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A Probabilistic Approach to Multi-Modal
Adaptive Virtual Fixtures

Maximilian Mühlbauer , Thomas Hulin , Bernhard Weber , Sylvain Calinon , Member, IEEE,
Freek Stulp , Member, IEEE, Alin Albu-Schäffer , and João Silvério

Abstract—Virtual Fixtures (VFs) provide haptic feedback for
teleoperation, typically requiring distinct input modalities for
different phases of a task. This often results in vision- and
position-based fixtures. Vision-based fixtures, particularly, re-
quire the handling of visual uncertainty, as well as target ap-
pearance/disappearance for increased flexibility. This creates the
need for principled ways to add/remove fixtures, in addition to
uncertainty-aware assistance regulation. Moreover, the arbitration
of different modalities plays a crucial role in providing an optimal
feedback to the user throughout the task. In this letter, we propose
a Mixture of Experts (MoE) model that synthesizes visual servo-
ing fixtures, elegantly handling full pose detection uncertainties
and teleoperation goals in a unified framework. An arbitration
function combining multiple vision-based fixtures arises naturally
from the MoE formulation, leveraging uncertainties to modulate
fixture stiffness and thus the degree of assistance. The resulting
visual servoing fixtures are then fused with position-based fixtures
using a Product of Experts (PoE) approach, achieving guidance
throughout the complete workspace. Our results indicate that this
approach not only permits human operators to accurately insert
printed circuit boards (PCBs) but also offers added flexibility and
retains the performance level of a baseline with carefully handtuned
VFs, without requiring the manual creation of VFs for individual
connectors.

Index Terms—Assembly, space robotics and automation,
telerobotics and teleoperation.

I. INTRODUCTION

V IRTUAL Fixtures (VFs) play an important role in shared
control as haptic aids by providing force feedback to the
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Fig. 1. Fusion of position-based and visual servoing fixtures. Trajectory
covariance (green ellipsoids) and visual servoing covariance (purple ellipsoid)
are used to calculate the final wrench and uncertainty (red ellipsoid).

human operator [1], [2], assisting in the execution of tasks. The
type of assistance to be provided depends on the task at hand
and/or the phase of the task that the robot is currently executing.
An insertion task typically requires an approach phase, where
trajectory guidance is needed, followed by an insertion phase,
where visual guidance takes over. Position and vision [3] or
even forces [4] are examples of fixture input modalities. The
arbitration of different modalities, i.e. when each type of modal-
ity should be activated and by how much, is an important open
problem in shared control.

Although established frameworks for position-based trajec-
tory fixtures exist [2], visual servoing fixture formulations which
are robust to object appearance/disappearance and provide assis-
tance based on target uncertainty are lacking. Providing visual
assistance in an adaptive manner is known to be challenging. On
the one hand, object poses may not be known with sufficient cer-
tainty in advance, making it impossible to use constant fixtures
that are designed once and rarely change. On the other hand,
many external factors, such as lighting conditions, are non-trivial
to model and may drastically degrade perception performance.
Imperfect visual measurements are a reality in robotics – yet, we
have to rely on them even though they might be uncertain. Sys-
tems using this uncertainty are thus better equipped to succeed
in challenging environments, such as in-orbit scenarios.

In this work we introduce a multi-modal VFs framework that
leverages probability theory to seamlessly combine vision- and
position-based fixtures (Fig. 1), using probability distributions
on R

3 × S3 (Section III) to take orientations into account. Our
contribution is two-fold. First, we propose a probabilistic Mix-
ture of Experts (MoE) [5] approach to automate the arbitration
of uncertain visual servoing fixtures (Section IV). Under the
MoE, each expert is a probability distribution that models the
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Fig. 2. Teleoperation setup with haptic input device on the left and remote
device on the right side.

uncertainty of a detected object. State- and perception-
dependent gating functions regulate the influence of each expert
such that haptic assistance changes dynamically as the robot
interacts with the environment. The formulation furthermore
elegantly handles object appearance/disappearance. As a con-
sequence, the effort to design visual servoing fixtures by hand
is minimal. Second, we propose the fusion of visual servoing
fixtures with position-based fixtures using a Product of Experts
(PoE) (Section V) resulting in a principled arbitration between
multiple assistance modalities that is generic to a wide range
of shared control problems. By treating position-based fixtures
as mixture models [2], [6], both modalities are MoEs, allowing
for their seamless fusion. Relying on Gaussian-distributed ex-
perts, this corresponds to a product of Gaussians, a well-known
approach for fusing information from different sources.

We evaluate the proposed approach on a printed circuit board
(PCB) connector assembly task where a position-based Virtual
Fixture (VF) guides the operator towards the insertion region and
a visual servoing VF provides fine-grained assistance guiding
the insertion (Section VI). We use two torque-controlled KUKA
light-weight arms as robot and haptic device (Fig. 2).

II. RELATED WORK

A. Adaptive and Probabilistic Virtual Fixtures

The first type of fixtures initialize static position-based fix-
tures from visual measurements. Selvaggio et al. [7] detect limit
switches and plan VFs for reaching and manipulating these
switches. Pruks and Ryu [8] use visual measurements to allow
users to interactively define VFs based on geometric primitives,
for example cylindrical fixtures for circles detected in the image.
Contrarily, Hager [9] and Bettini et al. [10] calculate VF forces
directly based on camera images for 2D line following thus
creating dynamic visual servoing fixtures. The visual servoing
fixture of Wu et al. [11] is closest to ours, however without prob-
abilistically considering multiple fixtures. A major limitation of
these works is however that fixtures can only be generated when
the manipulation target is visible in the camera. Furthermore,
they only consider the visual modality, unlike our approach
which considers position-based fixtures as well.

Static position-based fixtures can be created using proba-
bilistic methods. Aarno et al. [12] extract lines as trajectory
fixtures from demonstrations, selecting the active VF based on
the estimate of a jointly learned Hidden Markov Model. Raiola
et al. [2] present a probabilistic arbitration between a library of
probabilistic VFs based on Gaussian Mixture Models (GMMs).
Havoutis and Calinon [6] show how Task- Parametrized Gaus-
sian Mixture Models (TP-GMMs) [13] can be used to define
fixtures which can adapt to changing start and goal points.

These approaches do however not incorporate assistance based
on uncertain visual measurements.

B. Virtual Fixture Arbitration

Having multiple VFs active at the same time, the need for
an arbitration function that combines them arises. This extends
the classical concept of arbitration as division of control au-
thority between human and robot. One possibility is to have
phase-dependent VFs and to activate them sequentially [14].
Other approaches allow multiple fixtures to be defined at once
and use an arbitration component to switch between them.
Selvaggio et al. [7] use a passivity controller to stabilize a hard
assignment switching operation between fixtures. Abi-Farraj
et al. [15] use fixtures guiding the operator to possible grasping
poses. Manually tuned scaling factors allow them to have all
fixtures active at the same time. In our previous work [3] we
hand-designed an arbitration function between position- and
vision-based fixtures. A limitation of such approaches is that
smooth switching between target poses requires the handcrafting
of either a stabilizing controller or an arbitration function.

Also between fixtures and the operator, arbitration needs to be
performed. Probabilistic formulations for arbitration have been
proposed [2], [16], [17], [18]. While the implementations differ,
most of these works use a scalar value for assigning weights
to fixtures, ruling out degree-of-freedom-specific arbitration.
In contrast, Zeestraten et al. [18] modulate human commands
by a hand-designed covariance matrix allowing for a seamless
arbitration with static Gaussian-based fixtures and treating each
degree of freedom individually. Michel et al. [19] use a different
approach by learning a full stiffness matrix, where uncertain
directions generate lower VF stiffness. Our work combines the
best of these approaches by using adaptively scaled stiffness
matrices computed from the covariance of dynamic fixtures.

C. Machine Learning Approaches

In robotics, MoEs have been applied in locomotion learn-
ing [20], imitation learning [13], [21], [22] and shared con-
trol [2], while PoEs are a popular approach at the intersection
of learning and control [6], [22], [23], [24]. The expert is a
simple model which, combined with other experts, improves
model performance over the single-expert case. Gaussian-based
experts, where the expert is modelled as a Gaussian distribution,
are among the most popular expert models. The MoE model
corresponds to an “or” operation, performing a weighted sum of
the density functions of the experts.

In contrast, a PoE model (product of Gaussians) corresponds
to an “and” operation where all constraints must be approxi-
mately satisfied. Many PoE models consist of MoE-based ex-
perts. TP-GMMs [13] learn local models of skill demonstrations,
encoding them as GMMs. For different input values, such as
time, predictions from the local GMMs are combined using
a PoE. The concept has been extended to the fusion of con-
trollers [22] and assistive teleoperation [6], [18], where it was
however mainly used to arbitrate between user and automation.
We believe that the potential of MoE-based experts goes beyond
modeling demonstrations and provides the flexibility to repre-
sent different fixture modalities. Although PoE approaches have
been used with vision [23], to the best of our knowledge they
have not been used with MoE-based vision experts nor in shared
control.
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III. BACKGROUND

A. Teleoperation System and Virtual Fixtures

We assume two gravity-compensated, impedance-controlled
manipulators (Fig. 2) where Cartesian wrenches wee ∈ R

6 are
commanded at the end effector, with joint torques computed
from τ = J�wee [25]. The Cartesian wrenches of remote and
input robots are computed with

wee,remote = α (KΔx+DΔẋ) +wVF (1)

wee,input = −αAdirwee,remote (2)

where the adjoint Adir transforms wrenches from the remote
robot to the haptic input device. This position-computed force
architecture does not require a force-torque sensor at the end
effector. The factor α scales motions between both robots, Δx
and Δẋ corresponds to their relative displacement and K,
D, are positive definite constant stiffness and damping gain
matrices. The virtual fixture wrench wVF is applied to the end
effector of the remote robot only, which thus achieves high
accuracy. The user also receives useful feedback through the
coupling introduced by α. In this work we assume that wVF is
a combination of individual wrenches, associated with different
virtual fixtures, computed as

wVF,j = KVF,jLogxee
(xVF) , (3)

where xee is the end effector pose, KVF,j and xVF,j are the stiff-
ness and attractor point of the j-th fixture. Logxee

(xVF) denotes
the R

3 × S3 logarithmic map [21] of xVF at xee, which is the
on-manifold equivalent to the Euclidean xVF,j − xee, allowing
us to also take the orientation into account. We further assume
that each fixture j can be based on a different input modality, e.g.
vision or position and has one attractor point and stiffness matrix.
We denote those attractors as xVS respectively xPB instead of
xVF,j in Sections IV and V-A. Section V introduces our proposed
arbitration of different fixtures.

B. On-Manifold Probabilities

Object pose uncertainties appear at position and orientation
levels. To be able to model both, we use an on-manifold ap-
proach with Gaussian distributions. We use a pose defined as
the Cartesian product of the 3-dimensional Euclidean space and
the unit quaternion manifold,1 x ∈ R

3 × S3, whose distribution
is parameterized by a mean μ ∈ R

3 × S3 and a covariance
matrix Σ ∈ R

6×6 in the tangent space of μ. Since S3 is a
compact Lie group, it admits a bi-invariant metric allowing the
computation of geodesics using the Lie group exponential [26],
[27]. This allowed [21] to express tangent vectors and covariance
matrices ofS3 as elements ofR3 andR3×3 respectively, here, we
follow the same approach. We employ the Gaussian distribution
proposed in [21], [28] to compute the probability of x:

N (x|μ,Σ) =
1√

(2π)d |Σ|
e−

1
2 Logµ(x)

�Σ−1Logµ(x). (4)

1To avoid issues with S3 double-covering SO(3), we wrapped the logarithm
at a full rotation, ensuring that Logq(−q) = 0.

From N samples, Maximum Likelihood Estimation (MLE) [29]
is computed iteratively using the Fréchet mean [21]

Δ =
1

N

N∑
i=1

Logµ(xi) , μ← Expµ(Δ) , (5)

upon convergence of (5), the covariance matrix is given as

Σ =
1

N − 1

N∑
i=1

Logµ(xi)Logµ(xi)
� . (6)

The logarithm function Logµ(.) maps points from the manifold
to the tangent space at μ. The exponential map Expµ(.) maps
a vector from the tangent space at μ onto the manifold. For
the orientation part of the pose, we use the functions defined
in [21] for unit quaternions. Vectors in tangent space can be
moved from one linearization point to another using parallel
transport compensating for different base vector orientations at
different pointsμ. Using the parallel transport defined in [21], we
transport covariance matrices between different tangent spaces.
Note that other Lie-group approaches rely on expressions e.g.
for the product of Gaussians [30] with very similar results on
S3 to using the Riemannian Levi-Civita parallel transport [21]
as we have experimentally verified.

IV. PROBABILISTIC VISUAL-SERVOING FIXTURES

Formally we assume that, at any moment, a number of
MVS ≥ 0 visual servoing fixtures may be active, each trying to
bring the robot towards an object in its field of view with different
xVS. As the field of view changes with the end effector position,
the number of active fixtures and their parameters depend on
xee. Hence we treat each fixture as a conditional distribution
pm(xVS|xee) with m = 1, . . . ,MVS that is computed from the
uncertainty of the predicted poses (Section IV-A). WhenMVS >
1, several fixtures pull the end effector simultaneously. In order
to ensure both local assistance and the capability to switch
between fixtures we propose a MoE that outputs a unimodal
distribution p(xVS|xee) from theMVS candidates (Sections IV-B
and IV-C). With this distribution we are able to compute not
only an attractor point that drives the remote robot pose, but
also stiffness gains that regulate the required precision while
tracking it (Section IV-D).

Additional, desired assistive behaviors can be easily created
by adding hand-parametrized Gaussian distributions, with gat-
ing functions enabling a user-defined regulation of transitions
between local experts. We demonstrate these features exper-
imentally in Section VI through the creation of dead zones,
initialization experts and the deactivation of undesired assistance
along certain axes.

A. Probabilistic Fixtures From Visual Uncertainty

In this section we propose an algorithm that outputs a prob-
ability distribution per PCB connector in the camera image,
which can readily be used for the PCB connector assembly task
in Section VI. Using an in-hand camera leads to an increasing
accuracy when approaching the target as the connector’s size
in pixels increases. Previously [3], we used a fixed grayscale
threshold to binarize the intensity image I and extract targets
using OpenCV [31] rectangle extraction. Depending on illu-
mination conditions and camera settings, the optimal threshold
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Fig. 3. Probabilistic target connector extraction using multiple grayscale
threshold values. Different threshold values lead to “soft” borders (left side,
intermediate gray values) while the core of the connectors and the outside,
where all threshold values give the same result, are uniformly black/white. This
results in different rectangles (right side). Converted to 6DoF poses, we treat the
grouped detections as samples from a Gaussian distribution.

differs. Furthermore, shadows cast by the connectors make it
very difficult to find a single value for optimally extracting
the target connector. Using the idea of soft grayscale thresh-
olds [32], [33] we propose to extract potential target connectors
(Fig. 3) on a symmetric range of different grayscale values T ∈
Tnom ± {ΔT0,ΔT1, . . . } around the nominal threshold Tnom

with threshold increments ΔTi. As shown in Algorithm 1, we
group these extractions using their 2D coordinates (groupByXy),
assigning exactly one matching rectangle per grayscale thresh-
old value. Then, we convert them to 6D poses (convertTo6D)
and, for each connector m, treat them as set of Nm individual
samples drawn from a noisy measurement of the target. Using
(5), the MLE estimate of the samples is computed to approximate
pm(xVS|xee) = N (xVS|μm,Σm), where Σm provides a mea-
sure of the uncertainty associated with a connector. As final step
of the detection, we associate new measurements with already
tracked connectors based on their distance. If no existing tracked
connector is found, a new tracking instance is created using the
mean and covariance of the measurement as initial state. In case
a tracked connector exists, we employ Kalman filtering for data
fusion.

B. On-Manifold Mixture of Experts

Having represented the uncertainty of candidate VFs in the
robot workspace with pm(xVS|xee), we express p(xVS|xee) in
a unified manner using a MoE model [5], [29]

p(xVS|xee) =

MVS∑
m=1

ĥm(xee,μm)pm(xVS|xee). (7)

Our proposed gating function hm takes into account the robot
end effector pose and the predicted expert locations μm to
compute an on-manifold, distance-based metric that determines
the influence of each expert through

hm(xee,μm) = exp

(
−1

2
Logxee

(μm)�LLogxee
(μm)

)
+γ

(8)

where L is a hyperparameter regulating the influence of nearby
points and γ is a regularization factor stabilizing (7) numer-
ically when far from the objects, then assigning near-equal
probabilities to all objects. For our experiments, we set L =
diag(l2x, l

2
y, l

2
z, l

2
wx, l

2
wy, l

2
wz)

−1, enabling us to specify the rel-
evance of each direction. Our chosen gating function can be
interpreted as a linear combination of a RBF kernel and a
constant kernel [34]. (8) ensures a peaked assignment when close

Algorithm 1: Probabilistic Target Connector Detection on
Grayscale Image I(xee) With Threshold Values Ti.

rects← empty list
for i in len(T ) do

B ← I > Ti

rects← rects + minAreaRects(B) �list append
end for
sorted_rects← groupByXy(rects) �one rect per Ti

for m in len(sorted_rects) do
6d_det← xee · convertTo6d(sorted_rects[m])
μm ← mean(6d_det) �Eq. (5)
Σm ← covµm

(6d_det) �Eq. (6)
end for

to one connector while assigning very similar weights when far
from all connectors. The factors li and γ can be used to adjust
the gating function to the scale of the problem. Smaller values
li increase the peak while a smaller γ increases the distance
required to assign similar weights to all targets. We finally nor-
malize ĥm(xee,μm) = hm(xee,μm)/

∑MVS
j hj(xee,μm) to

ensure that the value of all gating functions sums to 1.

C. Unimodal Approximation of the Multi-Modal MoE

Despite unifying predictions from different experts, (7) is
by design multi-modal, which is not well-suited to our VF
implementation requiring a single attractor point. To mitigate
this issue, we rely on the expectation and covariance of xVS
under p(xVS|xee). Since the experts are Gaussian, the resulting
distribution can be approximated as a uni-modal Gaussian. This
approximation is often referred to as moment matching, see [13],
[29] for derivations. Similarly to III-B, the mean is computed
iteratively, this time using the means of each expert μm and
their importance ĥm

Δ =

MVS∑
m=1

ĥmLogµVS
(μm) , μVS ← ExpµVS

(Δ) . (9)

The covariance computation is adapted to the manifold using

ΣVS =

MVS∑
m=1

hm

(
ΣµVS

||µm
+ LogµVS

(μm)LogµVS
(μm)�

)
,

(10)
where ΣµVS

||µm
denotes Σm mapped from the tangent space of

μm to that of μVS using parallel transport. Note that this
corresponds to the second moment of the multi-modal distri-
bution [13], unlike [21] where by omitting the vector outer
product LogµVS

(μm)LogµVS
(μm)� it was the result of a linear

combination of Gaussians. Under (9), we useμVS as the attractor
point in (3). Due to our choice of hm, (10) matches Σm in the
vicinity of connector m, increasing as the end effector moves
away. For this reason, we use ΣVS to design the stiffness K
associated with the fixture.

D. Variable Stiffness Control

We use the precision matrix P VS = Σ−1VS to scale the stiffness
of the resulting visual servoing fixture. With this gain design we
ensure that directions that have larger variance allow for more
freedom to the operator, while directions with low variance are
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stricter in enforcing the visual servoing fixture. For this, the
elements of KVS are set elementwise

KVS,ij = Kijmin (max (η (Pij − κ) , 0) , 1) (11)

wherePij is the entry ofP VS at indices i, j. Precision entries<κ
result in zero fixture stiffness, entries > 1

η + κ in full stiffness.
Values in between are linearly scaled.

V. PRODUCT OF EXPERTS FOR MULTI-MODAL VIRTUAL

FIXTURE ARBITRATION

The MoE-based formulation for visual servoing fixtures in-
troduced in Section IV is well-suited to being combined with
other fixtures via a Product of Experts (PoE)

p(x) =
P∏

j=1

pj(x), (12)

particularly, if other fixtures are also modeled as MoEs using
Gaussian experts. Such PoE formulations are used in well-
known TP-GMMs [13] and variations thereof [22], where mo-
tion demonstrations are encoded locally in GMMs and later
fused via a Gaussian product to compute a global policy for
the robot. We introduce a PoE formulation where experts are
not necessarily learned but can also be instantiated from vision,
leveraging our proposed visual servoing MoE.

A multi-modal VF formulation with position- and vision-
based fixtures thus has experts responsible for vision- (Sec-
tion IV) and position-based assistance. In a PoE-based formu-
lation, the arbitration between them arises naturally from the
Gaussian product. In this section we explain how we achieve
multi-modal VF arbitration with position-based fixtures (Sec-
tion V-A) and fusion at action level (Section V-B) using an
on-manifold Gaussian product [21].

A. Probabilistic Position-Based Fixtures

We define probabilistic position-based trajectory fixtures us-
ing GMMs [21] on the manifold R

1 × R
3 × S3. From a dataset

of pose trajectories {ti,xi}Ni=1, where t ∈ R
1 is normalized

using dynamic time warping andx ∈ R
3 × S3 represents a pose,

we approximate the joint distribution between time and pose
using a Gaussian Mixture Model (GMM) with MPB compo-

nents, i.e.

[
t

x�

]
∼∑MPB

m=1 πmN
([

t

x�

]
|μm,Σm

)
. We sub-

sequently treat the pose elements of the GMM as the position-
based fixture attractor xPB and use Gaussian mixture regression
to compute the conditional distribution of xPB given time,

p(xPB|t) =
MPB∑
m=1

πm(t)N (xPB|μm|t,Σm|t). (13)

Note the similarity between (13) and (7) – both trajectory and
visual servoing fixtures are MoEs. The multi-modal distribu-
tion (13) is subsequently approximated by a single Gaussian,
similarly to Section IV-C, ensuring that the trajectory fixture
contributes with one single expert to the PoE, i.e.

p(xPB|t) = N (xPB|μPB,ΣPB). (14)

For the details on the computation of (13)–(14), particularly
μPB,ΣPB, the reader is referred to [13].

Fig. 4. Probabilistic position-based trajectory fixture based on a GMM. Indi-
vidual Gaussians (light green) define a mean trajectory (red) evaluated at discrete
points with corresponding covariance (yellow). A set of such points (red dots)
around the projection of the current end effector pose (green dot) with closest
covariance is sent to the real-time controller for interpolation.

A position-based fixture provides assistance by guiding the
end effector towards a trajectory (Fig. 4). To achieve this be-
havior we compute D Gaussian distributions (14) given D
equally spaced samples of t in the training interval, yielding
{μd,Σd}Dd=1. We then select the two closest means to the
current end effector positionxee and perform on-manifold linear
interpolation between them to create the expert.

B. PoE At Action Level

Inspired by [22], we perform the fusion of P differ-
ent VFs on wrench level. Given the linear relationship be-
tween wrench and virtual fixtures (3), Gaussian experts re-
sult in Gaussian wrenches, i.e. wVF,j ∼ N (μVF,j ,ΣVF,j),
whereμVF,j = KVF,jLogxee

(μj) andΣVF,j = KVF,jΣjK
�
VF,j .

Optimal wrenches result from the optimization

ŵVF = arg min
wVF

P∑
j=1

(wVF − μVF,j)
�Σ−1VF,j (wVF − μVF,j) ,

(15)
whose solution is the product of P Gaussians yielding,

ŵVF = Σ̂VF

P∑
j=1

Σ−1VF,jwVF,j, Σ̂VF =

⎛
⎝ P∑

j=1

Σ−1VF,j

⎞
⎠
−1

,

(16)
with the Cartesian wrenches ŵVF being used in (1). Performing
the fusion at action level has the advantage of abstracting away
the local expert representations, helping to keep the overall
formulation generic. For example, in [22] this was used to fuse
force- and pose-based policies, which are represented in differ-
ent spaces and mapped to a common space by the linear structure
of the controllers. Since in this work we employ variable stiffness
(Section IV-D), in order to keep the influence of the original
spaces we set ΣVF,j = Σj .

VI. EVALUATION

We evaluate our method on the use case of CubeSat sub-
system assembly [3]. We empirically set lx = ly = lz = 0.06,
lwx = lwy = lwz = 0.2, γ = 1× 10−20, κ = 3× 103 and η =
1× 10−6 for stiffness scaling in the visual servoing fixture. The
position-based trajectory fixture is trained on a dataset (100
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Fig. 5. Distance-based influence factors hm of the detections in the xy-plane
for distances in all other DoFs equal to 0.

trajectories) obtained during a previous user study [3] yielding
a R

1 × R
3 × S3 GMM visualized in Fig. 1.

A. Prior-Knowledge-Driven Expert Customization

We customize the visual servoing MoE experts based on
human prior knowledge about the task requirements.

a) Zero force along insertion axis: To allow the user to fully
control the insertion, we set KVS,3j = 0, ∀j, not generating
forces along the insertion axis.

b) Adding a dead-zone around connectors: To ensure strong
guidance in the victinity of a connector, we add a “dead zone”
with radius ldead in x and y coordinates by modifying the first
two entries of the vector Logxee

(μm)

x′ = x− lcrop
x

ltot
, y′ = y − lcrop

y

ltot
(17)

with ltot =
√

(x)2 + (y)2 and lcrop = min(ltot, ldead). Fig. 5
shows the resulting raw weights, we used ldead = 5× 10−3 m
in the experiments.

c) Expert initialization: As connectors appear gradually in
the camera image, the visual servoing MoE (7) would yield a
very certain result once the first detector is perceived only to
become much less certain when a second connector is detected.
To mitigate this, we initialize the MoE with an additional expert
at the current end effector position with high covariance and
activation (subscript pos for position)

hMVS+1(xee,xtarg) = 1− exp

(
−1

2
λ||xee,pos − xtarg,pos||2

)
,

(18)
where λ = 1× 10−2 in our experiments. The expected target
pose xtarg is supplied externally based on the approximate PCB
location. (18) ensures that (7) always has at least one active
expert. A dead-zone with ldead = 9× 10−2 m is used in the
experiments, this time including the z-axis, to ensure that the
influence of the initialization expert dissipates in the vicinity
of the connectors. Given its large covariance the initialization
expert generates negligible guiding forces.

B. Qualitative Evaluation of the Visual-Servoing Fixture

For the first experiment, we only enable the visual servoing
fixture which results in P = 1 for the PoE in (16). Fig. 6 shows
different end effector poses and the resulting estimated
Gaussian, according to (9)–(10), given the visualized detections.
The obtained results show that the proposed probabilistic fixture
gives a strong positional and rotational guidance to the user when
close to one target as illustrated by the barely visible purple
covariance ellipsoid in Fig. 6(a). Despite the strong guidance
the user is able to ‘escape’ the fixture and switch to a different
connector. Fig. 6(b) shows that the attractor point is temporarily

TABLE I
FLEXIBILITY, MANIPULATION TIME, WORKLOAD (LOWER = BETTER), SYSTEM

USABILITY SCALE (SUS) SCORE (HIGHER = BETTER)

located between connectors when switching. With our choice
of gating function (8), the importance of a connector grows ex-
ponentially with decreasing end effector distance, ensuring that
the operator is, in the end, always guided towards a connector.
Moment matching (10) leads to a large variance of the purple
Gaussian in direction of the connectors . Thanks to the variable
stiffness (Section IV-D), this results in lower stiffness along that
direction, facilitating the transition.

When far away (e.g. above the backplane PCB, Fig. 6(c)), the
user can not only displace the end effector in the xy plane but
also rotate the end effector freely around the z axis. This allows
the operator to choose connectors rotated by 180◦.

Fig. 6(d) shows the effect of including orientation in the
distance function. While the closest connector would be at ,
our model knows that the most likely target is the connector
because of a difference of 180◦ in orientation.

C. Pilot Study on CubeSat Subsystem Assembly

Fig. 7 shows the CubeSat assembly task where the subsys-
tem connector has to be mated with the backplane connector
requiring very high precision, which was not possible using our
telerobotic system without VFs. A positional offset of at most
0.7mm as well as a low angular deviation (4° / 2°) must be
achieved, which requires a human in the loop in addition to the
fixtures. While the nominal subsystem insertion pose is assumed
to be given externally, this information might be inaccurate and
the user might want to choose a different connector as CubeSat
production is highly individualised.

The task for the human operator is to perform this insertion
using camera views and force feedback, consisting of forces
from the VFs and the remote environment. Input device and
remote side are based on lightweight robots (Fig. 2).

As the application is targeted for expert users, we set up a small
pilot study with 15 participants who already have experience
with teleoperation,2 of which 6 already participated in a previous
experiment [3]. Participants are first introduced to the system.
After completing an introductory questionnaire, they perform
test insertion operations with only the novel visual servoing
fixture until they are confident with the teleoperation setup and
the required precision.

For the actual experiments, we use three different assistive
scenarios with different combinations of VFs (Table I). Users
perform three trials with each method in one block, the order of
the conditions being systematically varied. Probabilistic Multi-
Modal (P = 2) denotes the proposed combination of fixtures
(V), Probabilistic Visual-Servoing (P = 1) only the visual ser-
voing fixture (IV) and Multi-Modal the multi-modal fixture of
our previous approach [3]. Unlike our proposed approach, [3]

2All participants are DLR employees with experience in haptic interac- tion
with lightweight robots so no special ethic permission is required. Permission
for the questionnaires was obtained from the works council and data protection
of DLR, participants gave their informed consent.
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Fig. 6. Probabilistic visual servoing fixture estimation. White spheres represent detected connectors with their Gaussian covariance displayed as small yellow
ellipsoid inside them and orientation shown as coordinate frames. These so-called experts act as individual candidate fixtures to drive the robot end effector. The
purple ellipsoid depicts the 3D Gaussian distribution corresponding to the unimodal approximation of the MoE. Its mean which acts as attractor for the end effector
is shown as green sphere. Finally, the blue sphere shows the 3D end effector position projected on the horizontal plane.

Fig. 7. CubeSat assembly scenario. The gripper holds a Subsystem to be
inserted into the backplane (damaged connector at ) mounted on the table.
An in-hand camera is used for the visual servoing fixture ensuring the
high precision required to successfully insert the connector. On the left side, one
of the cameras provided to the human operator is visible.

TABLE II
ANOVA RESULTS COMPARING THE DIFFERENT FIXTURES.

does not provide the flexibility to switch between connectors
automatically during task execution. Instead, it requires a manual
programming of the vision when the insertion target changes. To
simulate a more realistic scenario, where the flexibility of our
expert-based approach is required, we ask users to insert into
the front left connector (Fig. 7), while the position-based
trajectory fixture guides them near a damaged middle connector

. This requires switching between target connectors near the
PCB online, which is not possible in [3]. Our aim is to show that
our proposed approach performs favorably when compared to
the hand-coded approach in [3] despite the added flexibility. As
such, in Multi-Modal the user is directly guided to the front left
connector , resulting in a very favorable baseline.

Subjects report their workload using the NASA TLX ques-
tionnaire [35] after each trial and the usability using the SUS [36]
after each block. Manipulation Time (10 cm above the PCB until
successful insertion) and subjective results are summarized in
Table I. Results of a repeated-measures ANOVA on Manip. Time
and workload are shown in Table II. With 15 participants and a
partial η2 = 0.0714 we achieve a sufficient statistical power of
0.91 for the Manip. Time analysis. For analyzing the workload,
values for the within factor Fixture have been Greenhouse-
Geissner corrected. Post-hoc comparisons with Bonferroni
adjustment for the effect of the within factor Fixture on the
average TLX score revealed a significant difference (p < .05)
between Prob. Visual-Serv. and Multi-Modal. The SUS scores

were not normally distributed and thus the Friedman test was
performed (χ2 = 10.29, p < .05). Post-hoc comparisons with
the Wilcoxon test indicated that scores were significantly higher
for Multi-Modal compared to the other conditions.

D. Discussion of the Pilot Study Results

As expected, the lower workload of Multi-Modal when com-
pared to Probabilistic Visual-Servoing reflects the difference
in available guidance between both fixtures, since the former
does not provide guidance towards the PCB. However, no sig-
nificant difference between Probabilistic Multi-Modal, where a
position-based expert is used, and Multi-Modal could be found
even though users switched connectors during runtime with the
former. This is contrasted by the SUS score, where Multi-Modal
is significantly separated from the two other methods. All meth-
ods still achieve a mean >68 which is generally considered to
be above average.

While manipulation times can sometimes be vastly different
between different trials because of tight tolerances, the pilot
study did not show significant differences between the fixtures.
This suggests that fine guidance close to the target - which
usually takes most of the time - is, as expected, very similar.
This can also be underlined by examining the PoE result close
to the target. The used position-based trajectory fixture deviates
by 3 cm from the target which is precisely detected by the visual
servoing fixture (<1mm) and has a four orders of magnitude
larger covariance. Thanks to the probabilistic weighting of both
fixtures, the force applied by the incorrect trajectory fixture is
only 0.03N not hindering precise telemanipulation. We thus
conclude that the added flexibility of our probabilistic approach
maintains the precise guidance of [3] even under unfavorable
conditions.

E. Limitations of the Approach

Selecting hyperparameters in (7)–(8) currently requires expert
tuning which should be automated in future work. For a heavily
inclined camera pose, the rectangle extraction in IV-A might fail
which we however did not observe yet. More powerful detection
methods can help to overcome this limitation and also allow to
interact with more difficult to perceive objects.

VII. CONCLUSION

We proposed an approach based on a mixture of experts model
to automatically detect and arbitrate visual servoing fixtures in
shared control. Our approach allows to incorporate new or disap-
pearing targets by dynamically creating and removing fixtures.
To benefit from a multi-phase guidance throughout the robot’s
workspace, a position-based trajectory fixture is fused using a
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product of experts approach. Our results show that with our
method we could obtain a natural arbitration of multiple fixtures
comparable in performance to a hand-tuned arbitration func-
tion [3] while offering much more flexibility. This was achieved
by extracting a meaningful covariance which is then used to
modulate the end effector stiffness, allowing to switch targets.
The position-based fixture furthermore provides guidance when
far from the target. The experimental evaluation shows that
the method supports the insertion of CubeSat subsystems into
multiple target connectors, providing strong and useful guid-
ance as well as giving the user the choice of different possible
targets.

In future work, we plan to extend our method to other geome-
tries and applications as well as to investigate approaches for
seamless switching from teleoperation to automation.
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