an open-source model predictive control (MPC) framework for designing and bench-
marking aging aware operation strategies is presented, as part of the publication Increasing the lifetime
profitability of battery energy storage systems through aging aware operation. With this framework, it
is shown how the lifetime profit of BESSs can be increased by accounting for aging stress factors as
part of the operation strategy and by determining the optimal aging cost.

Chapter 5 focusses on uncertainty in two areas which are relevant for the aging aware operation of
BESSs. First, an aging aware operation strategy for peak shaving that accounts for uncertainty in
load forecasts is presented in the publication Reduction of battery energy storage degradation in peak
shaving operation through load forecast dependent energy management in Chapter 5.1. Following that,
the impact of uncertainty in degradation modeling on the techno-economic assessment of BESSs is
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investigated in the publication The economic impact of battery degradation modeling uncertainty in
Chapter 5.2.

In Chapter 6, the aging behavior and techno-economic performance of lithium-ion cells towards their
EOL is investigated as part of the publication Suitability of late-life lithium-ion cells for battery energy
storage systems. For that purpose, a physicochemical battery aging model is developed to model the
nonlinear aging phase with its increased degradation rate in typical stationary applications.

3. Aging aware operation of Li-Ion BESSs: A review
Collath, N., Tepe, B.; Englberger, S.; Jossen, A.; Hesse, H.: Aging aware operation of lithium-

ion battery energy storage systems: A review, in: Journal of Energy Storage 55.11, 2022
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Collath, N.; Cornejo, M.; Engwerth, V.; Hesse, H.; Jossen, A.: Increasing the 
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Figure 1.1: Graphical overview of this thesis.

Lastly, the thesis is concluded, and areas for future research are derived in Chapter 7. The Appendix
further includes two co-authored publications, which present relevant foundations to the main chap-
ters of this thesis. The open-source Simulation Tool for Stationary Energy Storage Systems (SimSES),
which is used as part of the simulation toolchains in the above publications and further developed
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throughout this thesis, is presented in SimSES: A holistic simulation framework for modeling and ana-
lyzing stationary energy storage systems in Appendix A. Furthermore, the development and parameter-
ization of the aging model that is used in Chapter 5.2 is presented in the publication Machine-learning
assisted identification of accurate battery lifetime models with uncertainty in Appendix B.
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2 Fundamentals of aging aware operation of battery
energy storage systems

2.1 Stationary energy storage applications

Applications for stationary energy storage systems are frequently categorized into front-of-the-meter
(FTM), behind-the-meter (BTM), and microgrid applications based on their point of effect in the
electricity grid [18]. Table 2.1 summarizes key applications of BESSs.

Table 2.1: Key applications for BESSs, adapted and based on [18, 20].
Type Application Financial incentive

Front-of-the-meter
(FTM)

Energy arbitrage Profit through arbitrage trad-
ing on wholesale energy markets,
e.g., the European Power Ex-
change (EPEX)

Balancing power Remuneration through the re-
spective balancing power mar-
kets, e.g., Frequency Contain-
ment Reserve in Germany or
Firm Frequency Response in the
United Kingdom

Transmission & distribution
system

Investment deferral or replace-
ment of traditional grid expan-
sion

Colocation with renewables Time arbitrage, correction of
forecast errors, or ramp control

Behind-the-meter
(BTM)

Self-consumption increase of
PV energy

Reduced electricity cost

Peak shaving Reduced demand charges
Time-of-use Reduced electricity cost

Microgrid Off-grid operation with re-
newable energy sources

Potential for lower cost com-
pared to diesel generators

Backup power Provision of backup power for
critical loads

Combined applications Multi-use, vehicle-to-grid
(V2G), and aggregation
concepts

Additional profit compared to
serving only a single application

FTM applications serve the electricity grid in front of the electricity meter, i.e., upstream of household
or industrial sites [49]. Energy arbitrage refers to using a BESS to trade electricity in the wholesale
electricity markets, such as the EPEX, and generating a profit by buying at low and selling at high
prices. When providing balancing power, a BESS is discharged if the grid frequency is below a certain
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frequency threshold and charged if it is above the threshold to stabilize the grid frequency and balance
out electricity generation and consumption. In many liberalized electricity markets, public auctions
determine which individual assets provide this service at what price [50]. Examples are the auction
for Frequency Containment Reserve in Germany [51] and Firm Frequency Response in the United
Kingdom [52]. In transmission & distribution system applications, BESSs may be operated by
network operators directly to relieve congested lines or reduce peak loads [53, 54]. This, in turn, allows
to defer or replace investments for traditional grid reinforcements, such as new transmission lines,
switchgear, and transformers [17]. Colocation with renewables refers to applications in which
BESSs are located on the same site as renewable energy resources to perform time arbitrage and ramp
control or to balance out forecast errors of the generated electricity [18].

BTM applications serve households or industrial sites behind the electricity meter [55]. By charging
a BESS when the generated PV power exceeds the electrical load and discharging it when the load
exceeds the generated PV power, a self-consumption increase of PV energy can be achieved. If
the remuneration for PV energy is lower than the cost of electricity from the grid, this increase in self-
consumption results in overall reduced electricity cost [56]. In multiple electricity markets, industrial
electricity consumers are subjected not only to a price for the amount of electrical energy consumed but
also to demand charges for the maximum power peak generated in a given time period [55]. Through
peak shaving, i.e., discharging a BESS during power peaks and charging it again afterward, the
power peak and thereby the demand charges can be reduced [57, 58]. For electricity consumers with
time-of-use pricing, using a BESS to shift electricity consumption to times with low electricity prices
can further reduce overall electricity cost [55].

In microgrid applications, BESSs form or support a local grid separate from the public electricity
grid [18]. In off-grid operation with renewable energy sources, such as PV systems, BESSs can
be a cost-competitive option compared to solely relying on diesel generators, especially in locations
with high fuel cost [59, 60]. Furthermore, BESSs can provide backup power to critical loads, such
as data centers, during outages of the public electricity grid [61].

Combined applications refers to different concepts of serving more than one application. The term
multi-use is frequently used to describe using a single BESS for multiple FTM applications, BTM
applications, or a combination of both, which generally promises higher profits than serving only a
single application [62, 63]. In V2G, controlled charging and discharging of electric vehicles is used
to serve grid-related applications, such as providing balancing power [64]. Aggregation of multiple
BESSs to a virtual power plant with generators and loads may be used for a more economic dispatch
as well [65].

Electricity markets are designed markets resulting from regulatory processes, with different market
designs in different countries and regions [66]. Therefore, the relevant BESS applications and their
constraints vary geographically [18]. Additional geographical factors such as the PV generation poten-
tial or the strength of the existing electricity grid further affect the local prevalence of individual BESS
applications [18]. In this thesis, the German electricity market and its local constraints serve as a basis
for the techno-economic analyses of aging aware operation in different BESS applications. Due to their
prevalence in Germany, four applications are repeatedly investigated in the individual publications of
this thesis: energy arbitrage, balancing power, peak shaving, and self-consumption increase. These
applications are described in detail in the following, along with their Germany-specific constraints.
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2.1.1 Energy arbitrage
The EPEX SPOT is Europe’s largest electrical power exchange, offering day-ahead and intraday trad-
ing. In 2021, a total of 498 TWh of electricity was traded on the day-ahead market and 123 TWh
on the intraday market [67]. The day-ahead market is organized as a blind auction, closing daily at
noon at 12:00 CET on the day before delivery [67]. Hourly contracts for each hour of the following
day can be traded, as well as different variations of blocks that cover multiple hours [67]. For 2021 in
Germany, an average price of 96.8 EUR/MWh was reached in the day-ahead auction with a minimum
price of -69.0 EUR/MWh on the 22nd of May at 13:00 and a maximum price of 620.0 EUR/MWh on
the 21st of December at 17:00 [68]. The intraday continuous market opens at 15:00 CET the day
before delivery and offers hourly, half-hourly, and 15-minute contracts [67]. A trade is executed as
soon as two orders match in the EPEX order book, and orders can be placed up until 5 min before
delivery [67]. Due to the nature of this continuous trading, an individual price exists for each trade.
EPEX publishes different price indices, such as the ID-1 price index, which is the average price of
all trades executed within 1 hr before delivery [69]. In 2021 in Germany, the average ID-1 price for
15-minute-contracts was at 97.1 EUR/MWh, with a minimum of -122.9 EUR/MWh on the 9th of May
at 13:00 and a maximum of 942.4 EUR/MWh on the 14th of August at 19:45 [68]. In addition to the
continuous trading, an intraday auction allows bids to be placed for 15-minute contracts and closes
daily at 15:00 CET for the following day [67].

BESSs can be used to buy electricity at low prices and sell it at high prices, thereby performing energy
arbitrage. If a given trade is compensated before delivery, e.g. buying 1 MWh at 08:30 for delivery
at 14:00 on the intraday market and then selling 1 MWh again at 09:30 for delivery at 14:00, a profit
may even be generated without having to charge or discharge the BESS [70]. Due to the different
available products, markets, and timelines, there is a large degree of flexibility for the operator to
find the optimal charge-discharge schedule. Generally, higher profits can be achieved by using all
available markets, i.e., the day-ahead auction, intraday continuous markets, and the intraday auction,
when performing energy arbitrage with a BESS [71]. Consideration of efficiency and battery aging is
particularly relevant in this application. Higher energetic losses will translate directly into reduced
profits as additional energy must be procured to cover these losses [72, 73]. Compared to other
stationary applications, energy arbitrage has higher charge-discharge rates, resulting in high energetic
losses on a battery cell level [74]. From a battery aging perspective, higher profit can be reached by
conducting more charge-discharge cycles in a given year, but this will also cause increased aging and a
premature EOL of the cells [70]. Depending on the operator, the resulting charge-discharge schedule
of a BESS used for energy arbitrage can result from a human trader, different optimization approaches
for automated trading, or a combination of both.

Multiple publications provide advanced optimization methods that consider the uncertainty of future
prices and participation in multiple markets, such as by Finnah et al. [75] and Löhndorf et al. [76],
but do not explicitly account for battery aging. In this thesis, energy arbitrage is modeled through
optimization with a mixed integer linear program (MILP) with perfect foresight of the 15 min ID-1
intraday continuous price in Chapter 4 and Chapter 6. The focus in those chapters lies on methods
and guidelines for aging aware operation that can be transferred to other trading algorithms as well.

2.1.2 Balancing power

With the Continental Europe Synchronous Area (CESA), continental Europe has the world’s largest
synchronous electrical grid by connected electrical power [77]. The cooperation of the individual
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transmission system operators (TSOs) of this synchronous grid area is managed through the European
Network of Transmission System Operators for Electricity (ENTSO-E) [77]. The ENTSO-E describes
balancing as all actions and processes through which TSOs maintain the system frequency within a
predefined stability range [78]. Due to historical developments and different approaches, the processes
and products to balance the system can vary between different TSOs [78].

In Germany, which is part of the CESA, balancing the electricity grid is managed by its four TSOs:
50Hertz, Amprion, Tennet, and TransnetBW [51]. The balancing market is structured into three prod-
ucts with different time scales and constraints for participation: FCR, automatic Frequency Restora-
tion Reserve (aFRR), and manual Frequency Restoration Reserve (mFRR). Frequency Containment
Reserve (FCR) needs to be fully available after 30 s and is provided for up to 15 min. It is provided
by all participating assets based on on-site frequency measurements [51]. After 5 min, it is replaced
by aFRR, which is automatically activated by the responsible TSO through communication interfaces
to the participating assets [51]. mFRR is then manually managed by the responsible TSO and fully
activated after 12.5 min [51].

Out of these three balancing products, BESSs are most commonly used to provide FCR [79]. FCR
is awarded through a public auction with 4 hr time blocks and 1 MW minimum bid sizes in which
all prequalified assets can participate. Based on the publicly available auction results, the average
price for a 4 hr time block was 68.80 EUR/MWh in 2021 [51]. If awarded, the respective assets must
provide FCR for the 4 hr time block by following the requirements outlined in the prequalification
conditions. At its core, the target charge power pBESS,target of a BESS providing FCR has to follow
a droop curve based on the difference between the measured frequency f and the target frequency of
50 Hz, ∆f = f − 50 Hz, and the prequalified power PPQ [51]:

pBESS,target =


PPQ · ∆f

0.2 Hz , |∆f | ≤ 0.2 Hz

PPQ ,∆f > 0.2 Hz

−PPQ ,∆f < −0.2 Hz

(2.1)

While conventional generators such as coal or gas power plants have few limitations in following this
droop curve indefinitely, managing the SOC is of specific relevance for BESSs [79]. Through storage
management activities, the operator has to ensure that the BESS is in a SOC range in alignment with
the prequalification requirements to provide FCR when required [80]. For that purpose, scheduled
charge and discharge transactions through trading electricity on the respective markets can be used [80].
However, it is often profitable for the operator to first use the so-called degrees of freedom that
the prequalification conditions provide to keep the SOC close to its intended setpoint before using
scheduled transactions [79]. These degrees of freedom are a deadband of 10 mHz around 50 Hz, in
which Equation 2.1 does not need to but can be followed, the possibility to overfulfill the target power
from Equation 2.1 by up to 20 %, and the option to provide FCR faster than the required linear ramp
of full provision after 30 s [79, 80]. Furthermore, the German TSOs have specific requirements for
sizing energy storage resources for FCR provision. These requirements consider the energy required
for delivering the prequalified power for the required 15 min, the energy required from a previous
activation, delayed effects of SOC management, and additional capacity for reserve operation [80].
Based on the present prequalification conditions, this results in a minimum of 0.91 MWh required
energy capacity per 1 MW prequalified power [80].

Due to the strict requirements that are outlined in the prequalification conditions, FCR provides
less flexibility with regard to the operation strategy than performing energy arbitrage. Individual
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scientific publications however investigate how to optimally use the degrees of freedom and scheduled
transactions for managing the SOC, such as by Thien et al. [79], Zeh et al. [81], and Marchgraber
et al. [82]. In this thesis, FCR in Germany is used as a reference application in both Chapter 3 and
Chapter 5.2, as implemented in SimSES [83]. Two degrees of freedom, i.e., the deadband of 10 mHz
around 50 Hz and the option of 20 % overfullfillment, are considered as part of the operation strategy,
as well as storage management through trading on the the intraday market.

2.1.3 Peak shaving
The electricity cost for industrial consumers in Germany consists of multiple components: cost for
procuring electricity from the energy provider, grid fees, and electricity tax [84]. In addition, mul-
tiple levies resulting from subsidies further increase the cost, namely the combined heat and power
act (Kraft-Wärme-Kopplungsgesetz) (KWKG) levy, §19 ordinance on grid charges (Stromnetzent-
geltverordnung) (StromNEV) levy, the offshore grid levy, and the levy for curtailable loads [84]. How-
ever, the largest cost components are the cost of procuring electricity from energy providers and grid
fees [84]. The cost structure for grid fees generally has two components: a fee for each unit of energy
used from the grid plus a demand charge for the highest load peak caused in a given billing period [85].
The cost structure further depends on the hours-of-use, defined as the yearly electricity consumption
divided by the maximum load peak [85]. For Munich in 2024, the grid operator set the yearly demand
charges at 193.62 EUR/kW/a on the low voltage grid and 153.88 EUR/kW/a on the medium voltage
grid for consumers with more than 2500 hours-of-use [86]. By comparison, for Hamburg in 2024, these
yearly demand charges were set significantly lower, with 61.60 EUR/kW/a on the low voltage grid and
59.67 EUR/kW/a on the medium voltage grid [87].

By reducing the maximum load peak in a given billing period through peak shaving with a BESS, i.e.,
discharging the BESS during load peaks and charging it afterward, the demand charges and thereby
the overall electricity cost can be reduced [88]. Two corner cases can make peak shaving with a BESS
even more profitable: intensive grid usage and atypical grid usage [88].
Under §19 StromNEV [85], grid operators have to offer electricity consumers customized grid fees
if they have more than 7000 hours-of-use a year and a yearly electricity consumption of more than
10 GWh, which is referred to as intensive grid usage [88]. These customized grid fees can be up to
80-90 % lower than the public grid fees of that grid operator [85]. Depending on the load profile, a
BESS may be used to smooth the load, reach the 7000 hours-of-use, and make the electricity consumer
eligible for customized grid feeds under the intensive grid usage ruling [88].
Atypical grid usage refers to shifting the load towards time periods of overall low grid usage. Each
distribution grid operator defines high load time periods during which high grid usage is expected in
the following year, e.g., between 16:30 and 19:00 during winter months [88]. If an industrial electricity
consumer classifies for atypical grid usage, demand charges are calculated only based on the highest
load peak within these time periods, which can lead to a significant demand charge reduction [88]. To
classify, the highest load peak during the high load time periods needs to be 20 % below the highest
load peak outside of the high load time periods [88]. If the BESS is then only required to perform
peak shaving during high load time periods, it may be used for other applications such as providing
FCR outside of those time periods [88].

The charge-discharge profile of the BESS in a simple peak shaving operation strategy results from the
difference between the set power limit for peak shaving P peak and the site load pload:

pBESS,target = P peak − pload (2.2)
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Following this power target, the BESS will discharge during a load peak that exceeds P peak until it
is fully discharged and charge after the load peak until it is fully charged again or another load peak
occurs. To determine the optimal peak shaving limit P peak and for sizing the BESS, optimization
approaches or heuristics may be used [13, 58]. Many scientific publications however assume perfect
foresight of the future load, when deriving the peak shaving limit, e.g., [58, 89, 90]. In Chapter 5.1, an
aging aware operation strategy for peak shaving is proposed that includes a method for handling load
forecast uncertainty. Furthermore, peak shaving in Germany without intensive and atypical grid usage
is used as a reference application to assess the battery aging behavior and the relevance of individual
aging stress factors in Chapter 3 and Chapter 5.2.

2.1.4 Self-consumption increase

Germany is Europe’s largest market for home storage systems [91]. An estimated 59 % of the total
2.3 GWh of home storage systems installed in Europe in 2021 were installed in Germany [91]. In
combination with a PV system, the financial benefit for households lies in the difference between
electricity cost and the PV feed-in tariff. The average electricity cost for households in Germany in
2022 was 38.57 ct/kWh [84]. On the other hand, the feed-in tariff for PV systems smaller than 10 kW
peak constructed in January 2022, was at 6.83 ct/kWh [92]. For every kilowatt-hour of PV-generated
electricity that can be used to cover the household load directly instead of being fed into the grid, a
cost-benefit of 31.74 ct is generated for the household. A BESS can be used to charge in times of excess
PV power and discharge when the household load exceeds the generated PV power, which is referred
to as self-consumption increase. For a so-called greedy [41] operation strategy, the target BESS charge
power is the difference between the generated PV power pPV and the household load pload:

pBESS,target = pPV − pload (2.3)

With this operation strategy, the BESS will charge until it is fully charged if the generated PV power
is larger than the load and discharge until it is fully discharged when the household load is larger than
the generated PV power. Instead of this greedy operation strategy, forecast-based operation strategies
have been proposed to reduce battery aging in this application, i.e., by charging the BESS during
the day only up to the energy that is expected to be needed at night [93]. Other authors proposed
forecast-based operation strategies with the intention of limiting the power peaks that are generated
by PV power that is being fed back into the distribution grid [94].

Early publications from the years 2014-2016 can be found that focus on the optimal sizing [95, 96] and
the general techno-economic assessment [56] of home storage systems for self-consumption increase
in Germany. Since then, the installed capacity of home storage systems in Germany has increased
significantly which highlights their attractiveness and technological maturity. While at the end of 2016,
only 367 MWh of home storage systems were registered in Germany, this number increased to 5.5 GWh
by the end of 2022 [9]. Larger BESSs for self-consumption increase could also be used by industrial
consumers with on-site PV systems. However, since the difference between electricity cost and the PV
feed-in tariff is significantly smaller for industrial electricity consumers than for private households,
self-consumption increase with BESSs is less attractive for industrial electricity consumers [97].

In this thesis, self-consumption increase with a representative home storage system serves as a reference
application in Chapter 3, Chapter 5.2, and Chapter 6. In these chapters, the application is investigated
with a focus on battery aging and its stress factors.
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2.2 Battery energy storage systems

In this chapter, the structure and components of a BESS as well as developments in those are first
described in Chapter 2.2.1, before the modeling approach used in this thesis is presented in Chap-
ter 2.2.2.

2.2.1 Structure and components

BESSs vary in their physical layout and design. Existing installations range from small-scale home
storage systems with only a few kilowatt-hours of capacity to large-scale, highly modular systems with
up to gigawatt-hours of capacity on a single site. The average size of home storage systems that
were installed in Germany in 2022 was at 5.3 kW nominal power and 8.8 kWh nominal energy [9]. In
the same year, a total of 434 MW and 467 MWh of large-scale BESSs was installed in Germany with
widely varying sizes of the individual sites [9]. Internationally, by the end of 2017, the Hornsdale Power
Reserve in South-Australia was reported as the largest BESS at the time with a nameplate rating of
100 MW and 129 MWh [98]. At the end of 2023, the largest BESS, the Moss Landing Energy Storage
Facility in California, was more than one order of magnitude larger in terms of storage capacity, with
a nameplate rating of 750 MW and 3 GWh [99].

Figure 2.1 shows a schematic overview of a BESS with its key components. The core component of
every BESS are the battery modules, consisting of individual battery cells. Multiple battery cells
are connected in series and parallel to increase the voltage level and achieve the desired capacity.
For lithium-ion cells, different typical form factors exist, i.e., prismatic, cylindrical, and pouch bag
cells [100]. Typical cell chemistries are lithium iron phosphate (LFP), lithium nickel manganese cobalt
oxide (NMC), and lithium nickel cobalt aluminium oxide (NCA), which specify the employed cathode
material type [101]. Lithium-ion cells and especially their aging behavior are described in more detail
in Chapter 2.3.

BMS

EMSTMS

Battery module(s)

AC/DC converter(s)

HVAC

Grid / site 

DC/DC converter(s)

Figure 2.1: Schematic representation of a BESS with its key components. Every grid-connected BESS
consists of, at a minimum, the battery module(s), AC/DC converter(s), a BMS, and an
EMS. Other components are optional and dependent on system design, i.e., DC/DC con-
verter(s), a TMS, and HVAC.
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The AC/DC converters convert the direct current (DC) voltage provided by the battery modules
to the required alternating current (AC) voltage at the grid connection point. They further con-
trol the power flow from and to the battery modules. If connected to the public grid, the AC/DC
converters have to comply with the grid code of the local distribution network operator, which of-
ten entails requirements such as low-voltage fault ride-through capabilities and delivering a specific
power factor [102, 103]. Multiple suitable converter topologies have been proposed for energy stor-
age applications in the scientific literature, which Pires et al. categorized into standard, multilevel,
and multiport technologies [104]. In the review by Wang et al. of commissioned BESSs, all listed
sites used the topologies of either two-level converters or three-level converters [105]. In comparison,
advanced converter topologies such as the modular multilevel converter promise higher efficiency and
modularity [105, 106].

The energy management system (EMS) processes the charge-discharge signals for the BESS and
serves as a communication interface for remote control and monitoring of the system. Its implementa-
tion is application and design-specific. For a home storage system used for self-consumption increase,
the EMS will typically, among others, process the measurements from electricity meters at the PV
system and the household electrical distribution panel, calculate the power target as in Equation 2.3,
and pass it on the power electronics.

The battery management system (BMS) measures the relevant data points of the battery mod-
ules, e.g., temperatures, voltages, and currents, and ensures the safe operation of the modules [107].
Through communication of the BMS with the power electronics, safety-critical over-discharging and
over-charging of the battery modules has to be prevented [107–109]. Furthermore, the BMS is used
for state estimation of the battery modules, e.g., to estimate the SOC and state of health (SOH) [110].
While this state estimation may be performed onboard, cloud-based methods for state estimation have
recently received increased attention in the literature, with the advantage of being able to rely on
higher computational power and larger data-storage capabilities while allowing to aggregate data from
multiple BESSs [110, 111]. Some BMS functions may be expanded by a central EMS, e.g., calculating
a site-wide SOC or determining the site-wide maximum charge and discharge power based on the val-
ues from the individual BMSs of multiple battery modules. Lastly, SOC balancing of cells connected
in series is another critical function of the BMS. Cells connected in series deviate in their SOC due
to manufacturing inconsistencies, inhomogeneous temperature distributions, or different SOH values,
which leads to the cell with the lowest SOC or highest SOC limiting the accessible discharge or charge
capacity of the entire serial connected string [112]. SOC balancing may be performed through passive
methods, i.e., dissipating energy from the cells that are at a high SOC through bleed resistors, or
active methods, i.e., charging the cells that are at a low SOC with energy from the cells which are at
a high SOC [112].

In addition to the above, some components are optional and dependent on system design, such as
the thermal management system (TMS) and heating, ventilation, and air conditioning
(HVAC) system. While small home storage systems often do not include active temperature manage-
ment of the battery modules, large-scale BESSs typically do [113]. The temperature of lithium-ion cells
significantly impacts their performance, with the optimal temperature range typically stated between
15°C and 35°C [114]. High temperatures cause increased cell degradation from SEI growth and increase
the risk of thermal runaway [113, 114]. Low temperatures will lead to a higher cell resistance, lower
efficiency, and an increased risk of lithium plating [113, 114]. During operation, the battery modules
can generate significant excess heat from cell internal losses, which needs to be dissipated [115, 116].
Furthermore, the AC/DC converters require active cooling [115]. In particularly cold climates, active
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2.2 Battery energy storage systems

heating of the battery modules may further be required [117]. Heat exchange with the battery modules
can then be performed through air cooling or liquid cooling [118].

Furthermore, DC/DC converters may be used as part of a BESS to step up the DC voltage and to
connect multiple battery modules on one DC-bus before connecting to an AC/DC converter. While
more power electronic equipment is required with this approach, it promises higher modularity and
the ability to operate the individual battery modules independently of each other [105].

Lastly, the term balance of system equipment summarizes the additional equipment required for a BESS
installation, such as enclosures for the battery modules and converters, electrical wiring, and control
circuits [101]. Transformers are typically required as well to connect from the AC/DC converters to
medium voltage or high voltage grids for larger BESSs. However, transformer-less concepts have been
proposed in the scientific literature, such as the cascaded H-bridge converter, which can generate a
sufficiently high voltage to connect to a medium voltage grid without an additional transformer [103].

For a representative lithium-ion BESS in the United States of America with a rating of 60 MW and
120 MWh installed in 2021, Augustine et al. estimated the total cost at 428 $/kWh [101]. Out of this,
50.2 % are attributed to the battery modules, 8.6 % to the central AC/DC converters, 12.9 % to the
balance of system equipment, 9.1 % to the construction and related overhead cost, and lastly, 19.2 %
to project development cost and profit, as well as sales tax [101].

2.2.2 Modeling of battery energy storage systems

Different software tools can be found for the technical and economic modeling of BESSs. These tools
typically model the individual components of a BESSs with varying degrees of complexity as well
as the interaction of these components. Some tools provide functionalities to model different energy
storage applications and perform techno-economic analyses of BESSs in these applications. Examples
are the Storage Value Estimation Tool (StorageVET) by the Electric Power Research Institute [119]
and System Advisor Model (SAM) by the National Renewable Energy Laboratory [120]. In this thesis,
the open-source SimSES, distributed by the Chair of Electrical Energy Storage Technology at the
Technical University of Munich, is used and further developed [83]. SimSES is described in detail in
the associated co-authored publication in Appendix A.

The primary components modeled in SimSES in this thesis are the AC/DC converters, the lithium-
ion cells, the BMS, and the EMS. DC/DC converters are not modeled for the representative BESSs
that are used in the individual publications of this thesis. Furthermore, the TMS and HVAC are not
modeled, and instead, a representative constant cell temperature of 25°C is assumed.

The efficiency of AC/DC converters is a function of the requested power. Characteristically, the
efficiency is especially low for small requested power values and shows a maximum at a requested
power value below its nominal power [105]. In SimSES, this is modeled through efficiency curves. In
the case studies of this thesis, the AC/DC converter in the publication by Notton et al. of ”type 2” is
used with the below efficiency curve [121]:

η =
p
Pn

p
Pn + k1,ACDC + k2,ACDC ·

(
p
Pn

)2 (2.4)

Here, p is the requested power, P n is the nominal power of the AC/DC converter, and k1,ACDC and
k2,ACDC are fitting factors.
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2 Fundamentals of aging aware operation of battery energy storage systems

For the lithium-ion cells, two modeling approaches are used in this thesis: First, equivalent-circuit
models combined with semi-empirical degradation models, and second, a physicochemical cell and
degradation model. Both approaches will be described in Chapter 2.3.3. The BMS in SimSES is
linked to the cell model and ensures that the critical cell parameters of maximum charge and discharge
current and maximum and minimum voltage remain in the permissible range by limiting the requested
charge and discharge signals as required.

The EMS in SimSES calculates the target power of the BESS pBESS,target for each timestep for the
selected application. The self-consumption increase, peak shaving, and FCR application investigated
in this thesis are all modeled in SimSES directly, including the newly developed aging aware peak
shaving strategy in Chapter 5.1. For the energy arbitrage application, the MPC framework developed
in Chapter 4 is used, which determines the power target based on different optimization models but
uses SimSES as an external package to model the system response for the next timestep.

2.3 Lithium-ion cells

Lithium-ion cells are composed of multiple layers of material wound up or stacked in a cell enclo-
sure [122]. The electrolyte-filled layered structure of a typical cell consists of the anode current col-
lector, the anode active material, the separator, the cathode active material, and the cathode current
collector. The performance and aging behavior of a lithium-ion cell are strongly influenced by the
anode active material, the cathode active material, the electrolyte, and the resulting interactions of
those components [24, 123].

The most common materials for the cathode active material of lithium-ion cells that are used in BESSs
are the three metal oxides NMC, NCA, and LFP [101]. While many existing BESSs have battery
modules based on NMC cells, LFP cells are now more frequently used for new BESS installations [101].
The anode is often made out of graphite, however, commercial cells with silicon-graphite composite
anodes are increasingly found [24]. The electrolyte usually consists of lithium salts, e.g., lithium
hexafluorophosphate (LiPF6), in a carbonate solvent, such as mixtures of ethylene carbonate, dimethyl
carbonate, propylene carbonate, diethyl carbonate, and/or ethyl methyl carbonate [124]. Different
additives may be added to the electrolyte that can positively affect the cell lifetime [125].

Here, the aging behavior of lithium-ion cells is described Chapter 2.3.1 and Chapter 2.3.2. Following
that, the cell and degradation modeling approaches used in this thesis are presented in Chapter 2.3.3.

2.3.1 Aging mechanisms and stress factors

Aging mechanisms of lithium-ion cells are often grouped based on their effect on the core components
of a cell into four aging modes: loss of lithium inventory (LLI), loss of active material on the negative
electrode (LAMNE), loss of active material on the positive electrode (LAMPE), and resistance increase
(RI) [24, 25, 126]. LLI refers to the loss of previously cyclable lithium to side reactions, which reduces
the available cell capacity [24, 25, 126]. Aging mechanisms that lead to RI increase the cell resistance
or impedance, which decreases the available charge and discharge power in high and low SOC ranges,
respectively, and increases energetic losses [24, 25]. LAMNE and LAMPE refer to the active material of
the anode and the cathode not being available for the insertion of lithium anymore, which can reduce
the available cell capacity as well [24, 25, 126]. Some authors propose additional degradation modes
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2.3 Lithium-ion cells

to summarize the effects of aging mechanisms, such as the loss of electrolyte [24] and stoichiometric
drift [25].

Section 2 of the publication presented in Chapter 3 explains the relevant aging mechanisms of commonly
used lithium-ion cells and their stress factors in detail. Here, a summary is provided. Figure 2.2
provides a schematic overview of the predominant aging mechanisms in lithium-ion cells with graphite
anodes and metal oxide cathodes. On the anode, these mechanisms are SEI growth, lithium plating
& dendrite growth, and particle cracking & graphite exfoliation. On the cathode, the predominant
aging mechanisms depend on the used material [25]. For the commonly used metal oxides of NMC,
NCA, and LFP, these mechanisms can be summarized as particle cracking, structural disordering,
transition metal dissolution, and formation of the cathode electrolyte interface [24, 127]. Table 2.2
briefly describes these aging mechanisms on the anode and cathode and their impact. Further possible
aging mechanisms not explained in detail here include electrolyte decomposition and loss, phase change
to the cathode lattice, binder decomposition, and current collector corrosion [25, 126, 128].
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Figure 2.2: Schematic illustration of the predominant aging mechanisms in lithium-ion cells with
graphite-based anodes and metal oxide cathodes [31].

The rate at which the above aging mechanisms progress depends on multiple factors, which include
the active material type, material quality, production quality, and cell design parameters, such as the
electrode thickness and the selected electrolyte additives [24]. Most notably, the degradation rate
depends on the operating conditions and can, therefore, be directly affected through the operation
strategy. Figure 2.3 depicts the relevant stress factors that affect calendar and cyclic aging in the main
operation phase. A distinction is made with regards to the nonlinear aging behavior that can occur
towards the EOL and is described in Chapter 2.3.2.

Calendar aging refers to those aging mechanisms that occur regardless of the battery being cycled or
not, such as the continued growth of the SEI [31]. Calendar aging progresses with time and faster at
high cell temperatures T cell and a high SOC [34, 35].
Cyclic aging refers to those aging mechanisms that occur as a consequence of cycling a battery cell, such
as particle cracking, solid electrolyte interphase re-formation at newly exposed anode surface areas,
and lithium plating [31]. Cyclic aging progresses with the growing number of charge/discharge cycles,
or FECs, and tends to accelerate when cycling at a high Crate [38, 129] and a high DOC [130–132].
In addition, both high and low cell temperatures [129, 133] and cycling a battery cell in particularly
straining SOC ranges that lead to high volume expansion of the anode material [34, 131, 134] can
accelerate cyclic aging. Furthermore, the operating voltage window of a battery cell influences its
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2 Fundamentals of aging aware operation of battery energy storage systems

Table 2.2: Predominant anode and cathode aging mechanisms. Summarized from [31].
Mechanism Impact Description

Anode SEI growth LLI, RI •Passivation layer forming on the anode surface
through reduction of the electrolyte.

•Grows over lifetime and consumes lithium.
Lithium plating LLI •Metallic lithium forming on the anode surface

instead of intercalating into the anode.
•Partially reversible through lithium stripping.
•Dendrite growth may lead to internal shorts.

Particle cracking &
graphite exfoliation

LAMNE,
LLI

•Caused by volume change, solvent
co-intercalation, or gas-evolution.

•Leads to electric contact loss (LAMNE), trapped
lithium (LLI), and additional SEI forming at
newly exposed anode surface area.

Cathode Particle cracking LAMPE,
LLI

•Caused among others by volume change during
cycling.

Structural disorder-
ing

LAMPE,
RI

•Li+ ions exchanging spots with transition metal
ions in the cathode material.

Cathode electrolyte
interface growth

LAMPE,
RI

•Formation of a passivation layer on the cathode
surface, similar to the SEI but typically thinner.

Transition metal
dissolution

LAMPE •Dissolution of transition metals from the
cathode, which can migrate to the anode and
cause additional SEI growth.

degradation rate. A high charge cut-off voltage [135, 136] and a low discharge cut-off voltage [135,
137] can lead to a significantly higher degradation rate.
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Legend:
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Figure 2.3: Relevant aging stress factors during the main operation phase and their effect [31].

However, calendar and cyclic aging stress factors are not independent of each other. The chronological
order in which a cell is subjected to stress factors can affect its aging trajectory, which has been referred
to as path-dependence [138–140]. Nevertheless, structuring stress factors into calendar and cyclic aging
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2.3 Lithium-ion cells

is a valuable concept for BESS operation, which is used as an underlying structure for many aging
models [141, 142].

2.3.2 Aging over a cell’s lifecycle and nonlinear aging

The possible dominant aging mechanisms vary over a lithium-ion cell’s lifecycle as summarized in
Figure 2.4. The initial SEI is formed during cell formation as one of the most costly manufacturing
steps [143, 144], during which a significant amount of cyclable lithium is consumed. In the main
operation phase, the SEI continues to grow, both over time and accelerated through cracking from
volume expansion and contraction of the anode [31]. At the same time, particle cracking and contact
loss from volume expansion lead to loss of active material (LAM) on both the anode and the cathode,
and cathode structural disordering and transition metal dissolution may take place [31]. After extended
periods of operation, lithium-ion cells often show a steep increase in their degradation rate. This is
named the nonlinear aging phase by multiple authors [39, 145–147] and the onset of this phase is
frequently labeled a capacity knee due to its form [148]. The rapidly decreasing capacity can coincide
with a rapidly increasing cell resistance, i.e., a resistance elbow [148]. In their recent review, Attia
et al. grouped the aging mechanisms and their interactions that can cause nonlinear aging into six
aging pathways: lithium plating, electrode saturation, electrolyte and additive depletion, mechanical
deformation, percolation-limited connectivity, and resistance growth, which are summarized in the
following [148].
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Figure 2.4: Schematic depiction of capacity loss and possible dominant aging mechanisms over a cell’s
life cycle for graphite anodes and metal oxide cathodes. Adapted from [31].

Lithium plating can occur on the anode when charging a lithium-ion cell at high currents, low
temperatures, high SOC values, or a combination of all, with the specific limits being highly dependent
on the cell design [148]. Lithium plating of pristine cells and its prevention is primarily a concern for
fast-charging applications, e.g., for EVs [149]. Typical stationary BESS applications subject the cells
to significantly lower charge rates than those that are used for EV fast charging [31, 53]. However,
for BESSs, lithium plating of pristine cells can still be a concern in regions where cold climates lead
to low cell temperatures [117, 150]. This must be prevented by derating the permissible charge power
with the BMS for low cell temperatures combined with an appropriate TMS to heat the cells.
For aged lithium-ion cells, lithium plating can occur as a consequence of LAMNE in two ways: First,
lithium plating can occur if, due to excessive LAMNE, the negative electrode becomes the limiting
component during charging and cannot accommodate the remaining lithium inventory anymore [151,
152]. This will lead to a steep increase in the degradation rate, which results in a capacity knee once the
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2 Fundamentals of aging aware operation of battery energy storage systems

anode becomes the limiting component [151, 152]. Second, the local current density of the remaining
anode active material increases if LAMNE takes place, which leads to lithium plating already occurring
for lower cell charge currents and higher temperatures [148]. This can show as a capacity knee once
significant lithium plating occurred during standard operating conditions [148].
In addition, lithium plating may occur in aged lithium-ion cells as a consequence of extensive SEI
growth, which then leads to a self-reinforcing process of lithium plating [39, 145, 146]. The SEI
reduces the anode’s charge-transfer kinetics and can induce pore clogging, which is hypothesized to
cause lithium plating even for moderate charging conditions in aged cells [39, 145, 146]. If the plated
lithium is isolated by the formation of additional SEI around it, this leads to a further deterioration
of the anode’s charge-transfer kinetics and more pore clogging, which promotes additional lithium
plating [145, 146].

Electrode saturation of the anode or the cathode can lead to a nonlinear aging trajectory as
well [148]. As mentioned above, if the anode cannot accommodate the remaining lithium inventory
due to excessive LAMNE, this can lead to lithium plating. For this to occur, LAMNE needs to outpace
LLI. Therefore, this trajectory is more likely when cycling at low temperatures since only slow LLI
from SEI growth is expected for low temperatures, for poorly manufactured graphite anodes, and for
graphite anodes with significant silicon content [148]. Similarly, a nonlinear aging trajectory may be
observed once the cathode becomes the limiting component after extended cycling if LAMPE outpaces
LLI [148, 153, 154].

Electrolyte and additive depletion may lead to nonlinear aging by causing either LAM or lithium
plating [148]. Consumption of the electrolyte and its additives can be driven by side reactions such
as SEI growth or local gas generation [148]. Fang et al. proposed that local electrolyte dry-out can
cause a positive feedback loop of LAM. The current density of the remaining active material increases
after the electrolyte dry-out induced local LAM, which leads to further electrolyte consumption and
additional LAM [155]. Sieg et al. showed that lower electrolyte contents can reduce the fast charging
capability, which would result in an earlier onset of lithium plating [156]. In addition, multiple studies
have shown that the depletion of the additive fluoroethylene carbonate can lead to a nonlinear aging
trajectory for cells with silicon-containing anodes [157, 158].

The additional pathways proposed by Attia et al. are mechanical deformation, in which mechanical
effects such as macro-scale deformation or micro-scale particle cracking lead to a positive feedback
loop of LAM, percolation limited connectivity, a theory in which small connectivity changes of
the porous electrode material may lead to significant LAM, and resistance growth, in which after
a certain point resistance growth leads to a significant reduction of the available constant current
discharge capacity based on the form of the open-circuit voltage (OCV) curve [148].

It should be noted that these pathways are not independent. Multiple pathways may occur simulta-
neously, or one pathway might accelerate another. For example, LAMNE from electrolyte depletion,
mechanical information, or percolation limited connectivity will lead to earlier saturation of the anode
and to higher local current densities in the remaining anode active material, which both make the
occurrence of lithium plating more likely.

Furthermore, lithium-ion cells, even of the same cell type and cycled under the same conditions, show
a large degree of variance in the onset point of nonlinear aging [159, 160]. For the operation of BESSs,
it is relevant by how far the nonlinear aging characteristics depend on the operating conditions. The
summary of stress factors in Figure 2.3 for the main operation phase was primarily based on conclusions
from the significant amount of cell aging studies that do not consider or observe nonlinear aging within
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their aging studies, e.g., well-cited studies by Schmalstieg et al. [34], Sarasketa-Zabala et al. [35, 36],
Naumann et al. [37, 38], or Schimpe et al. [129]. The stress factors that influence the nonlinear aging
phase have been less exhaustively investigated in the existing literature. Table 2.3 summarizes existing
publications that observed nonlinear aging grouped by the stress factors that were shown to accelerate
nonlinear aging.

Table 2.3: Summary of publications studying the effect of different stress factors on nonlinear aging.
Based on [148].

Stress
factor

Nonlinear aging
acceleration

Proposed
mechanisms

Cell type and source

Charge
rate

high charge rate Li plating LFP/Gr [150], NCA/Gr [161, 162],
NMC/Gr [163, 164]

Li plating & SEI
growth

LFP/Gr [160, 165], NMC/Gr [39,
138]

Discharge
rate

low discharge rate Li plating & SEI
growth

NMC/Gr [39, 138], NCA/Gr [146]

high discharge rate SEI growth LFP/Gr [166]

Voltage
limits

high voltage Electrolyte
oxidation

NMC/Gr [167, 168]

high DOC Li plating NMC/Gr [33, 39, 169],
NMC+LMO/Gr [170], LFP/Gr [150]

SEI growth LFP/Gr [171]
high SOC Li plating NMC+LMO/Gr [170]
low SOC SEI growth NMC+NCA/Gr [172]

Tempera-
ture

T cell above or below
35°C

Li plating & SEI
growth

NMC/Gr [39]

Li plating NMC/Gr [164]
T cell above or below
25°C

Li plating & SEI
growth

NMC+LMO/Gr [133]

High T cell LAM LFP/Gr [173]
Low T cell Li plating NMC/Gr and NMC+LMO/Gr [174]

All listed publications agree that high charge rates accelerate nonlinear aging. Schuster et al. ob-
served that changing the charge rate from 1C to C/2 can extend the area of linear aging for the
investigated NMC/Gr cells [39]. A reduction to C/5 resulted in no observed nonlinear aging. Other
studies with NMC/Gr [138, 163, 164], LFP/Gr [150, 160, 165] and NCA/Gr [161, 162] cells confirm
that lower charge rates can delay or prevent the onset of nonlinear aging. Lithium plating or lithium
plating combined with SEI growth is hypothesized to lead to the observed behavior in all these studies.
The discharge rate has also been investigated as a stress factor of nonlinear aging, with inconsistent
conclusions in the existing literature. While cells discharged at 0.5C and 1C showed a similar nonlin-
ear aging trajectory, a discharge rate of 2C led to no nonlinear aging phase occurring in a study by
Schuster et al. [39]. Similarly, Keil et al. [138] and Atalay et al. [146] observed that a higher discharge
rate can delay the onset of nonlinear aging. On the other hand, Omar et al. observed an earlier onset
of the nonlinear aging phase with higher discharge rates [166].
Voltage limits have been investigated in multiple variations in the existing literature as a stress fac-
tor for nonlinear aging. Aiken et al. observed nonlinear aging for NMC/Gr cells stored post-charging
for 24 h at a charge cut-off voltage of 4.4 V compared to no observed nonlinear aging for cells stored
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with a charge cut-off voltage 4.3 V [167]. In a study by Ma et al., varying the charge cut-off volt-
age of NMC/Gr cells between 4.1 V, 4.2 V, and 4.3 V impacted the onset of nonlinear aging as well.
The cells with lower charge cut-off voltages exhibited the transition to nonlinear aging later or not
at all [168]. In both studies, electrolyte oxidation was proposed to cause the observed behavior. In
addition, multiple publications agree that a higher DOC generally accelerates the onset of nonlinear
aging [33, 39, 150, 169–171]. For example, the NMC/Gr cells investigated by Ecker et al. showed a
nonlinear aging phase when cycled at a DOC of 100 %, 80 %, and, 50 % around a SOC of 50 %, with
an onset of the nonlinear aging phase after fewer FECs for larger DOC values. On the other hand,
the cells cycled with a DOC of 20 %, 10 %, and 5 % around a SOC of 50 % showed no nonlinear aging
phase [33]. For the NMC/Gr cells investigated by Schuster et al., a narrower operating voltage window
(∆1.2 V compared to ∆1.3 V) led to more FECs being completed before the onset of nonlinear aging
and to the nonlinear aging phase starting at a lower remaining capacity [39]. Regarding the SOC as
a stress factor for nonlinear aging, different results are found. Zhu et al. observed a nonlinear aging
phase for NMC+NCA/Gr cells that were cycled at low SOC ranges, i.e., 5-25 %, 5-45 %, and 5-65 %
SOC [172]. No nonlinear aging phase was observed in higher SOC ranges with the same DOC, e.g.,
75-95 %, 55-95 %, and 35-95 % SOC [172]. Ma et al. observed an earlier onset of nonlinear aging when
cycling in a SOC range of 60-100 % compared to 20-60 % [170].
Regarding the temperature, both too-high and too-low temperatures have been observed to acceler-
ate nonlinear aging [39, 133, 164, 173, 174]. Schuster et al. and Zhang et al. found an earlier onset of
nonlinear aging for temperature test points exceeding 35°C and less than 35°C [39, 164]. In a study by
Waldmann et al., the optimal temperature with the slowest degradation behavior was at 25°C [133].

The operating conditions in the aforementioned publications are different between groups of cells but
constant for each group of cells throughout the respective aging experiments. In his thesis, Schuster
investigated adapting the operating conditions after the onset of nonlinear aging [40]. The voltage
window, charge rate, and discharge rate were reduced past this point. It was concluded that the re-
sulting capacity fade, while not as steeply nonlinear as before this adaption of operating conditions, is
still more rapid than before the onset of nonlinear aging [40, Figure 31]. To the author’s knowledge, no
further publications investigate how adapting the operating conditions during an aging study affects
the nonlinear aging phase. This will be investigated as part of Chapter 6.

2.3.3 Cell and degradation modeling

Two approaches are used in this thesis to model lithium-ion cells and their aging behavior. First,
equivalent circuit models combined with semi-empirical aging models are employed in all publications
from Chapter 3 to 6. Second, a physicochemical battery cell and aging model is developed in Chapter 6,
specifically to model the nonlinear aging behavior towards the EOL. Both approaches are illustrated
in Figure 2.5.

Equivalent circuit models are a widely used approach to model the behavior of lithium-ion cells [175].
These models typically consist of a voltage source that represents the OCV UOCV of the battery for
different SOC values as well as one resistance Ri and multiple RC circuits, to model the transient
behavior of the terminal voltage UT under load [176]. This type of equivalent circuit model is often
called the Thevenin model [176], which can, for example, be parameterized through electrochemical
impedance spectroscopy measurements [177]. Additional components such as inductors, constant phase
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elements, or Warburg impedances may be used as part of equivalent circuit models to achieve a better
fit of the dynamic cell behavior [177].
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Figure 2.5: Schematic overview of the two lithium-ion cell modeling approaches used in this work as
part of SimSES: a) Equivalent circuit models combined with semi-empirical degradation
models, b) A physicochemical battery cell and aging model. The models receive a DC
power target pDC,target from the upstream power electronics and return the delivered DC
power pDC,delivered, while logging relevant variables such as the current I, terminal voltage
UT, SOC, and SOH.

SimSES focuses on long-term system-level analyses and previously only provided simplified equivalent
circuit models as highlighted in the left of Figure 2.5. These equivalent circuit models consist of a
resistance based on 10 s DC pulse resistance measurements at different SOC values, currents I, and
temperatures T cell. While this approach is a simplification, it has been validated to deliver sufficient
accuracy compared to measured BESS efficiency data by Schimpe et al. [115].
The equivalent circuit models are combined with semi-empirical degradation models. Semi-empirical
degradation models are typically fitted to data from cell aging studies, in which a limited number of
cells have been stored and cycled under accelerated aging conditions and different stress factors [31].
The prefix semi-empirical stems from these models relying on physics-inspired equations. A common
approach is to model the total capacity loss [34–38, 129, 130, 178] and resistance increase [34, 37, 38]
as a superposition of calendar and cyclic components:

qloss,total = qloss,cal(t, SOC,T cell) + qloss,cyc(FEC, Crate,T cell, SOC, DOC) (2.5)

rinc,total = rinc,cal(t, SOC,T cell) + rinc,cyc(FEC, Crate,T cell, SOC, DOC) (2.6)

Here, qloss,total refers to the total capacity loss while qloss,cal and qloss,cyc refer to the calendar and cyclic
components of capacity loss. Analogously, rinc,total, rinc,cal, and rinc,cyc refer to the total, calendar,
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and cyclic relative resistance increase. Gasper et al. compiled an overview of algebraic functions that
are commonly used to model calendar [142] and cyclic capacity loss [141]. For example, a square root
dependence of calendar aging on time is frequently found, which can be traced back to approximating
SEI growth as a diffusion-limited process [179]. In addition, the Arrhenius equation is often used to
describe the temperature dependence of calendar aging [37, 129, 180–183], while Tafel-like equations
may be used to describe the SOC or voltage dependence [129, 142, 182].
To apply cyclic aging models to load profiles with varying stress factors, a definition is needed of when
one cycle ends and another starts to be able to determine the DOC, Crate, and SOC of that cycle.
Naumann et al. and He et al. used a half-cycle counting algorithm in which a cycle is evaluated after
every change of charge-discharge direction [38, 184]. After such a cycle is detected, the DOC and Crate

are determined and the cyclic capacity loss is calculated. Another algorithm used for cycle counting is
the rainflow-counting algorithm, which is commonly employed in material fatigue analysis [185, 186].
The algorithm sequences a data series of local maxima and minima into cycle loops and thereby allows
the identification of individual half and full cycles, as well as their DOC, and Crate in a SOC profile
[187, 188].
To validate the developed aging ware operation strategies and investigate the aging behavior in different
stationary applications, the semi-empirical calendar [37] and cyclic [38] degradation models for LFP
cells developed by Naumann et al. and implemented in SimSES are used in Chapter 3, 4, 5.1, and 5.2.
In addition, the model by Schmalstieg et al. for NMC cells [34] is used as a reference in Chapter 3.
Furthermore, the model developed by Gasper et al. [142] is presented in Appendix B and used in
Chapter 5.2. For all the above, a half-cycle detector is used to identify individual cycles and calculate
the relevant stress factors for cyclic aging. In Chapter 6, equivalent circuit models of a small cylindrical
lithium-ion cell and a larger prismatic lithium-ion cell are used, which are derived from electrical cell
characterizations without a coupled degradation model.

Physicochemical battery models typically consist of sets of differential equations that aim to describe
the internal processes of the cell in addition to its external behavior. A common physicochemical
modeling approach is the pseudo-two-dimensional (P2D) Newmann model [189, 190]. Its equations
describe the internal processes of lithium-ion cells, such as the diffusion and migration of lithium-ions
inside the electrolyte and active material as well as the charge transfer from the liquid to the solid
phase [189, 190]. The name P2D refers to the x dimension, i.e., the through-plane dimension from
anode to cathode, and r, i.e., the pseudo-dimension for the active material particles, compare Fig-
ure 2.5. With the standard P2D model, the in-plane dimensions are not modeled, but the area-specific
current densities are scaled with the electrode area to achieve the quantities for the full cell. However,
multiple P2D models can be coupled to, for example, investigate the current distribution in in-plane
direction for different current collector designs [191, 192]. Next to aiding cell design, further practical
applications of P2D models include deriving fast-charging profiles that avoid lithium plating based on
modeling the minimum anode potential [191, 192].
In addition, multiple physicochemical modeling approaches can be found for modeling battery aging.
For example, Ning et al. [193] and later publications by Pinson et al. [194] and Li et al. [195] provide
models for the SEI growth on the anode. These publications use the single particle model (SPM),
a reduction of the P2D model, which includes only one spherical particle for each electrode and no
explicit electrolyte model. To model LAM, Sulzer et al. [154] described the change of the available
active material fraction as a function of the hydrostatic particle stress, a simplification of previous
models used by Reniers et al. [196] and Laresgoiti et al. [197]. In their review, Reniers et al. pro-
vided an overview and comparison of multiple physicochemical aging models that were published at
the time [196]. Furthermore, O’Kane et al. recently proposed a combined modeling approach that
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models the interactions of multiple previously published physicochemical models for individual aging
mechanisms [198].
Most relevantly for this thesis, different physicochemical modeling approaches can be found in the
literature that describe the nonlinear aging behavior toward the EOL. Multiple models can be found
for the lithium plating pathway described in Chapter 2.3.2: Yang et al. proposed a model that includes
SEI growth and lithium plating to describe nonlinear capacity fade towards the EOL [145]. Atalay et
al. used a similar approach with SEI growth and lithium plating to describe the nonlinear capacity fade
but with a multi-layer SEI model [146]. The model by Keil et al. encompasses SEI formation, SEI re-
formation resulting from particle cracking, as well as both lithium plating and lithium stripping [147].
All three aging models use the P2D Newman as a basis. Other contributions model the nonlinear
capacity fade through LAMNE from particle cracking [196] or LAMPE from cathode dissolution [153]
outpacing the SEI-induced LLI after extended cycling, i.e., the electrode saturation pathway. Park et
al. published a model that describes nonlinear aging as per the electrolyte depletion pathway [199].
Based on the significant amount LLI observed for the cells under investigation, a physicochemical ag-
ing model following the lithium plating pathway and building on top of a P2D model is developed in
Chapter 6. This physicochemical aging model is implemented in the open-source modeling environment
Python Battery Mathematical Modelling (PyBaMM) [200] and linked to SimSES as indicated in the
right of Figure 2.5. The interface in SimSES translates the power targets into constant power (CP),
constant voltage (CV), or rest experiments for the physicochemical model. The interface then logs the
relevant variables of the physicochemical model, such as the average terminal voltage and the average
current, and aging variables, such as the amount of LLI, LAMNE, and LAMPE. Furthermore, the SOC
is estimated based on the anode stoichiometry, and the SOH is determined in periodic intervals through
virtual checkup experiments of the physicochemical model. The underlying code is open-source [201],
and the physicochemical model and the interface are described in detail in Chapter 6.

For both modeling approaches, inhomogeneities, such as varying initial capacity or varying internal
resistance between individual lithium-ion cells, are not modeled as part of this thesis. In SimSES, a
lumped model is used in which the voltage and current are scaled based on the number of required
serial and parallel connected cells to achieve the specified nominal energy for the full BESS [83].

2.4 Operation strategies

Several aspects must be considered for the optimal operation of energy storage systems: the system
design and constraints, the application to be served, and technical properties, such as the degradation
behavior and efficiency. The process of deriving the charge and discharge signals under consideration of
technical constraints and economic benefit is referred to with multiple terms in the literature: energy
management [29], scheduling [202], control [28], dispatch [72] or operation [203]. In this thesis, the
overall approach is referred to as the operation strategy, and the specific methods used to derive the
charge and discharge signals as scheduling methods. Chapter 2.4.1 provides an overview of scheduling
methods, emphasizing the specific methods used in this thesis, and Chapter 2.4.2 summarizes methods
that enable the aging aware operation of BESSs.
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2 Fundamentals of aging aware operation of battery energy storage systems

2.4.1 Scheduling methods

For the classification of scheduling methods, a first differentiation is made between rule-based opera-
tion strategies and optimization-based operation strategies [31]. Rule-based operation strategies are
simple heuristics, such as discharging a BESS during load peaks for peak shaving up to a specific
peak shaving limit and charging it again after the load peak until it is fully charged, as presented
in Chapter 2.1.3. Another example is the greedy operation strategy for self-consumption increase
with a home storage system presented in Chapter 2.1.4. In contrast, optimization-based operation
strategies generally aim to determine the optimum of an objective function, sometimes called a fitting
or reward function. Weitzel et al. grouped the scheduling methods for optimization-based operation
strategies into three categories: exact solution approaches (e.g., linear programming), heuristics (e.g.,
reinforcement learning), and meta-heuristics (e.g., particle swarm optimization) [204].

Exact solution approaches are the most commonly used category of scheduling methods in the field of
optimal operation of energy storage systems as concluded by Weitzel et al. [204]. As the name suggests,
exact solution approaches generally allow finding the global optimum for a given optimization problem.
This group of scheduling methods includes linear, quadratic, and nonlinear optimization problems,
often with extensions to mixed integer problems. For example, a MILP is an optimization problem
that includes a linear objective function and linear constraints with integer as well as continuous
decision variables. Analogously, a mixed integer quadratic program refers to an optimization problem
with a quadratic objective function and integer as well as continuous decision variables. As MILPs are
the most commonly used scheduling method [204] and will be used in Chapter 4 and 6 of this thesis
as well, a generic example for the operation of a BESS with a MILP is given below. A short overview
of the other two categories of scheduling methods, i.e., heuristics and meta-heuristics, is provided as
part of section 4 in Chapter 3.

max.
∑
t∈T

Pt (2.7)

s.t. soct = soct−1 +
∆t

Ebatt · (pch
t η − 1

η
pdis
t ) ∀ t ∈ T\{0} (2.8)

soct=0 = SOCstart +
∆t

Ebatt · (pch
t=0η − 1

η
pdis
t=0) (2.9)

0 ≤ pch
t ≤ PAC,max · xch

t ∀ t ∈ T (2.10)

0 ≤ pdis
t ≤ PAC,max · (1− xch

t ) ∀ t ∈ T (2.11)

0 ≤ soct ≤ 1 ∀ t ∈ T (2.12)

xch
t ∈ {0, 1} ∀ t ∈ T (2.13)

pch
t , pdis

t , soct ∈ R ∀ t ∈ T (2.14)

Here, Equation 2.7 maximizes the sum of the profit gained in the respective application Pt for every
timestep t as part of the optimization horizon T . Equation 2.8 combined with 2.9 is a simple modeling
approach for the energy-based soct while considering a here constant charge and discharge efficiency
η. SOCstart, Ebatt, and ∆t are the SOC at the beginning of the optimization horizon, the remaining
rated energy of the BESS after accounting for degradation, and the optimization timestep width,
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respectively. pch
t and pdis

t are the resulting charge and discharge power for every timestep. Equation 2.10
to 2.12 denote the upper and lower limits for the continuous decision variables soct, pch

t , and pdis
t with

PAC,max being the maximum charge and discharge power of the BESS. The integer decision variable
xch
t ensures that in every timestep, the optimal solution only includes charging or discharging, not

both simultaneously. An example of the objective function in the case of performing energy arbitrage
is given below:

Pt =
∑
t∈T

(
(pdis

t − pch
t ) ·∆t · cid

t

)
(2.15)

Here, the profit is generated by charging during low and discharging during high electricity prices cid
t

on the intraday market. Note that the charge and discharge efficiency is already considered through
Equation 2.8 and 2.9. Similar but often more elaborate than this illustrative example, MILPs have
been formulated for a variety of other applications, such as peak shaving with BESSs by Hou et
al. [205] and operating BESSs combined with diesel generators in a microgrid by Weitzel et al. [29].
Different open-source and commercial solvers are available for solving such optimization problems.
The commercial solver by Gurobi is used in the later parts of this thesis [206]. When it comes to
the mathematical algorithms behind these solvers, the Simplex algorithm is frequently used for linear
programs combined with methods such as Branch and Bound to solve MILPs [207]. Notably, in the
simplified example above, using Equation 2.15 as the objective function would allow the reduction of
the problem from a MILP to a linear program by omitting the binary variable xch

t , since the optimal
solution would necessarily be to either charge or discharge the BESS at any given timestep t [70].

The above modeling approach in Equation 2.8 and 2.9 is a simplification of the actual behavior of
a BESS that is often referred to as a bucket model [196], power-energy model [208], or energy reser-
voir model [209]. It neglects multiple effects that are relevant for operating a BESS, such as that
the discharge power may be limited in high SOC ranges while charging and in low SOC ranges while
discharging based on the operating voltage window of the battery cells [209]. Another relevant effect
not represented by this model is that losses on a battery cell level are higher in lower SOC ranges,
since more current is required to deliver the same requested power due to the lower OCV [210]. In
addition, the AC/DC converter has varying efficiencies for different power ranges and usually especially
low efficiency values in low power ranges [121].
To include more accurate BESS models as part of the scheduling method, different approaches are
found in the literature. First, one may update the mathematical formulation of the BESS to a more
accurate model, e.g., by including an equivalent circuit model as part of the optimization problem.
This, however, makes the optimization problem nonlinear such that standard MILP solvers will not
be able to solve it [208]. Instead, to find the exact solution, more computationally expensive solvers,
such as IPOPT, must be employed to solve the resulting nonlinear optimization problem [208, 211].
Reniers et al. compared the performance of three different BESS optimization model types for an
energy arbitrage application: a bucket model, an equivalent circuit model, and a SPM. While for the
bucket model, a standard linear solver was sufficient, the nonlinear solver used for the equivalent cir-
cuit model required 1000 times more computation time than the solver for the bucket model, and the
nonlinear solver used for the SPM resulted in another increase of the computation time by a factor of
10 compared to the equivalent circuit model [212]. The resulting optimization problems become even
more complex and computationally expensive in the case of a mixed integer nonlinear problem [213],
i.e., when integer variables are required as part of the nonlinear problem, which is often the case for
modeling multi-use applications of BESSs [63].
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Instead of aiming for an exact solution approach, meta-heuristics such as particle swarm optimization
or heuristics such as reinforcement learning may be used at the risk of finding a local and not a global
optimum [204]. Furthermore, these scheduling methods come with their own specific limitations. For
example, the reinforcement learning agent by Cao et al. was trained on an equivalent circuit model,
including a semi-empirical degradation model, and is reported to be highly computationally efficient
after the initial training is completed [214]. However, the modeled action space for charging and dis-
charging the BESS only includes discrete values, i.e., a charge or discharge power of 0, 0.5PAC,max, or
1PAC,max [214], which is a crude simplification.
In order to combine more elaborate BESS models with the simplicity and computational efficiency of
linear programming and MILPs, linearization techniques have been frequently used in existing litera-
ture. For example, Hesse et al. [215] and Kumtepeli et al. [210] each used linearization techniques to
model the efficiency and aging behavior of BESSs as part of a MILP. Nevertheless, these linearizations
are a simplification and come with inherit linearization errors [204].

With a variety of different scheduling methods for BESS operation available to solve the same prob-
lem, i.e., when to optimally charge and discharge a BESS in given stationary applications, accessible
frameworks to benchmark the performance of different methods can create comparability. In addition,
many publications treat the results of the scheduling methods as the ground truth for the subsequent
evaluation, despite the simplified modeling of the BESS that was required to solve the optimization
problem [27, 204, 215]. A potential solution is the concept of MPC, which was developed in the 1970s
in the process control industry [216]. The basic principle is to build a model for the predicted behavior
of a system, to represent the required behavior of the system using a cost function, and to minimize this
cost function to produce the actual command to the system [216]. Updated measurements from the
system then act as input for the optimization of the following step [216]. If the output of optimization-
based scheduling methods is used to operate a real BESS, this falls under the loose definition of MPC.
This concept can also be applied to benchmarking and comparing different scheduling methods through
pure simulation. In Chapter 4, an MPC framework is proposed specifically for aging aware operation
strategies. The basic principle is to implement a second, more accurate BESS model that validates the
scheduling method’s output and is not constrained to the simplified modeling approaches that common
scheduling methods require.

Lastly, different approaches for handling uncertainty can be found as part of scheduling methods. In the
example of Equation 2.15, knowledge of the future electricity price time series for the full optimization
horizon is assumed. Perfect foresight of the price may be the case for time-of-use electricity pricing
but not when trading electricity on an exchange such as the EPEX. Instead, different electricity price
forecasting methods may be used, a research field for which a significant body of scientific literature
can be found [217, 218]. Lago et al. grouped electricity forecasting methods into statistical and
deep learning approaches in their review [217]. In terms of the output of the forecasts, Weron et al.
differentiated between point forecasts, which provide one value for the electricity price for a given
timestep, and probabilistic forecasts, which provide prediction intervals or prediction densities [218].
Point forecasts, e.g. for the day-ahead auction of the following day, could be implemented as part
of Equation 2.15 to solve the scheduling problem as a MILP. However, a better result can often
be expected when accounting for the uncertainty of the actual outcome and the inherent errors of
the forecast as part of the scheduling method [204]. Stochastic dynamic programming, for example,
performs a full enumeration of every scenario, e.g., different electricity price scenarios from probabilistic
forecasts, which, however, leads to a high computational effort [204]. Robust optimization, on the other
hand, aims to find the optimal solution for the worst-case scenario, which can, however, lead to an
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over-conservative solution [204]. In Chapter 4 and 6, perfect foresight of the ID-1 electricity price index
is assumed to create a generic energy arbitrage application that showcases the different aging aware
operation strategies. This is considered to be a conservative assumption in terms of the calculated profit
despite assuming perfect foresight since, for real-time bidding, one may achieve higher sell and lower
buy prices than the ID-1 price and may place additional bids that are compensated before execution
by the BESS, which can generate additional profit [70]. This was also confirmed when comparing
the simulated energy arbitrage profit to data reported from industry partners in the field of BESS
operation. Furthermore, in Chapter 5.1, a rule-based aging aware operation strategy for peak shaving
applications is proposed that includes a method for managing the uncertainty of load forecasts.

2.4.2 Aging aware operation

A significant number of individual contributions can be found that focus on the aging aware operation
of BESSs. This body of literature is reviewed and categorized in detail in Chapter 3. Here, a brief
summary of the different methods is provided. Furthermore, a generic example for aging aware oper-
ation is presented that builds on top of the exemplary MILP for operating a BESS from Equation 2.7
to 2.13 and showcases the linearization method used in Chapter 4.

Figure 2.6 shows the categorization of different methods for the aging aware operation of BESSs. A first
differentiation is made based on the scheduling method. Rule-based scheduling methods generally use
rule-based methods to incorporate degradation into the operation strategy. For example, Angenendt
et al. proposed an operation strategy for home storage systems in which the BESS is charged during
the day only up to the energy level that is expected to be needed at night, based on load forecasts [93].
Thereby, the average SOC and calendar aging are reduced [93].

Aging Awareness Methods

Rule-Based Optimization

In Constraints
In Objective 

Function (OF)

Technical 

Parameter (OF-T)

Economic 

Parameter (OF-E)

Cost Based 

(OF-E-C)

Revenue Based 

(OF-E-R)

Figure 2.6: Classification of different methods for the aging aware operation of BESSs [31].

However, most publications in the field of aging aware operation use optimization-based scheduling
methods [31]. One method to enable aging aware operation as part of an optimization-based scheduling
method is through additional fixed constraints [27, 62, 219, 220]. For example, the effect of limiting
the DOC in different SOC ranges was studied by Perez et al. in a multi-use application with energy
arbitrage and balancing power [220]. It was found that for the optimal SOC range, the annual aver-
age gross revenue was reduced by 18 %, but the BESS lifespan was expected to double [220]. More
commonly, degradation effects are considered as part of the objective function, either as a technical
parameter or as an economic parameter [31]. With regards to technical parameters, the capacity loss
or SOH reduction can be added to the objective function with scaling factors that are to be set by
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the operator [203, 221]. In the context of economic parameters, a monetary value can be assigned to
the degradation effects, i.e., the capacity loss or decreasing SOH, and added to the remaining objec-
tive function, which describes the profit gained in the given application. For revenue-based economic
parameters, this is a form of expected future revenue. For example, Liu et al. included a degradation-
dependent future resale value of the battery in their objective function [222]. Abdulla et al. used the
cumulative past savings that were generated by the BESS to determine a monetary value for capacity
loss and included this value in their objective function [223].

The most commonly found method for aging aware operation in the existing literature is to define a
cost-based economic parameter, i.e., aging cost, and include it as part of the objective function [31].
This allows to link the short-term scheduling problem to long-term degradation effects:

max
∑
t∈T

(
Pt − Caging

t

)
(2.16)

Here, Caging
t is the total aging cost for timestep t ∈ T . The total aging cost Caging

t is then either
calculated based on each percentage point of SOH loss in each time step ∆soht as in Equation 2.17 [15,
28, 30, 72, 204] or based on the number of FECs in each time step ∆fect as in Equation 2.18 [62, 63,
224–226].

Caging
t =

caging · En

1− SOHEOL ·∆soht (2.17)

Caging
t =

caging · En

FECEOL ·∆fect (2.18)

Here, SOHEOL and FECEOL represent the SOH threshold and number of FECs after which the EOL
of the battery is reached. En is the nominal battery capacity at the beginning of life in kWh. The
aging cost caging in EUR per kWh is then typically set to a cost value that relates to the battery
system, such as the full storage system investment cost [63, 204, 226], battery investment cost [187,
205, 227], battery replacement cost [28, 30, 228], battery cell replacement cost [15, 224], or generic
battery cost [72, 214, 225]. In Chapter 4, it is shown that increased lifetime profit can be achieved
by determining the optimal aging cost based on the application and BESS characteristics opposed to
this prevalent approach. For illustrating the later used linearization techniques, it is assumed that the
FEC dependence of cyclic aging and the SOC dependence of calendar aging is aimed to be added to a
MILP through aging cost, such as in the below optimization problem:

max.
∑
t∈T

(
Pt − Caging

t

)
(2.19)

s.t. Caging
t =

caging · En

1− SOHEOL ·∆soht ∀ t ∈ T (2.20)

∆soht = qloss,cal
t + qloss,cyc

t ∀ t ∈ T (2.21)

qloss,cyc
t = αcyc · (p

ch
t + pdis

t ) ∗∆t

2 · En ∀ t ∈ T (2.22)

∆soht, qloss,cyc
t , qloss,cal

t ,Caging
t ∈ R ∀ t ∈ T (2.23)
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Here, qloss,cal
t and qloss,cyc

t denote the relative calendar and cyclic capacity loss. qloss,cyc
t is defined

as in Equation 2.22 with αcyc denoting the relative capacity loss per completed FEC. The previously
introduced Equation 2.8 to 2.14 may be used as additional constraints to describe the BESS as a bucket
model. For convex functions, the SOC dependence of the calendar capacity loss may be represented
through sets of individual lines as additional constraints:

qloss,cal
t ≥ ak · soct + bk ∀ t ∈ T ,∀ k ∈ K (2.24)

The index set K denotes the lines used for the linearization with their slopes ak, y-intercepts bk,
and k ∈ K. Since the aging cost is part of the objective function, the optimal solution will include
a qloss,cal

t value that lies on the applicable line for the present SOC value, as indicated in the left
subplot of Figure 2.7. The more individual lines k ∈ K are used, the lower the linearization error that
can be achieved, i.e., the difference between the original convex function and the sets of lines used
to approximate it [29]. This approach, however, only works for convex functions. Many degradation
models include non-convex functions, such as the cubic dependence of calendar capacity loss on the
SOC in the model by Naumann et al. [37]. For non-convex functions, special ordered sets (SOSs) of
type 2 may be used for linearization [229]. A SOS of type 2 is a set of continuous variables, which
are often denoted λ, out of which a maximum of two variables can be nonzero and those two variables
need to be consecutive in their ordering [229]. While these SOS type 2 variables are continuous, they
nevertheless require a MILP solver [206]. Linearization of a non-convex calendar capacity loss function
that depends on the SOC may be performed as below with SOS type 2 variables:∑

i∈I

λcal
t,i ·Xcal

i = soct ∀ t ∈ T (2.25)

∑
i∈I

λcal
t,i · Y cal

i = qloss,cal
t ∀ t ∈ T (2.26)

∑
i∈I

λcal
t,i = 1 ∀ t ∈ T (2.27)

0 ≤ λcal
t,i ≤ 1,λcal

t,i ∈ R ∀ t ∈ T ,∀ i ∈ I (2.28)

λcal
t,i with t ∈ T and i ∈ I are continuous variables that are used to represent the linearized calendar

aging function in the optimization model. The set of variables λcal
t,i with i ∈ I is implemented as one

SOS of type 2 for each t ∈ T . Xcal
i represents the linearization points for the SOC and Y cal

i the
linearization points for the associated calendar capacity loss at that SOC, as indicated in the right
subplot of Figure 2.7. The index set I denotes the total set of linearization points used with i ∈ I.

For example, let us assume the SOC dependence of calendar aging is linearized in eleven individual
points over the SOC range from 0 to 1: {Xcal

0 = 0,Xcal
1 = 0.1, ...,Xcal

10 = 1.0}, compare Equa-
tion 2.25. The associated calendar capacity loss values for these SOC values are denoted as Y cal

i :
{Y cal

0 ,Y cal
1 , ...,Y cal

10 }, compare Equation 2.26. Equation 2.27 ensures that the sum of those two con-
secutive values of λcal

t,i which are nonzero is equal to 1. Let us further assume that the solution to the
scheduling problem in timestep t′ yields a SOC value of soct′ = 0.125. To satisfy Equation 2.25 and 2.27,
the resulting values for the SOS type 2 variables in timestep t′ then have to be λt′,1 = 0.75, λt′,2 = 0.25,
and λt′,i = 0 ∀ i ∈ {0, 3, 4, ..., 10}. This then yields the respective calendar capacity loss at timestep t′

as a linear interpolation of two linearization points from Equation 2.26: qloss,cal
t′ = 0.75·Y cal

1 +0.25·Y cal
2 .
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Convex calendar aging function

𝑠𝑜𝑐𝑡

𝑞𝑡
loss,cal
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loss,cal

Non-convex calendar aging function
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𝑌𝑖

Figure 2.7: Left: Convex calendar aging function, which can be linearized through a set of lines with
slope ak and y-intercept bk for each line k ∈ K. Right: Non-convex calendar aging function
which can be linearized using a SOS of type 2 and the linearization points Xi and Yi for
each i ∈ I.

Similar to this example, SOSs of type 2 are used in Chapter 4 to linearize the calendar and cyclic aging
functions.
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3 Aging aware operation of lithium-ion battery energy
storage systems: A review

In this chapter, the peer-reviewed journal publication Aging aware operation of lithium-ion battery
energy storage systems: A review is presented. A significant amount of literature can be found on
the aging behavior of lithium-ion batteries, aging stress factors, and degradation modeling approaches.
In addition, multiple publications propose methods for the aging aware operation of BESSs, typically
focused on one specific cell type and application. This review provides an overview of relevant aging
mechanisms, their stress factors, and degradation modeling approaches. The key aspects of those topics
for the aging aware operation of BESSs are derived. Following that, the existing literature in the field
of aging aware operations of BESSs is summarized and categorized. Lastly, in a case study using the
in-house developed and open-source SimSES, the most relevant aging stress factors are investigated
for typical stationary applications. The highlights of this review paper are summarized below:

• Aging mechanisms and stress factors: An overview of the relevant aging mechanisms for
typical lithium-ion cells with graphite anodes and metal-oxide cathodes (NMC, NCA, and LFP),
is provided. The relevant aging mechanisms on the anode include SEI growth, particle cracking &
graphite exfoliation, and lithium plating & dendrite growth. On the cathode, the relevant aging
mechanisms are transition metal dissolution, particle cracking, cathode electrolyte interphase
growth, and structural disordering. The aging stress factors are structured into calendar aging
stress factors, i.e., time, temperature, and SOC, and cyclic aging stress factors, i.e., FECs,
temperature, Crate, DOC, SOC, and the operating voltage window.

• Degradation modeling: Degradation models are categorized into empirical, semi-empirical,
and physicochemical degradation models. The different modeling approaches are compared,
examples are provided, and requirements are defined for degradation models that are meant to
be used for the aging aware operation of BESSs.

• Aging aware operation: First, the different categories of scheduling methods are presented,
i.e., heuristics, meta-heuristics, and exact solution approaches. Furthermore, typical BESS ap-
plications are briefly summarized. Using the above categories of aging stress factors, degradation
models, scheduling methods, and applications, the existing literature in the field of aging aware
operation is summarized in a comprehensive tabular form. In addition, different methods for
accounting for aging as part of the operation strategy are defined based on the literature.

• Case study: Using SimSES [83], see Appendix A, the most relevant aging stress factors are
identified and quantified for the three exemplary BESS applications of self-consumption increase
with a home storage system, FCR, and peak shaving. The adapted version of SimSES, as well
as the simulation results, are available open-source1 [230].

The literature shows that most publications in the field of aging aware operation rely on semi-empirical
degradation models and consider only a subset of the calendar and cyclic aging stress factors. In
addition, MILPs are a frequently used scheduling method in this field. To account for aging as part
1 Code and simulation results are publicly available: https://doi.org/10.14459/2022mp1652796
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of the operating strategy, defining aging cost was found to be the most commonly used method. The
case study shows that a) in FCR, attention should be paid to the low DOC and Crate when selecting a
degradation model; b) in self-consumption increase, the high DOC and Crate significantly affect cyclic
aging; c) in peak shaving operation, the SOC is the most relevant stress factor and leads to significant
calendar aging.

This comprehensive review was aimed at summarizing the state of the art and distributing this knowl-
edge to a large audience in both industry and academia. In addition, the findings served as a starting
point for the novel contributions of the four additional research papers of this thesis.
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A B S T R A C T

The amount of deployed battery energy storage systems (BESS) has been increasing steadily in recent
years. For newly commissioned systems, lithium-ion batteries have emerged as the most frequently used
technology due to their decreasing cost, high efficiency, and high cycle life. As a result of a multitude of
cell internal aging mechanisms, lithium-ion batteries are subject to degradation. The effects of degradation,
in particular decreasing capacity, increasing resistance, and safety implications, can have significant impact
on the economics of a BESS. Influenced by aging stress factors such as the state of charge, charge–discharge
rate, cycle count, and temperature, the extent of degradation is directly affected by the operating conditions.
Significant amount of literature can be found that focuses on aging aware operation of BESSs. In this review,
we provide an overview of relevant aging mechanisms as well as degradation modeling approaches, and deduce
the key aspects from the state of the art in those topics for BESS operation. Following that, we review and
categorize methods that aim to increase BESS lifetime by accounting for battery degradation effects in the
operation strategy. The literature shows that using empirical or semi-empirical degradation models as well as
the exact solution approach of mixed integer linear programming are particularly common for that purpose,
as is the method of defining aging costs for the objective function. Furthermore, through a simulation case
study, we identify the most relevant stress factors that influence degradation for the key applications of self
consumption increase, peak shaving, and frequency containment reserve.

1. Introduction

The installed capacity of BESSs has been increasing steadily over the
last years. These systems are used for a variety of stationary applica-
tions that are commonly categorized by their location in the electricity
grid into behind-the-meter, front-of-the-meter, and off-grid applica-
tions [1,2]. In behind-the-meter applications such as peak shaving or
as home storage systems, BESSs provide cost savings for the electricity
consumer. For front-of-the-meter applications, like energy arbitrage
or balancing power provision, revenue generation in the respective
energy and power markets is the primary motive for installation of a
BESS. Lastly, in off-grid/microgrid applications, BESSs combined with
renewable energy sources can be a cost competitive option over solely
relying on diesel generators [1]. For the year of 2020, the International
Energy Agency estimated the globally installed power of BESSs to
17 GW [3]. While estimates and forecasts for the currently installed
capacity and future growth vary, the agreed upon trajectory in the vast
majority of reports and studies is strongly upwards [4–6]. This growth

∗ Corresponding author.
E-mail address: nils.collath@tum.de (N. Collath).

in battery energy storage systems is fueled by technology advances and
cost reductions for lithium-ion cells, which are now the predominant
battery technology used for new installations [5,6].

Despite cell cost reductions, batteries remain the primary cost com-
ponent for BESSs [7]. Due to a multitude of cell internal aging mech-
anisms, lithium-ion cells are subject to degradation, which manifests
itself in capacity loss, cell resistance increase, as well as safety im-
plications. These degradation effects, most notably capacity loss, can
have a significant impact on the profitability of a BESS [8,9]. Aging
mechanisms for lithium-ion cells have received significant attention in
scientific literature, with multiple reviews available on this subject [10–
13]. It is well known and validated through cell aging studies that
the rate of degradation depends on external stress factors such as the
temperature (𝑇 ), DOC, SOC, and the Crate [14–19].

With the increasing adoption of electric vehicles (EVs), multiple
reviews can be found that focus on the effects of battery degradation
specifically for EVs [20,21]. Woody et al. compiled guidelines to extend

https://doi.org/10.1016/j.est.2022.105634
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Abbreviations

BESS Battery energy storage system
BP Balancing power
Crate Charge-discharge rate
DOC Depth of cycle
DP Dynamic programming
E Exact solution approaches
EA Energy arbitrage
EOL End-of-life
EV Electric vehicle
FCR Frequency containment reserve
FEC Full equivalent cycle
H Heuristics
LAMNE Loss of active material on the negative

electrode
LAMPE Loss of active material on the positive

electrode
LFP Lithium iron phosphate
LLI Loss of lithium inventory
MH Meta-heuristics
MILP Mixed integer linear programming
NCA Lithium nickel cobalt aluminum oxide
NLP Nonlinear programming
NMC Lithium nickel manganese cobalt oxide
PS Peak shaving
PSO Particle swarm optimization
PV Photovoltaic
RI Resistance increase
SCI Self consumption increase
SEI Solid electrolyte interphase
SimSES Simulation Tool for Stationary Energy Stor-

age Systems
SOC State of charge
SPM Single particle model
V2G vehicle-to-grid

the service life for lithium-ion batteries used in EVs, laptops, power-
tools, and cellphones [22]. Compared to these applications, BESSs and
their operation have several key differentiating properties with regards
to battery degradation:

• The primary objective in most stationary BESS applications is
either a form of revenue generation, like it is the case for energy
arbitrage or balancing power provision, or cost reduction, such as
for peak shaving or home storage systems [23,24]. This provides
an incentive to directly account for the costs related to battery
degradation in the operation strategy of BESS through appropriate
models. For applications such as cellphones or EVs, there tend to
be higher availability requirements, caused by consumer needs
for telecommunication or motion, respectively [22].

• The cycle life requirements for many stationary applications
significantly exceed those of electric vehicles, especially pri-
vately used ones: For residential storage systems used for self-
consumption increase and large-scale storage systems used for
frequency containment reserve, Kucevic et al. identified a yearly
number of FECs in the range of 200 to 300 FECs per year, depend-
ing on system sizing [25]. In terms of calendar life, large-scale
BESSs are typically planned as long-term assets of up to decades,
opposed to short lived consumer goods such as cellphones and
laptops.

Fig. 1. Schematic overview of this contribution’s structure.

• Stationary applications have long been envisioned as a second-
life option for decommissioned batteries from EVs [26,27]. While
the future economic viability of this concept still remains un-
certain today, detailed modeling and mitigation of degradation
effects have been described as one of the key areas that re-
quire more investigation to enable the profitability of second-life
applications [28,29].

Multiple degradation modeling approaches exist to quantify the effects
of aging mechanisms and their stress factors [30–32]. These approaches
range from data-based empirical models to semi-empirical models with
physics-inspired equations, up to detailed physicochemical models,
which model individual aging mechanisms through sets of differential
equations. All of these bring their own benefits and drawbacks for usage
in BESS operation.

A significant number of individual contributions can be found on
the topic of BESS operation. The objective commonly is to determine an
economically beneficial charge–discharge schedule for one or multiple
applications of BESSs. This is done through scheduling methods that
can be categorized into exact solution approaches (e.g. mixed-integer
linear programming), heuristics (e.g. fuzzy logic) and meta-heuristics
(e.g. particle swarm optimization). A review on these methods for
BESSs has been published by Weitzel et al. in 2018 [23]. They show
that in the contributions published up until then, battery degradation
is often either neglected or simplified with constant factors. 25 out
of the 202 reviewed studies therein include degradation models [23].
However, especially in more recent years, a number of contributions
have integrated more detailed degradation models into scheduling
methods [33–38]. Applications of BESSs often overlap with those envi-
sioned for V2G and therefore employ similar scheduling methods. In
the field of V2G, Yang et al. reviewed scheduling methods with no
particular focus on battery degradation [39]. Ahmadian et al. reviewed
degradation models for V2G applications without investigating schedul-
ing methods [32]. An overview of related reviews in the field of aging
mechanisms, degradation modeling, and battery operation can be found
in Table 1.

In this comprehensive review, we bridge the gap between aging
mechanisms, their stress factors and degradation models on the one
side, as well as aging aware BESS operation on the other side. We
do so by deducing the key aspects for BESS operation from the state
of the art in aging mechanisms and degradation modeling (cf. Fig. 1).
We start by providing an overview of relevant aging mechanisms and
their stress factors for the most commonly used cell types for stationary
applications in Section 2. Following that, Section 3 focuses on relevant
degradation model types from literature. At the end of both Sections 2
and 3, we deduce the key takeaways of aging mechanisms, stress factors
and degradation models for BESS operation. Section 4 categorizes
methods for internalizing degradation effects into operation strategies

3 Aging aware operation of lithium-ion battery energy storage systems: A review

37



Journal of Energy Storage 55 (2022) 105634

3

N. Collath et al.

Table 1
Selected reviews in the field of lithium-ion aging mechanisms, degradation modeling and battery operation.

Topic Reference Focus

Aging mechanisms Edge et al. (2021) [10] Aging mechanisms in lithium-ion cells
Han et al. (2019) [20] Aging mechanisms in automotive lithium-ion battery systems
Vetter et al. (2005) [12] Aging mechanisms in lithium-ion cells

Degradation modeling Li et al. (2019) [30] State of Health estimation and prediction
Reniers et al. (2019) [31] Physicochemical degradation models
Ahmadian et al. (2018) [32] Degradation models for V2G applications
Pelletier et al. (2017) [21] Degradation models for EVs

Battery operation Woody et al. (2020) [22] Strategies to limit battery degradation
Weitzel et al. (2018) [23] Scheduling methods for BESSs
Yang et al. (2015) [39] Scheduling methods for V2G

based on a comprehensive review of existing literature. In addition,
we reveal the most relevant stress factors to consider for key BESS
applications through a simulation case study.

2. Aging mechanisms and stress factors

This section provides an overview of the predominant aging mech-
anisms and their stress factors for commonly used lithium-ion batteries
in BESSs.

2.1. Aging mechanisms

Lithium-ion batteries are composed of multiple layers of material
wound up or stacked into a cell enclosure [40]. The electrolyte-filled,
layered structure of a typical lithium-ion battery consists of: current
collectors, the anode and cathode active material, and a separator. Both
performance and degradation behavior are strongly influenced by the
composition of the anode active material, the cathode active material,
the electrolyte, and the resulting interactions of those materials [11,12,
20].

Aging mechanisms are commonly grouped into the following four
aging modes, based on their effect on the cell: loss of lithium inventory
(LLI), loss of active material on the positive electrode (LAMPE), loss
of active material on the negative electrode (LAMNE), and resistance
increase (RI). LLI describes the loss of lithium ions through parasitic
reactions, which can lead to a reduction of the available cell capac-
ity [10,20,41]. LAMPE or LAMNE refer to active material being no
longer available for the insertion of lithium on the cathode or anode,
respectively [10,20,41]. These aging modes lead to both capacity and
power fade. RI refers to aging mechanisms that cause an increase of
the cell resistance or impedance and thereby lead to a decrease of the
available power [10,20]. Notably, RI also leads to a reduction in usable
capacity if the charge and discharge cut-off voltage stay constant [20].
Some authors propose further modes to summarize the effects of ag-
ing mechanisms, such as loss of electrolyte [20] and stoichiometric
drift [10].

In the following, we confine ourselves to provide a short overview
of the most predominant aging mechanisms, as illustrated in Fig. 2,
and their effect on the most commonly referenced aging modes: LLI,
LAMPE, LAMNE, and RI. Furthermore, we focus on three common cell
types. That is, battery cells with graphite-based anodes and one of the
following cathode active materials: lithium nickel manganese cobalt
oxide (NMC), lithium nickel cobalt aluminum oxide (NCA) or lithium
iron phosphate (LFP).

2.1.1. Anode aging mechanisms
Growth of the solid electrolyte interphase (SEI) on the anode surface

has been identified as a key aging mechanism for capacity and power
fade [10,12]. Graphite from the anode will react with electrolyte and
lithium to form this solid passivation layer [12]. The SEI is initially
formed within the first few cycles, usually during cell formation by
the manufacturer [20]. The resulting passivation layer is aimed to be
ionically conducting and electrically insulting [42]. It thereby should

allow Li ions to pass through it, while protecting the anode from
co-intercalation of solvent molecules and further decomposition of
the electrolyte [42]. However, the SEI will continue to grow over a
cell’s life cycle [13,20]. Solvent molecules may still diffuse through
existing SEI, volume change during cycling can lead to cracking and
expose additional anode surface area for SEI growth, and side reaction
products such as dissolved transition metals from the cathode or plated
lithium can form additional SEI [10]. This continued growth of the SEI
leads to the aging modes of both LLI and RI [10,20].

Volume change during cycling, solvent co-intercalation, or gas evo-
lution inside the graphite can lead to particle cracking & graphite
exfoliation [12]. This in turn can lead to electric contact loss of the ac-
tive material and thereby induce LAMNE [10,20]. If the anode material
loses contact while being lithiated, the lithium will be trapped in the
material which induces LLI in addition to LAMNE [10]. Furthermore,
additional SEI can form on the newly exposed anode surface area [10].

Lithium plating is a side reaction in which metallic lithium forms
on the anode surface instead of intercalating into it [10,12]. This can
especially occur through overcharging the cell or while charging at high
currents or low temperatures [10,12]. During rest periods and through
discharging the reaction is partially reversible, which is referred to
as lithium stripping [43,44]. On the other hand, part of the metallic
lithium may be enclosed by newly formed SEI, resulting in irreversible
LLI [43]. Notably, dendrite growth as a consequence of lithium plating
is a significant safety concern, as the dendrites can pierce the separator,
short circuit the cell, and induce thermal runaway [45].

Further aging mechanisms on the anode, which are not discussed
in detail here, include decomposition of the binder, as well as current
collector corrosion [41,46].

2.1.2. Cathode aging mechanisms
Aging mechanisms on the cathode are highly dependent on the cath-

ode material [10]. For most metal oxides, the predominant mechanisms
on the cathode side are particle cracking, structural decomposition,
transition metal dissolution, and formation of the cathode electrolyte
interface [20,47].

Same as the anode, the cathode material is subject to volume change
during charge and discharge, which can lead to particle cracking and
thereby induce LAMPE [10,41]. Also, if the cathode active material
loses contact while being lithiated, this will lead to LLI in addition to
LAMPE due to trapped lithium [10]. Structural disordering describes a
reaction in which Li+ ions exchange spots with transition metal ions
inside the lattice, which can induce LAMPE and RI [10,12,20]. Similar
to the SEI, a cathode electrolyte interface forms through reaction of
the cathode with the electrolyte. While this passivation layer is usually
thinner than the SEI, it nevertheless induces RI and LAMPE [10,20].
Lastly, transition metal dissolution from the cathode into the electrolyte
can lead to LAMPE as well [20,30]. The dissolved metal is known to
then move to the anode and further accelerate SEI growth there [12].

Further reported degradation mechanisms on the cathode include
electrolyte decomposition and loss, phase change to the lattice, binder
decomposition, and current collector corrosion [10,46].

For NMC cathodes, transition metal dissolution and structural disor-
dering have been reported as a prime concern due to the similar radii
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Fig. 2. Schematic illustration of predominant aging mechanisms in common lithium-ion batteries with graphite based anodes and metal oxide cathodes, based on [10,12,41].

of Li+ and Ni2− [12,48]. The degradation behavior of NMC cathodes is
also influenced by their stoichiometry. To both increase energy density
and reduce cobalt usage, NMC materials with higher nickel content,
such as (NMC)-811, are receiving increased attention. This increase of
Ni in the cathode mix shows disadvantageous effects on cycle stability,
due to among other the before-mentioned cation mixing of Li+ and Ni2−

as well as increased microcrack formation of (NMC)-811 compared to
for example (NMC)-111 [11]. For lithium nickel cobalt aluminum oxide
(NCA) cathodes, particle cracking has been reported as a main concern
for cycle stability [48]. While cycle life also depends on cell design
and cycle conditions, commercial LFP cells tend to show higher cycle
stability than their NMC and NCA counterparts [49].

2.2. Aging stress factors

The aging behavior of lithium-ion cells is influenced by a multitude
of factors. In the following, we will examine those external stress
factors that can be influenced through appropriate operation strategies
for BESSs. It should be noted that production quality and cell design
parameters, such as the electrode thickness and choice of electrolyte
additives, have a significant effect on the aging behavior of lithium-
ion cells as well [20], but cannot be influenced in the operation
phase of a BESS. Furthermore, extreme stress conditions outside of
standard operating conditions can lead to catastrophic failure and
thermal runaway, such as high temperature, high charge–discharge
rates as well as overcharge and over-discharge of cells [50,51]. Such
operating conditions should be prevented by appropriate design and
battery management systems.

While the effects of aging mechanisms are commonly grouped into
the four previously introduced aging modes (i.e. LLI, LAMPE, LAMNE,
RI), a useful framework for BESS operation is the concept of calen-
dar and cyclic aging, as depicted in Fig. 3. Cyclic aging refers to
degradation effects that occur as a consequence of cycling the battery,
i.e. charging and discharging. Calendar aging describes aging effects
that occur regardless of cycling and especially during storage or idle
time.

2.2.1. Calendar aging
Calendar aging is primarily influenced by time, temperature and the

state of charge of the battery cells:

Time 𝑡: While not directly controllable during operation, side reactions
such as SEI growth and binder decomposition will progress over time
even without cycling the battery.

Temperature 𝑇 : During storage, a higher temperature will lead to
a higher reaction rate of the relevant side reactions, especially SEI
growth, and therefore accelerate cell degradation [12].

State of Charge SOC: A high SOC comes with a low anode and high
cathode potential. The low anode potential is known to accelerate SEI

Fig. 3. Relevant stress factors during operation of a BESS and their effect.

growth, therefore a high SOC will accelerate cell degradation [12,20].
Likewise, the high cathode potential can lead to increased transi-
tion metal dissolution due to oxidation of the lattice oxygen in NMC
cathodes [10]. A calendar aging study conducted by Keil et al. with
commercial NMC, NCA and LFP cells, all with graphite anodes, showed
the lowest capacity loss for those cells that were stored at 0% SOC
for all three cathode materials [52]. Instead of the normalized SOC,
the cell terminal voltage 𝑉cell may sometimes be used as an equivalent
stress factor in degradation models [15]. For extended storage times,
a direct relation from SOC to 𝑉cell is given through the open circuit
voltage curve.

2.2.2. Cyclic aging
Multiple stress factors impact the extent of cyclic aging: Next to

temperature, the cycling parameters charge–discharge rate Crate, av-
erage state of charge SOC, and depth of cycle DOC determine the
extent of cyclic aging. These cycling parameters are illustrated in Fig. 4.
Furthermore, the operating voltage window, determined by the charge
and discharge cut-off voltage have known impact on cyclic aging.

Full Equivalent Cycles FEC: The majority of aging mechanisms are
either directly caused or accelerated by charging and discharging the

3 Aging aware operation of lithium-ion battery energy storage systems: A review

39



Journal of Energy Storage 55 (2022) 105634

5

N. Collath et al.

Fig. 4. Visualization of normalized battery cell cycling parameters: Here, an exemplary
cell is cycled at a depth of cycle DOC of 50% around an average state of charge SOC
of 45% at a charge–discharge rate Crate of 0.5 h−1. A total of two full equivalent cycles
FECs are displayed.

cell: particle cracking & graphite exfoliation, lithium plating & dendrite
growth, structural decomposition, transition metal dissolution, as well
as additional SEI growth induced by the aforementioned mechanisms.
The amount of cycling is commonly stated in full equivalent cycles
(FECs), by scaling the total charge throughput 𝑄 with the battery
capacity 𝐶batt in Ah:

𝑄 = ∫

𝑡

0
|𝐼(𝑡′)| 𝑑𝑡′ (1)

FEC = 𝑄
2 ∗ 𝐶batt

(2)

Here, 𝐼 is the charge–discharge current. For 𝐶batt , multiple definitions
exist, as either the nominal battery capacity at the beginning of life or
the present, degraded battery capacity may be used.

Temperature 𝑇 : Especially while charging, low temperatures can lead
to lithium plating on the graphite anode and thereby accelerate degra-
dation [12,53]. On the other hand, the additional SEI growth caused by
volume expansion, particle cracking and graphite exfoliation, as well
as transition metal dissolution are further accelerated when cycling
at high temperatures [53,54]. With low temperatures causing lithium
plating and high temperatures accelerating SEI growth and transition
metal dissolution, the temperature of a lithium-ion based BESS should
ideally be neither too high nor too low [53,54]. It should be noted
that a low operating temperature also negatively affects the available
cell capacity as well as the cell resistance and thereby energetic effi-
ciency. A range of 15 to 35 ◦C is often stated for the optimal operating
temperature of lithium-ion cells [55].

Charge-Discharge Rate Crate: To normalize for the battery capacity
𝐶batt , the charge–discharge rate Crate in h−1 is often given instead of
the charge–discharge current 𝐼 :

Crate =
𝐼

𝐶batt
(3)

A high Crate will accelerate particle cracking & graphite exfoliation as
well as additional SEI formation [10,56]. Charging and discharging
a cell for the same amount of FECs, but with a higher Crate, can
therefore accelerate capacity loss and resistance increase, as it was
shown in a cyclic aging study by Naumann et al. with LFP-graphite
cells [19]. It should be noted that a high Crate will also cause the cell to
generate more heat and increase its temperature, making it challenging
to distinctly separate individual stress factors. In a study conducted by
Barcellona et al. cells were kept in a temperature range of 20 to 30 ◦

C through active cooling with Peltier cells [57]. For the investigated
lithium cobalt oxide cells with graphite anodes, the impact of the
Crate on capacity loss was found to be negligible for moderate charge–
discharge rates [57]. Especially in combination with low temperatures
or at a high SOC, lithium plating & dendrite formation on the anode
may occur when charging with a high Crate [12]. Fast charging with
a high Crate is especially required for EV and consumer electronic
applications. During fast charging, the combination of inhomogeneous

temperature distribution in the cell, lithium plating risk, and mechan-
ical stress is the main concern for cell aging [58]. Notably though,
typical stationary BESS applications require a lower Crate in both charge
and discharge direction [25].

Average State of Charge SOC: The average state of charge SOC around
which a cell is cycled is known to influence cyclic aging as well. In
an aging study by Schmalstieg et al. NMC-graphite cells were cycled
with a fixed DOC of 10% in different SOC ranges. After normalizing
for the effects of SOC on calendar aging, the lowest cyclic aging was
found in the range of 45 to 55% SOC, at SOC = 50%, and the highest
in the range of 90 to 100% SOC, at SOC = 95%. In an experimental
study focusing on this stress factor, Gantenbein et al. attributed the
impact of SOC ranges to different stages of lithiation of the graphite
anode [59]. The graphite anode will expand in volume when charging
and retract when discharging [59,60]. Volume expansion and retraction
of the graphite anode is especially pronounced when transitioning
between these lithiation stages [60]. Cycling between lithiation stages
is therefore expected to cause increased particle fraction and formation
of new SEI [59]. The average cell terminal voltage 𝑉cell may be used to
quantify this stress factor in degradation models as well [15].

Depth of Cycle DOC: The DOC is sometimes also referred to as depth
of discharge (DOD or ΔDOD) or cycle depth in literature. It refers to the
difference in SOC levels between which a cell is cycled, as illustrated in
Fig. 4. The general tendency of higher capacity loss with higher DOC
has been attributed to increased cracking and new SEI Formation as
a consequence of volume expansion in the graphite anode, especially
when crossing the anode’s phase change regions [59,61]. While in
general a higher DOC will increase capacity loss, exceptions are found
in empirical aging studies. In a study conducted by Ecker et al. with
commercial NMC-graphite cells, the general trend showed a higher
capacity loss with increasing DOC, for the same SOC and number of
FECs [62]. An exception being that after 750 FECs, cycling between
85% and 75%, at DOC = 10%, showed less degradation than between
82.5% and 77.5%, at DOC = 5% [62]. In another aging study with
commercial LFP-graphite cells by Naumann et al. higher DOCs lead to
higher capacity loss after extended cycling as well [19]. An exception
being that for low DOCs, a capacity recovery effect was observed: After
an initial accelerated capacity loss for lower DOCs such as 10% and
20% compared to higher DOCs of 80% and 100%, part of that capacity
loss for low DOCs is regained following further cycling [19]. This effect
was later attributed to non-uniform lithium distribution after extended
shallow cycling at low DOC [63].

Charge and Discharge Cut-Off Voltage: The usable and nominal
capacity and thereby the definition of the SOC are dependent on the
set operating voltage limits of a cell, i.e. the charge and discharge cut-
off voltage. A high charge cut-off voltage can lead to over-delithiation
of the cathode material and thereby accelerate structural disordering
on the cathode [30]. Furthermore, over-lithiation of the anode can
lead to lithium plating and dendrite formation [12]. Low discharge
cut-off voltages can lead to corrosion of the anode’s copper current
collector [30]. The operating voltage window should therefore be set
such that the cells deliver a high nominal capacity while retaining
high cycle life. Juarez-Robles et al. observed more than double the
cycle life at a 20% reduction in usable capacity by limiting the man-
ufacturer’s recommended safe discharge and charge cut-off voltage
from [2.7 V, 4.2 V] to [2.9 V, 4.0 V] for a commercial NCA-graphite
cell [64]. In a similar setup of commercial cells with NCA cathodes
and graphite/silicon composite anodes, Bazlen et al. found that by
decreasing the charge cut-off voltage from 4.2 V to 4.1 V cathode aging
effects can be reduced [65]. Increasing the discharge cut-off voltage
from 2.5 V to 3.1 V, reduced anode aging, which was attributed to less
volume change of the graphite/silicon anode [65].
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Fig. 5. Schematic depiction of capacity loss and possible dominant aging mechanisms
over a cell’s life cycle for graphite anodes and metal oxide cathodes. Based on [20,66].

2.3. Key aspects of aging mechanisms and stress factors for BESS operation

The previous sections provided an overview of the relevant aging
mechanisms and their stress factors in common lithium-ion batteries
with graphite based anodes and metal oxide cathodes. The specific
degradation behavior is dependent on cell design, electrolyte additives
and the cathode material, but the primary aging mechanisms and their
stress factors remain the same across LFP, NMC and NCA.

Past studies have shown that over a cell’s life cycle the dominant
aging mechanisms vary as highlighted in Fig. 5. The initial formation
of the SEI is mostly completed during production as one of the costliest
manufacturing steps [67,68]. During the main operation phase, degra-
dation for standard operating conditions is to a large extent driven
by SEI growth combined with the cathode aging mechanisms [20,69,
70]. Once the SEI has grown extensively, a self-reinforcing process
of lithium plating may lead to rapid capacity loss [69,70]. The SEI
growth leads to a reduction of the anode’s ionic kinetics that can induce
lithium plating even during standard operating conditions. If the plated
lithium is isolated by formation of additional SEI around the lithium,
this will lead to further deterioration of the anode’s ionic kinetics and
in turn promote further lithium plating [69,70]. Extensive loss of non-
lithiated anode active material can also induce lithium plating and
thereby rapid capacity loss. This is due to over-lithiation of the anode
during charging, as the remaining anode active material may be unable
to accommodate all remaining lithium [71]. Electrolyte depletion has
been reported to cause significant loss of active material and thereby
rapid capacity loss as well after extended operation [66,72]. The onset
of this phase of rapid degradation is often referred to as an aging knee
point, with a review of possible mechanisms leading to this knee point
having been compiled by Attia et al. [73]. Notably, in a cell aging
study by Johnen et al. the phase of rapid capacity loss was followed by
another phase of slow degradation for low remaining capacity between
20% and 30% of the initial capacity [74].

Typically, the cell end-of-life (EOL) is defined before this region of
rapid degradation between 70% and 80% remaining capacity [74,75].
This range is also commonly found in manufacturer warranties [76].
Instead of a fixed figure for the remaining capacity, application specific
profitability criteria have been proposed to determine the EOL for
BESSs, which may result in a system being operated up to lower remain-
ing capacity [33,75]. It should be considered though that operating
cells with low remaining capacity can negatively affect cell safety,
especially in the presence of lithium plating [77–79].

While the specific degradation behavior is cell dependent, general
conclusions can be drawn on how to extend BESS lifetime. During idle
time, SOC and 𝑇 should be kept low. During charging and discharging,

Fig. 6. Classification of degradation models.

capacity loss can be reduced by keeping the temperature 𝑇 in a medium
range, by avoiding phase change regions of the anode with SOC, and
by cycling at low DOC and Crate.

3. Degradation models

Degradation models quantify the effects of aging mechanisms as a
function of a cell’s properties and usage profile. As we will show in
Section 4, most publications in the field of BESS operation investigate
capacity loss as the primary effect of battery degradation, due to its
detrimental effect on the remaining useful life and the profitability
of a BESS. We therefore focus on models that describe capacity loss.
Depending on a degradation model’s use-case, other effects may be
relevant as well such as resistance increase to quantify power fade or
the extent of cell internal lithium plating to assess safety risks.

3.1. Model types

Degradation models can loosely be categorized into empirical, semi-
empirical and physicochemical models with further sub-categorization
as shown in Fig. 6.

3.1.1. Empirical models
Empirical models are fit to cell aging data, without inherent mod-

eling of the underlying physical aging mechanisms. Varying degrees of
complexity for such models can be found.

The most simple form of an empirical model is the assumption that
battery life is limited by a total amount of usable FECs in combination
with a shelf life (e.g. 1500 FECs and 10 years). If either the total amount
of FECs or shelf life is reached, the battery is assumed to have reached
its EOL [80]. Though simple, this model does not account for any of
the stress factors from Section 2.2.

DOC dependent total FEC models account for the fact that a small
amount of cycles at high DOC tend to cause more battery degradation
than the equivalent amount of cycles at a low DOC. This type of model
has been employed by multiple authors for BESS operation [80–83].

Multi stress factor empirical models link any number of additional
stress factors to capacity loss. For example, Padmanabhan et al. used a
model that accounts for both the DOC and Crate dependence of capacity
loss [84]. Fig. 7 provides a visualization of a degradation model from
Maheshwari et al. with dependence on DOC, SOC and Crate [85].

3.1.2. Semi-empirical models
Semi-empirical models typically rely on data from cell aging studies,

in which a limited number of cells has been cycled and stored under
accelerated aging conditions. For model fitting, they use functions that
describe the underlying aging mechanisms. Multiple frequently used
models use a superposition approach of calendar and cyclic loss to de-
scribe the total capacity loss, as indicated in Eq. (4) [15–19,54,86,87].

𝑄total
loss =𝑄cal

loss(𝑡,SOC, 𝑇 ) +

𝑄cyc
loss(FEC,Crate, 𝑇 ,SOC,DOC)

(4)
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Fig. 7. Multi stress factor empirical model for a NMC cell, as depicted in Maheshwari
et al. [85].

Here, 𝑄total
loss refers to the total capacity loss while 𝑄cal

loss and 𝑄cyc
loss refer

to the calendar and cyclic components of capacity loss, respectively.
Table 2 provides an overview of selected semi-empirical degradation
models.

Calendar Aging: For the calendar capacity loss 𝑄cal
loss, the selected mod-

els show a degree of uniformity: The common assumption of a square
root dependency of 𝑄cal

loss on time can be traced back to approximating
SEI growth as a diffusion limited process for graphite electrodes [56].
More general power law and logarithmic expressions are also used for
the time dependency of calendar aging by some authors [15,88]. The
Arrhenius equation describes the exponential temperature dependency
of reaction rates and is commonly referenced for modeling temperature
dependent calendar aging [18,54,89–92]. Eq. (5) shows an adapted
version of the Arrhenius equation as it can be used for fitting to aging
test data [88,93].

𝛼𝑇 = 𝛾1 ∗ 𝑒
− 𝛾2

𝑅 ∗( 1𝑇 − 1
𝑇𝑟𝑒𝑓

)
(5)

𝛼𝑇 refers to the stress factor and 𝛾1 and 𝛾2 are fitting parameters,
analogously to Table 2. 𝑅 is the gas constant and 𝑇ref the reference
temperature for data fitting.

The Tafel equation describes the overpotential of an electrochemical
reaction as a function of current density. Under the assumption that
SEI growth is driven by over-potential, multiple authors use Tafel-like
equations to describe the effect of SOC on calendar aging [54,88,91],
see Eq. (6).

𝛼SOC = 𝛾1 ∗ 𝑒
− 𝛾2∗𝐹

𝑅 ∗
𝑈a,ref −𝑈𝑎 (SOC)

𝑇ref (6)

𝛼SOC is the stress factor, 𝐹 is Faraday’s constant and 𝑈𝑎 the anode
to reference potential. Simplified exponential expressions of the above
dependency of 𝛼SOC on SOC are used in the Saraketa-Zabala et al. and
Guenther et al. models from Table 2 [16,86].

Cyclic Aging: The highlighted cyclic aging models show notably less
uniformity in both model structure and the considered stress factors
than the calendar aging models. Generally, cyclic aging models tend
to use either cumulative charge throughput 𝑄 [15,17,92] or the total
number of FECs [19,54,94] to represent battery cycling. On the other
hand, the model of Guenther et al. relies on summation after every
cycle to account for both the effect of cycling and the DOC of each
cycle [86]. While most cyclic aging models tend to consider the DOC
dependence, only some include further stress factors. Schmalstieg et al.
also accounted for the average cell voltage during cycling 𝑉cell [15].
Naumann et al. included the charge–discharge rate Crate dependency in
addition to the DOC in their model [19]. While not part of Table 2,
Schimpe et al. published a cyclic aging model that also accounts for
temperature dependence [54].

Smith et al. took a different approach to semi-empirical degrada-
tion modeling [95], labeled Limited Capacity in Fig. 6. Their model
computes the available remaining capacity as the minimum of lithium
inventory limited capacity, negative electrode limited capacity and
positive electrode limited capacity. All three components are then
described as physics inspired algebraic equations and fitted to aging
test data [95].

3.1.3. Physicochemical models
Physicochemical models describe cell internal degradation mech-

anisms through sets of differential equations. Compared to empirical
and semi-empirical models they are often considered computationally
expensive, but promise extrapolation outside of the experimental data
sets if parameterized accurately [88,96]. Generally, physicochemical
models focus on individual degradation mechanisms such as SEI growth
or particle cracking [31]. A detailed overview of published physico-
chemical degradation models and the considered mechanisms for each
model has been compiled by Reniers et al. [31].

As a reduced order physicochemical model, single particle mod-
els (SPMs) provide a trade-off between computational efficiency and
accuracy [97]. Under the assumption of uniform current distribution
as well as same size spherical particles in both electrodes, each elec-
trode is approximated as a single, spherical particle [97]. Ning et al.
provided a SPM to describe SEI growth at the negative electrode
under consideration of external stress factors [98]. At the core of the
degradation model, the capacity loss caused by SEI growth is described
by the current density of the solvent reduction side reaction, as shown
in Eq. (7).

𝜕𝑄SEI
loss(𝑡)
𝜕𝑡

= 𝑖s(𝑡) ∗ 𝐴n (7)

With 𝑄SEI
loss being the capacity loss caused by SEI growth, 𝑖s the side reac-

tion current density and 𝐴n the surface area of the negative electrode.
Further differential equations then describe the side reaction current
density as a function of over-potential in a Tafel-like equation [98].
Other authors use similar SPM formulations with notable examples
provided in the following [97,99]. For increased accuracy, Pinson et al.
added a one-dimensional porous electrode model to their SPM that
accounts for spatial in-homogeneity of the SEI [99]. Li et al. developed
a SPM that in addition to SEI growth considers crack propagation due to
volume change [97]. Some more complex degradation models build on
top of a modeling framework that is often referred to as the pseudo two-
dimensional (P2D) Newman model [100,101]. Aswhin et al. proposed
an SEI growth model based on the P2D Newman model [102]. Yang
et al. developed a model that in addition to SEI growth, accounts for
lithium-plating in order to represent the fast, nonlinear capacity loss
towards the EOL [70]. Similarly, the model by Keil et al. represents SEI
formation, SEI re-formation due to particle cracking, as well as lithium
plating and lithium stripping [103].

3.1.4. Filtering and machine learning methods
Filtering and machine learning methods for capacity degradation

modeling typically use online data of the system of interest. A review
of methods in this field has been compiled by Li et al. [30]. Bayesian
filters such as Kalman filters and particle filters allow to estimate
and update the fitting parameters of degradation models during the
operation phase [30,104]. Machine learning methods, such as artifi-
cial neural networks and support vector machines, rely on training
data to tune the models before being applied to online data of the
system of interest [105,106]. While filtering and machine learning
methods are frequently proposed for the online estimation of the state
of health [107] or remaining useful life of lithium-ion cells [108,109],
none of the investigated publications in the field of BESS scheduling use
such methods for degradation modeling. Especially machine learning
methods, such as neural networks, tend to not provide a direct algebraic
link between external stress factors and capacity loss, which makes
them challenging to integrate into scheduling methods.
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Table 2
Algebraic form of selected semi-empirical degradation models. 𝛼𝑖 and 𝛽𝑖 refer to the algebraic form of the calendar and cyclic stress factors, respectively. The index denotes the
specific stress factor. 𝛾𝑖 refers to a fitting parameter that is determined based on accelerated cell aging tests in the respective studies.

Schmalstieg (NMC)
[15]

Naumann (LFP)
[18,19]

Sarasketa-Zabala (LFP)
[16,17]

Guenther (generic cell)
[86]

𝑄cal
loss = 𝛼𝑇 ∗ 𝛼𝑉cell

∗ 𝑡0.75 𝛼𝑇 ∗ 𝛼SOC ∗ 𝑡0.5 𝛼𝑇 ∗ 𝛼SOC ∗ 𝑡0.5 𝛼𝑇 ∗ 𝛼SOC ∗ 𝑡0.5

𝛼𝑇 = 𝛾1 ∗ 𝑒−
𝛾2
𝑇 𝛾1 ∗ 𝑒−𝛾2∗(

1
𝑇
− 1

𝑇ref
) 𝛾1 ∗ 𝑒−

𝛾2
𝑇 𝛾1 ∗ 𝑒

𝑇−𝑇ref
𝛾2

𝛼SOC,𝑉cell
= (𝛾1 ∗ 𝑉cell − 𝛾2) 𝛾1 ∗ (SOC − 0.5)3 + 𝛾2 𝛾1 ∗ 𝑒𝛾2∗SOC 𝑒

SOC−SOCref
𝛾

𝑄cyc
loss = (𝛽𝑉cell

+ 𝛽DOC + 𝛾) ∗ 𝑄0.5 𝛽C−rate ∗ 𝛽DOC ∗ FEC0.5 𝛽DOC ∗ 𝑄𝛾 ∑𝑁
𝑛=0 𝛽DOC,n

𝛽SOC,𝑉cell
= 𝛾1 ∗ (𝑉cell − 𝛾2)2 – – –

𝛽DOC = 𝛾 ∗ DOC 𝛾1 ∗ (DOC − 0.6)3 + 𝛾2 10% ≤ DOC ≤ 50%:
𝛾1 ∗ DOC2 + 𝛾2 ∗ DOC + 𝛾3

Else: 𝛾4 ∗ 𝑒𝛾5∗DOC + 𝛾6 ∗ 𝑒𝛾7∗DOC

𝛾1 ∗ DOC3 + 𝛾2 ∗
DOC2 + 𝛾3 ∗ DOC

𝛽C−rate = – 𝛾1 ∗ Crate + 𝛾2 – –

Table 3
Assessment of different degradation model types for BESS operation.

Model type Advantages Disadvantages

Empirical • high computational
efficiency
• can include all aging
effects represented in the
data

• strong reliance on aging
data
• limited extrapolation
capacity

Semi-empirical • high computational
efficiency
• minor extrapolation
capacity

• strong reliance on aging
data

Physicochemical • high extrapolation capacity
for the modeled mechanisms

• model provides multiple
cell parameters in addition
to capacity loss

• high parameterization
effort
• computationally expensive

3.2. Key aspects of degradation models for BESS operation

Table 3 summarizes the key advantages and disadvantages of the
different degradation model types for BESS operation. Empirical models
provide no modeling of the underlying aging mechanisms and therefore
solely rely on aging data. Physicochemical models model the underly-
ing mechanisms in detail through sets of differential equation, require
less aging test data, but in exchange bring a high parameterization
effort with them. If the modeled aging mechanisms do not funda-
mentally change in the investigated time frame, a certain degree of
extrapolation capacity can be assumed outside of the validation period
with physicochemical models [88]. Semi-empirical models attempt to
offer a trade-off between both physicochemical and empirical modeling
approaches.

3.2.1. Varying stress factors and model discretization
Both empirical and semi-empirical models are typically fit to data

from cell aging studies. These studies are run with multiple cells
that are subjected to varying stress factors. While the stress factors
such as temperature or charge–discharge rate vary from cell to cell,
stress factors are usually kept constant for a given cell throughout
the duration of the study, e.g. one cell stored at 25 ◦C and others
at 35 ◦C and 45 ◦C [15,54]. Check-up tests are run after a specific
amount of time or cycles for the cells to determine the remaining
capacity and other relevant parameters such as the cell impedance.
The models are then fit to the resulting data set. Contrary to this,
outside-the-lab applications subject the cells to varying external stress
factors [25,110]. Some studies age individual cells with varying stress
factors to validate the resulting model [17–19]. This model validation
at varying stress factors is of importance, since aging mechanisms may
show path dependence, i.e. dependence on the order in which a cell has
been subjected to different calendar and cyclic stress factors [111,112].

Fig. 8. Qualitative depiction of deriving the virtual time and the related degradation
rate for changing from storage SOC2 to storage SOC3.

To apply a degradation model with a continuous function, such as
𝑄cal

loss = 𝛼𝑇 ∗ 𝛼SOC ∗ 𝑡0.5 from Table 2 to varying stress factors, methods
for discretization are needed in order to determine the degradation rate
for each calculation step. Multiple authors propose to determine the
present degradation rate based on the past capacity loss, rather than the
past time or energy throughput [16,18,90]. This concept is highlighted
in Fig. 8. Assume a cell has been stored at SOC2 for a specific amount
of time 𝑡′ and accrued a calendar capacity loss of 𝑄cal′

loss, see point A in
Fig. 8. The SOC is then increased to SOC3, with SOC3 > SOC2. Instead
of using the degradation rate at 𝑡′ for the following calculation time
step (point B), the higher degradation rate at 𝑡virtual is applied (point
C). The virtual time 𝑡virtual refers to the time that had needed to pass
for the cell to reach the capacity loss in point C. It is calculated by
forming the inverse of the capacity loss function, cf. Eq. (8):

𝑡virtual = 𝑄𝑐𝑎𝑙
𝑙𝑜𝑠𝑠

−1(𝑄𝑐𝑎𝑙′
𝑙𝑜𝑠𝑠,SOC2) (8)

The physical rationale behind this concept is that the SEI growth rate
is more correlated to the present thickness of the SEI, which manifests
itself in capacity loss, than to the amount of time that has passed.

The same principle can be applied to cyclic aging as well, by
calculating a virtual number of FECs or charge throughput [19]. Dis-
cretization of cyclic aging brings additional complexity though: cycle
counting. While calendar aging can be evaluated after every timestep,
computing cyclic capacity loss requires a definition of when a cycle
is completed. A full charge–discharge cycle from 0% to 100% back
to 0% SOC should be computed as one FEC at 100% DOC instead of
ten cycles at 10% DOC. Naumann et al. as well as He et al. employ
a half cycle counting algorithm in which a cycle is evaluated after
every change of charge–discharge direction [19,80]. After such a cycle
is detected, DOC and Crate are determined and the cyclic capacity
loss is calculated. Another algorithm used for cycle counting is the
rainflow-counting algorithm, which is commonly employed in material
fatigue analysis [113,114]. It sequences a data series of local maxima
and minima into cycle loops and thereby allows to identify individual
cycles, their DOC, and Crate in a SOC profile [82,115].
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3.2.2. Model requirements and examples
This section provided an overview of common degradation mod-

els and in doing so highlighted the significant variety in modeling
approaches. To use degradation models for scheduling purposes, we
identify four main requirements:

• Modeling of varying stress factors: To apply a model to real
life use cases, it should include a validated method to represent
varying stress factors.

• Modeling of application relevant stress factors: The stress
factors that are relevant for a given application, should be rep-
resented in the model. For the semi-empirical models highlighted
in Table 2, all consider the dependence of cyclic aging on DOC,
but only some the dependence on Crate and SOC.

• Validity for operation range and conditions: A degradation
model that is intended to be used for a given application should
be validated for that application’s operation range. For example,
if an application shows a large amount of cycles at low DOC
and high Crate, this should be part of the test conditions through
suitable design of experiment.

• Sufficient computational efficiency: Sufficient computational
efficiency is needed to include degradation models in common
scheduling methods.

Individual contributions can be found that aim to provide models
specifically for use in battery operation and scheduling [87,114,116,
117]. Muenzel et al. proposed a cycle life model that accounts for
the cyclic stress factors of Crate, DOC, 𝑇 , SOC and uses the rainflow
algorithm for cycle counting [114]. Shi et al. only consider DOC as
a stress factor for cyclic aging, but prove convexity of their resulting
model which is beneficial for a number of scheduling methods [116].

4. Aging aware operation

In this section, we move from degradation models to aging aware
operation strategies. The process of deriving a schedule of charge
and discharge signals for a BESS under consideration of technical
constraints and economic benefit is referred to with multiple terms
in literature: energy management [23], scheduling [39], control [37],
dispatch [118] or operation [85]. In the following, we will refer to this
general process as scheduling and provide an overview of scheduling
methods in Section 4.1. In Section 4.2 we provide a tabular review of
contributions that account for battery degradation during scheduling
and perform a taxonomy of ‘‘aging awareness methods’’, meaning
methods for how to internalize battery degradation into the scheduling
method. In Section 4.3 we investigate through time-series simula-
tions which aging stress factors are particularly relevant for selected
applications of BESSs.

Fig. 9 summarizes selected key applications of BESSs, which are
referenced again in later subsections. SCI is often a primary application
for residential storage systems and refers to increasing one’s own
consumption of self generated renewable energy, mostly photovoltaic
(PV), by charging energy into the BESS instead of feeding it into the
grid in times of excess PV generation. Since electricity costs often
exceed remuneration for feeding PV generated electricity into the grid,
a net benefit is gained by using the energy from the BESS, once the
household load exceeds PV generation again [119]. Peak shaving
(PS) means smoothing a load profile by discharging the BESS into
the load peak and thereby reducing demand charges for an industrial
electricity consumer [33]. Energy arbitrage (EA) is the process of
buying electricity at low prices and selling it at high prices on the
respective energy markets. Balancing power (BP) describes a grid
service in which a BESS provides its power capability to charge during
grid over-frequency and discharge during under-frequency, in order
to stabilize the electricity grid [36]. Remuneration is handled on the
respective power markets, such as the central European auction for
frequency containment reserve (FCR) or firm frequency response (FFR)

Fig. 9. Overview of key BESS applications. Multi-use and V2G are overarching concepts
that can include BTM, FTM or microgrid applications.

Fig. 10. Non-exhaustive overview of optimization based scheduling methods and their
classification.

in the United Kingdom. Microgrid refers to applications in which a
BESS is used to form a microgrid in partial or full independence from
larger national electricity grids [82]. In multi-use applications, a BESS
is used for not one, but multiple of the aforementioned applications by
either running them sequentially one after another or in parallel [2].
Lastly, vehicle-to-grid (V2G) is the concept of using electric vehicles
to fulfill any of the aforementioned applications, including multi-use,
through controlled or bi-directional charging [120]. Further applica-
tions of BESSs include the provision of backup power, time arbitrage for
time-of-use tariffs, as well as transmission & distribution grid upgrade
deferral [1].

4.1. Scheduling methods

To operate an energy storage system as optimally as possible, sev-
eral aspects must be taken into account. In addition to the design of
the storage system and the definition of the applications to be served,
system constraints, operating expenses, degradation and efficiency have
to be considered [85]. In terms of scheduling methods, a distinction
is made between rule-based and optimized operation strategies. Rule-
based methods offer the advantage of relatively low computational
complexity, e.g. discharging a BESS during load peaks in PS operation
up to a peak shaving limit and charging it again after the load peak.
Optimization based scheduling methods, on the other hand, aim to
determine the optimum of an objective function, which is also referred
to as the fitting or reward function. Based on literature, optimized
operation strategies can be divided into three categories of algorithms:
exact solution approaches (E), heuristics (H), and meta-heuristics
(MH) (cf. Fig. 10) [23].

4.1.1. Exact solution approaches
The most common group of algorithms for optimization based BESS

scheduling is exact solution approaches [23]. As the name suggests, this
group of algorithms generally has the property of finding the optimal
solution to a given optimization problem. It includes linear, nonlinear,
and quadratic problems. Often, these standard categories also include
extensions with mixed integer problems. A mixed integer linear pro-
gramming (MILP) problem is an optimization problem that includes
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a linear objective function and linear constraints with integer as well
as continuous decision variables. Analogously, mixed integer quadratic
programming refers to a problem with a quadratic objective function
and integer as well as continuous decision variables. In addition to
the standard solution approaches for these problem types, such as the
simplex algorithm and branch and bound methods, there are decom-
position based methods, such as dynamic programming (DP), which
are especially used for sequential decisions [121]. While they allow to
find the global optimum to a problem, exact solution approaches have
the disadvantage that solving them can be computationally expensive.
Especially nonlinear programming (NLP) approaches with multiple
decision variables can be elaborate and time consuming to solve, which
can explain why the faster linear approaches are more frequent in the
field of time-series optimization and energy storage [23]. In order to in-
clude nonlinear relationships, such as efficiency curves or aging models
in a linear scheduling method, linearization approaches are commonly
used [33,85]. It should be underlined though, that linearization of
models will introduce errors and thereby decrease accuracy [122].

4.1.2. Heuristics
The second group of optimization based scheduling methods are

heuristics, which include algorithms, such as the fuzzy method, greedy
heuristic, gradient method, and reinforcement learning [23]. Compared
to exact solution approaches, heuristics are fast, but have the disadvan-
tage that they can get stuck in local optima [123]. Because of their
advantage of relatively fast computing times, heuristics are able to
bundle complex nonlinear relationships in an optimization problem. In
the work by Cao et al. the reinforcement learning method was used to
control an energy storage system during arbitrage trading, while con-
sidering battery degradation, charge–discharge efficiency, and market
price prediction [38].

4.1.3. Meta-heuristics
In contrast to heuristic approaches, meta-heuristics can be described

as heuristics that are allowed a step-wise worsening of the optimization
objective, with the intention to avoid local optima [23]. Well-known
representatives of meta-heuristics are methods such as evolutionary
approaches, swarm intelligence, and neural networks. In Engels et al.
a genetic algorithm is presented to determine the optimal scheduling
of a large-scale storage system in the German frequency containment
reserve market [36]. Comparing this algorithm with other gradient-
free global optimization algorithms, the authors found that the chosen
differential evolution method converges relatively fast towards the
optimization bounds, while allowing the co-optimization of the degra-
dation costs [36]. Other promising candidates for meta-heuristics are
swarm intelligence-based search techniques. Hossain et al. and Li et al.
used particle swarm optimization (PSO) in the context of microgrid
communities and bi-directional electric vehicles, respectively [82,120].
In both approaches, the degradation is actively considered in the fit-
ness functions of the optimization method and the degradation model
was implemented with a rain-flow algorithm to determine the energy
throughput at the mobile and stationary energy storage systems [82,
120]. Liu et al. used a electrothermal-aging model for their opti-
mization problem, that captures the nonlinear electrical, thermal, and
degradation dynamics of a lithium-ion battery and solve it using the
NSGA-II algorithm [35]. Here, it was found that the chosen genetic
algorithm is a viable candidate to determine the optimal operation
strategy, allowing the modeling of nonlinear processes as well as hard
constraints in the optimization algorithm [35].

4.1.4. Aging aware scheduling example
In general, it can be said that the more detailed the degradation

model is, the more complex it is to find a suitable scheduling method.
As the literature review shows that degradation aware scheduling
methods are largely implemented with MILP algorithms (cf. Tables 4–7
in the following subsection), an example is provided in the following.

Fig. 11. Exemplary dependency between SOC, Crate and the respective degradation
cost. The blue lines depict the linearization and the blue arrows illustrate the
minimization of aging costs. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Eq. (9) shows an exemplary objective function, which maximizes the
profit P of the system while accounting for the cost of degradation
Caging. In order to limit the solution space of the optimization problem,
constraints must be defined (cf. Eqs. (10)–(12)). As shown in Eq. (10),
the cost of battery cell degradation at time step 𝑡 is composed of
the capacity loss change from calendar 𝛥𝑄cal

loss and cyclic 𝛥𝑄cyc
loss aging,

multiplied by the specific aging cost per unit of capacity loss 𝑐aging.
Further constraints, which are not detailed here, then model how
the profit P𝑡 relates to the charge–discharge rate Crate,𝑡 in the given
application and how SOC𝑡 changes based on Crate,𝑡.

max
∑

𝑡∈𝑇

(

P𝑡(Crate,𝑡) − Caging
𝑡

)

(9)

Caging
𝑡 = (𝛥𝑄cal

loss,𝑡
(

SOC𝑡
)

+𝛥𝑄cyc
loss,𝑡

(

Crate,𝑡
)

) ∗ 𝑐aging ∀𝑡 ∈ 𝑇 (10)

𝑄cal
loss,𝑡 ≥ 𝑎𝑖 ⋅ SOC𝑡 + 𝑏𝑖 ∀𝑖 ∈ 𝐼,∀𝑡 ∈ 𝑇 (11)

𝑄cyc
loss,𝑡 ≥ 𝑐𝑗 ⋅ Crate,𝑡 + 𝑑𝑗 ∀𝑗 ∈ 𝐽 ,∀𝑡 ∈ 𝑇 (12)

This generic example includes a simplified degradation model with
two calendar aging stress factors, 𝑡 and SOC, and two cyclic aging
stress factors, FEC and Crate. As discussed in Section 2.2, the usable
capacity of lithium-ion cells usually degrades faster at high SOCs.
For approximation purposes, the SOC-related stress behavior can be
mathematically described with a respective function (cf. thick black
line in Fig. 11a). To include this nonlinear degradation behavior in a
MILP, linearization techniques are required. By applying the method
of linearization, the nonlinear behavior can be step-wise linearized. As
shown in Fig. 11a, the nonlinear function is partitioned into 𝑖 ∈ 𝐼
linear functions with slope 𝑎𝑖 and 𝑦-axis intercept 𝑏𝑖 (cf. Eq. (11)).
With battery degradation cost Caging

𝑡 included as a penalty factor in
the objective function (cf. Eq. (9)), the solver will account for and
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Fig. 12. Categorization of aging awareness methods.

reduce this stress factor (cf. blue arrows in Fig. 11a) and thus avoid
higher SOC levels. Analogously, one can also apply linearizations for
the Crate in order to approximate this nonlinear stress characteristic
that leads to higher degradation costs for increased Crate values (cf.
Fig. 11b). In Eq. (12), 𝑐𝑗 and 𝑑𝑗 respectively represent the slope and
𝑦-axis intercept for the set of linear functions 𝑗 ∈ 𝐽 for the Crate,𝑡 stress
factor. Note that a higher Crate,𝑡 will also lead to a larger number of
FECs for that timestep. This means that both cyclic aging stress factors,
FEC and Crate, can be represented by one set of linear functions, as
illustrated by the steep increase of 𝑄cyc

loss,t in both charge and discharge
direction in Fig. 11b.

4.2. Aging awareness methods

Tables 4 to 7 summarize existing publications in the field of aging
aware BESS operation. Next to the scheduling method, application,
aging model, and stress factors, the method used to account for battery
degradation in the operation strategy is highlighted. A variety of such
methods, that we refer to as aging awareness methods, can be found
in literature and categorized as in Fig. 12. In summary, these aging
awareness methods might negatively effect short-term profitability, but
are expected increase long-term profitability by extending the BESS
lifetime.

Rule-based approach: We make the first differentiation with re-
gards to the scheduling methods themselves. Rule-based scheduling
methods employ rule-based methods as well to limit degradation, while
optimization based scheduling strategies provide a wider range of
methods. As for rule-based aging awareness methods, Angenendt et al.
proposed a forecast based method [119]. Here, a residential storage
system is charged up only to the energy level during the day that is
forecasted to be needed at night. Thereby the average SOC and calendar
aging are reduced. A decrease in levelized cost of electricity of up to
12% is reported as a result [119].

Optimization approach: The majority of scheduling methods are
optimization based. The target is to minimize or maximize an objective
function through either exact solution approaches, heuristics or meta-
heuristics. For those scheduling methods, aging awareness may be
induced through constraints, through the objective function or through
both.

In Constraints: By setting fixed constraints for the aging stress factors
in an optimization problem, the extent of degradation can be reduced.
Li et al. limited the Crate through fixed constraints for the charge
and discharge power and induce upper and lower limits for the SOC
range [120]. Wankmuller et al. limited the SOC range to 60% of the
original battery capacity and investigate the techno-economic impact of

different limits for the Crate as part of their analysis [124]. Shi et al. lim-
ited the usable SOC range to 70% of the original battery capacity [116].
It should be noted that introducing limits for the SOC in an optimization
problem will affect the maximum DOC as well. The effects of limiting
DOC in different SOC ranges were studied by Perez et al. in a multi-use
balancing power and energy arbitrage application [125]. It was found
that for the optimal SOC range, the annual average gross revenue is
reduced by 18%, but the BESS lifespan is expected to double [125].

A different kind of aging aware constraints was used by Cardoso
et al. [126]. Here, an energy throughput limit for the BESS was in-
troduced, which is calculated based on a semi-empirical aging model
with the target lifetime and tolerable capacity loss before EOL as
inputs [126]. Notably, Cardoso et al. considered both scheduling and
system sizing in their optimization framework [126].

Objective Function (OF): Instead of solely relying on constraints,
the majority of investigated studies account for degradation directly
in the objective function with a penalty factor, as either a Technical
Parameter (OF-T) or Economic Parameter (OF-E).

Technical Parameter (OF-T): Multi-objective approaches allow to in-
clude technical parameters in the objective function alongside eco-
nomic parameters for the profit gained in an application. Li et al.
directly optimized the sum of all cycles and half-cycles in the objective
function for the investigated V2G application [120]. Maheshwari et al.
proposed an optimization framework that includes a detailed empirical
degradation model for energy arbitrage applications [85]. They used a
multi-objective approach, in which revenue and degradation are linked
through a weighting factor that should be chosen by the operator. With
a lower weighting factor, battery degradation decreases, but so does
the short-term revenue that is gained through energy arbitrage [85].
Analogously, with the multi-objective approach by Li et al. the annual
cashflow for a residential BESS in their case study decreases from 318 e
to 312 e, but the expected lifetime increases from 12 to 15 years [127].

Economic Parameter (OF-E): A significantly larger subset of publica-
tions are using a form of economic parameter to link battery degrada-
tion with the profit that is generated from the primary applications of
the BESS. This is done by either directly assigning a monetary value to
degradation in the form of aging cost or by formulating future profit as
a function of the expected battery lifetime.

Cost Based (OF-E-C): Two definitions are especially common for aging
cost Caging, which are given in Eqs. (13) and (14).

Caging
SOH =

𝑐battery ∗ 𝐸n

1 − SOHEOL
∗ 𝛥SOH (13)

In Eq. (13), the aging cost Caging
SOH is calculated based on the specific bat-

tery cost 𝑐battery, the nominal battery capacity at the beginning of life 𝐸n
in Wh, the SOH threshold for the end of life SOHEOL and the decrease
in SOH (𝛥SOH), as proposed by multiple authors [34,36,118,122,128].
In this context, 𝑐battery is often chosen as the installation or replacement
cost for the full BESS or for just the battery cells. For SOHEOL, 70% [34]
or 80% [36,118,122,128] are typical assumptions. As in the example
from Section 4.1.4, Caging

SOH is then added to the objective function and
𝛥SOH is linked to the degradation model through constraints.

Caging
FEC =

𝑐battery ∗ 𝐸n

FECEOL
∗ 𝛥FEC (14)

In Eq. (14), the expected number of full equivalent cycles until
EOL FECEOL and the increase in full equivalent cycles 𝛥FEC are used
to calculate the aging cost Caging

FEC , as also proposed by multiple au-
thors [2,83,84,116,129]. Here, FECEOL can be constant or linked to the
degradation model, the latter often making the model nonlinear.

With such aging cost in the objective function, Englberger et al.
reported a system lifetime increase from 2.4 to 8.6 years and a prof-
itability index increase over its lifetime from 0.06 to 1.24 [2], for the
investigated multi-use application. Weitzel et al. reported a lifetime
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Table 4
Scheduling methods that are using technical parameters (OF-T) or reward based economic parameters (OF-E-R) within the objective function.

Reference Aging awareness methoda Aging model
typesb

FEC DOC Crate SOC 𝑇cyc 𝑡 SOC 𝑇cal Scheduling
method

Applications

Li [127] OF-T: Calendar capacity
loss in OF, linked to
economic benefit through
weighting factors

Semi-Empirical
[86]

× × × E: DP SCI

Maheshwari
[85]

OF-T: Cyclic capacity
loss in OF, linked to
economic benefit through
weighting factors

Empirical [94] × × × × E: MILP EA

He [80] OF-E-R: Profit
maximization based on
expected lifetime in days
times projected profit per
day

Empirical × × × E: NLP EA & BP

Abdulla
[130]

OF-E-R: Penalty factor
based on the cumulative
degradation and expected
lifetime cost savings
generated through the
BESS

Empirical [114] × × × × × E: DP SCI

Liu [35] OF-E-R: Penalty factor
based on the expected
cycles until EOL and
battery resale value

Semi-Empirical
[117]

× × × × × MH: NSGA-II V2G

aAging Awareness Method Abbreviations: Technical Parameter in Objective Function (OF-T), Cost Based Economic Parameter in Objective Function (OF-E-C), Revenue Based
Economic Parameter in Objective Function (OF-E-R).
bFor each aging model, the cyclic (FEC, DOC, Crate, SOC, 𝑇cyc) and calendar (𝑡, SOC, 𝑇cal) stress factors are marked by ‘‘×’’ if they are internalized into the listed scheduling method.

increase from 6.9 to 12 years in the investigated microgrid application
by adding aging cost to the objective function [122].

As Eqs. (13) and (14) show, the assumption for the EOL criterion
significantly influences the aging cost and thereby the optimized oper-
ation strategy. Hou et al. investigated in more detail the affect of the
EOL criterion and propose an alternative efficiency-based criterion in
their optimization model [33].

Instead of deriving the aging cost directly from battery cost as
in Eqs. (13) and (14), Wankmuller et al. investigated the impact of
varying aging cost values through parameter variation in a MILP [124].
They concluded that a penalty factor of 100 $ per kWh of capacity
loss leads to the highest total profit in the investigated energy arbitrage
application over the BESS lifetime, when assuming EOL at either 80%
remaining capacity or after 10 years of operation. It is worth pointing
out that 100 $ per kWh of capacity loss is significantly lower than the
commonly assumed costs for battery replacement or installation 𝑐battery
in other published aging aware operation strategies, in the range of 250
to 500 e per kWh [36,118].

Revenue Based (OF-C-R): While cost based methods include some
form of aging cost as a penalty factor, revenue based methods create
a link between revenue and degradation behavior in the objective
function. Liu et al. added the degradation dependent future resale
value of the battery to the objective function [35]. Abdulla et al. used
cumulative past savings that were generated by the BESS to determine
a monetary value for capacity loss [130]. They also investigated the
influence of the forecasting errors on their stochastic DP. Intuitively,
the revenue generated in the application is higher with the simplified
assumption of perfect foresight than with their multiple linear regres-
sion forecast for power demand and power generation. The lifetime
increases from their reference case of basic set point control (4 years
predicted lifetime) to stochastic DP (11 years predicted lifetime) was
reported to be the same though for both perfect foresight and the
multiple linear regression forecast [130]. Lastly, He et al. multiplied
the projected daily revenue with the expected lifetime in days, based
on an empirical degradation model, as part of a nonlinear programming
approach [80]. Here, with consideration of battery cycle life, daily
revenue decreased by 19.2%, but the expected lifetime increases from
6.3 to 10 years [80].

4.3. Application specific relevance of stress factors

In this section, the relevance of calendar and cyclic stress factors
for different applications is investigated. For that purpose, we use the
inhouse developed open-source Simulation Tool for Stationary Energy
Storage Systems (SimSES) [143]. SimSES can be used to conduct time-
series simulations for energy storage systems in various applications.
A variety of battery storage technologies and peripheral components
are available. The simulation tool allows a detailed techno-economic
analysis following the simulation. This includes an analysis of calendar
and cyclic capacity loss, which is in focus here.

For this review, BESSs with NMC and LFP lithium-ion batteries are
simulated in the previously introduced applications FCR, SCI and PS.
The cell and aging model of the NMC type battery are based on the
work of Schmalstieg et al. [15] and those of the LFP battery are based
on Naumann et al. [18,19] (cf. Table 2 for the degradation models).
For each application, input profiles are used: a grid frequency profile for
FCR, a household load profile and a PV generation profile for SCI and an
industrial load profile for PS. The BESSs are dimensioned analogously
to Kucevic et al. [25]. For the power electronics, the model of an AC/DC
converter measured by Notton et al. is used [140]. In addition, 25 ◦ C is
chosen as fixed cell temperature to ensure comparability between the
three applications, irrespective of the thermal design of each system.
The simulation parameters are summarized in Table 8.

First, we investigate the distribution of calendar and cyclic stress
factors for the three applications (FCR, SCI, PS) and their effect on
cell degradation for the two investigated degradation models (LFP
Naumann and NMC Schmalstieg): Fig. 13 shows the resulting calendar
and cyclic stress factors. FCR is characterized by an average SOC around
50% with a large amount of cycles at low DOC and Crate, following
the BESS response to the fluctuating grid frequency. In SCI, the BESS
spends a large amount of time at 100% SOC after being fully charged
by the PV system and 0% SOC after discharging all its energy to cover
the household load, once the household load exceeds PV production
again. Compared to the other two applications, SCI requires more cycles
at a higher DOC and Crate. Lastly, in PS the BESS is fully charged in
anticipation of a possible load peak for the majority of time, while being
subjected to few cycles.
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Table 5
Scheduling methods that are using cost based economic parameters within objective function (OF-E-C) Part I.

Reference Aging awareness method Aging model
types

FEC DOC Crate SOC 𝑇cyc 𝑡 SOC 𝑇cal Scheduling
Method

Applications

Kazemi
[81]

OF-E-C: Aging cost per day
based on battery cost
divided by the expected
lifetime in days

Empirical × × E: Benders
Decomposition

EA & BP

Engels [36] OF-E-C: Aging cost based on
capacity loss times battery
cost, assuming EOL at 80%

Semi-Empirical
[15]

× × × × × × MH: Differential
Evolution
Algorithm

BP

Hesse [118] OF-E-C: Aging cost based on
capacity loss times battery
cost, assuming EOL at 80%

Semi-Empirical
[54]

× × × × E: MILP EA & BP

Weitzel
[122]

OF-E-C: Aging cost based on
capacity loss times BESS
investment cost, assuming
EOL at 80%

Semi-Empirical
[16,17]

× × × × E: MILP Microgrid

Kruger
[128]

OF-E-C: Aging cost based on
future discounted
replacement cost, assuming
EOL at 80%

Semi-Empirical
[90]

× × × × E: MILP SCI

Cao [38] OF-E-C: Aging cost based on
capacity loss times battery
cost

Semi-Empirical
[87]

× × × × × × × H: Reinforcement
Learning

EA

Cai [34] OF-E-C: Aging cost based on
capacity loss times battery
cost, assuming EOL at 70%

Physicochemicala
[131]

× × × × × E: NLP (Convex) SCI

Reniers
[37]

OF-E-C: Aging cost based on
capacity loss times different
penalty factors in e per
kWh capacity loss

x: Empirical
y: Semi-Empirical
[15]
z: Physicochemicalb

xyz yz yz z z yz yz yz E: Linear &
Nonlinear
Programming

EA

aThe physicochemical model in [34] considers SEI growth and active material loss. It is linearized and not directly embedded in the optimization problem.
bWhile the physicochemical model in [37] is dependent on all mentioned stress factors, the only aging mechanisms modeled is SEI growth.

Table 6
Scheduling methods that are using cost based economic parameters within objective function (OF-E-C) Part II.

Reference Aging awareness method Aging model
types

FEC DOC Crate SOC 𝑇cyc 𝑡 SOC 𝑇cal Scheduling
Method

Applications

Hossain [82] OF-E-C: Aging cost based on
relative amount of used
cycles times investment cost

Empirical × × MH: PSO Microgrid

Shi [83] OF-E-C: Aging cost based on
relative amount of used
cycles times replacement
cost

Empirical × × E: NLP (Convex) BP

Padmanab-
han
[84]

OF-E-C: Aging cost based on
relative amount of used
cycles times battery cost

Empirical [132] × × × E: MILP EA & BP

Kim [129] OF-E-C: Aging cost based on
relative amount of used
cycles times installation cost

Empirical [133] × × × E: DP Generic

Englberger
[2]

OF-E-C: Aging cost based on
relative amount of used
cycles times investment cost

Semi-Empirical
[15]

× (×)a (×) (×) (×) (×) E: MILP Multi-Use

Hou [33] OF-E-C: Aging cost based on
relative amount of used
cycles times investment cost,
efficiency based criterion for
EOL

Semi-Empirical
[15]

× × E: MILP PS

Zia [134] OF-E-C: Aging cost based on
investment cost, O&M cost
and battery residual value,
divided by scaling factors to
account for degradation

Empirical × × × E: NLP Microgrid

aFor stress factor entries marked with ‘‘(×)’’ instead of ‘‘×’’, the stress factors are not directly integrated into the scheduling method, but used for validation of the scheduling
results in a separate model.

Fig. 14 shows the resulting calendar and cyclic capacity loss in the
respective applications for the LFP Naumann and NMC Schmalstieg
models after 5 years. It can be seen that the LFP model has a higher
cycle stability than the NMC model, while the NMC model shows
less calendar aging than the LFP model. In the FCR application, the
calendar capacity loss predominates for the LFP battery due to the

small DOCs and Crate. For the NMC battery, the calendar aging also
predominates slightly. SCI is the application with the largest cyclic
capacity loss for both models. The extremely high cyclic capacity loss
for the NMC model can be explained through the stress factor 𝛽𝑉 cell

=
𝛾1 ∗ (𝑉cell − 𝛾2)2 (cf. Table 2): in the SCI application a large amount of
FECs are conducted at high or low cell voltage, with the battery being
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Table 7
Scheduling methods that employ a rule-based aging awareness method or that are using constraints within the optimization problem.

Reference Aging awareness method Aging model
types

FEC DOC Crate SOC 𝑇cyc 𝑡 SOC 𝑇cal Scheduling
Method

Applications

Angenendt
[119]

Rule-based: Reduction of
average SOC through load
forecasting

Semi-Empirical
[135]

(×) (×) (×) (×) (×) (×) Rule-based SCI

Perez [125] In Constraints: Varying
upper and lower limits for
the usable SOC range

Empirical [136] (×) × (×) E: MILP EA & BP

Cardoso
[126]

In Constraints: Limit for
the energy throughput based
on the target lifetime and
the expected operating
temperature

Semi-Empirical
[137]

× (×) × (×) E: MILP Microgrid

Li [120] In Constraints: upper and
lower limits for SOC and
Crate
OF-T: Minimization of total
FECs

Empirical × × × MH: PSO V2G

Wankmuller
[124]

In Constraints: upper and
lower limits for SOC and
Crate
OF-E-C: Aging cost as
penalty factor with optimal
value as subject the
investigation

Empirical
[138,139]

× E: MILP EA

Shi [116] In Constraints: upper and
lower limits for SOC
OF-E-C: Aging cost as
penalty factor based on
battery cost and cycles until
EOL

Empirical × × E: NLP (Convex) Multi-Use

Fig. 13. Distribution and averages of calendar and cyclic stress factors for the three investigated applications (1 year simulation): frequency containment reserve (FCR - top), self
consumption increase (SCI - mid), and peak shaving (PS - bottom), based on a one year simulation with the NMC Schmalstieg [15] model at 60 s timesteps. The left two columns
(orange) show the frequency of the calendar stress factors, the mid two columns the frequency of the cyclic stress factors (light blue) and the right two columns (dark blue) show
the amount of FECs conducted with the cyclic stress factors. Note the logarithmic y-axis for the left four columns of plots. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

either empty or full the majority of time, leading to high values for this
stress factor with 𝛾2 = 3.725 V. Lastly, for the PS application, calendar
capacity loss dominates for both models due to the high average SOC
/ 𝑉cell and low amount of FECs.

Often, only a subset of all stress factors are tested in an aging study
(cf. Table 2). For example, Schmalstieg et al. cycled all cells at Crate of
1 h−1 [15]. While the model by Naumann et al. includes variations in
Crate, it does not account for the cyclic stress factor of SOC [19]. An
even smaller subset of stress factors is considered in most scheduling
methods (cf. Tables 4–7). In order to give an estimate of the expected
modeling errors due to neglect of individual stress factors in the cell
aging study or scheduling method, a series of case studies is conducted

hereafter: As a reference case, the NMC Schmalstieg and LFP Naumann
models are simulated with all stress factors for FCR, SCI and PS over
five years. In the second case, simulations are carried out where for
each run one of the stress factors is set to a fixed value that is typically
used in an aging study if the dependence of that stress factor is not
explicitly modeled. The other stress factors are explicitly calculated as
per the aging models. Here, we assume for the LFP Naumann model a
DOC of 5%, a Crate of 1 h−1 and a SOC of 50%. For the NMC Schmalstieg
model, we assume a DOC of 5% as well as a 𝑉cell and 𝑉cell of 3.7136 V,
which equals a SOC of 50% as per its open circuit voltage curve. This
scenario is referred to as ‘‘typical in aging study’’ in the following. In
the third case, in each simulation an average value for the respective
stress factor is assumed, in order to elaborate if doing so is a valid
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Table 8
Application-specific data and profiles for the case study.

Application FCR SCI PS

Storage capacity 1.6 MWh 5 kWh 100 kWh
Rated power 1.6 MW 5 kW 40 kW
AC/DC Conv. Notton [140] Notton [140] Notton [140]
Profiles (1 year) Frequency profile

[141]
PV profile [25],
household load
profile (profile 28
in [142])

Industry load
profile (cluster 2
in [25])

Cell/Degradation
Models

3 Ah LFP/Naumann et al. [18,19]
2.15 Ah NMC/Schmalstieg et al. [15]

Fig. 14. Capacity loss over five years of the LFP Naumann model (left) and the
NMC Schmalstieg model (right) in the BESS applications frequency containment reserve
(FCR), self consumption increase (SCI) and peak shaving (PS), split into calendar and
cyclic capacity loss. This case is the ‘‘standard aging model’’ in the following figures.

option over internalizing each stress factor into a scheduling method.
This case is referred to as ‘‘average in application’’ in the following.
The average values are determined based on one year simulations,
analogously to Fig. 13, e.g. 7.1% for the DOC in the SCI application
with the NMC Schmalstieg model. The results of the capacity loss for
the BESS with the LFP Naumann model in the use cases for the SCI
application are shown in Fig. 15. An example: in Fig. 15b, calculating
the cyclic capacity loss using a constant Crate of 1 h−1 (scenario T-Crate)
leads to an overestimation of the cyclic capacity loss, while the usage
of the average Crate in this application replicates the real cyclic capacity
loss well (scenario A-Crate).

In the following, we analyze the deviations of the cases from the
standard aging model calculation for the LFP Naumann and NMC
Schmalstieg models in the three applications (cf. Fig. 16).

In the FCR application with many small cycles around an SOC of
about 50%, the assumption of typical values from aging studies or
application specific averages for the SOC or 𝑉cell only lead to minor
deviations compared to the use of the respective exact values from the
reference case. The assumption of fixed values for the Crate and DOC
leads to slight deviations, which, however, are in the range of less than
one percentage point.

The SCI application shows the greatest deviations overall. The val-
ues of the stress factors are widely scattered in this application: The
BESS sees time-of-day and seasonal variations in SOC and very small,
as well as very large, DOCs. In addition, SOCs and DOCs are also very
dependent on the dimensioning of the PV system, the BESS, and the
load curve. The largest deviations in the results are found when the
average or typical value for the DOC or the typical value for the Crate
are used instead of the exact values. This is mainly due to the large
variation in DOC in this application.

A BESS in PS application is often in the high SOC range and runs
few cycles. As a result, calendar aging is particularly relevant in this
application (see Fig. 14). If a fixed SOC of 50% or the corresponding

Fig. 15. Calendar capacity loss (a) and cyclic capacity loss (b) for a BESS with the
LFP Naumann model in the SCI application over 5 years. The green curves show the
results when using typical values from aging studies for the stress factors (SOC = 50%,
Crate = 1 h−1 and DOC = 5%). The orange curves show the results when using the
application-specific averages (SOC = 26.78%, Crate = 0.0951 h−1 and DOC = 6.87%). (For
interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

𝑉cell is used here, this leads to large deviations in the capacity loss
results. In contrast, using the PS average SOC of around 98% leads to
very small deviations, as the SOC of the BESS is often in this range.
Average or typical values can also be used for the Crate and DOC,
but this leads to small deviations, especially for the NMC Schmalstieg
model.

Overall, the evaluation and variation of the stress factors in the
applications shows that (a) in FCR, the use of average values for the
stress factors leads to only small deviations, attention should be paid
though to the low DOC and Crate when selecting a degradation model;
(b) in SCI, DOC and Crate are especially relevant; (c) in PS, SOC is the
most relevant stress factor, but due to the small variation in operation,
an average value may be used without major deviations in the resulting
capacity loss.

5. Summary and outlook

This contribution summarizes aging mechanisms, aging stress fac-
tors, and degradation modeling approaches for common lithium-ion
cell types that are used in BESSs. Furthermore, we review and cate-
gorize methods that aim to increase BESS lifetime by accounting for
battery degradation effects in the operation strategy. SEI growth on
the anode alongside multiple cathode aging mechanisms are the pre-
dominant aging mechanisms during the main operation phase. Towards
the EOL, cells often show rapid capacity loss, which can be caused
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Fig. 16. Spider diagrams of the relative capacity loss for varying the different stress
factor scenarios in the applications frequency containment reserve (a), self consumption
increase (b) and peak shaving (c). The relative capacity loss is shown after 5 years of
simulation time. The top three categories represent the LFP stress factors, the bottom
three categories represent the NMC ones. The diagrams show the relative capacity loss
using the reference aging model (blue), using typical values from aging studies (green)
and using the average values for each application (orange). (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)

by lithium plating or electrolyte depletion. Since the extend of aging
depends on external calendar and cyclic stress factors, the degradation
behavior can be directly influenced through the operation strategy.

To quantify the resulting capacity loss, empirical, semi-empirical,
and physicochemical modeling approaches exist. Present publications
in the field of BESS scheduling primarily rely on empirical and semi-
empirical modeling approaches, that usually include only a subset of
the calendar and cyclic stress factors.

To determine an optimal operation strategy, different scheduling
method find use: exact solution approaches, heuristics, and meta-
heuristics. The exact solution approach of mixed integer linear pro-
gramming is particularly frequently used in existing publications. The
approaches that are used to account for battery degradation in the
scheduling method can be categorized into different aging awareness
methods. Most publications rely on a cost based penalty factor for
battery degradation, i.e. ‘‘aging cost’’, that is linked to the economic
profit from the BESS application as part of the objective function. The
case study in Section 4.3 highlights the difference in aging stress factors
for key applications of BESSs and shows the importance of making
sure that the key stress factors of an application are represented in the
degradation model and considered in the scheduling method.

A number of challenges in the field aging aware operation of BESSs
remain open and provide opportunity for future research:

• The degradation models that are used for BESS operation usually
do not consider the rapid capacity decrease and change in dom-
inant aging mechanisms towards the EOL. Adapting the charge
and discharge cut-off voltage or limiting the Crate further towards
the EOL may enable further extension of BESS lifetime.

• Machine learning and filtering methods provide an opportunity to
improve aging aware operation strategies over the BESS lifetime.
This may be done by adapting the degradation models that are
used for scheduling based on field data.

• Capacity loss is usually modeled as part of the scheduling method
as the primary effect of battery degradation. Accounting for the
resistance increase as well may lead to performance improve-
ments.

• While uncertainty in forecasts for price, load, or PV production
are considered in some contributions and addressed through
methods such as stochastic programming, the uncertainty in
degradation modeling is not considered. Accounting for degrada-
tion modeling uncertainty may lead to different optimal strategies
for risk-seeking and risk-averse BESS operators.

• Aging costs are often chosen based on the battery installation or
replacement cost, to link the short-term scheduling problem to
long-term degradation effects. Depending on the system opera-
tor’s objective (e.g. maximum profit until EOL at 80% remaining
capacity, maximum profit in the next five years, or maximum
profit with system replacements for the indefinite future), a dif-
ferent definition of aging cost may lead to the actual optimal
long-term result.

Finally, field data from the increasingly growing and aging fleet of
globally installed BESSs is likely to lead to further insights into aging
aware operation.
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4 Increasing the lifetime profitability of battery energy
storage systems through aging aware operation

This chapter presents the peer-reviewed journal publication Increasing the lifetime profitability of
battery energy storage systems through aging aware operation. As detailed in Chapter 3, different ap-
proaches are found in the literature for modeling battery degradation as part of optimization problems
for the aging aware operation of BESSs. The different degradation modeling approaches vary in com-
plexity and in the solution methods that are required for solving the resulting optimization problem.
This publication proposes a MPC framework for designing aging aware operation strategies and for
benchmarking different aging aware operation strategies against each other. As part of the publication,
it is shown that an increase of the lifetime profitability can be achieved by determining the optimal
aging cost with the MPC framework as opposed to the approach commonly used in the literature of
basing aging cost on the battery or BESS investment cost.

The basic principle of the MPC framework is to use a detailed system model, or digital twin, of a BESS
as a benchmark for comparing the effect of different operation strategies. Here, SimSES [83], which is
described in Appendix A, is used as a detailed system model. The MPC framework includes different
pre-configured optimization models for the aging aware operation of BESSs. It passes the power target
for the next timesteps to SimSES after solving the selected optimization model. Following that, the
detailed system model is run in SimSES, and the relevant MPC variables, such as the SOC and SOH,
are passed back to the MPC framework, which subsequently solves the optimization model for the next
optimization horizon. The code of the MPC framework and the configuration files that were used to
generate the results which are presented in the paper are available open source2 [231].

Using the MPC framework, the application of energy arbitrage on the intraday market of the EPEX
electricity exchange is investigated using a representative BESS with LFP cells. Three different degrees
of complexity for modeling battery aging as part of the MILP optimization model are compared:

• Energy throughput: This approach only accounts for the FEC dependence of cyclic aging.
• Energy throughput and calendar degradation model: Here, a linearized calendar degradation

model of the LFP cells is integrated into the MILP, in addition to the energy throughput model.
The linearized calendar aging model accounts for the SOC dependence of calendar aging.

• Cyclic and calendar degradation model: Here, linearized calendar and cyclic degradation models
of the LFP cells are integrated into the MILP. Thereby, the SOC dependence of calendar aging
and the FEC, Crate, and DOC dependence of cyclic aging are accounted for.

For each of the three model types, the optimal aging cost for achieving the maximum lifetime profit
over a representative twelve-year timeframe is determined. If the aging costs are set too low, the BESS
reaches its EOL of 80 % SOH prematurely. If the aging costs are too high, additional profit could
have been generated in the investigated timeframe. Further analyses show that when accounting for

2 The code and configuration files that were used to generate the results are publicly available: https://git-
lab.lrz.de/open-ees-ses/aging-aware-MPC
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the interest rate and maximizing the lifetime net present value (NPV) instead of the lifetime profit,
the optimal lifespan can be determined with the MPC framework as well, instead of investigating a
representative timeframe over which the profit is meant to be maximized.

Comparing the three optimization model types with their respective optimal aging cost shows that
the lifetime profit from energy arbitrage can be increased by 24.9 % by using the linearized calendar
degradation model and by 29.3 % by using both the linearized calendar and cyclic degradation model,
compared to the energy throughput-based aging cost model. The more detailed degradation models
allow the BESS to more accurately avoid those energy arbitrage opportunities that promise high
arbitrage profit but also cause significant battery degradation. The significant increase in lifetime
profit underlines the benefit that can be gained through aging aware operation.
By examining price data from 2019 to 2022, the case study further demonstrates that the recent
increases in prices and price fluctuations on wholesale electricity markets have led to a substantial
increase in the lifetime profit that can be achieved with BESSs through energy arbitrage.

In summary, this contribution provides an easy-to-adopt framework for designing and validating aging
aware operation strategies. In addition, the monetary benefit of including aging stress factors in
optimization models is quantified and the benefit of determining the optimal aging cost is highlighted.
Finally, the code is released open-source to make the methods used accessible to a broad audience.
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A B S T R A C T

Lithium-ion cells are subject to degradation due to a multitude of cell-internal aging effects, which can
significantly influence the economics of battery energy storage systems (BESS). Since the rate of degradation
depends on external stress factors such as the state-of-charge, charge/discharge-rate, and depth of cycle, it
can be directly influenced through the operation strategy. In this contribution, we propose a model predictive
control (MPC) framework for designing aging aware operation strategies. By simulating the entire BESS lifetime
on a digital twin, different aging aware optimization models can be benchmarked and the optimal value
for aging cost can be determined. In a case study, the application of generating profit through arbitrage
trading on the EPEX SPOT intraday electricity market is investigated. For that, a linearized model for the
calendar and cyclic capacity loss of a lithium iron phosphate cell is presented. The results show that using
the MPC framework to determine the optimal aging cost can significantly increase the lifetime profitability of
a BESS, compared to the prevalent approach of selecting aging cost based on the cost of the battery system.
Furthermore, the lifetime profit from energy arbitrage can be increased by an additional 24.9% when using
the linearized calendar degradation model and by 29.3% when using both the linearized calendar and cyclic
degradation model, compared to an energy throughput based aging cost model. By examining price data
from 2019 to 2022, the case study demonstrates that the recent increases in prices and price fluctuations
on wholesale electricity markets have led to a substantial increase of the achievable lifetime profit.

1. Introduction

Stationary battery energy storage system (BESS) are used for a
variety of applications and the globally installed capacity has increased
steadily in recent years [1,2]. In behind-the-meter applications such
as increasing photovoltaic self-consumption or optimizing electricity
tariffs through peak shaving, BESSs generate cost savings for the end-
user. In front-of-the-meter applications such as frequency regulation
and energy arbitrage, operators generate revenue by marketing BESSs
in the respective energy and power markets. Lastly, in microgrids using
a BESS with a renewable energy source can be a cost-competitive option
over relying on diesel generators [3].

Following the cost reductions and technological advances of recent
years, lithium-ion cells are now the predominant battery technology
for BESS installations [1,4]. However, like other battery types as well,
lithium-ion batteries are subject to degradation due to a multitude of
cell internal aging mechanisms. This leads, among others, to a decrease
in cell capacity and an increase of the cell’s internal resistance. Multiple

∗ Corresponding author at: Technical University of Munich, TUM School of Engineering and Design, Department of Energy and Process Engineering, Chair of
Electrical Energy Storage Technology, Arcisstr. 21, 80333 Munich, Germany.

E-mail address: nils.collath@tum.de (N. Collath).

reviews are available that focus on the aging mechanisms in lithium-ion
cells [5–7].

On a system level, battery aging manifests itself in decreasing usable
capacity and increasing charge/discharge losses over a BESS lifetime
[8,9]. This in turn directly affects the economic viability of a BESS,
as less profit from the application can be generated in later years
compared to the beginning of life [10,11]. Furthermore, it is often
assumed that after a certain extent of battery aging, the BESS will
reach its end-of-life (EOL). A common assumption is to set the EOL
to the point at which a certain level of remaining capacity, often
named state of health [.] (SOH), is reached, for example at a SOH of
70% [12] or 80% [13–15] of the initial battery capacity. The physical
rationale behind this assumption is that many lithium-ion cells show
a rapid increase in their degradation rate following this SOH range,
which is referred to as an aging knee or nonlinear aging [16,17]. In
addition, manufacturers often provide warranties that cover batteries

https://doi.org/10.1016/j.apenergy.2023.121531
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Abbreviations

BESS battery energy storage system
Crate charge-discharge rate
DOC depth of cycle
EOL end-of-life
FEC full equivalent cycle
LFP lithium iron phosphate
MILP mixed integer linear programming
MPC model predictive control
NPV net present value
SimSES Simulation Tool for Stationary Energy Storage

Systems
SOC state of charge
SOH state of health [.]

General parameters

Caging Total aging cost over the full optimization
horizon [EUR]

Caging,cyc,cal Total aging cost over the full optimization
horizon for aging cost model (iii) [EUR]

Caging,FEC Total aging cost over the full optimization
horizon for aging cost model (i) [EUR]

Caging,FEC,cal Total aging cost over the full optimization
horizon for aging cost model (ii) [EUR]

Caging
𝑡 Total aging cost in timestep 𝑡 [EUR]

𝛥FEC𝑡 Number of FECs in timestep 𝑡 [.]
i Interest rate [.]
Parb
𝑚 Profit gained from energy arbitrage in year

𝑚 [EUR]
P𝑡 Profit gained in the respective application in

timestep 𝑡 [EUR]
SOH state of health [.]

Optimization constants

𝜂 Charge/discharge efficiency of the BESS assumed
for the optimization model [.]

𝑐aging Aging cost per unit of capacity loss for the
optimization model [EUR/kWh]

𝑐id𝑡 Electricity price on the intraday electricity market
in timestep 𝑡 [EUR/kWh]

𝐸batt Remaining rated energy after accounting for
degradation [kWh]

𝐸𝑛 Nominal battery capacity at the beginning of
life [kWh]

𝑃AC,max Maximum charge and discharge power of the
BESS [kW]

𝑄loss,cal Total calendar capacity loss at the beginning of
the optimization horizon [.]

𝑄loss,cyc Total cyclic capacity loss at the beginning of the
optimization horizon [.]

𝑋cal
𝑖 x-values of the linearized calendar aging function

in point 𝑖 [.]
𝑋cyc

𝑗 x-values of the linearized cyclic aging function in
point 𝑗 [kWh]

𝑍cal
𝑖 z-values of the linearized calendar aging function

in point 𝑖 [.]

dropping below a specified SOH threshold within the warranty period
[18], which is why these thresholds can act as a reference for the
techno-economic assessment and operation of BESSs.

𝑍cyc
𝑗 z-values of the linearized cyclic aging function in

point 𝑗 [.]
𝛥𝑡 Optimization timestep length [h]
FECEOL Totals FECs until end-of-life is assumed [.]
SOCstart SOC at the beginning of the optimization hori-

zon [.]
SOHEOL SOH at which end-of-life is assumed [.]

Optimization index sets

𝐻 Index set of timeblocks for the linearized cyclic
aging model, ℎ ∈ 𝐻

𝐼 Index set of points for the linearized calendar
aging model, 𝑖 ∈ 𝐼

𝐽 Index set of points for the linearized cyclic aging
model, 𝑗 ∈ 𝐽

𝑇 Index set of timesteps for the current optimization
horizon, 𝑡 ∈ 𝑇

𝑇ℎ Index set of all timesteps in timeblock ℎ, 𝑡 ∈ 𝑇ℎ

Optimization decision variables

𝜆cal𝑡,𝑖 SOS-type 2 variables for linearization of calendar
aging [.]

𝜆cyc,chℎ,𝑗 SOS-type 2 variables for linearization of cyclic
aging in charge direction [.]

𝜆cyc,disℎ,𝑗 SOS-type 2 variables for linearization of cyclic
aging in discharge direction [.]

𝑒chℎ Energy throughput in charge direction in time-
block ℎ [kWh]

𝑒disℎ Energy throughput in discharge direction in
timeblock ℎ [kWh]

𝑝ch𝑡 Charge power of the BESS in timestep 𝑡 [kW]
𝑝dis𝑡 Discharge power of the BESS in timestep 𝑡 [kW]
𝑞loss,cal𝑡 Calendar capacity loss in timestep 𝑡 [.]
𝑞loss,cyc,chℎ Cyclic capacity loss in charge direction in time-

block ℎ [.]
𝑞loss,cyc,disℎ Cyclic capacity loss in discharge direction in

timeblock ℎ [.]
𝑠𝑜𝑐𝑡 BESS state-of-charge at timestep 𝑡 [.]

The rate of battery aging itself depends on multiple external stress
factors [19], which enables the operator to influence the aging behavior
through the operating conditions. For the purpose of BESS operation,
battery aging can be grouped into calendar and cyclic aging. Calendar
aging refers to those mechanisms that occur regardless of the battery
being cycled or not, for example the continued growth of the solid
electrolyte interphase [19]. Calendar aging generally progresses faster
at a high storage temperature and a high state of charge (SOC) [20,21].
Cyclic aging refers to those aging mechanisms that occur as a con-
sequence of cycling the battery cells, such as particle cracking, solid
electrolyte interphase re-formation at newly exposed anode surface
areas, and lithium plating [19]. Cyclic aging progresses with the grow-
ing number of charge/discharge cycles and tends to accelerate when
cycling at a high charge-discharge rate (Crate) and a high depth of cycle
(DOC) [22,23]. In addition, both high and low temperatures [23] and
cycling a battery in particularly straining SOC ranges can accelerate
cyclic aging [20].

Operating a BESS under consideration of the relevant stress factors
provides an opportunity to slow down battery aging. Aging aware
operation therefore promises higher profits over the BESS lifetime and
more resource-efficient use of the battery cells. In this contribution,
we propose a model predictive control (MPC) framework for aging
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aware operation of BESSs. The MPC framework allows benchmarking
the performance of different aging aware optimization models on a
digital twin of a BESS. Thereby, the operation strategy can be designed
and validated before being deployed on the real-world BESS. While we
focus on the application of energy arbitrage, the framework is trans-
ferable to other applications as well. In the following two subsections
of this introduction, we will first present the literature review before
describing the structure and highlighting the main contributions of this
work.

1.1. Literature review

The process of deriving a series of charge and discharge signals
for a BESS under consideration of technical constraints and economic
benefit is referred to with different terms in the literature: operation
strategy [24], energy management [25], scheduling [26], control [27],
or dispatch [28]. We here refer to this process as an operation strategy
in the following. A distinction is then made between simple, rule-
based operation strategies and optimization-based operation strategies,
which also differ in how battery aging can be incorporated, i.e. how
the operation strategy can be made ‘‘aging aware’’ [10]. Examples of
rule-based, aging aware operation strategies are variable limits for the
maximum Crate of the BESS [29], or forecast-based rules such as to only
charge a home-storage system with the amount of surplus photovoltaic
energy during the day, that is forecasted to be needed during the night,
thereby reducing calendar aging [24].

Optimization-based operation strategies generally aim to find an
optimum to an objective function, which is also referred to as a fitting
or reward function for some methods. The methods used to deter-
mine the optimum can be classified into exact solution approaches
(e.g. linear programming), heuristics (e.g. reinforcement learning), and
meta-heuristics (e.g. particle swarm optimization) [25]. A particularly
common approach for considering battery aging in an optimization-
based operation strategy is to define a monetary value that represents
the effects of battery aging, i.e. aging cost [19]. This approach allows
to link the short-term scheduling problem to long-term degradation
effects:

max
∑

𝑡∈𝑇

(

P𝑡 − Caging
𝑡

)

(1)

Here, P𝑡 is the profit gained in the respective application for timestep
𝑡 ∈ 𝑇 and Caging

𝑡 the total aging cost for timestep 𝑡 ∈ 𝑇 . The total aging
cost Caging

𝑡 is then either calculated based on each percentage point of
SOH loss in each time step 𝛥SOH𝑡 as in Eq. (2) [12–15,28] or based on
the number of full equivalent cycles (FECs) in each time step 𝛥FEC𝑡 as
in Eq. (3) [30–34].

Caging,SOH𝑡
𝑡 = 𝑐aging ⋅ 𝐸n

1 − SOHEOL
⋅ 𝛥SOH𝑡 (2)

Caging,FEC
𝑡 = 𝑐aging ⋅ 𝐸n

FECEOL
⋅ 𝛥FEC𝑡 (3)

Here, SOHEOL and FECEOL represent the SOH threshold and number
of FECs after which the EOL of the battery is reached. 𝐸𝑛 is the
nominal battery capacity at the beginning of life in kWh. The aging
cost 𝑐aging in EUR per kWh is then typically set to a cost value that
relates to the battery system, such as the full storage system investment
cost [14,33,34], battery investment cost [11,35,36], battery replace-
ment cost [12,15,37], battery cell replacement cost [13,30], or generic
battery cost [28,31,38].

This common practice of setting the value of aging cost 𝑐aging

equal to battery system cost has a shortcoming: The profit generated
in a given application, e.g. performing energy arbitrage through an
electricity exchange, is generated after the BESS has been installed and
has no dependence on the original system cost. Instead, 𝑐aging can be
seen as a penalty factor for operating a BESS. As we will show, by using
the proposed MPC framework to determine the optimal value for 𝑐aging

based on the application and battery aging behavior, a higher lifetime
profitability can be achieved.

Furthermore, different approaches are found in the literature for
modeling battery aging as part of the optimization problem. The dif-
ferent degradation modeling approaches vary in their degree of com-
plexity and the solution methods required to solve the resulting opti-
mization problem. In relation to Eqs. (2) and (3), these degradation
models are additional constraints that define how 𝛥SOH𝑡 and FECEOL

are calculated based on the operating conditions.
Table 1 shows an overview of related publications that propose ag-

ing aware operations strategies for energy arbitrage with BESSs. Hesse
et al. [28] and Kumtepeli et al. [39] both used semi-empirical degrada-
tion models as part of their mixed integer linear programming (MILP)
optimization, the originally nonlinear, calendar and cyclic degradation
models were linearized in order to be solved in the MILPs. Englberger
et al. used an MPC approach, in which no other stress factors than
the charge throughput are considered in the optimization model, but a
separate nonlinear, semi-empirical degradation model is run to validate
the optimization results and update the SOH [34]. Cao et al. used a
reinforcement learning approach in which a reinforcement learning
agent is trained on both predictions and a nonlinear battery model
that accounts for calendar and cyclic capacity loss [38]. Reniers et al.
compared three different degradation models with a sliding horizon
optimization over a one-year timeframe, the most complex model being
a single particle physicochemical model, which required a complex
gradient-based nonlinear solution approach to solve [27].

Optimization models for BESS operation can get complex and timely
to solve even without incorporating battery aging, for example when
using stochastic programming to consider forecast uncertainty or when
optimizing for multi-use applications, in which multiple applications
are served by the same BESS [40]. The question that remains is what
benefit can be gained by using more complex degradation models
as part of the optimization model when considering the entire BESS
lifetime. This requires the determination of the lifetime optimal aging
cost of each model for a fair comparison. Maheshwari et al. used
different weighting factors which are to be set by the operator to link
aging cost to the profit from the application and investigated only a 1-
week timeframe [41]. He et al. notably proposed an optimization model
that determines the optimal aging cost value [42]. The optimization
model however, includes a simplified aging model that only accounts
for the DOC dependence of cyclic aging.

In contrast to previous contributions, the MPC framework proposed
here allows the comparison of different optimization models on a
digital twin of a BESS. By finding the optimal aging cost value 𝑐aging for
each optimization model and by considering the entire BESS lifetime,
the optimal lifetime profit of different aging aware operation strategies
can be quantified. Thereby, the proposed MPC framework can be used
to benchmark different aging aware operation strategies on a digital
twin, before deploying the optimal strategy on the real-world BESS.

1.2. Structure and main contributions

In the following sections, we first describe the proposed MPC frame-
work. In addition, the electricity price time series used for the case
study, the different aging aware optimization models, and the software
that is used as a digital twin of the BESS are presented. In the subse-
quent case study, the application of energy arbitrage on the intraday
electricity market is investigated. We thereby showcase the function-
ality of the MPC framework and investigate the increase in lifetime
profitability that can be achieved by determining the optimal aging
cost value and by using different degrees of complexity for modeling
battery aging as part of the optimization model. We summarize our
main contributions as follows:

• Open-source MPC framework for designing aging aware operation
strategies on a digital twin of a BESS
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Table 1
Publications that propose aging aware operation strategies for energy arbitrage with BESSs, compared to this contribution.

Reference Stress factors considered in optimization model Optimal aging cost Investigated timeframe MPC approach

Kazemia [37] 𝑄loss,cyc(FEC,DOC) no (𝑐aging: replacement cost) 1 day no
Hesse [28] 𝑄loss,cal(𝑡,SOC); 𝑄loss,cyc(FEC,Crate) no (𝑐aging: battery cost) 1 month no
Reniers [27] Various (physicochemical model) no (𝑐aging: battery cost) 1 week no
Caoa [38] 𝑄loss,cal(𝑡,SOC, 𝑇 ); 𝑄loss,cyc(FEC,DOC,SOC,𝑇 )a no (𝑐aging: battery cost) 1 year no
Maheshwari [41] 𝑄loss,cyc(FEC,DOC,SOC,Crate) no (𝑐aging: weighting factors) 7 days no
Wankmuller [9] 𝑄loss,cyc(FEC) no (𝑐aging: different values) 10 years no
He [42] 𝑄loss,cyc(FEC,DOC) yes full lifetime no
Englbergera [34] 𝑄loss,cyc(FEC) no (𝑐aging: battery cost) full lifetime partially
Kumtepeli [39] 𝑄loss,cal(𝑡,SOC, 𝑇 ); 𝑄loss,cyc(FEC,Crate , 𝑇 ) no (𝑐aging: battery cost) 1 year yes
This contribution 𝑄loss,cal(𝑡,SOC); 𝑄loss,cyc(FEC,DOC,Crate) yes full lifetime yes

aKazemi et al. consider frequency regulation in addition to energy arbitrage while Englberger et al. consider energy arbitrage, frequency regulation and peak shaving. In Cao et al.
the stress factors are not explicitly considered in the operation strategy, but the reinforcement learning agent is trained on a battery model that considers these stated stress factors.

Fig. 1. Depiction of the proposed MPC framework for designing and validating aging
aware operation strategies. Our implementation of the MPC framework is available
open-source under [43].

• Linearized lithium iron phosphate (LFP) cell degradation models,
suitable for MILP

• Increased lifetime profitability through determining the optimal
aging cost, thereby optimizing both short-term profit and long-
term degradation effects

• Quantification of the increase in lifetime profitability through
aging aware operation with different levels of degradation model
complexity

• Analysis of factors influencing the optimal aging cost : interest rate,
EOL-criterion, and intraday electricity price (2019 to 2022)

• A formulation for aging cost that accounts for the interest rate

2. Model predictive control framework for designing aging aware
operation strategies

The proposed MPC framework is shown in Fig. 1. The digital twin
is a detailed model of the investigated BESS and should represent
the real-world BESS and its expected aging behavior accurately. We
use the in-house developed, open-source Simulation Tool for Station-
ary Energy Storage Systems (SimSES) as the digital twin, which is
described in detail in [44]. Optimization models have limitations in
their complexity determined by the optimization method that is used.
For example, linear programming requires a linear objective function
and constraints, while quadratic programming also allows quadratic
objective functions. Generally, the optimization model will therefore

incorporate a simplified storage model, which in turn is a simplified
version of the digital twin.

The optimization model is solved for the selected optimization hori-
zon 𝑡horizon with a time resolution of 𝛥𝑡, after which the resulting power
targets 𝑃AC,target for the next 𝑛 timesteps are simulated with the digital
twin. For 𝑛 = 1, the optimization model is solved at every timestep and
only the power target for the next timestep is passed to the simulation
model before the next optimization is called. The relevant MPC state
values, that represent the new BESS state after these 𝑛 timesteps, are
handed back to the optimization model to solve the next optimization
horizon. Thereby the more accurate digital twin is used to validate
the operation strategy derived through the optimization model. Also,
this framework mirrors the real-world application, where the operation
strategy would be run in a similar MPC approach on a real BESS instead
of the digital twin.

The relevant MPC state values of the digital twin used in this
contribution are the SOC and the capacity-based SOH, but further
values could be used for the optimization model such as the system
temperature. Our implementation of the proposed MPC framework is
available open-source [43] and designed in a modular way, such that
different use cases or optimization formulations can be added and
investigated. Here, we focus on the application of energy arbitrage
on the European intraday spot market. In the following, we will first
describe the electricity price time series, before presenting the digital
twin model and the investigated optimization models.

2.1. Price time series

We investigate the application of generating profit through arbi-
trage trading on the intraday electricity market. For that, we use data
from the largest European intraday power exchange, the EPEX SPOT,
with price data obtained from [45]. The intraday electricity prices are
shown in Fig. 2. Price data from the year 2021 serves as the base
scenario in the later case study. Since the intraday market is designed to
offer continuous trading, not one fixed price exists for a given delivery
period. The ID-1 price index is the weighted price average off all trades
executed within 1 h before delivery [46]. Because this index represents
the potential to market flexibility without inflating optimistic price
assumptions, it has been used as a benchmark in previous publications
to develop and test energy arbitrage strategies [47] and is also adopted
for the later case study presented here. While the average ID-1 price for
the year 2021 is at 97.15 EUR/MWh, individual price peaks of up to
942.35 EUR/MWh and down to −122.92 EUR/MWh are found in the
data.

2.2. Digital twin

SimSES allows to conduct time series based simulations for station-
ary energy storage systems and includes equivalent circuit models and
degradation models for different battery systems [44]. It also includes
models for periphery components such as the AC/DC converter. For
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Fig. 2. 15 min Intraday ID-1 electricity prices for the year 2021 with data obtained
from [45].

Table 2
Key parameters for the digital twin in SimSES.

Parameter Value

Cell type Sony/Murata LFP-graphite
Degradation model Semi-empirical by Naumann et al. [48,49]
AC/DC converter Notton et al. [50]
System sizing 1 MW, 1.2 MWh

the cell model, we use a model of a Sony/Murata LFP graphite cell
for which a semi-empirical degradation model by Naumann et al. has
been incorporated into SimSES [48,49]. For the AC/DC converter, an
efficiency curve by Notton et al. is used [50]. Table 2 summarizes the
key parameters.

2.3. Optimization models

We investigate the increase in lifetime profitability achieved through
different degrees of complexity for modeling battery aging as part
of the optimization model. All three optimization model types are
formulated as either linear programs or mixed integer linear programs
and structured as follows:

max
∑

𝑡∈𝑇

(

(𝑝dis𝑡 − 𝑝ch𝑡 ) ⋅ 𝛥𝑡 ⋅ 𝑐id𝑡
)

− Caging (4)

The first part of the equation is the profit generated on the intraday
market. Here, 𝑝dis𝑡 and 𝑝ch𝑡 are the discharged and charged power of the
BESS and 𝑐id𝑡 the electricity price on the intraday electricity market at
time 𝑡. 𝛥𝑡 is the optimization timestep, which is set to 15 min. Caging

is the total aging cost over the optimization horizon. In addition to the
objective function, the constraints below ensure energy conservation
and provide upper and lower limits for the three sets of continuous
decision variables, 𝑝dis𝑡 , 𝑝ch𝑡 , and 𝑠𝑜𝑐𝑡 with 𝑡 ∈ 𝑇 :

𝑠𝑜𝑐𝑡 = 𝑠𝑜𝑐𝑡−1 +
𝛥𝑡

𝐸batt
⋅ (𝑝ch𝑡 𝜂 − 1

𝜂
𝑝dis𝑡 ) ∀ 𝑡 ∈ 𝑇 \{0} (5)

𝑠𝑜𝑐𝑡=0 = SOCstart + 𝛥𝑡
𝐸batt

⋅ (𝑝ch𝑡=0𝜂 −
1
𝜂
𝑝dis𝑡=0) (6)

0 ≤ 𝑝ch𝑡 , 𝑝dis𝑡 ≤ 𝑃AC,max ∀ 𝑡 ∈ 𝑇 (7)

0 ≤ 𝑠𝑜𝑐𝑡 ≤ 1 ∀ 𝑡 ∈ 𝑇 (8)

SOCstart and 𝐸batt are the SOC at the beginning of the optimization
horizon and the remaining rated energy of the BESS after accounting
for degradation, respectively. 𝑃AC,max is the maximum charge and

discharge power of 1 MW. 𝑠𝑜𝑐𝑡 is the energy based state of charge of
the BESS at every time step and 𝜂 the fixed charge/discharge efficiency.

Notably, one could use a linearized model for the efficiency that
follows the BESS efficiency curve [14,28] instead of a constant for 𝜂 We
found good results with a constant efficiency factor of 𝜂 = 0.9 and focus
here on modeling of battery aging in the optimization model. However,
the system model in SimSES as part of the MPC framework models
power losses in both the battery cells through the battery cell internal
resistance and the AC/DC converter through an efficiency curve.

For the total aging cost Caging, we investigate different models with
increasing complexity that are described in the following subsections.

2.3.1. Aging cost model (i) - Energy throughput
This aging cost model defines aging cost based on the energy

throughput of the BESS and the expected amount of FECs the system
can endure before reaching its EOL. This model does not explicitly
consider any other stress factors of either calendar or cyclic aging. The
aging cost Caging,FEC are defined as follows:

Caging,FEC =
∑

𝑡∈𝑇

(𝑝ch𝑡 + 𝑝dis𝑡 ) ⋅ 𝛥𝑡
𝐸n ⋅ 2

⋅
𝐸n ⋅ 𝑐aging

FECEOL

=
∑

𝑡∈𝑇

(𝑝ch𝑡 + 𝑝dis𝑡 ) ⋅ 𝛥𝑡 ⋅ 𝑐aging

2 ⋅ FECEOL

(9)

The first part of the top equation denotes the change in FECs, based on
the charge and discharge power, 𝑝ch𝑡 and 𝑝dis𝑡 , in the given timestep, the
timestep width 𝛥𝑡 and the rated energy of the BESS at the beginning of
life 𝐸𝑛. The second part expresses the aging cost per FEC, based on the
aging cost per kWh 𝑐aging and the expected number of cycles until EOL
FECEOL.

We here set FECEOL = 6000, as the 80% SOH limit is reached after
6000 FECs for the majority of cycling conditions in the LFP cell aging
study [49]. How to determine the optimal value for the aging cost 𝑐aging
will be investigated in the later case study. This aging cost model equals
the common definition from Eq. (3), with a fixed value for FECEOL.

2.3.2. Aging cost model (ii) — Energy throughput and calendar degradation
model

In addition to the energy throughput model, a linearized version
of the calendar degradation model from Naumann et al. [48] is imple-
mented in the optimization model. Thereby, this aging cost model with
the aging cost Caging,FEC,cal accounts for the SOC dependence of calendar
aging in the optimization:

Caging,FEC,cal =Caging,FEC

+
∑

𝑡∈𝑇

𝐸batt

1 − SOHEOL
⋅ 𝑐aging ⋅ 𝑞loss,cal𝑡

(10)

Caging,FEC is the definition of energy throughput based aging cost from
Eq. (9). SOHEOL is the SOH threshold at which the EOL is defined and
𝑞loss,cal𝑡 is the projected calendar capacity loss in the given timestep in
per unit as a continuous decision variable.

The calendar degradation model from Naumann et al. [48] is lin-
earized as detailed in Appendix A such that it can be solved as part of a
MILP. The resulting linearization is depicted in Fig. 3 and implemented
in the optimization model as below:
∑

𝑖∈𝐼
𝜆cal𝑡,𝑖 ⋅𝑋cal

𝑖 = 𝑠𝑜𝑐𝑡 ∀ 𝑡 ∈ 𝑇 (11)

∑

𝑖∈𝐼
𝜆cal𝑡,𝑖 ⋅𝑍cal

𝑖 = 𝑞loss,cal𝑡 ∀ 𝑡 ∈ 𝑇 (12)

∑

𝑖∈𝐼
𝜆cal𝑡,𝑖 = 1 ∀ 𝑡 ∈ 𝑇 (13)

𝐼 is the set of points used for the linearization of the calendar aging
function. 𝑋cal

𝑖 with 𝑖 ∈ 𝐼 are the x-values of the linearization from
Fig. 3, representing the SOC. 𝑍cal

𝑖 with 𝑖 ∈ 𝐼 are the z-values of the
linearization from Fig. 3, meaning the calendar capacity loss in a given
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Fig. 3. Linearized calendar degradation model. A set of 10 lines is used to represent
the SOC dependency of calendar aging. To account for the dependence of future
degradation on the total past capacity loss 𝑄loss,cal, a lookup table with 229 sets of
these 10 lines is used, such that the correct set of lines can be chosen at the beginning
of the optimization horizon based on 𝑄loss,cal. However, 𝑄loss,cal = 5% (marked in orange)
serves as the base scenario for the optimization.

15 min timestep for the respective SOC. 𝜆cal𝑡,𝑖 𝜆cal𝑡,𝑖 with 𝑡 ∈ 𝑇 and 𝑖 ∈ 𝐼
each are continuous variables that are used to represent the linearized
calendar aging function in the optimization model. The set of variables
𝜆cal𝑡,𝑖 with 𝑖 ∈ 𝐼 is implemented as one special ordered set of type 2 for
each 𝑡 ∈ 𝑇 . This means that at most two variables of each set can be
nonzero, and they must be consecutive in their ordering. In addition,
the following constraints for the decision variable 𝑞loss,cal𝑡 and 𝜆cal𝑡,𝑖 are
implemented:

0 ≤ 𝑞loss,cal𝑡 ∀ 𝑡 ∈ 𝑇 (14)

0 ≤ 𝜆cal𝑡,𝑖 ≤ 1 ∀ 𝑡 ∈ 𝑇 , ∀ 𝑖 ∈ 𝐼 (15)

As Fig. 3 shows, calendar aging has a square root dependence on
past capacity loss due to the

√

𝑡 dependence of the original calendar
aging function. Multiple other calendar degradation models have this
sublinear dependency of calendar capacity loss on time as well [51],
which some authors also implement in the optimization model [13].
However, as we will show in the case study, implementing this depen-
dency in the optimization would lead to sub-optimal lifetime profit of
the BESS, as calendar aging cost would be significantly higher in earlier
than in later years of operation. Therefore, we choose the linearization
at 𝑄loss,cal = 5% as the base scenario in the later case study, which is
marked with an orange line in Fig. 3.

2.3.3. Aging cost model (iii) — Cyclic and calendar degradation model
Here, the calendar degradation model [48] and cyclic degradation

model [49] are both linearized and implemented in the optimization
model. The aging cost model thereby accounts for the stress factors of
both calendar and cyclic aging. The linearization is described in detail
in Appendix A. The resulting definition for the aging cost Caging,cyc,cal is
as follows:

Caging,cyc,cal = 𝐸batt

1 − SOHEOL
⋅ 𝑐aging ⋅ (

∑

𝑡∈𝑇
𝑞loss,cal𝑡

+
∑

ℎ∈𝐻
(𝑞loss,cyc,chℎ + 𝑞loss,cyc,disℎ ))

(16)

The objective function includes the calendar aging cost from Eq. (10)
of the previous subsection. The previous constraints Eqs. (13) to (14)
are included in this model as well.

The linearized cyclic degradation model is split in the cyclic ca-
pacity loss in charge and cyclic capacity loss in discharge direction,
i.e. 𝑞loss,cyc,chℎ and 𝑞loss,cyc,disℎ . As described in Appendix A, cyclic aging is

Fig. 4. Linearized cyclic degradation model. A set of 27 lines is used to represent
the amount of cyclic degradation for a given 4 h time block, based on the number of
charge cycles or discharge cycles in that time block. To account for the dependence of
future degradation on the past total cyclic capacity loss 𝑄loss,cyc, a lookup table with
229 sets of these 27 lines is used, such that the correct set of lines can be chosen at
the beginning of each optimization based 𝑄loss,cyc. However, 𝑄loss,cyc = 5% (marked in
orange) serves as the base scenario for the optimization.

calculated separately for every 4 h time horizon ℎ in the optimization
horizon ℎ ∈ 𝐻 . This means for a 12 h optimization horizon, 𝐻 would
be an index set of three elements. For each of these 4 h time blocks, the
total energy throughput in charge direction 𝑒chℎ and discharge direction
𝑒disℎ are calculated:
∑

𝑡∈𝑇ℎ

𝑝ch𝑡 ⋅ 𝛥𝑡 = 𝑒chℎ ∀ ℎ ∈ 𝐻 (17)

∑

𝑡∈𝑇ℎ

𝑝dis𝑡 ⋅ 𝛥𝑡 = 𝑒disℎ ∀ ℎ ∈ 𝐻 (18)

Here, 𝑇ℎ is the set of all timesteps in each of the 4 h time blocks. Based
on this energy throughput, the cyclic aging for each 4 h time block is
calculated with the linearized cyclic degradation model, analogously to
the calendar degradation model from the previous subsection:
∑

𝑗∈𝐽
𝜆cyc,chℎ,𝑗 ⋅𝑋cyc

𝑗 = 𝑒chℎ ∀ ℎ ∈ 𝐻 (19)

∑

𝑗∈𝐽
𝜆cyc,disℎ,𝑗 ⋅𝑋cyc

𝑗 = 𝑒disℎ ∀ ℎ ∈ 𝐻 (20)

∑

𝑗∈𝐽
𝜆cyc,chℎ,𝑗 ⋅𝑍cyc

𝑖 = 𝑞loss,cyc,chℎ ∀ ℎ ∈ 𝐻 (21)

∑

𝑗∈𝐽
𝜆cyc,disℎ,𝑗 ⋅𝑍cyc

𝑖 = 𝑞loss,cyc,disℎ ∀ ℎ ∈ 𝐻 (22)

∑

𝑗∈𝐽
𝜆cyc,chℎ,𝑗 = 1 ∀ ℎ ∈ 𝐻 (23)

∑

𝑗∈𝐽
𝜆cyc,disℎ,𝑗 = 1 ∀ ℎ ∈ 𝐻 (24)

𝐽 is the set of points used for the linearization of the cyclic aging
function. 𝑋cyc

𝑗 with 𝑗 ∈ 𝐽 are the x-values of the linearization from
Fig. 4, representing the energy throughput for a 4 h time block. 𝑍cyc

𝑗 are
the z-values of the linearization from Fig. 4, meaning the cyclic capacity
loss for a 4 h time block in p.u. for the respective energy throughput.
The sets of continuous variables 𝜆cyc,chℎ,𝑗 and 𝜆cyc,disℎ,𝑗 with 𝑗 ∈ 𝐽 are
implemented as special ordered sets of type 2 for each ℎ ∈ 𝐻 . In
addition, the following constraints for the continuous decision variables
𝜆cyc,chℎ,𝑗 , 𝜆cyc,disℎ,𝑗 , 𝑞loss,cyc,chℎ , 𝑞loss,cyc,disℎ , 𝑒chℎ and 𝑒disℎ are implemented:

0 ≤ 𝜆cyc,chℎ,𝑗 , 𝜆cyc,disℎ,𝑗 ≤ 1 ∀ ℎ ∈ 𝐻, ∀ 𝑗 ∈ 𝐽 (25)
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0 ≤ 𝑞loss,cyc,chℎ , 𝑞loss,cyc,disℎ , 𝑒chℎ , 𝑒disℎ ∀ ℎ ∈ 𝐻 (26)

Analogously to the calendar degradation model, the cyclic degra-
dation model has a square root dependence on past cyclic capacity
loss due to the square root dependence of the original cyclic aging
function on the number of FECs, see Fig. 4. As we will highlight in the
case study, implementing this sublinear relationship in the optimization
model would lead to sub-optimal lifetime profit of the BESS as well,
since the cyclic aging cost would be significantly higher in earlier than
in later years of operation. Therefore, we choose the linearization at
𝑄loss,cyc = 5% as the base scenario in the later case study, which is
marked with an orange line in Fig. 4.

3. Simulation case study

In this chapter, we present and discuss the simulation results with
the proposed MPC simulation framework. Section 3.1 shows the depen-
dence of the lifetime cumulative arbitrage profit on the selection of the
aging cost 𝑐aging and highlights the increase in lifetime profitability that
can be achieved by finding the optimal value for 𝑐aging, i.e. the optimal
aging cost. In Section 3.2, we investigate the benefits of the different
aging cost model types. In Section 3.3, we show that the interest rate,
EOL criterion, and the price time series all affect the optimal aging cost.
Furthermore, Section 3.3 will highlight that the common practice of
defining battery aging cost based on the cost of the battery system (c.f.
Section 1.1) leads to reduced lifetime arbitrage profit, as opposed to
using the here proposed MPC simulation framework to find the optimal
aging cost. Section 3.4 proposes a novel definition of aging cost that
promises higher economic return by accounting for the interest rate.

In the following, the optimization models use a time horizon 𝑡horizon

of 12 hr, with a timestep 𝛥𝑡 of 15 min. For aging cost model type (i),
the optimization is called every 30 min (𝑛 = 2) and for aging cost model
type (ii) and type (iii) every 60 min (𝑛 = 4). The digital twin in SimSES
in all cases runs on a 3 min time resolution. The commercial solver
Gurobi Optimizer is used for solving the optimization models. Note that
the resulting optimization problem for cost model type (i) is a linear
program, while the special ordered sets in aging cost model type (ii)
and (iii) require a MILP solver. The simulations for the case study were
run on a workstation with an Intel Xeon W-2265 CPU and 96 GB RAM
with multiple simulations in parallel. Running one year of simulation
with the complete MPC framework took on average 23.4 min with aging
cost model type (i), 73.6 min with model type (ii), and 308.7 min with
model type (iii). Fig. 5 shows one exemplary day of operation with
the three different aging cost models. In general, the profit in the
energy arbitrage application is generated by charging at low prices and
discharging at high prices. However, the different implementations of
aging costs lead to different schedules. Aging cost model type (i) has
aging costs that only depend on the energy throughput and do not
explicitly consider any other aging stress factors, which results in the
BESS charging up early at a low ID-1 price. Implementing the SOC
dependence of calendar aging for model type (ii) results in the BESS
charging later and discharging earlier to keep the SOC low. The added
dependence of cyclic aging on DOC and Crate for model type (iii) entices
more shallow cycles at low DOC and Crate, such as for the small price
changes at 00:45 and 17:00 in Fig. 5.

3.1. Increased lifetime profit through the optimal choice of aging cost

To investigate the effect of aging cost 𝑐aging on the lifetime profit
from energy arbitrage, multiple 12-year simulations with different
aging cost values were conducted. Fig. 6 shows the resulting cumulative
profit and number of FECs for aging cost model (i), i.e. the energy
throughput model. The cumulative profit includes the gains and losses
from energy arbitrage, but no BESS investment cost. It therefore reflects
the profit gained in the application, which after installation of the BESS
is independent of the initial investment cost. The 12-year time horizon

Fig. 5. One exemplary day of operation with the three different aging cost models.

Fig. 6. Top: Cumulative profit from energy arbitrage and lifetime in years after
12 years of operation for different aging cost values. The profit is stated in EUR/kWh
with regards to the initial nominal capacity (𝐸n = 1.2MWh). Here, aging cost model (i)
is used, i.e. the energy throughput model. The maximum cumulative profit is obtained
if aging costs are defined such that the EOL criterion is reached at the end of the
investigated 12-year horizon and an optimal aging cost of 𝑐aging = 538 EUR/kWh. Bottom:
FECs and profit per FEC for the different aging cost values.

is chosen arbitrarily to reflect an investor’s goal of achieving maximum
profit over a fixed timeframe of interest, and will be varied in the later
subsections.

The top of Fig. 6 shows the benefit of finding the optimal aging cost.
If 𝑐aging is chosen lower than optimal, the high amount of cycling will
cause the BESS to degrade quickly and reach its EOL before the end
of the 12-year time horizon. With aging cost of 0 EUR/kWh, the BESS
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reaches its EOL at 80% SOH after 3.0 years and 5525.7 FECs, while
obtaining a cumulative profit of 265.9 kEUR, or 221.6 EUR/kWh with
regards to the initial nominal capacity of 1.2 MWh. If 𝑐aging is chosen
higher than optimal, the low amount of cycling will cause the BESS
to forego energy arbitrage opportunities, leading to lower profit over
the 12-year time horizon. With aging cost of 1000 EUR/kWh, the BESS
obtains a cumulative profit of 256.1 kEUR or 213.4 EUR/kWh through
energy arbitrage after only 852.8 FECs over the 12 years, while still
having a remaining SOH of 86.7%. The highest cumulative profit is
obtained if aging cost are chosen such that the EOL threshold of 80% re-
maining capacity is reached at the end of the investigated 12-year time
horizon. With the optimal aging cost of 𝑐aging = 538 EUR/kWh, the BESS
generates a cumulative profit from energy arbitrage of 479.7 kEUR or
399.7 EUR/kWh, while reaching its EOL at the end of the 12-year time
horizon after 2476.7 FECs.

The bottom part of Fig. 6 highlights the diminishing marginal return
of additional cycles. When setting the aging cost to a high value, only
the most profitable energy arbitrage opportunities are part of the opti-
mization model’s solution, resulting in a profit per FEC of 300.3 EUR for
aging cost of 1000 EUR/kWh. On the other side, low aging cost lead
to a high amount of cycles and even less profitable energy arbitrage
opportunities being part the optimization model’s solution, with a profit
per FEC of 48.1 EUR for aging cost of 0 EUR/kWh.

3.2. Increased lifetime profit through advanced aging cost models

In this section, we investigate the benefit of the previously presented
aging cost models. The top of Fig. 7 shows the cumulative profit after
12 years for all three previously introduced aging cost models with
increasing complexity. In all three cases, the digital twin in SimSES
as well as the price time series remain the same and only the optimiza-
tion model formulation changes. Since the modeling approach differs
between the aging cost models, different optimal aging cost lead to the
maximum arbitrage profit when considering the entire BESS lifetime:
𝑐aging = 538EUR/kWh for model type (i) with only energy throughput
being considered, 𝑐aging = 275EUR/kWh for model type (ii) with energy
throughput and the linearized calendar degradation model, and 𝑐aging =
350EUR/kWh for model type (iii) with the linearized calendar and
linearized cyclic degradation model. The bottom of Fig. 7 depicts the
development of the SOH and arbitrage profit for the identified optima
over time. The results show that the more complex aging cost models
allow to generate more profit, while being subjected to similar SOH
trajectories, resulting in 80% SOH at the end of the investigated 12-year
time horizon. Compared to aging cost model (i), the maximum profit
from energy arbitrage is 24.9% higher with aging cost model (ii) and
29.3% with aging cost model (iii).

The analysis of the relevant aging stress factors in Fig. 8 high-
lights how this increase in cumulative profit is achieved. Including the
linearized calendar and cyclic aging cost models in the optimization
model, leads to an improved aging aware operation strategy. In sum-
mary, the detailed aging cost models in the optimization model entice
the BESS to avoid those energy arbitrage opportunities that promise
high arbitrage profit but would also cause high battery degradation.
This in turn enables the BESS to complete more FECs that are less
profitable but also less straining for the battery and thereby achieve
a higher profit over its total lifetime.

With the linearized calendar degradation model in aging cost model
(ii), the BESS is able to complete 4378.6 FECs over the 12-year time
horizon before reaching its end of life, compared to 2477.8 FECs for ag-
ing cost model (i). The lower average SOC reduces calendar aging and
the coincidentally slightly lower average Crate and DOC cyclic aging,
thereby enabling this increase in FECs before the end of life. However,
the average cumulative profit per FEC decreases from 193.6 EUR with
aging cost model (i) to 136.8 EUR with aging cost model (ii). This
highlights that the BESS engages in more, but on average less profitable
energy arbitrage opportunities with aging cost model (ii).

Fig. 7. Top: Cumulative profit from energy arbitrage after 12 years of operation for
different aging cost values. All three aging cost models with increasing complexity
are depicted here: (i) Energy throughput model, (ii) Energy throughput and calendar
degradation model, (iii) Cyclic and calendar degradation model. Bottom: Arbitrage
profit and SOH over time for the optimal aging cost : (i) 𝑐aging = 538EUR/kWh, (ii)
𝑐aging = 275EUR/kWh, (iii) 𝑐aging = 350EUR/kWh.

Fig. 8. Distribution of the calendar aging stress factor SOC and the cyclic aging stress
factors Crate and DOC for the three different aging cost models (i), (ii) and (iii) with
the optimal aging cost from Fig. 7.
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With the additional linearized cyclic degradation model in aging
cost model (iii), the average SOC, Crate and DOC are further reduced.
Analogously to model type (ii), the largest reduction of stress factors for
model type (iii) is seen in the cyclic aging stress factors Crate and DOC
as expected, but a slight reduction in the average SOC is seen as well.
The 5695.4 FECs until the end of life translates to an average profit per
FEC of 108.9 EUR.

3.3. Impact of interest rate, end-of-life threshold and price profile

After the previous sections have focused on the cumulative profit
as the main financial indicator, we now investigate the net present
value (NPV) of future profit. The NPV is a common financial metric
to assess investment options. It discounts future profit and thereby
considers that profit in earlier years is more valuable than in later years
of an investment, since the earlier profit can be invested elsewhere and
generate return. The NPV here is calculated as follows:

NPV =
𝑀
∑

𝑚=0

Parb
𝑚

(1 + i)𝑚
(27)

Here, Parb
𝑚 is the cumulative profit from energy arbitrage in year 𝑚 and

i the interest rate.
The top of Fig. 9 shows the NPV of arbitrage profit for different

aging cost values and interest rates. Furthermore, the lifetime in years
is given until the EOL criterion of 80% SOH is reached for each aging
cost value. Aging cost model type (i) is used here which only considers
the energy throughput. The time horizon here is increased to 20 years
to investigate the influence of the interest rate 𝑖 on the optimal lifetime.

With an interest rate of i = 0%, the NPV simply equals the cumu-
lative profit from energy arbitrage from the previous sections. With
i = 0% and the optimal aging cost of 825 EUR/kWh, a cumulative profit
of 444.5 EUR/kWh is reached after 20.0 years, at an average yearly
profit of 26.7 kEUR. While for the 12-year time horizon with optimal
aging cost of 538 EUR/kWh, a cumulative profit of 399.7 EUR/kWh
is reached, at an average yearly profit of 40.0 kEUR. Prolonging the
investigated horizon from 12 to 20 years and extending the BESS
lifetime by increasing the aging cost, therefore does not lead to a
proportional increase in the cumulative profit.

In the previous sections, the optimal cumulative profit was never-
theless reached when the aging cost are chosen such that the EOL is
reached at the end of the investigated time horizon, i.e. 12 years. By
using the NPV as the main financial metric, this relationship changes.
The higher the interest rate, the lower the value of future profit.
Therefore, for high interest rates, the optimal aging cost and resulting
lifetime decrease, as it is beneficial to generate a higher profit in early
years and forego additional profit in later years. For an interest rate of
i = 7.5%, the optimal NPV of 265.9 EUR/kWh is reached if aging cost
are set to 250 EUR/kWh, which results in a BESS lifetime of 8.7 years.
The interest rate can therefore be the starting point for designing an
aging aware operation strategy, by choosing the aging cost value that
yields the optimal NPV and the resulting BESS lifetime for the relevant
interest rate.

The bottom of Fig. 9 shows how different thresholds for the EOL
affect the optimal aging cost. In general, the higher the SOH limit for
the EOL threshold, the higher the aging cost should be chosen, as
low aging cost would lead to a particularly early EOL in that case.
The results highlight the importance of the EOL assumption for the
assessment of the expected lifetime profit. The degradation model used
here was validated until around 80% SOH [48,49]. Insights into the
aging behavior towards the EOL, such as when an aging knee [16] can
be expected, would be of use twofold. First, a more accurate assessment
of the expected lifetime profit can be obtained in the planning phase of
a BESS project. Second, if the aging behavior towards the EOL is known,
the aging cost can be set accordingly to optimize the lifetime profit for
the operation phase of a BESS project. Instead of having all information
available at the beginning of a BESS project, one may choose though

Fig. 9. NPV of arbitrage profit after 20 years of operation for different aging cost
values. Aging cost model (i) was used here. The top figure shows the impact of the
interest rate on the optimal definition of aging cost, while assuming a constant EOL
threshold at SOHEOL = 80%. The bottom figure shows the impact of the EOL threshold
while assuming a constant interest rate of i = 7.5%.

to update the aging aware operation strategy, i.e. the chosen value for
the aging cost or the aging cost model itself, once more information
becomes available through the analysis of field data over the years of
operation.

After previously using ID-1 price data from the year 2021, Fig. 10
now shows the NPV for different aging cost values with ID-1 prices from
the years 2019 to 2022. The price data was obtained from [45] as well.
Table 3 summarizes the optimal values when either aiming to maximize
the lifetime NPV with an interest rate of i = 7.5% or maximizing
profit over a 12 year horizon. Most noticeably, the maximum lifetime
NPV and profit significantly increase from 2019 to 2022. The higher
maximum lifetime NPV is a consequence of the increasing electricity
prices and higher electricity price volatility as shown by the mean and
standard deviation of the ID-1 price index in Table 3. In addition, the
more profitable energy arbitrage opportunities also lead to a higher
aging cost value yielding the optimal lifetime profit. With price data
from the year 2019, 𝑐aging = 225 EUR/kWh leads to the optimal
lifetime NPV of 109.7 EUR/kWh, while with price data from the year
2022, 𝑐aging = 1150 EUR/kWh leads to the optimal lifetime NPV of
571.0 EUR/kWh.

For the investigations here, price data from the respective year was
looped over the full time horizon. However, the dependence of the op-
timal aging cost on the price profile shows that the lifetime profitability
in real applications can be increased by using a realistic prognosis of
long-term future price data or by re-determining the optimal value for
𝑐aging regularly over the years that a BESS is operated.
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Table 3
Mean and standard deviation (SD) of the ID-1 prices for 2019 to 2022 and key simulation results (aging cost model type (i) and SOHEOL = 80%) with those price profiles: optimal
aging cost and resulting lifetime to achieve a maximum NPV (i = 7.5%), as well as optimal aging cost to achieve maximum profit over 12 years.

Year Mean ID-1 e/MWh SD ID-1 e/kWh Max. NPV with i = 7.5% Max. profit over 12 years

𝑐aging Max. NPV Lifetime 𝑐aging Max. profit
e/MWh e/kWh years e/kWh e/kWh

2019 37.6 22.6 225 109.7 11.9 225 168.4
2020 31.7 32.4 250 148.2 10.3 288 226.8
2021 97.2 78.4 400 265.4 9.5 538 399.8
2022 236.1 156.2 1150 571.0 11.5 1225 872.0

Fig. 10. NPV of arbitrage profit and lifetime after 12 years of operation for different
aging cost values. Aging cost model (i) was used here. The results are depicted
for the ID-1 price profiles of the years 2019 to 2022. A constant EOL threshold at
SOHEOL = 80% as well as an interest rate of i = 7.5% are considered for all simulations.

The results of this subsection and the previous subsection highlight
that the optimal aging cost depends on the application (e.g. the interest
rate of concern and the price profile), the aging characteristics of
the BESS and the selected aging cost model. Therefore, the standard
approach from literature to choose the aging cost 𝑐aging based on the
battery system cost (c.f. Section 1.1) leads to non-optimal lifetime
profit. For example, in literature for the year 2022 values in the range
of 340 to 580 USD/kWh are stated as BESS investment cost [52]. In this
case study however, the optimal aging cost range between 225 EUR/kWh
and 1225 EUR/kWh. Instead of setting the aging cost equal to the
battery system cost, the here proposed MPC framework may be used to
compare different optimization models and determine the optimal aging
cost for the investigated application, thereby increasing the lifetime
profitability of the BESS.

3.4. Impact of scaling aging cost and increasing lifetime profitability by
accounting for the interest rate

As indicated in Section 2.3.2 and Section 2.3.3, implementing the
square root dependency of calendar capacity loss on time and square
root dependency of cyclic capacity loss on the number of FECs, would
lead to detrimental behavior in terms of the lifetime profitability. This
is highlighted in Fig. 11, which shows three different adaptions of aging
cost model type (iii). The first version in light gray and light blue is
with the non-scaled aging cost, which refers to including the square
root dependency of cyclic and calendar capacity loss on the number
of FECs and time. The second version in gray and blue is with the
scaled model, which means that the linearized degradation model at
𝑄loss,cal = 5% and 𝑄loss,cyc = 5% is used for the optimization model,
regardless of the actual total past calendar capacity loss 𝑄loss,cal and
total past cyclic capacity loss 𝑄loss,cyc of the digital twin. This is the
scenario of using the orange lines from Fig. 3 and Fig. 4, instead of

Fig. 11. Top: Cumulative arbitrage profit after 16 years of operation for different
aging cost values. Here, three different adaptions for the aging cost model (iii) are
investigated: non-scaled and non-discounted, scaled and non-discounted, as well as
scaled and discounted. Mid: Cumulative arbitrage profit and state of health over time
for the optimal aging cost from the top figure. Bottom: NPV of arbitrage profit for the
three different adaptions of aging cost model (iii).
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selecting the respective set of linearization points based on 𝑄loss,cal and
𝑄loss,cyc at the beginning of each optimization. It can be seen that the
scaled aging cost has a beneficial effect on both the 16-year maximum
cumulative profit (top plot) and the NPV (bottom plot). The maximum
cumulative arbitrage profit is 8.7% higher and the maximum NPV of
arbitrage profit is 16.6% higher, compared to the non-scaled scenario.

The middle plot of Fig. 11 highlights why this is the case. The square
root dependency leads to over-proportionally high aging cost in the first
few years, resulting in a low amount of cycling and arbitrage profit in
the early years (light blue and light gray line). With non-scaled aging
cost, a profit of 5.4 kEUR is achieved in year 1 and 48.9 kEUR in
year 10. This higher profit in later years is subject to a higher discount
rate and therefore less beneficial for the NPV, c.f. Eq. (27). With the
scaled aging cost (blue and gray lines), the magnitude of aging cost
remains the same throughout the years, while the impact of the stress
factors SOC, Crate and DOC is still considered in the aging cost model. As
a result, there is a more consistent level of profit over time. In addition,
the previous trend reverses, since the lower usable capacity and the
higher losses due to the increasing cell resistance, cause slightly lower
profits in later years. With scaled aging cost, a profit of 49.1 kEUR is
achieved in year 1 and 41.7 kEUR in year 10.

The third adaption of aging cost model (iii) aims to further utilize
the fact that earlier profit is more valuable in terms of the NPV. The
aging cost formulation inside the optimization model is adapted as
follows:

𝑐aging
′
= 𝑐aging ∗ (1 + 𝑖)𝑚 (28)

With i being the interest rate that is used for the project evaluation,
here i = 7.5% and 𝑚 the current fractional year since the start of
the simulation horizon. Thereby, aging cost at the end of the 16-
year simulation horizon are 3.18 times higher than at the beginning,
leading to more profit in earlier than in later years. By both scaling and
discounting the aging cost, the maximum cumulative arbitrage profit is
4.4% higher and the maximum NPV of the arbitrage profit is 18.7%
higher than for the non-scaled and non-discounted scenario. A profit of
63.3 kEUR is achieved in year 1 and 36.7 kEUR in year 10.

In summary, scaling the aging cost to 𝑄loss,cal = 5% and 𝑄loss,cyc = 5%
in the scenario investigated here has a beneficial effect on both the cu-
mulative profit from energy arbitrage and its NPV. Further discounting
the aging cost leads to a lower cumulative profit but an even higher
NPV, compared to only scaling the aging cost, since more profit is
generated in earlier years.

4. Conclusions

With the steadily growing amount of globally installed BESSs, aging
aware operation of these systems becomes increasingly relevant. Op-
erating a BESS under consideration of the relevant aging stress factors
promises higher profits over its lifetime and more resource-efficient use
of battery cells. For designing and benchmarking aging aware operation
strategies, this work presents a model predictive control framework. By
simulating the entire lifetime on a digital twin of the BESS, different
aging aware optimization models can be compared before the optimal
operation strategy is deployed to the real-world BESS. This work fo-
cuses on the application of generating profit through arbitrage trading
on the EPEX Spot intraday electricity market. For that purpose, a
linearized MILP ready model for the calendar and cyclic capacity loss of
a LFP battery cell is presented. The proposed MPC framework is made
available open-source [43] and designed in a modular way, such that
different use cases and optimization formulations may be added and
investigated. In contrast to previous contributions, we investigate the
entire lifetime with the MPC framework, which allows to quantify the
effect of aging aware operation on the lifetime profitability of BESSs,
including the benefit of different degrees of complexity for modeling
battery aging. Furthermore, the effect of aging cost 𝑐aging on lifetime

profitability is investigated in detail and the MPC framework is used to
determine the optimal aging cost.

The results show that over the same investigated 12-year time
horizon, the lifetime profit from energy arbitrage can be increased by
24.9% with the linearized calendar degradation model and by 29.3%
with the linearized calendar and cyclic degradation model as part of
the optimization model formulation, compared to only assuming energy
throughput based aging cost. The linearized degradation models entice
the BESS to avoid those energy arbitrage opportunities that promise
high arbitrage profit but would also cause high battery degradation.
This in turn enables the BESS to complete more total FECs over its life-
time and thereby achieve the before-mentioned higher lifetime profit.
The results further show that the selection of the aging cost 𝑐aging

significantly impacts the lifetime profit and NPV. By determining the
optimal aging cost through parameter variation with the MPC frame-
work, the lifetime profit and NPV can be significantly increased. Most
notably, the standard practice from the literature of choosing 𝑐aging

based on the battery system cost would lead to sub-optimal lifetime
profit. Instead, the optimal aging cost is dependent on the aging behavior
of the system, the aging cost model used in the optimization, the price
profile, EOL-criterion, as well as the interest rate of concern. Scaling
the degradation model and discounting the aging cost to obtain higher
profit in earlier years of operation can further increase the lifetime
profitability, especially when using the NPV as the financial metric
of concern. In addition, the case study with price data from 2019 to
2022 shows, that the recent increases in wholesale electricity prices and
wholesale electricity price volatility directly translate into a substantial
increase of the achievable lifetime profit with BESSs used for arbitrage
trading.

For this work, some uncertainties and limitations are considered.
In the case study, price data from the respective year was looped over
the full time horizon and a degradation model was used, which does
account for accelerated capacity fade towards the end-of-life. As the
dependence of the optimal aging aware operation strategy on the price
profile and battery aging behavior highlights, the operation strategy
should be reevaluated periodically by rerunning the MPC framework,
once up-to-date price forecasts and additional insights into the BESS
aging behavior from field data become available throughout the course
of the BESS lifetime. Furthermore, the energy arbitrage application was
modeled in a simplified way for the case study. Perfect foresight of
the ID-1 price was assumed, which we believe to be a conservative
assumption. For real-time bidding, one may achieve higher sell and
lower buy prices than the ID-1 price and may place additional bids
that are compensated before execution by the BESS, which can generate
additional profit. On the other hand, the profit from energy arbitrage
stated here does not account for market access cost, taxes, or labor
costs. In addition, using the proposed framework requires the avail-
ability of a suitable degradation model, which cell manufacturers often
do not provide. However, there are some third-party providers who
offer degradation prognosis for BESSs. Finally, while this contribution
focuses on the impact of aging aware operation on lifetime profitabil-
ity, it can be worthwhile to also quantify the ecological benefit of a
widespread adoption of aging aware operation.
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Appendix A. Degradation model linearization

The degradation model by Naumann et al. describes the total ca-
pacity loss 𝑄loss as the sum of calendar capacity loss 𝑄loss,cal and cyclic
capacity loss 𝑄loss,cyc[48,49]:

𝑄loss = 𝑞loss,cal(𝑡,SOC, 𝑇 ) +

𝑞loss,cyc(FEC, 𝐶 rate,DOC)
(29)

𝑄loss,cal = 𝑘ref ,T ⋅ (𝑐1(SOC − 0.5)3 + 𝑑1) ⋅
√

𝑡 (30)

𝑄loss,cyc = (𝑎2𝐶 rate + 𝑏2) ⋅ (𝑐2(DOC − 0.6)3 + 𝑑2) ⋅
√

FEC (31)

Here, 𝑡, SOC, 𝑇 refer to the time, state of charge, and temperature,
respectively. FEC, 𝐶 rate and DOC refer to the number of full equivalent
cycles, the charge–discharge rate, and the depth of cycle. In Eq. (30),
𝑘ref ,T, 𝑐1 and 𝑑1 are fitting parameters of the calendar degradation
model. In Eq. (31), 𝑎2, 𝑏2, 𝑐2 and 𝑑2 are the fitting parameters of the
cyclic model.

Notably, 𝑘ref ,T in the original model by Naumann et al. describes
the dependence of calendar capacity loss on temperature with an
Arrhenius equation [48]. The battery cell temperature inside a BESS
depends highly on the thermal design and the heating/cooling system
and control [53]. To compare the different optimization models inves-
tigated here, we make the simplification of assuming a constant cell
temperature of 25 ◦C for both the digital twin and the optimization
model. This turns 𝑘ref ,T into a constant for the purpose of this work.

A.1. Calendar aging

To adapt Eq. (30) to varying external stress factors, the concept of
virtual time 𝑡virtual from [48] is implemented in SimSES as well. 𝑡virtual is
the time that would have needed to pass to reach the total past calendar
capacity loss under the present stress factors and can be calculated by
solving Eq. (30) for 𝑡:

𝑡virtual = ( 𝑄loss,cal

𝑘ref ,T ⋅ (𝑐1 ⋅ (SOC − 0.5)3 + 𝑑1)
)2 (32)

The additional calendar capacity loss in the current timestep 𝛥𝑞loss,cal

can then be calculated as follows:
𝛥𝑞loss,cal = 𝑘ref ,T ⋅ (𝑐1(SOC − 0.5)3 + 𝑑1)

⋅
√

𝑡virtual + 𝛥𝑡 −𝑄loss,cal
(33)

To solve this nonlinear degradation model in a MILP, it needs to be
linearized. Eq. (33) has a dependence on both the past capacity loss
𝑄loss,cal as well as on SOC.

𝑄loss,cal only shows minor change over the short-term optimization
horizon and can therefore be assumed as a constant for each optimiza-
tion horizon. However, due to the square root dependency of calendar
capacity loss on time, 𝛥𝑞loss,cal is significantly higher for low values
of 𝑄loss,cal than for high values of 𝑄loss,cal. Therefore, we performed
linearizations of the SOC for 229 different values of 𝑄loss,cal, as depicted
in Fig. 3. The cubic dependence of 𝛥𝑞loss,cal on SOC is represented by
a resulting set of 10 lines for each of the 229 linearization points
for 𝑄loss,cal. For each optimization, the corresponding set of SOC lin-
earization points is chosen based on the total capacity loss 𝑄loss,cal at
the beginning of the optimization horizon. Through this method, an
average relative error of less than +/−4% is achieved over all 𝑄loss,cal

ranges.

A.2. Cyclic aging

Analogously to the approach for calendar aging, the concept of
virtual full equivalent cycles FECvirtual is used to apply Eq. (31) to
varying external stress factors:

FECvirtual = ( 𝑄loss,cyc

(𝑎2𝐶 rate + 𝑏2) ⋅ (𝑐2(DOC − 0.6)3 + 𝑑2)
)2 (34)

The additional degradation after a cycle is then calculated as follows:

𝛥𝑞loss,cyc = (𝑎2𝐶 rate + 𝑏2) ⋅ (𝑐2(DOC − 0.6)3 + 𝑑2)

⋅
√

FECvirtual + 𝛥FEC −𝑄loss,cyc
(35)

In SimSES, a half-cycle counter is used which checks after every
simulation steps if the charge–discharge direction has changed and
then evaluates Eq. (35) with the DOC and Crate from the last half-
cycle. This nonlinear model requires linearization as well in order to be
represented as part of a MILP. FECvirtual and Crate are directly related for
fixed timesteps and can be expressed through the energy throughput
for those timesteps. However, determining the DOC would require
the implementation of half-cycle counting in the scheduling method
based on integer variables. Furthermore, the dependency of 𝛥𝑞loss,cyc

on two multiplied decision variables, i.e. Crate and DOC, would make
the model inherently nonlinear. We therefore introduce the following
simplification to linearize this cyclic degradation model: We subdivide
the optimization horizon into 4 h time blocks. For each 4 h time block,
the DOC is expressed through the energy throughput as well. If the
DOC exceeds an increment of 100% for a given 4 h time block in either
charge or discharge direction, this is evaluated as one half-cycle plus
the remaining DOC as a partial cycle.

Analogously to calendar aging, 𝛥𝑞loss,cyc is significantly higher for
low values of 𝑄loss,cyc than for high values of 𝑄loss,cyc, due to the square
root dependency of cyclic capacity loss on the number of FECs. We
therefore perform the above linearization of Crate and DOC in 229
points of 𝑄loss,cyc. Applying this principle to Eq. (35), leads to the
linearized capacity loss from Fig. 4.

References

[1] Figgener J, Hecht C, Haberschusz D, Bors J, Spreuer KG, Kairies K-P, Stenzel P,
Sauer DU. The development of battery storage systems in Germany: A market
review (status 2023). 2022, URL http://arxiv.org/pdf/2203.06762v3.

[2] USDepartment of Energy. Energy storage grand challenge: Energy storage mar-
ket report. 2020, URL https://www.energy.gov/energy-storage-grand-challenge/
downloads/energy-storage-market-report-2020.

[3] Killer M, Farrokhseresht M, Paterakis NG. Implementation of large-scale Li-
ion battery energy storage systems within the EMEA region. Appl Energy
2020;260:114166. http://dx.doi.org/10.1016/j.apenergy.2019.114166.

[4] USEnergy Information Administration. Battery storage in the United States:
An update on market trends. 2020, URL https://www.eia.gov/analysis/studies/
electricity/batterystorage/,

[5] Vetter J, Novák P, Wagner MR, Veit C, Möller K-C, Besenhard JO, Winter M,
Wohlfahrt-Mehrens M, Vogler C, Hammouche A. Ageing mechanisms in lithium-
ion batteries. J Power Sources 2005;147:269–81. http://dx.doi.org/10.1016/j.
jpowsour.2005.01.006.

4 Increasing the lifetime profitability of battery energy storage systems through aging aware
operation

71



Applied Energy 348 (2023) 121531

13

N. Collath et al.

[6] Han X, Lu L, Zheng Y, Feng X, Li Z, Li J, Ouyang M. A review on the key issues of
the lithium ion battery degradation among the whole life cycle. ETransportation
2019. http://dx.doi.org/10.1016/j.etran.2019.100005.

[7] Edge JS, O’Kane S, Prosser R, Kirkaldy ND, Patel AN, Hales A, Ghosh A,
Ai W, Chen J, Yang J, Li S, Pang M-C, Bravo Diaz L, Tomaszewska A,
Marzook MW, Radhakrishnan KN, Wang H, Patel Y, Wu B, Offer GJ. Lithium
ion battery degradation: what you need to know. Phys Chem Chem Phys PCCP
2021;23(14):8200–21. http://dx.doi.org/10.1039/d1cp00359c.

[8] Uddin K, Gough R, Radcliffe J, Marco J, Jennings P. Techno-economic analysis
of the viability of residential photovoltaic systems using lithium-ion batteries
for energy storage in the United Kingdom. Appl Energy 2017;206(10):12–21.
http://dx.doi.org/10.1016/j.apenergy.2017.08.170.

[9] Wankmüller F, Thimmapuram PR, Gallagher KG, Botterud A. Impact of battery
degradation on energy arbitrage revenue of grid-level energy storage. J Energy
Storage 2017;10(11):56–66. http://dx.doi.org/10.1016/j.est.2016.12.004.

[10] Collath N, Gasper P, Jossen A, Smith K, Hesse H. The economic impact of
battery degradation modelling uncertainty. In: IEEE, editor. 2022 IEEE Power
& Energy Society General Meeting. PESGM, 2022, http://dx.doi.org/10.1109/
PESGM48719.2022.9916844.

[11] Hou Q, Yu Y, Du E, He H, Zhang N, Kang C, Liu G, Zhu H. Embedding scrapping
criterion and degradation model in optimal operation of peak-shaving lithium-
ion battery energy storage. Appl Energy 2020;278:115601. http://dx.doi.org/10.
1016/j.apenergy.2020.115601.

[12] Cai J, Zhang H, Jin X. Aging-aware predictive control of PV-battery assets in
buildings. Appl Energy 2019;236:478–88. http://dx.doi.org/10.1016/j.apenergy.
2018.12.003.

[13] Engels J, Claessens B, Deconinck G. Techno-economic analysis and optimal
control of battery storage for frequency control services, applied to the german
market. Appl Energy 2019;242:1036–49. http://dx.doi.org/10.1016/j.apenergy.
2019.03.128.

[14] Weitzel T, Schneider M, Glock CH, Löber F, Rinderknecht S. Operating a storage-
augmented hybrid microgrid considering battery aging costs. J Clean Prod
2018;188(7):638–54. http://dx.doi.org/10.1016/j.jclepro.2018.03.296.

[15] Kruger E, Tran QT. Minimal aging operating strategies for battery energy storage
systems in photovoltaic applications. In: 2016 IEEE PES Innovative Smart Grid
Technologies Conference Europe (ISGT-Europe). IEEE; 2016, p. 1–6. http://dx.
doi.org/10.1109/ISGTEurope.2016.7856325.

[16] Attia PM, Bills A, Brosa Planella F, Dechent P, dos Reis G, Dubarry M, Gasper P,
Gilchrist R, Greenbank S, Howey D, Liu O, Khoo E, Preger Y, Soni A, Sripad S,
Stefanopoulou AG, Sulzer V. Review—‘‘Knees’’ in lithium-ion battery aging
trajectories. J Electrochem Soc 2022;169(6):060517. http://dx.doi.org/10.1149/
1945-7111/ac6d13.

[17] Keil J, Jossen A. Electrochemical modeling of linear and nonlinear aging of
lithium-ion cells. J Electrochem Soc 2020;167(11):110535. http://dx.doi.org/10.
1149/1945-7111/aba44f.

[18] Fermín-Cueto P, McTurk E, Allerhand M, Medina-Lopez E, Anjos MF, Sylvester J,
dos Reis G. Identification and machine learning prediction of knee-point and
knee-onset in capacity degradation curves of lithium-ion cells. Energy AI
2020;1(5):100006. http://dx.doi.org/10.1016/j.egyai.2020.100006.

[19] Collath N, Tepe B, Englberger S, Jossen A, Hesse H. Aging aware operation
of lithium-ion battery energy storage systems: A review. J Energy Storage
2022;55(11):105634. http://dx.doi.org/10.1016/j.est.2022.105634.

[20] Schmalstieg J, Käbitz S, Ecker M, Sauer DU. A holistic aging model
for Li(NiMnCo)O2 based 18650 lithium-ion batteries. J Power Sources
2014;257:325–34. http://dx.doi.org/10.1016/j.jpowsour.2014.02.012.

[21] Sarasketa-Zabala E, Gandiaga I, Rodriguez-Martinez LM, Villarreal I. Calendar
ageing analysis of a LiFePO4/graphite cell with dynamic model validations:
Towards realistic lifetime predictions. J Power Sources 2014;272:45–57. http:
//dx.doi.org/10.1016/j.jpowsour.2014.08.051.

[22] Guenther C, Schott B, Hennings W, Waldowski P, Danzer MA. Model-based
investigation of electric vehicle battery aging by means of vehicle-to-grid scenario
simulations. J Power Sources 2013;239:604–10. http://dx.doi.org/10.1016/j.
jpowsour.2013.02.041.

[23] Schimpe M, Kuepach MEv, Naumann M, Hesse H, Smith K, Jossen A. Compre-
hensive modeling of temperature-dependent degradation mechanisms in lithium
iron phosphate batteries. J Electrochem Soc 2018;165(2):A181–93. http://dx.doi.
org/10.1149/2.1181714jes.

[24] Angenendt G, Zurmühlen S, Axelsen H, Sauer DU. Comparison of different
operation strategies for PV battery home storage systems including forecast-
based operation strategies. Appl Energy 2018;229(1):884–99. http://dx.doi.org/
10.1016/j.apenergy.2018.08.058.

[25] Weitzel T, Glock CH. Energy management for stationary electric energy
storage systems: A systematic literature review. European J Oper Res
2018;264(2):582–606. http://dx.doi.org/10.1016/j.ejor.2017.06.052.

[26] Yang Z, Li K, Foley A. Computational scheduling methods for integrating plug-
in electric vehicles with power systems: A review. Renew Sustain Energy Rev
2015;51:396–416. http://dx.doi.org/10.1016/j.rser.2015.06.007.

[27] Reniers JM, Mulder G, Ober-Blöbaum S, Howey DA. Improving optimal control
of grid-connected lithium-ion batteries through more accurate battery and
degradation modelling. J Power Sources 2018;379:91–102. http://dx.doi.org/10.
1016/j.jpowsour.2018.01.004.

[28] Hesse H, Kumtepeli V, Schimpe M, Reniers J, Howey D, Tripathi A, Wang Y,
Jossen A. Ageing and efficiency aware battery dispatch for arbitrage markets
using mixed integer linear programming. Energies 2019;12(6):999. http://dx.
doi.org/10.3390/en12060999.

[29] Schimpe M, Barreras J, Wu B, Offer GJ. Battery degradation-aware current
derating: An effective method to prolong lifetime and ease thermal management.
J Electrochem Soc 2021;168. http://dx.doi.org/10.1149/1945-7111/ac0553.

[30] Shi Y, Xu B, Tan Y, Kirschen D, Zhang B. Optimal battery control under cycle
aging mechanisms in pay for performance settings. IEEE Trans Automat Control
2019;64(6):2324–39. http://dx.doi.org/10.1109/TAC.2018.2867507.

[31] Padmanabhan N, Ahmed M, Bhattacharya K. Battery energy storage systems
in energy and reserve markets. IEEE Trans Power Syst 2020;35(1):215–26.
http://dx.doi.org/10.1109/TPWRS.2019.2936131.

[32] Shi Y, Xu B, Wang D, Zhang B. Using battery storage for peak shaving and
frequency regulation: Joint optimization for superlinear gains. IEEE Trans Power
Syst 2018;33(3):2882–94. http://dx.doi.org/10.1109/TPWRS.2017.2749512.

[33] Kim W-W, Shin J-S, Kim S-Y, Kim J-O. Operation scheduling for an energy
storage system considering reliability and aging. Energy 2017;141:389–97. http:
//dx.doi.org/10.1016/j.energy.2017.09.091.

[34] Englberger S, Jossen A, Hesse H. Unlocking the potential of battery stor-
age with the dynamic stacking of multiple applications. Cell Rep Phys Sci
2020;1(11):100238. http://dx.doi.org/10.1016/j.xcrp.2020.100238.

[35] Hossain MA, Pota HR, Squartini S, Zaman F, Guerrero JM. Energy scheduling
of community microgrid with battery cost using particle swarm optimisation.
Appl Energy 2019;254(9):113723. http://dx.doi.org/10.1016/j.apenergy.2019.
113723.

[36] Zia MF, Elbouchikhi E, Benbouzid M. Optimal operational planning of scal-
able DC microgrid with demand response, islanding, and battery degradation
cost considerations. Appl Energy 2019;237:695–707. http://dx.doi.org/10.1016/
j.apenergy.2019.01.040.

[37] Kazemi M, Zareipour H. Long-term scheduling of battery storage systems in
energy and regulation markets considering battery’s lifespan. IEEE Trans Smart
Grid 2018;9(6):6840–9. http://dx.doi.org/10.1109/TSG.2017.2724919.

[38] Cao J, Harrold D, Fan Z, Morstyn T, Healey D, Li K. Deep reinforcement learning-
based energy storage arbitrage with accurate lithium-ion battery degradation
model. IEEE Trans Smart Grid 2020;11(5):4513–21. http://dx.doi.org/10.1109/
TSG.2020.2986333.

[39] Kumtepeli V, Hesse HC, Schimpe M, Tripathi A, Wang Y, Jossen A. Energy
arbitrage optimization with battery storage: 3D-MILP for electro-thermal per-
formance and semi-empirical aging models. IEEE Access 2020;8:204325–41.
http://dx.doi.org/10.1109/ACCESS.2020.3035504.

[40] Steriotis K, Sepetanc K, Smpoukis K, Efthymiopoulos N, Makris P, Varvarigos E,
Pandzic H. Stacked revenues maximization of distributed battery storage units
via emerging flexibility markets. IEEE Trans Sustain Energy 2022;13(1):464–78.
http://dx.doi.org/10.1109/TSTE.2021.3117313.

[41] Maheshwari A, Paterakis NG, Santarelli M, Gibescu M. Optimizing the operation
of energy storage using a non-linear lithium-ion battery degradation model.
Appl Energy 2020;261(4):114360. http://dx.doi.org/10.1016/j.apenergy.2019.
114360.

[42] He G, Ciez R, Moutis P, Kar S, Whitacre JF. The economic end of life of
electrochemical energy storage. Appl Energy 2020;273:115151. http://dx.doi.
org/10.1016/j.apenergy.2020.115151.

[43] Collath N. Aging_aware_MPC: Chair of electrical energy storage technology. 2023,
URL https://gitlab.lrz.de/open-ees-ses/aging-aware-MPC.

[44] Möller M, Kucevic D, Collath N, Parlikar A, Dotzauer P, Tepe B, Englberger S,
Jossen A, Hesse H. Simses: A holistic simulation framework for modeling and an-
alyzing stationary energy storage systems. J Energy Storage 2022;49(11):103743.
http://dx.doi.org/10.1016/j.est.2021.103743.

[45] Fraunhofer Institute for Solar Energy Systems. Energy charts. 2022, URL https:
//www.energy-charts.info/?l=en&c=DE.

[46] EPEX Spot. EPEX spot indices. 2023, URL https://www.epexspot.com/en/indices.
[47] Draheim P, Schlachter U, Wigger H, Worschech A, Brand U, Diekmann T,

Schuldt F, Hanke B, von Maydell K, Vogt T. Business case analysis of hybrid
systems consisting of battery storage and power-to-heat on the German en-
ergy market. Utilities Policy 2020;67(2):101110. http://dx.doi.org/10.1016/j.jup.
2020.101110.

[48] Naumann M, Schimpe M, Keil P, Hesse HC, Jossen A. Analysis and modeling
of calendar aging of a commercial LiFePO4/graphite cell. J Energy Storage
2018;17:153–69. http://dx.doi.org/10.1016/j.est.2018.01.019.

[49] Naumann M, Spingler FB, Jossen A. Analysis and modeling of cycle aging
of a commercial LiFePO4/graphite cell. J Power Sources 2020;451:227666.
http://dx.doi.org/10.1016/j.jpowsour.2019.227666.

[50] Notton G, Lazarov V, Stoyanov L. Optimal sizing of a grid-connected PV
system for various PV module technologies and inclinations, inverter efficiency
characteristics and locations. Renew Energy 2010;35(2):541–54. http://dx.doi.
org/10.1016/j.renene.2009.07.013.

[51] Gasper P, Gering K, Dufek E, Smith K. Challenging practices of algebraic battery
life models through statistical validation and model identification via machine-
learning. J Electrochem Soc 2021;168:020502. http://dx.doi.org/10.1149/1945-
7111/abdde1.

4 Increasing the lifetime profitability of battery energy storage systems through aging aware
operation

72



Applied Energy 348 (2023) 121531

14

N. Collath et al.

[52] Kucevic D, Meißner R, Jossen A, Hesse H. Battery energy storage systems as an
alternative to conventional grid reinforcement. In: Energy proceedings, vol. 24.
2021, http://dx.doi.org/10.46855/energy-proceedings-9834.

[53] Schimpe M, Naumann M, Truong N, Hesse HC, Santhanagopalan S, Saxon A,
Jossen A. Energy efficiency evaluation of a stationary lithium-ion battery
container storage system via electro-thermal modeling and detailed compo-
nent analysis. Appl Energy 2018;210(4):211–29. http://dx.doi.org/10.1016/j.
apenergy.2017.10.129.

4 Increasing the lifetime profitability of battery energy storage systems through aging aware
operation

73





5 Consideration of load forecast and degradation
modeling uncertainty

Here, two peer-reviewed conference publications are presented that address uncertainty in the context
of aging aware operation.

5.1 Reduction of battery energy storage degradation in peak
shaving operation through load forecast dependent energy
management

This chapter presents the peer-reviewed conference publication titled Reduction of battery energy stor-
age degradation in peak shaving operation through load forecast dependent energy management. The
basic peak shaving strategy, presented in Chapter 2.1.3, is to discharge while the load is larger than
a given peak shaving limit and to charge again after the load peak until the BESS is fully charged.
As the case study in Chapter 3 highlighted, this leads to a high average SOC and, thereby, significant
calendar aging.

In this paper, an aging aware operation strategy is proposed to reduce calendar aging in peak shaving
applications. The underlying principle is to use load forecasts to charge up the BESS sufficiently early
before a load peak with the energy that is forecasted to be needed during the load peak. The challenge
lies in the inherent errors of the load forecasts. If a load peak is not successfully reduced, this impacts
the cost savings of the whole billing period, i.e., the whole month or year. The adaptive rule-based
operation strategy proposed in this paper uses the past performance of load forecasts to calculate the
average forecast error and its standard deviation. Based on these values, safety margins are calculated
for the required energy level of the BESS at a given time.

The performance of the proposed operation strategy is investigated for a representative one-year in-
dustrial load profile that was provided by a research project partner. An artificial neural network was
trained with a one-year data set of load values from the previous year to generate the load forecasts.
The proposed strategy is compared to a naive peak shaving strategy and a scenario in which perfect
foresight of the future load profile is assumed. The naive operation strategy used as a reference here
equals the basic peak operation strategy presented in Chapter 2.1.3. As part of the case study for
validating the proposed operation strategy, five consecutive years of peak shaving are simulated for a
representatively sized BESS with LFP cells in SimSES [83], see Appendix A. After five years, remain-
ing capacity-based SOH values of 92.8 %, 89.7 %, and 84.8 % are observed for the perfect-foresight, the
proposed, and the naive peak shaving operation strategies. All operation strategies successfully reduce
the load peaks in the first year. The results highlight the extended lifetime that can be achieved with
the aging aware operation strategy proposed in this contribution. In addition, multiple parameter
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variations are conducted to investigate the impact of the tuning parameters of the proposed operation
strategy, e.g., the confidence interval, on its performance.

Notably, with its novel method for handling forecast errors, the proposed operation strategy can
be applied in combination with any load forecasting method. Easier to forecast load profiles, such
as scheduled production lines, cumulated profiles of multiple consumers, or improvements in load
forecasting methods themselves, would allow reduced safety margins of the required energy for peak
shaving. Thereby, a further reduction of the capacity fade could be achieved, as highlighted by the
perfect foresight scenario in the case study.

In summary, a rule-based, aging aware operation strategy for peak shaving applications is proposed
in this publication and validated through a simulative case study. Compared to previous publications
in the field, an adaptive method for handling load forecast errors has been developed as part of the
operation strategy.
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Abstract

One application for the increasing number of battery energy storage systems is the reduction of demand charges for
industrial consumers through peak shaving. Commonly used lithium-ion batteries are subject to degradation due to a
multitude of cell-internal aging processes that can have significant impact on the economics of a system. In this contri-
bution, we propose a rule-based operation strategy to reduce battery degradation during peak shaving through the use of
load forecasting. Since load forecasting methods include significant inaccuracies, the operation strategy focuses on means
to handle forecast errors. The performance of this operation strategy is assessed through time series based simulations
and comparison with reference scenarios. A state of health of 89.7 % is remaining with the proposed strategy after five
operating years. This is a reduction of capacity loss of 4.9 % percentage points compared to an often implemented naive
peak shaving strategy with 84.8 % remaining state of health, while achieving the same performance in terms of reducing
load peaks successfully.

Keywords – battery energy storage system, lithium-ion, peak shaving, degradation, aging, load forecasting

1 Introduction

The installed capacity of battery energy storage systems
(BESS), especially lithium-ion based systems, has been in-
creasing steadily over the last years. Among other applica-
tions, battery energy storage systems are used to reduce
demand charges for industrial-scale consumers through
peak shaving. Next to a price for the consumed energy,
industrial electricity consumers in most regions are sub-
ject to a demand charge based on the highest power de-
mand in a given billing period. By discharging an energy
storage system when the power demand exceeds a power
threshold and charging when it subceeds this threshold, the
peak power for a given billing period and thereby demand
charges can be reduced. Depending on the load profile
and demand charge structure, peak shaving alone can lead
to a positive business case for battery energy storage sys-
tems [1].
The benefits for the grid operator in consumer-side,
behind-the-meter peak shaving lie in improved power qual-
ity, system-efficiency and ultimately cost reductions [2].
Furthermore, peak shaving with BESSs, is envisioned as
a potential means for reducing the peak load through con-
gested lines in the electricity grid and therefore allow for a
deferral of investments in upgraded transmission and dis-
tribution equipment [3].
Battery degradation can have a significant impact on the
economics of a BESS that is used for peak shaving [4]. In
this contribution, we propose a novel rule-based operation
strategy that relies on load forecasts and related error han-
dling in order to reduce battery degradation in peak shaving
operation for lithium-ion batteries.

1.1 Battery Degradation

Lithium-ion batteries are subject to degradation due to a
multitude of cell-internal aging processes. Existing semi-
empirical modelling approaches for cell degradation de-
scribe the overall capacity loss as a superposition of calen-
dar and cyclic aging [5]. While cyclic aging is particularly
sensible to the energy throughput and the charge/discharge
rates, calendar aging shows strong dependence on temper-
ature and battery state of charge (SOC). For most types of
lithium-ion batteries, high temperatures and a high SOC
will result in significantly higher calendar aging [6]. The
impact of cell aging with particular focus on stationary
storage systems has been part of recent studies which
showed that an application specific assessment is needed
to optimally deal with stress factors and resulting degrada-
tion [7]. For residential storage systems that are used for
buffering surplus photovoltaic generation behind the me-
ter, various simulations and field studies were undertaken
to analyze the impact of degradation [8]. Utility-scale bat-
tery storage systems have taken a significant market share
for the provision of frequency control reserve. Their eco-
nomic feasibility in the context of battery degradation has
also been subject of recent contributions [9]. Cycle duty
is particularly high in this ancillary service application, but
the depth of discharge remains low and the rest-state state
of charge resides at close to mid level. A battery chemistry
that copes well with this duty pattern needs to be selected
in order to allow for an adequate lifetime and a positive
business case.
However, a recent market review underlines the importance
of industrial peak shaving applications as being the fastest
growing market segment in Germany [10]. For peak shav-
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ing, calendar aging mechanisms are especially of concern.
With common peak shaving control strategies, the battery
cells are kept at high SOC for extended periods of time
in order to be able to discharge during the next upcom-
ing peak. The high SOC accelerates decomposition of the
electrolyte as well as growth of the solid electrolyte inter-
face and thereby causes an increase in cell impedance and
a reduction of the usable cell capacity [5].

1.2 Load Forecasting

Driven by increasing competition and renewable integra-
tion, load forecasting in the energy market is becoming
an increasingly important issue [11]. For energy storage
systems, probabilistic load forecasting algorithms can be
used to facilitate efficient system operation. To ensure that
high power peaks are reduced successfully by an energy
storage system in peak shaving operation, it is essential
to know which peak loads can be expected in subsequent
hours. Here, not only the height of the power peak, but
particularly also its energy content plays a crucial role, as a
shortage of stored energy during peak shaving will result in
partial or complete failure of the load peak reduction [12].
In existing literature, possible algorithms for load predic-
tion have already been identified [11]. In addition to time
series analysis and regression algorithms, more mathemat-
ically complex methods are frequently used. Following the
progress in more powerful hardware and ongoing research
in artificial intelligence, approaches such as support vec-
tor machines and artificial neural networks are becoming
increasingly popular in the field of load forecasting [11].
Nevertheless, short-term load forecasting methods are sub-
ject to significant forecast errors, especially when applied
to load profiles of individual consumers instead of cumula-
tive loads at grid or substation level [13].

1.3 Focus of this Contribution

A number of contributions can be found on the operation
of BESSs for peak shaving. Existing contributions tend to
either neglect the aspect of calendar aging, assume perfect
foresight of load-profiles or do not include means for the
handling of forecast errors.
Martins et al. considered both calendar and cyclic battery
aging for BESS sizing by using linear optimization [4].
They assume perfect foresight of the underlying load pro-
file though. Shi et al. introduce a stochastic joint program-
ming approach to optimize BESS operation for both peak
shaving and frequency response simultaneously, using load
forecasts [14]. The considered degradation model does not
account for calendar aging, which as highlighted in this
contribution is the primary aging driver in peak shaving
operation. Abdulla et al. use a stochastic dynamic pro-
gramming approach to optimize BESS operation for a res-
idential application, considering load forecasts and degra-
dation [15]. Papadopoulos et al. conclude that up until
today the forecast accuracy is not sufficient for the given
peak shaving application. Degradation or means for error
handling are not considered here [16].
The focus of this contribution therefore lies on the develop-
ment and assessment of a peak shaving operation strategy

that allows reducing calendar aging for BESSs under con-
sideration of load forecast inherent forecast errors.

2 Methodology

A peak shaving operation strategy is developed that aims
to reduce the average SOC of a BESSs over its lifetime
and thereby calendar aging. Using load forecasts, the re-
quired peak shaving energy for a given future time horizon
is determined under consideration of sufficient confidence
intervals. The BESS will then only charge up to the en-
ergy level that is required for peak shaving for the next
forecast horizon. The effects of this operation strategy on
system performance and battery degradation are analyzed
using time series based simulations with the open-source
software SimSES [17].

2.1 Operation Strategy

The underlying principal of the operation strategy is to de-
termine the energy Epeak that is required for peak shaving
for a predetermined forecast horizon N, based on load fore-
casts. In order to account for forecast inaccuracy, past val-
ues of the distribution of forecast errors are used to calcu-
late Epeak as the upper limit of a confidence interval.
While studies have shown that using more elaborate prob-
ability density functions for modelling load forecast errors
can lead to accuracy improvements, a Gaussian distribu-
tion is expected to be sufficient for this investigation [18].
With a Gaussian distribution of forecast errors, the power
for the upper limit of the confidence interval Pn

conf for step n
can be calculated as:

Pn
conf = Pn

pred−μn
pred,error + kσ ∗σn

pred,error (1)

Whereat Pn
pred is the predicted load power, μn

pred,error the
mean value of forecast errors and σn

pred,error the standard de-
viation of forecast errors for the forecast step n. The factor
kσ is derived from the Gaussian distribution for the respec-
tive confidence interval probability, as shown in Table 1.
Figure 1 depicts the concept of using confidence intervals
around multi-step forecasts with a receding horizon.

Table 1 Factor kσ for a given confidence interval proba-
bility following a Gaussian distribution

Probability kσ
99.95% 3.291
99.5% 2.576
97.5% 1.960
95.0% 1.645
75.0% 0.675

The energy that is required for peak shaving under consid-
eration of the described confidence intervals, Epeak, is then
calculated as follows:

Epeak = EN
peak =

N

∑
n=1

Δt ∗ f (Pn
conf−Plimit) (2)
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Figure 1 Forecast steps and confidence interval limits for
a peak shaving scenario as indicated through box plots.

With En
peak ≥ 0 for every n ∈ {1, ..,N} of the sum to allow

for sufficient peak shaving energy for every future forecast
step. Here, Δt is the forecast period and Plimit the peak
shaving limit. The function f (x) limits the difference to the
maximum discharge and charge energy Pmax and −Pmax,
respectively:

f (x) =

⎧⎪⎨
⎪⎩

−Pmax, x≤−Pmax

x, −Pmax < x≤ Pmax

Pmax, Pmax < x
(3)

Based on the calculation of the peak shaving energy Epeak,
the proposed operation strategy is summarized in Figure 2.
After every passed forecast period Δt, a new load fore-
cast is received. Based on the past error values for pre-
vious forecasts, σn

pred,error and μn
pred,error are calculated for

each forecast step n ∈ {1, ..,N}. The peak shaving en-
ergy Epeak is calculated with the aforementioned method
for the next N forecast steps.
Based on Epeak, the logic for determining the battery power
Pbatt resembles a naive peak shaving strategy. If the net load
Pnet, calculated from the current load at the grid connection
point Pload and the peak shaving limit Plimit, is positive, the
BESS will discharge according to the difference in order to
reduce the peak, which is represented as Case I in Figure 2.
If the net load is negative, the BESS will charge if the
current stored energy is smaller than the required energy
for peak shaving Epeak (Case II). The current stored en-
ergy is calculated from the BESS capacity Ecap, the current
state of charge SOC and includes a state of charge margin
SOCm. Following the above-mentioned logic, the BESS
would discharge only during a power peak, which may lead
to an SOC that is higher than required to fulfill the Epeak
requirement for extended periods of time. As a counter-
measure, an active discharge of the BESS is introduced af-
ter the BESS has been idle for longer than the specified
active discharge delay tdischarge (Case III). If none of the
other cases holds true, the BESS will stay idle (Case IV).
While the active discharge after extended idle time can be
expected to decrease the average SOC and therefore reduce
calendar aging, it increases the total number of cycles and
thereby cyclic aging as well as energy losses.

2.2 Modelling Framework

Using the open source software SimSES, time series sim-
ulations are carried out for the validation of the proposed

for every forecast period t

receive load forecast

calculate rolling and for each forec. step 

calculate energy required for the next forecast steps  

calculate net load 

for every timestep in the current forecast period

True False

True False

Active Discharge

Case III Case IV

True False

Case I Case II

Figure 2 Structogram for the proposed peak shaving op-
eration strategy.

operation strategy [17]. A summary of the key parame-
ters that are used for the simulation is given in Table 2.
All cell and degradation models for the lithium iron phos-
phate (LFP) cells are based on in-house laboratory mea-
surements at the Institute for Electrical Energy Storage
Technology [19, 20]. The inverter efficiency model is
parametrized according to Notton et al. [21]. Simulations
are carried out with a time resolution of 15 minutes and
the forecast period is set to Δt = 15 min as well. The load
profile that is used is the measured load of an industrial
consumer for one year of operation and is repeated for sim-
ulations that exceed one year.
The proposed operation strategy provides a total of six de-
grees of freedom: the SOC margin SOCm, the peak shav-
ing limit Plimit, the timeframe for calculating the rolling
horizon mean μn

pred,error as well as variance σn
pred,error of the

forecast errors, the number of forecast steps N, the confi-
dence interval factor kσ , and the threshold for active dis-
charge tdischarge. Determining the peak shaving limit Plimit
is considered out of the scope of this investigation. It has
been set to a fixed Plimit = 5.95 MW for all simulations,
based on the highest peak that can be shaved with the given
profile and BESS. The SOC margin is set to SOCm = 0.1
and the horizon for calculating the mean and variance of
the forecast error is set to one week of past data, resulting
in 672 individual values. The effect of the configuration
parameters kσ , N, and tdischarge on system performance will
be investigated in more detail.

Table 2 Key parameters of the BESS and load profile

Parameter Value
BESS power / energy 1000 kW / 1370 kWh
Cell chemistry lithium iron phosphate
Load peak power / yearly
demand

6.62 MW / 25 GWh
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2.3 Load Forecasting Method

An artificial neural network is used for multi-step time se-
ries forecasting in this work. Due to existing frameworks
for neural networks, the forecast data is processed using
the Matlab Deep Learning toolbox. To analyze the effect of
different forecast horizons, the data is generated using fore-
cast horizons from 15 minutes up to 4 hours. With a sample
time of 15 minutes, 16 unique forecast values are generated
for each time step of the one year load profile. The artifi-
cial neural network was trained with a one-year data set of
load values from the previous year. For the load forecast,
data in the form of ambient temperature, solar irradiation,
day of the week, and time is included in the model.
To ensure comparability with existing literature, the fol-
lowing metrics are used to evaluate the forecast qual-
ity [22]: mean absolute error (MAE) and root mean
squared error (RMSE). Both, MAE and RMSE show lower
values and therefore higher model accuracy for shorter
forecast horizons. As the forecast horizon increases from
15 minutes to 4 hours, the values for MAE and RMSE also
increase from 2.4 % to 13.6 % and 3.7 % to 17.9 %, respec-
tively.

3 Simulation Results

In this chapter, the simulation results are presented and dis-
cussed. Two reference scenarios are considered for the pro-
posed operation strategy:

• Naive scenario: The naive peak shaving scenario as-
sumes that no load forecast is available. Therefore,
the BESS will charge up to full SOC whenever the
load Pload is below the peak shaving limit Plimit.

• Perfect foresight scenario: This scenario uses the here
proposed operation strategy, but assumes perfect fore-
sight of the load profile for the next twelve hours.

In Figure 3, peak shaving operation for six exemplary days
is depicted, which include a total of four power peaks that
exceed the peak shaving limit. While all strategies success-
fully reduce the load peaks by discharging the BESS, the
SOC management inbetween power peaks is vastly differ-
ent. Load forecasts combined with the proposed operation
strategy allow for a lower average SOC than in the naive
scenario, only outmatched by the improbable scenario of
perfect foresight. Here, N = 6 forecast steps, an active dis-
charge delay of tdischarge = 2 days, and a confidence interval
of 97.5 % (kσ = 1.960) were chosen.
Figure 4 shows the effect of the lower average SOC on the
state of health (SOH) of the BESS. While the naive sce-
nario leads to a capacity loss of 15.2 % over five years, the
proposed method only causes a capacity loss of 10.3 %
in the described scenario, a reduction of 4.9 percentage
points. The degradation model yielded a distribution of
15.0 % to 0.2 % capacity loss due to calendar aging and
cyclic aging, respectively. With the proposed operation
strategy this distribution is at 9.8 % to 0.5 %. This high-
lights that calendar aging can be seen as the dominant ag-
ing mechanism in peak shaving operation due to the usu-
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Figure 3 Load and state of charge (SOC) for peak shav-
ing operation over six exemplary days.

ally low cycle numbers, but high average SOC. Over the
five year time frame the used load profile includes a total
of 198 peaks above the specified peak shaving threshold
Plimit of 5.95 MW, which for the perfect foresight scenario
as well as with the proposed operation strategy are all suc-
cessfully shaved. On the other hand, with the naive strategy
a total of eight peaks were not successfully shaved in the
last two years of operation. Closer investigation shows that
this is due to the higher degradation in the naive scenario
that leads to the BESS not having enough remaining capac-
ity to reduce all load peaks successfully for the given peak
shaving limit after extended operating time.

Figure 4 State of health (SOH) development for peak
shaving operation over five years.

The effects of a variation from the above base case sce-
nario on the proposed operation strategy are investigated
in the following. Figure 5 highlights the effect of the num-
ber of forecast steps N that are considered. The average
SOC in the plot is the average of all SOC values over the
five year period. In general, a higher number of forecast
steps leads to higher values of the determined peak shaving
energy Epeak, which as depicted leads to a higher average
SOC and therefore increased degradation. On the other
hand, a smaller forecast horizon increases the amount of
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missed peaks, meaning load peaks that can not be suffi-
ciently reduced by the BESS, due to not enough energy be-
ing available for the discharge in the instance of the peak.
The variation of the confidence interval in Figure 6 shows
the same results in terms of a trade-off between a high
probability of successfully reducing all power peaks on
the one side and BESS degradation on the other side. It
should be noted that a high confidence interval (99.5 %
or 99.95 %), as seen in Figure 6, or a large number of
forecast steps (N = 8), as seen in Figure 5, lead to BESS
degradation to an extend that yet again not all peaks are
successfully shaved in the last two years of operation.
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Figure 5 Effects of a variation of the forecast horizon N
on system performance.
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Figure 6 Effects of a variation of the confidence interval
and kσ on system performance.

As previously mentioned, a trade-off between calendar ag-
ing on the one side and cyclic aging as well as energy
losses on the other side can be expected when varying the
active discharge delay tdischarge. For a lower tdischarge, the
stored energy will on average be closer to the calculated
peak shaving energy Epeak, which in turn requires more cy-
cles. This is confirmed by the results in Figure 7. Further-
more, Figure 7 highlights that calendar aging is the dom-
inant aging mechanism for the here proposed peak shav-
ing operation strategy as well, even for low values of the
active discharge delay. Taking into account the cost for
both energy losses and capacity fade, a parameterization
of tdischarge = 1 day is most economical. This is assuming
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Figure 7 Effects of a variation of the active discharge
delay tdischarge on system performance.

electricity costs of 0.1844 AC /kWh for an industrial con-
sumer, a battery pack price of 236 AC /kWh, and end-of-life
at 80 % SOH [23, 24].

4 Conclusion

With the proposed operation strategy, a significant reduc-
tion of cell degradation can be observed compared to a
naive peak shaving strategy. The operation strategy pri-
marily relies on load forecast dependent SOC management
in order to decrease calendar aging. As part of the opera-
tion strategy, error handling is especially important due to
the imperfectness of load forecasts.
For the chosen parameterization, all peaks are success-
fully shaved. The parameter variation though highlights
the trade-off between battery degradation and the risk of
missing load peaks. Missing individual load peaks, espe-
cially for industrial demand charge tariffs can significantly
affect the BESSs economic benefit for the entire month or
year depending on the tariff. Notably, higher degradation
as seen for the naive scenario and more conservative pa-
rameterizations of the proposed strategy also leads to miss-
ing power peaks in later operating years. Though this may
be solved be adapting the peak shaving limit upwards with
increasing battery degradation.
Finally, it should be noted that the method for handling
forecast errors causes the performance of the proposed
operation strategy to directly scale with the quality of
the load forecast. Easier to forecast load profiles, i.e.
scheduled production lines, cumulated profiles of multiple
consumers, or improvements in load forecasting methods
would therefore allow to further reduce battery degradation
in peak shaving operation.
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5.2 The economic impact of battery degradation modeling
uncertainty

This chapter presents the peer-reviewed conference publication titled The economic impact of battery
degradation modeling uncertainty. Degradation models are typically fitted to data from cell-aging
studies and the resulting models include inherent errors and uncertainty. This publication investigates
for the first time how these degradation modeling uncertainties affect the techno-economic assessment
of typical stationary applications. This work stems from a research collaboration and builds on top
of the degradation models that were derived in the accompanying paper Machine-learning assisted
identification of accurate battery lifetime models with uncertainty, see Appendix B.

Three representative BESSs with LFP cells are modeled in the applications of self-consumption in-
crease, peak shaving, and FCR. Two degradation models are compared for the same LFP cell, the
expert-identified model published by Naumann et al. [37, 38] and the machine learning-assisted model,
which is detailed in Appendix B. Confidence intervals for the respective degradation models are derived
through bootstrap resampling, i.e., randomly redrawing samples from the original set of tested battery
cells. The large sets of resampled parameters fits for the two degradation models are implemented in
SimSES [83], see Appendix A. The adapted version of SimSES as well as the simulation results are
available open-source3 [232].
For each simulated timestep, one thousand resampled parameter sets for the capacity loss model are
simulated, and the respective confidence interval of capacity loss is selected from an ordered list of all
simulated capacity loss models. The NPV, i.e., the future discounted cashflow generated in the three
applications, is used as the main metric for comparison alongside the SOH trajectory. The results
show that the spread of NPV confidence intervals can be reduced in all investigated applications by
employing a degradation model with higher parameter fit quality, in this case by choosing the ma-
chine learning-assisted over the expert-identified degradation model. Furthermore, it is shown that the
consideration of degradation modeling uncertainty is especially crucial when: (i) The cash flow highly
depends on the available battery capacity; (ii) A fixed, e.g., warranty mandated, state of health limit
is assumed as the threshold for EOL of the BESS; (iii) Long evaluation periods and low discount rates
are the focus of the economic evaluation.

In summary, the developed method for model identification detailed in Appendix B allows the auto-
mated identification of algebraic formulations and their parameter fits for degradation models, while
also quantifying the model uncertainty. The case study here highlights the impact that degradation
model uncertainty can have on the techno-economic assessment of typical BESS applications.
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Abstract—Battery energy storage systems (BESS) are used
for a variety of applications, with their economic benefit often
being the decisive factor for deployment. A multitude of physico-
chemical aging mechanisms lead to capacity fade over a BESS
life cycle. The models that are used to describe this capacity
fade are prone to inherent model errors. Through a holistic
techno-economic modelling approach, we investigate the impact
of battery degradation modelling uncertainty on the economic
benefit of representative BESS applications. Here, it is shown how
improved parameter fit quality can reduce the resulting economic
uncertainty. Furthermore, we highlight that the consideration
of degradation modelling uncertainty is especially crucial when:
(i) the cash flow highly depends on the available battery capacity,
(ii) a fixed, e.g. warranty mandated, state of health limit acts as
the threshold for battery end-of-life, (iii) long evaluation periods
and low discount rates are the focus of economic evaluation.

Index Terms—battery energy storage system, degradation,
aging, techno-economic analysis, lithium-ion

I. INTRODUCTION

The installed capacity of Battery Energy Storage Systems

(BESS) has been increasing steadily over the past years. These

systems are used for a variety of applications, which are

commonly categorized into three groups: behind-the-meter,

front-of-the-meter and off-grid applications [1]. For behind-

the-meter applications, such as peak shaving or home storage

systems, electricity cost reductions are a primary motive for

the installation of a BESS. Front-of-the-meter applications

allow revenue generation through participation in energy and

power markets, such as the European frequency containment

The authors would like to thank the Bavarian Research Foundation for
their financial support via the project SmartB4P, reference number AZ-
1376-19. Paul Gasper and Kandler Smith are supported by the National
Renewable Energy Laboratory which is operated by Alliance for Sustainable
Energy, LLC, for the U.S. Department of Energy under Contract No. DE-
AC36-08GO28308, and acknowledge support from the Assistant Secretary
for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies
of the U.S. Department of Energy. The views expressed in the article do
not necessarily represent the views of the DOE or the U.S. Government.
The U.S. Government retains and the publisher, by accepting the article for
publication, acknowledges that the U.S. Government retains a nonexclusive,
paid-up, irrevocable, worldwide license to publish or reproduce the published
form of this work, or allow others to do so, for U.S. Government purposes.

reserve market. Lastly, in off-grid applications, BESS based

microgrids can be a cost competitive option over solely relying

on diesel generators [1]. While lead-acid batteries used to

be the technology of choice for BESSs, lithium-ion batteries

are now the predominant technology for new installations,

following economies-of-scale induced cost and performance

advances in recent years [2]. Over the life cycle of a lithium-

ion battery, a multitude of cell internal aging mechanisms lead

to degradation, which manifest itself in an increase of cell

resistance, safety implications, and capacity fade.

Multiple authors have published methods to account for degra-

dation effects in operating strategies and thereby allow a

more economic dispatch of BESSs [3], [4]. Other authors

performed techno-economic analyses under consideration of

battery degradation for individual BESS applications [5], [6].

Typically, researchers rely on degradation models that are fit

to data from a cell aging study, in which a limited amount

of cells has been cycled and stored under accelerated aging

conditions [3]–[6]. Metrics such as the coefficient of deter-

mination (R2) or mean average error (MAE) are commonly

used to describe the fit quality of the resulting model to the

underlying test data [7]–[9]. While these inherent model errors

may be referenced, they are not propagated to the system

lifetime analysis, which raises the question by how far the un-

certainty of degradation models impacts the techno-economic

analyses that they are being used for. To the knowledge of

the authors, no existing work in the field of BESS techno-

economic analyses and scheduling methods accounts for the

modelling uncertainty associated with degradation models.

In this contribution, we determine confidence intervals for

semi-empirical degradation models of lithium-ion cells and

embed them into a time-series based simulation environment.

Through a techno-economic analysis, we highlight the impact

of battery degradation modelling uncertainty on the economic

evaluation of BESSs for three common applications: Self

Consumption Increase (SCI) with home storage systems, Peak

Shaving (PS) and Frequency Containment Reserve (FCR).

We focus on investigating how the net present value (NPV)
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of future income relates to the confidence intervals of the

underlying degradation models.

II. METHODOLOGY

A. Degradation Models

We investigate two different degradation models, fit to the

same degradation data set of lithium iron phosphate (LFP)

cells that has previously been published in [8], [9]. Both

models fall into the category of semi-empirical degradation

models, with calendar and cyclic capacity loss components:

Qtotal
loss = Qcyc

loss(FEC,DOC,Crate) + Qcal
loss(t, SOC) (1)

In (1), Qcyc
loss is the cyclic degradation, depending on the num-

ber of full equivalent cycles (FEC), the depth of cycle between

individual cycles DOC as well as the C-rate during charge

and discharge Crate. Qcal
loss refers to the calendar degradation

depending on time t and the state of charge SOC. The first

degradation model uses the same, expert-identified, algebraic

structure as in the original data publication of Naumann et

al. [8], [9]. The second degradation model uses an algebraic

structure that has been identified by a machine learning (ML)

assisted method that was previously published in [7] and

is described in detail in [10]. The resulting equations that

describe both models can be found in the Appendix. The MAE

of the ML-assisted modelling approach over both cyclic and

calendar aging data (0.79 %) is less than half of the MAE of

the expert-identified modeling approach (1.66 %) [10].

Uncertainty of the degradation models is estimated utilizing

a bootstrap resampling approach. For each iteration of boot-

strap resampling, the aging data from various test conditions

(e.g. DOC, SOC) are randomly resampled with replacement.

The model parameters are then optimized on these ran-

domly resampled sets, resulting in different optimal values

for each fitting parameter for every set. For the ML-assisted

model, both the calendar and cyclic capacity loss models

are optimized on the resampled data simultaneously. For the

expert-identified model proposed by Naumann et al. [8], [9],

where calendar and cyclic degradation models are optimized

separately, the bootstrap resampling procedure is modified

to reflect this dependence: First, the calendar aging data is

randomly resampled with replacement, and the calendar aging

model parameters optimized. Afterwards, the cyclic fade data

is randomly resampled with replacement, and the cyclic fade

model parameters are optimized. For extrapolating uncertainty

to new use-cases or into the future, the degradation model is

evaluated using both the best-fit parameter values, which have

been optimized to all available aging data, as well as the M

bootstrapped parameter values, as reported in Fig. 1.

B. Simulation Environment

We adapt the open-source simulation software SimSES

to conduct time-series simulations and perform the techno-

economic analysis [11], [12]. In order to account for the

uncertainty of the degradation model parameter fits, we adapt

the simulation environment as highlighted in Fig. 1: The

Receive system state and stress factors: DOC, 𝐶rate , SOC, ∆𝑡, ∆FEC

Load bootstrapped degradation parameter sets for the selected model

Calculate “virtual time”𝒕∗

𝑝q1,𝑎 𝑝q1,𝑏 … 𝑝q8
1 𝑝q1,𝑎1 𝑝q1,𝑏1 … 𝑝q81
… … … …
M 𝑝q1,𝑎M 𝑝q1,𝑏M … 𝑝q8M

Calculate “virtual FECs”𝐅𝐄𝐂∗
Calculate calendar degradation:∆𝑸𝐥𝐨𝐬𝐬𝐜𝐚𝐥 = 𝑄losscal 𝒕∗ + ∆𝑡−𝑄losscal 𝒕∗

Calculate cyclic degradation:∆𝑸𝐥𝐨𝐬𝐬𝐜𝐲𝐜 = 𝑄losscyc 𝐅𝐄𝐂∗ + ∆FEC−𝑄losscyc 𝐅𝐄𝐂∗

Calculate total degradation for current timestep:∆𝑄loss,conf = ∆𝑄loss,confcal + ∆𝑄loss,confcyc

Cycle detected?

Select ∆𝑄loss,confcal from sorted 

list of  ∆𝑸𝐥𝐨𝐬𝐬𝐜𝐚𝐥 for the relevant 

confidence interval

Select ∆𝑄loss,confcyc
from sorted 

list of  ∆𝑸𝐥𝐨𝐬𝐬𝐜𝐲𝐜
for the relevant 

confidence interval

𝑘ref,𝑇 𝑐1 … 𝑑2
1 𝑘ref,𝑇1 𝑐11 … 𝑑21

… … … …
M 𝑘ref,𝑇M 𝑐1M … 𝑑2M

Expert-identified (Naumann et al.) ML-assisted (Gasper et al.)

For every

simulation step.

∆𝑄loss,confcyc
= 0True False

Fig. 1. Overview of how capacity loss for the selected confidence interval
∆Qloss,conf is calculated. The aging models are detailed in the Appendix.
The adapted open-source software was made available under [11].

degradation models have access to a sufficiently large number

of bootstrapped parameter sets for the expert-identified and

ML-assisted model. Here, we use M = 1000 parameter

sets. The relevant stress factors are passed to the degradation

model at every time step. A half cycle counting algorithm

is used to determine DOC and Crate. Following that, the

calendar capacity loss and cyclic capacity loss are calculated

for every parameter set, with the cyclic degradation only being

calculated after a half cycle has been detected. We employ

the concept of virtual time and virtual FECs to discretize the

models [9]. The applicable incremental capacity loss for the

investigated confidence interval is then chosen from the list

sorted in ascending order, e.g. element 250 for the lower limit

of the 50 % confidence interval with 1000 parameter sets. The

adapted software was made available open-source under [11].

C. Use-Cases

The application specific system sizing for SimSES, as well

as the input profiles are based on Kucevic et al. [13]. SCI refers

to a home storage system, using a household load profile and

a photovoltaic (PV) generation profile for the Munich area

as input. PS refers to reducing load peaks with a BESS for

an industrial-scale consumer with the respective load profile.

FCR refers to the operation of a BESS on the central European

FCR market, using a frequency profile as input to determine

the battery charge and discharge pattern. The key technical

simulation parameters are summarized in Table I.
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Fig. 2. State of Health (relative remaining capacity) and its confidence intervals for the investigated degradation models (expert-identified & ML-assisted) as
well as the three applications (SCI, PS & FCR). Visualized from simulation results that are made available under [11].

TABLE I
TECHNICAL SIMULATION PARAMETERS

SCI PS FCR

Energy 5 kWh 100 kWh 1.6 MWh

Power 5 kW 40 kW 1.6 MW

Cell Model LFP 3 Ah: Expert-identified vs. ML-assisted

Input Profiles
(time series)

PV generation,
household load

industrial
load

grid
frequency

TABLE II
ECONOMIC EVALUATION PARAMETERS

Application Parameter Value

SCI feed-in tarrif 0.0816 EUR / kWh

SCI & PS electricity cost 0.3167 EUR / kWh

PS demand charge 97.80 EUR / (kW * a)

FCR daily revenue 0.3 EUR / (kW * d)

FCR IDM electricity price 0.04 EUR / kWh

D. Economic Evaluation

For the economic evaluation, we use the NPV of future

income as the key performance indicator (2). Here, i is the

discount rate and CFn the application specific cash flow for the

year n. The constant price assumptions are shown in Table II.

For SCI, the economic benefit for the end-user is gained

through electricity bill savings. As electricity costs tend to

be higher than the PV feed-in tariff, a net benefit is gained

for the end-user through self use of PV generated electricity.

The cash flow for this application therefore is calculated by

deducting the energy cost that occur with a BESS ECBESS
n

from the energy cost that were to occur without a BESS ECn,

as in (3). Next to the cost for the consumed energy, industrial-

scale electricity consumers in Germany are subject to demand

charges, based on the highest 15 min averaged power demand

in a given year. In (4), DCBESS
n and DCn denote the demand

charges that occur with and without a BESS, respectively.

Lastly, the cash flow for FCR is equal to the generated revenue

on the FCR market RFCR
n in the respective year, plus the

revenue RIDM
n and minus the cost CIDM

n for the total of traded

kWh of electricity on the intraday market (IDM), to keep the

BESS in its mandated SOC range (5).

NPV =
N∑

n=1

CFn

(1 + i)n
(2)

CFSCI
n = ECn − ECBESS

n (3)

CFPS
n = DCn −DCBESS

n + ECn − ECBESS
n (4)

CFFCR
n = RFCR

n +RIDM
n − CIDM

n (5)

III. TECHNO-ECONOMIC ANALYSIS

All time-series simulations are conducted with the afore-

mentioned method for 15 years with 60 sec timesteps. The

full simulation results are available under [11].

A. Application Specific Capacity Loss

Fig. 2 shows the state of health (SOH) for all three applica-

tions and the two different degradation models. Generally, the

ML-assisted model yields narrower confidence intervals for

all applications due to the improved parameter fit quality. The

FCR application is characterized by a large amount of cycles

with small DOC. PS shows few cycles, a high average SOC

and therefore a high share of calendar degradation. SCI shows

a large amount of cycles with a generally larger DOC than

FCR. Notably, seasonality as a consequence of varying solar

irradiation and a varying load profile shows in the degradation

behavior, in the form of ripples with a higher degradation

gradient during summer time.
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Fig. 3. NPV and confidence intervals for the investigated degradation models and applications. We assume a base discount rate of i = 2 % as well as a
EOL threshold at 80 % SOH. Both are varied in the following figures. Same confidence intervals as in Fig. 2, with dashed lines once the EOL threshold is
reached. I99% is the interval of percentage deviations of the upper and lower bounds of the 99% confidence intervals of the NPV from the ”best fit” scenario.

B. Application Specific Net Present Value

The NPV from Fig. 3 shows a larger degree of variance

between applications and degradation models than the SOH.

Here, we assume a warranty mandated threshold of 80% SOH

for the end-of-life (EOL) criterion and a discount rate of 2 %

as the base scenario. Both will be varied in the following

subchapters. There are two ways in which uncertainty in degra-

dation modelling has an impact on the economic evaluation:

First, the reduced capacity can impede the BESS ability to

perform its destined application. Second, if the BESS reaches

its end-of-life (EOL) at 80% SOH before the end of the

evaluation period, a cash flow of 0 EUR is assumed moving

forward, causing an even more significant spread in NPV

confidence intervals.

For SCI in Fig. 3a, the NPV confidence intervals slightly

widen over the years, as every year less PV energy can be

stored by the BESS, leading to a higher electricity bill for the

household. The more significant change occurs, once the upper

bound of the 99 % degradation confidence interval reaches

EOL in year 11, leading to reduced cash flow that year and

no cash flow moving forward. With the ML-assisted model in

Fig. 3d, the confidence intervals are narrower and none reach

EOL in the evaluation period, leading to a negligible spread

of the NPV. In the case of PS (Fig. 3b & 3e), the impact of

degradation uncertainty is more severe even before the EOL

threshold. The BESS does not have sufficient capacity left to

reduce the largest load peak of the year completely, leading

to a noticeable NPV reduction in that case and wider NPV

confidence intervals. With a suitable forecasting strategy and

SOH awareness in place, the peak shaving limit would likely

be adapted upwards in real world use, slightly reducing this

effect. For FCR (Fig. 3c & 3f), the influence of degradation

in this scenario is negligible until the system reaches its EOL.

The small spread before EOL is caused by different purchase

quantities of energy on the intraday market to bring the BESS

back into its mandated SOC range for FCR. As long as the

BESS capacity loss does not limit its minimum bid size of

1 MW for the European market, the financial impact will be

negligible.

C. Impact of the EOL Criterion

Assuming a constant EOL at 80 % SOH in the previous

section, we now vary this parameter. Here, we only consider

the SCI application with the expert-identified degradation

model. As Fig. 4a shows, the EOL has a significant impact on

the confidence intervals of the NPV. Only a small NPV spread

shows around 75 % SOH, since for none of the investigated

confidence intervals EOL is reached within the 15 year time-

frame. The NPV spread then widens with an increasing SOH

threshold, as the upper bounds of the degradation confidence

intervals reach the EOL criterion before the end of the 15

year timeframe, while the lower bounds do not. For very low

EOL thresholds, such as 95 % SOH, the NPV confidence

intervals narrow again, as in each scenario EOL is reached

for all confidence intervals before a significant difference in

NPV has developed.

D. Impact of the Discount Rate

Here, we vary the discount rate, which is one of the key

metrics when assessing investment options. Generally, a higher

discount rate will reduce the value of future cash flow for the

investor. This also shows in Fig. 4b. An increased discount rate

will not only reduce the NPV for all confidence intervals, but

also the width of the confidence intervals themselves. As cash

flow in years further down the evaluation is discounted more

than the upcoming ones, the cash flow for those confidence in-
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Fig. 4. Impact of the EOL criterion (a) and the discount rate (b) on the NPV
over 15 years for SCI with the expert-identified degradation model. Same
confidence intervals as in Fig. 2.

tervals that reach EOL later, is discounted over-proportionally,

which leads to narrower confidence intervals.

IV. CONCLUSION

The holistic techno-economic modelling approach of this

contribution allows to characterize the economic impact of

degradation modelling uncertainty for different applications of

BESSs. The results show that the spread of NPV confidence

intervals can be reduced in all investigated use-cases by em-

ploying a degradation model with higher parameter fit quality,

in this case by choosing the ML-assisted over the expert-

identified degradation model. Furthermore, we conclude that

there are three cases in which considering degradation model

uncertainty is especially crucial for valid techno-economic

analyses: First, when investigating applications in which the

revenue is significantly affected by the reduced capacity, as

it is the case for PS in this contribution. Second, when using

fixed SOH thresholds as an EOL criterion, since the outer

degradation confidence intervals may reach EOL significantly

faster than the ”best fit” scenario. Finally, when performing

analyses over a long time horizon with a low discount rate, as

the degradation confidence intervals widen over time and the

dampening effect of the discount rate for cash flow in later

years is then reduced.
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APPENDIX

Model I - Naumann et al. (Expert-identified) [8], [9]:
In (6), kref,T, c1 and d1 are fitting parameters of the calendar degradation

model. In (7), a2,b2,c2 and d2 are the fitting parameters of the cyclic model.

Qcal
loss = kref,T ∗ (c1 ∗ (SOC− 0.5)3 + d1) ∗

√
t (6)

Qcyc
loss = (a2 ∗ Crate + b2) ∗ (c2 ∗ (DOC− 0.6)3 + d2) ∗

√
FEC (7)

Model II - Gasper et al. (ML-assisted) [7], [10]:
In (8), q2 is a fitting parameter while q1 and q3 are defined as described
in (9) and (10). pq1,a, pq1,b, pq1,c, pq3,a, pq3,b, pq3,c, pq3,d and pq3,e
are the fitting parameters for this part of the calendar degradation model. Ua

is the anode-to-reference potential, dependent on the SOC, using the same
relationship as in [7], [10]. In (11), pq5 , pq7,a, pq7,b and pq7,c are the fitting
parameters for the cyclic degradation model.

Qcal
loss = 2q1 ∗ (

1

2
−

1

1 + exp ((q2 ∗ t)q3 )
) (8)

q1 = pq1,a ∗ exp (pq1,b ∗

√
Ua

T 2
) ∗ exp (pq1,c ∗

√
Ua

T
) (9)

q3 = pq3,a ∗ exp (pq3,b ∗
U

1/3
a

T 4
) ∗ exp (pq3,c ∗ T 3 ∗ U

1/4
a )

∗ exp (pq3,d ∗
U

1/3
a

T 3
) ∗ exp (pq3,e ∗ T 2 ∗ U

1/4
a )

(10)

Qcyc
loss = (pq7,a + pq7,b ∗DOC+ pq7,c

∗ exp (DOC2 ∗ C3
rate))

q8 ∗ FEC
q8 (11)

To ensure comparability between application profiles, we here assume a con-
stant 25°C cell temperature in both models. Variable temperature modelling
would affect the amount of calendar degradation, depending on the local
climatic conditions and the BESS thermal design.
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6 Suitability of late-life lithium-ion cells for battery
energy storage systems

This chapter presents the peer-reviewed journal publication Suitability of late-life lithium-ion cells for
battery energy storage systems. Here, the performance of already significantly degraded lithium-ion
cells, labelled late-life cells, is investigated in stationary energy storage applications in two ways. First,
a representative prismatic cell, which is known to be used in multiple operational BESSs, is compared
to a cylindrical cell that is primarily intended for EV applications, but can be envisioned in stationary
second-life applications. This comparison is performed for typical stationary applications at different
but constant SOH values in SimSES [83], see Appendix A. Second, a novel physicochemical aging
model is developed based on a small-scale experimental aging study for the cylindrical cell and coupled
to SimSES to investigate the nonlinear aging phase with its increased degradation rate. With this
physicochemical aging model and supported by the aging study it is shown that through adapting
the operating conditions of a BESS towards the EOL, the nonlinear aging phase can be delayed, the
lifetime prolonged, and the generated profit significantly increased.

The publication first presents the two representative stationary applications that are used for the later
case study: energy arbitrage with a large-scale storage system and self-consumption increase with a
home storage system. For the energy arbitrage application, the MPC framework from Chapter 4 is
used. Afterward, an electrical cell characterization is performed for the two investigated cell types: a
94 Ah prismatic cell, presumably with an NMC cathode and graphite anode, which is known to be used
in multiple operational BESSs, and a 4.8 Ah cylindrical cell, presumably with an NMC cathode and
silicon-graphite anode, which is primarily intended for EV applications. Overall, the 94 Ah prismatic
cell shows a larger nominal power range and higher roundtrip efficiency. Equivalent circuit models are
derived for both cells and implemented in SimSES. For the 4.8 Ah cylindrical cell, a physicochemical
aging model is developed which captures the nonlinear aging behavior that is observed in the associated
small-scale aging study. The model includes the aging mechanisms of SEI growth, both continuous over
time and accelerated from anode expansion, lithium plating, and LAM induced from particle stress
on both anode and cathode. LLI from lithium that is trapped in lost active material is also modelled
on both electrodes. The aging model builds on top of a previously parameterized P2D model of the
cylindrical cell. While most parameters of the aging model are physics-inspired and taken from the
literature, the remaining parameters are determined based on a small-scale aging study. Notably, the
aging study shows that lithium-ion cells can transition back out of the nonlinear aging phase towards
a significantly reduced aging rate through adapted operating conditions, namely a reduced charging
rate and operating voltage window. The physicochemical aging model is implemented in the open-
source software PyBaMM [200] and an interface from SimSES to PyBaMM is developed to investigate
the nonlinear aging behavior for the two exemplary stationary applications. The interface includes
an SOC estimator for the P2D model, which estimates the SOC based on the anode stoichiometry.
Furthermore, the interface conducts regular virtual checkup capacity tests to determine the SOH of
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the physicochemical battery and aging model. The entire simulation toolchain used for the case study
is available open-source4 [201].

In the first part of the case study, the performance of the 4.8 Ah cylindrical cell is compared to the
94 Ah prismatic cell at different, but static SOH values, using the equivalent circuit models in SimSES.
The results show that the profit generated in the energy arbitrage application is more affected by the
reduced SOH than in the self-consumption increase application. Furthermore, the 94 Ah prismatic
cell has a higher profit potential in both applications over all SOH ranges than the 4.8 Ah cylindrical
cell. However, this difference is more pronounced for the energy arbitrage application as well. For
example, in the energy arbitrage application, at 100 % SOH, the profit potential of the cylindrical cell
is 5.2 % lower and at 60 % SOH 10.3 % lower than the profit potential of the prismatic cell. For the
self-consumption increase application, these differences in profit potential between the two cells are
only 0.6 % at 100 % SOH and 0.7 % at 60 % SOH.
The second part of the case study presents the simulation results with the novel physicochemical aging
model and the SimSES to PyBaMM link. The results show that the battery cells enter the nonlinear
aging phase significantly earlier when they are used in the energy arbitrage application compared to
the self-consumption increase application. While the self-consumption increase application comes with
a faster initial capacity fade due to accelerated SEI growth at high SOC ranges, the higher charge
rates in the energy arbitrage application lead to an earlier onset of lithium plating and thereby earlier
nonlinear aging. However, by reducing charge rate and operating voltage window below 80 % SOH,
the onset of nonlinear aging is delayed, the lifetime is significantly prolonged, and the obtainable NPV
over the investigated ten-year timeframe in the energy arbitrage application increases by 39.8 %.

To conclude, the comparison of the two cell types highlights the performance differences between EV
cells, which are often envisioned for stationary second-life applications, and BESS cells, which are
specifically intended for stationary applications. While the differences in profit potential are marginal
for the self-consumption increase application, they are noticeable for the energy arbitrage application
and should be considered when selecting cells for a BESS.
Furthermore, the physicochemical aging model with its link to SimSES allows to model the nonlinear
aging phase in different stationary applications. The case study that was performed with the physic-
ochemical aging model highlights the benefit of considering and delaying nonlinear aging as part of a
holistic aging aware operation strategy for BESSs.
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A B S T R A C T

The globally installed capacity of battery energy storage systems (BESSs) has increased steadily in recent
years. Lithium-ion cells have become the predominant technology for BESSs due to their decreasing cost,
increasing cycle life, and high efficiency. However, the cells are subject to degradation due to a multitude of
cell internal aging mechanisms, which result in reduced capacity, efficiency, and usable nominal power range
over a BESS life cycle. Towards their end-of-life, the cells often show a steep increase in their degradation rate,
called nonlinear aging. This work investigates how these "late-life" lithium-ion cells perform in typical BESS
applications. We show how decreased capacity, efficiency, and nominal power range impact the profitability of
a home storage system for self-consumption increase (SCI) and a large-scale storage system for energy arbitrage
(EA). A physicochemical aging model, which accounts for lithium-plating-induced nonlinear aging, is developed
and parameterized based on an experimental cell aging study. The aging study and model show that cells that
have entered the nonlinear aging phase can transition back to a significantly reduced degradation rate through
adapted operating conditions, namely a reduced charging rate and operating voltage window. The case study
highlights that the battery cells enter the nonlinear aging phase significantly earlier when used for the EA
application compared to the SCI application. However, by adapting the operating conditions below 80% state
of health, the obtainable net present value over the investigated ten-year timeframe in the EA application
increases by 39.8%, and the lifetime is significantly prolonged.

1. Introduction

Stationary battery energy storage systems (BESSs) are used for
a variety of applications. In behind-the-meter applications such as
peak shaving or as home storage systems, they create cost savings
for the operator. In front-of-the-meter applications such as frequency
containment reserve or energy arbitrage, they generate revenue on the
respective electricity markets, or support existing transmission lines
and allow deferring lengthy grid reinforcement if operated directly
by a grid operator. Lastly, in off-grid and microgrid settings, a BESS
combined with renewable energy sources can be a cost-competitive
option over relying solely on diesel generators [1]. Following recent
years’ cost reductions and technological advances, lithium-ion cells are
now the most frequently used battery technology for new BESS instal-
lations [2,3]. Nevertheless, lithium-ion cells are subject to degradation
due to a multitude of cell-internal aging mechanisms, with multiple
reviews being available specifically on this topic [4–6].

The globally installed capacity of BESSs has been increasing steadily
[7]. In the data collected by Figgener et al. the oldest lithium-ion based
BESSs registered in Germany date back to 2012 [3,8]. At the same
time, stationary applications have long been envisioned as a potential

∗ Corresponding author.
E-mail address: nils.collath@tum.de (N. Collath).

second-use scenario for retired electric vehicle (EV) batteries [9,10].
This highlights that a large amount of ‘‘late-life’’ lithium-ion cells will
be operated in stationary energy storage applications in the already ex-
isting, growing, and aging fleet of BESSs, likely amended by second-life
EV batteries.

Aging mechanisms for lithium-ion cells are often grouped based on
their effect on core components of the cell into the degradation modes
loss of lithium inventory (LLI), loss of active material on the negative
electrode (LAMNE), and loss of active material on the positive electrode
(LAMPE) [11]. Throughout the course of a cell’s life cycle, the dominant
aging mechanisms that cause these degradation modes change [12]:
During cell production, an initial solid electrolyte interphase (SEI) is
formed on the anode surface, which passivates the electrode but also
leads to LLI [12]. In the main operation phase, this SEI keeps growing
and consumes more lithium [12]. Particle cracking and graphite exfoli-
ation on the anode lead to LAMNE, which also exposes additional anode
surface area for further SEI growth [12]. Particle cracking, transition
metal dissolution, and structural dissolution cause LAMPE on the cath-
ode [12]. Further mechanisms, such as the growth of a passivating layer
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Abbreviations

BESS Battery energy storage system
Crate Charge-discharge rate
CC Constant current
CP Constant power
CV Constant voltage
DMA Degradation mode analysis
DOC Depth of cycle
EA Energy arbitrage
EC Ethylene dicarbonate
EOL End-of-life
EV Electric vehicle
FEC Full equivalent cycle
LAM Loss of active material
LAMNE Loss of active material on the negative

electrode
LAMPE Loss of active material on the positive

electrode
LFP Lithium iron phosphate oxide
LLI Loss of lithium inventory
MPC Model predictive control
MRE Mean relative error
NMC Lithium nickel manganese cobalt oxide
NPV Net present value
OCV Open-circuit voltage
P2D Pseudo-two-dimensional
PV Photovoltaic
PyBaMM Python Battery Mathematical Modelling
RMSE Root-mean-square error
SCI Self-consumption increase
SEI Solid electrolyte interphase
SimSES Simulation Tool for Stationary Energy Stor-

age Systems
SOC State of charge
SOH State of health

General parameters

𝐼 Cell current, A
i Interest rate, –
𝑛 Fractional years, –
𝑝BESS,target Charge power target of the BESS, W
𝑝load Household load, W
𝑝loss,hyst Cell hysteresis losses, W
𝑝loss,R Cell resistance losses, W
𝑝pv Generated PV power, W
P𝑡 Profit gained in the respective application in

timestep 𝑡, EUR
𝑅i Cell resistance, Ω
𝑇 Cell temperature, K
𝑈hyst Cell hysteresis voltage, V
𝑈max Charge cut-off voltage, V
𝑈min Discharge cut-off voltage, V
𝑈OCV Cell open-circuit voltage, V
𝑈T Cell terminal voltage, V

Optimization – constants

𝜂eff Charge and discharge efficiency of the BESS
assumed for the optimization model, –

𝑐penalty Penalty cost, EUR / kWh
𝑐id𝑡 Electricity price on the intraday electricity

market in timestep 𝑡, EUR / kWh
𝐸batt Remaining rated energy after accounting for

degradation, kWh
𝑃AC,max Maximum charge and discharge power of

the BESS, kW
SOCstart SOC at the beginning of the optimization

horizon, –
𝛥𝑡 Optimization timestep length, h

Optimization – index sets

𝑇 Index set of timesteps for the current
optimization horizon with 𝑡 ∈ 𝑇

Optimization – decision variables

𝑝ch𝑡 Charge power of the BESS in timestep 𝑡, kW
𝑝dis𝑡 Discharge power of the BESS in timestep

𝑡, kW
𝑠𝑜𝑐𝑡 BESS state of charge at timestep 𝑡, –

Physicochemical model – symbols

𝛼 Charge transfer coefficient, –
𝛽brug Bruggeman coefficient, –
𝛽 LAM constant proportional term, s−1

𝑐 Concentration, molm−3

𝜒 Stoichiometry, –
𝐷 Diffusivity, m2 s−1
𝑑 ln 𝑓±

𝑑 ln 𝑐l(𝑥,𝑡)
Activity, –

𝐸 Young’s modulus, Pa
𝐸eq Equilibrium potential, V
𝜀 Volume fraction, –
𝜂 Overpotential, V
 Faraday’s constant, 96,485A smol−1

𝑓exp Graphite expansion gradient, –
𝛾pl,1 Plating tangens hyperbolicus stretch, V−1

𝛾pl,2 Plating tangens hyperbolicus shift, V
𝛾SEI SEI on cracks scaling factor, –
𝑖 Current density, Am−2

𝑖0 Exchange current density, Am−2

𝑖pl,0 Plating exchange current density, Am−2

𝑗𝑛 Pore-wall flux, molm−2 s−1

𝑘 Reaction rate constant, ms−1

𝑘SEI SEI kinetic rate constant, ms−1

𝜅 Conductivity, Sm−1

𝐿 Through-plane thickness, m
𝑚 LAM constant exponential term, –
𝛺 Partial molar volume, m3 mol−1

𝜑 Electrical potential, V
𝑟 r-axis or r-dimension (pseudo-dimension),

m
 Universal gas constant, 8.314 Jmol−1 K−1

𝑅p Particle radius, m
𝑅SEI SEI resistivity, Ωm
𝜎h Hydrostatic particle stress, Pa
𝜎yield Yield strength, Pa
𝑇 Temperature, K
𝑡 Time, s
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𝑡0+ Transference number, –
𝑈SEI SEI open-circuit potential, V
𝜈 Poisson’s ratio, –
𝑥 x-axis or x-dimension, m
𝑧Li−SEI Ratio of lithium moles to SEI moles, –

Physicochemical model – subscripts and superscripts

a Anodic
AM Active material
app Applied
c Cathodic
EC Ethylene carbonate
eff Effective
l Liquid phase
max Maximum
pl Plating
ref Reference
s Solid phase
SEI Solid electrolyte interface
surf Surface
tot Total

on the cathode or interactions between individual mechanisms, may
lead to additional degradation [6]. Towards the end of their life cycle,
lithium-ion cells often show a steep increase in the degradation rate,
referred to as an aging knee or nonlinear aging. Possible mechanisms
for this behavior include lithium-plating and electrolyte depletion, with
a review on this topic available by Attia et al. [13].

From a system perspective, these aging mechanisms reduce effi-
ciency and available capacity [14,15]. This, in turn, has a negative
impact on the economic viability of a BESS, i.e., the cost-savings or
generated revenue from the intended application [16]. In addition,
the end-of-life of a BESS is often assumed to be around the point of
70% [17] or 80% [18–20] remaining capacity, since past this point,
the before-mentioned nonlinear aging is often observed [13,21]. Many
manufacturers offer warranties covering their batteries until this range
of remaining capacity [22].

In this work, a performance comparison and profit potential as-
sessment of lithium-ion cells at different state of health (SOH) values
are performed for the two stationary applications of energy arbitrage
(EA) with a large-scale storage system and self-consumption increase
(SCI) with a home-storage system. In addition, a physicochemical ag-
ing model is developed and parameterized to describe the nonlinear
aging behavior of lithium-ion cells in these stationary applications
and, for the first time, show that adapting the operating conditions
towards the end-of-life (EOL) can delay the onset of nonlinear aging
and significantly increase the profitability of BESSs.

1.1. Literature review

Battery degradation and its effects have been modeled in multiple
publications that relate to the techno-economic assessment of BESSs.
The degradation models used for that purpose can be categorized into
empirical, semi-empirical, and physicochemical models [12]. Empirical
degradation models are fit to cell aging data without inherent modeling
of the underlying aging mechanisms. Semi-empirical models rely on
physics-inspired equations, such as the Arrhenius and Tafel equation
for fitting the model to cell aging data. Lastly, physicochemical models
typically consist of sets of differential equations that aim to describe
the internal processes of the cell in addition to its external behavior.

Uddin et al. for example, investigated the techno-economic viability
of home storage systems in the United Kingdom using an empirical

degradation model [15]. Casals et al. used an empirical degradation
model to estimate the remaining lifetimes of BESSs in different second-
life applications [9]. Next to techno-economic assessments, a significant
body of literature can be found on the aging aware operation of BESSs,
with a recent review available on this topic [12]. The degradation mod-
els used for that purpose are also usually empirical, e.g., in [23–25], or
semi-empirical models, e.g., in [26–28].

The prevalent empirical and semi-empirical degradation modeling
approaches do not consider the changing dominant aging mechanisms
that lead to the nonlinear aging phase with its increased degradation
rate, which is especially of concern for late-life lithium-ion cells. The
challenge of creating an empirical or semi-empirical model for the
nonlinear aging phase is twofold: First, even cells of the same type
show variance in terms of the onset point of nonlinear aging [29],
which further depends on the operating conditions [30]. Second, to
get to the nonlinear aging phase, extended prior cycling of the cells
is required. Both effects combined would result in large test matrices
and long experiments to generate a statistically relevant empirical or
semi-empirical degradation model that describes nonlinear aging.

A possible solution for accounting for the nonlinear aging phase
is to use physicochemical models which model the underlying aging
mechanisms that lead to nonlinear aging. Attia et al. identified multiple
‘‘pathways’’ that can lead to nonlinear aging behavior in their re-
view [13]: lithium plating, electrolyte and additive depletion, mechani-
cal deformation, electrode saturation, percolation-limited connectivity,
and resistance growth. While identified as individual pathways, elec-
trolyte and additive depletion, mechanical deformation, and electrode
saturation may also lead to lithium plating as a consequence [13].
Multiple models can be found in the existing literature that describe
lithium plating over a cell’s lifetime [21,31,32]. Yang et al. proposed
a model that includes SEI growth and lithium-plating to describe non-
linear capacity fade towards the EOL [31]. Atalay et al. used a similar
approach with SEI growth and lithium plating to describe the nonlinear
capacity fade but with a multi-layer SEI model [32]. Keil et al.’s physic-
ochemical aging model encompasses SEI formation, SEI re-formation
resulting from particle cracking, as well as both lithium plating and
lithium stripping [21]. All three of the above aging models use the
pseudo-two-dimensional (P2D) Newman model [33,34] as a basis. Kin-
dermann et al. proposed a model that follows the electrode saturation
pathway, in which LAMPE from cathode dissolution [35] outpaces the
SEI-induced LLI after extended cycling. Fang et al. provided a model
for the electrolyte depletion pathway, in which local electrolyte dry-out
causes a positive feedback loop of LAMNE [36]. The degradation mode
analysis of the later presented experimental study shows significantly
more LLI than LAMPE and LAMNE after the onset of nonlinear aging,
as the following subsection will highlight. Therefore, lithium plating is
assumed to be the main mechanism leading to nonlinear aging in this
contribution.

The physicochemical aging model, as part of the larger open-source
simulation toolchain presented in this work, for the first time, allows
the investigation of lithium-plating induced nonlinear aging in typical
BESS applications.

In addition to modeling nonlinear aging, multiple publications in-
clude experimental studies that investigate nonlinear aging at different
operating conditions.

The operating voltage window has been investigated in multiple
variations in the existing literature as a stress factor for nonlinear aging:
For the lithium nickel manganese cobalt oxide (NMC) cells investigated
by Schuster et al. a narrower operating voltage window (𝛥1.2V instead
of 𝛥1.3V) led to more full equivalent cycles (FECs) being completed
before the onset of nonlinear aging and the nonlinear aging phase
starting at lower remaining capacity values [30]. Similarly, the NMC
cells investigated by Ecker et al. showed later or no onset of nonlinear
aging for shallower depth of cycle (DOC) ranges [37]. Cells cycled
at 50% DOC exhibited nonlinear aging, while cells cycled at 20%
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DOC did not [37]. In a study by Ma et al. varying the charge cut-
off voltage of NMC cells between 4.1V, 4.2V, and 4.3V impacted the
onset of nonlinear aging as well. The cells with a lower cut-off voltage
exhibited the transition to nonlinear aging later or not at all [38].
Further studies confirm that a smaller operating voltage window tends
to be beneficial for delaying nonlinear aging for NMC [39,40] and
lithium iron phosphate oxide (LFP) cells [41,42].

Another operating condition that has been studied as a stress factor
for accelerating nonlinear aging is the charge rate. Schuster et al.
showed that changing the charge rate from 1C to C/2 can extend the
area of linear aging. A reduction to C/5 even resulted in no nonlinear
aging behavior [30]. Other studies for NMC [43,44] and LFP [45,46]
cells confirm that lower charge rates generally delay the onset of
nonlinear aging. The mentioned publications attribute this behavior to
increased lithium plating at high charge rates.

Besides the charge rate, the discharge rate has also been studied
as an influencing factor of nonlinear aging, with inconsistent conclu-
sions in the existing literature. Schuster et al. changed the discharge
rate from 1C to C/2 and observed no significant impact on battery
lifetime [30]. Keil et al. [44] and Atalay et al. [32] showed that an
increased discharge rate could delay the onset of nonlinear aging. On
the other hand, Omar et al. observed earlier nonlinear aging with
higher discharge rates [47].

The operating conditions in the aforementioned aging studies are
different between sets of cells but constant for each set of cells through-
out the respective studies. In his dissertation, Schuster investigated a
change in operating conditions after the onset of nonlinear aging [48].
The voltage window, charge rate, and discharge rate were reduced past
this point. It was concluded that the resulting capacity fade, while
not as steeply nonlinear as before this adaption of operating condi-
tions, is still more rapid than before the onset of nonlinear aging [48,
Figure 31]. To the authors’ knowledge, no further studies investigate
how adapting the operating conditions during an aging study affects
nonlinear aging.

In this work, it is shown for the first time that by adapting the
operating condition, the lithium-ion cells can transition to a signifi-
cantly reduced degradation rate. The case study with the developed
physicochemical aging model further shows that these adapted oper-
ating conditions can lead to significantly increased profitability when
implemented on a BESS.

1.2. Structure and main contributions

In Section 2, we first describe the investigated two stationary ap-
plications and the simulation tool that is used for modeling the BESS.
Following that, we present the results of the cell characterization
study from which equivalent circuit models are derived for a 4.8 Ah
cylindrical cell, primarily intended for EV applications, and a 94 Ah
prismatic cell, which is used for BESS applications and serves as a
reference scenario in the latter case study. We further present the
aging study, physicochemical aging model, and its parameterization
for the 4.8 Ah cylindrical cell and show that the cells can transition
back out of nonlinear aging by adapting the operating conditions.
Section 3 presents the techno-economic simulation results with the full
simulation framework, including the profit potential of both cells at
different SOH values in the two stationary applications as well the
aging behavior and achievable net present value (NPV) over the full
lifetime with the cylindrical cell. We summarize our main contributions
as follows:

• Performance comparison and evaluation of the profit potential of
late-life lithium-ion cells at different SOH for a reference BESS
cell and EV cell in two stationary applications.

• Development and parameterization of a physicochemical aging
model that includes lithium-plating induced nonlinear aging to-
wards the end-of-life.

• Experimental results supported by the physicochemical aging
model show how lithium-ion cells can transition back out of the
nonlinear aging phase through adapted operating conditions.

• Investigation of the nonlinear aging behavior and the achievable
lifetime NPV in different stationary applications.

• Open-source availability of the entire simulation toolchain.

2. Methodology and model parameterization

Fig. 1 provides an overview of the methodology used in this work.
For modeling the BESS with all relevant components, we use our
in-house developed and open source Simulation Tool for Stationary
Energy Storage Systems (SimSES) [49], which allows to conduct time
series based simulations for stationary energy storage systems. Sec-
tion 2.1 briefly describes the two investigated stationary applications,
i.e., a home storage system used for SCI and a large-scale BESS used
to perform EA on the intraday electricity market. To investigate the
profit potential of late-life lithium-ion cells at different SOH values
and to compare the performance of the cylindrical cell to the pris-
matic cell, equivalent circuit models are added to SimSES based on
electrical parameterization as described in Section 2.2 for both cells.
To investigate the aging behavior over time and the lifetime NPV
in the two stationary applications, a physicochemical aging model is
developed and parameterized based on a cell aging study, as described
in Section 2.3 for the cylindrical cell. The physicochemical cell and
aging model is implemented in the open source tool Python Battery
Mathematical Modelling (PyBaMM) [50] and an interface that links the
two simulation tools, SimSES and PyBaMM, is developed in this work.

2.1. Applications

The key parameters of the two stationary applications, SCI with a
home storage system and EA with a large-scale BESS, are summarized
in Table 1.

Germany is Europe’s largest market for home-storage systems [52]
and serves as a basis for modeling this application. The system power
rating for the home storage application is set to 5.3 kW and the energy
rating to 8.8 kWh, which is the mean system size of home storage
systems installed in Germany in the year 2022 [53]. The operation
strategy is a ‘‘greedy’’ self-consumption increase strategy, in which the
BESS charges until it is fully charged if the generated photovoltaic (PV)
power 𝑝pv exceeds the household load 𝑝load and discharges until it is
fully discharged if the household load exceeds the generated PV power.
The charge power target of the BESS 𝑝BESS,target for each timestep
therefore is the difference between both:

𝑝BESS,target = 𝑝PV − 𝑝load (1)

This application and the resulting charge–discharge profile for a repre-
sentative BESS have been described in detail by Kucevic et al. [54]. For
the PV generation profile, a one-year time-series measured in Munich is
used [54] and the household load time-series is taken from [55]. The
profit in this application is calculated from the yearly electricity cost
of the household with a BESS subtracted by the electricity cost of the
same household without a BESS. The cost for electricity consumed from
the grid is set to 38.57 ct/kWh, based on the average electricity cost
in Germany in 2022 [56]. PV generated electricity that is fed into the
grid by the household is remunerated with the applicable feed-in tariff
of 6.83 ct/kWh for PV systems constructed in January 2022 [57].

The large-scale BESS for EA is also sized based on average values
for Germany. In 2022, 467 MWh and 434 MW of large-scale BESSs
were installed in Germany, according to data by Figgener et al. [53].
Since the scale of individual installations varies widely, we assume a
representative BESS with 1 MW rated power and 1.076 MWh storage
capacity-based on the average power-to-energy ratio of the systems
installed in 2022 [53]. Profit is generated through arbitrage trading
on the European intraday continuous electricity market. The data basis
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Fig. 1. Overview of the methodology used in this work. The simulation toolchain is
available open-source [51].

Table 1
Key parameters of the two applications modeled in this work.

System Large-scale BESS - EA Home storage system - SCI

Storage capacity 1.076MWh 8.8 kWh
Rated power 1.0MW 5.3 kW
AC/DC conv. Notton [58] Notton [58]
Application Energy arbitrage (EPEX

intraday continuous)
Self-consumption increase

Operation
strategy

Linear program with model
predictive control
framework [59]

‘‘Greedy’’ charge–discharge
logic

Profiles (1 year) ID-1 electricity price for
2022 [60]

PV profile [54] with 9.05 kWP,
household load profile (profile
28 in [55]) with 5.047MWh
yearly consumption

Price data See profiles Electricity price: 38.57 ct∕kWh
[56], PV feed-in tariff:
6.83 ct∕kWh [57]

Battery cells I. 4.8 Ah cylindrical 21 700, presumably
NMC/silicon-graphite; II. 94 Ah prismatic, presumably
NMC/graphite (as reference)

for this application is the price time-series of the ID-1 index for 15 min
contracts on the largest European electricity exchange, the EPEX Spot,
for the year 2022 [60]. The ID-1 index is the weighted price average
of all trades executed within 1 h before delivery [61].

For the operation strategy, we use the model predictive control
(MPC) framework that was introduced and described in detail in our
previous work [28,59]. An optimization model is solved every 1 h of

Fig. 2. Battery SOC over three exemplary days for energy arbitrage with the ID-1
electricity price (top) and self-consumption increase with the difference between PV
generation and household load (bottom).

the simulation period, with the assumption of perfect foresight of the
ID-1 price (15 min time-resolution) for the next 12 h. Following that,
the optimized charge–discharge schedule is simulated in SimSES for the
next 1 h and the relevant MPC variables (new simulated SOH and SOC)
are passed to the optimization model, which is then called again to
determine the next charge–discharge-schedule. The base optimization
model from our previous work is used, which does not explicitly
consider any aging stress factors other than the number of FECs [28]
through the penalty cost 𝑐penalty:

max
∑

𝑡∈𝑇

(

𝛥𝑡(𝑝dis𝑡 − 𝑝ch𝑡 ) ⋅ 𝑐id𝑡 − 𝛥𝑡(𝑝ch𝑡 + 𝑝dis𝑡 ) ⋅ 𝑐penalty
)

(2)

The first part of the equation is the profit generated on the intraday
market. Here, 𝑝dis𝑡 and 𝑝ch𝑡 are the discharged and charged power of the
BESS and 𝑐id𝑡 the electricity price on the intraday electricity market at
time 𝑡 ∈ 𝑇 , with 𝑇 being the index set of timesteps in the optimization
horizon. 𝛥𝑡 is the time resolution of the price profile, i.e., 15 min. The
penalty cost 𝑐penalty ensures that only sufficiently profitable arbitrage
opportunities are part of the optimal solution, thereby preventing a
premature EOL of the BESS from excessive cycling and aging. As a
reference, we set the penalty cost to 𝑐penalty = 0.09375EUR/kWh,
which yielded the optimal result in our previous work for the energy
arbitrage application with 2022 price data and the same optimization
model [28]. In addition to the objective function, the constraints below
ensure energy conservation and provide upper and lower limits for the
three sets of continuous decision variables, 𝑝dis𝑡 , 𝑝ch𝑡 , and 𝑠𝑜𝑐𝑡 with 𝑡 ∈ 𝑇 :

𝑠𝑜𝑐𝑡 = 𝑠𝑜𝑐𝑡−1 +
𝛥𝑡

𝐸batt
⋅ (𝑝ch𝑡 𝜂eff −

1
𝜂eff

𝑝dis𝑡 ) ∀ 𝑡 ∈ 𝑇 ∖{0} (3)

𝑠𝑜𝑐𝑡=0 = SOCstart + 𝛥𝑡
𝐸batt

⋅ (𝑝ch𝑡=0𝜂eff −
1

𝜂eff
𝑝dis𝑡=0) (4)

0 ≤ 𝑝dis𝑡 ≤ 𝑃AC,max ∀ 𝑡 ∈ 𝑇 (5)

0 ≤ 𝑝ch𝑡 ≤ 𝑃AC,max ∀ 𝑡 ∈ 𝑇 (6)

0 ≤ 𝑠𝑜𝑐𝑡 ≤ 1 ∀ 𝑡 ∈ 𝑇 (7)

SOCstart and 𝐸batt are the SOC at the beginning of the optimization
horizon and the remaining rated energy of the BESS after accounting
for degradation. 𝑃AC,max is the maximum charge and discharge power
of 1 MW and 𝑠𝑜𝑐𝑡 is the state of charge of the BESS at each time step.
𝜂eff is the charge and discharge efficiency, which is assumed constant
and symmetrical (𝜂eff = 0.9) in the optimization model but variable and
modeled in detail with converter and battery cell models in SimSES as
part of the here used MPC approach [28].
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Fig. 3. Measured open-circuit voltage (OCV), hysteresis behavior, and charge resistance of the 94 Ah prismatic cell (used for BESS applications) and the 4.8 Ah cylindrical cell
(primarily intended for EV applications) at 25 ◦C. For the OCV, the measured voltage in charge direction (top solid line), discharge direction (bottom solid line), and average
(middle dashed-dotted line) are shown. The hysteresis is calculated as the difference between the charge and discharge OCV curves. The charge resistance is shown normalized by
the nominal cell capacities.

Fig. 2 shows the resulting SOC for three exemplary days for the
two applications. The battery cell models are described in the following
subsections.

2.2. Electrical cell characterization and equivalent circuit model

Two commercial lithium-ion cell types are electrically characterized
and equivalent circuit models are derived in this subsection as a foun-
dation for the case study in Section 3.1. The first cell is a cylindrical
battery cell with a nominal capacity of 4.8 Ah, presumably with an
NMC cathode and a silicon-graphite anode, which is primarily intended
for EV applications. EV cells may be removed from their primary
application after extended operation time and then used in stationary
second-life applications, in varying conditions and at different SOHs.
However, one might alternatively consider purchasing a battery cell
specifically intended for stationary applications instead of a second-life
EV cell. For that purpose, we compare the first cell with a commercial
prismatic cell with a nominal capacity of 94 Ah, an NMC cathode and
presumably a pure graphite anode that is known to be used in multiple
existing large-scale BESS installations.

In Fig. 3, key characteristics of the two cell types are compared
with the detailed testing conditions described in Appendix A.1. The
cylindrical cells show a significantly larger hysteresis behavior, espe-
cially in low SOC ranges, which is expected for the silicon-graphite
anode material [62]. In addition, the OCV of the cylindrical cell is
higher and flatter for high SOC values. The absolute resistance of the
cylindrical cells (29.9mΩ average over the measured SOC range) is
expectedly higher than for the larger, prismatic cell (0.819mΩ). For
a valid comparison, the measured resistance values are multiplied by
the nominal cell capacity. Normalized by multiplying with the nominal
cell capacity, the resistance of the cylindrical cell (143mΩAh), is
significantly larger than it is for the prismatic cell as well (76.9mΩAh).

These characteristics translate into performance differences, which
are relevant from a system perspective and displayed in Fig. 4 with
the detailed testing conditions described in Appendix A.2. The larger
cell resistance and larger internal resistance translate into lower energy
efficiency, as seen in the top of Fig. 4. While the energy efficiency of
the cylindrical cell is already lower at low C-rates due to its stronger
hysteresis behavior, the differences become even more pronounced at
higher C-rates due to the additional larger cell resistance. This would
lead to higher energy losses and costs for the BESS operator.

The control signal in most stationary applications is a power target
for the BESS, which is determined by the operation strategy and then
passed by the energy management system to the converters, which
control the power flow to and from the upstream AC-grid. Therefore,
the power capability of a lithium-ion cell is of relevance in terms of
which BESS applications it is suited for.

As seen in the bottom of Fig. 4, the higher OCV for high SOC ranges
of the cylindrical cell, combined with its larger internal resistance,
translate to a reduced power capability, especially in charge direction.

Fig. 4. Measured round-trip energy efficiency (top) from a CC charge followed by a
CC discharge at different C-rates (Crate). Nominal power range (bottom) from a CPCV
charge followed by a CPCV discharge with charge power stated in per unit of the
nominal charge power, i.e., 345.9W for the prismatic and 17.472W for the cylindrical
cell. Both at 25 ◦C.

Here, the cells were charged with a CPCV-charge protocol, followed by
a CPCV-discharge protocol. The target power for the constant power
charge and discharge phases was set to the respective nominal power of
the cells, i.e., the nominal capacity multiplied by the nominal voltage;
345.9W for the prismatic and 17.472W for the cylindrical cell. Based
on this test, we calculate the nominal power range of the cells as the
percentage of the SOC range, in which the cells can deliver their
nominal power in both charge and discharge direction. This nominal
power range is significantly higher for the prismatic cell (89.6%) than
for the cylindrical cell (79.2%).
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Fig. 5. Considered aging mechanisms in the physicochemical aging model grouped
by the resulting degradation modes. While the LAM models were readily available
in PyBaMM and only the parameterization was changed, the lithium plating and SEI
growth models were adapted to the proposed modeling approach of this work.

In addition to the results with the previously uncycled cylindrical
cells, the measured efficiency and nominal power range are also de-
picted for the 4.8 Ah cylindrical cells that were previously subjected to
an accelerated aging study. At the point of the efficiency and nominal
power measurements, these cells were subjected to 1200 cycles and had
an average remaining discharge capacity of 3.54 Ah, which corresponds
to a capacity-based SOH of 73.8%. The details of this aging study are
presented in Section 2.3. As shown in Fig. 4, the efficiency of the
aged cylindrical cells deteriorates. The energy efficiency is significantly
worse than for the new cells, especially at high C-rates. In addition, the
nominal power range of the aged cell is reduced to 66.6%.

To investigate how these cell performance differences impact BESS
level performance and profitability, equivalent circuit models are de-
rived for both cells and added to SimSES. An extension to the SimSES
equivalent circuit model was implemented to account for the hysteresis
voltage and the associated energy losses:

𝑈T = 𝑈OCV(SOC, 𝑇 ) + 𝐼 ⋅ 𝑅i(SOC, 𝐼, 𝑇 )

+ sign(𝐼) ⋅ 1
2𝑈hyst (SOC, 𝑇 )

(8)

Here, 𝑈T is the cell terminal voltage, 𝑈OCV the OCV, 𝑈hyst the hys-
teresis voltage, 𝐼 the cell charge current, 𝑅i the cell internal resistance,
and 𝑇 the cell temperature. For 𝑈OCV, 𝑈hyst , and 𝑅i, the measured
data from Fig. 3 is used and was added to SimSES. For 𝑈OCV, the
average of the charge OCV and discharge OCV is used, and for 𝑈hyst ,
the difference of both. For 𝑅i, the 10 s DC-charge resistance at the
respective SOC is used for 𝐼 > 0, and the 10 s DC-discharge resistance
for 𝐼 < 0. Furthermore, the OCV, hysteresis voltage, and internal
resistance were all recorded for different temperatures (15 ◦C, 25 ◦C,
and 35 ◦C). However, the cell temperature highly depends on the BESS
thermal design and the climatic conditions of its location. Therefore,
all later simulations will be conducted at an assumed constant cell
temperature of 25 ◦C. While modeling the cell resistance through the
10 s DC resistance is a simplification, this approach has been validated

to deliver sufficient accuracy compared to measured BESS efficiency
data by Schimpe et al. [63]. This modeling approach results in the
following two energy loss components for the BESS on a cell level, with
𝑝loss,R describing the resistance-based losses on a cell level and 𝑝loss,hyst
the hysteresis-based losses:

𝑝loss,R = 𝑅i(SOC, 𝐼, 𝑇 ) ⋅ 𝐼2 (9)

𝑝loss,hyst = |𝐼| ⋅ 1
2𝑈hyst (SOC, 𝑇 ) (10)

This modeling approach will be used in the first part of the simulation
case study, i.e. Section 3.1, to assess the profit potential of the two cell
types in different stationary applications. However, a more complex
physicochemical modeling approach is required to model the aging
behavior over time and derive the achievable lifetime profit under
consideration of nonlinear cell aging.

2.3. Physicochemical aging model

The physicochemical aging model that is used in this work builds on
top of a P2D model for the 4.8 Ah cylindrical cell. The P2D model that
serves as a basis and its parameterization are described in Appendix B.
Section 2.3.1 first describes the structure of the physicochemical aging
model and the associated equations. The model parameterization, based
on a small-scale aging study, is then presented in Section 2.3.2. In
Section 2.3.3, we show that past the onset of nonlinear aging, the
cells can be transitioned back to a reduced aging rate by adapting
the operating conditions, which is supported by the physicochemical
aging model as well. Lastly, in Section 2.3.4, the link between the two
modeling tools PyBaMM and SimSES is described.

2.3.1. Aging model description
Fig. 5 provides an overview of the aging model proposed in this

work. It considers the key degradation modes that have been used
by multiple authors to summarize the effect of the underlying aging
mechanisms on the behavior of a lithium-ion cell: LLI, LAMNE, and
LAMPE [5,11,64]. The aging mechanisms and equations are described
in the following.

Loss of active material: During cycling, both the anode and cath-
ode are subject to volume change and mechanical stress due to the
intercalation and de-intercalation of lithium in the anode and the
reaction of lithium with the transition metal oxide in the cathode [4,6].
This can lead to particle cracking, making part of the active mate-
rial unavailable, thereby causing LAMNE and LAMPE [4,6]. If part of
the active material becomes inactive while it is lithiated, the lithium
inside becomes trapped, such that the loss of active material leads
to LLI as well [6]. On the anode, graphite exfoliation may lead to
further LAMNE [6], and on the cathode transition metal dissolution and
structural disordering to further LAMPE [5]. For this aging model, we
focus on the main mechanisms of mechanical stress-induced LAMNE
and LAMPE and the resulting LLI from lost lithiated active material.
The model by Sulzer et al. [65] is used, which is readily available
in PyBaMM and is a simplification of the models used by Reniers
et al. [66] and Laresgoiti et al. [67]. The model describes the change
of the available active material fraction 𝜀AM as a function of the
hydrostatic particle stress 𝜎h:

𝜕𝜀AM(𝑥, 𝑡)
𝜕𝑡

=

⎧

⎪

⎨

⎪

⎩

𝛽
(

𝜎h(𝑥,𝑡)
𝜎yield

)𝑚
, 𝜎h ≥ 0

0 , 𝜎h < 0
(11)

Here, 𝜎yield is the critical yield strength, and 𝛽 and 𝑚 are fitting
parameters. The hydrostatic stress is then calculated from concentration
differences within the particle:

𝜎ℎ = 2𝛺𝐸
3(1 − 𝜈)

(

1
𝑅3
p
∫

𝑅p

0
𝑐s(𝑥, 𝑟, 𝑡)𝑟2𝑑𝑟 −

𝑐s,surf (𝑥, 𝑡)
3

)

(12)
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𝑐s,surf (𝑥, 𝑡) = 𝑐s(𝑥, 𝑟 = 𝑅p, 𝑡) (13)

Here, 𝐸, 𝜈, and 𝛺 are the material-specific Young’s modulus, Poisson’s
ratio, and partial molar volume for either anode or cathode. 𝑐s,surf is
the lithium concentration at the spherical particle surface 𝑟 = 𝑅p.
This simplification of the stress model from [66,67] assumes maximum
stress at the particle surface and zero stress at the beginning of a
cycle [65]. As we will use the model in the later case study for realistic
application profiles with frequently changing charge–discharge direc-
tions, zero stress at the beginning of a cycle is not a valid assumption.
We, therefore, make the further simplification of setting the fitting
parameter 𝑚 = 1 to have a linear relationship rather than a polynomial
one that would require a cycle-counting algorithm, such as the rainflow
algorithm [68], as part of the model. The resulting model is used do
describe the loss of active material on both the anode and cathode.

The additional LLI from the loss of active material is already in-
herently considered as part of Eq. (11), since the lost active material
fraction and its lithium concentration will not be available in the
following timesteps.

SEI growth: Growth of the SEI on the anode surface has fre-
quently been stated as a key aging mechanism of lithium-ion cells with
graphite [4,6] and silicon-graphite blend anodes [69]. The growth of
this passivation layer consumes lithium, leading to LLI and an increased
cell impedance [4,6]. SEI growth is generally known to progress over
time and at an accelerated rate if the cell is stored at high temperatures
or SOC [12]. Additionally, cycling the cell has been shown to accelerate
it further, as SEI forms at the anode surface area that is newly exposed
from particle cracking [12]. Multiple approaches for physicochemical
SEI modeling can be found in the existing literature. We use the model
from Yang et al. [31] and combine it with a modeling approach by
Kindermann et al. [35] to account for additional SEI from particle
cracking. The main equation of the basic SEI model is stated below:

𝑖SEI,b(𝑥, 𝑡) = −
 ⋅ 𝑐EC

1

𝑘SEI⋅exp
( −𝛼SEI𝜂SEI(𝑥,𝑡)

𝑇

) + 𝐿SEI(𝑥,𝑡)
𝐷EC

(14)

Here, 𝑖SEI,b is the interfacial current density of the basic SEI reaction,
not yet accounting for particle cracking.  , , and 𝑇 are the Faraday
constant, ideal gas constant, and the temperature. 𝑐EC and 𝐷EC are the
bulk concentration of ethylene dicarbonate (EC) in the electrolyte and
the diffusion constant of EC through existing SEI. These stem from the
simplified assumption that the SEI is made solely of lithium ethylene
dicarbonate (CH2OCO2LI)2, generated by the reaction of EC with Li+
ions [31]. 𝐿SEI is the thickness of the existing SEI, 𝑘SEI the SEI kinetic
rate constant, and 𝜂SEI the driving overpotential of the reaction-limited
SEI component. If the left term of the denominator in Eq. (14) is larger,
the SEI growth is reaction-limited. If the right term is larger, it is
diffusion-limited [65]. 𝜂SEI is defined as below:

𝜂SEI(𝑥, 𝑡) = 𝜑s(𝑥, 𝑡) − 𝜑l(𝑥, 𝑡) − 𝑗𝑛(𝑥, 𝑡)𝑅SEI𝐿SEI(𝑥, 𝑡) − 𝑈SEI (15)

𝑗𝑛 is the pore-wall flux, 𝑈SEI the equilibrium potential of the SEI
formation reaction and 𝑅SEI the resistivity of the SEI. To account
for accelerated SEI growth from cycling and particle cracking, the
approach from Kindermann et al. is utilized, which includes additional
SEI growth proportional to the charge–discharge current 𝐼 and the
anode volume expansion [35]. Through that, we derive the following
equation for the total SEI growth:

𝑖SEI(𝑥, 𝑡) = 𝑖SEI,b(𝑥, 𝑡) ⋅
(

1 + 𝛾SEI ⋅
|𝐼(𝑡)|
𝐼C∕100

⋅ 𝑓exp(𝑥, 𝑡)
)

(16)

Here, 𝑓exp is the gradient of the graphite expansion curve as shown
in Fig. 6, |𝐼(𝑡)|

𝐼C∕100
scales the cracking to different charge–discharge rates,

𝛾SEI is an empirical fitting factor. 𝑖SEI is the total SEI interfacial current
density. Thereby, the SEI has one component, primarily driven by
time, and one component, driven by time but accelerated through

Fig. 6. Expansion gradient 𝑓exp for different anode lithiation degrees, derived
from [70].

cycling-induced volume expansion. Both components use the same
underlying diffusion and reaction-limited SEI model, while the fitting
factor 𝛾SEI determines the share of each component. The change of the
SEI thickness 𝐿SEI is then defined as below:

𝜕𝐿SEI(𝑥, 𝑡)
𝜕𝑡

=
𝛺SEI ⋅ 𝑖SEI(𝑥, 𝑡)
𝑧Li−SEI ⋅ 

(17)

Here, 𝛺SEI is the partial molar volume of the SEI and 𝑧Li−SEI is the
ratio of lithium to SEI moles with 𝑧Li−SEI = 2 for the lithium ethylene
dicarbonate reaction.

Lithium plating: As mentioned in Section 1.1, different pathways
that can lead to a nonlinear aging trajectory have been defined in
the review by Attia et al. many of which can lead to lithium plating
eventually [13]. In addition, the degradation mode analysis of our test
data for the 4.8 Ah cylindrical cell showed significantly more LLI than
LAMPE and LAMNE after the onset of nonlinear aging, as the following
subsection will highlight. Therefore, lithium plating is assumed as the
driving mechanism for the nonlinear aging trajectory, similarly as in
the models by Keil et al. [21], Atalay et al. [32], and Yang et al. [31],
and modeled as below:

𝑖pl(𝑥, 𝑡) = − 𝑖pl,0 exp
(

−
𝛼pl𝜂pl(𝑥, 𝑡)

𝑇

)

⋅
tanh(𝛾pl,1(𝜂pl(𝑥, 𝑡) − 𝛾pl,2)) + 1

2

(18)

𝜂pl(𝑥, 𝑡) = 𝜑𝑠(𝑥, 𝑡) − 𝜑𝑙(𝑥, 𝑡) − 𝑗𝑛(𝑥, 𝑡)𝑅SEI𝐿SEI(𝑥, 𝑡) (19)

𝜕𝐿pl(𝑥, 𝑡)
𝜕𝑡

=
𝛺pl ⋅ 𝑖pl(𝑥, 𝑡)


(20)

The first part of Eq. (18) is the lithium plating reaction, as described
in Yang et al. [31]. As in [31,32], lithium plating is assumed to be
irreversible, and stripping of plated lithium is neglected. In Eq. (18),
𝑖pl is the current density of the lithium plating reaction, 𝑖pl,0 the plating
exchange current density, and 𝜂pl is the driving overpotential of the
plating reaction. By itself, this equation leads to plating already for 𝜂pl >
0. Therefore, we introduce a hyperbolic tangent to ensure negligible
plating below the threshold 𝛾pl,2, while the transition width of this term
from 0 to 1 is determined by 𝛾pl,1. The lithium plating thickness 𝐿pl is
then calculated as in Eq. (20) with the molar volume of lithium 𝛺pl.

Lastly, the aging model accounts for the porosity reduction in the
anode through the built-up of both the SEI and plated lithium:

𝜀l(𝑥, 𝑡) = 𝜀l,0 −
3𝜀AM(𝑥, 𝑡)

𝑅p
⋅ (𝐿SEI(𝑥, 𝑡) + 𝐿pl(𝑥, 𝑡)) (21)

Here, 𝜀l is the anode porosity and 𝜀l,0 the initial anode porosity.
The parameterization of the presented physicochemical aging model is
described in the following subsection.
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Fig. 7. Checkup capacity (top) and resistance (bottom) during the cell aging study
with the 4.8 Ah cylindrical cell. The experimental checkup results for three cells are
shown, as well as the checkup results with the physicochemical aging model. After
1200 cycles, the operating conditions were adapted as highlighted in Table 2 to prevent
further nonlinear aging.

2.3.2. Aging model parameterization
While the majority of parameters required for the aging model

are material-specific, such as Young’s modulus 𝐸 or the partial molar
volume 𝛺, each modeled aging mechanism includes a limited amount
of parameters that have to be empirically determined based on cell
aging studies. For that purpose, a small-scale cell aging study was
conducted with three of the 4.8 Ah cylindrical cells. The capacity loss
and resistance increase of the cells are highlighted in Fig. 7, and
the cycling and checkup conditions are summarized in Table 2. The
model parameterization is performed based on the ‘‘original’’ operating
conditions and presented here. The ‘‘adapted’’ operating conditions are
detailed in the next subsection.

After initial characterization, 1200 cycles were performed within the
manufacturer-specified operating limits of 2.5V to 4.2V. The cells were
charged with a CCCV charge protocol at a C-rate of 1C in the CC phase
and a cut-off current of C/5 for the CV phase. The tests were performed
in a climate chamber at 25 °C with a 120 s break between each cycle.
Capacity and resistance checkups were performed every 50 cycles. The
capacity checkup protocol consisted of two cycles as follows: A CCCV
charge phase, followed by a 60min pause, and a CCCV discharge phase.
The CC phases were conducted at a current of C/5, and the CV phases
with a cutoff current of C/20. A 60min pause was implemented between
the two capacity checkup cycles. The capacity value depicted in Fig. 7
is the CCCV discharge capacity of the second capacity checkup cycle.

This capacity checkup was followed by a resistance checkup. For
that, the cells were charged to a voltage of 3.6V at a C-rate of C/2 and
a CV cutoff at C/50. After a 120min pause, 10 s charge and discharge
pulses were conducted at 0.25C, then 0.5C and 0.75C with a 10min
pause after every pulse. The checkup resistance depicted in Fig. 7 is
the average of all these 10 s DC pulse resistances.

The capacity loss behavior in Fig. 7 follows the same trend observed
in many cell aging studies. Until approximately 1000 cycles, a sublinear
capacity loss behavior is observed, with a higher capacity loss rate over
the first few hundred cycles, which then slows down. Many authors
attribute this sublinear aging behavior to SEI growth, which is assumed
to progress slower the thicker the SEI is, with a frequently quoted

√

𝑡-
dependence [71,72]. Past approximately 1000 cycles, nonlinear aging
behavior or an ‘‘aging knee’’ is observed, with a rapid increase of the

Table 2
Operating conditions during cycling and checkup for both the original and the adapted
operating conditions.

Condition Original ≤ 1200 cycles Adapted > 1200 cycles

𝑈max 4.2V 4.08V
𝑈min 2.5V 3.35V

Cycling
Charge CC at 1C to 𝑈max CC at C/2 to 𝑈max

CV to C/5
Discharge CC at 1C to 𝑈min

Checkup interval 50 cycles 25 cycles
Capacity checkup
Charge CC at C/5 to 𝑈max

CV to C/20
Discharge CC at C/5 to 𝑈min

CV to C/20
Resistance checkup
DC pulse length 10 s
DC pulse voltage 3.6V
DC pulse rate ±0.25C, ±0.50C, ±0.75C

capacity loss rate over the next 200 cycles. The aging study started with
the cells being at an average SOH of 98.29%, based on their nominal
capacity of 4.8Ah. After the first 1000 cycles, the cells showed an
average SOH of 81.49% and 73.80% after an additional 200 cycles.
The average capacity loss rate between cycle 1000 and 1200 is 2.2
times higher than between cycle 0 and 1000, with a further accelerating
trend. The resistance increase generally shows the same trend as the
capacity loss behavior, with a sublinear resistance increase followed
by an accelerated resistance increase rate or ‘‘resistance elbow’’ [13].

At the end of the cyclic aging study with the original operating con-
ditions and after 9 months of storage time, a degradation mode analysis
(DMA) of the cells was performed, as described by Dubarry et al. [73].
For that, the charge half-cell open-circuit potential curves from Fig. 15
were fitted to the charge OCV curves of the aged cells after the first
1200 cycles and compared to the charge OCV curves of those cells
before the aging study. For the two cells with the least degradation,
this led to the following values for the respective degradation modes:
LLI = 20.0%, LAMNE = 11.7%, and LAMPE = 5.0%. The DMA did not
yield conclusive results for the most strongly degraded cell.

Based on the capacity loss and resistance increase behavior of the
cyclic aging study and the DMA, the physicochemical aging model
is parameterized as follows with the parameterization summarized in
Table 3: First, the constant proportional terms of the loss of active
material (LAM) model, 𝛽a and 𝛽c, were fitted to the results of the
DMA at the end of the aging study for LAMNE and LAMPE through
parameter variation. For that purpose, the exact cycling and checkup
schedule that the three cells of the aging study were subjected to was
also simulated with the physicochemical aging model in PyBaMM. 𝑚a
and 𝑚c are assumed to be equal to 1, as highlighted in the previous
subsection. The remaining values of the LAM through the particle stress
model are taken from the literature.

Following that, the key parameters of the basic SEI growth model,
𝐷EC and 𝑘SEI, were fitted such that the capacity checkups of the aging
model fit the experimental data as in Fig. 7 until cycle 1000. The scaling
factor 𝛾SEI was then fitted through parameter variation such that at the
end of the first 1000 cycles, approximately three-quarters of the SEI
growth is caused by the cyclic component of Eq. (16) from particle
cracking and one-quarter is caused by pure calendar SEI growth, which
is an assumption. The initial thickness 𝐿SEI,0 and the resistivity 𝑅SEI of
the SEI were then set to match the resistance checkup data from the
bottom of Fig. 7.

To parameterize the lithium-plating reaction, cycles 1000 to 1200
of the aging study were used. The fitting factor 𝛾pl,2 was set such that
the onset of plating coincides with the measured data and 𝑖pl,0 such that
the accelerated degradation rate matches the measured data.
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Fig. 8. Development of individual loss components with the physicochemical aging model. For the three degradation modes LLI, LAMNE, and LAMPE, the results of the DMA of
the actual cells are shown in addition to the modeled behavior. The utmost right subplot shows the contributions of the four aging mechanisms to the total LLI.

Fig. 9. Modeled SEI thickness, plated lithium thickness, and electrode porosity of the anode at different cycles of the aging study, with the current collector to the left at 𝑥 = 0
and the separator to the right. While SEI growth is nearly homogeneous throughout the anode, lithium plating occurs predominantly close to the separator.

Table 3
Parameters of the physicochemical aging model.

Unit Value

Solid electrolyte interphase
Partial molar volume 𝛺SEI m3 mol−1 7.545 ⋅ 10−5 [32]
Transfer coefficient 𝛼SEI – 0.5 [74]
Open-circuit potential 𝑈SEI V 0.4 [32]
Lithium to SEI moles 𝑧Li−SEI – 2 [31]
EC initial concentration 𝑐EC molm−3 4541.0 [74]
Expansion gradient 𝑓exp – Fig. 6 [70]
Cracks scaling factor 𝛾SEI – 0.475a

EC diffusivity 𝐷EC m2 s−1 1 ⋅ 10−20b

Kinetic rate constant 𝑘SEI ms−1 1 ⋅ 10−15b

Resistivity 𝑅SEI Ωm 80,000b

Initial thickness 𝐿SEI,0 m 1.875 ⋅ 10−8b

Lithium plating
Partial molar volume 𝛺pl m3 mol−1 1.3 ⋅ 10−5 [31]
Transfer coefficient 𝛼pl – 0.5 [31]
Initial thickness 𝐿pl,0 m 0a

tanh stretch 𝛾pl,1 V−1 100a

tanh shift 𝛾pl,2 V −0.08b

Exchange current density 𝑖pl,0 Am−2 0.09b

LAM Anode
Partial molar volume 𝛺a m3 mol−1 3.1 ⋅ 10−6 [70]
Young’s modulus 𝐸a Pa 1.5 ⋅ 1010 [70]
Poisson’s ratio 𝜈a – 0.3 [70]
Critical stress 𝜎yield ,a Pa 6 ⋅ 107 [75]
Constant exponential term 𝑚a – 1a

Constant proportional term 𝛽a s−1 1.564 ⋅ 10−6b

LAM Cathode
Partial molar volume 𝛺c m3 mol−1 1.25 ⋅ 10−5 [76]
Young’s modulus 𝐸c Pa 3.75 ⋅ 1011 [70]
Poisson’s ratio 𝜈c – 0.2 [70]
Critical stress 𝜎yield ,c Pa 3.75 ⋅ 108 [75]
Constant exponential term 𝑚c – 1a

Constant proportional term 𝛽c s−1 1.514 ⋅ 10−6b

a Assumption.
b Fitted.

The resulting model shows a good fit with the measured capac-
ity checkup data, with a root-mean-square error (RMSE) of 0.014 Ah
within the first 1000 cycles and 0.043 Ah within the first 1200 cycles,
or a mean relative error (MRE) of 0.217% and 0.497%, respectively.
The larger error metrics when considering the entire 1200 cycles are
partially driven by the capacity loss behavior becoming less homoge-
neous towards the end as the onset of nonlinear aging varies between
the cells. For the resistance increase, the overall quality of the fit is
slightly worse with an RMSE of 1.071mΩ within the first 1000 cycles or
an MRE of 2.685%. The resistance increase model does currently not
account for the resistance from additional SEI that might form around
plated lithium [75] during the nonlinear aging phase, which could be
a future addition to the model.

Fig. 8 shows the development of the individual loss components
LLI, LAMNE, and LAMPE in the three left subplots. The LAMNE and
LAMPE aging models were fitted to match the DMA results that were
obtained after the first 1200 cycles. However, the modeled LLI after the
first 1200 cycles does not exactly match with the results of the DMA.
A contributing factor to this deviation are the 9 months of storage time
in between the first 1200 cycles and the recording the OCV that was
used for the DMA. The utmost right subplot shows the individual aging
mechanisms as part of the physicochemical aging model that lead to
LLI. LLI from SEI growth shows the characteristic square root depen-
dence as the cycles progress. The additional LLI caused by LAM shows a
linear development over the cycles of the aging study. Lastly, the model
shows significant LLI from lithium plating from approximately cycle
1000 onwards, which causes the nonlinear aging behavior or aging
knee of the checkup capacity trajectory from Fig. 7.

Fig. 9 shows the SEI thickness, plated lithium thickness, and elec-
trode porosity of the anode at different cycles of the aging study.
While for the here proposed modeling approach SEI growth is nearly
homogeneous through the anode, lithium plating predominantly occurs
in proximity to the separator due to the lower plating potential 𝜂pl.
This also leads to lower electrode porosity close to the separator as the
cycles progress. The SEI thickness of this model is in good agreement
with existing literature, where SEI thickness ranges from 1.5 to 584 nm
for SOH values in the range of 100–70%, as reviewed by Andriunas
et al. [77].
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2.3.3. Adapted operating conditions towards the end-of-life
After the first 1200 cycles, the operating conditions of the cells in

the aging study were adapted based on the findings in the literature
from Section 1.1, and the cycling was then continued. Table 2 provides
an overview of the original and adapted operating conditions for both
cycling and checkup.

The charge cut-off voltage 𝑈max was lowered to 4.08V, thereby
removing 20% of the remaining capacity per the averaged charge OCV
of the three aged cells. The discharge cut-off voltage 𝑈min was increased
to 3.35V, thereby removing an additional 10% remaining capacity per
the averaged discharge OCV. The total voltage window 𝛥V was thereby
changed from 1.70V to 0.73V. This was done for both the cycling
protocol and the checkup protocol. Next to its detrimental effect on
nonlinear aging, further cycling at the original voltage window would
not have been advisable due to another observed effect: Two out of
the three cells showed abnormal heating during the CV phase at 4.2V
while performing the nominal power and efficiency checkups after the
first 1200 cycles. Han et al. observed the same phenomenon in their
study on aged cells [78]. They hypothesize that cell-internal shorts from
lithium dendrites, which self-terminate over time, could be the reason
for this behavior [78].

The CC charge rate for cycling was reduced from 1C to C/2. The
charge and discharge rates for the capacity checkup protocol remained
unchanged at C/5. The checkup interval was changed from every 50
cycles to every 25 cycles. All other conditions remained unchanged
as described in 2.3.2. The CC discharge rate was kept unchanged as
well since part of the existing literature points towards higher discharge
rates being beneficial [32,44], while others saw none [30] or negative
impact of higher discharge rates [47] on the nonlinear aging behavior.

Fig. 7 shows that with the adapted operating conditions, the cells
transition back out of the previously nonlinear aging phase towards a
highly reduced rate of capacity loss. The rate of capacity loss with the
adapted operating conditions is not only smaller than in the nonlinear
aging phase but also smaller than in the first cycles of the aging
study. From cycle 0 to 600, the average checkup discharge capacity
of the three cells decreased by 0.49 Ah, while from cycle 1200 to
1800 with the adapted operating conditions, the discharge capacity
decreased by only 0.19 Ah. However, the usable capacity is reduced
by the adapted voltage limits. At the last checkup with the original
operating conditions, an average discharge capacity of 3.54 Ah was
measured for the three cells, while the first checkup with the new
operating conditions yielded an average discharge capacity of 2.43 Ah.
The physicochemical battery model replicates this reduced aging rate,
which stems from the lack of additional lithium plating, see Fig. 8, due
to the reduced charge rate and lower charge cut-off voltage.

The resistance increase in the bottom of Fig. 7 proceeds significantly
slower as well with the adapted operating conditions than in the
nonlinear aging phase. While the aging model’s trajectory captures
this reduced resistance increase rate, there is an offset in the absolute
values. This stems from the previously discussed fact that the physic-
ochemical aging model does not consider the accelerated resistance
increase during the nonlinear aging phase.

2.3.4. Interface between SimSES and PyBaMM
To allow for the simulation of the full BESS with the physico-

chemical aging model, the model was implemented in PyBaMM [50]
and integrated into the SimSES [49] simulation framework. For that
purpose, a PyBaMM interface was implemented as an additional tech-
nology package in the SimSES environment. This interface converts
the power targets of the upstream converter modules in SimSES into
constant power experiments for the battery cell in PyBaMM for the
next timestep. If the minimum or maximum cell voltage is reached
within the timestep, the constant power experiment is followed by a
constant voltage experiment for the remaining time of that timestep.
After the simulation of this timestep in PyBaMM, relevant variables are
saved in the technology state data structure of SimSES and passed to

the upstream components to update their state variables and determine
the power target for the next timestep.

Within the interface, checkup experiments are conducted period-
ically to determine the SOH and allow for SOC estimation of the
PyBaMM physicochemical battery model. The capacity checkup proce-
dure from Table 2 with the original operating conditions is used for that
purpose. For the EA and SCI applications in the case studies, additional
aging is deactivated during these checkup cycles by setting 𝛽a, 𝛽c,
𝐷EC, and 𝑖pl,0 to zero. The SOH is then calculated based on the CCCV
discharge capacity. For the SOC, an estimation approach is required.
The minimum average anode stoichiometry 𝜒min

a and maximum average
anode stoichiometry 𝜒max

a are recorded during each capacity checkup
cycle. After every timestep, the anode SOC is calculated based on the
present average anode stoichiometry 𝜒a: SOC = (𝜒a−𝜒min

a )∕(𝜒max
a −𝜒min

a ).
This SOC value can then be used by the energy management system,
such as the optimization model for intraday trading from Section 2.1,
to determine the power targets for the next timesteps.

As for the other technologies implemented in SimSES, a lump
modeling approach is used in which a single cell is modeled, and the
output voltage and current are scaled accordingly to match the rated
power and energy of the full BESS. While SimSES is run on a 15min
time resolution for the following case study, the solver in PyBaMM
runs on a significantly higher resolution, based on the given accuracy
specifications. Checkup cycles are run every 6 h to update the SOH and
the anode stoichiometry values that are used for the SOC estimation.

3. Simulation case study

A simulation case study is conducted using the previously described
simulation framework. In Section 3.1, we investigate the general per-
formance of lithium-ion cells at different SOHs in the two applications
of SCI with a home storage system and EA with a large-scale storage
system by comparing the 4.8 Ah cylindrical cell with the 94 Ah pris-
matic cell. In Section 3.2, we use the physicochemical aging model that
we developed for the 4.8 Ah cylindrical cell to investigate the aging
behavior over time in the two stationary applications and show how the
lifetime profit can be increased by adapting the operating conditions
towards the EOL. The full toolchain used to conduct the simulations is
available open-source [51].

3.1. Profit potential at different states of health

One-year simulations were conducted in SimSES at different fixed
capacity-based SOH values with the equivalent circuit models described
in Section 2.2. At the same time, for each SOH value, a resistance
increase following the same trajectory as in the aging study from Fig. 7
is assumed. In the aging study, an average resistance increase of 62.45%
was observed after 1200 cycles, with the capacity-based SOH reducing
from 98.29% to 73.80%. This leads to the following linear interpolation
for the assumed internal resistance increase 𝑟i of the equivalent circuit
model:

𝑟i =
62.45%

98.29% − 73.80%
⋅ (100% − SOH) (22)

Fig. 10 shows key results of the simulations at different SOH values. The
discharged energy over a given year expectedly decreases with reduced
battery capacity. However, this relationship is not directly proportional,
such that at low SOH, more cycles are completed when based on the
remaining capacity. With the 4.8 Ah cylindrical cell and an SOH of
100%, 218.15 equivalent discharge cycles are completed in the given
year in the EA application, and 202.92 equivalent discharge cycles in
the self-consumption increase application. At an SOH of 60%, these
numbers increase to 263.31 and 268.63 equivalent discharge cycles per
year, based on the remaining capacity.

The difference in BESS round-trip efficiency between the two cells is
larger for the EA application than for the SCI application, as the second
column of Fig. 10 shows. At the same time, the round-trip efficiency of
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Fig. 10. Simulated performance parameters based on one-year simulations with the 94 Ah prismatic cell and 4.8 Ah cylindrical cell for the application of energy arbitrage (top
row) and self-consumption increase (bottom row) at different fixed SOH values with no further degradation in the given year.

Fig. 11. Distribution of key aging stress factors in the two applications of energy
arbitrage (EA) and self-consumption increase (SCI) based on the one-year simulations
with the 4.8 Ah cylindrical cells at 100% SOH.

Fig. 12. Profit potential per year in EUR per kWh of the originally installed capacity
at selected SOH values for the two applications (top). Change in percent from the
reference scenario, i.e., the 94 Ah prismatic cell at 100% SOH (bottom).

the BESS with the 94 Ah prismatic cell is higher for the EA than for
the SCI scenario (88.09% and 86.94% efficiency at 100% SOH), while
with the 4.8 Ah cylindrical cell is lower (83.73% and 85.52% efficiency
at 100% SOH). The causes for this become evident by looking at the

distribution of C-rates in Fig. 11. First, the average C-rate in the EA
application is higher, which leads to higher cell internal losses, espe-
cially for the 4.8 Ah cylindrical cell with its higher internal resistance.
Therefore, the gap in round-trip efficiency between the two cells widens
further with decreasing SOH and increasing cell resistance, especially
in the EA application. Second, due to more charge/discharge events at
a low C-rate, the SCI application has an overall worse AC/DC converter
efficiency since the converter efficiency is particularly low at low power
values [58]. This results in the BESS round-trip efficiency for the SCI
application being driven more by the converter efficiency than the cell
resistance, as the third column of plots in Fig. 10 confirms. For both
applications, the C-rate from Fig. 11 is, on average, larger in discharge
than in charge direction since due to the voltage drop over the internal
cell resistance, higher currents are drawn from the cell to deliver
a specified discharge power, compared to the same charge power.
Similarly, higher currents are needed to deliver a specified discharge
or charge power at low SOC values due to the lower OCV compared to
at high SOC values. Both effects combined lead to maximum observed
current-based C-rates in discharge direction, i.e., 1.32 h−1 for the EA and
0.85 h−1 for the SCI application, that significantly exceed the power-to-
energy ratios calculated from the system nominal values, i.e., 0.93 h−1
for the EA and 0.60 h−1 for the SCI application.

Next to the efficiency, the fulfillment factor shows differences be-
tween the two cells and the two applications, as highlighted in the
fourth column of Fig. 10. Fulfillment is here defined as the average ratio
of requested power by the energy management system to the delivered
power of the BESS. For the SCI application, the requested power is the
difference between the household load and the generated PV power
as in Eq. (1). This leads to overall low fulfillment, as the BESS cannot
continue charging once it is full around noon or continue discharge
once it has been emptied at night. For the EA application, the requested
power is the output of the optimization model described in Eqs. (2) to
(7). Since the optimization model is aware of the SOC limitations of
the BESS, the fulfillment factor is higher overall. In both applications,
a lower fulfillment factor is observed for the 4.8 Ah cylindrical cell
compared to the 94 Ah prismatic cell due to its lower nominal power
range that was shown in Fig. 4. This difference in fulfillment factor
further increases with decreasing SOH.

These differences in the BESS round-trip efficiency and the ful-
fillment factor translate into different profit potentials, as shown in
Fig. 12. With the 4.8 Ah cylindrical cell, a profit potential of 79.56 EUR
per kWh nominal capacity and year is achieved for EA and 94.44 EUR
per kWh nominal capacity and year for SCI at an SOH of 100%.
Notably, the higher intraday electricity prices and price volatility led
to significantly higher obtainable profit through EA in 2022 compared
to previous years [28].
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Fig. 13. Development of capacity-based SOH, minimum anode porosity, and NPV over a simulated ten-year period for the two applications of EA with a large-scale BESS and SCI
with a home storage system. For the EA application, an additional scenario is shown in which the operating limits of the optimization algorithm are adapted following Table 2
once a remaining SOH of 80% is reached. EOL is assumed once the minimum anode porosity reaches zero, as is the case for the basic EA application after 5.7 years.

Fig. 14. Degradation modes (top) and individual mechanisms leading to LLI (bottom) over time for the EA application, the EA application with adapted operating conditions past
80% SOH, and the SCI application.

The results further show that the profit in EA has a stronger sen-
sitivity on both the battery cell type and the SOH. In EA, the profit
potential at 100% SOH is 5.17% lower with the cylindrical cell than
with the prismatic cell. At 60% SOH, this gap widens to 10.30%. For the
SCI application, these differences in profit potential between the two
cells are only 0.59% and 0.72%. This can be explained by the stronger
dependency of the overall BESS efficiency on the battery cell resistance
in the EA application. Furthermore, the lower nominal power range
impacts the EA application more than the SCI application. While for
SCI, the home storage system will generally just charge up to full SOC
slightly later in the day, for EA, the lower nominal power range leads
to missing profitable arbitrage opportunities. Notably, the performance
of the optimization model might be improved by accounting for the
nominal power range through introducing SOC dependent power limits
in Eqs. (5) and (6). For the cylindrical cell, the profit potential is
31.64% lower at 60% SOH than at 100% SOH in the EA application and
20.84% lower in the SCI application. This highlights the overall higher
sensitivity of the profit in the EA application on the SOH compared to
the SCI application.

3.2. Aging behavior over lifetime

In this subsection, the physicochemical aging model, implemented
in PyBaMM, is used in conjunction with SimSES to perform 10-year
simulations for the two applications of EA and SCI. Fig. 13 shows the
development of the capacity-based SOH, the minimum anode porosity,
and the NPV of the profit generated in the two applications, scaled with

the nominal capacity at the beginning of life. The NPV is defined as
below:

NPV =
𝑡max
∑

𝑡=0

P𝑡

(1 + i)𝑛(𝑡)
(23)

Here, P𝑡 is the profit generated from the given application in timestep
𝑡, 𝑡max the last timestamp up until the evaluation point of the NPV, and
𝑛(𝑡) the fractional years since the beginning of the simulation. i is the
interest rate which is set to i = 0.075 for the purpose of this analysis,
as in [28]. The EA and SCI applications show distinct differences in
terms of the aging behavior of the battery cells: In SCI, the capacity
loss proceeds faster in the first few years and is then outpaced by
the capacity loss in the EA application. After 3 years of operation,
the checkup cycles with the physicochemical battery model show a
remaining capacity-based SOH of 83.61% for the EA application and
79.34% for the SCI application. Here, the EOL is assumed once the
minimum anode porosity reduces to zero, resulting in pore clogging,
similar to Yang et al. [31]. For the EA application, this point is reached
after 5.7 years at an SOH of 64.10%. After the same period, the SOH is
at 69.28% in the SCI application.

Fig. 14 provides insights into the aging mechanisms that lead to this
behavior. In the SCI application, the LLI from SEI growth progresses
faster. After 3 years of operation, 11.75% total LLI are observed in
the EA application and 14.61% in the SCI application. The faster SEI
growth in the SCI application stems from more time being spent at
a high SOC, as the stress factor overview of Fig. 11 in the previous
subsection showed. After about three years, lithium plating starts to
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occur in the EA application, leading to a steep increase in the capacity
loss rate. As the stress factor analysis showed, the cells are subjected
to higher charge rates in the EA application, which causes the earlier
onset of lithium plating. The plated lithium leads to LLI and a steep
reduction in the anode porosity close to the separator. Lithium plating
is also observed for the SCI application after about 6 years of operation
at a slower rate. After 5.7 years, when the EOL is reached for the EA
application, a total of 24.98% LLI is observed for the EA application and
22.00% LLI for the SCI application. The aging mechanisms of LAMNE
and LAMPE and their concurrent LLI show no significant differences
between the two applications.

In addition to the two applications SCI and EA, which use the
‘‘original’’ operating conditions from Table 2, an additional scenario for
the EA application is depicted in Figs. 13 and 14. For this ‘‘EA adapted’’
scenario, the operating limits of the optimization algorithm are adapted
in accordance with Table 2, once a SOH of 80% is reached. Here, this
is the case after 3.7 years of operation. The previous constraints from
Eqs. (6) and (7) are adapted past this point as follows:

0 ≤ 𝑝ch𝑡 ≤ 1
2𝑃

AC,max ∀ 𝑡 ∈ 𝑇 (24)

0.1 ≤ 𝑠𝑜𝑐𝑡 ≤ 0.8 ∀ 𝑡 ∈ 𝑇 (25)

These adapted operating conditions lead to a reduction of the degra-
dation rate. Most importantly, the reduced charge rate and lower
maximum cell voltage delay any further significant lithium plating until
after approximately 8.5 years of operation.

After the simulated 10-year time period, a NPV of 570.23 EUR per
kWh of originally installed BESS capacity is reached in the SCI appli-
cation. For the EA application with the original operating conditions,
the EOL is reached after 5.7 years of operation after having obtained a
NPV of 297.66 EUR per kWh. By adapting the operating conditions, a
NPV of 416.22 EUR per kWh is achieved after ten years, a significant
increase of 39.83%. Notably, the adapted operating conditions only
marginally affect the generated profit between the time the adaption
takes place after 3.7 years and the time the EOL is reached with the
original operating conditions after 5.7 years. After 5.7 years, a NPV of
291.94 EUR per kWh is obtained with adapted operating conditions,
which is a decrease of only 1.92% compared to the original EA applica-
tion. While the reduced usable SOC range and charge power expectedly
decrease the profit, this is counterbalanced by the fact that without the
adaptions, the sharp decrease in SOH and efficiency would otherwise
negatively affect the profitability.

4. Conclusion

With the steadily growing amount of globally installed BESSs and
the increasing operation time of the installed systems, the performance
of late-life lithium-ion cells becomes increasingly relevant. This in-
cludes how reduced capacity, nominal power range, and efficiency
affect the profitability as well as the aging behavior of late-life cells
in different applications. In this work, we investigate these effects with
an open-source simulation toolchain for the two applications of energy
arbitrage (EA) with a large-scale storage system and self-consumption
increase (SCI) with a home storage system.

To investigate the impact of reduced capacity, efficiency, and nom-
inal power range on profitability, equivalent circuit models were de-
rived for the primary cell under investigation, a 4.8 Ah cylindrical cell,
as well as for a 94 Ah prismatic cell as a reference. The simulations
were then conducted using the in-house developed SimSES tool in
conjunction with a previously published MPC framework to simulate
the EA application. The results show that the profit generated in the EA
application is more affected by cell aging than in the SCI application.
Furthermore, the 94 Ah prismatic reference cell, which is used for BESS
applications, shows higher profit potential in both applications than the
4.8 Ah cylindrical cell, which is primarily intended for EV applications.
However, this difference is more pronounced for the EA than for the

SCI application. In summary, the comparison of the two cell types
highlights the performance differences between EV cells, which are
often envisioned for stationary second-life applications, and BESS cells,
which are specifically intended for stationary applications. While the
differences in profit potential are marginal for the SCI application, they
are noticeable for the EA application and should be considered when
selecting cells for a BESS.

A physicochemical aging model was developed and parameterized
based on a small-scale aging study for the 4.8 Ah cylindrical cell to
model the aging behavior over time for the two applications. The model
captures the aging mechanisms of particle cracking-induced loss of
active material on the anode and cathode as well as SEI growth and
lithium plating. The aging study shows that cells that have entered
the accelerated nonlinear aging phase can transition back to a reduced
degradation rate by adapting the operating conditions, which is sup-
ported by the developed physicochemical aging model. For the case
study, the model was implemented in PyBaMM and linked to SimSES.
While for the SCI application, the onset of lithium plating shows after
approximately 6 years at a slow rate, for EA, this is already the case
after 3 years at an accelerated aging rate leading to EOL after 5.7 years
of the investigated 10-year time-horizon. We show that by adapting
the operating conditions once a SOH of 80% is reached, the lifetime
in the EA application can be extended to cover the whole 10-year
time-horizon while obtaining an increase in the NPV of 39.83%. This
highlights that adapting the operating conditions of late-life lithium-ion
cells can significantly increase their lifetime and the generated profit.

For this work, some uncertainties and limitations are considered.
The EA application was modeled in a simplified way since perfect fore-
sight of the ID-1 price was assumed. We believe this to be a conservative
assumption since, for real-time bidding, one may achieve higher sell
and lower buy prices than the ID-1 price and may place additional bids
that are compensated before execution by the BESS, which can generate
additional profit [28]. Furthermore, cell-to-cell variations of the aging
rate were neglected in the case study. In addition, only a small-scale
aging study was used to parameterize the physicochemical aging model,
a shortfall of many physicochemical aging models [21,31,35,75]. While
the model generally represents the expected behavior of the underlying
aging mechanisms well, larger studies should be conducted in the future
with cells at different calendar and cycling aging conditions.

As for the outlook, the aging study conducted in this work showed
that nonlinear aging can not only be delayed by adapting the oper-
ating conditions before its occurrence but that lithium-ion cells that
have already entered the nonlinear aging phase can transition back
to a significantly reduced degradation rate by adapting the operating
conditions after extended cycling. This is a highly promising result since
the operating conditions of a BESS could be adapted once nonlinear
aging behavior is first observed through SOH estimation instead of
adapting the operating conditions preemptively. This effect requires
additional investigation with regard to the exact operating conditions
that influence it. Here, only one set of adapted operating conditions
was investigated, i.e., a reduced charge rate combined with a narrowed
voltage window. To what extent this effect occurs for different types of
lithium-ion cells should also be investigated further.

Using the physicochemical aging model, the case study highlighted
the lifetime and profit increase that can be achieved by adapting the
operating conditions of late-life lithium-ion cells. Here, a fixed SOH
value was used as a threshold for adapting the operating conditions.
An even higher increase in profitability may be achieved in future
work through dynamic criteria that gradually reduce the charge rate
and operating voltage window based on the SOH. In addition, the
accuracy of the physicochemical aging model may be improved further
by also accounting for the resistance increase during nonlinear aging,
e.g., through additional SEI formed around plated lithium. In addition,
the cell temperature was kept at a constant 25 ◦C in the aging study
and was assumed to be constant in the model. If lithium plating is
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the expected mechanism that leads to nonlinear aging, operating late-
life cells at slightly higher temperatures during charging could further
extend their lifetime.

Finally, while this work proposes a method to extend the lifetime
and increase the lifetime and generated profit of late-life lithium-ion
cells, the method remains to be validated in the ever-growing and aging
fleet of stationary battery energy storage systems.
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Appendix A. Electrical cell characterization

The measurement conditions for the OCV, hysteresis, and charge
resistance from Fig. 3 and the energy efficiency and nominal power
range from Fig. 4 are briefly outlined here.

A.1. OCV, hysteresis, and charge resistance

The quasi-stationary OCV curves were measured at a C-rate of C/25
in the respective manufacturer-given operating voltage windows of the
two cells: 3.2 V–4.15 V for the prismatic cell and 2.5 V–4.2 V for the
cylindrical cell in first charge then discharge direction. The hysteresis
voltage is the difference between the quasi-stationary OCV measure-
ments in charge and discharge direction. The displayed resistance is
the 10 s DC-charge resistance, measured at different SOC values and
at a charge rate of 1C. For the cylindrical cells, the average of two
cells is shown, while for the prismatic cells, only one cell had not seen
any cycling yet and was therefore available for characterization. The
average discharge capacity of the two cylindrical cells was measured
at 4.688 Ah and for the prismatic cell at 95.45 Ah prior to the above
measurements. These capacity values were determined from a 0.5C
CC-discharge after a CCCV charge with 0.5C charge rate in the CC phase
and 0.04C cutoff current in the CV phase. All data was recorded in
climate chambers set to 25 ◦C. The results are depicted in Fig. 3.

Fig. 15. Open-circuit voltages for the lithiation and delithiation direction for the anode
material coin cell (top), lithiation and delithiation of the cathode material coin cell
(mid), and charge and discharge direction of the full-cell (bottom). Measured at C/50
and 25 °C. The model in the main part of this work uses the charge direction curves
of the full-cell, meaning the lithiation curve for the anode and the delithation curve
for the cathode material.

A.2. Energy efficiency and nominal power range

The energy efficiency was measured with a CC-charge at different
C-rates, followed by a CCCV-discharge at the same C-rates, within
the manufacturer-specified voltage range. The CV-discharge phase was
ended at a C-rate below 0.04C. The displayed energy efficiency in Fig. 4
is the measured discharge energy of the CCCV-discharge divided by the
measured charge energy of the CC-charge.

For the nominal power range test, the cells were subjected to a CPCV
charge phase followed by a 30 min pause and a CPCV discharge phase
within their manufacturer-stated voltage ranges. In the constant power
phases, the charge and discharge power were set to the nominal cell
power, i.e., 345.9 W for the prismatic cell and 17.472 W for the cylin-
drical cell. The CV phases were both ended at a charge or discharge
current below 0.04 C.

Both tests were conducted in a climate chamber set to 25 ◦C. For the
efficiency plot, the average of two new cylindrical cells and three aged
cylindrical cells is shown, while for the prismatic cell, only one new cell
was available for characterization, and its results are depicted. The aged
cylindrical cells are the three exact cells from Fig. 7 after 1200 cycles.
For the usable power range plot, the charge–discharge behavior of one
cell of each type is shown.

Appendix B. P2D model equations and parameterization

Parameterization of the P2D for the 4.8 Ah cylindrical cell was per-
formed in-house using measurements. Literature data was used for all
parameters that were not determined experimentally. Some parameters
have been fitted while minimizing the error between simulation and
measurements. The equations of the Newman-type model are outlined
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Table 4
Equations for the P2D model. Here, ∇𝑥 is the spatial gradient in the real dimension, i.e., along the through-plane direction of the cell stack,
and ∇𝑟 is the spatial gradient in the pseudo dimension, i.e., along the radius of the spherical active material particles. The additional equations
of the physicochemical aging model are stated in Section 2.3.1.

Spatial gradients ∇𝑥 = 𝜕
𝜕𝑥

, ∇𝑟 =
𝜕
𝜕𝑟

(𝑟 in spherical pseudo dimension) (26)

Mass balance
𝜕
(

𝜀l(𝑥, 𝑡) ⋅ 𝑐l(𝑥, 𝑡)
)

𝜕𝑡
= ∇𝑥 ⋅

(

𝐷eff
l (𝑥, 𝑡)∇𝑥𝑐l(𝑥, 𝑡) +

𝑖l(𝑥, 𝑡)
(

1 − 𝑡0+
)



)

(27)

Mass balance
𝜕𝑐s(𝑥, 𝑡, 𝑟)

𝜕𝑡
= ∇𝑟 ⋅

(

𝐷s∇𝑟𝑐s(𝑥, 𝑡, 𝑟)
)

= 1
𝑟2

𝜕
𝜕𝑟

(

𝐷s𝑟
2 𝜕𝑐s(𝑥, 𝑡, 𝑟)

𝜕𝑟

)

(28)

Potentials ∇𝑥𝜑l(𝑥, 𝑡) = −
𝑖l(𝑥, 𝑡)

𝜅eff
l (𝑥, 𝑡)

+ 2𝑇


(

1 − 𝑡0+
)

(

1 +
𝑑 ln 𝑓±

𝑑 ln 𝑐l(𝑥, 𝑡)

)

∇𝑥 ln 𝑐l(𝑥, 𝑡) (29)

∇𝑥𝜑s(𝑥, 𝑡) = −
𝑖s(𝑥, 𝑡)
𝜅eff
s (𝑥, 𝑡)

with 𝑖app(𝑡) = 𝑖s(𝑥, 𝑡) + 𝑖l(𝑥, 𝑡) ∀ 𝑥, 𝑡 (30)

Charge balance ∇𝑥 ⋅ 𝑖l(𝑥, 𝑡) + ∇𝑥 ⋅ 𝑖s(𝑥, 𝑡) = 0 (31)

∇𝑥 ⋅ 𝑖s(𝑥, 𝑡) =

⎧

⎪

⎨

⎪

⎩

− 3𝜀AM (𝑥,𝑡)
𝑅p

(

𝑗𝑛(𝑥, 𝑡) + 𝑖SEI(𝑥, 𝑡) + 𝑖pl(𝑥, 𝑡)
)

anode domain

− 3𝜀AM (𝑥,𝑡)
𝑅p

𝑗𝑛(𝑥, 𝑡) cathode domain
(32)

Electrode kinetics 𝑗𝑛(𝑥, 𝑡) =
𝑖0(𝑥, 𝑡)


(

exp
(

𝛼a𝜂(𝑥, 𝑡)
𝑇

)

− exp
(

−
𝛼c𝜂(𝑥, 𝑡)

𝑇

))

(33)

𝜂(𝑥, 𝑡) = 𝜑s(𝑥, 𝑡) − 𝜑l(𝑥, 𝑡) − 𝛥𝜑SEI(𝑥, 𝑡) − 𝐸eq(𝑥, 𝑡) (34)

𝛥𝜑SEI(𝑥, 𝑡) =

{

𝑗𝑛(𝑥, 𝑡)𝑅SEI𝐿SEI(𝑥, 𝑡) anode domain
0 cathode domain

(35)

𝑖0(𝑥, 𝑡) = 𝑘
(

𝑐s,max − 𝑐s,surf
)𝛼a (𝑐s,surf

)𝛼c
(

𝑐l
𝑐l,ref

)𝛼a
(36)

Effective transport parameters 𝜅eff
s (𝑥, 𝑡) = 𝜅s ⋅ 𝜀AM(𝑥, 𝑡)𝛽brug , 𝜅eff

l (𝑥, 𝑡) = 𝜅l(𝑥, 𝑡) ⋅ 𝜀l(𝑥, 𝑡)𝛽brug , 𝐷eff
l (𝑥, 𝑡) = 𝐷l(𝑥, 𝑡) ⋅ 𝜀l(𝑥, 𝑡)𝛽brug (37)

Boundary conditions ∇𝑥𝑐l(𝑥, 𝑡)
|

|

|𝑥=0 ∧ 𝑥=𝐿tot
= 0 (38)

∇𝑥𝜑l(𝑥, 𝑡)
|

|

|𝑥=0 ∧ 𝑥=𝐿tot
= 0 (39)

𝜑s(𝑥, 𝑡)
|

|

|𝑥=0
= 0 (40)

∇𝑥𝜑s(𝑥, 𝑡)
|

|

|𝑥=𝐿tot
= −

𝑖app
𝜅eff
s

(41)

∇𝑟𝑐s(𝑥, 𝑡, 𝑟)
|

|

|𝑟=0
= 0 (42)

∇𝑟𝑐s(𝑥, 𝑡, 𝑟)
|

|

|𝑟=𝑅p
= −

𝑗𝑛
𝐷s

(43)

in Table 4 and the final parameters are summarized in Table 5. Su-
perscripts indicate whether the respective parameter was measured
directly, calculated from measurements, estimated, fitted, or taken from
the literature. While the final simulations were conducted in PyBaMM,
the simulations for parameterization were conducted using COMSOL
Multiphysics.

The following briefly discusses the parameters from Table 5 that
were not taken from the literature. We deliberately keep this section
concise as the parameterization of the basic P2D model is not the focus
of this work.

B.1. OCV measurements

A new cylindrical cell was opened to harvest electrode material
and assemble anode and cathode half coin cells vs. Li metal. The
disassembly, sample preparation, and coin cell assembly was performed
in an argon-filled glovebox and the entire procedure is similar to what
is described in the literature [84]. Quasi-OCV measurements at C/50 CC
charge/discharge have been conducted to retrieve the OCV curve for
the anode and cathode half-cells as well as for the cylindrical full-cell.
The anode OCV was measured between 0.01V and 1.5V vs. Li metal,
the cathode OCV between 3.0V and 4.4V vs. Li metal, and the full-cell
OCV between 2.5V and 4.2V. All cells were placed inside a climate
chamber at 25 °C. The half-cell OCVs are then scaled and shifted such
that their superposition yields the measured full-cell curves, similarly
as reported in the literature [85]. This reconstruction of the full-cell
OCV results in Fig. 15 as well as the stoichiometric coefficients 𝜒 at
0% and 100% full-cell SOC in Table 5.

B.2. Particle radius

Additional samples from the opened cylindrical cell were used for
scanning electron microscopy (SEM) imaging. Using a similar proce-
dure as described by [86], the mean particle radius assuming spherical
particles was retrieved.

B.3. Material composition

Simultaneously to SEM imaging, energy dispersive X-ray (EDX)
spectroscopy was performed to obtain a quantitative elemental analy-
sis. Based on the atomic ratio, it was determined that the cathode is
an NMC with a high Ni content and the anode is a silicon-graphite
mixture with a ratio of 98:2. The specific capacity of each electrode
was calculated from these information. Using density values from the
literature, the maximum solid-phase concentration was calculated.

B.4. Volume fractions

The porosity of the separator is assumed to be similar to that
reported in the literature. The porosity values for the electrodes are
visually estimated from SEM images by segmenting the solid material
and the pore space. Segmenting the solid active material from the solid
inactive material, however, was not possible. To still obtain a value
for the active material volume fraction (contributing to the electrodes’
capacities and thus to the balancing between anode and cathode), this
value was fitted for both electrodes in such way that the RMSE between
measurement and simulation at low currents is minimized.
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Table 5
Parameterization of the P2D model for the 4.8 Ah cylindrical cell with NMC811 cathode (presumably) and SiC anode.

Unit Anode Separator Cathode

Geometry
Thickness coating 𝐿 μm 77e 13.3e 61e

𝑑50 Particle radius 𝑅p μm 6.0834e – 4.642e

Active material width mm 1079.5e – 1079.5e

Active material height mm 62.85e – 62.85e

AM volume fraction 𝜀AM – 0.49386d – 0.70104d

Electrolyte volume fraction 𝜀l – 0.35c 0.45 [79] 0.2c

Bruggeman coefficient 𝛽brug – 1.5 [79] 1.5 [79] 1.85 [79]

Thermodynamics
Equilibrium potential 𝐸eq V Fig. 15 (top)e – Fig. 15 (mid)e

Stoichiometry 𝜒 100% SOC – 0.93889d – 0.08736d

0% SOC – 0.03455d – 0.95d

Max. concentration 𝑐s,max molm−3 37,295b – 48,452b

Transport
Solid diffusivity 𝐷s m2 s−1 5 ⋅ 10−13d – 4 ⋅ 10−14 [80]
Electric conductivity 𝜅s Sm−1 100 [81] – 1.2 [82]

Kinetics
Reaction rate constant 𝑘 ms−1 3 ⋅ 10−11 [79] – 1 ⋅ 10−11 [79]
Charge transfer coefficients 𝛼a/𝛼c – 0.5/0.5 [79] – 0.5/0.5 [79]
Electrolyte
Salt diffusivity 𝐷l

a, [83] m2 s−1 10−4 ⋅ 10−4.43−
54

𝑇−229−5𝑐l
−0.22𝑐l

Ionic conductivity 𝜅la, [83] Sm−1 0.1𝑐l(−10.5 + 0.668𝑐l + 0.494𝑐2l + 0.074𝑇 − 0.0178𝑐l𝑇
−8.8610−4𝑐2l 𝑇 − 6.9610−5𝑇 2 + 2.810−5𝑐l𝑇 2)

Activity 𝑑 ln 𝑓±
𝑑 ln 𝑐l (𝑥,𝑡)

a, [83] – (0.601 − 0.24𝑐0.5l + 0.982(1 − 0.0052(𝑇 − 294))𝑐1.5l ) ⋅ (1 − 𝑡0+)
−1 − 1

Transference number 𝑡0+ [83] – 0.38
Reference concentration 𝑐l,ref molm−3 1.0

a Analytic functions for the electrolyte are physically not interpretable. Input arguments are to be normalized (concentration 𝑐l per mol L−1 and
temperature 𝑇 per K). The functions are only valid for 𝑐l ∈ [0 mol L−1; ≤4 mol L−1]. The output value is to be interpreted in the unit given
in the table.
b Calculated.
c Estimated.
d Fitted.
e Measured.

B.5. Solid diffusion coefficient

Using measurement data at C-rates of 4C, the solid diffusion inside
active material particles is considered to be limiting to the cell perfor-
mance. Minimizing the RMSE between measurement and simulation in
COMSOL Multiphysics by fitting the solid diffusion coefficient yields
the final value listed in Table 5.
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7 Conclusion and potential for future research

7.1 Conclusion

This work focuses on developing guidelines and methods for the aging aware operation of lithium-ion
based BESSs. For that purpose, a first comprehensive review of the field is presented. Based on the
gaps found in the literature, an MPC framework is proposed for designing and benchmarking aging
aware operation strategies. Furthermore, an aging aware operation strategy for peak shaving that
accounts for uncertainty in load forecasts is developed, and the impact of uncertainty in degradation
modeling on techno-economic assessments of BESSs is investigated. Lastly, a physicochemical aging
model is developed to investigate the nonlinear aging phase with its increased degradation rate in
typical stationary BESS applications.

First, in Chapter 3, the relevant aging mechanisms for commonly used lithium-ion batteries are sum-
marized from the literature, and the stress factors are categorized into calendar and cyclic aging stress
factors. In addition, prevalent approaches for degradation modeling are presented. Furthermore, the
existing literature in the field of aging aware operation is presented in a concise tabular form, and
various categories of methods for aging aware operation are derived. The review shows that defining
aging cost based on either the battery or the BESS investment cost and including them in the objective
function is a widespread method. In addition, most publications in the field use MILPs as a scheduling
method and rely on simplified semi-empirical degradation models that often only consider a subset of
the total calendar and cyclic aging stress factors.
A case study is conducted as part of the review to investigate which stress factors affect the aging be-
havior the most in typical stationary applications and, therefore, should be considered for selecting a
suitable degradation model and deriving aging aware operation strategies. This case study is performed
with the open-source SimSES tool, which is further developed and used throughout the subsequent
chapters of this thesis. SimSES is presented in Appendix A. For the peak shaving application, the
high average SOC is the most relevant stress factor and leads to significant calendar aging. In the
self-consumption increase application, the high DOC and Crate significantly affect cyclic aging. This
application further leads to high SOC values if the BESS is fully charged from the PV system around
midday. For a BESS providing FCR, attention should be paid to the overall low DOC and Crate when
selecting a suitable degradation model for modelling this application.

Following this review, the MPC framework for designing and benchmarking aging aware operation
strategies is presented in Chapter 4. The underlying principle is to use a detailed system model, or
digital twin, to evaluate different operation strategies, especially different optimization model formu-
lations, on the same reference. Optimization models are constrained in complexity by the solution
methods that are used to solve them, e.g., MILP requiring linear or linearized objective functions and
constraints. However, the more detailed system model of the digital twin is not subject to such con-
straints. Specifically, this allows quantifying the benefit of different levels of complexity for degradation
modeling as part of the optimization model.
Here, SimSES is used as the system model, and different optimization models are derived and com-

113



7 Conclusion and potential for future research

pared for the aging aware operation of a BESS for the application of energy arbitrage on the intraday
market of the EPEX electricity exchange. For this investigation, a linearized calendar and a linearized
cyclic degradation model for the investigated LFP cell are developed, which are solvable as part of a
MILP. It is shown that a significant increase in lifetime profitability can be achieved by determining
the optimal aging cost instead of the prevalent approach in the literature of determining the aging cost
based on the battery or BESS investment cost. Furthermore, the lifetime profit from energy arbitrage
can be increased by an additional 24.9 % over the same time period when using the linearized calendar
degradation model and by 29.3 % when using both the linearized calendar and the linearized cyclic
degradation model, compared to an energy throughput-based aging cost model. The more advanced
optimization models lead to the BESS avoiding energy arbitrage opportunities that would be highly
profitable in the short term but also lead to significant battery degradation and, therefore, an earlier
EOL. Instead, more energy arbitrage opportunities are part of the optimal solution that, on average,
are less profitable but also cause less battery degradation and, in total, lead to a higher lifetime profit
in the long term. The significant increase in lifetime profit highlights the financial benefit of aging
aware operation for BESS operators.

Chapter 5 deals with two types of uncertainty in the context of aging aware operation: uncertainty
affecting the operation strategy, i.e., load forecast errors in this case, and uncertainty of degradation
models. Chapter 5.1 proposes an adaptive rule-based aging aware operation strategy for peak shaving
with BESSs. The underlying principle is to charge up the BESS sufficiently early before a load peak
with the energy that is forecasted to be needed during the load peak, thereby reducing the average
SOC and calendar aging effects. Load forecasts generated with an artificial neural network are used
as input, and confidence intervals for the required energy are derived based on the past accuracy of
the load forecasts. The developed operation strategy is compared to a scenario with perfect foresight
and a basic peak shaving strategy. With the proposed operation strategy, the capacity loss is reduced
by 32.2 % over the investigated five-year timeframe compared to the basic peak shaving strategy.
When assuming perfect foresight of the load profile, the capacity loss can be reduced by 52.6 %. The
significant reduction of capacity fade compared to the basic peak shaving strategy shows the potency
of the proposed aging aware operation strategy. At the same time, the gap to the perfect foresight
scenario highlights that the often-used assumption of perfect foresight would lead to overly optimistic
results.
Chapter 5.2 builds on top of the modeling approach presented in Appendix B and investigates how
uncertainty in degradation models affects techno-economic assessments of BESSs. Three representative
BESSs with LFP cells are modeled for the applications of peak shaving, self-consumption increase, and
FCR. The expert-identified degradation model is compared to the machine-learning assisted model
using SimSES. The results show that the confidence intervals of the NPV can be reduced by employing
the model with the higher parameter fit quality, i.e., the machine-learning assisted model. The results
further show that considering degradation modeling uncertainty is especially important when, first,
the generated profit highly depends on the available battery capacity. Second, when a fixed SOH limit
acts as the threshold for the assumed EOL, e.g., at 80 % SOH, since due to the sublinear form of the
degradation model slight errors can lead to significantly varying lifetime predictions. Third, when long
evaluation periods and low interest rates are the focus of the analysis since the dampening effect of
discounting the cash flow in later years is less pronounced for low interest rates.

Lastly, Chapter 6 investigates the performance of significantly aged cells, named late life cells, in typical
stationary applications.
First, a prismatic cell, which is known to be used in multiple operational BESSs, is compared at varying
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SOH values to a cylindrical cell that is primarily intended for EV applications but can be envisioned
in stationary second-life applications. For that purpose, an electrical characterization of the cells is
performed, and equivalent-circuit models are derived and implemented in SimSES. The prismatic cell
shows a higher roundtrip efficiency and nominal power range, which translates into different profit
potentials for the two investigated applications. As the case study shows, the profit generated in an
energy arbitrage application is more affected by a reduced SOH than in a self-consumption increase
application. Furthermore, the prismatic cell has a higher profit potential in both applications over
all SOH ranges than the cylindrical cell. However, this difference is more pronounced for the energy
arbitrage application as well. For example, in the energy arbitrage application, the profit potential of
the cylindrical cell at 60 % SOH is 10.3 % lower than the profit potential of the prismatic cell. For
the self-consumption increase application, this difference in profit potential between the two cells is
only 0.7 % at 60 % SOH. While the differences in profit potential are marginal for the self-consumption
increase application, they are noticeable for the energy arbitrage application. They should, therefore,
be considered when selecting cells for a BESS.
Furthermore, for the cylindrical cells, a physicochemical aging model is developed and parameterized
based on an experimental aging study to investigate the nonlinear aging phase with its increased
degradation rate in typical stationary applications. The aging model includes the mechanisms of
lithium plating, LAM from particle stress, and SEI growth, both continuous over time and accelerated
through cycling the cell. The model is implemented in PyBaMM, and an interface is developed to
link it to SimSES. Notably, the accompanying aging study reveals that cells that have entered the
nonlinear aging phase can transition back to a significantly lower degradation rate through adapted
operating conditions, namely a reduced charge rate and narrowed operating voltage window. The case
study shows that while the cells initially degrade faster in the self-consumption increase application
due to faster SEI growth, the higher charge rates in the energy arbitrage application lead to an earlier
onset of lithium plating and, thereby, nonlinear aging. However, by adapting the operating conditions
below 80 % SOH, the lifetime in the energy arbitrage application can be significantly prolonged, and
the NPV over the investigated ten-year timeframe increases by 39.8 %. This highlights the benefit
of considering and delaying nonlinear aging as part of a holistic aging aware operation strategy for
BESSs, for which the here developed open-source simulation approach may serve as a foundation.

7.2 Potential for future research

While this thesis addresses several topics in the field of aging aware operation, the potential for future
research arises in multiple areas.

The importance of understanding and delaying nonlinear aging effects towards the EOL is only going
to increase now that the first BESSs have been operational for multiple years and with stationary
applications still being envisioned as a second-life scenario for retired batteries from the increasing
number of EVs. Therefore, especially the operating conditions that delay or prevent nonlinear aging
require additional research. For example, the existing literature provides contradicting conclusions
with regard to whether increasing the discharge rate accelerates or delays the onset of nonlinear aging.
Similarly, contradicting results can be found with regards to cycling a lithium-ion cell in high compared
to low SOC ranges. Furthermore, most existing studies that investigate the nonlinear aging behavior
of lithium-ion cells only test individual cells, while in actual applications, multiple cells are connected
to modules. Therefore, the effect of parallel and serial connections of cells to battery modules on the
nonlinear aging behavior requires more investigation as well.
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The small-scale aging study conducted in this thesis showed that nonlinear aging can not only be
delayed by adapting the operating conditions before its occurrence, but lithium-ion cells that have
already entered the nonlinear aging phase can transition back to a significantly reduced degradation
rate by adapting the operating conditions after extended cycling. This was also supported by the de-
veloped physicochemical aging model. This is, in general, a highly promising result since the operating
conditions of a BESS could simply be adapted once nonlinear aging behavior is first observed, which
can then lead to a substantial lifetime extension. However, this effect requires additional investigation
as well with regard to the exact operating conditions that influence it. Here, only one set of adapted
operating conditions was investigated, i.e., a reduced charge rate combined with a narrowed voltage
window. The cell temperature was kept at a constant 25 °C in the aging study and was assumed to
be constant in the model as well. If lithium plating is the expected mechanism that leads to nonlinear
aging, operating late-life cells at slightly higher temperatures during charging could further extend
their lifetime. In addition, how far these results are transferable to different types of lithium-ion cells
remains to be investigated as well.

In terms of aging aware operation in the nonlinear aging phase, adapted but constant new operating
limits below 80 % SOH were proposed, which matched those from the cell aging study. This already
resulted in a significant lifetime and profit increase for the investigated energy arbitrage application.
While this is an easy-to-implement heuristic, better results could be achieved through dynamic criteria
for gradually adapting, for example, the maximum charge rate and charge cut-off voltage based on the
present SOH of the battery cell. This could be even further improved by modeling nonlinear aging
and its stress factors inherently as part of the optimization problem with associated aging cost.

In this thesis, techno-economic analyses were conducted to investigate and quantify the benefit of aging
aware operation, using metrics such as the generated profit in a given application and its NPV. The
ecological benefit of aging aware operation remains to be quantified. This ecological benefit originates
from the prolonged calendar life or additional FECs being delivered before the battery EOL is reached,
both enabled through aging aware operation strategies. Such figures for the ecological benefit can
provide an increased incentive for the widespread adoption of aging aware operation strategies.

Regarding the proposed MPC framework, the question arises of how accurate the modeling of the
degradation behavior as part of the optimization model has to be in order to achieve the desired
benefit. For example, instead of using sets of multiple lines to linearize the SOC dependence of
calendar aging, a single line may already sufficiently entice the optimization to avoid high SOC ranges
while making the optimization model less computationally expensive. The proposed MPC framework
may serve as a basis for finding a trade-off between modeling accuracy and computationally efficiency
for a given application. In the same context, there is a need for methods and tools that automatically
transfer semi-empirical or even physicochemical degradation models to reduced-order models that can
be solved with standard scheduling methods. This could include the linearization of the dependence
of capacity loss on the relevant aging stress factors, which can then be solved as part of a MILP.

Using the extensive field data that BESS operators have gathered over the past years provides an
opportunity to use data-driven methods for parameterizing degradation models, such as it is aimed for
in the research project BattLifeBoost5. A fully integrated solution can even be envisioned, in which
the degradation model is updated based on field data, and the relevant stress factors of the updated
degradation model are automatically linearized and integrated into the optimization model that is used
for the aging aware operation of the BESS.

5 BattLifeBoost in the EnArgus databank: https://www.enargus.de/detail/?id=28619541
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7.2 Potential for future research

With the battery technology landscape still rapidly developing, the guidelines and methods developed
in this thesis should be transferred to new battery technologies as they enter the market. This may
include sodium-ion batteries or solid-state lithium batteries. For such new technologies, the aging
stress factors are of interest. While multiple well-parameterized degradation models are available in
the literature for commonly used NMC, NCA, and LFP cells, such models will be needed for the new
battery technologies as well.

Lastly, the methods and guidelines developed in this thesis remain to be implemented in the constantly
growing and aging fleet of lithium-ion based BESSs in order to increase the resource efficiency of energy
storage.
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A B S T R A C T

The increasing feed-in of intermittent renewable energy sources into the electricity grids worldwide is currently
leading to technical challenges. Stationary energy storage systems provide a cost-effective and efficient
solution in order to facilitate the growing penetration of renewable energy sources. Major technical and
economical challenges for energy storage systems are related to lifetime, efficiency, and monetary returns.
Holistic simulation tools are needed in order to address these challenges before investing in energy storage
systems. One of these tools is SimSES, a holistic simulation framework specialized in evaluating energy storage
technologies technically and economically. With a modular approach, SimSES covers various topologies, system
components, and storage technologies embedded in an energy storage application. This contribution shows
the capabilities and benefits of SimSES by providing in-depth knowledge of the implementations and models.
Selected functionalities are demonstrated, with two use cases showing the easy-to-use simulation framework
while providing detailed technical analysis for expert users. Hybrid energy storage systems consisting of
lithium-ion and redox-flow batteries are investigated in a peak shaving application, while various system
topologies are analyzed in a frequency containment reserve application. The results for the peak shaving
case study show a benefit in favor of the hybrid system in terms of overall cost and degradation behavior
in applications that have a comparatively low energy throughput during lifetime. In terms of system topology,
a cascaded converter approach shows significant improvements in efficiency for the frequency containment
reserve application.

1. Introduction

In former decades, the worldwide energy transition was predomi-
nantly driven by introducing more Renewable Energy Sources (RES)
capacity to existing power networks, a process strongly supported by
both globally declining cost for wind and solar power generation as well
as through local legislation support, including subsidy schemes [1,2].
Following these early stage developments, the energy transition in
various regions has now started to face new constraints and technical
challenges, which demand other and often more site-specific solution
approaches. Coupling of the power grid to both heating and electrified
transport is certainly a key strategy to increase RES penetration on a
global and nationwide level within the power system itself. At the same
time, increasing the intermittence of supply that relies more on variable
sources like solar and wind generation brings incorporation of grid-tied
energy storage into discussion as a technically mature and potentially
cost-competitive measure addressing volatility issues [3].

∗ Corresponding author.
E-mail address: marc.moeller@tum.de (M. Möller).

In order to categorize storage integration in power grids we may
distinguish among Front-The-Meter (FTM) and Behind-the-Meter (BTM)
applications [4]. FTM includes applications such as storage-assisted
renewable energy time shift [5], wholesale energy arbitrage [6,7],
and Frequency Containment Reserve (FCR) provision [8]. A more dis-
tributed and locally coordinated power supply is discussed in the
context of BTM applications, e.g., Peak Shaving (PS) for industrial sites
or at electric vehicle charging stations [9], or bill-saving at residential
sites through Self-Consumption Increase (SCI) with local photovoltaic
generation (residential battery storage) [10]. However, before taking
a solid investment decision, it is crucial to analyze and optimize the
technical parameters, storage dispatch control, as well as cost/revenue
streams over the course of the entire project lifetime. Simulation and
modeling tools in conjunction with sensitivity analyzes and optimiza-
tion routines are commonly used to support these crucial steps in the
planning and operational phase of grid-integrated storage projects.
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The Simulation Tool for Stationary Energy Storage Systems (SimSES)
was developed to assist through the aforementioned tasks of storage
system planning and operation. Through combining user-defined in-
puts with pre-parameterized component building blocks, as well as
calculation methods and result analysis functions, a reserve is built
for research, industry, and policy makers in equal measure to support
deployment and enrollment of storage integration to the grid. The
approach of SimSES is presented within this contribution.

In Section 2, comparable existing tools are reviewed and evaluated
before the structure of SimSES is elaborated further in Section 3 as
well as its detail models for storage technologies (Section 4) and its
periphery (Section 5). Afterwards, in Section 6 two case studies are
presented to show the capabilities of SimSES and concludes with a
summary and outlook of further investigations in Section 7.

2. Literature review

Various authors have analyzed sizing and (economically) optimal
operation of a specifically chosen storage system in a dedicated appli-
cation setting, e.g., the usage of redox flow battery (RFB) for industrial
PS applications [9] or the usage of lithium-ion battery (LIB) for SCI [11,
12]. Fewer studies exist comparing the suitability of different storage
options for a given use case, e.g., refer to Toledo et al. [13] for a
suitability comparison of different storage types for conducting residen-
tial self-consumption increase. Also, the profitability attainable across
different applications was analyzed with a given technology to start
off with, e.g., LIB in a wide range of application settings [14]. There
is consensus that no uniform ideal candidate to meet all application-
specific requirements exists within the storage technologies available to
date [15]. In order to predict internal states of a storage system such as
the State of Health (SOH) or the storage internal losses, it may become
necessary to parameterize and simulate an adequately complex model
of a storage system. Furthermore, simulations need to be fed with
an operational concept that complies with the application constrains,
and may deliver the compatibility of a given configuration as well as
provide state predictions for the storage system. From an investor’s per-
spective and ultimately for the most cost-effective integration of storage
system to power grids with a high share of Variable Renewable Energy
Sources (vRES), it is detrimental to conduct in-depth sensitivity and
optimization studies relying on a full spectrum techno-economic model
before subsequent tasks of project acquisition, realization, operation,
and ultimately disposal are to be considered.

In the following, an overview of a selection of depicted tools for the
techno-economic modeling of stationary storage in grid applications is
provided. While Table 1 summarizes some of the main characteristics of
these tools, it should be noted that this paper does not claim to provide
a complete overview of all tools that may be relevant in the context
matter.

GridLab-D,1 developed and distributed via Pacific Northwest Na-
tional Laboratory (PNNL), is a universal tool that allows modeling
and analyzing multi-component power system networks. Its strength
lies in the ability to simulate physical properties of various compo-
nents through setting up and solving multiple differential equations,
describing all sub-components in the modeling region. While the tool
is certainly strong in modeling an entire micro-grid with its numerous
grid states, it lacks detailed performance models for energy storage
systems as well as application-specific parameterization and is therefore
not applicable for detailed techno-economic analysis and optimization
of storage project as it is focused in this work.

Other tools like NAS Battery Simulator,2 PNNL Flow Battery Cal-
culator,3 and H2FAST,4 are tools dedicated to specific storage types be-
ing sodium sulfur battery (NaS) redox flow, and electrolysis/hydrogen

1 https://www.gridlabd.org/
2 https://www.ngk-insulators.com/en/product/nas/simulator/
3 https://github.com/PNNL-OE-Redox-Flow-Battery-Cost-Tool/PNNL-OE-

Redox-Flow-Battery-Cost-Tool
4 https://www.nrel.gov/hydrogen/h2fast.html

storage, respectively. These tools are developed for conducting rapid
cost-revenue calculations for the specific technology of choice and offer
limited user-specific input in terms of system parameterization and
choice of application use case. Nevertheless, the aforementioned tools
are confined to a dedicated storage system technology, rendering them
less suitable for cross-technology comparisons. Furthermore, most tools
of this kind are distributed as a proprietary code, matching only a
dedicated commercial product well, and are not suitable for conducting
sensitivity analyzes and adaption to envisioned new storage system
control and operation.

More tailored simulations can be conducted using the tool Per-
ModAC developed at htw Berlin [16]. Using this open-source software
tool, performance and efficiency modeling of PV-coupled residential
battery storage systems can be conducted. While the tool is extraor-
dinarily strong in conducting battery storage product-specific perfor-
mance and efficiency modeling, the model lacks the capabilities to
analyze battery degradation. More importantly, the current version of
this open-source tool is strictly confined to a specific residential BTM
use case and cannot be used directly for cross-application assessments,
as is desired for an investor’s decision support.

Homer Pro and Homer Grid are more versatile modeling tools
when it comes to comparing and optimizing the techno-economic
performance of storage systems in (micro-)grids. The tools support
various storage specific libraries and application-specific modeling ca-
pabilities, e.g., storage-supported renewable energy time shift in island
grids as well as peak-shaving and solar-plus storage calculations in
the current professional versions, and has been used in various sci-
entific publications [17,18]. The software was developed by National
Renewable Energy Laboratory (NREL), but the license for these tools
are distributed solely via Homerenergy as a commercial product and
cannot be extended/adapted according to the users’ desire to address
new application scenarios, specific personal needs, or local regulation
frameworks. E.g., applications like the provision of frequency contain-
ment reserve and arbitrage marketing scenarios are not covered in the
current version of the software tools.

Two other tools developed by NREL and Sandia National Laborato-
ries (SNL) are worth looking at in more detail: BLAST5 (Battery Lifetime
Analysis and Simulation Tool) is a powerful software suite programmed
using MATLAB® and it is distributed for both vehicle and stationary
BTM applications. BLAST-BTM-Lite has powerful modeling capabilities
for battery performance and lifetime calculations in stationary BTM
applications and it includes both optimization and basic economic
calculations. While it is highly recommended that this tool to be looked
at closer by users interested in PV self-consumption and PS application,
applications (only BTM) and storage systems to be analyzed (only con-
ventional electro-chemical batteries) are clearly limited and confined.
Furthermore, its original code structure lies hidden behind a graphical
user interface and a proprietary executable file, making it unfeasible for
the end-user to adapt parameters, e.g., sample time for peak shaving
control.

The System Advisor Model6 (SAM) tool builds up on a PV modeling
framework originally set up by SNL and is now distributed via NREL.
In its current version it allows coupling of battery storage with PV
systems and incorporates financial models, e.g., for Power Purchase
Agreement (PPA) calculations. More importantly, the user interface has
been re-factored and is now distributed as an open-source software
development kit for the Python programming language, allowing others
to contribute with their individual extensions and developments. Nev-
ertheless, on the technology side of its current version only batteries
are supported and implemented (no other storage media).

5 https://www.nrel.gov/transportation/blast-btm-lite.html
6 https://sam.nrel.gov/about-sam.html
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Table 1
Overview of technical and economic modeling tools for energy storage in stationary applications.

Tool name License type Developer (primary) Focus

GridLab-D BSD open license PNNL Multi-domain state modeling for power distribution system
simulation

NAS Battery Simulator commercial NGK-insulators NGK product-tailored NaS battery simulation in peak shaving
application

Flow Battery Calculator open source PNNL Estimation tool of cost for redox flow batteries
H2FAST open source (Excel sheet) NREL Economic assessment of hydrogen fuel stations
PerModAC open source htw Performance and efficiency modeling of PV coupled residential

battery storage systems
Homer Pro commercial Homerenergy (UL.com) Residential/Microgrid modeling—multiple storage systems, multiple

application scenarios
BLAST-BTM-Lite commercial freeware (lite version) NREL Analysis and modeling of battery degradation
StorageVET open source EPRI Optimization of size and financial evaluation of energy storage
SAM — System Advisor Model BSD-3-clause NREL Modeling and analysis software for renewable energy projects
SimSES BSD-3-clause TUM Physically motivated energy storage component, system and

application behavior model

The storage value estimation tool7 (StorageVET) developed mainly
by the Electric Power Research Institute (EPRI) comes with a documen-
tation, tutorial videos, and a user feedback forum. Since the release
of version 2.0 the tool has been available as a Python package and
most functional parts are licensed as 3-clause BSD open source. The
tools allow conducting cost–benefit analysis and includes various ap-
plication services like voltage support, retail demand charge reduction,
frequency regulation, and even value stacking via aggregating multiple
services to be served by one storage system. While the interface to
the generation and storage technologies allows multiple options, at
present only a very limited number of choices is available (PV/Internal
Combustion Engine (ICE) and Battery/Compressed Air Energy Stor-
age (CAES)). Furthermore, performance and degradation modeling is
very limited, as it is based on an energy bucket model rather than
analyzing the voltage and current specific phenomena of real world
electro-chemical devices. Also, there is no thermal model included
in the calculations, limiting the value of simulations for temperature
sensible parameters like storage system efficiency (including Heating
Ventilation Air Conditioning (HVAC) consumption) and storage aging.

Unlike the aforementioned tools, SimSES aims to bring together the
model precision of tools like SAM and PermodAC and combine it with
an interface to various applications and energy market scenarios. To
do so, the model is distributed as open-source code on Gitlab8 and
Python Package Index9 and builds up on a object-oriented approach
programmed in Python language. Several modules are interlinked and
interchangeable, and configuration files are used to select the setting
of choice for typical time-series evaluations. The program as a whole,
or parts of it, can also be integrated into simulation toolchains and
modeling environments, making it feasible to be used in sensitivity
and optimization studies and at the interface to a super-ordinate multi-
instance controlling unit, as is further described in one of the case
scenarios (Section 6.1). In order to allow the Energy Storage Systems
(ESS) to react directly to states in a distribution grid, SimSES can be
coupled to grid models, thus making it possible to have a power flow
analysis and a detailed simulation of an ESS at the same time. SimSES
stands out against above-mentionded tools, e.g., Homer Pro or SAM,
by providing various detailed energy storage systems including vali-
dated and literature-based degradation models. Furthermore, a plethora
of predefined storage-specific application Energy Management System
(EMS) like ancillary services and energy trading are implemented and
combined with suitable economic parameters, so that end-users are able
to test a system of choice for a selected application use case. At the same
time, the existent code framework is open-source accessible and open
for future contributions from other developers worldwide.

7 https://www.storagevet.com/
8 https://gitlab.lrz.de/open-ees-ses/simses
9 https://pypi.org/project/simses/

3. Simulation framework for stationary energy storage systems

Stationary ESS may become a key component for future energy
systems and incorporating various FTM and BTM applications sup-
porting the electricity grid. Simulation tools are needed in order to
provide advice for investment decisions and to analyze the impact
of a stationary ESS. These tools should be able to model impact of
applications on the health status of the ESS and its implications for
prospective revenues.

While SimSES aims to allow for techno-economic cross-application
and cross-technology comparisons, the tool is designed in a modular
fashion and incorporates all technical components necessary for the
grid connection of energy storage. Hence, SimSES does not only model
various technologies, but also their thermal behavior, the correspond-
ing power electronics, as well as the impact of different operating
strategies. An integration into other energy simulation frameworks can
be easily applied, as shown in project openBEA.10

The main task of SimSES is to determine the effects of the target
power provided by the EMS regarding efficiency, temperature, and
degradation of the ESS when applied to the storage system. Each imple-
mented component is responsible for modeling its relevant principles.
SimSES is divided into a simulation part for modeling the physical
representation of the ESS and an evaluation part that provides technical
and economic results as shown in Fig. 1. The figure also shows the
basic working principle of SimSES: the time-series based simulation
allocates an AC power target provided by the selected EMS to the
storage system. After updating all models of the storage system, the
current state regarding important variables such as SOC, temperature,
SOH, and delivered power is transferred back to the operating strategy
on which a new target power is calculated for the next time step.

In order to represent a storage system as a whole, various compo-
nents need to be taken into account for a storage simulation. Besides
the storage technology, power electronics is an important element. For
instance, a simple Battery Energy Storage System (BESS) configuration
consists of an Alternating Current to Direct Current (ACDC) converter
connected to the grid and a battery. Additionally, stationary ESS are
usually covered by a housing. These housings need to be thermally
controlled in order to keep the ESS within its safety ranges. SimSES
covers these possibilities with various configurable components and
topologies.

More complex topologies can also include Direct Current to Direct
Current (DCDC) converter or parallel connected ACDC converters, each
connected to an ESS. Various ESS topologies are built with an AC
connection to the grid or site location by connecting an ACDC con-
verter to the storage system. However, in recent years Direct Current
(DC)-coupled ESS has gained importance, especially in the residential

10 https://openbeaproject.wordpress.com/
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Fig. 1. Graphical overview of SimSES showing its simulation and analysis models,
including the Energy Management System (EMS), storage system setup, technical and
economical evaluation, and its necessary inputs. The state of a storage system includes
the most important variables of the storage models, e.g., State of Charge (SOC),
temperature, and State of Health (SOH).

Fig. 2. Main component classes in SimSES: Interconnection of electrical and thermal
models for ESS including the abstract AC and DC storage systems. Multiple model
implementations exist for each component. Possible parallel connections of various AC
and DC storage systems are indicated.

sector [19]. Hence, a state-of-the-art storage simulation framework
needs to take varying topologies into account. SimSES considers these
topologies by defining two abstract systems: AC and DC storage sys-
tems, which can also be combined in order to meet versatile topology
configurations. Every AC storage system consists at least of an ACDC
converter and a DC storage system. On the one hand, this allows the
connection of several storage systems to the grid in parallel; on the
other hand, this allows multiple DC-connected ESS within one storage
system. Furthermore, the main ESS model is located inside the DC
storage system behind a DCDC converter. These models are depicted
in Fig. 2.

In the following sections, each of the SimSES packages as well as
the underlying models and implementations are described in detail and
shown in Fig. 3. Storage Technology and System provides models to
represent physical models of storage system components while Analysis
focuses on examining the simulation results regarding the technical
and economical behavior of the simulated storage systems. All control
algorithms and power flow management are handled within the Logic
package.

Additional packages like Commons, Simulation, and Data deliver
supportive functions for SimSES. Config is tasked to deliver function-
ality for the mentioned modular configuration of the ESS. In this
package, software design patterns like the factory pattern are used to
provide a wide range of configurable components [20]. Additionally,
the structure allows the use of sensitivity analysis, e.g., by varying
either different components or their dimensions. Simulation is another
package that supports sensitivity analysis by allowing running multiple

Fig. 3. Structure of SimSES: Packages are divided into Storage Technology, System,
Commons, Logic, Analysis, Simulation, and Data. Within Storage Technology, the physical
representation of each technology, namely LIB, RFB, and Hydrogen, is located. The
Commons package delivers general functions for configuration and common features.
The periphery is handled in the System package. Control algorithm and management
is dealt with in the Logic package. Analysis focuses on the technical and economical
evaluation of the simulation results. Simulation provides functions for simultaneous
simulations, whereas Data stores all necessary information.

SimSES instances in parallel, therefore increasing simulation speed.
For this purpose, Python’s multiprocessing library is used. Further time
series functions are implemented, like handling of profiles for power
or price time series. These functions are used throughout SimSES, for
example, by providing power profiles for the EMS. These supportive
functions are covered within Commons, providing general functionality
for time-series based simulations.

4. Storage technology models

Energy storage models represent the core of SimSES. In-depth mod-
els of various storage technologies are implemented, namely for LIB,
RFB, and a hydrogen energy chain represented by electrolyzer, fuel
cell and hydrogen storage. Each of these storage technologies have
specific implementations regarding their physics and behavior. Due to
the modularity of SimSES, further technologies can be implemented in
future work.

4.1. Lithium-ion battery

ESSs based on LIB have evolved rapidly with a wide range of cell
technologies and falling costs in recent years [11,21]. In SimSES LIBs
are implemented as a distinct storage technology. The target power
for this technology Pst depends on the storage structure and the power
distributor as described in Section 5.

Four subcomponents are implemented in SimSES for behavior mod-
eling of LIB. The Equivalent Circuit Model (ECM) is used to describe
the electrical behavior of a specific cell type providing terminal voltage
according to operational input data. The Battery Management System
(BMS) monitors the cell operation conditions and updates values for
the current. The electrical characteristics of LIBs in SimSES differ with
chemistry and composition of constituent materials and may be fed
with predefined manufacturer-specific datasets. Furthermore, various
cell-specific degradation models can be selected in SimSES. The aging
calculation is based on the cycle detector selected (e.g., half-cycle
detector). These four main components are schematically illustrated in
Fig. 4, and explained in detail in the following subsections.

4.1.1. Equivalent circuit model
To describe the electrical behavior, in SimSES the battery is im-

plemented as a single-cell ECM. The currently implemented model
includes an Open Circuit Voltage (OCV) and an internal resistance Ri,
which is depicted in Fig. 4. According to Eq. (1), the terminal voltage
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Fig. 4. Package structure of a lithium-ion battery. The battery package in SimSES
includes four main components: a battery management system, a cell type including a
equivalent circuit model, a degradation model, and a cycle detector.

UT of each cell is calculated from the OCV and the voltage drop ΔU
across Ri, due to the cell current I.

The OCVs of all currently implemented cell types are only de-
pendent on the SOC but could be extended with further parameters
like temperature and SOH. The internal resistance Ri of all currently
implemented cell types takes the cell temperature Tcell, I, and the SOC
into consideration. For both the SOC as well as Ri, the required data for
different cell types are stored as look-up tables in SimSES. In between
the available data points a linear interpolation is executed. Hence,
the result quality relies on the number of data points. To improve
performance, the interpolation of the SOC data was replaced by a fitted
mathematical function, which is explained in Appendix A.

UT = UOCV − 𝛥U = UOCV (SOC) − I ⋅ Ri
(

SOC, I,Tcell
)

(1)

4.1.2. Battery management system
The BMS is linked to the ECM and is responsible for maintaining

critical cell parameters within their permissible ranges. In addition to
the target power Ptarget , voltage UT, temperature Tcell, SOC, and current
I are further input parameter for the BMS. According to the cell-specific
parameters (e.g., maximum temperature), the BMS checks the input
parameters and indicates whether they are within their limits. If limit
violations occur, the current is restricted and returned to the ECM. The
other parameters are recalculated accordingly and passed on to the
aging models. The fulfillment factor indicates the share of the output
power to the target power and will become sub-unity for simulations
with boundary violations.

As seen in Eq. (1), the current I and the terminal voltage UT are in-
terdependent. Differential equations are necessary for calculating these
values in the discrete time domain. To avoid these computationally in-
tensive differential equations, an iteration loop is integrated in SimSES:
the updated current I and terminal voltage UT are iteratively derived
through repetitive numerical approximation. This loop terminates after
a predefined maximum number of iterations or as soon as the change
in the current I or the terminal voltage UT falls below a preset limit.

4.1.3. Lithium-ion battery cell types
The LIB cell forms the core of the BESS, and is essential for under-

standing the electrical and thermal characteristics of an entire system.
For a more detailed discussion the reader is referred to [22,23] and
for a description of current and future materials for LIBs as well as
beyond lithium-based anode materials the reader is referred to [24]. In
SimSES, three state-of-the-art technologies based on a Carbon-Graphite
(C) anode and various cathode materials are currently implemented:
two cells with a Nickel-Manganese-Cobalt-Oxide (NMC) cathode and
one cell, each with a Lithium-Iron-Phosphate (LFP) and Nickel-Cobalt-
Aluminum-Oxide (NCA) cathode, respectively. In addition, a generic

cell with linear OCV is implemented in order to run simulations in-
dependent of the cell chemistry. Table 2 gives an overview of these
cells, including their electrical attributes. The thermal parameters are
summarized in Appendix B.

4.1.4. Lithium-ion battery degradation models
LIBs are subject to degradation due to multiple cell-internal aging

processes, which can have significant impact on the economics of a
BESS project [30]. In SimSES, degradation is modeled following a
semi-empirical superposition approach of cyclic and calendar aging, as
shown in Eqs. (2) and (3).

Ctotal
loss = Ccal

loss + Ccyc
loss (2)

Rtotal
inc = Rcal

inc + Rcyc
inc (3)

The resulting capacity loss Ctotal
loss and resistance increase Rtotal

inc are
calculated through the addition of the respective calendar aging (Ccal

loss,
Rcal
inc) and cyclic-aging components (Ccyc

loss, Rcyc
inc ). Table 3 provides an

overview of the primary LIB degradation models that are available in
SimSES and their dependencies, as well as the sources on which these
models are based. Here, t, SOC, Tcell, and UT refer to the simulation
time, state of charge, cell terminal voltage, and cell temperature,
respectively. ΔDOD, EFC, Q, and UT refer to the delta in depth of
discharge for a cycle, the number of equivalent full cycles, the charge
throughput, and the average cell terminal voltage over one equivalent
cycle. The delta in depth of discharge (ΔDOD), as it is implemented
here, is also referenced as depth of cycle or cycle depth in literature by
some authors.

While calendar aging is computed once every simulation step, the
model routine to calculate increase in cyclic aging is only triggered fol-
lowing the detection of half an equivalent cycle of charge throughput.
This decreases the calculation time and allows determining the C-rate
as well as DOC for that half equivalent cycle.

4.2. Redox flow battery

Large-scale storage systems are purportedly to be of rising concern
in order to ease the growing penetration of RES. Hence, RFBs are of
particular interest for multiple hour- and large-scale stationary ESSs
because they can be easily and efficiently scaled according to the needs
and become cost competitive at an energy range of multiple MWh [31].
To analyze their potential in different applications from small-scale
(e.g., residential storage) to large-scale applications (e.g., industrial
storage), they are integrated into SimSES as an additional storage
technology. In an RFB, the liquid storage medium (electrolyte) is stored
in external tanks. To charge and discharge the RFB, the electrolyte
is pumped through a stack where the electrochemical reactions take
place. The electrolyte divided in anolyte and catholyte solutions are
separated by an ion-exchange membrane through which the charge
carriers are transported. There are several known possible electrolyte
combinations, e.g., all-vanadium or vanadium/bromine solutions [32].
As the energy conversion unit and the energy storage medium are de-
coupled, the power and energy of an RFB can be scaled separately [31,
32].

Fig. 5 shows the structure of the main components modeled in
SimSES to describe an RFB. The electrochemical model calculates the
electrical operating parameters of a specific stack module dependent
on the chemical composition of the selected electrolyte system. The
control system checks whether the target parameters are within safe
operating limits and returns the actual usable values. Different pumps
and pump control algorithms can be configured. In the following, the
model components are described in more detail.
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Table 2
Lithium-ion battery cells currently implemented in SimSES, including their electrical parameters.

Manufacturer
Model

Acronym
in SimSES

Anode
Cathode

Nom. voltage (V)
Voltage range (V)

Capacity
(Ah)

Crate Ch. (1/h)
Crate Dch. (1/h)

Source

Sonya

US26650FTC1
SonyLFP Graphite

LiFePo4
3.2
2.0–3.6

3.0 1.0
6.6

[25,26]

Panasonic
NCR18650PD

Panasonic-
NCA

Graphite
LiNiCoAlO2

3.6
2.5–4.2

2.73 0.5
3.5

[27]

E-One Moli
Energy
IHR18650A

MolicelNMC Graphite
LiNiCoMnO2

3.7
3.0–4.25

1.9 1.05
2.1

[28]

Sanyo
UR18650E

SanyoNMC Graphite
LiNiCoMnO2

3.6
2.5–4.2

2.05 1.0
3.0

[27,29]

Generic cell
model

GenericCell – 3.5
3.0–4.0

2.5 2.0
2.0

–

aMurata Manufacturing Co. acquired the Sony battery division in 2017.

Table 3
LIB-specific degradation models along with corresponding variable dependencies and literature sources.

Cell acronym Calendar aging Cyclic aging Model based on

Ccal
loss Rcal

inc Ccyc
loss Rcyc

inc

SonyLFP t,SOC,Tcell t,SOC,Tcell EFC, 𝛥DOD, C-rate EFC, 𝛥DOD, C-rate [25,26]
PanasonicNCA t,UT ,Tcell t,SOC,Tcell EFC, UT, C-rate EFC, UT, C-rate [27]
MolicelNMC t,SOC,Tcell t,SOC,Tcell Q, 𝛥DOD, C-rate Q, 𝛥DOD, C-rate [28]
SanyoNMC t,UT ,Tcell t,UT ,Tcell Q, 𝛥DOD,UT Q, 𝛥DOD,UT [29]
GenericCell t – EFC – –

Fig. 5. Package structure for a redox flow battery (RFB). It contains an electrochemical
model (equivalent circuit model) with specific parameters for different stack modules,
an implemented control system, an electrolyte system, a degradation model, and pumps,
with interchangeable control algorithms.

4.2.1. Electrochemical model
As with LIB, the currently implemented electrochemical model of an

RFB is based on an equivalent circuit model (cf. Fig. 5). The terminal
voltage UT is directly calculated from the power applied to the RFB.
Eq. (4) can be derived from Eq. (1) by using the relation between
storage power Pst , terminal voltage UT, and current I (Pst = UT ⋅I). UT is
therefore calculated by Pst , the OCV, and the internal resistance Ri. Both
OCV and Ri are dependent on the SOC and the electrolyte temperature
in the stack module Tstack .

UT = 0.5 ⋅
(

UOCV +
√

U2
OCV + 4 ⋅ Ri ⋅ Pst

)

UOCV = f
(

SOC,Tstack
)

Ri = f
(

SOC,Tstack
)

(4)

Charge effects are taken into account by implementing a current for
the charging losses Ichar-loss when calculating the change of the system
SOC (SOCsystem) via Eq. (5), considering the simulation time step Δt,
the nominal voltage at the stack module Unom, and the total energy
of the electrolyte Etotal. Ichar-loss includes coulombic losses due to self-
discharge through the transport of reactants over the membrane and

shunt currents. Shunt currents occur due to a connection of cells in the
stack through an ionic conductive electrolyte distribution system. This
creates a bypass current forced by the electric field due to the electrical
series connection of the cells [33].

𝛥SOCsystem =

(

I − Ichar-loss
)

⋅ 𝛥t ⋅ Unom

Etotal
(5)

A control system is integrated in the electrochemical model, which
checks whether UT, I, and SOC are within safe operating limits. If the
values are out of range, they will be adapted and the other parameters
are recalculated accordingly.

Additionally, a capacity degradation model including the capacity
losses Closs due to hydrogen evolution is implemented in the RFB model.
Further research is required to estimate a realistic hydrogen evolution
current for industrial-sized stacks to predict the capacity reduction
realistically over time. A current approach using experimental data of
a laboratory cell from Schweiss et al. [34] overestimates the resulting
capacity losses. Whitehead et al. [35] stated a capacity loss of less than
1% per year due to hydrogen evolution. Therefore, a hydrogen current
of 5 ⋅ 10−8 mA

cm2 is assumed, resulting in a capacity loss of about 1% per
year for a system with an Energy-to-Power Ratio (EPR) of 1. As the EPR
increases, the loss decreases accordingly.

4.2.2. Stack module and electrolyte system
The calculations in the electrochemical model are based on elec-

trical and geometrical data for a stack. A stack consists of a fixed
number of cells electrically connected in series. The data to consider
the voltage, charge, and hydraulic losses of a stack can be obtained
either from experimental data or from the literature values and models.
Stacks can be electrically connected in parallel or in series to a stack
module to increase power and voltage of the RFB system. In this
configuration the electrolyte flows in parallel through all cells and
stacks. The performance parameters of the stack are directly connected
to the used electrolyte system. The currently in SimSES examined
and implemented electrolyte is an all-Vanadium system, consisting of
1.6 mol/l Vanadium solved in an aqueous sulfuric acid (2 mol/l H2SO4)
from GfE (Gesellschaft für Elektrometallurgie mbH). To reduce side
reaction due to high potentials and to prevent performance penalties
the electrolyte needs to operate in a limited SOC range. A typical usable
SOC range for a RFB lies between 20 and 80% [36]. Based on this SOC
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Table 4
Redox-flow battery stack types in SimSES.

Acronym in SimSES Cell number Cell area (cm2) Based on experimental data of Model based on

CellDataStack5500W 40 2160 Appendix C [37–39]
DummyStack3000W 20 1000 N/A N/A
IndustrialStack1500W 18 551 Voltstorage GmbH [37,38]

range the nominal power of a stack is calculated. An overview of the
in SimSES implemented stacks is listed in Table 4. The name of the
stack includes its nominal power. In addition, some modifications of
the described stacks are included, which are up-scaled or simplified
versions that are not included in the list.

4.2.3. Pumps and pump control algorithm
The pump control algorithm used to control the flow rate or pres-

sure drop in the system is an important performance-determining factor
that affects the operating losses. Two different algorithms to choose
from are currently integrated: the constant and the stoichiometric flow
rate. It is assumed that the pumps always stop during stand-by to
reduce the operating losses. If flow rate V̇ or pressure drop Δp is given,
the other value is calculated via Eq. (6) from the specific hydraulic,
viscosity-corrected resistance Rhydraulic,specif ic and the viscosity 𝜇 of the
anolyte or catholyte.

𝛥p = V̇ ⋅ Rhydraulic,specif ic ⋅ 𝜇 (6)

If the pump is operating with a constant flow rate, it must be
ensured that the volume flow is sufficiently high so that the stack
module is supplied with enough reactants at any time of operation
(depending on SOC and I). This is checked by the control system
integrated in the electrochemical model.

For the stoichiometric flow rate algorithm V̇ is calculated according
to Eq. (7) via the stoichiometric factor 𝜈, the total concentration of the
active charge carriers in the electrolyte cact-car (for the implemented
Vanadium electrolyte it is 1.6 mol/l), the Faraday constant F, and the
still available concentration of reactants in the electrolyte, which is
described through the SOC for discharging and (SOC − 1) for charging.
If, for example, the RFB is charging at SOC 70%, reactants that can
be maximal charged in the Stack are 30% of the total concentration,
therefore value is 0.3.

V̇ = 𝜈 ⋅ I
F ⋅ cact-car ⋅ (SOC − 1)

for P >= 0

V̇ = 𝜈 ⋅ I
F ⋅ cact-car ⋅ SOC

for P < 0
(7)

The pump losses Ppump can be calculated with Δp, V̇, and the pump
efficiency 𝜂pump of a specific pump that can be selected in SimSES via
Eq. (8) [40].

Ppump =
V̇ ⋅ 𝛥p
𝜂pump

(8)

4.3. Hydrogen energy chain: Electrolyzer, storage, and fuel cell

Hydrogen as an energy carrier is supposed to be one of the major
contributors impacting future energy provision, storage, and distribu-
tion [41]. The abundance of chemically-bound hydrogen in the form
of water as well as its very high-energy density is compelling for
its deployment as an energy carrier for large-scale energy storage.
However, the efficiency of splitting water into its separate components
via electrochemical electrolysis and reverting the process through fuel
cells or combustion power plants is comparatively low, in striking
contrast to electrochemical storage like LIB [14,42]. As such, hydrogen
is thought to complement rather than to compete with LIB and RFB.
In order to understand the effects of a hydrogen-based energy chain
on a system level including its periphery, models for electrolyzers,
fuel cells, hydrogen storage, and its auxiliary components like pumps
and compressors are integrated as models within SimSES. Within this

Fig. 6. Package structure for hydrogen in SimSES includes four main components: a
hydrogen management system, an electrolyzer, a fuel cell, and a storage model.

section, implementations of the respective models are explained in
detail.

The hydrogen package structure is displayed in Fig. 6, consisting
of a Hydrogen Management System (HMS), an electrolyzer, a fuel cell,
and a 𝐻2 storage model. The HMS supervises the whole hydrogen chain
for valid ranges of temperature and SOC and reduces applied power
if necessary. The storage model could be a gas pipe with an assumed
infinite capacity or a hydrogen pressure tank with a predefined energy
capacity. Depending on the pressure of the gas within the storage tank,
the gas needs to be compressed to the desired pressure level. The
electrolyzer and fuel cell models are explained in detail in the following
sections. It is worth to mention that SimSES also allows a single-
direction hydrogen energy chain by neglecting either the electrolyzer or
the fuel cell component with special implementations. A summary of all
currently implemented models is given in Table 5. Due to the modular
structure of SimSES, additional models can be implemented in a future
release accordingly.

4.3.1. Electrolyzer
A water electrolyzer splits water with the use of electricity into

hydrogen and oxygen by passing ions through an electrolyte from one
electrode to the other. The pressure and temperature-dependent polar-
ization curve is based on the general equation of Nernst voltage 𝑈𝑛𝑒𝑟𝑛𝑠𝑡
as well as overpotentials represented by ohmic 𝜂ohm, activation 𝜂act , and
diffusion losses 𝜂dif f as shown in Eq. (9) [50]. In some implementations
mass transport and membrane permeation are also considered.

UT,EL = Unernst + 𝜂ohm + 𝜂act + 𝜂dif f (9)

Depending on the stack technology, e.g., alkaline or polymer elec-
trolyte membranes (PEM), the electrolyzer is operated at different pres-
sure and temperature levels, which is taken into consideration by
varying polarization curves for each technology [50]. As shown in
Fig. 7, the electrolyzer model is divided into its stack and corresponding
degradation models, pressure and thermal models as well as necessary
auxiliaries like a pump, water heater, and gas dryer. The electrical
auxiliary power is calculated according to the hydrogen and oxygen
generation pressures for the anode and cathode, as well as the stack
temperature. A water pump regulates the humidification of the elec-
trolyzer, whereas the generated hydrogen gas needs to be dried. These
auxiliary models calculate the necessary electrical power in order to
provide a temperature and mass equilibrium.
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Table 5
Overview of implemented electrolyzer, fuel cell and hydrogen storage models in SimSES.

Technology Acronym in SimSES Type Degradation effects Based on experimental data of Model based on

Electrolyzer PemElectrolyzerMultiDimAnalytic PEM Resistance increase,
Decrease of exchange current

Forschungszentrum Jülich [43–45]

PemElectrolyzer PEM N/A N/A [46]
AlkalineElectrolyzer Alkaline N/A Hydrogen Research Institute [47,48]

Fuel Cell PemFuelCell PEM N/A N/A [49]
JupiterFuelCell PEM N/A SFC Energy AG –

Hydrogen Storage PressureTank Pressure Tank N/A N/A –
SimplePipeline Pipeline N/A N/A –

Fig. 7. Package structure for electrolyzer in SimSES includes a stack, pressure, thermal
and degradation model as well as a pump and gas dryer.

Electrolyzer degradation is a field of ongoing research with con-
troversy over underlying mechanisms and influencing factors [51,52].
However, active operation time and applied current density seem to
be major impact factors for electrolyzer degradation. For instance, the
implemented degradation for the Polymer Electrolyte Membrane (PEM)
electrolyzer acquired from the work of Tjarks [43] is based on the
findings of Rakousky et al. [44,45] considering a resistance increase
and a decrease of the exchange current. Other implementations of
electrolyzers are a PEM variant without degradation effects based on
the work of Marangio et al. [46] and an alkaline version based on the
work of Hammoudi et al. [47] and Henao et al. [48].

4.3.2. Fuel cell
As an opposite to electrolyzers, fuel cells combine hydrogen and

oxygen to water while releasing usable energy in the form of elec-
tricity [42]. The terminal voltage is calculated by the Nernst voltage
subtracted by the voltages due to ohmic, activation, and diffusion losses
shown in Eq. (10).

UT,FC = Unernst − 𝜂ohm − 𝜂akt − 𝜂dif f (10)

The fuel cell package has a structure that is similar to the electrolyzer
package, with a stack, pressure, and thermal model. During operation,
the water handling especially for PEM fuel cells is crucial and handled
by water pumps. An implementation of a PEM fuel cell based on Feroldi
et al. [49] as well as a model for the Jupiter PEM fuel cell of SFC Energy
AG11 including a thermal model is available in SimSES. However, the
implementation of adequate degradation models within SimSES is a
task for future action.

5. System periphery, management, and evaluation

Energy storage systems not only consist of the underlying storage
technology but also the periphery like power electronic components

11 https://www.efoy-pro.com/efoy-pro/efoy-jupiter-2-5/

and thermal behavior as well as an EMS. These elements are crucial
for evaluating energy storage systems as a whole. In order to provide
insights into the overall system behavior, SimSES not only models
the periphery and the EMS, it also provides in-depth technical and
economical analysis of the investigated ESS.

5.1. Power electronics

Besides the storage technology, the power electronic components
play a crucial role in terms of system efficiency. Depending on topol-
ogy and application, power electronics may contribute significantly to
the overall system losses [53]. Hence, SimSES has to consider these
electronic components for an accurate simulation of a storage system
like ACDC and DCDC converters. An overview of the implemented
models in SimSES is given in Table 6. Models of these converters
are represented by power and voltage-dependent efficiency curves. In
principle, the efficiency of a power electronics module is represented
by a given storage power 𝑃𝑆𝑡𝑜𝑟𝑎𝑔𝑒 and the rated power of the power
electronics component PRated as displayed in Eq. (11).

𝜂PE = f
(

PStorage,PRated
)

(11)

The power applied to the power electronic components is crucial
for simulating the efficiency. When considering storage systems, it is
possible that these systems do not fully deliver the requested power.
These situations occur, for example, if the storage is outside of its
temperature limits or the SOC is at its lower or upper limits. Hence,
the power is adjusted compared to the target power of the EMS, which
leads not only to non-fulfillment, but also to an altered efficiency.

5.2. Power control

Every power flow in an ESS has to be monitored and controlled. The
power flow is dependent on the application and system topology. In
SimSES, these two dependencies are handled separately with an EMS,
respectively, Power Distribution Strategies (PDS). The EMS defines the
target power for the ESS as a function of the application while the PDS
allocates the target power to the configured subsystems. These control
mechanisms are explained in detail in the following sections.

5.2.1. Energy management system
The EMS in an ESS is a system consisting of both hardware and

software that allows the user to monitor and control the energy flows
within an ESS. In SimSES, the function of the EMS is to calculate and
supply a target power value for each simulation timestep (Δt) based on
the selected operation strategy. This target power value can be depen-
dent or independent of previous system states as well as interfere with
various input profiles. In SimSES both stand-alone and stacked opera-
tion strategies can be simulated. Stacked operation strategies are sorted
according to their user-associated priority level. Consequently, the indi-
vidual stand-alone operating strategies are executed one after another
depending on their priority. Additionally, time-discrete serial stacking
is already available within SimSES. More complex multi-use strategies
can be integrated as stand-alone strategies. At present, a handful of
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Table 6
Overview of implemented ACDC and DCDC converter models in SimSES.

Converter type Acronym in SimSES Based on experimental data of Model based on

AC/DC FixEfficiencyAcDcConverter N/A N/A
NottonAcDcConverter N/A [54]
Sinamics120AcDcConverter Sinamics S120 [55]
BonfiglioliAcDcConverter Bonfiglioli RPS TL-4Q Datasheeta

SungrowAcDcConverter Sungrow SC 1000 TL Datasheetb

M2bAcDcConverter Stable Energy GmbH [56]

DC/DC FixEfficiencyDcDcConverter N/A N/A

ahttps://www.docsbonfiglioli.com.
bhttps://en.sungrowpower.com.

Fig. 8. Structure of the energy management system and overview of available operation
strategies and their categorization in SimSES.

operation strategies are implemented in SimSES. An overview of these
operation strategies and their categorization is depicted in Fig. 8.

The power follower strategy is a basic operation strategy which aims
to get the storage system operation to replicate a given power profile.
Similar to the aforementioned strategy, the SOC follower converts a
given SOC profile to a power profile and attempts to make the storage
system fulfill this calculated demand power at each timestep.

Based on the work of Zeh and Witzmann [57], two operation
strategies for residential SCI in combination with Photovoltaic (PV)
generation units have been implemented. The residential PV greedy
operation strategy charges the ESS as fast as possible without con-
sideration of the grid by meeting the residual load at all times. To
reduce the maximum grid load the residential PV feed in damp operation
strategy schedules the charging of the ESS according to a PV prediction.
It attempts to provide a constant charging power and aims for a fully
charged ESS at sundown.

Two strategies have currently been implemented for industrial con-
sumers. The simple Peak Shaving (PS) strategy works as follows. As
long as the target power is above a specified threshold, the additionally
required power is provided by the ESS. In addition, the ESS will
recharge itself if the power value is below the PS threshold [58] (used
in the case study in Section 6.1). In order to reduce calendar aging for
a lithium-ion based ESS, the PS perfect foresight strategy operates under
the assumption of perfect foresight for the load profile. The ESS will
only charge up to the energy that is required for the next load peak,
right before the occurrence of that load peak [59].

The EMS strategy for providing FCR implemented in SimSES is
based on the German regulatory framework [60,61]. The requested
charging and discharging power is proportional to the frequency de-
viation. Below 49.8 Hz or above 50.2 Hz the output power is set to
the prequalified power. Within the frequency dead band around 50 Hz
with +/-10 mHz the output power is set to 0 W. The degree of freedom
to exceed the output power by 20% is used, aiming to bring the SOC
back to a predefined SOC set-point. The IDM operation strategy charges

or discharges the ESS by trading energy on the electricity market, in
particular on the IDM, if the SOC falls below a predefined lower limit
or it exceeds an upper limit [62]. An example for a FCR and a IDM
stacked operation strategy is provided in Section 6.2.

5.2.2. Power distribution strategies
For complex storage system topologies, the power needs to be

distributed between the different subsystems of an ESS [63,64]. For this
purpose, several power distribution logics are implemented in SimSES.
These logics distribute the power to the corresponding storage systems,
for instance, based on the respective SOH or SOC. In SimSES, the ESS
is differentiated between an AC and DC storage system (see Section 3).
For each node of parallel connected AC systems as well as DC systems,
a power flow decision has to be made similar to Bauer [64]. Mühlbauer
et al. [63] as well as Bauer [64] define PDS as a simple problem of a
distribution factor 𝛼 as shown in Eq. (12).

Pi = Ptarget ⋅ 𝛼i, (12)

where Ptarget is the target power provided by the EMS, 𝛼i the power
distribution factor for system i, and Pi the corresponding power of
system i on condition that the sum of all 𝛼i equals one. In an optimal
case the PDS takes the current limitations of the underlying storage
technology for Pi into consideration in order to be able to fulfill the
requested power, e.g., temperature limitations could lead to lower
deliverable power. For each node, a PDS can be configured.

Mühlbauer et al. distinguish between static and dynamic categories
for PDS while Bauer has more subtle definitions for a dynamical
PDS approach with a fixed and variable sequence [63,64]. Bauer also
mentions a PDS as an optimization problem currently not considered in
SimSES. In the following, PDS implemented in SimSES are presented.

The most straightforward implementation of a PDS is an equal
distribution of the power to all storage systems. This is a static PDS
approach with a fixed power distribution factor. Other static PDS-
like distribution based on the ESS capacity can be easily added to
the PDS set of SimSES. In addition, a dynamic PDS is implemented
by differentiating between charge and discharge distribution factors
depending on the SOC of each system based on [63].

Due to the modularity of SimSES, multiple ESSs with different
storage technologies can be combined with a hybrid ESS, e.g., a LIB and
a RFB system. For this purpose, a novel PDS is introduced prioritizing
configured storage technologies by base and peak loads, respectively.
While the prioritized system stays within a defined SOC range, e.g., be-
tween 25 % and 75 %, it tries to fulfill the target power within its
power limits. If either the SOC or the power limit is exceeded, the
next highest prioritized system takes over. If the power target is not
completely allocated, a second loop distributes the power independent
from the defined SOC range. In addition, the logic balances the SOC of
the configured ESS if one or more systems are outside of the defined
SOC range while other systems are within those ranges. The algorithm
also allows a two or one way balancing, e.g., if only the peak load
system should be balanced by the base load system (used in the case
studies in Section 6).
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5.3. Thermal modeling

Performance, efficiency, and aging of all aforementioned storage
processes depend not only on charge and discharge currents, but are
also highly sensitive to thermal conditions. While for some small-
scale storage realizations (e.g., residential battery storage) modeling
electricity flows in a fixed temperature setting might be a solution of
choice with sufficient accuracy for techno-economic simulations [65],
larger storage systems along with investigations about storage effi-
ciency particularly require detailed thermal models [53]. Utility-scale
LIB stationary ESS are often designed as free-standing systems, which
are installed outdoors and exposed to the environment. The use of
standard shipping containers to install entire energy storage systems is
the preferred option in the industry today to shield sensitive electric
components from adverse environmental conditions. The benefits of
such a configuration include modularity, scalability, ease of logistics,
conformance with road-transport regulations, and the ability to plan
and optimize land usage. Such containers are also specially fitted out
with insulation to limit heat flow to/from the environment, and to
present a stable operation temperature to the components inside.

Heat is generated in LIBs due to internal resistance to the passage
of current during operation. Lithium-ion cell technology is particularly
vulnerable to adverse changes in cell temperatures, and degrade faster
when operated outside of their optimal temperature ranges. In particu-
lar, degradation may result from accelerated kinetics for unwanted side
reactions at elevated temperatures resulting in a loss of capacity and an
increase in the internal resistance. If the generated heat is not rejected
to the environment at a rate greater than the rate of heat generation,
overheating and—in extreme cases—a thermal runaway may occur. In
contrast, for applications with relatively lower current rates (alike most
stationary storage use cases), air cooling systems are deemed adequate
to aid the heat rejection process to maintain the cell temperatures
within the stipulated ranges. It is worth to mention in this context,
that in the absence of cooling systems, the capabilities of the cells are
severely limited, and under-utilized [66].

In summary, thermal modeling of energy storage systems is a crucial
step of the system design process, especially due to the following
factors:

• temperature-dependence of the energy conversion efficiency of
LIB (dependent on the internal resistance) [67] and other storage
technologies,

• temperature-dependence of the degradation mechanisms [68,69],
• dependence of the round-trip efficiency on the energy consump-

tion of auxiliary components, such as the HVAC system [55]
and

• operational hazards under extreme temperatures which are too
low, or too high [70].

Thermal modeling in SimSES follows a zero-dimensional lumped-
capacity approach, and consists of a number of component packages
which run in tandem to emulate the thermal behavior of a system under
the specified operating conditions. Zero-dimensional lumped-capacity
approaches are widely used in the reviewed literature and found to be
suitable for system models [55,71]. Each of these packages and their
core features are presented in this section, along with how they fit
into the larger picture within SimSES and its architecture. The thermal
model and its associated components function at the AC storage system
level in SimSES. SimSES currently supports a container-based housing
solution with an air cooling system for LIB stationary ESS. An overview
of these packages and their interplay is seen in Fig. 9.

5.3.1. Ambient thermal model
The primary function of the ambient thermal model is to account for

the predominant environmental effects that play a role in the thermal
behavior of the ESS. The ambient thermal model currently consists

Fig. 9. SimSES is thermally interconnected with the thermal nodes of ambient air Taa,
wall Tw, inner air Tia, and storage technology TST. The temperature conjunction of
TACDC and TDCDC can be switched off. The HVAC system controls Tia of the storage
system.

of an ambient temperature which supplies a value of ambient air
temperature Taa for each simulation timestep Δt at time t. The ambient
temperature is available in two variants: a constant temperature model,
which supplies a user-specified Taa for each timestep, and a location-
specific model, which, depending on the time of day and year, supplies
a value of Taa based on recorded temperature time-series data. The
ambient temperature datasets currently present in SimSES have been
generated with the help of the publicly available simulation tool gree-
nius, developed by the German Aerospace Center (DLR) [72]. A solar
irradiation model is also envisioned for a future release of SimSES as an
extension of the ambient thermal model in order to be able to supply
values of incident solar irradiation at a given location at time t to allow
for better estimation of the heat load on an ESS. The ambient thermal
model is understandably applicable to all AC storage system instances
present in a given BESS configuration.

5.3.2. Housing model
The housing model emulates the physical attributes of the specified

housing type. SimSES currently supports system simulations with a
standard 20 foot shipping container as the housing. The walls are
modeled with three layers of materials, including an insulating layer
of Polyurethane (PU) between the outer and inner metal layers. The
geometrical dimensions and physical and thermal properties of the
walls of the shipping container can be adapted to suit any desired
variant. The modular and extendable structure of SimSES ensures that
the choice is not limited to the presently implemented model, but rather
allows for other housing types or installation conditions to be modeled
and included in simulations.

5.3.3. Heating, ventilation and air conditioning model
As the temperature inside the housing is to be maintained within

a stipulated range to ensure safe and optimal operating conditions, a
HVAC unit is necessary to correct temperature deviations. SimSES also
supports inclusion and modeling of HVAC systems. Two basic HVAC
models are currently implemented: one, which uses the internal air
temperature Tia deviation from its user-specified set-point to roughly es-
timate the amount of thermal power required to counter this deviation,
and the other, which employs a Proportional-Integral-Derivative (PID)
controller logic to arrive at a value of thermal power to counteract the
deviation in Tia from its set-point. The corresponding electrical power
consumption Pelectrical of the HVAC, which is related to the thermal
power Phvac by the Coefficient of Performance (COP) (see Eq. (13)),
is logged in the state of the AC storage system, and influences the
round-trip efficiency of the ESS.

Pelectrical =
Phvac
COP

(13)

5.3.4. System thermal model
The system thermal model is central to the thermal modeling pro-

cess in SimSES, in that it emulates the physical phenomenon of heat
transfer among the components of the ESS and its environment, as well
as integrates the functioning of all aforementioned components. The
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system thermal model estimates the temperatures of all components
of interest after each simulation timestep Δt, based on the various
heat loads—both external and internal—that the ESS is subjected to.
Each instance of AC storage system has its own system thermal model,
and captures the thermal behavior of all components present in each
AC storage system. The analysis applies the zero-dimensional lumped
capacity approach, and the central assumption is that all the com-
ponents are treated as lumped isotropic homogeneous objects with
heat capacities and heat transfer coefficients. The internal air in the
container is assumed to possess a uniform temperature throughout its
volume, and flows are not considered. The temperatures of the storage
technologies influence important parameters such as efficiency and
voltage, as well as the rate at which they degrade. The component
models used in SimSES, which are explained in the subsequent sections,
take these temperature variations into account.

The system thermal model solves a system of first-order coupled
differential equations to obtain the temperatures of the storage tech-
nologies, the internal air, and components such as the ACDC converter,
if they are present within the same housing. This list of components,
whose temperatures are of interest, can be expanded as required owing
to the modular structure of the system thermal model. As the tempera-
tures at the start of each timestep Δt are known, and the temperatures
at the end of each timestep are of interest, an initial value problem can
be formulated.

Within each DC storage system, for each instance of storage tech-
nology i with a mass mst and specific heat cstp , a differential equation
capturing the variation in its temperature TST under the combined
effects of natural convection with the internal air (ia) Pst−iaconv and the heat
generation within itself on account of energy conversion losses Pstloss can
be formulated (see Fig. 9). For an AC storage system with a total of n
storage technology instances within its DC storage systems, a total of n
differential equations based on Eq. (14) can be formulated.

mst,i ⋅ cst,ip ⋅
dTst,i

dt
= Pst,iloss − Pst,i−iaconv

(14)

Similarly, a heat balance equation with a form similar to Eq. (14)
can be formulated for other components such as the ACDC converter,
which also introduce heat into the housing due to the energy conversion
losses (see Fig. 9).

For the internal air with a mass mia and specific heat ciap , a heat
balance can also be formulated to determine the variation in its tem-
perature Tia. The heat balance outlines its interaction via natural con-
vection with each storage technology Pst−iaconv , other components such as
the ACDC converter (if present) Pacdc−iaconv , and the innermost layer (il) of
the housing walls Pil−iaconv . The thermal power of the HVAC Phvac is also
accounted for in this balance (see Eq. (15)).

mia ⋅ cp,ia ⋅
dTia
dt

= 𝛴Pst,i−iaconv + Pacdc−iaconv − Phvac − Pia−ilconv (15)

The innermost layer of the housing walls, in addition to the convec-
tive heat transfer with the internal air, also exchanges heat with the
insulation layer adjacent to it via heat conduction, and a heat balance
equation can be written.

The insulation layer interacts with both the innermost and outer
layers via heat conduction, and a corresponding heat balance equation
can be drafted as well. The outer layer exchanges heat with the adjacent
insulation layer via conduction, and interacts with the ambient air via
natural convection. The outer layer is also subjected to a heat load due
to the direct and diffuse solar irradiation incident on its surfaces. A heat
balance for the outer layer can be applied by taking into account the
heat loads due to the incident solar irradiation, the conduction through
the layers, and the natural convection with the ambient air.

Depending on the chosen simulation timestep Δt, the heat balance
equations for all considered components are then solved simultaneously
at least once, or in the case of very large Δt, the system of equations
is solved multiple times in an attempt to obtain a greater degree of
accuracy. The solution of this system of equations yields the values

of the temperatures at the end of each simulation timestep, which
influence the component models.

In case simpler simulations are to be conducted, the thermal model
can also be disabled, in which case the storage technologies experience
a constant (user-defined) ambient temperature, and the temperatures of
the storage technologies and other components are also set to remain at
this value and are not updated. SimSES currently only offers modeling
of thermal behavior for LIB. Augmentation of these capabilities for
other storage technologies is planned for future releases.

5.4. Analysis

Following the simulation of ESSs, an analysis of the simulation re-
sults is conducted automatically by SimSES providing Key Performance
Indicators (KPIs) and plots that allow the user to gain insights of the
configured ESS. Furthermore, the analysis can be used to compare sim-
ulation results of different scenarios quantitatively and qualitatively.
While the Data subpackage provides relevant parsers and utility func-
tions for processing the time series of simulation results, the Evaluation
subpackage includes the actual methods for deriving the KPIs and
creating plots. Which evaluations should be performed, as well as
relevant input data (e.g., electricity prices and storage cost) can be
specified by the user. In the following, the technical evaluation and
economic evaluation will be explained in more detail.

5.4.1. Technical evaluation
Within the Technical Evaluation part of SimSES, technical KPIs are

determined on the system and storage technology level. Depending on
the storage technology used, the respective KPIs are exported at the
end of the analysis. Automatically generated plots give the user an
impression of the usage and performance of the simulated ESS like time
variance of AC and DC power, SOC and capacity. More advanced users
can also use the simulation results to calculate characteristic values
beyond the displayed KPIs. The technical evaluation’s KPIs on system,
lithium-ion, redox flow and hydrogen level are summarized in Table 7.
As an example, the calculation of two KPIs is shown below.

The Round-Trip Efficiency (RTE) is calculated on the system level
using Eq. (17) deviated from Eq. (16). To calculate the RTE, the
discharged energy (Eout) is divided by the charged energy (Ein), from
which the change of energy by SOC rise or decrease (𝛥E) is subtracted.
For simulations over a longer period of time, the efficiency influence
on the SOC change can be neglected because charged and discharged
energy are substantially larger than the change in energy between the
start and end SOC of the simulation. For shorter simulation periods,
the influence of efficiency on the SOC change must be considered. For
this purpose, the SOC change is divided by the root of the efficiency,
since, for example, the additionally charged energy at SOC increase has
already passed through the power electronics in one direction and was
thus influenced by the efficiency. A symmetrical efficiency for charge
and discharge is assumed here.

𝜂RTE =
Eout

Ein −
𝛥E

√

𝜂RTE

(16)

with 𝛥E = SOClast ⋅ Elast − SOCinitial ⋅ Einitial. Solving Eq. (16) for 𝜂RTE
leads to:

𝜂RTE =
Eout
Ein

+
𝛥E2 + 𝛥E

√

4EoutEin + 𝛥E2

2E2
in

(17)

Another KPI calculated in the technical analysis is the remaining
energy content (erem) as a percentage of the initial energy (Eq. (18)).
For this, the current energy (Eact) is divided by the initial energy (Enom).

erem =
Eact
Enom

(18)
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Table 7
Key Performance Indicators (KPIs) for technical evaluation and the level at which they are calculated. Crosses indicate for which level the respective KPI is calculated.

Selected key performance indicators (KPI) System Lithium-ion Redox flow Hydrogen

Round-trip efficiency (%) x x x x
Mean state of charge (%) x x x x
Number of changes of signs per day (#) x x x x
Avg. length of resting times (min) x x x x
Pos. energy between changes of sign (% of capacity) x x x x
Avg. fulfillment factor (%) x x x x
Remaining capacity (%) x x x x
Energy throughput (kWh) x x x x
Mean power electronics efficiency (%) x
Equivalent full cycles (#) x x
Depth of discharges (%) x x
Coulomb efficiency (%) x
State of health (%) x
Energy for heating of water (kWh) x
Energy for compression of hydrogen produced (kWh) x
Total mass of hydrogen (kg) x

5.4.2. Economic evaluation
The economic evaluation of SimSES allows assessing the overall

profitability of an energy storage project through economic KPIs. These
KPIs include the net present value (NPV), internal rate of return,
profitability index, return on investment, and levelized cost of storage.
Eq. (19) shows the calculation of the NPV as it is performed in SimSES.

NPV = −I0 +
N
∑

n=1

CFn
(1 + i)n

(19)

I0 denotes the initial investment cost, i the discount rate, CF the
cashflow, and n and N the current and total number of project years,
respectively. All parameters apart from the cashflow are derived from
the settings in the Configuration File. The cashflow itself is calculated
from the time series of logged simulation results. Depending on the
selected operation strategy, the cashflows of multiple revenue streams
(CFn,r) may be added to obtain the cashflow for a single project year
(CFn), as shown in Eq. (20).

CFn = −OMn +
∑

r∈R
CFn,r (20)

Here, R denotes the set of applicable revenues streams r for the
selected operation strategy and OM the operation and maintenance
cost. Table 8 shows the matching of revenue streams and operation
strategies, while the following list provides brief descriptions for all cur-
rently implemented revenue streams. For stacked operation strategies,
such as FCR paired with IDM, all respective revenue streams will be
considered in Eq. (20).

• Energy Cost Reduction (ECR): Reduction of energy-based electricity
costs, caused, for example, by increased self-consumption of PV-
generated electricity. This is calculated based on the total site load
for both with and without the BESS, the electricity purchase price,
and the electricity sales price or feed-in tariff.

• Demand Charge Reduction (DCR): Savings generated by a reduc-
tion in demand charges, calculated based on the maximum site
load with and without the BESS, the applicable billing period, and
the demand charge price per unit of power.

• Frequency Containment Reserve (FCR): Revenue that is generated
by participating in the FCR market, calculated based on the
system’s nominal power, the FCR price, and the power allocated
to the FCR market.

• Spot Market Trading (SMT): Revenue that is generated through
spot market trading, based on the amount of energy traded and
the specified time series of prices.

6. Case studies

The following section will focus on SimSES from a user perspective.
Compared to other solutions and tools in the field of energy system
simulation, SimSES provides detailed modeling of ESS and applications
on a system level during the full investment period. Both the technical
properties of different storage technologies and the economic modeling
of the components and systems are mapped in detail.

In order to clarify the implementation and adaptability of the tool,
two applications are discussed. First, Peak Shaving (PS) for an industrial
application comparing a different set of storage technologies—LIB,
RFB, and a hybrid system of both technologies. Second, Frequency
Containment Reserve (FCR) including an Intraday Continuous Market
(IDM) by considering various system topologies are discussed. The
underlying system costs are discussed in Appendix D. These case studies
can be downloaded and executed as described in Appendix E.

6.1. Case study 1: Peak shaving application

A commonly used application for ESS is Peak Shaving (PS). The
tariff model with separate energy- and power-related prices plays an
important role here. The PS application aims to cut high power de-
mands from the distribution grid. Since the highest power peak per
billing period (usually monthly or annually) is multiplied by the power-
related price, it can be economical favorable to cap high demand peaks
by using an ESS to provide the necessary power and energy [9].

In this case study, three different storage systems are simulated: a
LIB system with 150 kWh, a RFB system with 200 kWh, and a hybrid
system with 10 kWh LIB capacity and 180 kWh RFB capacity. More
detail on the system configuration chosen for this case study is given
in Fig. 10. When investing in a system the user may be interested in
deciding upfront which of the three configurations will provide the best
economic solution. All systems are dimensioned to provide the peak
shaving power even after 20 years, including capacity degradation. In
addition, the restriction of a usable SOC range of RFB systems from
20% to 80% is considered [36]. The power electronics is dimensioned
with 40 kW rated power. The Sony LFP cell technology for LIB and
a scaled CellDataStack5550W model (cf. Table 4) as an all-Vanadium
RFB system is considered. The assumed system costs for the economic
evaluation are provided in Table D.11. As a revenue for reducing the
power peak a fixed price of 100 EUR/kW in a yearly billing period is
assumed. As an input power profile for the PS application, the Cluster
1 PS power profile from Kucevic et al. [73] is used and scaled to an
annual load of 347.55 MWh from which the peak power is reduced to
63.5 kW.

After the simulation has been executed, the analysis and evaluation
include both detailed technical and economic evaluations. An extract
of the evaluations and results can be seen in the following illustrations:
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Table 8
Matching of revenue streams and operation strategies for the cashflow calculation within the economic
evaluation.

ECR DCR FCR SMT

Residential PV Greedy x
Residential PV Feed in Damp x
Peak Shaving x x
Peak Shaving Perfect Foresight x x
Frequency Containment Reserve x
Intraday Continuous Market x

Fig. 10. Three different Energy Storage Systems (ESS) are investigated in the Peak
Shaving (PS) case study: (a) A hybrid ESS consisting of a DC-coupled LIB and
RFB system as well as single storage systems of (b) LIB and (c) RFB. All systems
are dimensioned for providing the PS power even after 20 years of operation. A
maximum Depth of Discharge (DOD) for RFB systems of 0.6 is considered. The
Power Distribution Strategies (PDS) for the hybrid system performs according to the
technology prioritization as described in Section 5.2.2. The DCDC converter is assumed
with a fixed efficiency of 98%.

Fig. 11 shows the characteristic curve of the power during the PS
application for the hybrid storage system. The residual power can be
seen with and without energy storage. It can be seen that the power
drawn from the grid does not exceed the value of the PS threshold as
was dictated by the operation strategy. Power demand values above
the PS threshold are provided by the respective storage unit. This
comes in line with charging and discharging power from the ESS and
a simultaneous change in the storage-lumped SOC. According to the
conditions set, recharging of the storage systems is executed only at
times such that the PS threshold is never exceeded. In addition, the
power distribution to the corresponding storage technologies of the
hybrid system can be seen. The RFB system is prioritized to provide
the bulk energy of the PS event while the LIB system covers high power
peaks, especially if the RFB systems power capabilities are exhausted.

The remaining capacity (SOH) of the ESS can be seen in Fig. 12. The
LIB capacity decreases to 70% during the 20-year simulation, while for
the hybrid system as well as for the RFB system the capacity remains
higher at 97% and 96%, respectively. Although the integrated degra-
dation models consider both the calendar and the cycle degradation, it
is noteworthy that the calendar degradation takes up the largest share
in this operation of PS application [59].

In Fig. 12 the difference of the system round-trip efficiency can be
observed. The LIB system demonstrates the highest efficiency with 88%,
followed by the hybrid system with 68% and the RFB system with
62%. The energy losses of the RFB storage compartments are higher
compared to LIB, attributed to a comparably low Coulomb efficiency
and additional energy needed for electrolyte pumps.

In addition to the technical evaluation, SimSES also provides a
comprehensive economic analysis of the simulated time series. In order

Fig. 11. Peak Shaving (PS) application on a hybrid Energy Storage System (ESS). (a)
Residual load with and without the PS application with the delivered AC power of the
installed ESS as well as the power distribution between the two DC-coupled storage
systems. (b) State of Charge (SOC) development of the hybrid ESS. LIB systems takes
over if target power exceed RFB stack power or if the RFB system hits its SOC limits.

to show a metric for overall costs, an alternative NPV considering
capacity degradation as well is shown in Eq. (21), where cST represents
energy-specific costs of the storage technology and Cdeg the capacity
degradation.

NPVCD = NPV − cST ⋅ Cdeg (21)

Fig. 12 shows the overall costs of the ESS operated with baseline
cost set to 100% of the LIB system. For the evaluation of the system,
not only real tariff models but also the investment costs for the ESS
are integrated in the tool resulting in the NPV. In addition, the cost
of capacity degradation is added to the NPV in order to take not
only the system efficiency into account but also the capacity loss over
20 years (see Eq. (21)). It can be seen that the hybrid system is 5% more
cost effective while the RFB system has 81% higher overall costs. The
primary reason for these values are the cost of capacity degradation,
which is 51% of the overall costs for the LIB system although the
NPV for the LIB systems is lowest compared to the other systems.
In conclusion, a hybrid system can deliver an overall better solution
compared to single storage systems although only a small peak LIB ESS
is added to an RFB system, combining the benefits of both techniques,
i.e., a higher NPV compared to a single RFB system and a lower capacity
degradation compared to a single LIB system. However, with the input
parameters chosen herein, none of the three negative storage solutions
were able to justify an investment as all resulted in negative NPVCD
values. The overall economics of this case study could potentially be
improved if the ESS value generation was increased, e.g., by applying
multi-use operation and dispatching storage in PS idle times [4,74].
Additionally, results with hybrid storage systems could be improved
with optimization and machine learning techniques instead of applying
a rule-based algorithm [75,76].

6.2. Case study 2: Frequency containment reserve application

A widely used application of utility-scale ESS is participation in the
market for FCR. In this application, the ESS compensate for fluctuations
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Fig. 12. Economic analysis of the three different Energy Storage Systems (ESS) serving
the Peak Shaving (PS) application. (a) Comparison of remaining capacity and system
efficiency of all simulated ESS after 20 years. (b) Overall costs consisting of the NPV
and cost of capacity degradation using the LIB system as the baseline. The hybrid
system could decrease overall cost by 5%, whereas the RFB system increased the cost
by 81%.

between consumption and generation in the power grid by reacting ac-
cordingly to changes in the grid frequency. The regulations and degrees
of freedom for FCR application complying to German regulation criteria
are taken into account and are described in detail in [4,8,62,73]. In
this operation strategy of SimSES the SOC stabilization of the ESS is
achieved by support of IDM. FCR and IDM are each basic operation
strategies running in a stacked operation. For the simulation a grid
frequency profile of 2014 is used to account for the provided stabilizing
power [77]. It is assumed that the provided power of 1 MW does not
affect the integrated network frequency.

In this case study, three different ESS topologies are simulated (cf.
Fig. 13), each with a Sony LFP cell technology providing a capacity
of 1.6 MWh and a grid-connection power of 1.6 MW. First, a simple
direct approach of connecting a LIB to a grid-connected ACDC converter
is investigated. Second, eight parallel DC-coupled systems with a LIB
capacity of 0.2 MWh each are simulated. Third, eight parallel connected
ACDC converters with a nominal power of 0.2 MW each are activated in
a cascaded approach promising a higher efficiency [78]. The assumed
system costs for the economic evaluation are provided in Table D.12.
The revenue of FCR12 is taken as a fixed price of 0.2 EUR per kW and
day and the IDM13 price is fixed to 0.04 EUR/kWh, corresponding to a
price level of 2020.

The results of the 20-year simulations are displayed in Fig. 14.
The cascaded ACDC converter approach shows the best efficiency with
92% compared to the direct approach with 78% and the least efficient
topology with DC-coupled systems of 63%. FCR is an application with a
high partial-load frequency below 30% of nominal power [55]. Hence,
the cascaded ACDC converter are either under a high load compared
to their nominal power or deactivated, leading to a higher overall
efficiency compared to the direct system. The DC-coupled system shows
an overproportional efficiency decrease compared to the direct system.
The systems of the DC-coupled ESS are activated similar to the cascade
of ACDC converter: one system is ramped up to full power before the
second system is activated. Due to relatively high currents in addition
to the losses of the DCDC converter, the DC-coupled system shows
a comparatively low efficiency. This result suggests that the chosen
PDS is inappropriate in terms of efficiency for a FCR application with
the given system for the DC-coupled system. Comparing the remaining
capacity of the three investigated systems, no large difference can be
observed, with a remaining capacity of each system after 20 years of
around 80%. One target of the chosen PDS for the DC-coupled system

12 Prices for the German FCR market can be found at https://www.
regelleistung.net.

13 Prices for the European spot market can be found at https://www.
epexspot.com.

Fig. 13. Three different ESS topologies are investigated in the FCR case study, all
with a LIB system of 1.6 MWh and an ACDC connection to the grid of 1.6 MW. The
ACDC converter model is the NottonAcDcConverter (cf. Table 6). (a) A direct-coupled
ESS with one ACDC converter. (b) Eight parallel DC-coupled systems with an assumed
fixed DCDC efficiency of 98%. (c) Eight parallel connected ACDC converter with a
cascaded activation: The first ACDC converter drives to its nominal power of 0.2 MW
before the second ACDC converter is activated.

was to reduce the capacity degradation by cycling a few systems more
often than other systems in order to get an overall better degrada-
tion behavior. However, it can be observed that the chosen strategy
shows no improvement in terms of the degradation behavior for this
application compared to the other systems.

Analyzing the economics, the high efficiency advantage of the cas-
caded system could be transferred to a slight monetary improvement
compared to the other systems. The cascaded system shows a 4%
increase of the NPV compared to the direct system. The DC-coupled
system falls behind with a lower NPV of 5% in comparison to the direct
system (cf. Fig. 14). This could be explained with IDM recharging cost
over the simulation time period since the FCR revenue is the same for
all investigated systems (cf. Table 9).

First, the IDM transaction costs are comparatively low: The direct
system accounts for 36 kEUR, the DC-coupled system for 64 kEUR
and the cascaded system for 14 kEUR, accumulated after 20 years of
operation. In comparison, the FCR revenue compensates for around
1,218 kEUR. Second, the low efficiency of the DC-coupled system re-
sults in 231 MWh energy sold on the IDM whereas the direct system and
the cascaded system could sell 347 MWh and 494 MWh, respectively.
This is also reflected in the numbers of bought energy: the DC-coupled
system had to buy most energy with 1,829 MWh while the cascaded
system had to buy 851 MWh. Although large differences in terms of
efficiency exist compared to the direct system (+14% for the cascaded
system and -15% for the DC-coupled system) this could only be trans-
lated into a 4% increase of the NPV, respectively to a 5% decrease. The
economic result of more efficient ESS could be improved by reducing
the storage capacity and improving the IDM operation strategy. In
conclusion, all three systems have a positive NPV, likely leading to a
positive investment decision.

With these case studies a high variety of topologies as well as
technology combinations could be investigated. Parameter variations,
e.g., for the investment costs or sizing of individual components can
easily be made by the user when adapting according initialization files
of the case studies available as presented in Appendix E.

7. Conclusion and outlook

Within this work, the simulation and analysis tool for energy storage
systems SimSES is presented. SimSES provides a library of state-of-
the-art energy storage models by combining modularity of multiple
topologies as well as the periphery of an ESS. This paper summarizes
the structure as well as the capabilities of SimSES. Storage technology
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Table 9
Overview of the IDM transaction costs for all three investigated ESS.

System IDM transaction costs/EUR Energy bought/MWh Energy sold/MWh

Direct 35,772 1242 347
DC-coupled 63,894 1829 231
Cascaded 14,280 851 494

Fig. 14. Technical and economical analysis of the three different Energy Storage
Systems (ESS) serving the Frequency Containment Reserve (FCR) application. (a)
Comparison of remaining capacity after 20 years and system efficiency of all simulated
ESSs. (b) Economic value consisting of the NPV using the direct system as baseline.

models based on current research for lithium-ion batteries, redox flow
batteries, as well as hydrogen storage-based electrolysis and fuel cell
are presented in detail. In addition, thermal models and their corre-
sponding HVAC systems, housing, and ambient models are depicted.
Power electronics are represented with ACDC and DCDC converters
mapping the main losses of power electronics within a storage sys-
tem. Additionally, auxiliary components like pumps, compressors, and
HVAC are considered. Standard use cases like peak shaving, residen-
tial storage, and control reserve power provisions through dispatch
of storage are discussed in this work, with the possibility to stack
these applications in a multi-use scenario. The analysis is provided by
technical and economic evaluations illustrated by KPIs.

SimSES’ capabilities are demonstrated through the discussion of
two case studies mapped to the applications of peak shaving and
frequency containment reserve, respectively. It is demonstrated how
different energy storage system topologies as well as various perfor-
mance indicators can be investigated and analyzed with SimSES. For
the specific cases discussed, the results underline that hybrid storage
systems can lead in terms of overall cost and degradation behavior to
a beneficial economic results. Special ESS topologies like the cascaded
ACDC converter approach can lead to a substantial increase in system
efficiency for the FCR application, although the economic benefits are
comparatively low.

In the future, more detailed performance and aging models for all
types of storage systems will be implemented. This will allow a more
detailed cross-technology comparison. For instance, models for bidirec-
tional thermal storage system could be implemented in future versions.
Further operating strategies matching internationally renowned and
national derivatives of application scenarios could also be investigated.
This may allow assessing the value of storage deployment across dif-
ferent regions and convince internationally active investors to reveal
best investment scenarios worldwide. SimSES has interfaces that can
be easily integrated into physically derived and more accurate storage
models as well as grid modeling and system analysis tools. While
selected validation experiments have already been executed, the au-
thors encourage others in the research community to conduct hardware
validation experiments at their sites and contribute to the presented
tool. The authors envision interlinking SimSES to the vast selection of
open-source tools in order to expand on the value chain that storage
simulations are capable of covering, e.g., SimSES is already a part of

the openMOD14 initiative. SimSES is open-source available, and the
authors encourage users and developers to join in and assist in its
further development.
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Appendix A. Open circuit voltage curve fitting

The OCV for LIBs (see Section 4.1) is dependent on the cell type.
The OCV data for all currently implemented cell types have been
measured at the Institute for Electrical Energy Storage Technology at
the Technical University of Munich. To improve the performance, the
look-up tables of the voltage values are replaced with a mathematical
function. These curve-fitting functions are based on the work of Weng
et al. [79]. The parameters of this function for the OCV are estimated
using the MATLAB® global optimization toolbox. Fig. A.15 shows the
OCV in V for the measured data as well as the curve-fitted data and the
difference between those in mV.

14 https://openmod-initiative.org/
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Table B.10
Physical parameters for modeling of thermal behavior of lithium-ion batteries (LIBs).

Manufacturer
model

Mass
(g)

Dimensions
(mm)

Specific
heat
(Jkg−1K−1)

Convection
coefficient
(Wm−2K−1)

Source

Sony
US26650FTC1

70 dia: 26
len: 65

1001 15 [55,80–89]

Panasonic
NCR18650PD

44 dia: 18
len: 65

1048 15 [88–90]

E-One Moli
Energy
IHR18650A

45 dia: 18
len: 65

965 15 [83,86,89,91–94]

Sanyo
UR18650E

46 dia: 18
len: 65

965 15 [83,86,89,92–95]

Fig. A.15. Open Circuit Voltage (OCV) curve fitting for the MolicelNMC lithium-ion
battery (LIB). The figure shows the OCV in V for the measured data as well as the
curve-fitted data and the difference between those in mV.

Appendix B. Thermal parameters

The geometrical and thermal parameters used for modeling the
thermal behavior of LIBs are presented in Table B.10. Geometrical
parameters such as the dimensions and the weight are obtained from
datasheets of the cells. The thermal properties, such as the specific
heat capacity for each cell type, are determined from the literature
for each cell chemistry, and averaged over several values found in the
literature. The value of the convection coefficient is known with the
least accuracy, and a value of 15 Wm−2K−1 is selected as a ‘‘reasonable’’
value lying between typical values for purely natural convection and
forced convection. This is assumed to emulate slow intermittent motion
of air around the cells. It is expected that availability of better data in
the future will increase the accuracy of the modeling process.

Appendix C. Stack data for a redox flow battery

The parameters are based on single-cell measurements carried out
at ZAE Bayern of a cell with a technical representative cell area of
2160 cm2. To obtain parameters for a stack, the measured values were
scaled up with a number of 40 cells. Fig. C.16 shows the data of the
internal resistance of the 40-cell stack for charge and discharge. The
internal resistance is determined by applying a constant current and
measuring the resulting change of voltage. The cell was operating in
Vanadium electrolyte (1.6 mol/l V solved in 2 mol/l H2SO4) from GfE
(Gesellschaft für Elektrometallurgie mbH). Temperature and flow rate
were controlled during the procedure. The SOC was determined with
an OCV-cell. Due to the relatively high ohmic resistance of the cell and
the low possible operation current density (up to approx. 50 mA∕cm2),
the cell resistance shows no significant current dependency. The cell

Fig. C.16. Charge and discharge resistance of a stack for a redox flow battery (cell area
= 2160 cm2) dependent on State of Charge (SOC) and temperature (T). The single-cell
measurements were scaled up to a stack resistance with a cell number of 40.

resistance Rcell was scaled up with the number of cells ncell to receive
the stack resistance Rstack (Rstack = ncell ⋅ Rcell).

Appendix D. Economics for case studies

Assumptions for economical analysis of the case studies are based
on Tsiropoulos et al. Minke et al. Figgener et al. and Mongird et al. [96–
99]. Challenges for determining energy-specific costs for ESS occur
due to a wide range of technology costs as well as various system
sizes and designs. In order to distinguish between power and energy
system design, Tsiropoulos et al. takes the EPR as an indicator: If
EPR is above one, the authors talk about an energy-driven design,
otherwise about power-driven design [96]. In addition, it is not always
clearly stated which costs for a system design are included, e.g., power
electronics, housing, and grid connection [96,98]. For instance, utility
scale system costs for LIB in 2017 ranged between 300 EUR/kWh
and 1200 EUR/kWh with an average around 570 EUR/kWh [96].
Figgener et al. depicted a similar range for 2018 [98] as well as one
reported system for 2019 with an EPR of 1 h and system costs of
around 900 EUR/kWh. However, LIB systems with an EPR of 0.125 h
show lowest cost with 300 EUR/kWh and costs increase with rising
EPR [96]. Mongird et al. have presented system costs for LIB system
with an EPR larger than 1 h with falling costs [99]. Interestingly, the
system costs of [99] show a lower average system cost price than
those of [96,98] representing European costs’ levels (a USD to EUR
conversion of 0.82 is assumed). In contrast, a broad cost database does
not exist for RFB systems. However, Minke et al. investigated various
RFB projects from 2004 to 2017 by determining system prices for
different EPR, similar to Tsiropoulos et al. [97]. The authors also found
an even broader range of system costs for RFB from 155 EUR/kWh to
1738 EUR/kWh, especially due to different electrolytes, stack modules,
sizing, and system definition. RFB system costs decrease with a rising
EPR with average system costs of 717 EUR/kWh for an EPR of 2 h and
166 EUR/kWh for a ratio of 15 h. These findings are also in agreement
with the results of Mongird et al. [99].

For the following case studies, system cost curves depending on
EPR are assumed for LIB and RFB systems with the prices and ratios
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Table D.11
Economics for Case Study 1.

Storage technology Power/kW Capacity/kWh EPR/h Specific system cost/EUR kWh−1 System cost/EUR Overall system cost/EUR

LIB 40 10 0.25 584 5,839
RFB 20 180 9.00 329 59,216 65,055

LIB only 40 150 3.75 367 55,089 55,089

RFB only 40 200 5.00 451 90,247 90,247

Table D.12
Economics for Case Study 2.

Storage technology Power/kW Capacity/kWh EPR/h Specific system cost/EUR kWh−1 System cost/EUR

LIB 1,600 1,600 1 473 756,800

Fig. D.17. System costs curves depending on EPR for LIB and RFB systems based
on [96,97,99].

given represented by regression curves in Eqs. (D.1) and (D.2). From
an EPR of 1 h up to 15 h, this cost curve has a realistic cost range
with decreasing cost over EPR. The system costs, however, have a high
uncertainty attached, as shown in the previous analysis. The used price
curves are shown in Fig. D.17. It is worth mentioning that the cost
assumptions for RFB systems are based on a usable SOC range of 20%
and 80%, which reduces the gross capacity configured by 40% [97].

cLIB = −80 ⋅ ln(EPR) + 473 and (D.1)

cRFB = −208 ⋅ ln(EPR) + 786, (D.2)

where c represents the energy specific costs of LIB, respectively RFB.
Using Eqs. (D.1) and (D.2) the system costs for the two case studies

discussed in Section 6 are calculated as provided in Tables D.11 and
D.12.

Appendix E. Availability of SimSES

SimSES is available as open source15 and is part of the open-source
simulation and optimization toolchain of the Institute for Electrical
Energy Storage Technology at the Technical University of Munich.16

A readme.md helps with the first steps in order to get SimSES running.
An installed Python environment is mandatory as well as the required
packages installed automatically if you run setup.py. With executing
main.py, a default configured simulation could be started directly. This
file offers also all necessary interfaces in order to connect it to other
simulation programs. The case studies presented within this paper are
conducted with the open-source release version 1.0.4.

For configuring a simulation, there are two important configuration
files: simulation.ini and analysis.ini. These configuration files are docu-
mented and offer all possible settings for setting up a simulation and the
consequent evaluation. These config files follow a pattern for a default
and local configuration. The default configuration inherits all possible
settings, in the local file: only the changed settings are necessary. This
allows a quick exchange of configuration settings between users.

15 https://gitlab.lrz.de/open-ees-ses/simses
16 http://www.simses.org

The Simulation package allows multiple simultaneous simulations,
which are also used for the presented case studies. In here, the con-
figurations and code could be found with the case study configs in
case_studies. In order to execute the case studies, the configuration needs
to be copied to the config location and renamed to simulation.local.ini.
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Reduced-order battery lifetime models, which consist of algebraic expressions for various aging modes, are widely utilized for
extrapolating degradation trends from accelerated aging tests to real-world aging scenarios. Identifying models with high accuracy
and low uncertainty is crucial for ensuring that model extrapolations are believable, however, it is difficult to compose expressions
that accurately predict multivariate data trends; a review of cycling degradation models from literature reveals a wide variety of
functional relationships. Here, a machine-learning assisted model identification method is utilized to fit degradation in a stand-out
LFP-Gr aging data set, with uncertainty quantified by bootstrap resampling. The model identified in this work results in
approximately half the mean absolute error of a human expert model. Models are validated by converting to a state-equation form
and comparing predictions against cells aging under varying loads. Parameter uncertainty is carried forward into an energy storage
system simulation to estimate the impact of aging model uncertainty on system lifetime. The new model identification method used
here reduces life-prediction uncertainty by more than a factor of three (86% ± 5% relative capacity at 10 years for human-expert
model, 88.5% ± 1.5% for machine-learning assisted model), empowering more confident estimates of energy storage system
lifetime.
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by/4.0/), which permits unrestricted reuse of the work in any medium, provided the original work is properly cited. [DOI: 10.1149/
1945-7111/ac86a8]
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Models of battery degradation provide guidance for energy
storage system design, empower battery dispatch to be optimized
to extend system lifetime, and enable prognostic maintenance, all of
which are crucial for leveraging the large initial investment required
for any given battery energy storage system.1,2 Qualitative under-
standing of the calendar and cycle life of various lithium-ion battery
technologies, from sources such as battery warranties or from
literature review, helps to define overarching industry trends or to
identify targets for improving system lifetime,3 but does not provide
enough detail for optimizing the design or dispatch of individual
battery systems, as degradation trends vary dependent on cell format,
electrode chemistry, and manufacturer.4 To provide this detail, many
researchers utilize battery lifetime models parameterized using
accelerated aging test data. While a wide variety of battery
degradation models with varying levels of computational or math-
ematical complexity exist,5,6 ranging from simple linear “bucket”
models,7 empirical or “semi-empirical” non-linear models,8–10 or
physics-based models (single particle7,10 or pseudo-2D11), empiri-
cally derived algebraic lifetime models, also referred to as reduced-
order models, are used widely due to their relative accessibility,
interpretability, and ease of implementation. Many systems level and
technoeconomic analyses utilize reduced-order lifetime models,
combining these degradation models with simulations of battery
systems and financial models to optimize the sizing of home energy
storage systems,12 determine battery degradation costs with energy
arbitrage,10,13,14 or optimizing mixed battery use, such as application
stacking of stationary systems or use of electric vehicle batteries for
vehicle-to-grid services.15–17

Battery degradation models can also be used to extend system
lifetime and increase revenue for any given application, by balancing
the revenue/utilization of the energy storage system with the cost of
the incurred degradation during that use.7,14,18–20 Battery dispatch
can be optimized either through the development of battery derating
strategies derived from the battery lifetime model,19,20 or by directly
optimizing the battery dispatch considering revenue, system costs,
and degradation costs. Various optimization approaches exist,

depending on the complexity of the model and compute resources.
Linear degradation models or piecewise linear approximations of a
non-linear degradation model may be implemented into a mixed-
integer linear program,21,22 which are computationally efficient.
Non-linear convex degradation models can be used within a model
predictive control framework.14 Non-linear or physics-based models
may be used to optimize dispatch using an algorithmic or gradient-
free approach.10,23,24 Accessibility of battery degradation models,
and their use in applications such as those cited above, is improved
by recent publication of open-access battery models, including
physics-based models such as SLIDE25 and PyBAMM,26 as well
as technoeconomic modeling tools using the reduced-order battery
lifetime models studied in this work, such as SimSES developed by
Technical University of Munich,27 and the System Advisor Model
developed by the National Renewable Energy Lab.28

One of the primary challenges for utilizing battery lifetime
models is the relationship between accelerated aging data and real-
world use. While battery lifetime in real-world use may be anywhere
from 10 to 20 years, it is not reasonable to wait 20 years before
making evaluations of system lifetime. Thus, accelerated aging
experiments, where the rate of degradation is increased by operating
batteries aggressively, are common for evaluating battery lifetime.
These experiments usually require from 6 months to a few years of
aging to reach battery end-of-life instead of 10–20 years. However,
there are many factors to consider when when extrapolating models
from accelerated aging data to real-world use:

• Separating time- and cycling-dependent degradation, as ag-
gressively cycled cells can reach 10 000 cycles in 2 years (∼14
cycles per day)29 while real world cells may not reach 10 000 cycles
for 20+ years30

• Aging mechanisms driven by cell age may not appear during
accelerated aging, such as the onset of a “knee” in the capacity
curve31,32

• Aging mechanisms driven by aggressive cycling or extreme
temperatures may not appear during real-world use33

• Experimental noise and life model inaccuracy may result in
substantial predictive uncertainty when predicting battery state at
10–20 years34zE-mail: pauljgasper@gmail.com; paul.gasper@nrel.gov
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• Accelerated aging is typically conducted at constant tempera-
ture or using a repeating cycle,9,29,35,36 while real-world use and
environment vary dynamically30

The complications above apply not only to cell performance
metrics, such as capacity and internal resistance, but also to cell
internal states, such as lithium inventory and electrode capacities,
which may be diagnosed via incremental capacity analysis.37 Thus,
to extrapolate degradation trends observed during accelerated aging
to real-world applications, four key considerations need to be made:

(i) Visualization of degradation trends and connection to physical
mechanisms, qualitatively deconvoluting stress-dependent
trends (e.g., degradation rate vs. temperature) from chem-
istry-/architecture-dependent parameters

(ii) Identification of modeling equations predicting degradation
trends

(iii) Optimization of model parameters and quantification of model
uncertainty, deconvoluting the contributions of various degra-
dation mechanisms

(iv) Extrapolation to dynamic aging and validation using lab-based
or real-world data

The most significant challenge in the above approach is step (ii): the
identification of modeling equations. Degradation trends may be
dependent on three or more experimental variables, making a trial-
and-error search for an accurate model equation very difficult. This
work aims to summarize prior efforts to address this challenge, then
demonstrate a methodology to identify accurate models by com-
bining human-expert judgement with machine-learning methods,
and finally describe how these models can be used to simulate real-
world aging. Thus, the main contributions of this work are:

• A review of cycling degradation models, which reveals a wide
variety of equation forms and complexities, indicating the challenge
researchers face when attempting to discover accurate models

• Demonstration of a machine-learning assisted model identifica-
tion procedure on a stand-out data set of the degradation of LiFePO4

(LFP) - graphite (Gr) batteries8,29 (accessible at38,39), using bootstrap
resampling and cross-validation to quantify the accuracy and un-
certainty of human-expert8,29 and machine-learning assisted models

• Comprehensive description of the procedure for deriving
dynamic state equations from the optimized degradation model,
which is used for model validation on dynamic aging data as well as
simulation of real-world aging in a stationary energy storage system
using SimSES40

Each of these contributions is detailed in sections throughout the
paper. The degradation model described in this work is provided
open-source via SimSES.40

Literature Review of Cycling Degradation Models

Approaches for separating degradation modes.—In contrast to
calendar aging trajectories, which in Li-ion batteries is usually
dominated by a single degradation mechanism, growth of the solid-
electrolyte interface (SEI) layer on the graphite electrode, and a
function of only one variable, time (assuming temperature and state-
of-charge (SOC) are constant), degradation for cycling batteries
often involves multiple degradation modes and requires considera-
tion of both time and cumulative cycles (even assuming constant
cycling protocol). There are many possible approaches for handling
these challenges. To account for the overlapping influence of time-
and cycle-dependent degradation, many studies consider overall
degradation, D, as a superposition of the calendar- and cycling-
induced degradation, DCalendar and DCycling:

8,29,32

= + [ ]D D D 1Cycling Calendar

These equations can then be separated into “calendar degradation”,
which is dependent only on time, and “cycling degradation”, which

is dependent on time, cycle count, or charge/energy throughput.
Another possible approach is to multiply the time-dependent fade
trajectory by calendar or cycling dependent stress parameters:

β β= · · ( ) [ ]D f t 2Cycling Calendar

where βCycling and βCalendar are stress parameters dependent on
cycling and calendar test conditions, respectively. The calendar
degradation component, β · ( )f tCalendar can be first optimized to
calendar aging data, and then the cycling component optimized
afterwards,9 or βCycling and βCalendar can be treated as a single stress
parameter, optimized over both the calendar and cycling aging test
data simultaneously.41 Degradation modes can also be combined
logically, as in Smith et al.:9

= ( ) [ ]D D Dmin , ,... 31 2

where the degradation states represented the lithium inventory,
positive electrode capacity, and negative electrode capacity, con-
necting the degradation modes to the battery physics. Finally,
various degradation trends can simply be treated independently by
breaking the aging data set into two or more independent groups,
identifying separate aging models for each group.36,42,43 For
example, Sarasketa-Zabala et al. develop two equations to describe
capacity loss, one for cells cycling between 10% and 50% depth of
discharge (DOD), and one for cells cycling outside of that range.43

Note that empirical degradation models do not necessarily need
to account for the separate contributions of time- and cycle-
dependent losses, however, models that do not account for both
cannot extrapolate accurately to real-world uses that mix resting and
cycling. Models with only time dependence assume that either
calendar aging dominates all other aging effects,44 or that the
degradation of the battery will not vary substantially with time,45

i.e., either battery use is unchanging or the degradation rate is
constant regardless of how the battery is utilized. Models with only
cycle dependence are making a similar assumption,46,47 implying
that the cells are constantly cycling at a consistent rate, or that no
degradation is expected if the battery is at rest.

Time-/cycle-dependent egradation trajectory models.—Once de-
gradation modes have been identified, each mode needs to be fit with a
trajectory model. A trajectory model is an equation that predicts the
degradation of the cell as a function of a time-dependent variable, e.g.,
either time, cycle count, charge-throughput, or energy-throughput. Many
trajectory equations for cycling degradation have been proposed, due to
the wide variety of trends observed in cycle aging studies. Table I reports
several examples from literature. By far the most common type of
trajectory equation in this literature review is a power law function of
cumulative charge-throughput, which can be expressed in units of Ah or
as equivalent full cycles (EFCs), which is equal to the charge-throughput
divided by twice the nominal battery capacity. The power law model is
simple, with only two free parameters (the degradation rate β1 and the
power, β2) while still being flexible enough to fit a wide variety of
degradation trends, such as self-limiting, linear, or accelerating degrada-
tion. Cumulative charge-throughput is a convenient input variable, as it
can be easily measured in real-world systems, inherently incorporates the
impact of the magnitude of the current on the degradation rate, and does
not require a definition of the cycle count that is consistent between
varied charge/discharge protocols or dynamic tests.

While the rate coefficient (β1) can be easily optimized to each test
condition, the power (β2) is often assumed to be cell-independent, and
thus shared across cells with varying degradation rates, making
optimization of either parameter non-trivial; the power and degradation
rate are co-dependent, so changing the value of the power will affect the
value of the rate coefficient and vice-versa. Many studies simply judge
the curvature of the capacity fade trajectory by eye, assigning linear
trajectories a power of 129,48–50 and sub-linear trajectories a power of
1/2,29,36 or even provide no justification.43 Some works propose several
possible values, selecting one based on fit metrics.61 Others optimize the
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power separately for each test condition, and then assume the average
value from the entire data set45,53–55,51 or choose qualitatively.41,56 Uddin
et al.,17 after optimizing a power law model of charge-throughput with
both the power and coefficient fit to each test condition, simply used
linear interpolation by the test conditions to solve for values of the power
and coefficient at untested conditions. β2 can be directly optimized if an
equation for β1 depending on the cell aging conditions is
presupposed,46,47,56 but the structure of the β1 equation will bias the
optimal value for β2. Determining the optimal value of shared parameters
without needing to propose equations for parameters that vary across the
data set can be done rigorously using a bilevel optimization scheme;34

this approach has been suggested, in other terms, as far back as 2009,57

though they did not state explicitly how to implement the method.

Degradation-rate models dependent on cycling stress.—Once a
trajectory equation has been fit to each test condition, some method
to interpolate or extrapolate between various test conditions needs to
be determined so that the degradation at new conditions can be
predicted. Nearly all works accomplish this by defining some
function of the aging stressors that predicts the value of any model
parameters, such as β1 above, that are dependent on cycling stress
variables such as temperature, average SOC, or DOD:

β γ= ( ) [ ]f , S 4n1 1:

where γ1:n are any optimized parameters, and S are the test
conditions for any given cell. While there are a wide variety of
physical models proposed in the literature, well reviewed by Reniers
et al.,25 most researches use an empirical approach to identify an
expression for stress dependent parameters like β1.

A large number of equations for calculating degradation rates as a
function of cycling stress variables are reported in Table II. Many
possible features have been proposed as inputs to predict degradation
rate during cycling: environmental conditions like temperature,
physical battery characteristics such as the gravimetric capacity
(ρAh, Alhaider et al.

48), or features related to the battery dispatch. In
the equations from Cordoba-Arenas et al.,51 the variable Ratio is
equal to ( + )t t tCD CD CS , where tCD is the time spent under a charge-
depleting drive cycle and tCS is the time spent under a charge-
sustaining drive cycle at SOCmin. Thus, Ratio incorporates informa-
tion about both the DOD and the time spent in different state-of-
charge windows. The Ratio variable used by Stadler et al.60 is

similar but adds time spent during charging to both the numerator
and denominator. These Ratio variables are information dense but
they limit model applicability to cells conducting the specific type of
mixed-use tested in those works.60,51 Occasionally, features are
normalized by minimum or maximum values used during testing, for
example, Cordoba-Arenas et al.51 use the minimum SOC, SOC0, and
maximum charging rate, CChg,0. These basic features can then be
used to create an infinite variety of complex features using algebraic
operations.

Once potential features are defined, there are a variety of
techniques used to down select from many features to only critical
features. Mathieu et al.41 used multivariate linear regression to down
select from a variety of possible equation features generated by
calculating square and interaction terms of the original features,
selecting features using a cutoff on the normalized absolute
coefficient value. Stadler et al.60 identified a multivariate linear
regression model using a stepwise backwards feature selection
process to down select from 20 to 16 features. Uddin et al.17 avoid
the need to find an single expression to predict degradation rate,
instead linearly interpolating between test conditions in four dimen-
sions (SOCmax, DOD, CChg, and CDis) to predict the degradation rate
for untested conditions. The equation used by de Hoog et al.63 and
Hosen et al.64 is repeated in Tables I and II, as it additively combines
Ah, a time-varying variable, and DOD, a time-invariant variable, to
calculate overall degradation, blurring the distinction made here
between a trajectory equation, which describes time-varying cell
behaviors, and rate equations, which describe variance between cells
as functions of the test conditions.

There are a few key takeaways from this review. One is that there
are some test conditions that impact degradation strongly across all
models and data sets. The two most critical variables present in this
review are DOD and temperature. The importance of these variables
is intuitive; temperature has an impact both on the rate of unwanted
side-reactions, e.g., SEI growth and electrolyte solvent decomposi-
tion, as well as cycling-induced degradation like Li plating, while
large DOD increases both the physical stress induced in electrodes
that experience volume change during Li de/intercalation and
chemical stresses by increasing the range of the potential window
of the battery, which may drive a variety of degradation mechan-
isms. The next most important variable for predicting the degrada-
tion rate is Crate, which can imply the average rate or the dis/charge
rates in particular. The magnitude of the current is especially

Table I. Table of trajectory equation from literature for degradation due to cycling. y refers to some battery state, such as capacity or DC pulse
resistance, β0:n refers to optimizable parameters, and X refers to an independent variable. Independent variables include Ah, the cumulative charge-
throughput that can be expressed either in terms of cumulative Amp·hours or as EFCs; AhChg/AhDis, the cumulative charge-throughput during
charge/discharge; depth-of-discharge DOD; time t; and cycle count N. The power of the trajectory equation (β2 for power-law and stretched-
exponential equations, β3 for sigmoidal equation) is nearly always in the range of 0.5 to 1, while the values of other parameters vary substantially.

Reference Description Equation Independent variable

Various authors36,48–50,51 Linear y = 1 − β1 · X X=Ah,48,50,51 X = AhDis,
49 X = AhChg

36

Takei,52 Smith9 Linear y = β0 − β1 · X X = N
Various authors32,36,44 Square root β= − ·y X1 1

X = Ah,32,36 X = AhChg,
36 X = t44

Various authors17,29,41,47,51,53–57,43,58,59 Power law β= − · βy X1 1 2 X = Ah,17,29,47,53–57,51,58,43 X = t,41 X = N59

Stadler60 Power law β β= − · βy X0 1 2 X = Ah

Baghdadi45 Stretched exponential β β= · ( · )βy Xexp0 1 2 X = t

Cuervo-Reyes61 Stretched exponential ⎛
⎝

⎞
⎠( )β= · −

β

β
y exp X

0
1

2 X = N

Ecker44 Logarithm β= − ·y X1 log1 X = t
Gering62 Sigmoidal ⎡

⎣
⎤
⎦

β= − · · −
β+ ( · )βy 1 2

X1
1

2

1

1 exp 2 3

X = t

Smith9 Site loss β β β= [ − · · · ]y X20
2

1 0
1
2

X = N

de Hoog,63 Hosen64 Polynomial β β= − ∑ · − ∑ ·= =y X X1 i i
i

j j
j

0
3

1, 1 0
3

2, 2
X1 = Ah, X2 = DOD
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Table II. Table of cycling degradation rate equations from literature. Equations are predicting degradation rate coefficients, such as β1 in the equation β= · βy x1 2, as a function of cycling stressors,
such as DOD or Crate, and environmental stressors like temperature. In some cases, such as for,9,51,58 equations were reported for several degradation rate coefficients, usually for predicting multiple
degradation states. There are two approaches that blur the distinction made in this work between trajectory equations, described in Table I, and degradation rate equations, described here. The
approach by de Hoog63 and Hosen64 uses DOD as an input to directly predict lost capacity. Stadler60 completely avoid predicting a trajectory, instead predicting the lost capacity at some specific
amount of charge-throughput directly using the cycling stressors as input.

References Equation

Alhaider48 γ γ ρ( · + ∣ − ∣· )· ( · )DOD SOC C0.5 exp Ah rate1 2

Baghdadi45 ( )( )γ+ ·γ
Cexp exp

T rate2
1

Cordoba-Arenas51 ( )γ γ γ[ + · + ·( − ) ]·γ γ γ
Ratio SOC SOC exp

T1 2 4 min 03 5 6

( )
γ γ γ

γ γ

[ + ·( − ) +

· ( ·( − )) + ·( − )]·

γ

γ

SOC SOC

C C SOC SOCexp expChg Chg T

1 2 min 0 4

5 ,0 6 min 0

3

7

de Hoog,63 Hosen64 β β= − ∑ · − ∑ ·= =Q Ah DOD1 i i
i

j j
j

0
3

1, 0
3

2,

Diao46 γ γ( · + )Texp 1 2

γ1 · T + γ2
Ebbesen,47

Schimpe36
( )γ · γ

exp
T1
2

Mathieu41 ( )γ γ γ γ γ+ + · + · + · + + ·γ γ
exp SOC I SOC

T

I

T T1 3 4 5 7
22 6

2

Naumann29 γ γ γ γ( · + )·( ·( − ) + )C DOD 0.6rate1 2 3
3

4

Petit58 ( )γ · γ γ+ ·∣ ∣
exp

I

T1
2 3

Sarasketa-Zabala43 γ1 · DOD
2 + γ2 · DOD + γ3

γ γ γ γ· ( · ) + · ( · )DOD DODexp exp1 2 3 4

Saxena53 γ γ γ· ·( + · + · )SOC DOD DOD11 2 3
2

Schimpe36 ( )γ γ· + ·γ
Cexp

T Chg1 3
2

Schmalsteig32 γ γ γ γ+ ·( − ) + ·V DOD1 2 3
2

4

γ( · )γexp DOD2 3

Smith9 1 + γ1 · DOD

( )γ · ·γ γDODexp
T1
2 3

Stadler60 QLoss@Ah = γ1 + γ2 · Ratio +γ3 · T
2 + γ4 · T + γ γ· + ·Ratio SOC5

2
6 max

2 + γ γ· + ·SOC SOC7 min 8 min
2 + γ γ· + · ·P SOC RatioChg9

2
10 max

+γ11 · Ratio · PChg +γ γ· · + ·T SOC PChg12 max 13 + γ γ· + · ·SOC T Ratio14 max 15 +γ γ· · + · ·SOC SOC T PChg16 max min 17

Suri54 ( )γ γ( · + )· γ γ+ ·
SOC exp

C

T1 2
rate3 4

Todeschini55 γ γ γ+ · + · ( )DOD Cexp rate1 2 3

Uddin17 Linear interpolation by SOCmax, DOD, CChg, and CDis between test points
Wang 201156 ( )γ · γ γ+ ·

exp
C

T1
rate2 3

Wang 201450 γ γ γ γ γ( · + · + )· (( · + )· )T T T Cexp rate1
2

2 3 4 5
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impactful in tests at low temperature, where high charging rates may
lead to Li plating. Finally, some studies incorporate SOC variables
into their degradation models. Perhaps one reason why SOC is not
incorporated into more models is simply due to limited testing
resources; creating a test matrix that varies temperature, DOD, dis/
charging rates, and SOC windows requires a prohibitive number of
batteries, forcing researchers to prioritize which experimental
variables to explore.

A crucial takeaway from this review is that the range of possible
input features, equation forms, and modeled variables used to predict
cycling degradation is extremely wide, and there is little consistency
between works. This is in contrast to a prior review of calendar
degradation modeling,34 which showed relatively uniformity in the
features and equation forms, e.g., Arrhenius and Tafel type equations.
Uniformity across works is somewhat expected, as degradation
trajectories are often qualitatively similar between data sets, and most
of the works cited here study Li-ion batteries from a narrow set of
commercialized electrode and electrolyte chemistries. This qualitative
similarity in the degradation trends between studies implies that most
degradation is due to shared root causes, most commonly the growth of
the SEI at the graphite electrode; but despite these shared trends, the
features, equations, and model identification procedures reviewed here
are widely disparate. This variety of approaches makes it difficult to
compare modeling results, find useful models for new data sets by
searching prior works, or to replicate the model identification procedure
described in any given work. Thus, there is a clear need for identifying
not only accurate equations, but also a replicable and repeatable model
identification procedure, using automated methods when possible to
assist the search for accurate and robust empirical degradation models.

Machine-Learning Assisted Model Identification Approach

In this work, model identification is done using a bilevel optimiza-
tion and symbolic regression approach.34 First, separate degradation
modes are identified using expert-judgement; use of expert-judgement
is required, as not all degradation mechanisms are electrochemically
visible, and the connection of specific degradation mechanisms to
degradation modes is complicated by mechanical, chemical, and
electrochemical interactions.65 After splitting the data into regimes
dominated by individual modes, each mode is fit with the ML-assisted
model identification method. Model identification has two key steps:
defining a trajectory equation using expert-judgement aided by bilevel
optimization, and identification of local parameter submodels using
either intuition or symbolic regression. A graphical representation of
this procedure can be seen in Fig. A·1 (Fig.1 of Ref. 34).

In the first step of identifying a model for a specific degradation
mode, expert-judgement is used to select one or more potential
trajectory equations for any given degradation mode, based on
qualitative trends in the data or domain knowledge of the physical

root cause. For instance, the calendar degradation mode, which is
attributed to the SEI growth degradation mechanism, can be
modeled well by a power law expression,66 while a self-limiting
reaction can be modeled by a sigmoidal expression.62 Bilevel
optimization is used to separately optimize the values of local
(stress dependent) and global (cell independent) parameters. Global
parameters are optimized in an upper level optimization loop, with
multiple lower level optimization loops solving for the values of
each local parameter for every data series. Each optimization loop is
attempting to minimize the root mean square error between the
model prediction and the data. Model fitness is reported using the
adjusted coefficient of determination (Radj

2) and the mean absolute
error (MAE).

In the second step of identifying a model for a specific degradation
mode, local parameters are then modeled as functions of the aging
conditions, such as constant temperature or constant average SOC.
Sometimes, well performing equations for these local parameter
submodels can be identified by introspection or with domain
knowledge,9,34 but often, defining an equation that is robust is quite
difficult; robust meaning a model that is accurate when trained on all
the available data, cross-validates with low error, has narrow confidence
intervals, and extrapolates to extreme conditions without diverging.
Here, the ML method of symbolic regression is utilized to identify
candidate submodels for local parameters. Symbolic regression is
conducted by algorithmically generating a large library of possible
equation features, and then utilizing a regularization algorithm to search
for an optimal linear combination of a small subset of features. This
procedure can also be used to find multiplicative models by fitting the
log of the response variable.34

Features for predicting locally fit parameter values are generated using
an algorithmic approach, which is decscribed in Table III. Possible
equations, which are constructed by linearly or multiplicative combining
these features, vary from simple, such as β1= γ0+ γ1 ·DOD, to more
complex, like β γ γ γ= · ( · )· ·( · )γexp C DOD Crate rate1 0 1

1 3
2

2 3. Because any
subset of features could be a valid model, the search space of possible
equations has combinatorial complexity. For example, an exhaustive
search for the optimal equation using 6 features from a set of 1000 would
require calculating the results of 1.4 · 1015 equations.

Searching for a parsimonious model in this large search space can
be done using many regularization or feature selection algorithms. In
a prior work,34 the LASSO regularization algorithm was used.67

However, it was found that this algorithm did not perform well when
used on large feature libraries, approximately 102 features or greater,
as large feature libraries create wide matrices that have more features
(columns) than data points (rows). Here, the Sure-Independent
Screening and Sparsifying Operator (SISSO) algorithm was used.
SISSO has been demonstrated to perform better than LASSO in
similar cases.68–70 SISSO also has several other advantages over

Table III. Algorithm for generating feature libraries used during symbolic regression. At each step, features from the prior step are kept, so the
total number of descriptors is cumulative. Note that the procedure differs slightly when generating features for linear (additive) or multiplicative
equations. The example shown here uses temperature, SOC, and the anode-to-reference potential, Ua, as input features for generating features to
model calendar aging behaviors. When generating features for cycle aging, only DOD and the average of the charge/discharge rate (Crate) are used,
and step 3 is omitted to prevent division by 0 (DOD is set equal to 0 when evaluating calendar degradation), resulting in 48 features. Temperature is
omitted when generating features for cycle aging because the aging test matrix does not have enough variance in the cycling temperature to identify
any trends.

Step Description Formula Example # descriptors

1 Input features XA(T), XB(SOC, Ua) T, SOC, Ua 3
2 Non-linearities X1/4, X1/3, X1/2, X2, X3, X4 T4, SOC1/3 21
3 Inverse (calendar only) X−1 1/T2, 1/Ua 42
4 Multiplicative interactions *X X1 2 *T Ua

3 1 4, SOC/T3 434

5a Exponential (linear eq. search) eX ( )exp Ua , ( )exp SOC T2 4 868

5b Natural log (multiplicative eq. search) log(X) log(T), ( )log T Ua
1 4 868

6 Remove any infinities or NaNs 573 (linear), 553 (multiplicative)
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LASSO. Rather than outputting a single model, SISSO outputs
several candidate models of increasing complexity, which can then
be manually screened to identify the best model. SISSO also is
repeatable, outputting the same candidate models when re-run on the
same inputs, which is not the case when using LASSO with wide
input matrices. SISSO requires defining two hyperparameters: the
maximum number of non-zero coefficients and the number of
features selected per iteration (one iteration per non-zero coeffi-
cient). For searching for calendar degradation submodels, the
maximum number of non-zero coefficients is set to 4, and the
number of features per iteration is set to 40. Implementations of
SISSO in Fortran,71 MATLAB,72 and Python with integration to the
sklearn API73 are available.

Local parameter submodels are then substituted into the trajec-
tory equation, defining a global equation that predicts the behavior of
all data series with a single expression. The global equation is then
reoptimized on the entire data set, evenly weighting each data series
so that the number of data points per series does not impact the
optimal parameter values. This process is repeated each time a new
degradation mode is added to the model, so that the values of all
model parameters are optimized considering the cumulative effects
of each degradation mode. Predictive uncertainty is estimated by
training the model on a randomly resampled subset of the test groups
using a bootstrap resampling approach,34 and also using a leave-one-
out cross-validation approach. Finally, the model is reformulated
into a state model, enabling simulation of battery aging under
dynamic environmental conditions or varying use, the procedure for
which is described later.

Data

The data used for this study is LFP/Gr cell aging data,
previously published in Naumann et al.8,29 and available for
download.38,39 Data was provided at request from the original
authors, and includes some data not reported in the prior works.
The cells studied were commercial Sony/Murata US26650FTC1
LFP/Gr cells in the 26 650 cylindrical format. The manufacturer
specified nominal discharge capacity of these cells is 2.85 Ah,
however, the nominal discharge capacity is considered to be 3 Ah
due to prior characterization work on over 1000 cells.74 The aging
study was conducted by aging cells in climate controlled
chambers. Cell performance was monitored by routine perfor-
mance checkups, conducted every week for the first three weeks,
every other week for the following six weeks, and every four
weeks for the rest of the study, approximately 900 d. Performance
checkups consist of capacity checks and pulse resistance

measurements. Capacity is measured using two repeated con-
stant-current constant-voltage (CCCV) charge and discharge
cycles (1C CC, 3.6V CV on charge with a C/30 cutoff on charge,
2.0 V CV with a C/20 cutoff on discharge). DC pulse resistance is
measured using 10 s charge and discharge pulses at 50% SOC and
at 1/3C, 2/3C, and 1C rates, with 10 min of relaxation between
each pulse. This work develops a model for the relative discharge
capacity, which is defined as the mean of the discharged capacity
from the two full CCCV discharge cycles (Eq. 5), divided by the
initial discharge capacity recorded for each cell.

= ( + ) [ ]Q Q Q
1

2
5CCCV CCCVdischarge discharge,1 ,2

Table A·I reports the aging conditions of each test group. The
aging matrix consists of 17 static calendar aging test groups (groups
1-17), 19 static cycle aging test groups (groups 18-36), 8 dynamic
calendar aging test groups (groups 37-44), and 5 dynamic cycling
aging test groups (groups 45-49), with three test replicates for most
groups. Static calendar aging tests varied storage temperature from
0 °C to 60 °C and SOC from 0% to 100%. Static cycle aging tests
cycled cells using CC charge and discharge steps at only 25 °C and
45 °C, but widely varied DOD between 1% and 100%, varied
average SOC between 25% and 75% at 20% DOD, varied discharge
and charging rates (Crate) between 0.2C and 2C, and cycled some
cells using CCCV charging steps instead of CC charging steps. More
detail is provided in the original works.8,29 For modeling purposes,
the Crate is considered as the average of the charging and discharging
rates, as a direct comparison of cells aging under asymmetric
charging and discharge rates (groups 26, 27, 28, and 30) revealed
no substantial difference in the capacity fade or resistance growth
behavior.29

Visualizing prominent capacity fade trends.—The development
of the capacity fade model begins with identifying major trends in
the data, correlating those trends with the aging conditions, and
determining an appropriate order in which to model individual
mechanisms, which may combine additively29,36 or competitively.9

Key calendar degradation trends are shown in Fig. 1, and cycling
degradation trends are shown in Fig. 2. The prominent trends
observed during calendar aging are increasing degradation rate
with respect to temperature (Fig. 1a) as well as with increasing SOC
(Fig. 1b). The time-dependent calendar aging behavior appears sub-
linear for most aging conditions, however, it can be seen in Fig. 1b
that as the SOC approaches 0%, the degradation trajectory becomes
almost linear. This behavior was also observed in a prior work.34

Figure 1. Capacity fade trends observed during calendar aging. (a) Impact of temperature variation at 50% SOC (groups 1, 2, 4, 10, 16). (b) Impact of SOC
variation at 40 °C (groups 6-14).
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Figure 2 shows the dominant trends in the cycling data.
Figures 2a–2b both show the impact of the average Crate on the
capacity fade, but with time on the x-axis in Fig. 2a and EFCs on
the x-axis in Fig. 2b. While in Fig. 2a it seems clear that
increasing Crate increases the degradation rate, this is not
accounting for the impact that increased charge-throughput may
have on cell capacity over time. But when plotted vs EFCs in
Fig. 2b, the apparent trend reverses, and it becomes unclear if the
increased degradation at high Crate is simply due to increased
charge-throughput, or if there is an impact of Crate on the
degradation per EFC as well. these effects can be potentially
deconvoluted by first subtracting the contribution of calendar
fade, as described in Eq. 1; Naumann et al. identified a positive
impact of Crate on the degradation per EFC using this approach.29

This simple example demonstrates why it is crucial to plot data vs
both time and charge- or energy-throughput when considering the
impact of Crate on cell health metrics.

Figure 2c shows the impact of varying DOD on the capacity
fade trajectory. The variation of DOD reveals that there are two
additive degradation modes involved in the loss of discharge
capacity during cycling: an initial sudden drop of capacity
followed by a saturation period, i.e., break-in loss, and a nearly
linear loss of capacity over the entire experiment, i.e., long-
term loss. Break-in loss appears to always saturate within the
first 300 d and 4000 EFCs. The magnitude of the break-in loss
is a non-monotonic function of DOD and SOC. As seen in
Figs. 2c–2d, the maximum break-in loss is observed at
approximately 20% DOD and 50% SOC, decreasing in

magnitude as both SOC and DOD vary from these values.
This break-in loss has been characterized in detail by prior
work,75 and is attributed to a uneven distribution of lithium
throughout that occurs when cycling at low DODs. While some
of the break-in capacity loss is recoverable, by letting the
lithium in the cell redistribute via relaxation or very slow
cycling, the uneven utilization of the anode during low DOD
cycling also results in unrecoverable capacity loss. This
physical explanation also implies that cells cycled with varying
DOD, or with suitably long rest periods between cycles, would
likely not experience this loss mechanism, which has implica-
tions for extrapolating the trends observed during the acceler-
ated aging study to real-world use.

In contrast to the break-in fade, the long-term capacity loss
trends are relatively straightforward. The slope of the long-term
capacity loss appears to be a monotonic function of DOD, with
an increasing slope at increasing DODs. Figure 2d shows the
impact of varying the average SOC on capacity fade. SOC seems
to primarily impact the magnitude of the break-in loss, with a
maximum break-in loss at 50% SOC, and has no obvious impacts
on the slope of the long-term loss. Due to the complexity of
these trends, prior work modeling the cycling degradation trends
in this data set29 neglected to fit the break-in loss. However, due
to the additive nature of the break-in and long-term capacity loss
modes, and the large contribution of the break-in loss to many of
the cells, accurately modeling the dependence of the long-term
loss rate on DOD without also modeling the break-in behavior is
not possible.

Figure 2. Capacity fade trends observed during cycling aging. (a), (b) Impact of Crate variation vs (a) time and (b) EFC (groups 23-25). (c) Impact of DOD
variation (groups 22-23, 29, 31, 34). (d) Impact of SOC variation at 20% DOD (groups 31-33).
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Model Identification Using Static Aging Data

In this section, the identification of a capacity loss model using
the bilevel optimization and symbolic regression approach and the
test data from static aging tests (groups 1-36) is described in detail.
Model identification begins by fitting the calendar degradation data
(groups 1-17), and then this calendar degradation model is used to
estimate the contribution of calendar degradation to the degradation
observed during cycle aging (groups 8-36). As discussed in the
previous section, capacity loss due to cycle aging is modeled using
the additive combination of a break-in mode and a long-term
degradation mode; the break-in mode is fit first, followed by fitting
of the long-term degradation mode. After identifying the cycling
degradation equations, all model parameters, including the calendar
fade model parameters, are reoptimized over all of the static aging
data.

Fitting calendar aging data.—Various different equation forms
were considered for predicting the capacity loss due to calendar
aging.34 Comparing between square-root, linear, power-law, and
sigmoidal equation forms, the sigmoidal equation results in the best
overall model with regards to accuracy and uncertainty. This
trajectory model is reported in Eq. 6:
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where q1, q2, and q3 are free parameters, and t is the time in days.
The parameters q1 and q3 are fit locally to each cell, as both the
extent of degradation and the curvature of the capacity fade
trajectory differ across the various test conditions, while the
parameter q2 is optimized globally with a resulting value of
1.31 · 10−4; fitting q1 locally has a clear physical basis (the max-
imum extent of the reaction), while model errors are lower when
allowing q3 to be fit locally rather than q2. Fitting all parameters
locally results in chaotic trends for parameter values vs temperature
and SOC, leading to a non-physical model. The result of this bilevel
optimization is shown in Fig. 3. The model fits the data precisely,

and there are no obvious trends observable in the residual errors,
indicating that the data is well fit.

Locally fit values of q1 and q3 are then modeled using the
symbolic regression procedure. Locally fit values of q1 and q3 are
shown as circles in Figs. 4a–4b. q1 varies primarily as an exponential
function of temperature, with little dependence on SOC until the
SOC reaches 0%. q3 seems to vary mostly as a function of SOC.
Considering both parameters, the behavior at 0% SOC across all
temperatures differs substantially from cells tested at other SOCs;
this is because the capacity fade trajectory of cells at 0% SOC is
much closer to linear than any of the other cells, leading to higher
values of q3, which then impacts the optimal value of q1. The
symbolic regression procedure is able to find robust equations for
predicting the values of q1 and q3 as functions of temperature and
SOC. The equation found for q1 is reported below (Eq. 7), where
q1,a−c are free parameters, T is the temperature in Kelvin, and Ua is
the anode-to-reference potential, calculated according to the equa-
tion defined by Safari and Delacourt76 and parameterized for this
specific cell in Schimpe et al.36 Model predictions are plotted as X’s
with 95% confidence intervals as determined by bootstrap resam-
pling in Fig. 4a. The only test condition poorly predicted by the
identified model is at 0 °C and 50% SOC, however, both the
measured and predicted values are very small, resulting a low
predicted value for the capacity fade in Eq. 6, which matches the
observed trends.
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where Ua is a function of SOC, described in equation A·1.
Equation 7 is then simulated between 0 °C–60 °C and 0%–100%
SOC, to evaluate model trends over a wide range of conditions.
Model predictions at 0% SOC vary substantially from those at higher
SOCs, which makes sense intuitively because the capacity fade
trajectory of cells at 0% SOC is much different than those at larger
SOCs.

The equation found for q3 is reported below (Eq. 8), where q3,a−e

are free parameters, with predictions plotted as X’s in Fig. 4b. The
identified equation correctly captures all the trends of the locally fit

Figure 3. Calendar model local fit on all calendar aging cells.
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q3 values accurately. Simulation of the model shows that the model
behaves sensibly across a large range of conditions. At 0% SOC and
5 °C, the value of q3 becomes larger than 1, which results in faster
than linear degradation, however, the value of q1 is extremely small
at this condition, so the predicted capacity fade (Eq. 6) will still
conform to physical intuition.
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The overall calendar fade model is then defined by substituting
Eqs. 7 and 8 into Eq. 6.

Fitting cycling aging data.—For fitting the break-in and long-
term cycling degradation modes, the data from static cycling cells
was split into regions dominated by the break-in and long-term
degradation behaviors. Splitting the data was done by defining
logical conditions with respect to EFCs and the second derivative of
the relative discharge capacity with respect to time in days;
derivatives were calculated by element-wise division of the differ-
ence of capacity and the difference of time and then using the Matlab
function smoothdata. The conditional statement for the break-in data
mask is shown in Eq. 9, and the conditional statement for the long-

term data mask is shown in Eq. 10.
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Modeling cycling break-in loss.—Because the capacity loss due
to the break-in mechanism appears to saturate for all cases, a
sigmoidal equation was used to account for it (Eq. 11). This
mechanism was additively combined with the existing equation for
the capacity loss due to calendar aging, optimizing the parameters
q4, q5, and q6; q4 was optimized locally to each test group, while q5
and q6 were optimized globally to the entire data set. The result of
optimizing Eq. 11 to the masked off break-in data is shown in Fig. 5.
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As shown in Figs. 2c–2d, the magnitude of the break-in
mechanism is both a function of DOD and average SOC. This
variation is captured by the locally optimized values of q4, shown as
circle markers in Fig. 6. The parameters q5 and q6 have optimal
values of 3.04 · 10−3 and 1.43, respectively. Due to the lack of test
cases varying SOC, there is not enough data available to use the
symbolic regression approach to learn a robust equation that predicts
the behavior of q4 vs both SOC and DOD. Qualitative analysis of the
trends of q4 vs both DOD and average SOC led to the insight that a
two-dimensional skewed normal distribution describes the overall
trend, while also ensuring the boundary conditions match physical
expectations by multiplying by a sigmoid; there should be no break-
in if the DOD is equal to 0, or very near 0, and the experimental
results show no break-in at 100% DOD either. So, the data was fit
with Eq. 12:
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where SOC and DOD are inputs, q4,a, q4,b, q4,SOC,σ, q4,SOC,ξ,
q4,DOD,σ, and q4,DOD,ξ are fitting parameters, and q4,SOC,μ and
q4,DOD,μ are set to 0.5 manually based on the qualitative trends
observed in Figs. 2c–2d. φskew is defined here as:
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where φ is the normal probability distribution function and Φ is the
normal cumulative distribution function, both with mean μ and
standard deviation σ, and a skew of ξ. Equation 12 fits the data
accurately, as seen in Fig. 6. The magnitude of the uncertainty at
DOD less than 20% is quite large, which is sensible as q4 grows very
quickly and there are only 3 available data points to train the model
in this regime.

Modeling long-term cycling loss.—After fitting the break-in
behavior, the long-term cycling fade behavior was fit with a power
law model (Eq. 14), where the degradation rate parameter, q7, was fit

Figure 4. (a) Parameter q1 values from local fits (circles), ML model (Eq. 7)
fits with 95% confidence intervals (X’s with error bars), and model
predictions vs temperature at 0%, 25%, 50%, 75%, and 100% SOC. (b)
Parameter q3 values from local fits, ML model (Eq. 8) fits with 95%
confidence intervals, and model predictions vs temperature at 0%, 25%, 50%,
75%, and 100% SOC.
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locally to each test group, and the power, q8, was fit to all of the data.
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The resulting fits can be seen in Fig. 7. Because the calendar and
break-in losses are already accounted for, the contribution of just the
long-term fade is deconvoluted from the overall capacity loss, and
the data is fit well by a nearly linear model; the optimal value of q8 is
1.13. The residual errors of the fit are small, with little apparent
slope, excepting that from test group 30, which has very large cell-
to-cell variance between the three cells in the test group due to the
break-in loss. The locally fit values of q7 are shown vs DOD and
average Crate in Fig. 8. The overall trend is relatively simple:
degradation rate increases monotonically with DOD, and the impact
of Crate on q7 increases with increasing DOD, indicating an
interaction between DOD and Crate. This data was fit by Eq. 15,

which was identified via ML. Model uncertainty is relatively low,
except for the regime with high DOD and high Crate, which has only
a single test group, resulting in high uncertainty.

= + · + · ( · ) [ ]q q q DOD q exp DOD C 15a b c rate7 7, 7, 7,
2 3

Capacity Fade Model Results and Comparison to Prior Work

After identification of the capacity fade model using the ML-
assisted identification procedure, all parameters of the model are
reoptimized to all of the static aging data simultaneously to
deconvolute the relative contributions of each degradation mode
(qLoss,Cal, qLoss,BreakIn, and qLoss,LongTerm) as accurately as possible.
Resulting optimal parameter values are reported in Table IV. The
model predictions on the entire data set are shown in Fig. 10. All
major trends in the data are clearly accounted for, resulting in low
model error: MAE for the calendar degradation data is only 0.4%,
and 1.2% for the cycling degradation data.

This model performance can be compared to that of the model
defined by Naumann et al. for this same data set.8,29 The model in
Naumann et al. incorporates a square-root of time calendar loss
equation and a square-root of EFC cycling loss equation. The values
of the model parameters identified by Naumann et al. were fit using an
iterative procedure, as described in the original publications;8,29 to make
a like-for-like comparison, the parameters have been reoptimized on the
same data as the ML-assisted model. The resulting predictions when
optimizing the model described by Naumann et al. to the entire data set
are shown in Fig. 9. While most of the calendar aging trends are
predicted accurately, the degradation at 60 °C is fit poorly across the
entire range of SOCs due to the deviation of the aging trajectory from a
square-root of time trend. Cycling degradation does not take into
account the impact of break-in, and the square-root of EFC trend
assumed by the model cannot accurately fit the cycling fade for several
cases, clearly seen by the systematic deviation of the residual errors in
both positive and negative directions.

A comparison of the model errors from the Naumann model with
parameter values from prior work,8,29 after refitting all parameters to the
entire data set, and from the ML-assisted model defined here are
reported in Table V. Note that the simple act of optimizing all of the

Figure 5. Local fitting of break-in cycling degradation behavior using Eq. 11.

Figure 6. Parameter q4 values vs DOD and SOC from local fits (circles),
machine-learned model (Eq. 12) fits with 95% confidence intervals (X’s with
error bars), and model predictions vs DOD at 25%, 50%, and 75% SOC; only
valid ranges of DOD and SOC are shown (maximum DOD at an average
SOC of 75% is 50%).
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parameters in the Naumann model has resulted in approximately a 20%
decrease of the model error. The ML-assisted model outperforms both
the original and the refit Naumann model, with about 50% of the MAE
as the refit Naumann model on all splits of the data. The uncertainty of
the Naumann model and the ML-assisted model can also be compared
using a cross-validation approach, where by each model is trained while
leaving out one of the test groups, and a prediction made for this left out
group, repeating across all groups. The ML-assisted model, overall,
appears more robust than the refit Naumann model, with lower MAECV.

Uncertainty can be quantified more precisely utilizing a bootstrap
resampling procedure. The predictive uncertainty for the ML-assisted
and refit Naumann capacity fade models are shown in Figs. 11a–11e
and 11f–11j, respectively, for 5 test groups from the overall data set.
Bootstrap resampling for the “refit Naumann” model is done using a
“sequential bootstrap” method, where for each bootstrap iteration the
calendar fade model parameters are trained on a bootstrap resampled set
of the calendar aging groups and the cycling fade model parameters
trained on a bootstrap resampled set of the cycle aging groups,
reflecting the model identification procedure outlined in the original
works.8,29 The ML-assisted model fits data trends more accurately for
all cases. Confidence intervals for the ML-assisted model are also

narrower than that of the refit Naumann model. Additionally, the
variance of the uncertainty of the ML-assisted model is larger than that
of the refit Naumann model; uncertainty is extremely small for the
calendar degradation data (test groups 13 and 22, Figs. 11a–11b),
slightly larger for cycling degradation data at both low and high DODs
(test groups 22 and 32, Figs. 11c, 11e), and very large for cycling
degradation at high DOD and high Crate (test group 28, Fig. 11d). The
variance of the uncertainty highlights which degradation regimes are
difficult to predict accurately based on the available training data, and is
crucial for helping distinguish between high-confidence and low-
confidence predictions, or for identifying potential new test cases that
may be useful for improving the performance of the aging model. For
example, uncertainty is large for cells in test group 28 because this is
the only cell at high DOD and high Crate, resulting in a linear
degradation trajectory with a much steeper slope than any other test
groups in the data set; this uncertainty can also be observed in the wide
confidence interval for the data point at 80% DOD and 1.5 average
Crate in Fig. 8. In comparison, the uncertainties of the refit Naumann
model have low variance, with qualitatively similar trends across the
entire data set, making it difficult to gain insights into model behavior.

Dynamic Aging Validation and Simulation of Real-World Use

In order to simulate battery aging under varying load or environ-
mental conditions, the identified aging model needs to be reformulated
to be path independent, e.g. “memory-less”.77 Path independent aging
depends not on the amount of time or cycles that have elapsed since the
beginning of battery life, but rather, on the current state and the future
stress on the battery. For instance, consider the case of aging dominated
by the loss of lithium inventory, which is primarily driven by SEI
growth: the growth rate of the SEI at any point depends not on the
amount of time passed since beginning of life, but rather on the current
thickness of the SEI. This concept was first proposed by Thomas and
Bloom,77 and was likely independently applied by Serrao et al.57 at the
same time. Dynamic state models, as they are referred to here, have
been utilized in a wide variety of studies since.8,29,35,36,41,44,58

Deriving dynamic state models.—There have been several past
descriptions on deriving dynamic state models, using various
terminologies or definitions.8,29,35,77,78 For any given degradation
equation, the dynamic model for each state (degradation mode) can
be derived using the following approach: (1) separate the overall
model into several independent states, = ( )y f x , each dependent on

Figure 7. Local fitting of long-term cycling degradation behavior.

Figure 8. Parameter q7 values from local fitting to the long-term cycling
fade data (circles), fits by an ML equation (Eq. 15) with 95% confidence
intervals (X’s with error bars), and model predictions vs DOD at 0.2, 0.5,
0.75, 1, and 1.5 Crate.
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only one time-varying independent variable (e.g., calendar and cycle
aging;8,29 lithium loss, positive electrode capacity, and negative
electrode capacity9); (2) solve the derivative of the equation with
respect to the time-varying independent variable:
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where x is the time-varying independent variable (e.g. time, charge-
throughput, cycles, ...), and S is a vector of stressor values
(temperature, average SOC, DOD, ...), which are assumed to be
constant over the time step δx; (3) invert the equation to solve for x*,
referred to as the virtual-time or virtual-EFC in Naumann et al.8,29

and in the next section, given the values of S for the current time step
and the prior value of the state variable, yt−1:
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(4) substitute x in the derivative (Eq. 16) with x* to get the derivative
for the current time step, dyt/dx, dependent not on x, but on the prior
value of the state:
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(5) solve for the degradation in the current time step, δyt, by
multiplying Eq. 18 by δx:
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or, as is done in SimSES and used in the following section, simply
solve for δy by taking the difference between yt and yt−1:

* *δ δ= ( + ) − ( ) [ ]y f x x f x, S , S 20t

This is equivalent to the above approach at small time steps but
may be more accurate if the time step is large, and thus the
linearization described above is not valid; (6) enforce any initial
conditions or special considerations (see Smith et al.,35 Appendix
A); (7) combine the dynamic models for each state additively (as in
Refs. 8, 29) or logically (as in Ref. 9) to match the structure of
overall degradation model. Derivations for a variety of degradation
equations are reported by Santhanagopalan et al.78 and Smith et al.35

Even after deriving the dynamic equation forms for each state in the
model, there are a several considerations for extracting the values of
stress variables (temperature, C-rate, SOC, ...) from the varying load.
Note that only one variable in the degradation model can be treated as
time-varying for any given state, therefore, the values of stressors such
as temperature, SOC, DOD, or others must be treated as constant within
any given time step. Thomas and Bloom77 avoid this issue by solving
an integral where both time and the values of the stressors are
continuous variables (replacing the discrete calculation in Eq. 19), but
this approach only works for variables that smoothly vary with time,
such as temperature or SOC, and cannot account for variables such as
DOD or cycle count, which do not smoothly vary and are difficult to
define for complex battery loads. One approach is to break up the SOC
timeseries into discrete time steps by identifying turning points, using
techniques such as the rainflow algorithm9,35,78 or the rising sun
envelope method;79 DOD and cycle-count are then constant between
each turning point. DOD can also be treated as a continuous variable
using a time-superposition approach.35,80 A simpler approach, not
requiring turning point identification, is to simply take the difference
between the maximum and minimum SOC in a predefined time step;
however, this requires setting the simulation time step to some
appropriate value that captures the dynamics of the battery use. A
fast Fourier transform of the battery load can be used to help determine
an appropriate time step for simulating the battery degradation, but
there is still a risk of splitting a long duration charge or discharge into

Table IV. Optimal parameter values for the ML-assisted model identified here.

Parameter q1,a q1,b q1,c q2 q1,a q3,b
Value 9.90E-01 −2.88E+06 8.74E+03 1.31E-04 3.33E-04 7.35E+11
Parameter q3,c q3,d q3,e q4,a q4,SOC,ξ q4,SOC,σ
Value −2.82E-06 −3.28E+09 1.27E-03 5.82E-01 5.83E-02 2.09E-01
Parameter q4,DOD,ξ q4,DOD,σ q4,b q5 q6 q7,a
Value −3.81E+00 1.16E+00 2.54E+01 3.04E-03 1.44E+00 −6.81E-06
Parameter q7,c q8
Value 2.12E-06 1.13E+00

Figure 9. Refit Naumann capacity loss model. (a) Fit to calendar degradation data and (b) residual errors. (c) Fit to cycling degradation data and (d) residual
errors. Axis limits are shared with Fig. 10 to assist comparison.
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two different time steps, incurring some simulation error. SimSES,
which is used in this work to simulate the lifetime of battery energy
storage systems, avoids this issue by calculating degradation once per
day, only calculating cycling degradation once at least a half-EFC of
charge-throughput has occured.27 Determining a “best-practice” ap-
proach from all of these options would require a huge variety of long-
term aging data under dynamic use. Each of the approaches described
above has demonstrated satisfactory results on available validation data.

Model validation on dynamic aging tests.—Comparisons of
model predictions with 95% confidence intervals on a variety of
dynamic aging tests are shown in Fig. 12. Qualitatively, both the human

expert and ML-assisted models perform well on the validation tests
shown. The confidence intervals for the ML-assisted model identified
here are much narrower for both the calendar- and cycling-dependent
degradation states. Prediction errors on the dynamic validation data
from each model are reported in Table VI. Corroborating the results
from the model identification on the static testing data, the ML-assisted
model identified here has the lowest average prediction erro. This
improvement comes from substantially better accuracy on the dynamic
cycling cells. For duty cycles with less aggressive cycling, such as the
PV-HESS and PV-PCR-BESS load profiles shown in Figs. 12c–12d
(Naumann refit) and Figs. 12g–12h (ML-assisted), overall cycling
degradation is relatively low for both models. Where cycling

Table V. MAE and cross-validation MAE (MAECV) of models on the static aging data used for model identification and optimization. The Naumann
model uses the structure and the parameter values defined in prior work,8,29 while the “Naumann (refit)” model reoptimizes the model parameters
to all of the available aging data, and the “ML-assisted”model is the degradation model identified in this work. Storage error is calculated over data
from test groups 1–17. Cycling error is calculated over data from test groups 18–36.

All data Storage Cycling

Model description MAE MAECV MAE MAECV MAE MAECV

Naumann 2.11% 1.01% 3.18%
Naumann (refit) 1.66% 1.91% 0.72% 0.99% 2.58% 2.82%
ML-assisted 0.79% 0.83% 0.38% 0.47% 1.20% 1.43%

Figure 11. Comparison of model fits for groups 5 (a, f), 13 (b, g), 22 (c, h), 28 (d, i), and 32 (e, j) between the refit Naumann model (a)–(e) and the ML-assisted
model identified in this work (f)–(j). Dots correspond to experimental data, solid lines are best-fit model predictions, and shaded regions denote 95% confidence
intervals from 1000 iterations of bootstrap resampling.

Figure 10. ML-assisted capacity loss model predictions. (a) Fit to calendar degradation data and (b) residual errors. (c) Fit to cycling degradation data and (d)
residual errors. Axis limits are shared with Fig. 9 to assist comparison.
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degradation is incurred, the ML-assisted model predicts that it is
dominated by the saturating break-in fade, which matches with the
trends observed in the static aging data (Fig. 2c).

There is an additional assumption required for extrapolating the
break-in fade to less aggressive cycling conditions that are more likely
to be observed in real-world use: based on the aging data, and the
known physics causing the break-in effect,75 break-in is treated as
unrecoverable, however, it should only occur during periods of high

use, where lithium in the cell would not have a chance to redistribute
during rest. For this work, “high-use” is assumed to be periods when
the battery is utilized at a rate of 2 EFCs/day or more. This is less
strenuous than the accelerated aging tests, but more strenuous than most
real-world use cases, and thus break-in fade should only be expected to
occur during short periods of very high-use in real-world applications.

The approach shown here assumes that aging is path indepen-
dent, however, there is experimental evidence that lithium-ion

Figure 12. Model validation on dynamic aging tests. For each model, the overall capacity loss (black solid line) is the sum of the loss due to each state (dotted
and/or dashed colored lines). (a)–(d) Human expert model described in Naumann et al.,8,29 refit to the exact data used for ML-assisted model identification here.
(e)–(h) ML-assisted model identified in this work. The dynamic calendar fade test (Group 44 in Table A·I) data and model predictions plotted in (a, e) are shown
with colored regions denoting the aging temperature between capacity checks throughout the experiment.

Figure 13. Distribution and mean values of the stress factors SOC, DOD and Crate as well as average EFCs per annum (EFC/a) for the three applications:
Frequency Containment Reserve (FCR), Peak Shaving (PS), and Self Consumption Increase (SCI). Counts reported on y-axes are from 15 year simulations.
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battery degradation may sometimes be path dependent, e.g., not
only does the number of cycles matter, but also the order in which
those cycles occur, or how many cycles are conducted consecu-
tively before rest periods.81 Achieving accurate prediction of cell
degradation in cases where path dependence is a clear factor is an
open challenge for the battery degradation modeling community,
but luckily, the assumption that degradation is path independent
seems to hold true for many common real-world use cases, as is
shown by the good performance of both the refit Naumann model

and ML model when validated against dynamic aging data
presented here.

Simulation of realistic stationary energy storage applications.—
Battery lifetime models may be utilized to estimate the lifetime of real-
world energy storage systems by incorporating them into systems-level
simulation tools such as SimSES. SimSES is a time-series based open
source tool that allows to perform holistic techno-economic simulations
and analyses for battery energy storage systems.27 Here, we consider

Table VI. MAE of models on dynamic aging data used for validation. Storage error is calculated over data from test groups 37–44. Cycling error is
calculated over data from test groups 45–49.

Model description MAE (All data) MAE (Storage) MAE (Cycling)

Naumann 1.18% 0.78% 1.28%
Naumann (refit) 0.84% 0.71% 0.88%
ML-assisted 0.68% 1.29% 0.52%

Figure 14. Schematic overview of how confidence intervals for the incremental capacity losses are calculated in the adapted version of the environment SimSES
for each time step. The adapted version of SimSES has been made available open-access.40
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three applications: a commercial frequency containment reserve
application (FCR), a commercial peak-shaving application (PS), and
a residential PV-battery system performing a self-consumption increase
service (SCI). These three applications are described in detail in
previous work.30 Battery load for each application is calculated using
an energy management system based on realistic input profiles for the
selected application and system parameterization. For FCR, a grid
frequency profile serves as input, with the BESS discharging during
underfrequency and charging during overfrequency. In PS, the BESS
discharges when the used industrial load profile exceeds a predefined
peak shaving limit and charges again afterwards. For SCI, a household
load and PV generation profile serve as inputs. The BESS charges
when PV power exceeds the household load and discharges when the
household load exceeds PV power.

Histograms of the SOC, DOD, and Crate stress factors throughout
fifteen years of simulation are shown in Fig. 13. Each of the
application cycles shows significantly different battery use: the FCR
application operates around 50% SOC at low DOD with Crate up to
0.5, the PS application spends a large amount of time at high SOC,
even resting at 100% SOC for long periods, with an average DOD of
approximately 40% but with low power demands (low Crate), and the
SCI application has the battery regularly being fully discharged, with
little amount of time spent resting at high SOC, regular operation at
high DOD, and relatively high Crate. As the EFCs are less than 2 per
day in all applications, the break-in loss model is not considered in
this analysis. Furthermore, the BESS is assumed to be in a
temperature controlled environment, kept at a constant temperature
of 25 °C, to ensure comparability between applications.

In this work, uncertainty from the battery-level degradation is
incorporated to estimate uncertainty at the system-level by resolving
the degradation model using not only the best-fit parameter values
for any given model, but also the bootstrapped parameter values. The
process for calculating the capacity loss at each simulation time step
with uncertainty in SimSES is shown in Fig. 14. For each model,
there is a vector of the best-fit parameter values and 1:M vectors
from M bootstrap resampling iterations. Incorporating degradation
uncertainty into the system level simulation is challenging because
the capacity loss in a given time step influences the requested power
for the following time steps, i.e., the dispatch of the battery is
dependent on its current health. For example, a home storage system
that is degrading faster will see less charge-throughput over the same
time frame, as it fills up quicker with surplus photovoltaic (PV)
power at daytime and empties faster during nighttime. Estimating

the impact of degradation uncertainty thus requires simulating the
entire system lifetime for every set of M bootstrapped degradation
parameters, resulting in M system lifetime predictions. This is how
confidence intervals are calculated for Figs. 11 and 12, but with 1000
sets of bootstrapped parameters used in this work, it is far too
computationally expensive to run on a single workstation. To avoid
this issue, the simulation can instead be run at a specified degrada-
tion percentile. This is conducted by calculating the incremental
change of each battery state (Eq. 20, for calendar loss and cycling
loss) for each bootstrapped parameter sets at each time step. The
1000 values for the incremental change of each state are then sorted
and the desired percentile output at each time step. The entire system
lifetime then only needs to be calculated once for each desired
percentile, as well as for the best fit scenario.

The results from simulations of the FCR, PS, and SCI energy
storage system applications for both the ML-assisted and refit
Naumann degradation models are shown in Fig. 15. Immediately
clear is that the uncertainty of the model identified in Naumann et
al.8,29 is much larger than the uncertainty of the ML-assisted model
identified here, which reflects the results shown from the model
identification (Fig. 11) and validation (Fig. 12) steps reported prior.
This improved model confidence gives much narrower estimates for
the system lifetime: taking the lower-bound of the 99% confidence
interval as a prediction for the ’worst-case’ lifetime of the energy
storage system, the ML-assisted model predicts that the discharge
capacity will remain >80% for at least 15 years in all of the aging
scenarios, while the refit model from Naumann et al. gives a
minimum lifetime estimate of 9 years for the FCR application, 7
years for the PS application, and 10 years for the SCI application.
Overall, the expected lifetime (best-fit line) does not vary hugely
between the two models, with both models estimating 15 years or
more of battery lifetime for all applications; this agreement is
because calendar degradation dominates all applications, and in
terms of the absolute error, the models differ more when predicting
substantial cycling degradation than when predicting calendar
degradation. An application with more aggressive battery use would
likely result in a larger disagreement between the two models than
the results shown here.

Conclusions

Battery degradation models play a key role in the planning,
development, and control of battery energy storage systems. Most

Figure 15. Relative discharge capacity for various realistic use-cases of battery energy storage systems over 15 years predicted by the degradation models
identified by Naumann et al.8,29 (a)–(c) and the degradation model identified in this work using ML (d)–(f). The green line in plots (a)–(c) uses the parameter
values originally reported by Naumann et al.8,29
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often, they take the form of empirically-derived algebraic models due to
the simplicity of identifying model equations, optimizing model
parameters, and implementing the model into battery performance
models, technoeconomic simulations of energy storage systems, or real-
time controllers. But despite their prevalence, identifying accurate
models remains a trial-and-error process, with a huge variety of
approaches in the literature, making it difficult to replicate work or
identify best practices. Thus, in this work, a general framework for
developing battery lifetime models is described:

(i) Visualization of degradation trends and connection to physical
mechanisms, qualitatively deconvoluting stress-dependent
trends from behaviors shared across the data set

(ii) Identification of modeling equations describing degradation
trends

(iii) Optimization of model parameters and quantification of model
uncertainty, deconvoluting the contributions of various degra-
dation mechanisms

(iv) Extrapolation to dynamic aging and validation using lab-based
or real-world data

This approach is demonstrated using a ML-assisted model identifi-
cation procedure that searches through millions of potential equa-
tions to find potential candidates for the human-expert to analyze.
On a stand-out LFP/Gr aging data set, the ML-assisted model is
shown to be about twice as accurate as a human-expert model, and
this is validated on dynamic aging test data. The improved accuracy
of the ML-assisted model also results in smaller confidence
intervals for the majority of model predictions, indicating that
the ML-assisted model is more likely to provide accurate estimates
for capacity loss when extrapolating to untested conditions. The
impact of degradation model uncertainty on lifetime estimates for
energy storage systems is then evaluated using the technoeconomic
simulation software SimSES. It is found that uncertainty may
substantially impact system lifetime predictions for any model.
This demonstrates the importance of incorporating battery lifetime
uncertainty into system models, as well as the importance of
identifying models that are as accurate as possible given the
available experimental data.
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Appendix

Ua is calculated from the state-of-charge (SOC) using the following
formula, which was defined in Schimpe et al.36 for this cell using curve
fitting of the negative electrode half-cell data and comparison of the
half-cell potentials to the full-cell open-circuit potential.
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where xa, the anode stoichiometry, is calculated using:

Table A·I. Test matrix for static and dynamic aging tests used for model training and validation, respectively. Except for group 21, all static cycling
cells are aging using CC cycling protocols. For dynamic tests, conditions were changed following each performance checkup. Values of SOC, DOD,
CCharge, and CDischarge for the PV-HESS and PV-PCR-BESS dynamic tests are daily averages.

Group Type Condition T (°C) SOC (%) DOD (%) CCharge (hr
−1) CDischarge (hr

−1) # of Cells

1 Static Storage 0 50 n/a n/a n/a 3
2 Static Storage 10 50 3
3 Static Storage 25 0 3
4 Static Storage 25 50 3
5 Static Storage 25 100 3
6 Static Storage 40 0 3
7 Static Storage 40 12.5 3
8 Static Storage 40 25 3
9 Static Storage 40 37.5 3
10 Static Storage 40 50 3
11 Static Storage 40 62.5 3
12 Static Storage 40 75 3
13 Static Storage 40 87.5 3
14 Static Storage 40 100 3
15 Static Storage 60 0 3
16 Static Storage 60 50 3
17 Static Storage 60 100 3
18 Static Cycling 25 50 100 1 1 3
19 Static Cycling 25 50 80 1 1 3
20 Static Cycling 25 50 20 1 1 3
21 Static Cycling CCCV 40 50 100 1 1 3
22 Static Cycling 40 50 100 1 1 3
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Table A·I. (Continued).

Group Type Condition T (°C) SOC (%) DOD (%) CCharge (hr
−1) CDischarge (hr

−1) # of Cells

23 Static Cycling 40 50 80 1 1 3
24 Static Cycling 40 50 80 0.5 0.5 3
25 Static Cycling 40 50 80 0.2 0.2 3
26 Static Cycling 40 50 80 0.5 1 3
27 Static Cycling 40 50 80 1 0.5 3
28 Static Cycling 40 50 80 1 2 3
29 Static Cycling 40 50 40 1 1 3
30 Static Cycling 40 50 40 1 2 3
31 Static Cycling 40 50 20 1 1 3
32 Static Cycling 40 75 20 1 1 3
33 Static Cycling 40 25 20 1 1 3
34 Static Cycling 40 50 10 1 1 3
35 Static Cycling 40 50 5 1 1 3
36 Static Cycling 40 50 1 1 1 3
37 Dynamic Storage 25/40 100 n/a n/a n/a 2
38 Dynamic Storage 25/60 100 2
39 Dynamic Storage 40/60 100 2
40 Dynamic Storage 0/60 100 2
41 Dynamic Storage 60 0/50 2
42 Dynamic Storage 60 0/100 2
43 Dynamic Storage 60 50/100 2
44 Dynamic Storage 25/40/60 100 1
45 Dynamic Cycling/ Storage 40 50 80 1 1 3
46 Dynamic Storage/ Cycling 40 50 80 1 1 3
47 Dynamic Cycling 40 50 20/80 1 1 3
48 Dynamic PV-HESS 40 51.4 74.6 0.243 0.172 3
49 Dynamic PV-PCR-BESS 40 51.2 25.1 0.073 0.057 3
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