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Abstract

The present experimental study demonstrates the benefits of applying linear and
nonlinear model predictive control to an automotive fuel cell system. The examined fuel
cell system is part of the powertrain of the BMW iX5 Hydrogen, a recently developed
fuel cell electric vehicle. The overall dynamic behavior of this fuel cell system is limited
by the cathode subsystem, which is why air supply and hydrogen dilution control are
mainly considered in this study. The controlled variables are two air mass flows, which
are manipulated with the quadrature current of the air compressor motor and the
position of the bypass valve. The application of a model predictive controller requires
the repeated optimization of a cost function, which is not real-time capable on the
electronic control unit of the fuel cell system. Instead, the explicit solution to the
optimization problem is implemented. The exact explicit solution is available for linear
model predictive control, whereas the explicit solution to the nonlinear model predictive
control problem is approximated with a neural network.
The parameters of each cost function are adjusted through closed-loop simulations
before the explicit solution is determined. Thus, a semi-empirical simulation model
is developed in this work, which includes the fundamental dynamic and stationary
correlations between the controlled air mass flows and the control variables. The accuracy
of the proposed model is validated with measurements from a fuel cell system test stand
and the fuel cell electric vehicle. The established model correctly predicts the dynamics
of the cathode subsystem, and the low computational cost of the zero-dimensional
approach outweighs the stationary deviations.
In the first step, the explicit linear and the explicit nonlinear model predictive controller
are validated individually on the fuel cell system test stand and in the BMW iX5
Hydrogen. Then, the two proposed controllers are compared to the reference control
setup with two PI controllers. On the one side, the high accuracy of the nonlinear
prediction model decreased the impact of perturbations on the closed-loop behavior,
which is why the nonlinear outperforms the linear model predictive controller. On the
other side, the accurate representation of the dynamic correlations in the nonlinear
prediction model improved the transient behavior of the fuel cell system in comparison
to the two PI controllers.
Eventually, the nonlinear model predictive controller is extended to include the fuel
cell system net power as a controlled variable. This approach further optimizes the
dynamics of the fuel cell system within the boundaries of the operating range, which is
demonstrated with closed-loop simulations.
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1 Introduction

In the scientific community, human-made climate change is a clear consensus [75].
Nevertheless, global CO2 emissions continue to rise, despite the significant impact
of greenhouse gases on global warming. In 2022, CO2 emissions grew by 0.9 % in
comparison to 2021 [51], with the transportation sector accounting for as much as
50 % of this increase. At 77 %, road transport remained the leading contributor to the
total CO2 emissions of the transport sector [50]. Hence, electrified powertrains have
substantially increased in market share over the recent years to reduce these emissions.
The highest potential is attributed to battery electric vehicles (BEVs), especially in
the passenger car segment. In 2022, 70 % of the 26 million electric vehicles worldwide
were BEVs [52]. Nevertheless, fuel cell electric vehicles (FCEVs) can complement BEVs
in decarbonizing the road transport sector [100]. Possible use cases include regions
with limited access to renewable energy sources, which will heavily rely on energy
imports. These imports will most likely come in the form of hydrogen. Additionally,
applying hydrogen as a power source reduces the strain on electric grids. As a result,
the transition towards an emission-free road transport sector can be accelerated.
In this work, the BMW iX5 Hydrogen was considered an example of a state-of-the-art
FCEV. This vehicle was initially presented on the IAA Mobility 2021 in Munich, and
in 2023, the BMW Group announced the launch of a pilot fleet.

1.1 Motivation

The viability of FCEVs as a supplement to BEVs depends significantly on the purchase
price and the offered performance, i.e., the associated driving pleasure and the vehicle
range and refueling time. A possible cost reduction factor is the secondary power
source in the vehicle powertrain, which is often a high-voltage battery with a high
power output at the cost of a low capacity. This battery buffers the transients that the
fuel cell system (FCS) does not achieve. As a result, optimized FCS dynamics enable
batteries with a reduced capacity and peak power. This capacity reduction additionally
enlarges the accessible storage space for hydrogen, extending the available vehicle range.
Furthermore, the vehicle range depends considerably on the efficiency of the FCS as the
primary energy source of the FCEV powertrain. This efficiency is partly enhanced by
optimizing the hardware components. Nevertheless, optimal FCS control is the decisive
factor for high system efficiencies. Moreover, proper controlling of the fuel cell stack
and the necessary auxiliary components is crucial to achieve rapid FCS dynamics.
Model predictive control (MPC) is a promising approach for optimally controlling the
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FCS. This advanced control method relies on system models predicting future trajectories
of the controlled variables in dependence on the considered control variables. During
operation, these predicted trajectories are optimized by minimizing a cost criterion while
taking into account the system constraints. Furthermore, MPC allows the integration of
multiple control and controlled variables into one controller. As a result, cross-coupling
between the various control tasks is considered, which occurs throughout the FCS with
its multiple subsystems and the high number of actuators. Another benefit of MPC is
the easy transferability to modified systems, which is necessary for the automotive sector
due to its short development cycles and the scalability requirements of the components.
In general, only the modified system parts must be updated in the model, while the
overall control setup and the controller parameter values are retained.

1.2 Contributions and Thesis Overview

The main goal of this work is to improve the closed-loop behavior of the FCS in the
BMW iX5 Hydrogen. More precisely, the dynamics of the FCS net power are considered,
which are decisive for the performance of the FCEV powertrain. The cathode subsystem
is the limiting subsystem in the dynamic response of the FCS, which is why air mass
flow control is considered the primary control task in this work.
In most past studies on FCS air mass flow control, the only considered control target
has been the air mass flow supplied to the fuel cell stack. By contrast, the cathode
subsystem in an FCEV is also responsible for diluting hydrogen in the exhaust gas.
In the closed anode subsystem, nitrogen and water accumulate over time and reduce
the concentration of hydrogen. Therefore, gas is frequently released from the anode
subsystem, removing the excess nitrogen and water. The remaining hydrogen in these
gas flows must be diluted, ensuring compliance with safety regulations. Thus, one
contribution of this work is the additional consideration of hydrogen dilution control in
the FCS air mass flow controller.
The development of a model-based hydrogen dilution controller also requires a simulation
model with a detailed air exhaust path, which is not considered in many established
control-oriented FCS models. In this work, the air exhaust path includes the wet side of
the membrane humidifier as well as a humidifier bypass valve, a turbine with variable
turbine geometry (VTG) and an exhaust with a significant pressure loss.
The aforementioned simulation model is also a prerequisite for developing an explicit
MPC, which facilitates real-time capability on the limited computational resources of
an electronic control unit (ECU). At first, an explicit linear MPC was implemented, a
well-established control method. In FCS control, explicit linear MPC has been applied
in simulations and on test stands, whereas this work extends the scope to FCEVs,
using the BMW iX5 Hydrogen as an example. By contrast, the second approach of
approximating an explicit nonlinear MPC (NMPC) with a neural network is not as
common, and this approach has yet to be applied to FCS control. Furthermore, the
development of a linear and a nonlinear MPC for the same FCS allows an in-depth
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comparison of both approaches.
The present work also implemented an extension of the NMPC to include FCS net power
control. Accordingly, the principle difference to previous studies on FCS net power
control is the additional consideration of hydrogen dilution control. Hence, another
contribution of this study is the discussion on the implications on the control of the
FCS net power.
This work is structured as follows. At first, the fundamentals of explicit linear and
nonlinear MPC are introduced in Chapter 2 alongside the applied nomenclature. Sub-
sequently, the literature on FCS control is reviewed, and the FCS of the BMW iX5
Hydrogen, together with the FCS net power control architecture, is presented in Chap-
ter 3. The closed-loop simulations in this work were conducted with a lumped parameter
model, which is established in Chapter 4. The simulation model was also validated with
measurements from an FCS test stand and the BMW iX5 Hydrogen. Then, comple-
mentary results to the previous study [27] on the explicit linear MPC for air mass flow
control are given in Chapter 5. The shortcomings of this control approach prompted
the development of an explicit NMPC for air mass flow control. This controller is
introduced and validated in Chapter 6. Eventually, the two proposed MPCs were
compared to each other and to the reference control setup for air mass flow control,
which consists of two adaptive PI controllers. The associated results are displayed in
Chapter 7. Furthermore, the extension of the proposed NMPC to include FCS net
power control is established in Chapter 8, which also contains the validation of the
NMPC with closed-loop simulations. In the end, the present work is summarized in
Chapter 9, and ideas on potential future works are shared.





2 Explicit Model Predictive Control

Explicit linear and nonlinear MPC are the control methods that were applied and
compared in this work. Thus, the fundamentals of MPC and the corresponding
nomenclature are presented first in Section 2.1. Subsequently, the concept of explicit
MPC is introduced for both the linear and the nonlinear case. Additionally, previously
published approaches regarding explicit MPC were reviewed. These revisions are shown
in Sections 2.2 and 2.3.

2.1 Fundamentals of Model Predictive Control

MPC is a control technique that optimizes the closed-loop behavior of a system by
repeatedly minimizing a cost function J . J is an assessment criterion for the system
trajectory on a finite prediction horizon. After each minimization, the first step of the
optimized control strategy for the entire prediction horizon is applied to the plant, and
the response is evaluated. Then, the prediction horizon is moved one time step forward,
and the optimization is repeated. Accordingly, MPC is often also referred to as receding
horizon control. The prediction in J is based on a dynamic model of the system that is
often given in its discrete state-space representation.

x (k + 1) = f (x (k) , u (k)) (2.1)
y (k) = h (x (k) , u (k)) (2.2)

In the state equation (Eq. (2.1)), x (k) is the vector of state variables at time step
k. What is more, u (k) is the vector of input variables, which are often the control
variables under consideration. In the output equation (Eq. (2.2)), y (k) is the vector of
output variables that often coincide with the controlled variables of the system. While
MPC is often used to stabilize a given steady state, it can also be used for reference
tracking. The state-space representation for reference tracking is often modified to
include control effort ∆u (k) = u (k) − u (k − 1) instead of u (k).

x (k + 1) = f (x (k) , u (k − 1) , ∆u (k)) (2.3)
y (k) = h (x (k) , u (k − 1) , ∆u (k)) (2.4)

The penalization of ∆u in J influences the transients of the closed control loop, whereas
stationary operation is unaffected. As a result, zero control deviation for the desired
setpoints is ensured after reaching stationary operation. In J , the assessment of
the system trajectory along a prediction horizon Ny is therefore based on an initial
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state x (k), the control variables applied in the previous step u (k − 1), and a set of
future ∆u (k + j) along a control horizon Nu. The values of all ∆u (k + j) are often
summarized in one vector U . Additionally, setpoints for the system outputs ysp need
to be considered in J for reference tracking. In this work and for most applications, it
is sufficient to consider a constant ysp (k) along the prediction horizon. Nonetheless,
it is also possible to consider a setpoint trajectory along the prediction horizon that
allows for achieving desired closed-loop behavior. Moreover, future values of ysp may
be predictable if additional information is available on the operating strategy.

J(x (k) , ysp (k) ,u (k − 1) , U) =
[ysp (k) − y (k +Ny)]T P [ysp (k) − y (k +Ny)]

+
Ny−1∑
i=1

[ysp (k) − y (k + i)]T Q [ysp (k) − y (k + i)]

+
Nu−1∑
j=0

∆uT (k + j) R∆u (k + j)

(2.5)

The most common choice for J is the quadratic form that is shown in Equation (2.5).
One advantage of MPC is its ability to deal with multiple-input-multiple-output (MIMO)
control problems. In J , the various controlled variables can be prioritized by choosing
different weights in the terminal weight matrix P and the control deviation weight
matrix Q. What is more, the trajectories of the input variables can be smoothed by
specifying the control effort weight matrix R. Eventually, the vector of optimal control
actions U ∗ is determined by minimizing J under constraints.

U ∗ = arg min
U

J(x (k) , ysp (k) , u (k − 1) , U) (2.6)

s.t. x (k + 1) = f (x (k) , u (k − 1) , ∆u (k)) (2.7)
y (k) = h (x (k) , u (k − 1) , ∆u (k)) (2.8)
ḡ (x (k) , u (k − 1) , U) = 0 (2.9)
g̃ (x (k) , u (k − 1) , U) ≤ 0 (2.10)
uMin ≤ u (k + j) ≤ uMax (2.11)
xMin ≤ x (k + j) ≤ xMax (2.12)
yMin ≤ y (k + j) ≤ yMax (2.13)

The solution U ∗ is often characterized by a set of active inequality constraints g̃i = 0.
This characterization also includes the inequality constraints regarding the minimum
(Min) or maximum (Max) values of x, y, and u.
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2.2 Explicit Linear Model Predictive Control

One of the most common variants of MPC is linear MPC based on a linear time-invariant
(LTI) state-space representation.

x (k + 1) = Ax (k) + Bu (k) (2.14)
y (k) = Cx (k) + Du (k) (2.15)

For many applications, it is sufficient to only consider linear constraints in addition to
the upper and lower bounds from Equations (2.11) - (2.13).

ḡ (x (k) , u (k − 1) , U) = ĀCon

 x (k)
u (k − 1)

+ B̄ConU = 0 (2.16)

g̃ (x (k) , u (k − 1) , U) = ÃCon

 x (k)
u (k − 1)

+ B̃ConU ≤ 0 (2.17)

The MPC optimization problem based on an LTI plant model and linear constraints
is equivalent to a problem of quadratic programming (QP). Thus, QP solvers are
usually applied to determine U ∗ during operation. An alternative approach based on
multi-parametric QPs (mp-QPs) was proposed by Bemporad et al. [11]. An mp-QP is
derived by summarizing the variable inputs x (k), ysp (k), and u (k − 1) into the QP
problem in one parameter vector θ. Then, a function u (θ) is determined offline that
calculates or approximates U ∗ for all feasible θ. The set of all feasible θ is denoted
Θ in the remainder of this work. The additional effort beforehand is accepted if the
evaluation of u (θ) is faster compared to the online execution of any available QP solver.
In their work, Bemporad et al. [11] further showed that for a mp-QP problem, U ∗ is a
piecewise affine (PWA) function.

u (θ) = Fi,PTθ + gi,PT, i = 1, ...,nPT (2.18)

Each linear function Fi,PTθ + gi,PT corresponds to a polytope within Θ. The number
of polytopes nPT, and hence the complexity of the polytopic partition of Θ, depends
on the number of constraints nCon. In the context of mp-QP, a polytope is uniquely
defined by a set of active inequality constraints g̃i = 0. Hence, nPT = 2nCon if only
inequality constraints are used [16]. Firstly, this correlation can prevent the application
of mp-QP algorithms based on the geometric exploration of Θ for large-scale MPC
problems [28]. Secondly, the polytopic partition for determining the control law on the
ECU can potentially violate the requirement of real-time capability.
Therefore, many approaches have been reported in the literature that reduce the
computations required to evaluate the explicit control law. Kvasnica et al. [64] aimed to
reduce nPT with classification. The authors separated polytopic regions with saturated
from those with unsaturated control variables. Subsequently, all regions where the
control variables are saturated at the maximum were merged. The same was done
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for saturation at the minimum. Hence, only two function evaluations determining the
boundaries to the unsaturated regions were necessary initially, while the polytopes
related to unsaturated control variables remained in their original state.
Another reported approach used an approximation of the exact control law. Bemporad
et al. [12] argued that approximations are often sufficient since the parameterization
of cost functions is generally carried out empirically. The authors utilized canonical
PWA functions on a simplicial partition of Θ because these functions can be directly
implemented on electronic circuits. The weights of the functions were adapted to the
exact control law while ensuring a perfect agreement at the vertices of the simplices.
Canale et al. [14] and Domahidi et al. [23] also based their approximation approaches
on the exact control law at fixed points θ. On the one side, in [14], set membership
methodologies were used to display a systematic procedure for approximating the
explicit MPC control law. On the other side, kernel regression was applied in [23].
Similarly, [108] used second-order interpolating wavelets to approximate U ∗ in Θ.
Another concept to realize real-time capable linear MPC is the combination of implicit
and explicit MPC. Pannocchia et al. [88] proposed explicit storing of solutions that
refer to the most frequently active constraints. The resulting table was used during
operation as a first instance to determine the control law. If the table did not contain a
solution, a suboptimal control action was taken. Simultaneously, a QP solver determined
the optimal solution, which was added to the table afterward. The advantage of this
approach is that the QP solver did not need to meet the real-time requirement. Likewise,
Zeilinger [126] used an approximate explicit MPC to determine an optimal initial point
for the optimization on the ECU. Thus, a limited number of optimization steps were
sufficient to reach the optimum or an adjacent value.

2.3 Explicit Nonlinear Model Predictive Control

Linear MPC is feasible for many applications. However, it is sometimes desirable to
utilize a more general nonlinear model (Eqs. (2.1) and (2.2)) that better represents the
plant dynamics [56]. Implementing an NMPC requires solving a nonlinear programming
(NLP) problem, which has a higher computational burden than QP solvers. Hence,
explicit NMPC is often the only possibility to achieve real-time capability for fast
processes. Unfortunately, there is no exact solution to the general NLP problem
comparable to the results of [11]. Nonetheless, various suboptimal polytopic or function
approximation methods have been proposed.
Among the first studies were the ones by Parisini et al. [89], [90]. The authors used a
multilayer feedforward neural network (NN) to approximate the solution to the NLP
problem. A few years later, Johansen [54], [55] published two approaches based on
suboptimal polytopic partitions of Θ. In the first study [54], the NLP problem was
transformed into local QP problems by using the Taylor expansion around fixed solutions
of the original NLP problem. Hypercubes were then used to determine the area around
each fixed solution for which the corresponding local QP problem was assumed to be



2.3 Explicit Nonlinear Model Predictive Control 9

feasible and accurate. Afterward, each local mp-QP problem was solved exactly inside
the respective hypercube. If the approximation error of the obtained solution exceeded
a threshold, the hypercube was split, and the procedure was repeated for each of the
resulting sub-regions. The solution to each mp-QP and the overall solution to the
mp-NLP were thus PWA functions. The second method of Johansen [55] also evolved
around the splitting of Θ into hypercubes and obtaining a PWA approximation of the
exact NMPC control law. The linear functions were obtained by solving the NLP at
the vertices of each hypercube and then interpolating the results with a linear function.
This approach was further developed in the works of Grancharova et al. [33], [34]. Ulbig
et al. [117] also utilized the exact PWA solution to the general mp-QP problem in their
approach for an mp-NLP solver. However, their linearization already started with the
system model. Jacobi linearizations were used to obtain a PWA representation of the
nonlinear model. The mp-NLP was thus transformed into multiple mp-QP problems
that were each solved by PWA functions. The final explicit representation of the NMPC
was obtained by approximating the overall PWA function with one polynomial over Θ
to decrease the computational burden of the online function evaluation. A PWA control
law was also obtained with the approach of Domínguez et al. [24]. The authors used
linearizations of the Lagrangian function L (θ, U) of the NLP to obtain the polytopic
regions inside Θ and to calculate the resulting explicit control law.

L (θ, U , λ, µ) = J (θ, U) +
∑

i

λi · g̃i (θ, U) +
∑

j

µj · ḡj (θ, U) (2.19)

Another approach similar to [117] was presented by Kvasnica et al. [63]. The authors
used a PWA representation of the original nonlinear model to create a set of mp-QP
problems that are solved exactly by PWA functions. A polynomial then approximated
the combined PWA function for Θ. The polynomial coefficients were obtained by solving
a new linear programming (LP) problem.
Nonetheless, the NN approach of Parisini et al. [90] was applied in this work for explicit
NMPC due to its simple implementation and scalability. The scalability was necessary
to ensure the real-time capability of the approach. Generally, NNs comprise multiple
neurons within one or more layers. A NN with one layer is called shallow, while NNs
with multiple layers are called deep NNs. Each neuron is characterized by its connection
to the previous and the following layer and by its activation function. The activation
function act (σi) calculates the output value yi of the i-th neuron based on the weighted
sum σi of the input values xj from all the connected neurons of the previous layer.

σi =
nin∑
j=1

wi,j · xj + bi (2.20)

A summary of the most common activation functions is given in Figure 1. While
saturated activation functions best represent the physical limitations of control variables
in real systems, they suffer from vanishing gradients close to the saturated value [48].
Thus, the learning performance is usually worse than with linear and Rectified Linear
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Figure 1: Overview of the most common activation functions in feedforward NNs.

Unit (ReLU) activation functions. Nonetheless, successful applications of all these
activation functions in NNs for explicit MPC have been reported in the literature.
Chen et al. [16] utilized a deep neural network to approximate an explicit linear MPC.
The NN consisted of two hidden layers with the ReLU activation function. Additionally,
the linear output layer was fed into Dykstra’s projection algorithm to avoid constraint
violations due to approximation errors. A similar approach was chosen by Karg et
al. [58]. Their study was further motivated by the immense memory requirement of
an exact explicit linear MPC. The six hidden layers with ReLU activation functions
comprised six or ten neurons. Maddalena et al. [78] also used a deep NN to approximate
the solution to the MPC optimization problem for LTI systems. The authors stated
time limitations and safety regulations as motivation for explicit MPC. Additionally,
high memory requirements and a high computational burden of the exact solution
required an approximation approach for real-time capability. But unlike [16] and [58],
each layer in [78] had a different activation function. A parametric QP (pQP) layer was
used between two linear layers, while the output layer was implemented as a saturated
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projection layer to account for the control variable boundaries.

ypQP = arg min
z≥0

∥Lz + x∥2 + ϵ∥z∥2 (2.21)

Zhang et al. [128] applied a NN to approximate the explicit solution of the MPC problem
for a linear, parameter-varying system. A helpful assumption in this work was that
the parameter variations in the system are known and can be perfectly predicted. The
study aimed to approximate the complex exact solution with very few parameters and
to allow a simple evaluation during operation. Hence, a deep neural network was used
based on three hidden layers with ReLU activation functions.
Additionally, NNs have been used to approximate the explicit solution of mixed-integer
QPs. Mixed-integer QPs can arise in MPC if a PWA system model is used [17] or some
control variables are integers [57]. Cseko et al. [17] used a NN to avoid the exponential
growth in the number of polytopes for exact explicit MPC. Furthermore, the authors
took advantage of the fact that a NN controller does not generally require a complete
state measurement. The applied NN was shallow and utilized the radial basis function
(RBF) in the hidden layer with up to 250 neurons.

yi,RBF = e
− ∥x−ci∥2

2·b2
i (2.22)

The training data for the NN was taken from the exact explicit MPC, with one sample
from each region. Karg et al. [57] also stated computational burden and memory
requirements as the primary motivation for applying a NN. The authors used a deep
neural network with five hidden layers with ReLU activation functions. Furthermore,
the output layer was chosen to be linear.
Nonetheless, the goal of this study was to apply a NN as an approximation for the
solution to an mp-NLP. This approach has been reported by Hertneck et al. [45] and
Lucia et al. [72]. In [45], the lack of a straightforward extension of the exact solution
of mp-QPs [11] to mp-NLPs was quoted as the primary motivation for approximate
solutions like NNs. The authors applied a deep neural network that consisted of
hyperbolic tangent activation functions in the hidden layers and a linear output layer.
Similarly, Lucia et al. [72] utilized a NN to avoid the complexity of solving an NMPC
optimization problem under uncertainty. They trained a deep neural network with nine
hidden and one output layer, with each layer using the hyperbolic tangent activation
function.





3 Control of an Automotive Fuel Cell
System

In this work, explicit linear and nonlinear MPC was applied to control the FCS of the
BMW iX5 Hydrogen. This vehicle is BMW’s first FCEV produced in a pilot series.
In this chapter, the FCS setup and the power control architecture are presented in
Section 3.2. Beforehand, an overview of publications concerning the control of fuel cell
systems is given in Section 3.1, focusing on control tasks and applications.

3.1 Literature Review

The optimal control of the FCS is crucial for successfully integrating fuel cell technology
in FCEVs. Among the essential control tasks are voltage control, air or oxygen and
hydrogen supply control, and temperature and humidity control [19], [29]. Additional
control tasks include maximizing the FCS efficiency and lifetime during the operation,
and particular scenarios like cold start [29]. The comprehensive review of Gao et al. [29]
on FCS control also emphasized that air supply control is the limiting factor in the
dynamic response of an FCS. Therefore, much research has been conducted regarding
this control task. The most commonly controlled variable under consideration has been
the oxygen excess ratio λO2 [49], the ratio of supplied (in) to reacted (reac) oxygen in
the fuel cell stack.

λO2 = ṁin
O2

ṁreac
O2

(3.1)

Air supply control aims to prevent oxygen starvation in the fuel cells by keeping λO2 > 1.
In automotive applications, ambient air supplies oxygen to the fuel cell stack. The
utilized air compressor is, therefore, the main actuator in air supply control. For a
small laboratory FCS, a DC motor is adequate to power the air compressor. As a result,
the air compressor motor voltage UCmpr has been the most commonly used control
variable in the literature. One approach is directly controlling λO2 with UCmpr, without
considering any other variables. Pilloni et al. [91] used second-order sliding mode control
(SMC) to steer λO2 to a fixed setpoint λsp

O2 = 2.06. Similarly, Baroud et al. [10] applied
a combination of fuzzy and PID control to reach λsp

O2 = 2.05. A comparable hybrid
fuzzy-PID controller was also reported by AbouOmar et al. [1]. The difference between
the two studies was the utilization of a load-dependent setpoint λsp

O2 = f (IStck) in [1].
This map was determined by maximizing the FCS efficiency through variations in λO2

for different electric currents IStck drawn from the fuel cell stack.
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Apart from the load dependency, λO2 also depends directly on IStck. The amount
of oxygen ṁreac

O2 consumed in the electrochemical reaction of the fuel cells is directly
proportional to IStck.

ṁreac
O2 = nCell · IStck

4 · F
· M̄O2 (3.2)

Accordingly, many proposed controllers for λO2 also considered IStck as a measurable
disturbance. For fixed values, the successful application of an implicit ([93], λsp

O2 = 2.3)
and an explicit ([92], λsp

O2 = 2.0) linear MPC was reported. Similarly, Yang et al. [124]
utilized a control Lyapunov function to maintain λsp

O2 = 2.0. An alternative has been
the utilization of a map λsp

O2 = f (IStck) alongside IStck as a measurable disturbance.
Regarding this control setup, Grujicic et al. [38] compared a static with a dynamic
feedforward controller, while Yang et al. [123] applied generalized predictive control
(GPC). An additional PID controller was used in [123] to compensate for model errors.
Likewise, Zhang et al. [127] applied robust linearizing control, complemented with an
interval type-2 fuzzy logic system to estimate unmodeled dynamics. While the three
mentioned studies used a predetermined offline map λsp

O2 = f (IStck), Chang et al. [15]
implemented an extremum-seeking controller that detects the optimal value of λsp

O2

during operation. At the optimum, the maximum FCS net power PFCS was provided
for a given IStck. There have also been several studies with controller validations for
oxygen starvation prevention with a fixed setpoint λsp

O2 > 1 and efficiency maximization
with λsp

O2 = f (IStck). Among these studies were Bordons et al. [13] with constrained
predictive control (CPC), Arce et al. [6] with explicit linear MPC, and Gruber et al.
with dynamic matrix control (DMC) [36] and NMPC [35]. While these four studies
considered IStck directly in their controller formulations, Garcia-Gabin et al. [30] and
Wang et al. [121] compensated the disturbance of IStck with an additional feedforward
map Uff

Cmpr = f (IStck). This map was added to their respective controllers: a sliding
mode controller [30] and a time delay compensation controller [121].
An alternative to the direct control of λO2 with UCmpr is utilizing an intermediate
control target in a controller cascade. Gruber et al. [37] and Matraji et al. [82] used
the mass flow ṁCmpr supplied by the compressor as the intermediate control variable.
On the one side, in [37], the superordinate controller used nonlinear predictive control,
while the subordinate controller was implemented as a PI controller. On the other side,
in [82], both controllers were realized with second-order SMC. Both studies steered
the FCS to a fixed setpoint λsp

O2 = 2.0. Damour et al. [18] also utilized a mass flow
setpoint as the control variable of their superordinate PID controller. An artificial neural
network (ANN) determined the corresponding controller parameters during operation.
Nonetheless, unlike the other two studies, this control target was handled by a built-in
mass flow controller (MFC) after a pressurized oxygen tank. Another possibility is
to use the compressor rotational speed nCmpr in a controller cascade [21], [22]. Both
studies applied a fixed setpoint λsp

O2 = 2.05 and a feedforward map Uff
Cmpr = f (IStck)

alongside a feedback controller based on cascaded adaptive SMC.
In large-scale fuel cell systems with high power densities, permanent magnet synchronous
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motors (PMSM) are employed to drive the air compressor. The utilization of a PMSM
often renders the direct utilization of UCmpr infeasible. Instead, the torque of the PMSM
is controlled with the quadrature current iq,Cmpr through field-oriented control. This
current is usually set by the subordinate controller using the space vector modulation
technique. Thus, the setpoint ispq,Cmpr can be considered an alternative control variable
of the air supply controller. This control variable was used by Matraji et al. [81] and Liu
et al. [69] in their sliding mode controller cascades. In [69], the superordinate controller
steered the FCS to an operating point with a load-dependent λsp

O2 = f (IStck), while
the subordinate controller regulated ṁCmpr using iq,Cmpr. In [81], nCmpr was utilized
as the intermediate control variable for the air supply controller with λsp

O2 = f (IStck).
Talj et al. [111], [113] also used iq,Cmpr as the control variable of their sliding mode
controller and a constant setpoint λsp

O2 = 2. However, only the most low-level controllers
for ṁCmpr [111] and the compressor rotational speed ωCmpr [113] were specified. The
upper-level control tasks starting from λsp

O2 were neglected.
Apart from cascaded control, λsp

O2 can also be used to directly calculate a mass flow set-
point ṁin,sp

Ca for the air at the inlet of the fuel cell stack. The calculation is based on two
assumptions, the availability of the measured value Imeas

Stck and air with a constant composi-
tion (yO2,Air ≈ 0.21). These two assumptions can be used with Equations (3.1) and (3.2)
to obtain ṁin,sp

Ca .

ṁin,sp
Ca = nCell · IStck

4 · F
· M̄Air

yO2,Air
· λsp

O2 (3.3)

Consequently, ṁin
Ca can be directly controlled with UCmpr. This approach was realized

by Kunusch et al. [60], Niknezhadi et al. [86], Li et al. [65], and Han et al. [41]. In [60],
second-order SMC was combined with λsp

O2 = 2.05. Niknezhadi et al. [86] implemented
a linear quadratic Gaussian controller and validated their approach for a fixed setpoint
λsp

O2 = 2 and a varying one. The underlying operating strategy to vary the setpoint was
not further specified. In [65], a load-dependent setpoint λsp

O2 = f (IStck) was selected
for the presented PI controller. The novelty of this work was the specification of the
controller gains by a NN during operation. Finally, Han et al. [41] used model reference
adaptive control with λsp

O2 = 2.2. Nevertheless, unlike the other three studies, the
opening angle of the air inlet valve throttle was used as a second control variable.
Besides air mass flow control, valves can also be used to regulate various pressures
within the cathode subsystem of an FCS. The most common choice has been to use
the back pressure valve (BPV) to regulate the pressure pCa on the cathode side of
the fuel cells. What is more, pressures and mass flows are directly coupled. Many
studies have taken advantage of the coupling by combining the air supply controller
with a cathode pressure controller. Li et al. [66] and Sun et al. [110] used the position
of the BPV posBPV alongside UCmpr to control ṁin

Ca and pCa. In [66], observer-based
feedback linearization control was applied. The setpoints of the two controlled variables
were load-dependent, and IStck was additionally considered a measurable disturbance.
In [110], a decoupling internal model controller was demonstrated that did not consider
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IStck a measurable disturbance. Nonetheless, a load-dependency was found for ṁin,sp
Ca

and psp
Ca. Rodatz et al. [101] chose a similar control setup using linear quadratic

Gaussian control. However, the valve was directly controlled with the voltage of the
valve motor UBPV. This modification omitted the necessity of an intermediate position
controller for posBPV. Bao et al. [8], [9] extended this approach by further controlling
the pressure difference between the cathode and anode with the hydrogen supply valve
as an additional actuator. For both valves, the voltage of the motor was controlled.
This MIMO controller was realized with MPC based on a NN model.
A modified version of the control setup from [110] is also found in the studies of Zhao
et al. [130], Liu et al. [71], and Yuan et al. [125]. All of them used nCmpr as the second
control variable instead of UCmpr. In [130], disturbance decoupling control was used.
In [71], fuzzy PID control was applied, and the mass flow controller was validated
independently from λO2 . In [125], SMC was used in a superordinate controller to
generate a mass flow reference ṁin,sp

Ca . This reference steered λO2 to its desired constant
setpoint λsp

O2 during load changes. The subordinate mass flow and pressure controller
was implemented with inverted decoupling and active disturbance rejection control. This
control approach is similar to [130]. A different approach is based on the proportional
correlation between the cathode inlet pressure loss ∆pin

Ca = pSm − pCa and ṁin
Ca. Ma et

al. [77] used this correlation to calculate a virtual setpoint ∆pin,sp
Ca instead of ṁsp,in

Ca from
λsp

O2 . Their nonlinear triple-step controller then used UCmpr to steer the system to this
setpoint. Similarly, Hernandez-Torres et al. [43] used the correlation between ṁCmpr

and ωCmpr and pSm to define an air supply controller for ωsp
Cmpr and psp

Sm. The resulting
H∞ polytopic controller also used UCmpr as the sole control variable. For both studies,
the pressure in the air supply manifold pSm was also the pressure at the air compressor
outlet.
Apart from ṁin

Ca, pin
Ca also relates directly to the gas humidity since it impacts the water

vapor activity aCa.

aCa = pCa,H2O(v)

pCa
(3.4)

Thus, air supply and pressure control can be coupled with humidity control. This
approach was demonstrated in the work of Xu et al. [122]. The authors applied adaptive
second-order SMC to reach a load-dependent λsp

O2 = f (IStck) and a fixed asp
Ca = 0.9. The

corresponding control variables included the heated water temperature of the membrane
humidifier alongside ωCmpr and posBPV.
Nonetheless, air supply control has not only been combined with pressure and humidity
control. The air compressor also accounts for the majority of the auxiliary power losses
in the FCS [95]. Hence, power control has often been connected with air supply control.
In [94], [95], the authors used the setpoint P sp

FCS to determine IStck from a static map.
This static map was determined beforehand from simulations but can also be obtained
from measurements. In the next step, IStck was used as the input of a static feedforward
controller to determine ṁsp

Cmpr. Eventually, ṁsp
Cmpr was controlled by a state feedback

controller that acted on UCmpr.
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Air supply control does not only impact the power consumption of the compressor
PCmpr. Moreover, an increased pCa increases the stack voltage UStck due to a higher
open circuit voltage (OCV). This correlation enables combined control approaches for
air supply and cell voltage control, which was realized by Hernández-Torres et al. [44],
Kim et al. [59], and Tekin et al. [114]. In [44], ṁCmpr and UStck were directly controlled
with ωsp

Cmpr. In this work, H∞ control was applied. On the contrary, Kim et al. [59] and
Tekin et al. [114] manipulated a term added to ṁin,sp

Ca to reach U sp
Stck. While PI control

was applied in [59], [114] utilized Takagi-Sugeno fuzzy-logic control.
While most of the studies assume IStck to be identical to its setpoint Isp

Stck, Sun et al. [109]
correctly pointed out that this assumption generally requires conservative choices for
λO2 or slow dynamics. Instead, they proposed a load governor to limit IStck during
transients. This load governor enforced λO2 > 1 while allowing significant changes in
Isp

Stck. A limitation of IStck during transients was also realized in [99]. In this work,
the definition of a slew rate for PFCS restricted the electric current that the DC/DC
boost converter could draw. What is more, a dynamic map for UCmpr was utilized
as an air supply controller. The inputs to this map were IStck and λsp

O2 − λO2 , with a
load-dependent setpoint λsp

O2 = f (IStck). The overall system under consideration in [99]
was a hybrid setup with an additional capacitor covering the power transients of the
load. A similar hybrid setup was also regarded in the works of Vahidi et al. [118], [119].
The authors used linear MPC to control the state-of-charge (SOC) of the capacitor
alongside λsp

O2 = 2. As control variables, UCmpr and IStck were chosen.
While air supply and power control are decisive for the transient response of an FCS,
the regulation of the hydrogen excess ratio λH2 and the fuel cell stack temperature
TStck are also necessary to properly operate the FCS. In their study, Sankar et al. [102]
added T sp

Stck to the more common control targets U sp
Stck and ṁsp

Cmpr. The authors applied
SMC to determine values for the hydrogen supply pressure pin

H2 , UCmpr, and the cooling
water mass flow ṁCool. Another comprehensive controller was introduced by Ziogou et
al. [132]. The authors applied NMPC to track P sp

FCS, λsp
O2 , and λsp

H2 simultaneously. The
controller manipulated IStck, the setpoint for the supplied air ṁin,sp

Air , and the setpoint
for the supplied hydrogen ṁin,sp

H2 . In contrast to most of the studies presented so far,
the FCS in [132] was directly supplied from high-pressure air and hydrogen tanks. The
respective mass flows were thus directly controlled by MFCs, and an air compressor was
not required. Nonetheless, using an air tank also means this approach is not directly
transferable to automotive applications. An extension of this work is found in [133]. In
this study, the authors added an explicit linear MPC to control TStck. As additional
actuators, a heating resistance and a cooling fan were included.
All the studies above have in common that they directly specified a setpoint for λO2 or
a derived variable to avoid oxygen starvation. Alternatively, model-based approaches
like MPC allow the usage of constraints on λO2 . Goshtasbi et al. [32] implemented a
controller for PFCS and the efficiency of the FCS, ηFCS, that only considered a lower
bound on λO2 . This implementation was based on linear time-variant MPC that uses
model linearizations around the current operating point. Similarly, Neisen et al. [85]
utilized NMPC to control PFCS and ηFCS with a lower bound on λO2 .
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Another possibility is the consideration of boundaries on the oxygen concentrations
within the fuel cells. This approach requires a more detailed model of a fuel cell.
Nonetheless, it was considered by Luna et al. [73], [74] in their works on NMPC.
In [73], ηFCS was controlled while enforcing upper and lower boundaries on the oxygen
concentration in the fuel cell gas channels. By contrast, in [74], the electrochemically
active surface area was controlled with boundaries on the oxygen concentration in the
catalyst layer. This layer is the part of a fuel cell where oxygen starvation occurs.
Alternatively, the air supply controller can be considered a part of the FCS. This
approach is similar to the utilization of MFCs in [18], [132], [133]. Accordingly, ṁin,sp

Ca
or λsp

O2 are the controller outputs. In [31], the authors developed a controller for ηFCS

with ṁin,sp
Ca as one of the control variables. This controller was based on NMPC and

thus enabled the implementation of a lower bound on λO2 . Similarly, Vrlić et al. [120]
considered ṁin

Ca as a control variable of their linear MPC based on successive linearization
of a nonlinear model. The authors assumed that the air supply controller is significantly
faster than the superordinate MPC. As a result, ṁin

Ca could be used instead of its
setpoint. The controlled variables in [120] included ηFCS, PFCS, the pressure difference
across the membrane, and the distance from the optimal line in the compressor map. A
comparable study on MPC based on successive model linearization was published by
Hahn et al. [39]. In their work, λO2 was used as a control variable. The goal of this
controller was to steer PFCS to its setpoint while minimizing hydrogen consumption.
Additionally, a lower and an upper bound on λO2 were considered as control variable
constraints (see Eq. (2.11)).
Lastly, approaches for the control of PFCS have been published that consider neither
λO2 nor ṁin

Ca explicitly in the controller formulation. One example is the study of
O’Rourke et al. [87]. The authors proposed an extremum-seeking controller that varies
UCmpr and posBPV to maximize PFCS for a given IStck. This maximization was based
on the dependency of UStck on pCa, which could also be translated into a dependency
of UStck on ṁin

Ca. Nonetheless, neither ṁin
Ca nor pCa were considered directly. Instead,

only changes in PFCS were regarded by the controller. A similar dependency was
considered in a lookup table in [70]. This lookup table determined ωsp

Cmpr and Isp
Stck from

a given P sp
FCS. The selection of the operating points was based on the maximization

of PFCS due to a changing ṁin
Ca. However, similar to [87], no air mass flows appeared

explicitly in the controller formulation. While [87] and [70] considered a compressor
to supply air to the FCS, the required oxygen in [40] was supplied by an air tank.
Hence, oxygen starvation could be prevented by regulating pCa instead of a mass flow.
The controller was based on NMPC and regulated PStck by specifying psp

Ca, p
sp
An, and

Isp
Stck. Additionally, no constraints for λO2 were considered in [40]. Instead, only a

gradient limit for IStck was utilized to prevent reactant starvation during transients.
Two other FCS power controllers that entirely neglect the cathode subsystem were
reported. Instead, these controllers prioritized hydrogen supply. In [105], an additional
methanol reformer delivered ṁin

H2 . Thus, only the PI controller cascade from P sp
FCS down

to the reformer was considered. This control cascade contained an intermediate control
target for hydrogen supply instead of oxygen supply. In another study, Methekar et
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al. [83] utilized a sensitivity analysis to determine ṁin
H2 and the coolant temperature

setpoint T sp
Cool as the most significant control variables. These control variables were

the outputs of two PI controllers for the FCS power density and TStck. Therefore, the
influence of air supply was also neglected in [83].

3.2 Application Case: BMW iX5 Hydrogen

In this study, the proposed controllers were experimentally validated with the FCS of the
BMW iX5 Hydrogen. Therefore, the FCS hardware and control setup is introduced next,
which defines the boundaries between the controlled plant and the applied controller.

3.2.1 Fuel Cell System Setup

This work focused on the air supply and net power control of the FCS. Therefore, the
schematic overview of the FCS in Figure 2 mainly displays the cathode subsystem and
the electric connection of the leading power producers and consumers, namely the fuel
cell stack, the electric motor of the air compressor, and the FCEV powertrain. Minor
power consumers, such as the cooling pump and the ECU, were neglected in the control
problem formulation. In the cathode subsystem, the atmospheric air was filtered before
entering the air compressor. This filtering was motivated by the fact that the iX5
Hydrogen is driven alongside vehicles with conventional combustion or diesel engines.
The exhaust fumes of these engines contain CHx, NOx, or SOx fractions that can lead
to irreversible degradation of the polymer electrolyte membrane (PEM) fuel cells. The
feed air mass flow ṁAirFil was measured directly after the air filter. The sensor position
led to ṁin

Ca = ṁAirFil during stationary operation. The compressor additionally supplied
the air bearing mass flow ṁAirBear, which is indicated by the dashed arrows into and
out of the compressor motor. Nonetheless, since this mass flow was recycled before the
cathode inlet of the fuel cell stack, it did not provide oxygen to the electrochemical
reaction. Hence, ṁin

Ca ̸= ṁCmpr stood during stationary operation. The original sensor
signal ṁmeas

AirFil contained significant signal noise. Thus, it had been improved beforehand
by employing a mass flow model, as described in [26].
Operating points with ṁin

Ca ̸= ṁAirFil only occurred when the utilization of the cathode
bypass path was required. This bypass path increased the amount of air in the exhaust
without raising ṁin

Ca. Especially during low loads, the oxygen-depleted air at the fuel
cell stack outlet was insufficient to dilute the hydrogen in the exhaust gas of the anode
subsystem. Therefore, additional air was required to meet the safety requirements.
What is more, the bypass path allowed to reduce the pressure at the compressor outlet
quickly. As a result, compressor surge events could be prevented [115].
Another two measures to ensure the safe operation of the FCS were the cathode water
separator (CWS) and the turbine water separator (TWS). The CWS prevented water
droplets from entering the fuel cells, where they could block the gas flow channels.
Otherwise, local oxygen starvation occurred. The TWS prevented water droplets from
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Figure 2: Cathode and electric subsystem of the FCS in the powertrain of the BMW iX5
Hydrogen with the available sensors for electric current (I), electric voltage (U),
gas pressure (p), and temperature (T) as well as mass flows (MF).

causing erosion on the turbine blades [131]. While liquid water was not desirable during
the operation of the FCS, some of the product water of the electrochemical reaction
was recycled as water vapor through the membrane humidifier. This recycling led
to a better distribution of water vapor in the fuel cells. Consequently, the polymer
electrolyte membrane was well-humidified. Low humidity caused a high membrane
resistance leading to unnecessary power losses in the fuel cell stack. The degree of water
vapor recycling was manipulated with the membrane humidifier bypass valve.
The electric power from the fuel cell stack was the product of the DC load current IStck

and the resulting UStck under load. The level of UStck was lower than that of the high
voltage (HV) bus, which was determined by the voltage of the HV battery in the FCEV
powertrain. Thus, energy transport over this voltage jump was only achievable through
a DC-DC boost converter, depicted in Figure 2. The fuel cell stack was connected to
the primary side of this DC-DC boost converter. By contrast, the DC interface of the
compressor inverter was connected to the secondary side of the DC-DC boost converter.
Therefore, the power consumption of the compressor PCmpr was determined by the DC
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current drawn from the compressor inverter and the voltage level of the HV bus.

3.2.2 Fuel Cell Net Power and Hydrogen Dilution Control Architecture

PCmpr had a major influence on the control of PFCS. It significantly reduced PFCS in
comparison to PStck. The impact of PCmpr could be divided into stationary and dynamic
parts. On the one side, the stationary part depended on the stationary operating point
of the air compressor, with higher nCmpr resulting in a higher PCmpr. On the other side,
the acceleration and braking of the compressor motor determined the dynamic part.
Higher levels of iq,Cmpr resulted in faster acceleration of the compressor motor at the cost
of higher levels of PCmpr during transients. Hence, the subordinate air supply controller
that determined ispq,Cmpr significantly influenced the central FCS power controller. This
influence is also indicated in the control cascade of Figure 3. In this work, the control
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Figure 3: FCS net power and hydrogen dilution control cascades for the FCS in the BMW
iX5 Hydrogen with the boundary of the controlled plant (dark blue dashed line)
for the proposed controllers in this work.

variables of the power controller were the two setpoints ṁin,sp
Ca and Isp

Stck. Hydrogen
supply, as well as fuel cell humidity and temperature control, were omitted due to the
different time constants of the corresponding control tasks. While the pressure in the
anode subsystem was adjusted rapidly, the temperature and humidity of the fuel cells
only changed relatively slowly.
The utilization of ṁin,sp

Ca as the setpoint for the air supply controller transferred the
control of λO2 to the power controller. Therefore, Isp

Stck could be adapted by the power
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controller to avoid large undershoots in λO2 while maintaining maximum dynamics.
This control setup is similar to the approach proposed by Sun et al. [109]. Additionally,
utilizing mass flow setpoints enabled the air supply and bypass controller to be developed
independently from the power and dilution controller. The reference state of the control
cascade for this work included two PI controllers for the air supply and the bypass
controller. The control target ṁin,meas

Ca for the air supply controller was calculated
from the two sensor values ṁmeas

AirFil and ṁmeas
Byp . The two air mass flow controllers acted

on the subordinate current and valve controllers. On the one side, using a separate
controller for iq,Cmpr was necessary due to the considerably higher sampling frequency
of the compressor inverter compared to the FCS ECU with 100 Hz. Thus, this work
considered the current controller part of the controlled plant. On the other side, the valve
controller was retained because the position of a throttle valve was better interpretable
in a physical model than the voltage of its motor. Therefore, the valve controller was
also considered part of the controlled plant.
The primary objective of this work was to improve the control setup of Figure 3. In
previous works, the closed-loop behavior of the air supply subsystem had been optimized
with MPC (e.g., [36]). Additionally, MPC could control MIMO systems comparable
to the cathode subsystem in this work. The cross-coupling between ṁin

Ca and ṁByp

could be directly considered in the controller formulation of the MPC. By contrast,
each of the two PI controllers could only react to the perturbation caused by the other
PI controller. Furthermore, utilizing a state and perturbation observer with the MPC
introduced integral behavior without the risk of an integrator wind-up.
Compared to other studies on FCS air supply control, the control of pCa was neglected
in this work. Pressure control was considered a separate control task that did not
require similarly rapid dynamics. Additionally, the cathode inlet and outlet throttle
valves were not used for dynamic control. Instead, these valves only sealed the fuel
cell stack after shutting down the FCS. The VTG was also not used for air mass flow
control since the impact of the VTG on the air mass flows was small. By contrast, the
bypass valve was intended to be actively used for air supply control, which is why a
MIMO linear and a MIMO nonlinear MPC for ṁin

Ca and ṁByp were implemented in
this work. The real-time capability of both approaches was achieved with the explicit
solution to the linear and nonlinear MPC optimization problem.
After the initial proof-of-concept for both approaches, the developed controllers were
experimentally validated on an FCS test stand and in the FCEV. Moreover, the resulting
closed-loop behavior was compared to the reference control setup. This validation step
was conducted on an FCS test stand and in the FCEV. Additionally, the extension of
the nonlinear approach to include the power and dilution controller was investigated
in a small simulation study. The goal of this additional study was to determine the
feasibility of the controller extension.



4 Control-Oriented Model of an
Automotive Fuel Cell System

The primary goal of this study was to develop an improved air supply and bypass
controller for an FCS. This goal was achieved with linear and nonlinear MPC. The
real-time capability of both approaches was attained by using an explicit solution to the
corresponding QP and NLP problem. Thus, a precise simulation model was required to
efficiently adjust the parameter values in the cost function of the MPC. The availability
of closed-loop simulations prevented comprehensive parameter studies on the FCS test
stand. For each set of parameters, the explicit control law would have to be calculated
first and then implemented on the ECU to be evaluated on the FCS test stand.
The employed simulation model was derived from available literature on control-oriented
modeling of an FCS. This literature was revised, and the results are summarized in
the first section of this chapter. Subsequently, the simulation model equations for
the cathode subsystem and PFCS were selected and parameterized. Since this study
focused on air supply and power control, hydrogen supply, temperature, and humidity
were assumed to be perfectly controlled. Thus, the anode subsystem, and temperature
and humidity dynamics, were neglected. The accuracy of each component model of
the cathode subsystem is displayed in Section 4.2. Similarly, the individual terms
required to determine PFCS are introduced in Section 4.3. In the final step, the complete
simulation model was validated with measurement data from an FCS test stand and an
FCEV. The validation results are presented in Section 4.4.

4.1 Literature Review

One of the first studies on fuel cell modeling was conducted by Springer et al. [106].
The authors presented a one-dimensional model of a single fuel cell with semi-empirical
correlations for the membrane water content, its diffusion coefficient, and the membrane
conductivity. These correlations helped characterize the influence of water on the fuel
cell performance. Three years later, Amphlett et al. [4] developed a lumped-parameter
model for the polarization curve of a fuel cell. The model parameters linked the
fuel cell voltage to the cell temperature, the electric current, and the oxygen partial
pressure. Initially, the values of these parameters had been determined empirically
from experimental data. In a follow-up work [3], the lumped parameters were replaced
with physical constants to derive an entirely mechanistic model. The authors further
complemented this stationary model with temperature dynamics through the addition
of energy balances in [5]. Additionally, Mann et al. [79] applied the model to a broader
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operating range and added geometrical parameters to the correlation for the membrane
resistance.
A more detailed three-dimensional fuel cell model with a focus on mass transfer was
presented by Dutta et al. [25]. In this model, the data from [106] was used to develop
empirical correlations for the water content in the membrane, the electro-osmotic drag
coefficient, and the water diffusion coefficient. These correlations have been used in
recently published control-oriented fuel cell system models (e.g., Sankar et al. [102]).
One of the first control-oriented fuel cell system models was developed by Pukrush-
pan [96], [97]. This lumped-parameter model incorporated findings from all the afore-
mentioned studies. It targeted automotive applications and has been widely accepted
for controller development. The focus of the model and the corresponding works [94],
[95] was on the fuel cell stack and the cathode subsystem. In the cathode subsystem,
the compressor is the main component that needs to be considered for control. There-
fore, the compressor model was also the most detailed of all the auxiliary components.
Over the years, the model [96], [97] has been used in many studies focused on the
development of air supply and power controllers for FCS (e.g., [13], [85], [92]). The
original ninth-order model was reduced to a fourth-order model in a follow-up work
by Suh [107]. This reduction was based on three assumptions. Firstly, the dynamics
of the anode subsystem were wholly neglected. Secondly, the constant atmospheric
pressure was used as the cathode outlet pressure. Lastly, air in the fuel cell stack was
assumed to be saturated with water vapor. The study of Suh [107] focused on air
supply control, but the system model was further extended by a DC/DC converter
and a battery model in a hybrid system setup. The model of Suh [107] has also been
widely used in later studies on air supply and power control (e.g., [1], [37]). While the
assumption of perfectly humidified air is feasible in some scenarios, it is not generally
valid in real applications. Thus, Liu et al. [69] added the dynamics of water vapor on
the cathode side of the fuel cell stack to the fourth-order model of Suh [107]. This
extension enabled the consideration of a variable water transport through the membrane
and water production due to the electrochemical reaction. Whilst Pukrushpan [96] and
Liu et al. [69] only considered the humidifier as a means of changing the air humidity,
Kunusch et al. [61] also contemplated the associated pressure loss. This model was used
to develop an air supply controller in the study of Niknezhadi et al. [86].
Nonetheless, not only extended versions of the model of Suh [107] have been used. A
further reduction of this model was reported by Talj et al. [112]. In this study, the
partial pressures of oxygen, nitrogen, and water were merged into a novel state variable
of the cathode subsystem. The goal was to increase the applicability of the resulting
model in nonlinear control approaches (e.g., [77], [82]). This third-order model was
extended by Li et al. [66] to include the dynamics of the BPV opening angle. The
dynamic correlation between the setpoint and the actual value of the valve opening angle
represented the closed-loop behavior of the BPV opening angle controller. Similarly,
Sun et al. [109] included a controller for λO2 in their model. In both models, the setpoint
of the respective control variable was considered as an input, while the actual value
was viewed as a state.
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A constant cathode outlet pressure has been a common assumption for models used
to develop air supply controllers. Nonetheless, this assumption is only valid if the
oxygen-depleted air is directly released into the environment (e.g., [107]) or if the
cathode outlet pressure is well regulated (e.g., [61]). Otherwise, a dynamic cathode
outlet pressure needs to be considered, as shown in the model of Kunusch et al. [60].
This model was also based on [96], [97] and only neglected the dynamics of the anode
subsystem and the water vapor in the cathode subsystem. The model was used for
controller development by Pilloni et al. [91], Deng et al. [21], [22], and Zhang et al. [127].
Similar models were reported by Rakhtala et al. [98] and Li et al. [65].
In all the FCS models above, the oxygen concentration in the fuel cell stack was lumped
into one state variable. Thus, oxygen starvation only occurred in the simulation if
the amount of oxygen supplied to the fuel cell stack was smaller than the amount of
oxygen consumed by the electrochemical reaction. In actual fuel cells, oxygen starvation
occurs in the catalyst layer. Thus, oxygen starvation also depends on mass transport
through the gas diffusion layer. This diffusive transport was considered in the models
of del Real et al. [20] and Ziogou et al. [134]. The former additionally implemented
simple correlations for the auxiliary components, and their model was used to develop
an air supply and power controller by Arce et al. [6] and Ramos-Paja et al. [99]. By
contrast, the model of Ziogou et al. [134] considered the anode and cathode inlet mass
flows as model inputs. As a result, this model is unsuitable for controller development
concerning automotive fuel cell systems. The dynamic of automotive systems strongly
depends on the dynamics of their auxiliary components.
In addition to the one-dimensional resolution of mass transport in the fuel cell stack,
del Real et al. [20] and Ziogou et al. [134] took temperature dynamics into account.
The temperature dynamics were the result of the implemented heat balances. Likewise,
Sankar et al. [102] reported a lumped-parameter model of an FCS that included heat
balances for the anode and cathode gases and the fuel cell body. Thus, efficient
temperature control was enabled alongside the air supply and fuel cell voltage control.
While lumped-parameter models are generally based on semi-empirical correlations,
purely empirical modeling approaches have also been reported with regard to control
applications. The proposed approaches include ANNs [18], [130], an impulse response
model [36], a Volterra series model [35], and linear transfer functions [59], [71], [110].

4.2 Model of the Cathode Subsystem

In this work, the controlled variables in the cathode subsystem were ṁin
Ca and ṁByp.

Thus, the main requirement for the simulation model of the cathode subsystem was
accurately predicting the dynamic behavior and the stationary operating points of ṁin

Ca
and ṁByp as a result of the control variables ispq,Cmpr and possp

Byp. Pukrushpan et al. [97]
showed that it is sufficient to implement a lumped-parameter model for FCS control
applications, which is why this approach was also implemented in this study. Moreover,
the utilization of a zero-dimensional model facilitated efficient closed-loop simulations.
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The resulting system of ordinary differential equations (ODEs) was easier to solve than
a system of partial differential equations (PDE) that would have resulted from utilizing
spatial derivatives of state variables in one-dimensional models.
The total gas volume was divided into discrete manifolds for the lumped-parameter
approach. The state of each manifold was determined by its pressure and temperature
under the assumption of an ideal gas. This assumption of an ideal gas was feasible
in the cathode subsystem of this work because the gas under consideration was air
at approximately 70 °C. This temperature was the operating temperature TOp,FCS of
the FCS. Additionally, the associated assumption of constant gas temperature in the
cathode subsystem enabled the derivation of a pressure state equation from the mass
balance of a manifold.

dp
dt = R · T

V
·
(∑

ṁin −
∑

ṁout
)

(4.1)

Equation (4.1) shows that the rate of change of a manifold pressure p depended on
the gas composition via the specific gas constant R and the manifold volume V . The
incoming and outgoing mass flows ṁin and ṁout generally depended on the pressure
difference between two manifolds. Therefore, the mass flows connected the manifolds.
For the cathode subsystem in this work, this connection is shown in Figure 4. Hence,
the state variables of the cathode subsystem model included the compressor outlet
pressure pout

Cmpr, the cathode inlet pressure pin
Ca, the cathode outlet pressure pout

Ca , the
turbine inlet pressure pin

Trb, and the turbine outlet pressure pout
Trb. The corresponding

manifold volumes were determined from the gas volume of the adjacent components
and piping. Their values are summarized in Table 1. Further states of the model

Table 1: Values of the manifold volumes in the cathode subsystem model.

Parameter Value

V out
Cmpr 2 · 10−3 m3

V in
Ca 9.6 · 10−4 m3

V out
Ca 9.6 · 10−4 m3

V in
Trb 1.1 · 10−3 m3

V out
Trb 1.1 · 10−3 m3

were related to the two primary actuators, the air compressor, and the bypass valve.
Since the current and the valve controller were also part of the plant and had to be
modeled, the quadrature current iq,Cmpr of the air compressor motor, and the position
of the bypass valve posByp were the two controller states. The corresponding state
equations are introduced in Section 4.2.1. Lastly, the rotational speed nCmpr of the air
compressor was considered a state variable. The associated state equation is displayed
in Section 4.2.2.
In addition to the manifold pressures, Figure 4 displays the mass flows calculated
with stationary correlations in the cathode subsystem model. Another reason for the
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ṁTrbṁExh

Figure 4: Schematic overview of the cathode subsystem model with pressure manifolds
and connecting mass flows with their labeling.

lumped-parameter modeling approach was the ability to separately develop stationary
correlations between mass flows and the pressure losses for each component in the
considered system. These correlations were only combined in the last step to form a
dynamic model. Thus, the model parameters were easily adapted to modified compo-
nents. The development process in the automotive industry is highly dynamic, thus
leading to frequent and independent component updates that need to be considered in
a simulation model for controller development. The model equations for the compressor
mass flow ṁCmpr, the turbine mass flow ṁTrb, and the air bearing mass flow ṁAirBear

are all established in Section 4.2.2. In the subsequent Section 4.2.3, the correlation
for the air mass flow into the stack ṁin

Ca is presented. For the humidifier, the mass
flows through the dry side ṁdry

Hmdf and the wet side ṁwet
Hmdf were determined as shown

in Section 4.2.4. Next, ṁByp and the mass flow through the humidifier bypass valve
ṁHByp are introduced in Section 4.2.5. Lastly, the correlation for the mass flow through
the cathode exhaust ṁExh is set up in Section 4.2.6.
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What is more, Figure 4 also indirectly establishes further simplifications that were
made to reduce the computational time of the closed-loop simulations. The pressure
loss through the air filter was neglected because it was below 4 kPa throughout the
entire operating range of the FCS. Similarly, the slight pressure losses through the
intercooler and the cathode and turbine water separators enabled the neglection of these
components in the simulation model. Additionally, the accessible pressure measurements
of the FCS indicated that these two components did not significantly contribute to
the overall pressure loss in the cathode subsystem. On the contrary, the cathode inlet
and outlet valve significantly increased the pressure loss in the cathode subsystem,
but only if partially closed. Moreover, since these two valves were fully open during
regular operation, the respective pressure losses of both throttle valves were neglected
throughout this work. Furthermore, the water content of the air in the cathode
subsystem and the change in the air composition due to the electrochemical reaction
were neglected throughout this work. R was the only variable in the cathode subsystem
model dependent on the water content of the air. For fully humidified, oxygen-depleted
air at p = 1.5 bar with λO2 = 1.8, R changes from 288.2 J

kg K to 315.5 J
kg K. This

difference in R is equivalent to an increase of 9.5 %. The consideration of a changing air
composition would have required an additional ten state equations, two in each pressure
manifold. This additional computational effort was regarded as more severe than the
deviation in R. As a result, the water transport through the membrane humidifier was
likewise neglected.
The main difference between this model and the previously reported models (e.g., [97],
[102]) was the cathode bypass path and the more complex air exhaust path that included
the wet side of the membrane humidifier together with its bypass valve, the turbine
and an exhaust pipe that all contributed to the pressure loss in the cathode subsystem.
Additionally, most studies have neglected subordinate controllers in their models. One
of the few exceptions is the model implemented by Li et al. [66]. This model included
the dynamics of the BPV valve position controller. Moreover, a compressor rotational
speed controller was modeled by Zhao et al. [130].

4.2.1 Quadrature Current and Valve Position Controller Models

In this work, the outputs of the proposed air mass flow controller were ispq,Cmpr and
possp

Byp. Therefore, the controlled plant further included the current and valve controllers
of Figure 3. Since the dynamics of these controllers were observable within a step size
of ∆t = 10 ms, separate models had to be developed that describe the correlations
between the states iq,Cmpr and posByp and their respective setpoints (sp).

iq,Cmpr (k + 1) = 0.6065 · iq,Cmpr (k) + 0.3935 · ispq,Cmpr (k − 5) (4.2)
posByp (k + 1) = 0.3650 · posByp (k) − 0.5488 · posByp (k − 1)

+ 0.1013 · possp
Byp (k − 1) + 0.0825 · possp

Byp (k − 2)
(4.3)
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The current controller (Eq. (4.2)) was approximated with a first-order low-pass filter.
The corresponding time constant was set to tiq = 20 ms, and an additional delay of
td,Iq = 50 ms had to be considered. This time delay was caused by the controller area
network (CAN) communication between the FCS ECU and the compressor inverter
ECU. The validation of the current controller model for two positive and two negative
step changes with different heights is shown in Figure 5. The stationary values of ispq,Cmpr
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Figure 5: Experimental validation of the quadrature current controller model for step
changes in i sp

q,Cmpr.

in Figure 5c) and d) differed slightly because high negative step changes in ispq,Cmpr
were only possible with an active air mass flow controller to avoid compressor surge.
All the other step changes were executed manually to achieve higher reproducibility.
The comparison of a) and b) to c) and d) from Fig 5 shows an overestimation of the
controller time constant for low step changes and an underestimation for high step
changes. Therefore, it is likely that the fundamental dynamic correlation between
ispq,Cmpr and iq,Cmpr was nonlinear. Nonetheless, the deviation between the model and
the measurement was acceptable for validating control approaches in a simulation.
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The closed-loop behavior of the valve controller (Eq. (4.3)) was estimated with a second-
order low-pass filter with a time constant tpos = 20 ms and a damping factor of 0.6. The
possibility of over- and undershoots with this transfer function required an additional
limitation of posByp to the physically feasible range [0 %, 100 %]. Furthermore, the time
delay for the valve controller was smaller with td,pos = 10 ms. The order of two was
chosen to replicate the overshoots of the valve controller during positive step changes
in possp

Byp, as shown in the validation of the valve controller model in Fig. 6. The
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Figure 6: Experimental validation of the model of the bypass valve position controller for
step changes in pos sp

Byp.

comparison of Fig 6 to Figure 5 displays a significantly higher deviation for the position
controller model. One reason was the suboptimal behavior of the actual position
controller for negative step changes to 0 %. After the controller initially reduced the
position close to the setpoint, it was increased again. This behavior differed from the
behavior during positive step changes, during which the controller initially overshot the
setpoint. Nonetheless, only one model was used throughout the entire operating range
to retain a low controller model complexity. The second reason for the high deviation
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between the model and measurement was the significant difference in the controller
time constant between small and high step changes. This difference was assumed to be
another nonlinearity similar to the one of the current controller. However, the deviation
was found to be acceptable concerning the low complexity of the second-order low-pass
filter and therefore used for the cathode subsystem simulation model.

4.2.2 Air Compressor and Turbine Model

In the cathode subsystem of an FCS, the air compressor was the component with the
most significant impact on air mass flow and power control. It supplied the necessary
oxygen from ambient air to the FCS, and its motor was the most substantial auxiliary
power consumer. Therefore, the precise modeling of the air compressor was crucial
for correctly predicting the dynamic behavior of an FCS. The corresponding model
is shown first in this section. In this work, the air compressor was also mechanically
connected to a turbine with a VTG. Thus, the air compressor model had to be extended
with a turbine model presented subsequently. Eventually, the state equation for nCmpr

is established at the end of this section.

Air Compressor Model In an air compressor, ṁCmpr depends on the compressor inlet
pressure pin

Cmpr and temperature T in
Cmpr as well as pout

Cmpr and nCmpr. This correlation is
often visually illustrated in the compressor map. In this work, the stationary compressor
map model from Moraal et al. [84] was used, based on the work of Jensen et al. [53]. The
only modifications from the original model [84] were the factors eliminating the mass
flow dependency on the compressor inlet conditions. The temperature and pressure
correction terms θin

Cmpr and δin
Cmpr were taken from [96] because they are dimensionless.

θin
Cmpr =

T in
Cmpr

T ref
Cmpr

, T ref
Cmpr = 298.15 K (4.4)

δin
Cmpr =

pin
Cmpr

pref
Cmpr

, pref
Cmpr = 1 bar (4.5)

The correction terms from Equations (4.4) and (4.5) were used to calculate a scaled
compressor mass flow ˙̃mCmpr and a scaled compressor rotational speed ˙̃nCmpr.

˙̃mCmpr = ṁCmpr ·

√
θin

Cmpr

δin
Cmpr

(4.6)

ñCmpr = nCmpr · 1√
θin

Cmpr
(4.7)
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The normalized compressor flow rate ΦCmpr was another necessary dimensionless quantity
of the compressor map model derived from ˙̃mCmpr.

ΦCmpr =
˙̃mCmpr

ρref
Air · π

4 · d2
Cmpr · Uc

(4.8)

In addition, ΦCmpr was also dependent on the air density at reference conditions ρref
Air,

the compressor blade diameter dCmpr, and the air speed at the compressor blade tip Uc.

Uc = π

60 · dCmpr · ñCmpr (4.9)

The crucial part of this compressor map model was the correlation between ΦCmpr and
the dimensionless head parameter ΨCmpr.

ΦCmpr = k3 · ΨCmpr − k1

k2 + ΨCmpr
(4.10)

Equation (4.10) was taken from [84]. It differs from the correlation used in the FCS
model of Pukrushpan [96], which has been widely used within the FCS control community.
The correlation from Moraal et al. [84] was chosen because it contains fewer fitting
parameters while showing a similar fitting capability. There were six fitting parameters
ki,j that make up the three model parameters ki of Equation (4.10).

ki = ki,1 + ki,2 ·MaCmpr (4.11)

The compressor inlet Mach number MaCmpr was another dimensionless quantity that
related Uc to the speed of sound of air at reference conditions, which was calculated
from the specific gas constant RAir and the ratio of heat capacities γAir = cp,Air

cv,Air
for dry

air.

MaCmpr = Uc√
γAir ·RAir · T ref

(4.12)

Finally, ΨCmpr was the ratio of the isentropic enthalpy change over the air compressor
to the kinetic energy of air at the compressor blade tip.

ΨCmpr =
2 · cp,Air · T ref ·

(pout
Cmpr

pin
Cmpr

) γAir−1
γAir − 1


U2

c
(4.13)

The isentropic enthalpy change was also connected to the isentropic efficiency of the
compressor ηIs,Cmpr.

ηIs,Cmpr =
T out

Is,Cmpr − T in
Cmpr

T out
Cmpr − T in

Cmpr
(4.14)



4.2 Model of the Cathode Subsystem 33

T out
Is,Cmpr was the air temperature at the outlet of the air compressor for an ideal isentropic

process.

T out
Is,Cmpr = T in

Cmpr ·
(
pout

Cmpr

pin
Cmpr

) γAir−1
γAir

(4.15)

The value of ηIs,Cmpr has been assumed to be constant (e.g., 0.8 in [102]) or determined
by a lookup table [96]. In this work, the continuous model of Moraal et al. [84] was
applied.

ηIs,Cmpr = 100 · a1 · Φ2
Cmpr + 10 · a2 · ΦCmpr + a3 (4.16)

The factors 100 and 10 in front of a1 and a2 were chosen to have all values of ai,j of
a similar magnitude to improve the parameter fitting. The model of Equation (4.16)
required the determination of nine fitting parameters ai,j from measurement data.

ai = ai,1 + ai,2 ·MaCmpr

ai,3 −MaCmpr
(4.17)

With the model for ηIs,Cmpr, the real enthalpy change of the air in the air compressor
was calculated in the simulation model. This enthalpy change was directly proportional
to the load moment τCmpr of the air compressor.

τCmpr =
ṁCmpr · cp,Air · T in

Cmpr

ωCmpr · ηIs,Cmpr
·

(pout
Cmpr

pin
Cmpr

) γAir−1
γAir

− 1

 (4.18)

The fitting of ki,j achieved a coefficient of determination R2 = 0.9976 for ˙̃mCmpr, while
R2 = 0.9269 with regard to ηIs,Cmpr was accomplished during the fitting of ai,j. The
fitted values of kij and aij are listed in Table 2. While ṁCmpr and ηIs,Cmpr described

Table 2: Values of the fitting parameter for the air compressor model.

Parameter Value Parameter Value Parameter Value

k 1,1 0.1446 k 3,2 0.0107 a 2,2 −8.8598

k 1,2 0.0093 a 1,1 −0.5737 a 2,3 −1.2758

k 2,1 −1.4833 a 1,2 3.3724 a 3,1 −9.2242

k 2,2 0.1410 a 1,3 −0.5676 a 3,2 9.7296

k 3,1 0.1156 a 2,1 2.9500 a 3,3 −5.1665

the air compressor in its operating range, it was also essential to know the limits of this
operating range. Only the surge line had to be considered for the combination of an air
compressor with a turbine in this work. The approximation of the surge line was based
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on data from the air compressor manufacturer.(
pout

Cmpr

pin
Cmpr

)
Srg

= 1.31 · 10−4 · ˙̃m2
Cmpr + 2.1425 · 10−2 · ˙̃mCmpr + 0.859209 (4.19)

The choke line was negligible due to the additional operation requirement to keep a
minimum inlet pressure at the turbine inlet. As a result, the choke line was never
reached. Furthermore, the turbine inlet pressure condition was enforced through the
cathode pressure operating points and, thus, not considered in the scope of this work.
The fitted compressor map and efficiency model is depicted in Figure 7, together with
the surge line. In Figure 7, normalized values for

(
pout

Cmpr
pin

Cmpr

)
and ηIs,Cmpr are used.
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Figure 7: Compressor map model including the speed lines and the surge line as well
as ηnorm

Is,Cmpr for T in
Cmpr = 15 °C with the stationary measurement points from the

parameter fitting for comparison.

(
pout

Cmpr

pin
Cmpr

)norm

=

(
pout

Cmpr
pin

Cmpr

)
−
(

pout
Cmpr

pin
Cmpr

)
Min(

pout
Cmpr

pin
Cmpr

)
Max

−
(

pout
Cmpr

pin
Cmpr

)
Min

(4.20)

ηnorm
Is,Cmpr = ηIs,Cmpr

ηIs,Cmpr,Max
(4.21)

The comparison of the stationary measurement points with the speed lines of the
compressor map model in Figure 7 shows a good agreement throughout the operating
range.
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Similarly, Figure 8 demonstrates that the model for ηIs,Cmpr matched well the mea-
surement points. The only significant deviations occurred for low efficiencies around
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Figure 8: Comparison of measurement data (meas) and model calculations (calc) for
ηnorm

Is,Cmpr.

ηnorm
Is,Cmpr = 0.65. Since these deviations were at the edge of the air compressor operating

range, their impact on the simulation model accuracy was acceptable nonetheless.

Air Bearing Model The air compressor supplied oxygen to the fuel cell stack from
the ambient air. While ṁCmpr was a good approximation for the available mass flow,
a small share of ṁCmpr was deducted for the air bearing. Thus, ṁAirBear had to be
considered in the cathode subsystem simulation model.

ṁAirBear = CAirBear ·
√
ρin

AirBear · (pin
AirBear − pout

AirBear), ρin
AirBear = pin

AirBear
RAir · T in

AirBear
(4.22)

Equation (4.22) was based on the assumption of tube flow in the air bearing with a
constant tube friction coefficient [26]. This tube friction coefficient was part of the



36 4 Control-Oriented Model of an Automotive Fuel Cell System

model parameter CAirBear = 9.26 · 10−6 m2, which was determined from measurement.
This fitting achieved R2 = 0.9978 for ṁAirBear. The comparison of measurement data to
the corresponding model calculations in Figure 9 shows an excellent agreement.
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Figure 9: Comparison of measurement data (measured) and model calculations (calcu-
lated) for ṁAirBear.

Turbine Model Turbines have been considered as part of an FCS [80], [103], [129].
Nonetheless, the turbine model of Moraal et al. [84] was best suited to calculate ṁTrb

and the isentropic efficiency of the turbine ηIs,Trb, which were required in the cathode
simulation model of this work. This turbine model was also based on the results of
Jensen et al. [53]. Similar to the air compressor model, correction terms θTrb and δTrb

for the turbine inlet temperature T in
Trb and pressure pin

Trb were included.

θin
Trb = T in

Trb
T ref

Cmpr
(4.23)

δin
Trb = pin

Trb
pref

Cmpr
(4.24)

The turbine was mechanically connected to the compressor. Thus, the turbine had the
same rotational speed nTrb as the compressor. Therefore, the scaled rotational speed
ñTrb was calculated from nCmpr. Furthermore, θTrb and δTrb were utilized to determine
a scaled mass flow ˙̃mTrb.

˙̃mTrb = ṁTrb ·

√
θin

Trb

δin
Trb

(4.25)



4.2 Model of the Cathode Subsystem 37

ñTrb = nCmpr · 1√
θin

Trb

(4.26)

The correlation between ˙̃mTrb and the pressure ratio over the turbine in [84] was derived
from a nozzle flow equation as presented in [46].

˙̃mTrb = Aeff
Trb ·

√√√√√√ 2 · γAir

γAir − 1 ·

(pout
Trb
pin

Trb
− pcorr

rat,VTG

) 2
γAir

−
(
pout

Trb
pin

Trb
− pcorr

rat,VTG

) γAir+1
γAir

 (4.27)

Like nozzles, choked flow is observed in a turbine for pout
Trb

pin
Trb

≤ pcrit
rat . For choked flow,

the nozzle factor under the square root in Equation (4.27) no longer depends on the
pressure ratio over the turbine. This effect was represented in the correlation for ˙̃mTrb

by replacing pout
Trb

pin
Trb

with the constant pcrit
rat .

˙̃mTrb = Aeff
Trb ·

√√√√ 2 · γAir

γAir − 1 ·
[(
pcrit

rat − pcorr
rat,VTG

) 2
γAir −

(
pcrit

rat − pcorr
rat,VTG

) γAir+1
γAir

]
(4.28)

The value of pcrit
rat was dependent on the composition of the gas that flowed through the

turbine. Since the turbine was positioned at the outlet of the cathode subsystem, the
gas was oxygen-depleted air with varying compositions. Still, the air composition was
approximated with dry air for each component in the cathode subsystem model. Thus,
RAir and γAir were used to compute pcrit

rat .

pcrit
rat =

(
2

γAir + 1

) γAir
γAir−1

(4.29)

The second term influencing ˙̃mTrb was the effective opening area of the turbine Aeff
Trb.

This variable contained the fitting parameters ki,j for the turbine map model.

Aeff
Trb =

(
ccorr

1,VTG · posVTG + ccorr
2,VTG

)
·

 k1(
pout

Trb
pin

Trb

) + k2

 (4.30)

ki = ki,1 · ñTrb + ki,2 (4.31)

The VTG position posVTG impacted both Aeff
Trb and the pressure ratio correction term

pcorr
rat,VTG in Equations (4.27) and (4.28).

pcorr
rat,VTG = kcorr

1,VTG · pos2
VTG + kcorr

2,VTG · posVTG + kcorr
3,VTG (4.32)

The three model parameters ki,VTG from Equation (4.32) were fitted to measurement
data together with ki,j and ci,VTG. This fitting achieved R2 = 0.9964 with regard to
˙̃mTrb. A comparison of the adapted model and the corresponding measurement data is

displayed in Figure 10, with a normalized pressure ratio equivalent to Equation (4.20).
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The calculated model values for ˙̃mTrb matched the stationary measurement points
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Figure 10: Turbine map model for the operating range of posVTG with the stationary mea-
surement points from the parameter fitting for comparison.

remarkably well throughout the operating range.
The turbine was included in the cathode subsystem to regain a share of the power
supplied by the air compressor motor. The recovered energy depended on the turbine
load moment τTrb.

τTrb =
ηIs,Trb · ṁTrb · cp,Air · T in

Cmpr

ωCmpr
·

1 −
(
pout

Trb
pin

Trb

) γAir−1
γAir

 (4.33)

Similar to the compressor, τTrb correlated with the isentropic efficiency ηIs,Trb of the
turbine.

ηIs,Trb = T in
Trb − T out

Trb
T in

Trb − T out
Is,Trb

, T out
Is,Trb = T in

Trb ·
(
pout

Trb
pin

Trb

) γAir−1
γAir

(4.34)
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In this work, the continuous model of Moraal et al. [84] was used to calculate ηIs,Trb.

ηIs,Trb = b0+b1·ñTrb+(b2 + b3 · ñTrb)·
(
U

C

)
Trb

+(b4 + b5 · ñTrb)·
(
U

C

)2

Trb
(4.35)

The definition of the blade speed ratio
(

U
C

)
Trb

was comparable to the definition of ΨCmpr

in Equation (4.13).
(
U

C

)
Trb

= π · dTrb · ñTrb

60

√√√√√2 · cp,Air · T ref ·

1 −
(

pout
Trb

pin
Trb

) γAir−1
γAir


(4.36)

The model parameters bi from Equation (4.35) were again fitted to measurement data,
and R2 = 0.8961 was achieved for ηIs,Trb. Figure 11 compares the utilized stationary
measurement points with the associated model values, with a normalized isentropic
efficiency equivalent to Equation (4.21). In comparison to ηIs,Cmpr, the model for ηIs,Trb
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Figure 11: Comparison of measurement data (meas) and model calculations (calc) for
ηnorm

Is,Trb.

showed a far worse agreement with the measurement points. It was reasonable to assume
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that the poor measurement quality of T in
Trb and T out

Trb partly caused these deviations.
Especially at low loads with nCmpr ≥ 70 000 rpm, the temperature measurements were
not plausible. They returned either ηIs,Trb < 0 or ηIs,Trb > 1. Therefore, only data
points for nCmpr ≥ 70 000 rpm with 0 < ηIs,Trb < 1 were used for fitting. Nonetheless,
there was also a high chance that some of these acceptable data points were inaccurate,
which might have caused poor parameter fitting. The fitted turbine model was used
regardless due to the lack of further measurement data. The values of all the fitting
parameters are summarized in Table 3.

Table 3: Values of the fitting parameter for the turbine model.

Parameter Value Parameter Value Parameter Value

k1,1 0.2157 ccorr
2,VTG 0.0107 b1 −8.0234

k1,2 0.0638 kcorr
1,VTG −0.5737 b2 −6.1855

k2,1 0.0243 kcorr
2,VTG 3.3724 b3 12.578

k2,2 0.8929 kcorr
3,VTG −0.5676 b4 2.7773

ccorr
1,VTG 1.8276 b0 4.7115 b5 −5.4079

Air Compressor Dynamics Model The air compressor and turbine models as mentioned
above only covered the stationary operating points in dependence on nCmpr. The
dynamics were predicted with a moment balance equation that included the torque
τCmprMo supplied by the electric motor and the moment of inertia JCmpr of the combined
air compressor and turbine.

dωCmpr

dt = 1
JCmpr

· (τCmprMo − τCmpr + τTrb) (4.37)

The values of JCmpr and all the other physical parameters of the air compressor and
turbine model are summarized in Table 4.

Table 4: Values of the physical parameters in the air compressor and turbine model.

Parameter Value Parameter Value

JCmpr 3.98 · 10−5 kg m2 ρref
Air 1.1638 kg

m3

pref 1.00 bar RAir 288.19 J
kg K

Tref 298.15 K dCmpr 0.06 m

cp,Air 1.015 · 103 J
kg K dTrb 0.05 m

γAir 1.4

In most works on air supply control of an FCS (e.g., [95]), a correlation for τCmprMo for a
DC motor based on UCmpr has been used. For the PMSM in this work, this correlation
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was modified to include iq,Cmpr instead.

τCmprMo = Cel
Trq · iq,Cmpr − Cmech

Trq · ωCmpr (4.38)

The model parameters Cel
Trq = 1.15 ·10−2 N m

A and Cmech
Trq = 1.93 ·10−5 N m s were adjusted

with measurement data. The value of Cel
Trq approximately complied with the nominal

value from the compressor motor spec sheet, which is why the value of Cmech
Trq was also

accepted.

4.2.3 Stack Air Mass Flow Model

In most studies on air supply control, ṁin
Ca has been the mass flow between the cathode

inlet manifold and an intermediate cathode manifold (see, e.g., [97], [102]). This
intermediate manifold has mainly been used to predict the composition change in the
air mass flow and the respective partial pressures. Moreover, the correlation between
the mass flow and the pressure loss has primarily been approximated with a linear
term. In this work, measurements with a pressure value between the inlet and outlet
manifold were unavailable, and the composition change was neglected. Thus, ṁin

Ca was
the mass flow from the inlet manifold directly to the outlet manifold of the fuel cell
stack. Mass flow measurements showed that the simple tube flow approach used for the
air bearing (see Eq. (4.22)) did not fit accurately. Therefore, a slightly modified version
was introduced for the calculation of ṁin

Ca.

ṁin
Ca = C in

1,Ca ·
[
ρin

Ca ·
(
pin

Ca − pout
Ca

)]Cin
2,Ca , ρin

Ca = pin
Ca

RAir · T in
Ca

(4.39)

The parameter fitting returned the model parameters C in
1,Ca = 2.78 · 10−2 and C in

2,Ca =
0.715, which achieved R2 = 0.9984 with regard to ṁin

Ca. A comparison of the utilized
measurement values and the corresponding model values is displayed in Figure 12.
Throughout the operating range of the FCS, the measurements and the stack air mass
flow model showed a good agreement.

4.2.4 Humidifier Model

Similar to the work of Kunusch et al. [61], the pressure losses over both sides of the
membrane humidifier were considered in this work. The part of the humidifier before
the fuel cell stack inlet was considered the dry side, while the wet side contained the
oxygen-depleted air from the fuel cell stack outlet. On both sides, the gas flowed
through multiple channels comparable to the fuel cell stack. Thus, the same modeling
approach was applied to ṁdry

Hmdf and ṁwet
Hmdf.

ṁdry
Hmdf = Cdry

1,Hmdf ·
[
ρdry,in

Hmdf ·
(
pdry,in

Hmdf − pdry,out
Hmdf

)]Cdry
2,Hmdf , ρdry,in

Hmdf = pdry,in
Hmdf

RAir · T dry,in
Hmdf

(4.40)
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Figure 12: Comparison of measurement data and model calculations for ṁin
Ca.

ṁwet
Hmdf = Cwet

1,Hmdf ·
[
ρwet,in

Hmdf ·
(
pwet,in

Hmdf − pwet,out
Hmdf

)]Cwet
2,Hmdf , ρwet,in

Hmdf = pwet,in
Hmdf

RAir · Twet,in
Hmdf

(4.41)

In the cathode subsystem simulation model, the humidifier dry side inlet pressure pdry,in
Hmdf

was pout
Cmpr, while the humidifier dry side outlet pressure pdry,out

Hmdf was equivalent to pin
Ca.

On the wet side of the humidifier, the inlet pressure pwet,in
Hmdf was equated with pout

Ca , whilst
the outlet pressure pwet,out

Hmdf was replaced with pin
Trb.

For ṁdry
Hmdf, the model parameters Cdry

1,Hmdf = 0.1595 and Cdry
2,Hmdf = 0.7094 were fitted

to measurement data with R2 = 0.9756. A graphical comparison of the measurement
values and the calculated model values is presented in Figure 13. The model predictions
for ṁdry

Hmdf were not as precise as for ṁin
Ca. One possible explanation was based on the

significantly lower pressure loss in the humidifier compared to the fuel cell stack. The
applied pressure sensors had a measurement tolerance. For the small pressure losses in
the humidifier, this tolerance had a higher impact on the overall measurement accuracy
than for components with high pressure losses. As a result, the fitting of the model
parameters was less accurate.
The model parameter fitting for ṁwet

Hmdf resulted in a comparable prediction accuracy of
R2 = 0.9690 with Cwet

1,Hmdf = 0.0643 and Cwet
1,Hmdf = 0.7693. The utilized measurement

values and the respective model values are presented in Figure 14.
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Figure 13: Comparison of measurement data and model calculations for ṁdry
Hmdf.
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Figure 14: Comparison of measurement data and model calculations for ṁwet
Hmdf.

4.2.5 Throttle Valve Models

The cathode bypass and humidifier bypass were the two throttle valves considered in
the cathode subsystem simulation model. Analogous to Pukrushpan et al. [97], the
correlation between the throttle valve mass flow ṁVlv and the corresponding pressure
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ratio pout

pin from [46] was applied in this work.

ṁVlv = Cd · A
eff
Vlv · pin

√
R · T in

· fNoz

(
pout

pin

)
(4.42)

The nozzle factor fNoz represented the dependency of ṁVlv on pout

pin . For pout

pin below a
critical threshold pcrit

rat , fNoz was limited by the occurrence of choked flow.

fNoz

(
pout

pin

)
=
√

2γ
γ − 1 ·


√(

pout

pin

) 2
γ −

(
pout

pin

) γ+1
γ , for pout

pin > pcrit
rat√

(pcrit
rat )

2
γ − (pcrit

rat )
γ+1

γ , for pout

pin ≤ pcrit
rat

(4.43)

The discharge coefficient Cd in Equation (4.42) was fitted to each throttle valve individ-
ually. On the other hand, the effective opening area Aeff,Vlv of each valve was calculated
from the valve diameter dVlv and the opening angle of the valve φVlv, which were known
values.

Aeff
Vlv = π

4 · d2
Vlv · [1 − cos (φVlv)] (4.44)

Equation (4.44) was a simplified version of the correlation used in [46] to reduce the
computational cost of the cathode subsystem simulation model. In this work, the
additional assumption was an infinitesimally thin throttle plate that only reduced the
opening area for φVlv < 90◦.

Humidifier Bypass Path In the humidifier bypass path, the only significant pressure
loss was caused by the humidifier bypass valve. Unfortunately, the only available
measurement data was for throttle valves with dVlv = 35 mm and dVlv = 48 mm, while
the humidifier bypass valve had a diameter of dHByp = 55 mm. Thus, Cd,HByp = 1.0213
was fitted to the measurement data of the most alike throttle valve with dVlv = 48 mm.
This fitting achieved R2 = 0.9931 for ṁVlv and is shown in Figure 15. The most
significant deviations between measured and calculated values of ṁVlv in Figure 15
occurred for pout

pin close to one. These data points were linked to values of φVlv at
approximately 90°. At these angles, Aeff

Vlv changed rapidly with φVlv due to the cosine
function in Equation (4.44). Thus, a small measurement error in posByp led to a
significant deviation in the calculated value of Aeff

Vlv. This deviation then resulted in a
significant deviation in ṁVlv. Additionally, the calculation of Aeff

Vlv with Equation (4.44)
was based on the assumption of an infinitesimally thin throttle plate. In reality, the
measured throttle valve had a plate with a width of a few millimeters. Therefore, Aeff

Vlv
for the fully opened valve was slightly smaller in reality compared to the valve model.
In spite of these deviations, R2 = 0.9931 was considered sufficient for a control-oriented
simulation model.
On the ECU, the position of the humidifier bypass throttle valve posHByp was given
instead of φHByp. The correlation between posHByp and φHByp was taken from the
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Figure 15: Comparison of measurement data and model calculations for ṁVlv with dVlv =
48 mm as the replacement measurement for ṁHByp.

throttle valve data sheet that existed for dHByp = 55 mm.

φHByp = posHByp · 80◦ (4.45)

According to the data sheet, the humidifier bypass valve was considered to be wide
open with posHByp = 100 % for φHByp = 80◦.

Cathode Bypass Path In the cathode bypass path, the pressure loss resulted from a
Venturi mass flow sensor and the subsequent bypass throttle valve. This sensor had
a significant pressure loss that reduced the inlet pressure of the bypass valve pin

BypVlv
compared to the inlet pressure of the cathode bypass path pin

Byp. Thus, a correction
term ∆pcorr

Byp = pin
Byp − pin

BypVlv was included in the valve model that calculated the mass
flow ṁByp through the cathode bypass path.

∆pcorr
Byp =

(
ccorr

1,Byp · ∆p2
Byp + ccorr

2,Byp · ∆pByp + ccorr
3,Byp

)
·

ccorr
4,Byp ·

(
Aeff

Byp

AByp

)4

+ ccorr
5,Byp ·

(
Aeff

Byp

AByp

)3

+ ccorr
6,Byp ·

(
Aeff

Byp

AByp

)2

+ ccorr
7,Byp ·

(
Aeff

Byp

AByp

)
+ ccorr

8,Byp

] (4.46)

ṁByp =Cd,Byp ·
Aeff

Byp · pin
BypVlv√

RAir · T in
Byp

· fNoz

(
pout

Byp

pin
BypVlv

)
(4.47)
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Equation (4.46) was designed to depend solely on state variables and constants of the
cathode subsystem simulation model given during simulations. Therefore, the total
pressure loss ∆pByp = pin

Byp − pout
Byp over the cathode bypass path was chosen as one of

the variables. This pressure loss was calculated during simulations from the difference
between pout

Cmpr and pin
Trb. Additionally, the ratio Aeff

Byp
AByp

of the effective and total opening
area of the bypass valve was simplified to the term 1 − cos (φByp). For the cathode
bypass valve, the angle φByp of the throttle plate was again the result of posByp.

φByp = posByp · 90◦ (4.48)

According to the data sheet, the cathode bypass valve was considered wide open for
φByp = 90◦.
The first model parameter to be fitted was the discharge coefficient Cd,Byp of the
cathode bypass valve. For this throttle valve with dByp = 35 mm, measurement data
was available. The parameter fitting returned Cd,Byp = 0.9646 and achieved R2 = 0.9800
with regard to ṁByp. This fitting is depicted in Figure 16, which contains the utilized
measurement data and the corresponding model values. Similar to ṁVlv in Figure 15,
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Figure 16: Comparison of measurement data and model calculations for ṁByp.

the most significant deviation for ṁByp in Figure 16 arose for pressure ratios close to
one. Therefore, these deviations most likely resulted from measurement errors of posByp

and the assumption of an infinitesimally thin throttle plate.
The next step towards fitting the parameters ccorr

i,Byp for ∆pcorr
Byp was to model the Venturi

mass flow sensor. The correlation between the mass flow ṁVMf and the pressure loss
∆pVMf was described by tube flow with a constant friction coefficient. This correlation



4.2 Model of the Cathode Subsystem 47

has already been introduced in Equation (4.22).

ṁVMf = CVMf ·
√
ρin

VMf · ∆pVMf, ρin
VMf = pin

VMf
RAir · T in

VMf
(4.49)

The fitting of CVMf = 3.09 · 10−4 m2 achieved R2 = 0.9850 with regard to ṁVMf. The
utilized measurement data and the resulting model values are displayed in Figure 17.
For high pressure losses, the model slightly overestimated ṁVMf. A possible explanation
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Figure 17: Comparison of measurement data and model calculations for ṁVMf.

was based on the shape of the Venturi mass flow sensor, which was comparable to
a nozzle. Hence, it was reasonable to assume that the deviations were caused by a
saturation effect similar to the throttle valves.
Eventually, the model for ∆pcorr

Byp was parameterized based on the bypass valve model and
the Venturi mass flow sensor model. For a constant set of pin

Byp, T in
Byp, posByp, and pout

Byp,
the matching values for pin

BypVlv and ṁByp were determined by enforcing ṁByp = ṁVMf.
This procedure was repeated for variations in pin

Byp, T in
Byp and posByp while retaining

pout
Byp = 1 bar. The resulting data points was then used for the parameter fitting of
ccorr

i,Byp. This fitting returned the values that are summarized in Table 5. The parameter
fitting of ccorr

i,Byp further achieved R2 = 0.9966 with regard to ṁByp. The utilized data
set from ṁByp = ṁVMf and the corresponding model values are shown in Figure 18.
Overall, Figure 18 confirms that the model for ∆pcorr

Byp was feasible as a substitution for
ṁByp = ṁVMf in the cathode subsystem model.
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Table 5: Values of the fitting parameter for the bypass pressure correction model.

Parameter Value Parameter Value Parameter Value

ccorr
1,Byp −50.00 ccorr

4,Byp 191.3 ccorr
7,Byp 261.7

ccorr
2,Byp 716.1 ccorr

5,Byp −360.9 ccorr
8,Byp −4.546

ccorr
3,Byp 0.0405 ccorr

6,Byp 45.71
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Figure 18: Comparison of ṁByp from the data set with ṁByp = ṁVMf and from the model
with ∆pcorr

Byp calculated with Equation (4.46).

4.2.6 Exhaust Model

In the cathode subsystem simulation model, the final correlation between mass flow and
pressure loss was for the air exhaust. Once again, tube flow with a constant friction
coefficient was assumed to calculate the mass flow ṁExh through the exhaust.

ṁExh = CExh ·
√
ρin

Exh · (pin
Exh − pout

Exh), ρin
Exh = pin

Exh
RAir · T in

Exh
(4.50)

The parameter fitting returned the model parameter CExh = 1.5376 · 10−3 m2 and
achieved R2 = 0.9986 for ṁExh. A summary of the utilized data points and the
corresponding model values is displayed in Figure 19. As shown in Figure 19, the model
almost perfectly matched the real correlation between ṁExh and pin

Exh − pout
Exh throughout

the full operating range.
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Figure 19: Comparison of measurement data and model calculations for ṁExh.

4.3 Model of the Fuel Cell System Net Power

This work was mainly dedicated to the air supply control and the cathode subsystem of
an FCS. Nonetheless, a small simulation study was additionally conducted on the control
of PFCS, which was the difference between PStck and PCmpr. All the other auxiliary
electric power consumers, like the high-voltage cooling pump, required significantly less
than 0.5 kW, which is why these components were neglected throughout this work. Thus,
two models for PStck and PCmpr had to be implemented with the cathode subsystem
simulation model to enable closed-loop simulations with a power controller.

4.3.1 Fuel Cell Stack Power Model

The model for PFCS was based on a polarization curve, the correlation between the fuel
cell current ICell and the fuel cell voltage UCell.

UCell = f (ICell, pO2 , pH2 ,TCell,ψMem) (4.51)

The fitted polarization curve model had been developed at the fuel cell department of
the BMW Group based on stack test stand measurements before this study. The other
relevant variables in Equation (4.51) were the partial pressure of oxygen on the cathode
side of the fuel cell pO2 , the partial pressure of hydrogen on the anode side of the fuel
cell pH2 , the fuel cell temperature TCell and the humidity of the fuel cell membrane ψMem.
In this work, the power controller only regulated the oxygen supply and the electric
current. The time constant of the anode subsystem was significantly smaller than the
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time constant of the cathode subsystem, which is why pH2 was assumed to be perfectly
controlled. Moreover, the dynamics of TCell and ψMem were considerably slower than
the air supply dynamics. Thus, these two variables were controlled separately. As a
result, average values were assumed for the remaining variables pH2 , TCell, and ψMem.
The impact of this simplification on the polarization curve model accuracy is shown in
Figure 20. The absolute values of ICell and UCell were confidential. Thus, normalized
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Figure 20: Comparison of the original model for the polarization curve and the simplified
model with constant pH2 , TCell, and ψMem.

values Inorm
Cell and Unorm

Cell were used.

Inorm
Cell = ICell

ICell,Max
(4.52)

Unorm
Cell = UCell − UCell,Min

UCell,Max − UCell,Min
(4.53)

In Figure 20, the deviations between the original and simplified models resulted from
the assumed average pH2 . For small ICell, pH2 was lower than the average value, which
led to the overestimation of UCell. On the contrary, for high ICell, pH2 was higher than
the average value, leading to the underestimation of UCell. Nonetheless, the dependency
on ICell was correctly displayed, so the simplifications were accepted.
In the fuel cell stack of the FCS, the fuel cells were arranged in a series connection. As
a result, ICell was equivalent to IStck, while the fuel cell stack voltage UStck was the sum
of the individual cell voltages.

UStck = nCell · UCell (4.54)
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The lumped-parameter modeling approach prohibited spatially distributed variables.
Thus, the calculated UCell was considered the average value within the fuel cell stack
and consequently multiplied by the number of fuel cells in the fuel cell stack nCell to
obtain UStck.

4.3.2 Air Compressor Motor Power Consumption Model

The calculation of PFCS was based on the DC power consumption PCmpr of the compressor
inverter. This inverter further provided the necessary AC power PCmprMo to drive the
PMSM of the air compressor. In this work, the power losses in the inverter were
negligible, thus leading to PCmpr = PCmprMo. The PMSM provided the electric torque
τ el

CmprMo required to compress the inlet air and maintain ωCmpr.

PCmprMo = τ el
CmprMo · ωCmpr (4.55)

τ el
CmprMo = Cel

Trq · iq,Cmpr (4.56)

As mentioned in Section 4.2.2, the model parameter Cel
Trq was approximated from

measurement data. This approximation included the efficiency between τ el
CmprMo and

the provided mechanical torque on the compressor rotor. Thus, this efficiency was not
explicitly used in the description of the available compressor motor torque τCmprMo in
Equation (4.38).

4.4 Validation of the Fuel Cell System Model

The first step of the simulation model development was to determine the individual
model equations and the values of the fitting parameters. In the next step, the individual
models were merged with the mass balances of Equation (4.1) to form the dynamic
FCS simulation model. Afterward, the simulation model was validated at stationary
operating points by comparing the model outputs to measurements from the FCS test
stand. This comparison is summarized in Section 4.4.1. Lastly, measurements from the
FCEV were utilized to ascertain the correctness of the predicted transient behavior of
the FCS using the nonlinear simulation model. This final validation step is displayed in
Section 4.4.2.
The simulation model was implemented in MATLAB Simulink (Release R2018b).
The system of ODEs was solved using the variable-step solver ode15s with a relative
tolerance ϵ = 1 · 10−4. The boundary conditions were the constant ambient pressure
pAmb = 1 bar and the constant ambient temperature TAmb = 25 ◦C.

4.4.1 Stationary Model Validation with an FCS Test Stand Measurement

The simulation accuracy for stationary operating points of the cathode subsystem was
validated with the parameter fitting measurement from [27]. In this measurement, the
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entire operating ranges of ispq,Cmpr and possp
Byp were evaluated. The model inputs for this

measurement are displayed in Figure 21. All step changes were executed with manual
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Figure 21: Inputs into the FCS simulation model for the FCS test stand measurement to
validate the stationary operating points of the cathode subsystem.

overrides for ispq,Cmpr and possp
Byp at a stationary PFCS = 10 kW. This constant net power

setpoint was used to neglect the influence of the power controller on the FCS response.
What is more, possp

HByp = 100 % was kept constant throughout the validation scenario.
The changes in Isp

Stck and possp
VTG in Figure 21b) were the result of the FCS net power

and the cathode pressure controllers, which were still active during the measurement.
Isp

Stck was also normed according to Equation (4.52) to fit the polarization curve in
Figure 20.
The pressures and mass flows in the cathode subsystem significantly depended on nCmpr.
Therefore, an accurate prediction of the stationary values of nCmpr was mandatory for
a precise cathode subsystem simulation model. The calculated model values and the
corresponding measurement data points for nCmpr are compared in Figure 22. The main
increases and decreases in nCmpr were caused by iq,Cmpr. Nonetheless, opening the bypass
valve also led to an increase in nCmpr due to a reduction of pout

Cmpr. This reduction resulted
in a decrease of τCmpr, which increased the stationary value of nCmpr as a consequence of
the compressor moment balance (Eq. (4.37)). Qualitatively, these effects were displayed
correctly by the simulation model. Quantitatively, the model calculated slightly lower
values of nCmpr throughout the operating range. These lower values included the
stationary value of nCmpr for iq,Cmpr = 6 A. In the simulation model, this difference
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Figure 22: Comparison of nCmpr for the FCS test stand measurement and the correspond-
ing simulation model calculations.

caused rather sharp transitions to the lower operating limit nCmpr = 30 000 rpm of the
air compressor. The stationary model value of nCmpr, according to Equation (4.37),
was lower without the operating range limitations, which implies inaccurate model
parameters Cel

Trq and Cmech
Trq . Nonetheless, measurements to improve the corresponding

parameter fitting were unavailable throughout this study.
The lower values of nCmpr further resulted in the calculation of smaller values for PCmpr

with the simulation model. The comparison of the model calculations to the FCS
measurement is shown in Figure 23. Furthermore, PCmpr depended on Cel

Trq and iq,Cmpr.
While iq,Cmpr was known during stationary operation from the model input ispq,Cmpr, Cel

Trq
was only approximated. Thus, this model parameter also brought about some deviations
regarding PCmpr. Additionally, the efficiency of the inverter was assumed to be 100 %.
The increasing deviation between the measurement and the model values for higher
PCmpr suggests smaller inverter efficiencies. Unfortunately, the necessary measurements
to prove these statements were unavailable for this work.
Despite the significantly smaller values of nCmpr in the simulation model, ṁAirFil was
well approximated. The associated comparison between the simulation model and the
FCS test stand measurement in Figure 24 only shows slightly higher values. These
deviations were partly caused by the higher values of pin

Cmpr in the simulation model
due to the neglected pressure loss through the air filter. What is more, calculating the
overall pressure loss in the cathode subsystem neglected components like the intercooler
or the CWS. This neglection led to smaller values of pout

Cmpr in the simulation model.
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Figure 23: Comparison of PCmpr for the FCS test stand measurement and the correspond-
ing simulation model calculations.

Figure 24: Comparison of ṁAirFil for the FCS test stand measurement and the correspond-
ing simulation model calculations.



4.4 Validation of the Fuel Cell System Model 55

Altogether, the resulting smaller values of pout
Cmpr

pin
Cmpr

led to an increase in ṁCmpr despite
smaller values of nCmpr. Nonetheless, the prediction was generally very accurate, with
the relative error below 10 % for most of the operating range. Figure 24 also shows high
levels of sensor noise for ṁAirFil. Artificial white noise was added to the model output
to replicate this characteristic of the FCS.
For most of the operating range, ṁByp was also predicted accurately by the simulation
model, as shown in Figure 25. Apart from the deviations in the stationary operating

Figure 25: Comparison of ṁByp for the FCS test stand measurement and the corresponding
simulation model calculations.

points, the enlarged section in Figure 25 reveals a sensor delay for ṁByp after the
opening of the bypass valve. It took, on average, 40 ms to see a significant increase in
ṁByp after the actual opening of the throttle valve. Furthermore, slight sensor noise
was also visible in Figure 25. Considering the time delay and the sensor noise in the
simulation model led to an improved model accuracy with R2 = 0.9789. Figure 25
also uncovers a bypass leakage for high compressor loads. The bypass leakage for
possp

Byp = 0 % was caused by the valve controller. The force on the throttle plate was
increased for higher pout

Cmpr. This increase caused a higher deviation of posByp from
its setpoint that the valve controller did not counteract due to a valve motor current
limitation. However, this effect was neglected in the simulation model of this work
because the controller development in the simulation focused on the optimal dynamic
behavior and the rejection of sensor noise. The effect of the bypass leakage was only
considered during experiments on the FCS test stand and in the FCEV.
The accuracy of the simulation model concerning pout

Cmpr was likewise evaluated. The
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comparison of the model calculations and the FCS test stand measurement is presented
in Figure 26. Firstly, the higher values of pout

Cmpr in the model for small compressor loads

Figure 26: Comparison of pout
Cmpr for the FCS test stand measurement and the correspond-

ing simulation model calculations.

was due to the assumption of a constant ambient pressure of pAmb = 1 bar. During the
measurement, an additional sensor returned smaller values of around pAmb = 0.955 bar.
Secondly, the pressure loss through the air filter was neglected in the model, which is
why pin

Cmpr was smaller in the measurement than the simulation model. Consequently,
a similar pressure ratio over the compressor led to smaller values of pout

Cmpr in the
measurement. For higher compressor loads, this effect was negated by the smaller values
of nCmpr in the simulation model. The result was a similar or smaller value for pout

Cmpr in
the simulation model.
The values of pout

Cmpr further impacted pin
Ca. The associated comparison between the

FCS test stand measurement and the simulation is shown in Figure 27. Unexpectedly,
the model values of pin

Ca were considerably smaller than the measurement values. This
observation was in contrast to the accurate determination of the air mass flows in the
simulation model while neglecting the pressure losses through the intercooler, the CWS,
and the cathode inlet valve. Therefore, the differences between pout

Cmpr and pin
Ca should

have been smaller in the simulation model, which should have led to higher values of pin
Ca

in comparison to the measurement. The most likely explanation for these unexpected
findings was an error in the sensor for pin

Ca. This explanation was further supported by
the observation that the pressure increased from pout

Cmpr to pin
Ca in the FCS test stand

measurement for most of the stationary operating points. Consequently, the actual
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Figure 27: Comparison of pin
Ca for the FCS test stand measurement and the corresponding

simulation model calculations.

differences between the measurement values and the simulation model results for pin
Ca

were most likely smaller than displayed in Figure 27.
The findings for pin

Ca additionally impacted the evaluation of pout
Ca . Figure 28 demonstrates

that the calculated values of the simulation model were even lower compared to the
measurement. The higher differences between measurement and model values for pout

Ca
resulted from a higher pressure loss in the fuel cell stack for the simulation model.
This higher pressure loss was in contrast to the accurate fitting of the stack air mass
flow model with R2 = 0.9984 in Section 4.2.3. The main differences between the
measurement used for the parameter fitting and the measurement of Figure 28 were
the higher values of IStck in the fitting measurement. Therefore, an increased pressure
loss in the fuel cell stack with increasing electrochemical reactions was assumed. It
is reasonable to assume that this correlation was the result of little droplets of liquid
water forming in the cathode gas channels for high water production that increased the
flow resistance of these gas channels. Thus, the pressure loss in the measurement of
Figure 28 was smaller due to the absence of excess water. For the regular operation of
the fuel cell system with an active power controller throughout the entire operating
range, the simulation model was closer to the actual system concerning the pressure
loss through the fuel cell stack. The suspected impact of liquid water was therefore
included in the fitted model parameters C in

1,Ca and C in
2,Ca.
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Figure 28: Comparison of pout
Ca for the FCS test stand measurement and the corresponding

simulation model calculations.

4.4.2 Dynamic Model Validation with an FCEV Measurement

After validating the stationary operating points of the cathode subsystem simulation
model, the next step was to compare the dynamic transitions of the state variables,
electric powers, and mass flows of the simulation model to the behavior of the actual
FCS. A measurement from the FCEV was best suited for this task due to the variety
of dynamic transitions. Additionally, this measurement was used to evaluate the
transferability of findings from the test stand to the target system in the FCEV.
The corresponding model inputs are summarized in Figure 29. The maximum value
ispq,Cmpr = 140 A in Figure 29 was the nominal upper limit of the compressor inverter.
However, the actual upper limit of the operating range of the compressor inverter was
lower, which is why only imeas

q,Cmpr = 127 A was reached in the measurement. By contrast,
the model went as high as iq,Cmpr = 140 A, because no limits were implemented in the
current controller model of Section 4.2.1.
Despite this significant difference, the impact on nCmpr was negligible for both the FCEV
measurement and the simulation model. Similar to the test stand measurement results,
the comparison of nCmpr in Figure 30 reveals slightly smaller values for the simulation
model. The dynamics of nCmpr were well predicted by the simulation model. The only
significant deviation occurred during the negative load step of ispq,Cmpr at t = 24 s. This
deviation was mainly caused by a lower stationary point of the model compared to the
actual FCS for the same input values.
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Figure 29: Inputs into the FCS simulation model for the FCEV measurement to validate
the dynamic transitions of the electric powers and the cathode subsystem.
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Figure 30: Comparison of nCmpr for the FCEV measurement and the corresponding simu-
lation model calculations.

However, the impact of this deviation on PCmpr was negligible. The corresponding
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comparison between measurement and model calculations is displayed in Figure 31.
Unlike for nCmpr, the overshoot iq,Cmpr = 140 A was visible in the peak of PCmpr for the
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Figure 31: Comparison of PCmpr for the FCEV measurement and the corresponding simu-
lation model calculations.

simulation model at t = 11.5 s in Figure 31. In general, the dynamics of PCmpr resulted
from the faster dynamics of i,Cmpr and the slower dynamics of nCmpr. This combination
of time constants was correctly predicted by the simulation model, which was a key
prerequisite for the model-based development of an FCS net power controller.
For the development of the air mass flow controller, the correct determination of the
dynamics of ṁAirFil with the simulation model was of great significance. This goal
was achieved with the model presented in Section 4.2, as shown by the comparison of
simulation and measurement in Figure 32. The deviations in the dynamic transitions
aligned with those of nCmpr. Furthermore, the model value of ṁAirFil in Figure 32
included artificial white noise representing the sensor noise in the actual FCS. The
comparison to the measurement values shows a good agreement for the noise levels
throughout the operating range. Therefore, the noise rejection capabilities of the
controllers were assessable during simulations. A difference between Figure 24 for the
test stand measurement and Figure 32 for the FCEV measurement was the deviation
for stationary operating points. While the model predicted higher values of ṁAirFil for
the FCS test stand measurement, the model values in Figure 32 were lower compared
to the measurement. This discrepancy was caused by the significantly lower ambient
temperature TAmb = 5 ◦C in the FCEV measurement in contrast to TAmb = 23 ◦C for
the FCS test stand. As a result, the air density at the compressor inlet was significantly
lower for the model, which assumed TAmb = 25 ◦C.
The difference in TAmb further affected the model accuracy for pout

Cmpr. The comparison
of measurement and model prediction for pout

Cmpr is shown in Figure 33. At first, it
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Figure 32: Comparison of ṁAirFil for the FCEV measurement and the corresponding simu-
lation model calculations.
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Figure 33: Comparison of pout
Cmpr for the FCEV measurement and the corresponding simu-

lation model calculations.

is noteworthy that the dynamics of pout
Cmpr were well represented qualitatively by the

simulation model. Nevertheless, the differences between measurement and model values
were more significant compared to the FCS test stand measurement in Figure 26. The
higher level of pout

Cmpr in the FCEV measurement was caused by a low TAmb = 5 ◦C.
Firstly, the resulting higher air density decreased the pressure loss through the air
filter. Consequently, pin

Cmpr was higher for the same values of ṁAirFil. Secondly, colder
air temperatures at the compressor inlet moved the operating trajectory further to
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the left in the compressor map. Low inlet temperatures increased ṁCmpr for the same
˙̃mCmpr. As a result, the pressure loss through the systems increased due to the higher

mass flow. This higher pressure loss increased pout
Cmpr, which in turn decreased ṁCmpr.

The new stationary operating point nonetheless evened out further on the left in the
compressor map. Hence, higher pressure ratios occurred over the compressor. This
effect was replicated with the model, as shown in Figure 34.
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Figure 34: Compressor inlet temperature dependency of pout
Cmpr in the simulation model.

The simultaneous occurrence of differences in pout
Cmpr and ṁByp between the simulation

model and the FCEV measurement indicated a correlation between the two variables.
The corresponding comparison for ṁByp is depicted in Figure 35. The simulation results
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ṁ

B
yp

[g
/s

]

measured
calculated

Figure 35: Comparison of ṁByp for the FCEV measurement and the corresponding simula-
tion model calculations.

in Figure 35 also included the modeled sensor noise of ṁByp that was significantly lower
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compared to ṁAirFil. What is more, the dynamics of ṁByp were accurately predicted by
the simulation model.
Additionally, the dynamics of pin

Ca were very well predicted by the simulation model. The
associated comparison of the measurement and the model values is shown in Figure 36.
The measurement and simulation differences were similar to pout

Cmpr in Figure 33. Thus,
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Figure 36: Comparison of pin
Ca for the FCEV measurement and the corresponding simula-

tion model calculations.

the simulation model properly predicted the pressure loss between pout
Cmpr and pin

Ca.
Moreover, the measured values of pout

Cmpr were generally higher than pin
Ca. These higher

values imply that the FCEV measurement did not have the same error as the FCS test
stand measurement.
For the development of an FCS power controller, one of the critical variables is UStck.
The comparison between the measurement values for the FCEV measurement and the
model values is displayed in Figure 37. The simulation model invariably calculated
higher values, even though the simplified polarization curve was best fitted to an
intermediate operating range. This observation strongly suggests that some of the
deviations were caused by insufficiently humidified fuel cells, as the polarization curve
model assumed perfect operating conditions with regard to humidity, temperature, and
hydrogen partial pressure. However, the dynamics of UStck were accurately calculated
since they mainly depended on the model input Isp

Stck. The value of Isp
Stck was directly

assigned to IStck with a time delay of td,IStck = 50 ms.
The dynamics of Isp

Stck also substantially impacted the dynamics of PStck. Consequently,
the dynamics of PStck were adequately predicted by the simulation model, as shown
in Figure 38. The absolute value of PStck likewise depended on IStck, which is why the
differences between the measurement and the model values were only significant for
high values of IStck.
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Figure 37: Comparison of Unorm
Stck for the FCEV measurement and the corresponding simu-

lation model calculations.

0 5 10 15 20 25
Time t [s]

0

20

40

60

80

100

120

140

E
le

ct
ric

Po
w

er
P

S
tc

k
[k

W
]

measured
calculated

Figure 38: Comparison of PStck for the FCEV measurement and the corresponding simula-
tion model calculations.

These differences further influenced the model accuracy with regard to PFCS, whereas
the simulation model precisely represented the dynamics of PFCS. The comprehensive
comparison between the FCEV measurement and the simulation model values of
PFCS is depicted in Figure 39. Overall, the FCS simulation model in this work was
capable of accurately predicting the dynamics behavior of the air mass flows and the
primary power sources and sinks, while the stationary values were partly deviating
from the measurement. Therefore, the closed-loop dynamic behavior of all the proposed
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Figure 39: Comparison of PFCS for the FCEV measurement and the corresponding simula-
tion model calculations.

controllers in this work could be evaluated in the simulation. The capability to achieve
zero control deviation, however, had to be evaluated separately on the FCS test stand
and in the FCEV.





5 Air Mass Flow Control with Explicit
Linear Model Predictive Control

The model equations in Chapter 4 highlighted the non-linearity of the cathode subsystem.
However, the solution of an NLP problem with NMPC is significantly more complex
than the solution of a QP problem with linear MPC. Thus, the initial air mass flow
controller in this work was based on explicit linear MPC. This control method already
improved the closed-loop behavior of the cathode subsystem compared to the PI
controllers. Additionally, the shortcomings of this method were used as a motivation
for the subsequent development of an explicit NMPC in Chapter 6.

The control variables of the explicit linear MPC were u =
[
ispq,Cmpr, pos

sp
Byp

]T
, while the

controlled variables were y = [ṁin
Ca, ṁByp]T . A recently published work [27] presented

initial results regarding this controller. Supplementary findings are displayed in this
chapter. In Section 5.1, the linear prediction model is briefly introduced. Subsequently,
the main equations regarding the state and perturbation observer and the cost function
are presented in Sections 5.2 and 5.3, respectively. These equations are followed by
simulation results in Section 5.4, a step in the controller development process that was
not presented in [27]. Lastly, additional experimental results are displayed in Section 5.5
for the FCS test stand.
In [27], the first application of an explicit linear MPC to the air supply control of an
FCEV was reported. However, the utilization of explicit linear MPC for FCS control
has been reported before. One of the first studies employing explicit linear MPC in an
FCS was conducted by Puig et al. [92]. The authors used model linearization at a fixed
operating point to control λO2 . This approach was validated with simulations. The
operating range was small with IStck ∈ [190 A, 270 A] and included the linearization
point with IStck,0 = 191 A. Similarly, Arce et al. [6] applied a CARIMA model to
regulate λO2 in a simulation. The model parameters were also obtained by linearizing a
nonlinear model around a fixed operating point with IStck,0 = 15 A. Additionally, the
validation scenario only comprised a small operating range with IStck ∈ [13 A, 35 A]. In
a later work, Arce et al. [7] further experimentally validated an explicit controller for
TStck. The explicit linear MPC was based on a linear state-space model and operated
at a sample time of ∆t = 400 ms. The validated operating range was rather small
with IStck ∈ [13 A, 35 A]. More recently, Liu et al. [70] utilized explicit linear MPC to
control a hybrid system that consisted of a fuel cell and a battery. The control targets
were the total power output of the hybrid system and the SOC of the battery. The
validation was performed in a simulation, in which a driving cycle was used to test
the full available operating range. Nonetheless, these reported applications of explicit



68 5 Air Mass Flow Control with Explicit Linear MPC

MPCs for FCS control have rarely been experimentally validated, especially concerning
the large operating range of a modern automotive FCS. This research gap is partly
addressed in the last section of this chapter, supplementing the results from [27].

5.1 Linear Prediction Model

A linear prediction model only coarsely approximates the dynamic behavior of a
nonlinear system like the cathode subsystem of this work. Additionally, the nonlinear
model of Chapter 4 was only an approximation of the actual system. Therefore, the
linear prediction model was directly parameterized with measurements [27] instead of
linearizing the available nonlinear model. Hence, an additional approximation error was
avoided.

5.1.1 Model Equations

The dynamics of y were predicted with four first-order low-pass filters.

ẋ (t) =


− 1

T11
0 0 0

0 − 1
T12

0 0
0 0 − 1

T21
0

0 0 0 − 1
T22

x (t) +



k11
T11

0
0 k12

T12
k21
T21

0
0 k22

T22


u1 (t− 50 ms)
u2 (t− 20 ms)

 (5.1)

y (t) =
1 1 −1 −1
0 0 1 1

x (t) (5.2)

Each of the low-pass filters in Equation (5.1) represented the impact of one control
variable on one controlled variable. A similar model was applied in [110].

5.1.2 Determination of Model Parameters

The initial parameterization of the linear prediction model was determined from a set
of measured step changes detailed in [27]. Afterward, the average values of T11 and
T21 were replaced with the smallest values from the highest step change of u1. This
parameter modification removed initial oscillations in the closed-loop behavior of y

during step changes of ysp
1 . Furthermore, the cross-coupling between u1 and y2 was

neglected in the prediction model to avoid oscillations after simultaneous step changes
of ysp

1 and ysp
2 . Undershoots of y2 were eliminated by replacing the average value of k22

with its maximum value from the measurements. Eventually, the continuous model was
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discretized with a fixed step size ∆t = 10 ms.

x (k + 1) =


0.9780 0 0 0

0 0.9311 0 0
0 0 0.9759 0
0 0 0 0.8187


︸ ︷︷ ︸

Ad

x (k)

+


0.0389 0

0 0.0165
0.0181 0

0 0.2338


︸ ︷︷ ︸

Bd

u1 (k − 5)
u2 (k − 2)


(5.3)

y (k) =
1 1 0 −1
0 0 0 1

x (k) (5.4)

5.1.3 Validation of Linear Prediction Model

The closed-loop behavior of an MPC depends notably on the accuracy of its prediction
model. Thus, the prediction accuracy was evaluated by comparing the predicted values
of y with those from an FCS test stand measurement. The results for ṁin

Ca are shown
in Figure 40. The prediction accuracy of ṁin

Ca was acceptable for operating points with
possp

Byp = 0 %. These findings indicate that the individual correlation between ṁin
Ca and

ispq,Cmpr was approximately linear. However, the opening of the bypass valve led to an
error between measurement and predicted value upwards of 100 %. This substantial
error resulted from a very inaccurate prediction of ṁByp, which is shown in Figure 41.
The considerable deviation between the linear prediction model and the FCS test stand
measurement arose from two model parameter modifications in [27]. The cross-coupling
between ispq,Cmpr and ṁByp was neglected, and the maximum value of k22 was chosen.
The only advantage of the neglected cross-coupling was that it ensured the prediction
of ṁByp = 0 g

s for possp
Byp = 0 %. The parameterization of Equations (5.3) and (5.4) was

kept, nevertheless, because it resulted in the best closed-loop behavior in [27].

5.2 State and Perturbation Observer

The significant deviations between the linear prediction model and the FCS test
stand emphasized the need for perturbation compensation in the closed control loop.
This compensation was achieved with the state and perturbation observer from [27]
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Figure 40: Comparison of ṁin
Ca for the FCS test stand measurement and the corresponding

linear prediction model calculations.

Figure 41: Comparison of ṁByp for the FCS test stand measurement and the corresponding
linear prediction model calculations.
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implemented as a Luenberger observer.x̂ (k + 1)
d̂ (k + 1)

 =
Ad 0

0 I

x̂ (k)
d̂ (k)

+
Bd

0

u1 (k − 5)
u2 (k − 2)


+ Ld

ymeas
FCS (k) −

 ŷ1,FCS (k)
ŷ2,FCS (k − 4)


(5.5)

ŷFCS (k) =
1 1 0 0 1 0
0 0 0 1 0 1

 x̂ (k)
d̂ (k)

 (5.6)

In this work and in [27], ṁin
Ca was not measured directly by a sensor. As a result,

the measured outputs yFCS = [ṁAirFil, ṁByp]T differed from the controlled variables y

of the linear prediction model. The perturbation compensation was tuned with the
observer gain matrix Ld in Equation (5.5). In the closed control loop, the observed
perturbations d̂ were used to determine modified setpoints ỹsp for the linear MPC.

ỹsp (k) = ysp (k) −

d̂1 (k) − d̂2 (k)
d̂2 (k)

 (5.7)

As shown in [27], these setpoints were the means to achieve zero control deviation
during stationary operation.

5.3 Cost Function for Linear Model Predictive Controller

The values of ỹsp (k) were used in the quadratic cost function J of the linear MPC as
part of the parameter vector θ.

J (θ (k) , U) =
Ny∑
i=1

[ỹsp (k) − y (k + i)]T Q [ỹsp (k) − y (k + i)]

+
Nu−1∑
j=0

∆u (k + j)T R∆u (k + j)
(5.8)

This optimization problem included the linear prediction model and the input constraints
uMin = [0 A, 0 %]T and uMax = [120 A, 100 %]T .

min
U

J (θ (k) , U) (5.9)

s.t. uMin ≤ u (k + j) ≤ uMax, j = 0, 1, ...,Nu − 1 (5.10)

x (k + i) = Adx (k + i− 1) + Bd

u1 (k + i− 6)
u2 (k + i− 3)

 , i = 1, 2, ...,Ny (5.11)

y (k + i) =
1 1 0 −1
0 0 0 1

x (k + i) , i = 1, 2, ...,Ny (5.12)
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The optimization problem of Equations (5.9)-(5.12) constituted a QP problem with
only linear constraints.

5.4 Simulation Study with Implicit Linear Model Predictive
Controller

The real-time capability of the proposed linear MPC was achieved by applying the
explicit solution u (θ) presented in [11]. For this approach, the CPU core load of the
PWA solution mainly depended on nPT. The exclusive presence of control variable
constraints in the QP problem led to a correlation between nPT and Nu introduced
in [27].

nPT = 9Nu (5.13)

Nine combinations of active and inactive constraints were possible for every step along
Nu. Thus, Nu = 2 was chosen in this work because it was the most extended real-time
capable control horizon with a CPU core load of around 5 %. The 50 ms time delay for
u1 then led to a minimum length of the prediction horizon of Ny = 7. Furthermore,
the considerable stationary differences between the linear prediction model and the
FCS led to a significant dependence of the closed-loop behavior on the perturbation
compensation with the state observer. Hence, the lack of a prediction model for d̂

rendered long prediction horizons impractical, which is why Ny = 7 was chosen in this
work.
The small prediction and control horizons aligned with the findings from other authors
that used linear MPC for air supply control in an FCS. Puig et al. [92], [93] used
horizons as small as Ny = Nu = 2 in their application, while Arce et al. [6] and Bordons
et al. [13] applied MPC with Ny = Nu = 3 and Ny = Nu = 4, respectively. Similarly,
Yang et al. [123] implemented an air supply controller with linear MPC that worked
with Ny = 6 and Nu = 3. The only works on linear MPC for air supply control with a
significantly higher prediction and control horizon were by Vahidi et al. [118], [119]. In
their application, the SOC control of the additional capacitor required a long prediction
horizon. Otherwise, unstable closed-loop behavior was observed.
Successfully applying an explicit linear MPC required prior tuning of the cost function
parameters. This development step was carried out with closed-loop simulation before
the test stand validation shown in [27]. However, the simulation results were not
presented in [27] to retain an acceptable length of the article. In these simulations,
the QP problem of Equations (5.9)-(5.12) was solved with Hildreth’s method [47], as
described in [62]. The comparability of the tested parameter sets was accomplished
by repeatedly using the same mass flow setpoint sequence presented in [27]. The
corresponding values of ṁin,sp

Ca and ṁsp
Byp are displayed in Figure 42. Every step change

in Figure 42 lasts 5 s, allowing the simultaneous evaluation of the dynamic system
response and the steady-state closed-loop behavior. Additionally, the first step changes
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Figure 42: Setpoint sequence from [27] for comparing different parameterizations of the
cost function J.

up to t = 125 s were used to evaluate the air supply control part of the MPC. Then,
the disturbance rejection capability was tested with the step changes between t = 125 s
and t = 150 s. In the last section of Figure 42, simultaneous step changes in ṁin,sp

Ca and
ṁsp

Byp were applied to evaluate the MIMO characteristics of the proposed controller.
In the simulation study, different weights in Q and R were compared. The values were
varied by a factor of ten, as shown in [9], [119], to have a slightly more systematic
approach instead of the commonly mentioned trial-and-error [92], [93]. The comparison
was conducted with a constant Ny = 7, Nu = 2, and Ld from [27].

Ld =
0.05 0.05 0 0 0.1 0

0 0 0 0.05 0 0.15

T

(5.14)

The ratio of the weights in Q determined the prioritization of the two control tasks in
the MPC. Three different weight matrices Q were compared with a constant R = [ 0.1 0

0 10 ].
Representative closed-loop simulation results for ṁin

Ca and ṁByp are shown in Figure 43.
The variation of the weights in Q significantly impacted the closed-loop behavior. The
prioritization of the air supply control task with higher weights in Q resulted in a faster
response time of the air supply controller. Firstly, the control of ṁByp was delayed after
step changes. Secondly, the bypass valve was used to reduce ṁin

Ca faster, even though this
reduction increased the control deviation from ṁsp

Byp. The best dynamics were achieved
with Q = [ 10 0

0 1 ]. These findings showed that the response time could not be reduced
arbitrarily. Instead, it was most likely limited by the perturbation compensation with
the observer. The dependence on the perturbation compensation was also indicated by
the absence of significant over- and undershoots in ṁin

Ca for Q = [ 10 0
0 1 ]. These over- and
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undershoots could only be avoided if the differences between the linear prediction model
and the FCS were mostly compensated. As a result, the trajectories of the control
variables were also smooth, as depicted in Figure 44. Moreover, smooth trajectories
of ispq,Cmpr were beneficial to the superordinate power controller. PCmpr was the main
perturbation in PFCS, and its dynamics significantly depended on iq,Cmpr. Thus, fewer
oscillations or over- and undershoots in ispq,Cmpr induced fewer perturbations on PFCS.
This reduction resulted in less power consumption of the fuel cell stack to compensate
for the perturbations and, therefore, improved the FCS efficiency.
The dynamics of ispq,Cmpr were also affected by the first weight in R. The next step was
therefore to evaluate the effect of this weight. Three different factors of ten were used.
Representative closed-loop simulation results for ṁin

Ca and ṁByp are shown in Figure 45.
The results for R = [ 1 0

0 10 ] indicated that high values for the first weight in R had to be
avoided due to their impairment of the closed-loop dynamics. Nonetheless, the effect of
smaller weights on the mass flows in the closed control loop was negligible. Instead,
the variations were mainly visible for iq,Cmpr. The corresponding closed-loop simulation
results for the control variables are displayed in Figure 46. These results confirmed that
a small first weight in R was beneficial because it removed high-frequency oscillations
in ispq,Cmpr. Consequently, oscillations in PCmpr were avoided, which was advantageous
for the superordinate FCS net power controller.
The final tuning parameter was the second weight in R, which was varied again three
times with different factors of ten. The resulting closed-loop values of ṁin

Ca and ṁByp for
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four representative step changes are depicted in Figure 47. The differences in the closed-
loop air mass flows for the three parameterizations of R were negligible. The decision
for R = [ 0.1 0

0 10 ] was based on the corresponding trajectories of the control variables.
These trajectories are shown in Figure 48. The linear MPC with R = [ 0.1 0

0 10 ] was the
only one not inducing oscillations of ispq,Cmpr. This parameterization, therefore, led to
the best dynamic response of PCmpr for the superordinate FCS net power controller.
Accordingly, the cost function with Ny = 7, Nu = 2, Q = [ 10 0

0 1 ], and R = [ 0.1 0
0 10 ] was

used in this work and in [27].

5.5 Validation of Explicit Linear Model Predictive Controller
on Fuel Cell System Test Stand

In this work, the explicit PWA solution u (θ) for the linear MPC was determined with
the MPT toolbox by M. Herceg et al. [76]. According to [11], this solution perfectly
replicates the implicit linear MPC of Section 5.4, which is why an additional validation
of u (θ) was not necessary for this work. Instead, the first closed-loop measurements
were used to validate that the findings from the simulation study of Section 5.4 were
transferable to the FCS test stand. The corresponding comparison is summarized in
Section 5.5.1. Afterward, variations in Ld were compared to confirm the choices for
the observer gains in [27]. The associated measurements are outlined in Section 5.5.2.
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Lastly, the explicit linear MPC was integrated into the control cascade of Figure 3. The
corresponding closed-loop behavior is shown in Section 5.5.3. This final validation step
on the FCS test stand was the prerequisite for the final application in the BMW iX5
Hydrogen presented in [27].

5.5.1 Comparison of Closed-Loop Behavior between Simulation and
FCS Test Stand

The comparison of the closed-loop behavior for the simulation and the FCS test stand
measurement was conducted with the setpoint trajectories of Figure 42. The resulting air
mass flows for four representative step changes are shown in Figure 49. The closed-loop
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Figure 49: Air mass flows for closed-loop simulation results and test stand measurements
of the linear MPC with Ny = 7, Nu = 2, Q =

[
10 0
0 1

]
, R =

[
0.1 0
0 10

]
, and

Ld =
[

0.05 0.05 0 0 0.1 0
0 0 0 0.05 0 0.15

]T.

air mass flow dynamics on the FCS test stand were almost identical to the dynamics in
the simulation. The two notable differences in Figure 49a) and b) indicated simulation
model inaccuracies because the corresponding control variable trajectories in Figure 50
were almost alike for the simulation and the FCS test stand. Firstly, ṁin

Ca rose faster
in the simulation (Fig. 49a)), even though the compressor was accelerated with the
maximum available torque with Iq,Cmpr = 120 A in the simulation and in the FCS test
stand measurement. This deviation was partly caused by the bypass leakage in the
FCS test stand measurement that led to a reduction of ṁin

Ca. Additionally, the small
dip in the measured values of ṁin

Ca at t = 0.25 s was caused by the ECU switching from
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Figure 50: Control variables for closed-loop simulation results and test stand measure-
ments of the linear MPC with Ny = 7, Nu = 2, Q =
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, and
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the sensor value to the model value for ṁmeas
AirFil as described in [26]. This model value

for ṁmeas
AirFil was slightly smaller than the sensor value during the step change, which is

why ṁin
Ca was also smaller in the FCS test stand measurement.

Secondly, ṁin
Ca fell faster in the simulation (Fig. 49b)) despite equal values for the control

variables. This inconsistency must have resulted from a delayed sensor signal for ṁByp,
since the values of posByp were approximately the same in the simulation and the FCS
test stand measurement.
Despite these slight differences, the overall accordance of the closed-loop behavior for
the simulation and the test stand measurement was sufficient to continue the validation
with Ny = 7, Nu = 2, Q = [ 10 0

0 1 ], and R = [ 0.1 0
0 10 ] without further cost function

parameter adjustments on the FCS test stand.

5.5.2 Variation of Observer Gains

The cost function parameters Q, R, Ny, and Nu could only be changed before de-
termining the explicit solution u (θ). During the operation on the FCS test stand
and in the FCEV, the remaining MPC tuning parameters were the observer gains
in Ld. Thus, the influence of changing values in Ld was investigated next. Three
different parameterizations were evaluated on the FCS test stand. The most significant
differences in the closed-loop behavior of the air mass flows are shown in Figures 51.
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The first findings were that the neglection of the observer gain for x2 with the third
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Figure 51: Air mass flows for closed-loop test stand measurements of the explicit linear
MPC with Ld =

[
0.05 0.05 0 0 0.1 0

0 0 0 0.05 0 0.15

]T (Var 1), Ld =
[

0.05 0.05 0 0 0.1 0
0 0 0 0.1 0 0.15

]T
(Var 2), and Ld =

[
0.05 0 0 0 0.1 0
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]T (Var 3).

variant caused a significant undershoot in ṁin
Ca in Figure 51. This undershoot had to be

reduced to avoid oxygen starvation in the fuel cells. Similarly, a higher observer gain
for x4 with the second variant led to an undesirably aggressive MPC with considerable
under- and overshoots of ṁin

Ca. This aggressive closed-loop behavior was also visible
in the corresponding trajectories of the control variables displayed in Figure 52. The
disadvantage of the oscillations of ispq,Cmpr in Figure 52a) and c) was their direct impact
on the dynamic behavior of PCmpr. As mentioned before, PCmpr was the primary per-
turbation of the FCS net power controller. Fewer oscillations of PCmpr thus enabled a
better perturbation compensation that further culminated in a better power response
of the FCS. As a result, the original parameterization Ld = [ 0.05 0.05 0 0 0.1 0

0 0 0 0.05 0 0.15 ]T was
retained for the remainder of this work for the explicit linear MPC.

5.5.3 Validation in Combination with Fuel Cell System Net Power and
Hydrogen Dilution Controller

The previous validation steps for the explicit linear MPC were conducted with a given
profile of step changes for ṁin,sp

Ca and ṁsp
Byp. In the target application in the FCEV,

however, the values for ṁin,sp
Ca and ṁsp

Byp were given by the power and hydrogen dilution
controller. Thus, the final validation step on the FCS test stand was the integration
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Figure 52: Control variables for closed-loop test stand measurements of the explicit linear
MPC with Ld =
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of the explicit linear MPC into the controller cascade of Figure 3. Then, the resulting
closed-loop behavior was evaluated with the step changes of P sp

FCS depicted in Figure 53.
The corresponding values of ṁin,sp

Ca and ṁsp
Byp are also displayed because they were not

fixed for the given profile of P sp
FCS. Instead, ṁin,sp

Ca and ṁsp
Byp depended on the closed-loop

behavior of the FCS, which differed for each utilized air supply and bypass controller.
This closed-loop behavior was decisively represented by the values of the air mass flows
and the control variables. For the explicit linear MPC, these values are shown for
two exemplary step changes in Figures 54 and 55. The main difference between the
previously applied step changes and Figures 49 and 50 was the setpoint ṁsp

Byp = 0 g
s . This

setpoint was given by the hydrogen dilution controller for high values of ṁin
Ca sufficient

for the hydrogen dilution in the air exhaust. As a result, possp
Byp = 0 % was the second

output of the explicit linear MPC. However, the valve controller could not keep the
bypass valve fully shut, especially for high compressor outlet pressures and mass flows.
This bypass leakage is highlighted in Figure 56 with a comparison of possp

Byp and the
measured value of posByp. The bypass leakage induced an additional disturbance for the
explicit linear MPC leading to a decrease in ṁin

Ca. The explicit linear MPC could only
compensate for this disturbance with ispq,Cmpr, since possp

Byp was already at its lower bound.
Although the compensation was necessary, it resulted in the undesirable oscillations of
ispq,Cmpr displayed in Figure 54. These oscillations further caused oscillations in PCmpr,
which were significant enough to affect PFCS, as shown in Figure 57. The oscillations of
ispq,Cmpr could be reduced by decreasing the values in Ld. However, the high stationary
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Figure 53: Step changes of Psp
FCS for the validation of the explicit linear MPC in the FCS

net power and hydrogen dilution control cascade with the corresponding values
of ṁin,sp

Ca and ṁsp
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Figure 54: Measured air mass flows and control variables in the closed control loop with
the explicit linear MPC and on the FCS test stand for the step change from
Psp

FCS = 10 kW to Psp
FCS = 100 kW.

deviations between the linear prediction model and the actual FCS (see Fig. 41) led
to a high dependency on the perturbation compensation. Consequently, high observer
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Figure 55: Measured air mass flows and control variables in the closed control loop with
the explicit linear MPC and on the FCS test stand for the step change from
Psp

FCS = 100 kW to Psp
FCS = 10 kW.
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Figure 56: Leakage of the cathode bypass valve for high compressor outlet pressures and
air mass flows.

gains were necessary to achieve a fast perturbation compensation, which contradicts
the approach to filter the bypass leakage with small observer gains. This deficiency of
the explicit linear MPC was the motivation for applying an explicit NMPC, introduced
in Chapter 6. A more precise model decreased the dependency on the perturbations
d̂. Thus, smaller observer gains allowed a similar closed-loop behavior with a better
compensation of the bypass leakage.
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Figure 57: Oscillations in PFCS due to the cathode bypass leakage.



6 Air Mass Flow Control with Explicit
Nonlinear Model Predictive Control

The main advantage of NMPC is the possibility of utilizing a more precise nonlinear
prediction model of the cathode subsystem. In this work, the prediction model was based
on the simulation model of Chapter 4, with the additional simplifications described in
Section 6.1. On the downside, the online application of an NLP solver was prevented
by the limited computational capacity of the ECU and the relatively small sample time
∆t = 10 ms. Moreover, geometric approaches for the explicit solution of the NMPC
optimization problem (e.g., [54]) scale poorly with the problem size. Thus, u (θ) was
approximated by a NN.
Several control approaches have been reported in the literature that apply NNs to an
FCS. Most of these approaches were summarized in the recently published review of
Lin-Kwong-Chon et al. [67]. Extensive information on the control of an FCS with the
help of NNs is found in this study, with a lack of experimental validation being one of
the authors’ conclusions. This research gap was addressed with parts of this work, as
the NN approximation of the explicit NMPC was validated on an FCS test stand and
in the BMW iX5 Hydrogen.
Even though an extensive list of studies on NN control in fuel cell systems is found
in [67], some works are also summarized here to highlight the main approaches. Almeida
et al. [2] utilized NNs to model and control the FCS. The NN model was further required
for the online application of the proposed controller to provide feedback on the state of
the FCS, similar to an observer in MPC. The NN controller was trained using a quadratic
cost function for the control deviation and the control effort, comparable to MPC. The
considered control task was the regulation of UCell with the partial pressures of oxygen
and hydrogen. This approach was validated with a simulation in which the NN controller
was successfully compared to a PID controller. Another NN controller was introduced
by El-Sharkh et al. [104]. The proposed controller regulated the DC/AC inverter voltage
and the reactive power output of an FCS. The authors used step responses of a system
model alongside actual load profiles as training data. The approach was again only
validated in a simulation. The same system setup and the same controlled variables
were utilized in the work of Hatti et al. [42]. The authors applied NNs for modeling and
controlling the system, with PI controllers employed to train the NN controller. Once
again, the validation was conducted in a simulation. A combination of MPC and NNs
for the control of an FCS was demonstrated by Bao et al. [8], [9]. In this study, the
NN was the prediction model of the MPC. The control targets included λO2 , pin

Ca, and
the pressure difference between the anode and the cathode. Again, the approach was
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validated in a simulation. Experimental validation was found in the work of Damour
et al. [18]. The authors used a NN to obtain a real-time capable model of the FCS,
which could be used in an online optimizer. The goal of the optimizer was to obtain
the optimal parameters for the implemented PID controller for λO2 . The downside of
this approach was the relatively large sample time ∆t = 3 s that rendered it infeasible
for automotive applications. Instead of an online optimizer, Li et al. [65] used a NN
to obtain the optimal PI controller parameters during operation. The control target
was the feed air mass flow, and the approach was again only validated in a simulation.
Therefore, the goal of this work was to experimentally demonstrate the applicability of
approximating explicit NMPC using a NN for an FCS with an appropriate sample time
∆t = 10 ms for automotive applications.
In this work, a semi-empirical prediction model was applied for NMPC. This model
is presented in Section 6.1 alongside the additional simplifications compared to the
simulation model of Chapter 4. The model description is followed by an overview of
the state and perturbation observer in Section 6.2 and the quadratic cost function in
Section 6.3. The initial parameter values for the observer gains and the cost function
weights were established with a simulation study. The main results of this study are
summarized in Section 6.4. Subsequently, various training data sets were derived from
the implicit NMPC and used to train many NNs with different setups. The two most
accurate NNs from Section 6.5 were implemented on the ECU and tested on the FCS
test stand. The main findings of this step are displayed in Section 6.6. Lastly, the
proposed NN controller was validated in the BMW iX5 Hydrogen. This final validation
step is shown in Section 6.7.

6.1 Nonlinear Prediction Model

A suitable nonlinear prediction model correctly predicts the dynamics and accurately ap-
proximates the stationary operating points of the controlled variables y = [ṁin

Ca, ṁByp]T

subject to the control variables u =
[
ispq,Cmpr, pos

sp
Byp

]T
of the considered plant. These

two goals were achieved by the cathode subsystem simulation model presented in
Chapter 4. However, the computational load and the numerical complexity were not
a limiting factor for the simulation model. Firstly, the simulation model was not
required to be real-time capable. Secondly, the simulation model was implemented in
MATLAB Simulink. Therefore, the variable-step, variable-order solver ode15s was
applied, which is better for numerically stiff problems. By contrast, the application of
the observer on the ECU required a real-time capable prediction model. Furthermore,
the implementation on the ECU only permitted a simple forward Euler with ∆t = 10 ms
for the solution of the ODEs.

x (k + 1) = x (k) + ∆t · f (x (k) , u (k)) (6.1)
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A considerable disadvantage of the forward Euler is the numerical instability of stiff
ODEs [56]. Hence, the simulation model was simplified before being employed as the
nonlinear prediction model for the NMPC.

6.1.1 Model Equations

At the start, the numerical complexity was addressed. The first modification was reduc-
ing the number of model states in x by removing the cathode inlet and outlet manifolds as
well as the turbine outlet manifold. On the one hand, this modification reduced the num-
ber of ODEs to five, one for each element of x =

[
iq,Cmpr, ωCmpr, posByp, pout

Cmpr, pin
Trb

]T
.

On the other hand, the mass flow correlations with the smallest pressure losses were
removed, namely ṁdry

Hmdf, ṁwet
Hmdf, ṁHByp, and ṁExh. These correlations were the most

probable cause for numerical instabilities because the forward Euler was likely to esti-
mate too large a mass transfer between two manifolds for one sample time step. Thus,
the pressure increase in the receiving manifold was too high, while the pressure decrease
in the delivering manifold was too low. Accordingly, the pressure levels could be reversed,
presumably resulting in permanent oscillations of both pressure values. The margin
before this pressure reversal was higher for higher pressure losses. Therefore, mass flow
correlations with higher pressure losses reduced the probability of numerical instabilities.
The stationary model accuracy was nearly retained by including the pressure losses
through the humidifier in a modified correlation ˙̃min

Ca for the stack air mass flow.

˙̃min
Ca = C̃ in

1,Ca ·
[
ρout

Cmpr ·
(
pout

Cmpr − pin
Trb

)]C̃in
2,Ca , ρout

Cmpr =
pout

Cmpr

RAir · T out
Cmpr

(6.2)

By contrast, removing the turbine outlet manifold resulted in the neglection of the
pressure loss through the cathode exhaust with pout

Trb = pAtm. This neglection was
inevitable because the corresponding pressure loss could not be integrated into another
mass flow correlation. Consequently, the model accuracy was slightly decreased.
The second modification was the increase of the remaining two manifold volumes by a
factor of four to partly compensate for the neglection of the other three manifolds.

Ṽ out
Cmpr = Ṽ in

Trb = 8 · 10−3 m3 (6.3)

Additionally, this modification slightly decreased the rate of change of pout
Cmpr and pin

Trb
during load changes. As a result, the numerical complexity was further reduced.
The third modification was a limitation of ΨCmpr, ΦCmpr, and ṁCmpr in the compressor
map model.

0.55 ≤ ΨCmpr ≤ 1.15 (6.4)
0 ≤ ΦCmpr ≤ 0.11 (6.5)

ṁCmpr ≤ 200 m
s (6.6)
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The boundary values in Equations (6.4)-(6.6) corresponded to the air compressor
operating range displayed in Figure 7. Hence, the prediction model was forced to remain
within the boundaries of the compressor map, even if the forward Euler determined an
operating point outside of these boundaries through an inaccurate pressure prediction.
Consequently, this limitation further reduced the probability of numerical instabilities.
The final simplification of the prediction model was utilizing constant values posVTG =
50 %, ηIs,Cmpr = 70 %, and ηIs,Trb = 80 %. The first simplification reflected the omission
of the VTG as an actuator of the NMPC and the mostly marginal deviations from
posVTG = 50 % during the operation of the FCS. The other two simplifications were
carried out solely to reduce the computational load of the nonlinear prediction model.
The values of ηIs,Cmpr and ηIs,Trb were chosen to represent the average values of Fig-
ures 8 and 11. Unfortunately, the two values were mixed up by accident. The correct
values were ηIs,Cmpr = 80 % and ηIs,Trb = 70 %. However, this error was only noticed
after all the measurements had been accomplished, which is why it was not fixed in
this work.

6.1.2 Determination of Model Parameters

The parameter values of ˙̃min
Ca were determined from the models for ṁdry

Hmdf, ṁin
Ca, and

ṁwet
Hmdf, which were presented in Section 4.2. The fitting data was created by first

specifying a grid of possible values pout
Cmpr, T out

Cmpr, and pin
Trb. Then, the corresponding

mass flows ˙̃min
Ca were determined by equalizing ṁdry

Hmdf, ṁin
Ca, and ṁwet

Hmdf. Finally, the
parameters C̃ in

1,Ca = 9.75 · 10−3 C̃ in
2,Ca = 7.83 · 10−1 were determined with a least squares

approach achieving R2 = 0.9997 with regard to ˙̃min
Ca. The data set from Figure 58

disregarded the impact of ṁHByp. Nonetheless, this impact on the prediction model
accuracy was marginal. The fully opened humidifier bypass valve led to a decreased
pressure resistance in the cathode subsystem, which is why the neglection of the
humidifier bypass valve increased the pressure resistance of the stack air path in the
nonlinear prediction model. However, this increased pressure resistance might offset
the neglection of other pressure resistances in the model, like the pressure losses of the
CWS and the TWS. Thus, the accuracy of the nonlinear prediction model had to be
reassessed, taking into account all simplifications. The findings of this reassessment are
shown in the next section.

6.1.3 Validation of Nonlinear Prediction Model

The nonlinear prediction model was compared to the same FCS test stand measurement
used in Section 4.4.1 to evaluate the impact of the model simplifications. Thus,
the same model input trajectories for ispq,Cmpr and possp

Byp from Figure 21 were used.
The corresponding values of nCmpr for the measurement and the nonlinear prediction
model are displayed in Figure 59. The dynamics of nCmpr were still accurately predicted,
whereas the stationary discrepancies between measurement and model values in Figure 59
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Figure 58: Comparison of ˙̃min
Ca from the model (Eq. (6.2)) and the data set with ṁdry

Hmdf =
ṁin

Ca and ṁin
Ca = ṁwet

Hmdf.

Figure 59: Comparison of nCmpr for the FCS test stand measurement and the correspond-
ing nonlinear prediction model calculations.

were more significant than for the simulation model in Figure 22. This deteriorated



90 6 Air Mass Flow Control with Explicit NMPC

accuracy was most likely due to ηIs,Cmpr = 70 % and ηIs,Trb = 80 %, because the
stationary values of nCmpr were determined by a moment balance (Eq. (4.37)). The
agreement between the measurement and prediction model was slightly improved by
correcting the constant efficiencies to ηIs,Cmpr = 80 % and ηIs,Trb = 70 %. Nevertheless,
this modification only covered a small part of the deviation compared to the simulation
model, especially at low rotational speeds. The remaining differences were caused by
the neglected load-dependencies of ηIs,Cmpr and ηIs,Trb, which were more distinct for
small values of nCmpr (see Fig. 8).
An acceptable stationary accuracy was maintained for ṁAirFil despite the significant
deviations of nCmpr. The associated comparison between the measurement and the
nonlinear prediction model is shown in Figure 60. Figure 60 additionally unveils that

Figure 60: Comparison of ṁAirFil for the FCS test stand measurement and the correspond-
ing nonlinear prediction model calculations.

the dynamics of ṁAirFil were adequately predicted. The most significant stationary
discrepancy at t = 310 s was affected by a falsely high nCmpr. At this point, the
simulation model from Chapter 4 calculated ηIs,Cmpr = 64 % and ηIs,Trb = 35 %. Thus,
ηIs,Trb = 80 % was significantly higher in the simplified prediction model. This higher
value resulted in a substantially higher τTrb = 0.36 N m instead of τTrb = 0.07 N m.
Accordingly, the equilibrium of the moment balance (Eq. (4.37)) was obtained for a
higher nCmpr in the nonlinear prediction model.
This significant stationary discrepancy further induced a considerable deviation between
the measured and the otherwise well-predicted value of ṁByp. The corresponding
comparison is displayed in Figure 61. Furthermore, the dynamics of ṁByp were accurately
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Figure 61: Comparison of ṁByp for the FCS test stand measurement and the corresponding
nonlinear prediction model calculations.

calculated with the nonlinear prediction model.
The appreciable stationary accuracy of ṁByp contrasted with the significant deviations
between the measurement and the nonlinear prediction model with regard to pout

Cmpr.
The associated comparison is shown in Figure 62. The considerably smaller values of
pout

Cmpr alongside similar values of ṁByp suggested smaller stationary values of pin
Trb for

the nonlinear prediction model. This suggestion was further supported by the higher
values of pin

Trb in the nonlinear simulation model. The neglected pressure loss through
the air exhaust might have caused the smaller values of pout

Cmpr. However, the final
validation of this assumption would have required pressure sensors at the turbine inlet
and outlet that were unavailable in this work. The increased manifold volumes were
another simplification that affected pout

Cmpr. Even though this simplification reduced
the rate of change of pout

Cmpr according to Equation (4.1), Figure 62 reveals accurate
dynamics for the nonlinear prediction model.
Overall, the dynamics and the stationary values of the most critical variables, ṁAirFil

and ṁByp, were appreciably well predicted, despite the simplifications. These crucial
prerequisites for successfully applying of an NMPC outweighed the significant stationary
discrepancies for nCmpr and pout

Cmpr. Nonetheless, the persisting stationary model devia-
tions had to be compensated to avoid stationary control deviations in the closed control
loop with the NMPC. This compensation was handled by a perturbation observer
introduced in the following section.
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Figure 62: Comparison of pout
Cmpr for the FCS test stand measurement and the correspond-

ing nonlinear prediction model calculations.

6.2 State and Perturbation Observer

In this work, the nonlinear observer was set up as a Luenberger observer with additional
estimated perturbation states d̂, similar to the linear observer in Section 5.2.x̂ (k + 1)

d̂ (k + 1)

 =
x̂ (k)

d̂ (k)

+ ∆t ·

f (x̂ (k) , u (k))
0



+ Ld ·


ymeas

FCS (k) −



ŷ1,FCS (k)
ŷ2,FCS (k − 4)
ŷ3,FCS (k)
ŷ4,FCS (k)
ŷ5,FCS (k)





(6.7)

The semi-empirical approach of the nonlinear prediction model allowed nCmpr, posByp,
and pout

Cmpr to be included as measurement feedback vector yFCS of the FCS.

yFCS =
[
ṁmeas

AirFil, ṁmeas
Byp , nmeas

Cmpr, posmeas
Byp , pout,meas

Cmpr

]T
(6.8)
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However, the initial parameter values in Ld were chosen to compensate for perturbations
only with the measured mass flows and with d̂.

Ld =



0 0 0 0 0 0.1 0
0 0 0 0 0 0 0.1
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0



T

(6.9)

The measurements nmeas
Cmpr and pout,meas

Cmpr were neglected with the observer gains of Equa-
tion (6.9) due to their high stationary deviations from the nonlinear prediction model.
The compensation of these differences in x̂ and d̂ could unnecessarily increase the
prediction errors for ṁAirFil and ṁByp. Consequently, this increased error could result
in a less adequate compensation of the sensor noise and the bypass leakage with the
NMPC.
Eventually, the values of d̂ were subtracted from the original setpoints ysp, as shown in
Equation (5.7). The resulting corrected setpoints ỹsp were then integrated into the cost
function of the NMPC, which is presented in the following.

6.3 Cost Function for Nonlinear Model Predictive Controller

The cost function J of the NMPC was implemented in a quadratic form similar to
Equation (5.8) for the linear MPC.

J (θ (k) , U) = [ỹsp (k) − y (k +Ny)]T P [ỹsp (k) − y (k +Ny)]

+
Ny−1∑
i=1

[ỹsp (k) − y (k + i)]T Q [ỹsp (k) − y (k + i)]

+
Nu−1∑
j=0

∆u (k + j)T R∆u (k + j)

(6.10)

The introduction of the terminal weight matrix P was motivated by the high accuracy
of the nonlinear prediction model regarding y. This accuracy led to a small impact
of d̂ throughout the operating range of the FCS. Hence, the predicted model values
y closely resembled the future outputs of the FCS along the entire prediction horizon
Ny. This resemblance could be used to shape the dynamic transitions of the controlled
system. The controlled system was likely to reach a setpoint ysp

i after Ny time steps
if the model predicted the achievement of this setpoint ỹsp

i in J . Therefore, a higher
weight on ỹsp

i − yi (k +Ny) forced the controlled plant towards ysp
i , minimizing over-

and undershoots of yi in the closed control loop.
The optimal system trajectory of the NMPC generally minimizes J as a function of
U . In this work, the resulting optimization problem further considered the lower and
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upper bounds of u, uMin = [0 A, 0 %]T and uMax = [120 A, 100 %]T .

min
U

J (θ (k) , U ) (6.11)

s.t. uMin ≤ u (k + j) ≤ uMax, j = 0, 1, ...,Nu − 1 (6.12)
x (k + i) = x (k + i− 1) + ∆t · f 1, i = 1, 2, ...,Ny (6.13)
y (k + i) = h (x (k + i)) , i = 1, 2, ...,Ny (6.14)

The optimization problem of Equations (6.11)-(6.14) constituted an NLP problem.

6.4 Simulation Study with Implicit Nonlinear Model
Predictive Controller

In this work, the explicit solution of the NMPC optimization problem was approximated
with a NN to obtain a real-time capable controller with ∆t = 10 ms. The offline training
of this NN required tuning the cost function before applying the controller on the
ECU. Therefore, the corresponding implicit NMPC was evaluated with closed-loop
simulations that allowed fast modifications of Q and R. Additionally, Ny and Nu were
varied independently in this simulation study because their values did not affect the
real-time capability of the proposed controller. Instead, the number of neurons and the
number of layers in the NN determined the CPU core load, and these numbers were
additional tuning parameters.
In the closed-loop simulations, the NLP problem of the implicit NMPC was solved with
the sequential QP algorithm of the nonlinear optimizer fmincon from the MATLAB
Optimization Toolbox. Additionally, central finite differences were utilized to
estimate function gradients, and the objective function J and the constraints were
normalized. The optimization was repeated six times at each time step, with each run
starting from a different initial value U0. This repetition significantly improved the
probability of detecting the global solution with a local optimizer like fmincon.
The cost function parameters were initially set to Ny = 7, Nu = 2, P = [ 10 0

0 1 ] and
Q = [ 10 0

0 1 ]. These values were based on the best results obtained with the linear MPC.
The only difference was R = [ 0 0

0 0 ]. The weighting of the control action stabilized the
closed-loop behavior with the linear MPC. However, this stabilizing was unnecessary
with the NMPC because of the significantly smaller dependency on the perturbation
observer due to a more accurate prediction model. The first step in the closed-loop
simulations was the evaluation of different Ny. Afterward, the best value of Ny was
combined with different values of Nu, and the corresponding closed-loop simulation
results were assessed. Finally, various weights in P and Q were compared to each other.
All these comparisons were conducted with the trajectories of ṁin,sp

Ca and ṁsp
Byp from

Figure 42.
1 state and input dependencies were neglected to avoid a multi-line equation,

f = f (x (k + i− 1) ,x3 (k + i− 2) ,u1 (k + i− 6) ,u2 (k + i− 2) ,u2 (k + i− 3))
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6.4.1 Variation of Prediction and Control Horizon

The more precise nonlinear prediction model of the NMPC reduced the impact of d̂

on the closed-loop behavior. Thus, longer prediction horizons were more practicable
compared to the linear MPC. The best closed-loop behavior of ṁin

Ca and ṁByp was
achieved with Ny = 15. This closed-loop behavior is displayed in Figure 63 for four
representative step changes alongside two other variants of the NMPC with Ny = 7
and Ny = 10. On the one hand, the decisive difference between Ny = 15 and Ny = 10
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Figure 63: Air mass flows for closed-loop simulation results of the implicit nonlinear MPC
with Nu = 2, P =

[
10 0
0 1

]
, Q =

[
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0 1

]
, and Ny = 7, Ny = 10, or Ny = 15.

was the undershoot in ṁin
Ca that is shown in Figure 63d). The absence of undershoots

in ṁin
Ca eliminated the risk of oxygen starvation in the fuel cells. On the other hand,

the NMPC with Ny = 7 showed a permanent positive control deviation for ṁByp

in Figure 63a) and d). This control deviation reduced the efficiency of the cathode
subsystem due to excessive power consumption of the air compressor.
The control deviation of ṁByp resulted from a permanently saturated control variable
possp

Byp = 100 %, depicted in Figure 64. This comparison of the closed-loop behavior
of ispq,Cmpr and possp

Byp further revealed a renewed increase from possp
Byp = 70 % to

possp
Byp = 100 % for the NMPC with Ny = 10 in Figure 64b) and d). This suboptimal

closed-loop behavior caused the undershoot of ṁin
Ca in Figure 63d). It seems probable

that the prediction horizons Ny = 7 and Ny = 10 were too short for the air mass flow
dynamics to fully unfold in J . Thus, the correct stationary values of possp

Byp could not be
determined by the solver, and the solver instead remained at a boundary of possp

Byp.
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Figure 64: Control variables for closed-loop simulation results of the implicit nonlinear MPC
with Nu = 2, P =

[
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]
, Q =
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]
, and Ny = 7, Ny = 10, or Ny = 15.

Therefore, the second part of the simulation study was conducted with Ny = 15 alongside
P = [ 10 0

0 1 ] and Q = [ 10 0
0 1 ]. The goal was to evaluate the impact of Nu on the closed-loop

behavior. The resulting trajectories of ṁin
Ca and ṁByp for Nu = 1, Nu = 2, and Nu = 10

are depicted in Figure 65. The differences between Nu = 2 and Nu = 10 were negligible,
whereas Nu = 1 resulted in a significantly slower dynamic response of ṁByp.
Nevertheless, the best closed-loop behavior was achieved for Nu = 1 because of the
closed-loop trajectories of the control variables. These trajectories of ispq,Cmpr and possp

Byp
are shown in Figure 66. The longer control horizons Nu = 2 and Nu = 10 generated
significant oscillations in ispq,Cmpr and possp

Byp. There is a definite possibility that these
oscillations arose due to numerical uncertainties in the predicted trajectories in J . The
most significant prediction error with the forward Euler generally occurs at the first
time step after a change in the model inputs. Thus, repeated changes of ispq,Cmpr and
possp

Byp along the prediction horizon led to oscillating mass flow trajectories in J . These
oscillations then complicated a precise optimization of J , and the ensuing optimization
uncertainties caused oscillating control variables. Oscillations in the trajectory of possp

Byp
were generally acceptable, whereas oscillations in ispq,Cmpr led to undesirable oscillations
in PCmpr that could potentially impact the power response of the FCS. Therefore, the
absence of oscillations with Nu = 1 outweighed the drawback of slower dynamics most
likely caused by the small number of optimization variables ∆u with Nu = 1. Thus,
NMPCs with Ny = 15 and Nu = 1 were implemented in the remainder of this work.
Ny = 15 corresponded to a prediction time period of ∆t = 150 ms. This time period is
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Figure 65: Air mass flows for closed-loop simulation results of the implicit nonlinear MPC
with Ny = 15, P =
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]
, Q =
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, and Nu = 1, Nu = 2, or Nu = 10.
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approximately twice as long as the suggested prediction horizons in previous studies on
NMPC for the air supply control of an FCS. Gruber et al. applied prediction horizons
with ∆t = 70 ms (Ny = 7, [36]) and ∆t = 80 ms (Ny = 16, [35]), respectively. The more
extended prediction time period in this work was necessary to cover major step changes
in the significantly more extensive operating range of the air compressor. However,
Gruber et al. further reported successfully applying longer control horizons Nu = 7 [36]
and Nu = 5 [35], which offer the controller greater freedom to optimize the dynamic
trajectories of the air mass flows. Hence, future studies applying NMPC to the FCS of
the BMW iX5 Hydrogen should focus on a numerically stable prediction to enable longer
control horizons. These longer control horizons should further improve the closed-loop
behavior of the cathode subsystem.

6.4.2 Variation of Weights

The subsequent step evaluated the closed-loop behavior with varying weights in P and
Q. This evaluation was conducted with six parameter sets summarized in Table 6.
Initially, different prioritizations of the two mass flow control tasks were compared

Table 6: Variants of the weight matrices P and Q for the parameterization of J with regard
to the proposed NMPC for air mass flows.

Variant P Q Variant P Q

1 [ 1 0
0 1 ] [ 1 0

0 1 ] 4 [ 100 0
0 1 ] [ 10 0

0 1 ]
2 [ 10 0

0 1 ] [ 10 0
0 1 ] 5 [ 100 0

0 1 ] [ 20 0
0 1 ]

3 [ 20 0
0 1 ] [ 20 0

0 1 ] 6 [ 100 0
0 10 ] [ 20 0

0 1 ]

to each other. This comparison included the first three variants from Table 6. The
associated closed-loop trajectories of ṁin

Ca and ṁByp are displayed in Figure 67 for four
representative step changes. The most advantageous dynamics were accomplished with
the initial weighting of variant 2. Firstly, an increased prioritization of the air supply
control task with variant 3 resulted in an undershoot of ṁin

Ca (Fig. 67d)). As a result,
oxygen starvation might occur in the fuel cells. Secondly, the equal prioritization of
both air mass flow control tasks with variant 1 significantly increased the response time
of ṁin

Ca during negative step changes in ṁin,sp
Ca . This increase resulted from a largely

stationary operation of the bypass valve depicted in Figure 68. The application of
variant 1 in the control cascade of Figure 3 would have substantially increased the
response time of the superordinate FCS net power controller during negative step
changes. Thus, the battery of the FCEV powertrain would have had to absorb more
energy throughout this step change, which would have affected the necessary capacity
of this battery. As a result, variant 1 of Table 6 was not an option for the explicit
NMPC.
This conclusion additionally led to the other three weight matrix variants of Table 6 only
including higher weights for the control deviation of ṁin

Ca. The closed-loop trajectories of
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Figure 67: Air mass flows for closed-loop simulation results of the implicit nonlinear MPC
with Ny = 15, Nu = 1, and variants 1, 2, and 3 from Table 6.
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Figure 68: Control variables for closed-loop simulation results of the implicit nonlinear MPC
with Ny = 15, Nu = 1, and variants 1, 2, and 3 from Table 6.
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Figure 69: Air mass flows for closed-loop simulation results of the implicit nonlinear MPC
with Ny = 15, Nu = 1, and variants 4, 5, and 6 from Table 6.

ṁin
Ca and ṁByp for variants 4, 5, and 6 of Table 6 are displayed in Figure 69. The dynamic

behavior of the air mass flows was comparable for all three variants. By contrast, the
closed-loop trajectories of the control variables in Figure 70 showed oscillations of possp

Byp
for variants 4 and 6. These oscillations nevertheless did not impact the air mass flows
and the dynamic response of PCmpr. Therefore, variants 4 and 6 were also considered
viable training data candidates in the next section. This section covers the NN training
to obtain approximated explicit NMPCs. Additionally, the impact of the cost function
parameterization on the accuracy of the NNs was evaluated, which is why variants 2, 4,
5, and 6 were used to create training data sets.

6.5 Validation of Explicit Nonlinear Model Predictive
Controller in Simulation

In this work, the explicit solution u (θ) of the NMPC optimization problem was
approximated with a NN. This approximation enabled the real-time capability of the
proposed control approach. All NNs were set up and trained with Keras, an open-
source deep learning application programming interface written in Python. However,
the accumulation of training data and the validation of the trained NN controllers were
conducted in MATLAB and Simulink with the implicit NMPC of Section 6.4 and
the simulation model of Chapter 4.
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Figure 70: Control variables for closed-loop simulation results of the implicit nonlinear MPC
with Ny = 15, Nu = 1, and variants 4, 5, and 6 from Table 6.

The training data of a NN has a significant impact on the accuracy of the trained
NN. Thus, Latin hypercube sampling was applied to obtain a set of θ with a uniform
distribution over Θ. The states x4 and x5 were the only elements of θ that were not
considered independent variables of this sampling. Instead, the values of x4 and x5

were determined from the sampled values of x2, which accounted for the correlation
between the air pressures in the cathode subsystem and the rotational speed of the air
compressor. Eventually, U ∗ was calculated for all θ in a training data set.
In this work, a total of 45 unique training data sets were created. These data sets
differed regarding their size and the parameterization of J . For each training data set,
three different NN setups were tested. In preliminary studies, different combinations
of the activation functions of Figure 1 were evaluated. Ultimately, NNs with three
fully connected hidden layers with the ReLU activation function were used, which only
differed in terms of the number of neurons per layer. Furthermore, the output layer
consisted of two linear activation functions to avoid vanishing gradients during the
training of the NN [48]. Every training was additionally repeated once to overcome
the lack of determinism in the training process. Therefore, 270 NNs were trained and
validated. The results of this validation are shown in Sections 6.5.1 and 6.5.2.
In preliminary studies, possp

Byp = 0 % emerged as the most challenging operating point to
be learned by a NN. Thus, different target trajectories for ṁin,sp

Ca and ṁsp
Byp were employed

to validate the NN controllers in closed-loop simulations. These trajectories are displayed
in Figure 71. A second modification was the operating point with ṁin,sp

Ca = 20 g
s and
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Figure 71: Target trajectories for ṁin,sp
Ca and ṁsp

Byp for validating the NN approximations of
the explicit NMPC in closed-loop simulations.

ṁsp
Byp = 60 g

s in Figure 71. These two setpoints were impossible to reach simultaneously
due to the physical limitations of the actuators. Nevertheless, this operating point was
included to assess the behavior of the NN controllers when confronted with an infeasible
setpoint combination.
The accuracy of each trained NN was determined by a root-mean-square error (RMSE).
This error was calculated between the closed-loop trajectories of ṁin,impl

Ca and ṁimpl
Byp of

the implicit NMPC and ṁin,expl
Ca and ṁexpl

Byp of the corresponding NN controller.

RMSE =

√√√√ 1
nData − 1 ·

nData∑
i=0

(ṁimpl(i) − ṁexpl(i)) (6.15)

The mass flows were sampled with ∆t = 10 ms. Therefore, each RMSE was comprised
of nData = 17 501 data points.

6.5.1 Variation of Training Data for Neural Networks

At first, the impact of P , Q, and Ny on the accuracy of the trained NNs was exam-
ined. This examination included variants 2, 4, 5, and 6 from Table 6 and variant 5
with a shorter prediction horizon Ny = 10. The results are illustrated in Figure 72.
Firstly, a longer prediction horizon seemingly improved the accuracy of the NNs for
both air mass flows. Nevertheless, the wide error value spread prevented a distinct
conclusion. Secondly, the prioritization of air supply control in J brought about a
higher approximation accuracy of ṁin

Ca. Yet, the distinctly higher RMSE for ṁByp might
have also been caused by the considerable number of operating points with ṁsp

Byp = 0 g
s
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Figure 72: Average RMSE and corresponding standard deviation over 54 NNs for each of
the five examined variants with different P, Q, and Ny.

in Figure 71. These operating points required the NN controller to operate at the lower
control variable bound possp

Byp = 0 %. The control variable saturation was, however,
the most challenging part of the NMPC control law to be learned by the NNs. This
difficulty was probably due to the lack of saturation in the linear output functions.
Therefore, saturated output functions were tested in preliminary studies. This approach
nonetheless failed to provide improvements, most likely as a result of the aforementioned
problem of vanishing gradients.
In a second attempt to tackle this challenge, the application of a physically infeasible
lower bound possp

Byp,Min < 0 % was investigated. The idea was to distribute all training
data samples with possp

Byp,Min = 0 % across a small range better represented by the linear
output functions. This work evaluated the two artificial lower bounds possp

Byp,Min = −5 %
and possp

Byp,Min = −10 %. The obtained average RMSEs are shown in Figure 73.
Unfortunately, this second approach also failed to yield decisive improvements regarding
the accuracy of the NNs.
A more significant correlation resulted from increasing the number of training data
points from 120 000 to 480 000. The respective average RMSEs are depicted in Figure 74.
Despite the high standard deviations of the error values, there is a strong possibility
that the approximation accuracy is improved by increasing the number of training data
points. These findings were especially promising for ṁByp, because the lowest average
RMSE for ṁByp in this section is found in Figure 74.
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Figure 73: Average RMSE and corresponding standard deviation over 90 NNs for every
examined lower bound u2,Min.
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Figure 74: Average RMSE and corresponding standard deviation over 90 NNs for every
examined size of the training data sets.

6.5.2 Variation of Neural Network Setup

By contrast, an increased number of neurons in every hidden layer did not impact
the accuracy of the NNs at all. Figure 75 illustrates that the average RMSEs and
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the associated standard deviations were almost identical for 64, 96 and 128 neurons,
respectively. Additionally, a higher number of neurons equaled more function evaluations
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ṁByp

Figure 75: Average RMSE and corresponding standard deviation over 90 NNs for 64, 96,
and 128 neurons in every hidden layer.

during one time step on the ECU, which increased the CPU core load of the proposed
NN controller. In a preliminary test, this correlation culminated in a task overflow for
a NN with 128 neurons in one hidden layer. Thus, on average, the best performance
was achieved with NNs containing only 64 neurons in every hidden layer.

6.6 Validation of Explicit Nonlinear Model Predictive
Controller on Fuel Cell System Test Stand

In the next step, the most accurate NN regarding ṁin
Ca and the most accurate NN regard-

ing ṁByp from Section 6.5 was implemented on the ECU. The detailed specifications of
these two NNs are summarized in Table 7.

Table 7: Specifications of the two implemented NNs with the highest accuracy regarding
ṁin

Ca and ṁByp.

Variant
RMSE RMSE

NMPC Neurons
Training data

possp
Byp,Min(ṁin

Ca) (ṁByp) samples

1 0.66 g
s 6.75 g

s Var 5 96 240 000 0 %

2 1.88 g
s 1.13 g

s Var 4 96 480 000 −5 %
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6.6.1 Variation of Observer Gains

At first, on the FCS test stand, the observer gains for d̂ were altered to optimize the
closed-loop behavior with the NN controllers. This optimization was conducted with
the trajectories of ṁin,sp

Ca and ṁsp
Byp from Figure 42. The adjusted observer gains were

the two non-zero elements of Ld in Equation (6.9). Thus, only the combination of
these two non-zero elements is given below to avoid a repeated presentation of the
entire matrix. What is more, the nonlinear prediction model of the NMPC reduced the
impact of d̂, which is why smaller observer gains were applied in comparison to the
linear MPC.
On the FCS test stand, the three observer gain pairs [0.1, 0.1], [0.1, 0.01], and [0.05, 0.01]
provided the best combination of robustness against sensor noise and a fast perturbation
compensation. The associated comparison of the closed-loop trajectories of ṁin

Ca and
ṁByp is displayed in Figure 76, containing four representative step changes for the first
variant of Table 7. Firstly, Figure 76 highlights the inability of variant 1 to accurately
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Figure 76: Air mass flows in the closed control loop with variant 1 of Table 7 as a result
of the three different observer gains pairs [0.1, 0.1] (Var 1), [0.1, 0.01] (Var 2),
and [0.05, 0.01] (Var 3).

control ṁByp. The implications of these stationary deviations are discussed in the
next section in combination with the FCS net power controller. Secondly, the three
different observer gain pairs did not significantly impact the dynamics in the closed
control loop. Similar findings were obtained from the corresponding control variable
trajectories shown in Figure 77. Hence, the observer gain pair [0.1, 0.01] was selected
for the subsequent validation of the NN controllers in combination with the FCS net
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Figure 77: Control variables in the closed control loop with variant 1 of Table 7 as a result
of the three different observer gains pairs [0.1, 0.1] (Var 1), [0.1, 0.01] (Var 2),
and [0.05, 0.01] (Var 3).

power and hydrogen dilution controllers. On the one hand, the higher observer gain
for d̂1 enabled a slightly faster perturbation compensation for ṁin

Ca that was beneficial
for the FCS net power controller. On the other hand, the smaller observer gain for
d̂2 promised better compensation for the bypass leakage, which had been one of the
primary motivations for implementing the explicit NMPC.
The findings were almost identical for the second variant of Table 7. Therefore, the
corresponding results did not add substantial value to this work, which is why they are
not displayed in this section.

6.6.2 Validation in Combination with Fuel Cell System Net Power and
Hydrogen Dilution Controller

In the next step on the FCS test stand, the proposed NN-based controller was integrated
into the FCS net power and hydrogen dilution controller cascade. The accompanying
closed-loop behavior was validated with a step profile of P sp

FCS, depicted in Figure 78.
Additionally, the trajectories of ṁin,sp

Ca and ṁsp
Byp for variant 1 of Table 7 were displayed in

Figure 78 since these trajectories changed for every implemented air mass flow controller.
The constant setpoint ṁsp

Byp = 0 g
s was the result of a permanent control deviation of

ṁByp. This deviation is depicted in Figures 79 and 80. The superordinate hydrogen
dilution controller only requested ṁsp

Byp > 0 g
s to ensure a sufficient air mass flow in
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Figure 78: Step changes of Psp
FCS for the validation of the first explicit NMPC of Table 7 in the

FCS net power and hydrogen dilution control cascade with the corresponding
values of ṁin,sp

Ca and ṁsp
Byp.
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Figure 79: Measured air mass flows and control variables in the closed control loop with
the first explicit NMPC of Table 7 and on the FCS test stand for the step change
from Psp

FCS = 10 kW to Psp
FCS = 120 kW.

the cathode exhaust for the dilution of hydrogen in the purge gas. This criterion was
always fulfilled in Figures 79 and 80 due to a permanently open cathode bypass valve.
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Figure 80: Measured air mass flows and control variables in the closed control loop with
the first explicit NMPC of Table 7 and on the FCS test stand for the step change
from Psp

FCS = 120 kW to Psp
FCS = 10 kW.

The bypass valve was not closed even at a setpoint of ṁsp
Byp = 0 g

s . This stationary
control deviation was negligible for small ṁin,sp

Ca that would have required additional air
for hydrogen dilution. Conversely, ṁByp = 10 g

s was redundant for high values of ṁin,sp
Ca .

The accompanying higher power consumption of the air compressor instead reduced the
efficiency of the FCS. In the FCEV, a smaller FCS efficiency would lower the vehicle
range, making this powertrain technology a less viable alternative to BEVs.
Therefore, the second explicit NMPC of Table 7 was better suited for the application in
the FCEV. This NN controller variant was also validated with the step profile of P sp

FCS
from Figure 78. The profile of P sp

FCS and the corresponding trajectories of ṁin,sp
Ca and

ṁsp
Byp are shown in Figure 81. The values of ṁsp

Byp changed over time on account of a
proper bypass control, which is displayed in Figures 82 and 83. Additionally, ṁin

Ca was
precisely controlled within the noise bandwidth of the mass flow sensors. Apart from
the stationary accuracy, the explicit NMPC also exploited the full dynamic potential
of the cathode subsystem. The NN approximation pushed the control variables to
their respective boundaries and, at the same time, avoided overshoots and undershoots
for ṁin

Ca. Another advantage of the explicit NMPC was the absence of oscillations
for ispq,Cmpr and possp

Byp despite the sensor noise and the bypass leakage. This absence
demonstrated the ability of the NN-based NMPC to compensate the bypass leakage,
which had been the primary motivation for developing an explicit NMPC. As a result,
the second variant of Table 7 was selected to validate the proposed NN controller in the
BMW iX5 Hydrogen. The corresponding results are summarized in the next section.
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Figure 81: Step changes of Psp
FCS for the validation of the second explicit NMPC of Table 7

in the FCS net power and hydrogen dilution control cascade with the corre-
sponding values of ṁin,sp

Ca and ṁsp
Byp.
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Figure 82: Measured air mass flows and control variables in the closed control loop with
the second explicit NMPC of Table 7 and on the FCS test stand for the step
change from Psp

FCS = 10 kW to Psp
FCS = 120 kW.
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Figure 83: Measured air mass flows and control variables in the closed control loop with
the second explicit NMPC of Table 7 and on the FCS test stand for the step
change from Psp

FCS = 120 kW to Psp
FCS = 10 kW.

6.7 Validation of Explicit Nonlinear Model Predictive
Controller in Fuel Cell Electric Vehicle

In the closed control loop of the FCEV, the values of ṁin,sp
Ca changed less rapidly compared

to the final validation on the FCS test stand. Thus, a fast perturbation compensation
was more relevant than exploiting the control variable boundaries. This controller
requirement was fully met by the explicit NMPC, as shown in the measurement excerpt
of Figure 84. Only one significant deviation occurred between ṁin

Ca and ṁin,sp
Ca with the

explicit NMPC during the test drive in the BMW iX5 Hydrogen. This deviation is
shown in the measurement excerpt of Figure 85. It is reasonable to assume that this
control deviation originated from an approximation error of the NN. The nonlinear
prediction model generally underestimated ṁAirFil. Thus, the exact NMPC would most
likely have caused an overshoot of ṁin

Ca rather than the displayed initial undershoot.
Apart from this controller error, the proposed NN-based NMPC performed as intended.
The cathode bypass valve was purposefully used to reduce ṁin

Ca more quickly, and iq,Cmpr

did not oscillate during stationary operation.
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Figure 84: First excerpt of measured air mass flows and control variables in the closed
control loop of the FCEV with the second explicit NMPC of Table 7.
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Figure 85: Second excerpt of measured air mass flows and control variables in the closed
control loop of the FCEV with the second explicit NMPC of Table 7.



7 Comparison of Control Approaches for
Air Mass Flow Control

The main goal of this work was to improve the air supply and bypass control of the BMW
iX5 Hydrogen, which was initially carried out by two adaptive PI controllers. Thus, an
explicit linear MPC and an explicit NMPC were implemented and validated on the FCS
test stand and in the FCEV. Eventually, a comparison of the two MPCs and the PI
controllers was conducted to determine the most suitable control approach concerning
dynamics, robustness, and reusability. This comparison required reproducible setpoint
profiles, so the measurements were only carried out on the FCS test stand. Firstly,
the closed-loop behavior was compared for step changes of ṁin,sp

Ca and ṁsp
Byp. The main

results of this comparison are summarized in Section 7.1. Secondly, the impact on
the FCS net power and the hydrogen dilution control cascade was evaluated. The
differences in the closed-loop behavior are highlighted in Section 7.2. Lastly, conclusive
remarks on the three examined control approaches are made in Section 7.3.

7.1 Comparison of Response to Steps in Air Mass Flow
Setpoints

The initial comparison of the closed-loop behavior was conducted with the trajectories
of ṁin,sp

Ca and ṁsp
Byp from Figure 42. The main differences between the PI controllers, the

linear MPC, and the NMPC regarding the air mass flows are summarized in Figure 86
for four representative step changes.
Despite the permanent control deviation of ṁByp, which is most pronounced in Fig-
ure 86c), the explicit NMPC outperformed the PI controllers. Similarly, the explicit
linear MPC was a considerably faster air supply controller than the corresponding PI
controller. One advantage of MPC is its capability to handle MIMO systems, mainly
demonstrated with the air mass flow trajectories in Figure 86c). The simultaneous
rise of ṁsp

Byp perturbed the air supply control. However, this perturbation was fully
compensated by the linear MPC and compensated mainly by the NMPC using the
cross-coupling properties of the prediction model. By contrast, the rise of ṁByp signifi-
cantly prolonged the adjustment of ṁin

Ca with the PI controller. What is more, MPC
enables the prioritization of air supply control over bypass control in the controller
formulation. This prioritization led to the linear MPC and the NMPC temporarily
disregarding ṁsp

Byp during step changes to decrease the adjustment time of the air supply
controller. The benefit was small for a rising ṁin,sp

Ca displayed in Figure 86a), whereas
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Figure 86: Four representative step changes of ṁin,sp
Ca and ṁsp

Byp to compare the closed-loop
behavior of the air mass flows between the two PI controllers, the explicit linear
MPC, and the explicit NMPC.

the reduction of ṁin
Ca was considerably faster for the linear MPC and the NMPC, as

shown in Figure 86b) and d).
This rapid reduction resulted from an instantly opened bypass valve, as highlighted
by the associated control variable trajectories in Figure 87. Furthermore, the MPCs
repeatedly resorted to the control variable boundaries uMin = [0 A, 0 %]T and uMax =
[120 A, 100 %]T in Figure 87. Thus, the linear MPC and the NMPC exploited the full
dynamic potential of the cathode subsystem, whereas the PI controllers often applied
smaller changes to ispq,Cmpr and possp

Byp.
In Figure 87b), the decrease of ispq,Cmpr was limited by the compressor surge line for the
PI controllers. The corresponding air mass flow trajectories in the compressor map are
shown in Figure 88 for the PI controllers, the linear MPC, and the NMPC. Despite
the substantial distance to the surge line in Figure 88, a dynamic lower bound on the
output ispq,Cmpr of PI controller was active during the step change. The considerable
safety margin of this bound resulted from the high time delay ∆t = 50 ms for ispq,Cmpr
that prevented a fast intervention at operating points close to the surge line. Thus,
some of the dynamic potential of the cathode subsystem was lost with the PI controllers.
The significant safety margin did not confine the linear MPC and the NMPC because
the initial opening of the bypass valve reduced pout

Cmpr at once. As a result, the distance
to the compressor surge line was further increased, which allowed the MPCs to instantly
apply ispq,Cmpr = 0 A.
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7.2 Comparison of Response to Steps in Fuel Cell System
Net Power Setpoint

Air supply control was the limiting factor for a rapid dynamic response of PFCS in the
FCS of the BMW iX5 Hydrogen, which is why exploiting the full dynamic potential of
the cathode subsystem was an essential requirement for successfully implementing an
air mass flow controller. Section 7.1 demonstrated that the two adaptive PI controllers
failed to meet this criterion. Hence, a step change detection algorithm on P sp

FCS had
been included in the implementation of the two PI controllers before this work. This
algorithm improved the corresponding closed-loop behavior of the cathode subsystem in
the FCS net power and hydrogen dilution control cascade. First, a significant decrease
in P sp

FCS was detected with a difference quotient. Then, the outputs of both controllers
were replaced with predetermined values, taking advantage of the MIMO character of
the cathode subsystem. Additionally, the bypass leakage was handled by replacing the
actual sensor value with ṁmeas

Byp = 0 g
s in the calculation of ṁin

Ca for possp
Byp = 0 % and

small values of posByp, and disabling the bypass controller with a constant possp
Byp = 0 %

for small values of ṁsp
Byp.

The resulting closed-loop behavior of the air mass flows was comparable to the dynamic
responses of the cathode subsystem with the linear MPC and the NMPC. The remaining
differences between the three control approaches were evaluated with the step profile
of P sp

FCS from Figure 53. The main findings from this evaluation are represented by
Figure 89, which displays the closed-loop trajectories of ṁin

Ca and ṁByp for the step
changes from P sp

FCS = 10 kW to P sp
FCS = 120 kW and vice versa. Despite the additional

step change detection, the NMPC still slightly outperformed the two PI controllers for
the negative step change of ṁin,sp

Ca in Figure 89b). Firstly, calculating the slope of P sp
FCS

took a few time steps to calculate. Thus, the dynamic response of the PI controllers
was delayed. This delay is also shown in Figure 90, which illustrates the associated
trajectories of the control variables. Secondly, the sudden closing of the bypass valve at
the end of the step change detection led to an overshoot in ṁin

Ca for the PI controllers,
highlighted in the zoomed area of Figure 89b). This overshoot demonstrated the
inability of PI controllers to efficiently compensate for the disturbances imposed by the
cross-coupling effects in the cathode subsystem. The behavior of a MIMO controller was
only approximated with the step change detection. Moreover, the step change detection
requires substantial calibrations for the considered FCS and has to be repeated after
each hardware modification in the cathode subsystem. These adjustments need expert
knowledge on the controlled plant and the overall operating strategy. By contrast,
for the explicit NMPC, only the respective parameters of the nonlinear prediction
model must be adjusted to the modified hardware, and the NN must be retrained to
duplicate the closed-loop behavior of Figures 89 and 90. These two steps can be executed
with automated scripts that do not require expert knowledge of the controlled plant.
Furthermore, the development of the NN-based explicit NMPC is entirely independent
of the overall operating strategy.
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Figure 89: Two representative step changes of Psp
FCS for the comparison of the closed-loop

behavior of the air mass flows between the two PI controllers, the explicit linear
MPC, and the explicit NMPC.

−1 0 1 2 3 4 5
0

50

100

C
ur

re
nt

isp q,
C

m
pr

[A
]

(a)

−1 0 1 2 3 4 5
Time t [s]

0

50

100

C
ur

re
nt

isp q,
C

m
pr

[A
]

(b)

0

50

100

Po
si

tio
n

po
s

sp B
yp

[%
]

0

50

100

Po
si

tio
n

po
s

sp B
yp

[%
]

Current (PI)
Position (PI)

Current (LinMPC)
Position (LinMPC)

Current (NMPC)
Position (NMPC)

Figure 90: Two representative step changes of Psp
FCS to compare the closed-loop behavior

of the control variables between the two PI controllers, the explicit linear MPC,
and the explicit NMPC.



118 7 Comparison of Control Approaches for Air Mass Flow Control

The dynamic behavior was comparable for the closed control loops with the linear MPC
and the NMPC. However, the explicit NMPC better compensated the stationary bypass
leakage, which caused significant oscillations in ṁin

Ca for the linear MPC, as shown in
Figure 89. These oscillations resulted from considerable oscillations in the trajectory
of ispq,Cmpr in Figure 90. Consequently, PCmpr was oscillating, which further gave rise
to oscillations in PFCS, highlighted in the zoomed area of Figure 91. The oscillations
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Figure 91: Two representative step changes of Psp
FCS to compare the closed-loop behavior

of the FCS net power between the two PI controllers, the explicit linear MPC,
and the explicit NMPC.

in PFCS outweighed the availability of the exact explicit solution for the linear MPC,
which prevented stationary control deviations.
Oscillations in iq,Cmpr were also visible in Figure 90a) for the PI controllers. However,
these oscillations were small enough to avoid a substantial impact on PFCS, which is
demonstrated in the zoomed area of Figure 91a). Thus, the PI controllers slightly
outperformed the explicit linear MPC during stationary operation, especially at high
system loads, whereas the linear MPC displayed a better dynamic response of ṁin

Ca in
Figure 89.

7.3 Conclusion

Overall, this work demonstrated that the NN approximation of an explicit NMPC
outperforms an explicit linear MPC and adaptive PI controllers for the air mass flow
control in the FCS of the BMW iX5 Hydrogen. Despite the small approximation errors
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of the NN causing permanent control deviations of ṁByp, the NMPC provides the best
combination of optimal dynamic responses during setpoint step changes and efficient
perturbation compensation during stationary operation. Additionally, the high initial
effort for setting up the explicit NMPC is outweighed by the transferability of this
approach to modified systems. The transferability is also a significant advantage over
the adaptive PI control approach with step change detection, which requires extensive
fine-tuning for each system modification. This additional effort outweighs the easy
implementation on an ECU and the possibility of tuning PI controllers in real-time.
By contrast, the explicit NMPC and the explicit linear MPC both require closed-loop
simulations to efficiently adjust the parameters of the cost function.
Another advantage of the NMPC is the straightforward extension to more control
variables, which only necessitates the extension of the semi-empirical nonlinear prediction
model. The next chapter demonstrates this advantage by extending the NMPC to
include the FCS net power and the hydrogen dilution controllers.





8 Fuel Cell System Net Power and
Hydrogen Dilution Control with
Nonlinear Model Predictive Control

In this work, the response time of the air supply controller was minimized with NMPC.
Nevertheless, the cascaded control structure of Figure 3 still limited the dynamics of the
superordinate FCS net power controller. The FCS net power controller had to be seven
to ten times slower than the air supply controller to attain an advantageous closed
control loop [68]. Thus, merging the cascaded FCS net power, hydrogen dilution, and
air mass flow controllers into one MIMO controller was likely to shorten the response
time of PFCS. The nonlinearity of the air mass flow and electric power correlations from
Chapter 4 and the promising results from Chapter 7 further suggested the application
of NMPC to the arising control task.
The fundamentals of this NMPC are presented in the following. At first, the nonlinear
prediction model is introduced and validated in Section 8.1. This nonlinear prediction
model was a prerequisite for the state and perturbation observer, presented in Section 8.2.
Moreover, the nonlinear prediction model was essential to the cost function of the NMPC.
In this work, four different variants of this cost function were developed, all of which
are introduced in Section 8.3. Eventually, the implicit NMPC for FCS net power and
hydrogen dilution control was evaluated in closed-loop simulations. The corresponding
results are presented and discussed in Section 8.4. The subsequent steps would have
been the fitting of a NN and the validation on the FCS test stand. However, these steps
were out of the scope of this work.

8.1 Nonlinear Prediction Model

The FCS net power and hydrogen dilution controller was implemented as an extension
of the air mass flow controller from Chapter 6. Thus, the discrete nonlinear prediction
model of Section 6.1 was expanded to represent the dynamics of the new controlled
variables y = [PFCS, λO2 , ṁDil]T subject to changes in the available control variables
u =

[
ispq,Cmpr, posso

Byp, Isp
Stck

]T
. The additional stationary correlations for the electric

powers were taken from Section 4.3.
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8.1.1 Model Equations

Expanding the nonlinear prediction model from Section 6.1 included the simplifications
from Section 6.1.1. Thus, pO2 was calculated from pout

Cmpr and pin
Trb instead of pin

Ca and
pout

Ca , and λO2 was determined with ˙̃min
Ca from Equation (6.2). Another simplification

in this work was the approximation of ṁDil with ṁAirFil, despite the air mass flow
reduction in the fuel cell stack. However, the active control of ṁDil was only necessary
for very small fuel cell stack loads, corresponding to small oxygen consumption. Hence,
the approximation error was marginal in the relevant operating range. Furthermore,
the electric power correlations from Section 4.3 did not introduce additional dynamic
states, which is why x =

[
iq,Cmpr, ωCmpr, posByp, pout

Cmpr, pin
Trb

]
was retained.

8.1.2 Validation of Prediction Model

The accuracy of the nonlinear prediction model was evaluated with the FCEV measure-
ment from Section 4.4.2. Thus, the model inputs u are displayed in Figure 29. This
measurement allowed a thorough comparison of the dynamics and stationary values of
the electric powers and the associated states between the simplified prediction model
and the experimental FCS.
At first, the comparison of model and measurement values for nCmpr is shown in
Figure 92. The dynamics of nCmpr were accurately predicted, whereas the considerable
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Figure 92: Comparison of nCmpr for the FCEV measurement and the corresponding nonlin-
ear prediction model calculations.

stationary deviations primarily resulted from the assumed constant ηIs,Cmpr = 70 % and
ηIs,Trb = 80 %. Additionally, the difference between measurement and model prediction
increased from t = 12 s to t = 22 s in Figure 92. This growing deviation was caused by
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the assumption of a constant posVTG = 50 % in the nonlinear prediction model, whereas
posVTG was actually decreased in the measurement. Nevertheless, changes in posVTG

were generally slow, which is why these perturbations were effortlessly compensated by
the observer.
This perturbation compensation was even more straightforward for PCmpr. The impact
of a changing posVTG was insignificant, as shown by the comparison of measurement
values and model predictions for PCmpr in Figure 93. Moreover, the substantial impact
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Figure 93: Comparison of PCmpr for the FCEV measurement and the corresponding non-
linear prediction model calculations.

of iq,Cmpr on PCmpr reduced the overall stationary deviations compared to nCmpr, since
the stationary value of iq,Cmpr was equal to the model input ispq,Cmpr. This correlation
also led to the dynamics of PCmpr being correctly predicted in Figure 93.
Similarly, IStck was equal to the model input Isp

Stck with a time delay of 50 ms, which is
why all the differences between model prediction and measurement of λO2 in Figure 94
resulted from deviations in ṁin

Ca. However, these deviations in ṁin
Ca were sufficiently

compensated with the perturbation observer, as demonstrated in Chapter 6 for the
nonlinear air mass flow controller. Additionally, the dynamics were fairly well predicted,
which is why this nonlinear prediction model was sufficient for controlling λO2 .
The second controlled variable was PFCS, which mainly depended on PStck. As a result,
the accuracy of the predicted UStck significantly impacted the closed-loop behavior of
the proposed NMPC. The associated comparison between the FCEV measurement
and the nonlinear prediction model is displayed in Figure 95. The dynamics of UStck

were reasonably well predicted in Figure 95. Mostly, the variations in UStck resulted
from changes in IStck, which were directly adopted from the altered model input Isp

Stck.
Additionally, the time period from t = 23 s to t = 26 s was negligible due to the
deactivation of the FCS net power controller.
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Figure 94: Comparison of λO2 for the FCEV measurement and the corresponding nonlinear
prediction model calculations.
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Stck for the FCEV measurement and the corresponding nonlin-

ear prediction model calculations.

By contrast, the stationary deviations between the FCEV measurement and the nonlinear
prediction model were considerable. These deviations were partly caused by the
culminated simplifications of a constant pH2 as well as a constant fuel cell temperature
and humidity. Furthermore, the approximation of pO2 was inaccurate in the simplified
cathode subsystem model. Firstly, the neglection of pin

Ca and pout
Ca generated a higher

pO2 . In the cathode subsystem, the humidifier bypass valve led to a smaller pressure
loss between pout

Ca and pin
Trb compared to the difference between pout

Cmpr and pin
Ca. Thus, the
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average pressure between pin
Ca and pout

Ca , the main contributor to pO2 , was smaller than the
average pressure between pout

Cmpr and pin
Trb. As a result, UStck was higher in the nonlinear

prediction model than the FCEV measurement. Secondly, some pressure changes were
not represented by the nonlinear prediction model as a consequence of the assumed
constant posVTG = 50 %. Hence, the decrease of posVTG between t = 17 s and t = 23 s
only increased Umeas

Stck in Figure 95 owing to the rise of pO2 in the FCEV measurement.
By contrast, the pressure level in the nonlinear prediction model decreased, as shown by
the pressure comparison between the FCEV measurement and the nonlinear prediction
model in Figure 96. The benefit of taking posVTG into account is shown in the higher
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Figure 96: Comparison of pout
Cmpr for the FCEV measurement and the corresponding nonlin-

ear prediction model calculations.

accuracy of UStck for the simulation model in Figure 37. Moreover, the higher accuracy
mostly involved the low levels of UStck at high IStck. Therefore, the high stationary
deviations in PStck between the FCEV measurement and the nonlinear prediction model
in Figure 97 were, to some extent, the result of the assumed constant posVTG = 50 %.
The stationary accuracy of PStck was also only dependent on UStck, because the second
factor, IStck, was identical to the model input Isp

Stck for stationary operating points. The
dynamics of PStck were nevertheless precisely modeled, which is an essential prerequisite
for successfully implementing a model-based controller.
The NMPC heavily relied on the prediction of PStck, which was the leading contributor
to the primary controlled variable, PFCS. Thus, the dynamics of PFCS were well
predicted, whereas significant stationary deviations occurred at higher FCS loads.
These deviations are shown in Figure 98 for the associated comparison of PFCS between
the FCEV measurement and the nonlinear prediction model. Similar to the air mass
flow controller in Chapter 6, zero control deviation with regard to PFCS was achieved by
compensating the stationary deviations with a perturbation observer. This perturbation
observer for the FCS net power and hydrogen dilution controller is presented in the
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Figure 97: Comparison of PStck for the FCEV measurement and the corresponding nonlin-
ear prediction model calculations.
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Figure 98: Comparison of PFCS for the FCEV measurement and the corresponding nonlin-
ear prediction model calculations.

next section.

8.2 State and Perturbation Observer

The state and perturbation observer was again a Luenberger observer, which was ex-
tended with estimated perturbation states d̂ to compensate for the stationary deviations
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between the nonlinear prediction model and the controlled plant.x̂ (k + 1)
d̂ (k + 1)

 =
x̂ (k)

d̂ (k)

+ ∆t ·

f (x̂ (k) , u (k))
0



+ Ld ·

ymeas
FCS (k) −


ŷ1,FCS (k)

ŷ2,FCS (k − 4)
ŷ3,FCS (k)




(8.1)

The three sensor values nmeas
Cmpr, posmeas

Byp , and pout,meas
Cmpr were neglected in this observer.

These sensor values were unnecessary for the NMPC to properly control the air mass
flows, as shown in Chapter 6. Instead, all perturbations concerning PFCS were initially
compensated with one perturbation state d̂3. The value of d̂3 was estimated from the
difference between the estimated P̂FCS and the measured Pmeas

FCS , which was part of the
measurement feedback vector ymeas

FCS .

ymeas
FCS =

[
ṁmeas

AirFil, ṁmeas
Byp , Pmeas

FCS

]T
(8.2)

Similar to the nonlinear air mass flow controller, all differences between the nonlinear
prediction model and the controlled plant were compensated for with d̂. Thus, only the
three appropriate observer gains in Ld were unequal to zero.

Ld =


0 0 0 0 0 0.1 0 0
0 0 0 0 0 0 0.01 0
0 0 0 0 0 0 0 0.1


T

(8.3)

In Equation (8.3), the observer gains for ymeas
1,F CS and ymeas

2,F CS were taken over from the
final parameterization of Ld in Chapter 6.
Eventually, the predicted control variables y in the cost function were modified with d̂

to obtain corrected values ỹ instead of directly subtracting the estimated perturbations
from ysp. This approach for the perturbation compensation was necessary because λO2

was not directly measured. Instead, the prediction of ṁin
Ca in the cost function was

corrected with d̂1 for ṁAirFil as well as d2 for ṁByp. Afterward, the corrected value of
λO2 was calculated from the corrected ṁin

Ca and IStck. Thus, d̂ was part of the parameter
vector θ, an input variable of the NMPC cost function J . This cost function is presented
in the next section.
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8.3 Cost Function for Nonlinear Model Predictive Controller

In this work, a quadratic form was chosen for J of FCS net power and hydrogen dilution
NMPC.

J (θ (k) , U) =
ysp

1 (k) − ỹ1 (k +Ny)
ysp

2 (k) − ỹ2 (k +Ny)

T

P

ysp
1 (k) − ỹ1 (k +Ny)
ysp

2 (k) − ỹ2 (k +Ny)


+

Ny−1∑
i=1

ysp
1 (k) − ỹ1 (k + i)
ysp

2 (k) − ỹ2 (k + i)

T

Q

ysp
1 (k) − ỹ1 (k + i)
ysp

2 (k) − ỹ2 (k + i)


+

Nu−1∑
j=0

∆u (k + j)T R∆u (k + j)

(8.4)

The controlled variable y3 was not considered in J . Instead, hydrogen dilution control
was achieved by maintaining a lower limit y3 ≥ ysp

3 . Thus, y3 was part of the con-
straints of the NMPC optimization problem alongside the lower and upper boundaries
umin = [0 A, 0 %, 0 A]T and umax = [120 A, 100 %, ICell,Max]T . Additionally, local oxy-
gen starvation was prevented by imposing a global lower bound y2,Min = 1.6, whereas
membrane drying was inhibited by limiting y2 from above with y2,Max = 4.0.

min
U

J (θ (k) , U ) (8.5)

s.t. uMin ≤ u (k + j) ≤ uMax, j = 0, 1, ...,Nu − 1 (8.6)
y2,Min ≤ y2 (k + i) ≤ y2,Max, i = 1, 2, ...,Ny (8.7)
y3,Min ≤ y3 (k + i) , i = 1, 2, ...,Ny (8.8)
x (k + i) = x (k + i− 1) + ∆t · f 1, i = 1, 2, ...,Ny (8.9)
y (k + i) = h (x (k + i)) , i = 1, 2, ...,Ny (8.10)

The control targets and constraints mentioned above ensured the proper operation of
the FCS. Furthermore, maintaining a high FCS efficiency was essential to minimize
hydrogen consumption and, thus, increase the range of the FCEV. This additional
control target is commonly met with a mapping λO2 = f (IStck) that maximizes PFCS

for a given IStck (see e.g., [6], [15]). In this work, however, the control of λO2 alone
was insufficient to maximize the FCS efficiency. Moreover, stationary air mass flow
losses through the cathode bypass had to be limited to operating points that require
additional air for hydrogen dilution, preventing excessive power consumption of the air
compressor. In this work, attempts to achieve this goal were made with three different
optimization criteria. Firstly, ṁByp was minimized by applying the ratio y4,1 = ṁByp

ṁin
Ca

and ysp
4 = 0 to J . Secondly, the total air mass flow was minimized with y4,2 = ṁAirFil

and ysp
4 = 0. Thirdly, the FCS efficiency with regard to PStck and PCmpr was maximized

by integrating y4,3 = 1
ηFCS

= PStck
PStck−PCmpr

and ysp
4 = 0 into J . Eventually, the impact of

1 state and input dependencies were neglected to avoid a multi-line equation,
f = f (x (k + i− 1) ,x3 (k + i− 2) ,u1 (k + i− 6) ,u2 (k + i− 2) ,u2 (k + i− 3) ,u3 (k + i− 6))
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each criterion on the closed-loop behavior of the proposed NMPC was evaluated. The
results are summarized in Section 8.4.3.

8.4 Simulation Study with Implicit Nonlinear Model
Predictive Controller

Within the scope of this work, the NMPC for FCS net power and hydrogen dilution
control was only validated in closed-loop simulations. The NMPC optimization problem
in these simulations was solved with the MATLAB implementation (Release R2018b)
of the Global Search algorithm [116]. This algorithm solves a local optimization
problem from a set of initial points, which was carried out with the sequential QP
algorithm of fmincon. Additionally, central finite differences were applied for gradient
approximations, and the optimal solution from the previous time step was the initial
guess for each Global Search run.
Initially, the closed-loop simulations were focused on the control of PFCS, λO2 , and ṁDil,
while neglecting the FCS efficiency. The initial cost function parameter values Ny = 15
and Nu = 1 were adopted from the best-performing NMPC of Chapter 6. However, the
weight matrices were adjusted to P = [ 10 0

0 10 ] and Q = [ 1 0
0 1 ], which reflected the equal

significance of the two main control tasks for PFCS and λO2 . The control effort was not
penalized with R = [0] to achieve maximum dynamics within the boundaries of the
control variables.
The first part of this simulation study was focused on optimizing the closed-loop behavior
of PFCS and λO2 with Ny and Nu. Then, the weight matrices P and Q were adjusted
to further improve the dynamic response of the FCS net power and hydrogen dilution
controller. Eventually, the most suitable third optimization target was identified by
evaluating the impact of all three efficiency criteria on the closed-loop behavior.
Each part of the simulation study was conducted with a short validation scenario. This
validation scenario involved a constant setpoint λsp

O2 = 1.7 and a constant hydrogen
dilution mass flow request ṁsp

Dil = 20 g
s as well as three step changes from P sp

FCS = 20 kW
to P sp

FCS = 100 kW, from P sp
FCS = 100 kW to P sp

FCS = 50 kW, and then again down to
P sp

FCS = 20 kW. Even though the validation scenario only covered a small area of the
entire operating range, the three step changes were sufficient for statements about the
impact of each cost function parameter and the best efficiency criterion.

8.4.1 Variation of Prediction and Control Horizon

In the cost function, the constraints on λO2 imposed dynamic boundaries on Isp
Stck,

since the available ṁin
Ca limited the maximum and the minimum values of IStck. As a

result, long prediction and control horizons were necessary to reflect these complex
dynamic correlations and enable the NMPC to act on them accordingly. The evaluated
combinations of Ny and Nu are summarized in Table 8.



130 8 FCS Net Power and Hydrogen Dilution Control with NMPC

Table 8: Variants of Ny and Nu for the parameterization of J with regard to the proposed
NMPC for FCS net power and hydrogen dilution control.

Variant Ny Nu Variant Ny Nu Variant Ny Nu

1 15 1 2 15 10 3 30 25

4 60 25 5 60 35

The comparison of PFCS, λO2 , and ṁDil for the first three variants of Table 8 is shown
in Figure 99. The trajectories in Figure 99 suggest that Nu > 1 was a prerequisite for
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Figure 99: Comparison of controlled variables for variants 1, 2, and 3 from Table 8.

properly controlling PFCS. A significant increase in PFCS required a considerable rise in
ṁin

Ca to provide enough oxygen for a higher IStck. However, the dynamics of the cathode
subsystem were slow, which is why higher values of Isp

Stck were only applicable later in the
prediction. This delayed increase of Isp

Stck was infeasible for Nu = 1, which only allowed
one change in Isp

Stck at the beginning of the prediction horizon. Furthermore, the rise in
ṁin

Ca was linked to a substantially higher ispq,Cmpr, which resulted in an increased PCmpr.
Thus, PFCS was initially reduced in the prediction. Higher values of Isp

Stck compensated for
this initial reduction, but these higher values were infeasible for Nu = 1. Hence, ispq,Cmpr
remained low for Nu = 1, avoiding large control deviations for PFCS. This behavior of
the control variables is displayed in Figure 100, which further depicts the considerable
changes in ispq,Cmpr and Isp

Stck for Nu > 1, allowing proper control of PFCS. Nonetheless,
the main disadvantage of Nu > 1 remained the numerical uncertainties with the forward
Euler that reduced the prediction accuracy. These numerical uncertainties most likely
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Figure 100: Comparison of control variables for variants 1, 2, and 3 from Table 8.

caused the oscillations in ispq,Cmpr and possp
Byp for variants 2 and 3 in Figure 100.

Despite the appreciable improvements in the closed-loop behavior of PFCS, Ny = 30
and Nu = 25 of variant 3 were insufficient to properly control λO2 . Instead, the best
closed-loop behavior of PFCS and λO2 was achieved with Ny = 60 and Nu = 35. The
corresponding comparison of the controlled variables between variants 3, 4, and 5 of
Table 8 is displayed in Figure 101. The longer prediction horizon Ny = 60 allowed
the NMPC to properly control λO2 for every stationary operating point. At medium
to low loads of the compressor, the maximum deceleration with iq,Cmpr = 0 A was
slow because the applied torque difference was small. Thus, the time constant of this
dynamic transition was relatively high. Eventually, the prediction with Ny = 30 did
not fully cover the last step change in Figure 101, whereas Ny = 60 was long enough
the reflect the corresponding slow dynamics.
Moreover, the NMPC with Nu = 35 outperformed the NMPC with Nu = 25 since the
latter induced significant disruptions in PFCS and λO2 at t = 4.6 s in Figure 101. These
disruptions resulted from a sudden increase and decrease of all three control variables,
as highlighted in Figure 102. In this figure, the control variable trajectories of variants
3, 4, and 5 of Table 8 are compared. The disruptions were preceded by two consecutive
optimization runs failing to determine a feasible point. Accordingly, it is reasonable
to assume that the disruptions were caused by the high difference between Ny = 60
and Nu = 25. Minus the delays, the control variables remained constant for the last 30
time steps in the prediction. Therefore, the last set of control variables had to ensure
that all constraints were met for 30 time steps with variant 4. By contrast, variant 5
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Figure 101: Comparison of controlled variables for variants 3, 4, and 5 from Table 8.
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Figure 102: Comparison of control variables for variants 3, 4, and 5 from Table 8.

only required the solver to determine a last set of control variables that covered the
constraints for 20 times steps, which was considerably more manageable. Eventually,
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Ny = 60 and Nu = 35 were used throughout the remainder of this simulation study on
NMPC for FCS net power and hydrogen dilution control.
Another unresolved issue of this control setup was the occurrence of oxygen starvation
with λO2 < 1 at t = 2 s in Figure 101b). The instantaneous closing of the bypass
valve before the acceleration of the air compressor temporarily increased pout

Cmpr. This
pressure increase caused a drop in ṁCmpr, which decreased ṁCa

Ca. However, this oxygen
starvation was not predicted by the NMPC. The optimizer did not return the flag
related to an infeasible solution, even though the constraint 1.6 < λO2 was clearly
violated. Ultimately, this issue was resolved with the consideration of an efficiency
criterion, as shown in Section 8.4.3.

8.4.2 Variation of Cost Function Weights

Before the consideration of an efficiency criterion, however, the impact of the weights in
P and Q on the closed-loop behavior was evaluated. Thus, the three different variants
from Table 9 were compared. The resulting trajectories of PFCS, ṁDil and λO2 are

Table 9: Variants of P and Q for the parameterization of J with regard to the proposed
NMPC for FCS net power and hydrogen dilution control.

Variant P Q Variant P Q Variant P Q

5 [ 10 0
0 10 ] [ 1 0

0 1 ] 6 [ 10 0
0 10 ] [ 5 0

0 1 ] 7 [ 100 0
0 100 ] [ 1 0

0 1 ]

illustrated in Figure 103. Generally, the differences between the three variants were
not as significant as for the variation of Ny and Nu. The only considerable deviation
in the controlled variables was the drop in PFCS for variant 6 at t = 2.1 s (Fig. 103a)).
Eventually, P = [ 100 0

0 100 ] and Q = [ 1 0
0 1 ] from variant 7 were selected for the subsequent

evaluation of the efficiency criteria. The corresponding trajectory of ispq,Cmpr in Figure 104
showed fewer oscillations than the trajectory of variant 5. Although these oscillations
barely impacted PFCS (Fig. 103a)), the repeated acceleration and deceleration of the
compressor motor should be avoided. Otherwise, the stress on the motor and the
attached compressor bearing might reduce the lifetime of the component.
The remaining oscillations for variant 7 were most likely caused by the prediction errors
of the forward Euler for Nu > 1. Additionally, the optimization solver more often than
not failed to converge to an optimal solution, which was probably partly caused by
the predictions errors. However, an improvement of the nonlinear model predictions
and implementing a better-performing optimization solver were out of the scope of this
work. Instead, the available tools were used to evaluate the impact of different efficiency
criteria on the closed-loop behavior of the FCS with regard to net power and hydrogen
dilution control. The associated results are summarized in the subsequent section.
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Figure 103: Comparison of controlled variables for variants 5, 6, and 7 from Table 9.
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Figure 104: Comparison of control variables for variants 5, 6, and 7 from Table 9.
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8.4.3 Variation of Efficiency Criterion

In the applied validation scenario, additional air for hydrogen dilution was only required
for the operating point with P sp

FCS = 20 kW. Nonetheless, the bypass valve was seldom
fully closed for the other two operating points in Sections 8.4.1 and 8.4.2. Thus, the air
compressor supplied unnecessary excess air to the FCS. This excess air supply resulted
in excessive power consumption of the compressor motor, which reduced the efficiency
of the FCS. Therefore, the three different efficiency criteria from Section 8.3 were
additionally integrated into the cost function of the NMPC. This integration included
an extension of the weight matrices to P =

[ 100 0 0
0 100 0
0 0 1

]
and Q =

[ 1 0 0
0 1 0
0 0 0.01

]
, with the

smaller values for the efficiency reflecting the lesser significance of this control task
during transients. The proper operation of the FCS was more crucial than maintaining
high efficiency. In Figure 105, the resulting closed-loop behavior of PFCS, ṁDil, and λO2

is compared. Variant 2 with the efficiency criterion y4,2 = ṁAirFil was the only variant
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Figure 105: Comparison of controlled variables for the extended cost functions including
y4,1 = ṁByp

ṁin
Ca

(Var 1), y4,2 = ṁAirFil (Var 2), and y4,3 = 1
ηFCS

= PStck
PStck−PCmpr

(Var 3).

with an active constraint ṁDil = ṁDil,Min for P sp
FCS = 20 kW. Thus, the air compressor

supplied the minimum amount of air that still sufficed for hydrogen dilution. What is
more, the NMPC with variant 2 was the only controller that fully closed the bypass
valve for P sp

FCS = 50 kW, as shown in Figure 106. As a result, y4,2 = ṁAirFil was best
suited for additionally maximizing the FCS efficiency. Variant 2 had the advantage
that the FCS efficiency and the hydrogen dilution air mass flow were each represented
by ṁAirFil. Therefore, the optimization solver probably struggled less to reconcile both
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Figure 106: Comparison of control variables for the extended cost functions including
y4,1 = ṁByp
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(Var 1), y4,2 = ṁAirFil (Var 2), and y4,3 = 1
ηFCS

= PStck
PStck−PCmpr

(Var 3).

control tasks, as no other dependencies had to be considered.
A drawback of the efficiency criterion ṁAirFil was the increased occurrence of oscillations
in ispq,Cmpr. This increase might be related to the higher FCS efficiency with lower iq,Cmpr,
which resulted in lower rotational speeds of the air compressor. Consequently, ṁCmpr

was more pressure-sensitive, and the numerical shortcomings of the forward Euler were
more likely to impair the predictions of the NMPC.
Nevertheless, the potential of NMPC for FCS net power and hydrogen dilution control
was demonstrated in this chapter. Removing the control cascade enabled an optimized
closed-loop behavior with maximum dynamics of PFCS. Additionally, all operating
constraints were considered. As a result of the maximum dynamics of PFCS, the
application of this NMPC to the FCEV can reduce the necessary peak power of
the secondary energy source. Hence, the total cost of the FCEV is decreased, while
additionally, the available storage space for hydrogen is enlarged. Eventually, the
vehicle range is extended, which increases the viability of the FCEV as an alternative
to BEVs.
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In the present work, the primary objective was to improve the closed-loop behavior of
the FCS of the BMW iX5 Hydrogen. Consequently, linear and nonlinear MPC was
applied to the air mass flow control in the cathode subsystem, which was the limiting
factor in the dynamic response of the FCS net power. Moreover, the experimental
validation of the proposed controllers required a real-time capable approach, so explicit
MPC was employed. The exact explicit solution to the QP problem was available for
the linear MPC, whereas the explicit solution to the NLP problem of the NMPC was
approximated with a NN. Before determining the explicit solutions, the parameters of the
respective cost functions were adjusted in closed-loop simulations. The corresponding
lumped-parameter simulation model was also introduced in this work. Eventually, the
explicit NMPC outperformed the explicit linear MPC and the reference control setup
with two adaptive PI controllers. On the one side, the bypass leakage was insufficiently
compensated by the linear MPC. On the other side, the two PI controllers were unable
to fully offset the cross-coupling between the stack and bypass mass flow, despite the
additional load step detection algorithm allowing the two PI controllers to mimic MIMO
behavior.
The remaining challenges for the air mass flow NMPC are twofold. On the one hand, the
approximation accuracy of the NN must be further improved to remove the stationary
control deviations of the bypass mass flow. Hence, future works should improve the
training data set by increasing the number of samples and refining the sampling
algorithm. On the other hand, the discretization of the nonlinear prediction model with
the forward Euler entailed numerical inaccuracies, preventing the application of longer
control horizons. However, longer prediction horizons allow exploiting the full dynamic
potential of the cathode subsystem, which is why future works must also consider more
refined integration approaches like higher-order Runge-Kutta methods.
The last part of this study revolved around extending the NMPC to control the FCS
net power. Closed-loop simulations demonstrated that the FCS net power and the
air mass flow for hydrogen dilution are directly controllable with the stack current,
the quadrature current of the air compressor motor, and the position of the bypass
valve. Furthermore, the NMPC enabled the consideration of all FCS operating range
boundaries in the controller formulation.
However, several challenges must be addressed before validating the NMPC on the FCS
test stand. Firstly, a refined NLP solver must be identified to increase the convergence
rate during closed-loop simulations and for the training data preparation. Secondly,
the closed-loop simulations must consider a more comprehensive range of operating
points and step changes. The extension of the validation scenario was prevented by the
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high computational time of the Global Search optimization solver, which is why
this second challenge is connected to the first challenge. Thirdly, a more sophisticated
integration method is even more crucial for FCS net power control than for air mass
flow control. In the present study, long prediction and control horizons were the major
prerequisites for successfully fulfilling every control target.
What is more, future works must aim to improve the nonlinear prediction model for FCS
net power control. Firstly, the direct integration of the VTG in the model equations
reduces the prediction error of the oxygen partial pressure. As a result, the fuel cell
voltage is determined more accurately. Secondly, the consideration of variable isentropic
efficiencies for the air compressor and turbine enhances the stationary accuracy of the
predicted air mass flows. Thirdly, the ambient temperature and pressure substantially
impacted the predicted stationary operating point. Therefore, considering the ambient
conditions as model inputs also improves the prediction accuracy of the nonlinear
model.
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