
Formal Verification of Graph Convolutional Networks with
Uncertain Node Features and Uncertain Graph Structure

Tobias Ladner tobias.ladner@tum.de

Michael Eichelbeck michael.eichelbeck@tum.de

Matthias Althoff althoff@tum.de

School of Computation, Information and Technology

Technical University of Munich, Germany

Abstract

Graph neural networks are becoming increasingly popular in the field of machine learn-
ing due to their unique ability to process data structured in graphs. They have also been
applied in safety-critical environments where perturbations inherently occur. However,
these perturbations require us to formally verify neural networks before their deployment
in safety-critical environments as neural networks are prone to adversarial attacks. While
there exists research on the formal verification of neural networks, there is no work veri-
fying the robustness of generic graph convolutional network architectures with uncertainty
in the node features and in the graph structure over multiple message-passing steps. This
work addresses this research gap by explicitly preserving the non-convex dependencies of all
elements in the underlying computations through reachability analysis with (matrix) poly-
nomial zonotopes. We demonstrate our approach on three popular benchmark datasets.

Keywords: Graph neural network, formal verification, set-based computing, matrix
polynomial zonotope, uncertain message passing.

1 Introduction

A graph neural network extends the typical notion of feedforward neural networks to graph
inputs (Kipf and Welling, 2017). Each node in the graph is associated with a feature
vector, which is iteratively updated by exchanging information with neighboring nodes
using their feature vectors over multiple message-passing steps. They have shown to achieve
state-of-the-art results in a variety of fields (Wu et al., 2020), including advances in drug
discovery (Zhang et al., 2021), recommender systems in social networks (Ying et al., 2018),
and have also been applied in safety-critical environments such as cooperative autonomous
driving (Chen et al., 2021).

However, it is well known that neural networks are sensitive to adversarial attacks (Good-
fellow et al., 2015), where minor perturbations to the input can lead to unexpected pre-
dictions. Adversarial examples have also extensively been studied for graph neural net-
works (Dai et al., 2018; Günnemann, 2022), where both the node features and the graph
structure can be perturbed. As graph neural networks are a generalization of many other
network architectures to non-Euclidean input data (Bronstein et al., 2017), the existence of
adversarial examples is not surprising. Thus, neural networks need to be formally verified
before they can be safely deployed (Brix et al., 2023; König et al., 2024).

©2024 Tobias Ladner, Michael Eichelbeck, and Matthias Althoff.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/.

https://creativecommons.org/licenses/by/4.0/

Ladner, Eichelbeck, and Althoff

1.1 Related Work

Most state-of-the-art verifiers only consider standard, feedforward neural networks (Brix
et al., 2023; König et al., 2024): These can generally be categorized into complete and
incomplete algorithms (König et al., 2024). Complete algorithms (Huang et al., 2017; Katz
et al., 2017) compute the exact output of a neural network given perturbations on the
input. This allows one to either verify given specifications or to extract a counterexample.
However, it has been shown that verifying a neural network with ReLU activations requires
solving an exponential number of linear subproblems as this problem is NP-hard (Katz
et al., 2017). Thus, many existing verifiers use incomplete but sound algorithms (Brix
et al., 2023), which can verify given specifications by relaxing the problem; however, this
relaxation might prevent them from extracting a counterexample when the specification
could not be verified. These verifiers can again be categorized into optimization-based
approaches and approaches using reachability analysis.

Optimization-based approaches formulate relaxed constraints for the activation func-
tions in a neural network. This relaxed problem is then solved using satisfiability modulo
theories (SMT) or mixed integer programming (MIP) solvers (Zhang et al., 2018; Katz
et al., 2019; Müller et al., 2022; Tjeng et al., 2019; Dutta et al., 2018), or symbolic interval
propagation (Henriksen and Lomuscio, 2020; Singh et al., 2019; Brix and Noll, 2020). These
algorithms can be improved using branch-and-bound strategies (Bunel et al., 2020), where
the problem is divided into simpler subproblems. For example, one can split ReLU neurons
into their linear parts (Botoeva et al., 2020; Singh et al., 2018b). Such branch-and-bound
strategies (Wang et al., 2021; Ferrari et al., 2022; Shi et al., 2023) are currently the dominant
strategies in state-of-the-art verifiers (Brix et al., 2023).

On the other hand, one can use reachability analysis to verify a neural network by
computing an enclosure of the output set. This is realized by propagating the perturbed
input set through each layer of the neural network and bounding all approximation errors.
Early approaches propagate convex set representations through neural networks, such as
intervals (Pulina and Tacchella, 2010) and zonotopes (Gehr et al., 2018; Singh et al., 2018a).
Non-convex set representations can improve the verification results as the exact output set
can be non-convex due to the nonlinearity within the network. These approaches use Taylor
models (Ivanov et al., 2021; Bogomolov et al., 2019; Huang et al., 2022), star sets (Bak,
2021; Lopez et al., 2023), and polynomial zonotopes (Kochdumper et al., 2023; Ladner
and Althoff, 2023) to verify neural networks. Branch-and-bound strategies are also used in
approaches using reachability analysis (Xiang et al., 2018).

To the best of our knowledge, there exist only a few approaches considering the formal
verification of graph neural networks. As with feedforward neural networks (Katz et al.,
2017), the theoretical limits of the graph neural networks verification problem have been
discussed (Sälzer and Lange, 2023). Thus, most existing methods for verifying graph neural
networks again employ incomplete but sound algorithms: Some approaches (Zügner and
Günnemann, 2019; Bojchevski and Günnemann, 2019) formulate uncertainty in the semi-
supervised node classification setting as an optimization problem, where uncertain node
features (Zügner and Günnemann, 2019) and uncertainty in the graph structure (Bojchevski
and Günnemann, 2019) are considered separately. The network architecture in the latter
approach only has a single, slightly altered message-passing step. This approach is extended

2

Graph Convolutional Network Verification

2
[
...

]

3
[
...

]
1 [

...

]

4
[
...

]

5 [
...

]

6

[
...

]

7
[
...

]

Presence of edge unknown

Uncertain node
features ⊂ Rc

Figure 1: Graph G with uncertain node features and uncertain graph structure.

to restrict both the global and the local uncertainty of the graph (Jin et al., 2020a). Another
approach (Wu et al., 2022) verifies uncertain node features in graph neural networks for
job schedulers by unrolling them into feedforward neural networks and verifies them using
reachability analysis. It is also worth mentioning that probabilistic guarantees can be
achieved using randomized smoothing (Jia et al., 2020; Bojchevski et al., 2020), and one
can try to defend adversarial attacks (Jin et al., 2020b); however, these approaches do not
provide formal guarantees.

1.2 Contributions

Our contributions are as follows:

� We present the first approach to verify graph convolutional networks with uncertain
node features and an uncertain graph structure as input (Fig. 1).

� The considered architecture of the graph convolutional network is generic and can
have any element-wise activation function.

� Our approach allows us to verify the graph neural network over multiple message-
passing steps given an uncertain graph input.

� We explicitly preserve the non-convex dependencies of all involved variables through
all layers of the graph neural network using (matrix) polynomial zonotopes.

� Our verification algorithm has polynomial time complexity in the number of uncertain
input features and in the number of uncertain edges.

� We demonstrate our approach on three popular benchmark datasets with added per-
turbations on the node features and the graph structure.

� Our approach will be made publicly available with the next release of CORA (Althoff,
2015).

This work is structured as follows: In Sec. 2, we introduce all required preliminaries and
the problem statement, followed by defining the matrix variant of polynomial zonotopes in
Sec. 3. Our verification approach is described in Sec. 4: We first show that graph-based

3

Ladner, Eichelbeck, and Althoff

layers in neural networks can be computed exactly using matrix polynomial zonotopes with
only uncertain input features. The required adaptations when also the graph structure is
uncertain are described subsequently. Finally, we show experimental results in Sec. 5 and
draw conclusions in Sec. 6.

2 Background

2.1 Notation

We denote scalars and vectors by lowercase letters, matrices by uppercase letters, and sets
by calligraphic letters. The i-th element of a vector v ∈ Rn is written as v(i). The element
in the i-th row and j-th column of a matrix A ∈ Rn×m is written as A(i,j), the entire i-th
row and j-th column are written as A(i,·) and A(·,j), respectively. The concatenation of A

with a matrix B ∈ Rn×o is denoted by [A B] ∈ Rn×(m+o). The empty matrix is written
as []. We denote with In the identity matrix of dimension n ∈ N. The symbols 0 and 1 refer
to matrices with all zeros and ones of proper dimensions, respectively. Given n ∈ N, we
use the shorthand notation [n] = {1, . . . , n}. The cardinality of a discrete set D is denoted
by |D|. Let D ⊆ [n], then A(D,·) denotes all rows i ∈ D in lexicographic order; this is
used analogously for columns. Let S ⊂ Rn be a set and f : Rn → Rm be a function, then
f(S) = {f(x) | x ∈ S}. An interval with bounds a, b ∈ Rn is denoted by [a, b], where a ≤ b
holds element-wise.

2.2 Neural Networks

Let us introduce the neural network architectures we consider in this work. We start by
stating a general formalization of a neural network and, afterward, several types of layers.

Definition 1 (Neural Networks (Bishop and Nasrabadi, 2006, Sec. 5.1)) Let x ∈
Rn0 be the input of a neural network Φ with κ layers, its output y = Φ(x) ∈ Rnκ is obtained
as follows:

h0 = x,

hk = Lk(hk−1), k ∈ [κ],

y = hκ,

where Lk : Rnk−1 → Rnk represents the operation of layer k.

Standard, non-graph-based neural networks are usually composed of alternating linear
layers and nonlinear activation layers:

Definition 2 (Linear Layer) A linear layer is defined by the operation

hk = LLIN
k (hk−1) =Wkhk−1 + bk,

with weight matrix Wk ∈ Rnk×nk−1, and bias vector bk ∈ Rnk .

Definition 3 (Activation Layer) An activation layer is defined by the operation

hk = LACT
k (hk−1) = σk(hk−1),

4

Graph Convolutional Network Verification

where σk(·) is the respective element-wise nonlinear activation function, e.g., sigmoid or
ReLU.

Graph neural networks generalize standard neural networks and additionally take a
graph G = (N , E) as an input, where N ⊂ N denotes the set of nodes and E ⊆ N × N
the set of edges of G. For each node i ∈ N , we associate a feature vector X(i,·) ∈ R1×c0

with c0 input features, as illustrated in Fig. 1. These feature vectors of all |N | nodes are
stacked vertically to obtain the input feature matrix X ∈ R|N |×c0 . Graph neural networks
contain message-passing layers in which neighboring nodes exchange information. In this
work, we consider the well-established graph convolutional layer (Kipf and Welling, 2017),
which combines a node-level linear layer and a message-passing layer:

Definition 4 (Graph Convolutional Layer (Kipf and Welling, 2017, Eq. 2)) Given
are a weight matrix W ∈ Rck−1×ck , an adjacency matrix A ∈ R|N |×|N | of a graph G, and
an input Hk−1 ∈ R|N |×ck−1. Let Ã = A+ I|N | be the adjacency matrix with added self-loops

and D̃ = diag(1Ã) ∈ R|N |×|N | be the diagonal degree matrix. The computation for a graph
convolutional layer k is computed as

Hk = LGC
k (Hk−1,G) = D̃− 1

2 ÃD̃− 1
2Hk−1Wk.

The term P = D̃− 1
2 ÃD̃− 1

2 computes the message passing between nodes. The adjacency
matrix A can also be a weighted adjacency for graphs with scalar edge weights (Kipf and
Welling, 2017, Sec. 7.2).

Please note that related verification approaches considering uncertainty in the graph
structure (Bojchevski and Günnemann, 2019; Jin et al., 2020a) consider D̃−1Ã instead

of D̃− 1
2 ÃD̃− 1

2 in their message passing step. This is justified by the argument that it
corresponds to the personalized page rank matrix, which has a similar spectrum. However,
without appropriate approximation errors, how to verify the original graph neural network
remains unknown using those approaches.

Depending on the use case, we let a graph neural network Φ return a node-level or
graph-level output. For a node-level output, the output is simply the feature matrix of the
last layer: Y = Φ(X,G) ∈ R|N |×cκ . For a graph-level output, we aggregate all node feature
vectors into a single graph feature vector. Thus, y = Φ(X,G) ∈ Rnκ . This is realized using
a pooling layer, which is computed as follows:

Definition 5 (Global Pooling Layer) A global pooling layer aggregates all node feature
vectors Hk−1 ∈ R|N |×ck−1 within a graph G into a single graph feature vector hk ∈ Rck−1 as
follows:

hk = LGP
k (Hk−1,G) = ψk(Hk−1),

where ψk(·) denotes a permutation invariant aggregation function across all nodes, e.g.,
sum, mean, or maximum.

For example,
ψk(Hk−1) = (1Hk−1)

⊤ (1)

computes a summation across all nodes in a global pooling layer k. For graph neural
networks with a graph-level output, there can be regular linear and activation layers after
the pooling layer.

5

Ladner, Eichelbeck, and Althoff

2.3 Set-Based Computing

We verify neural networks using continuous sets. For an input set X ⊂ Rn0 of a neural
network Φ, the exact output set Y∗ = Φ(X) is computed by

H∗
0 = X ,
H∗

k = Lk(H∗
k−1), k ∈ [κ],

Y∗ = H∗
κ.

(2)

Polynomial zonotopes are a well-suited set representation to verify graph neural networks
due to their polynomial computational complexity and precise outputs of the required op-
erations. We briefly introduce polynomial zonotopes and all required operations, followed
by an example.

Definition 6 (Polynomial Zonotope (Kochdumper and Althoff, 2020)) Given are
an offset c ∈ Rn, a generator matrix of dependent generators G ∈ Rn×h, a generator matrix
of independent generators GI ∈ Rn×q, and an exponent matrix E ∈ Np×h

0 with an identifier
id ∈ Np. A polynomial zonotope1 PZ = ⟨c,G,GI , E⟩PZ is defined as

PZ :=

c+

h∑

i=1

(
p∏

k=1

α
E(k,i)

k

)
G(·,i) +

q∑

j=1

βjGI(·,j)

∣∣∣∣∣∣
αk, βj ∈ [−1, 1]

.

The identifier id is used to keep track of the dependencies of the factors αk between differ-
ent polynomial zonotopes. Given two polynomial zonotopes PZ1 = ⟨c1, G1, GI,1, E1⟩PZ ,PZ2 =
⟨c2, G2, GI,2, E2⟩PZ ⊂ Rn, the Minkowski sum is computed by (Kochdumper and Althoff,
2020, Prop. 8)

PZ1 ⊕ PZ2 = {x1 + x2 | x1 ∈ PZ1, x2 ∈ PZ2}

=

〈
c1 + c2,

[
G1 G2

]
,
[
GI,1 GI,2

]
,

[
E1 0
0 E2

]〉

PZ

,
(3)

and given A ∈ Rm×n, b ∈ Rm, the affine map is computed by (Kochdumper and Althoff,
2020, Prop. 9)

APZ1 + b = {Ax+ b | x ∈ PZ1} = ⟨Ac1 + b, AG1, AGI,1, E1⟩PZ . (4)

Crucially for our approach, the quadratic map can be evaluated exactly for polynomial
zonotopes. The quadratic map is usually used to evaluate higher-order polynomials over
polynomial zonotopes to enclose nonlinear functions.

Proposition 7 (Quadratic Map (Kochdumper, 2022, Prop. 3.1.30)) Given two poly-
nomial zonotopes PZ1 = ⟨c1, G1, [], E1⟩PZ ⊂ Rn1, PZ2 = ⟨c2, G2, [], E2⟩PZ ⊂ Rn2 with

1. As in Kochdumper (2022), we adapt the definition from Kochdumper and Althoff (2020) and do not
integrate the offset c into the generator matrix G and omit the identifier vector almost always for
simplicity.

6

Graph Convolutional Network Verification

−1 0 1

−1

0

1

x(1)

x
(2

)

−1 0 1

0

0.5

1

x(1)

x
(2

)

PZ PZ = quadMap(PZ,PZ,Q) Samples

Figure 2: Visualization of the quadratic map using the polynomial zonotope PZ from
Example 1.

h1 and h2 generators, respectively, a common identifier vector, and Q = {Q1, . . . , Qn},
Qi ∈ Rn1×n2, then the quadratic map is computed as follows:

PZ = quadMap(PZ1,PZ2,Q) =

x⊤1 Q1x2

...
x⊤1 Qnx2

∣∣∣∣∣∣∣
x1 ∈ PZ1, x2 ∈ PZ2

=
〈
c,
[
Ĝ1 Ĝ2 G1 . . . Gh

]
,
[]
,
[
E1 E2 E1 . . . Eh

]〉
PZ
⊂ Rn,

where

c =

c⊤1 Q1c2

...
c⊤1 Qnc2

, Ĝ1 =

c⊤2 Q

⊤
1 G1
...

c⊤2 Q
⊤
nG1

, Ĝ2 =

c⊤1 Q1G2

...
c⊤1 QnG2

, Gj =

G⊤

1(·,j)Q1G2

...
G⊤

1(·,j)QnG2

,

and Ej = E2 + E1(·,j)1, j ∈ [h1]. The output PZ has O(h1h2) generators.
In this work, we only use matrices Qi with entries consisting of zeros and ones, which

effectively selects which dimensions of the polynomial zonotopes are multiplied as part of a
quadratic map. We illustrate this by an example:

Example 1 Let us consider the set {
[
α1 α3

1+0.1α2 α2
1

]⊤ | α1, α2 ∈ [−1, 1]} ⊂ R3. This
set can be represented as a polynomial zonotope as follows:

PZ =

〈

0
0
0

,

1 0 0 0
0 1 0.1 0
0 0 0 1

,

,
[
1 3 0 2
0 0 1 0

]〉

PZ

,

which we visualize in Fig. 2 (left). The set {
[
α3
1 (α3

1+0.1α2)
2
]⊤ | α1, α2 ∈ [−1, 1]} ⊂ R2

can be computed from PZ using the quadratic map with Q = {Q1, Q2}, where

Q1 =

0 0 1
0 0 0
0 0 0

, Q2 =

0 0 0
0 1 0
0 0 0

.

7

Ladner, Eichelbeck, and Althoff

Thus,

PZ = quadMap(PZ,PZ,Q) =
{[
x⊤Q1x
x⊤Q2x

] ∣∣∣∣ x ∈ PZ
}

=

〈[
0
0

]
,

[
1 0 0 0
0 1 0.2 0.01

]
,

[]
,

[
3 6 3 0
0 0 1 2

]〉

PZ

,

where we compacted PZ by removing zero-length generators and adding generators whose
dependent factors have equal exponents. The resulting PZ is visualized in Fig. 2 (right).

Please note that the quadratic map in Prop. 7 is defined for polynomial zonotopes with a
common identifier vector. We can adjust two polynomial zonotopes with different identifiers
by extending the exponent matrix accordingly (Kochdumper, 2022, Prop. 3.1.5).

2.4 Verification of Feedforward Neural Networks

Finally, we briefly introduce the main steps to propagate a polynomial zonotope through
a standard, non-graph-based neural network (Def. 1). Since the set propagation through a
neural network (2) cannot be computed exactly in general, we have to enclose the output
of each layer:

Proposition 8 (Image Enclosure (Kochdumper et al., 2023, Sec. 3)) Let Hk−1 ⊇
H∗

k−1 ⊂ Rnk−1 be an input set to layer k, then

Hk = enclose(Lk,Hk−1) ⊇ H∗
k ⊂ Rnk

computes an outer-approximative output set. If the layer k is nonlinear (Def. 3), the out-
put Hk has at most nk more generators than Hk−1.

Using polynomial zonotopes, the output of a linear layer can be computed exactly as
stated in (4). However, the output of activation layers needs to be enclosed to obtain a
sound outer approximation. We summarize the six main steps to enclose a nonlinear layer
next and visualize them in Fig. 3: As we only consider element-wise activation functions,
we can enclose each neuron individually (step 1). In step 2, we find bounds for our input
set. Next, we approximate the activation function using a polynomial (step 3) and find an
appropriate approximation error (step 4). Finally, the chosen polynomial is evaluated over
the input set (step 5), and the output is enclosed using the approximation error (step 6),
where one generator for each neuron of the current layer is added using (3). While we
have depicted the steps in Fig. 3 using a polynomial of order one, higher-order polynomials
can be used to obtain a tighter enclosure (Ladner and Althoff, 2023). The higher-order
polynomials are evaluated over the input polynomial zonotopes using multiple applications
of Prop. 7.

2.5 Problem Statement

Given an uncertain graph G = (N , E) with nodes N ⊂ N and edges E = E∗ ∪ Ẽ ⊆ N ×N
consisting of fixed edges E∗ and uncertain edges Ẽ , an uncertain input feature matrix X ⊂

8

Graph Convolutional Network Verification

Input

O
u
tp
u
t

Steps 1 & 2

Input

O
u
tp
u
t

Steps 3 & 4

Input

O
u
tp
u
t

Steps 5 & 6

σ(x) Set Bounds Polynomial Approximation error

Figure 3: Main steps of enclosing a nonlinear layer. Step 1: Evaluate nonlinear function
element-wise. Step 2: Find bounds of the input set. Step 3: Find an approximating
polynomial. Step 4: Find the approximation error. Step 5: Evaluate polynomial over the
input set. Step 6: Add the approximation error.

R|N |×c0 , a graph neural network Φ, and an unsafe set S ⊂ Rnκ where nκ denotes the
dimension of the output of Φ, we want to compute an outer-approximative output set Y
such that it encloses the output for all possible graph inputs:

∀E ⊆ Ẽ : Φ(X ,
(
N , E∗ ∪ E

)
) ⊆ Y.

We can then verify the given specification by showing that:

Y ∩ S = ∅.

3 Matrix Polynomial Zonotopes

Before we present our approach, we introduce an extension to polynomial zonotopes, namely
matrix polynomial zonotopes. Graph convolutional layers require a matrixHk−1 ∈ R|N |×ck−1

as input (Def. 4) so that a set-based evaluation requires propagating uncertain matrices
Hk−1 ⊂ R|N |×ck−1 through all layers, which we want to represent as polynomial zonotopes;
however, a (standard) polynomial zonotope is not defined for matrices (Def. 6). Thus, we
define its matrix variant and a few required operations on them in this section. These
operations are specifically tailored to facilitate the verification of graph neural networks;
however, the concepts are generic and have applications elsewhere.

Definition 9 (Matrix Polynomial Zonotope) Given are an offset C ∈ Rn×m, depen-
dent generators G ∈ Rn×m×h, independent generators GI ∈ Rn×m×q, and an exponent
matrix E ∈ Np×h

0 with an identifier id ∈ Np. A matrix polynomial zonotope PZ =
⟨C,G,GI , E⟩PZ is defined as

PZ :=

C +

h∑

i=1

(
p∏

k=1

α
E(k,i)

k

)
G(·,·,i) +

q∑

j=1

βjGI(·,·,j)

∣∣∣∣∣∣
αk, βj ∈ [−1, 1]

.

9

Ladner, Eichelbeck, and Althoff

The Minkowski sum of two matrix polynomial zonotopes PZ1 = ⟨C1, G1, GI,1, E1⟩PZ ,PZ2 =
⟨C2, G2, GI,2, E2⟩PZ ⊂ Rn×m, is computed analogously to (3):

PZ1 ⊕ PZ2 = {x1 + x2 | x1 ∈ PZ1, x2 ∈ PZ2}

=

〈
C1 + C2,

[
G1 G2

]
,
[
GI,1 GI,2

]
,

[
E1 0
0 E2

]〉

PZ

,
(5)

where the concatenation of the generators is along the last dimension. Given the matrices
A1 ∈ Rk×n, A2 ∈ Rm×k, and the vectors b1 ∈ Rk×m, b2 ∈ Rn×k, an affine map is computed
analogously to (4):

A1PZ1 + b1 = {A1x+ b1 | x ∈ PZ1} = ⟨A1C1 + b1, A1G1, A1GI,1, E1⟩PZ ,

PZ1A2 + b2 = {xA2 + b2 | x ∈ PZ1} = ⟨C1A2 + b2, G1A2, GI,1A2, E1⟩PZ ,
(6)

where the matrix multiplications are broadcast across all generators. Reshaping and trans-
posing a matrix polynomial zonotope are computed by applying the respective operation on
the center matrix and each generator matrix. In particular, reshaping a matrix polynomial
zonotope into a vector by stacking it column-wise results in a standard polynomial zonotope,
which we indicate by a vector decoration (□⃗). This allows us, for example, to seamlessly
use a matrix polynomial zonotope Hk−1 ⊂ R|N |×ck−1 during the enclosure of an activation
layer k by first reshaping it: H⃗k−1 ⊂ R|N |·ck−1 , then obtain H⃗k ⊂ R|N |·ck using Prop. 8, and
finally reshape it back to its original shape: Hk ⊂ R|N |×ck . During the verification of graph
neural networks, we also require the computation of matrix multiplication on two matrix
polynomial zonotopes. This operation can be computed using Prop. 7 without inducing
additional outer approximations:

Lemma 10 (Matrix Multiplication on Matrix Polynomial Zonotopes) Given two
matrix polynomial zonotopes M1 ⊂ Rn×k, M2 ⊂ Rk×m with h1 and h2 generators, respec-
tively, then the matrix multiplication

M3 =M1 ⊡M2 = {(M1M2) | M1 ∈M1,M2 ∈M2},
is obtained by

M⃗3 = quadMap

(
M⃗1,M⃗2,Q

)
⊂ Rn·m,

where Q = {Q1,1, Q2,1, . . . , Qn,1, Q1,2, . . . , Qn,m}. Let vi = [i . . . n(k − 1) + i] and wj =
[k(j − 1) + 1 . . . k(j − 1) + k] be the respective indices involved to compute the (i, j)-th
entry, then

Qi,j = sparse(vi, wj , nk, km) ∈ R(nk)×(km)

with ones in positions (vi(l), wj(l)), ∀l ∈ [k], and zeros otherwise. The output M3 has
O(h1h2) generators.
Proof The statement follows directly from Prop. 7 and the construction of Qi,j . The
number of generators also directly follows from Prop. 7.

We want to stress that Lemma 10 can be efficiently computed using matrix broadcasting,
as effectively the center matrix and each generator matrix from one set is multiplied with
the center matrix and each generator matrix of the other set. This broadcasting is also
parallelizable and efficiently computed on a GPU, which makes our approach scalable.

10

Graph Convolutional Network Verification

4 Formal Verification of Graph Convolutional Networks

In this section, we demonstrate how to generalize the verification of standard neural net-
works (Kochdumper et al., 2023; Ladner and Althoff, 2023) to graph convolutional networks.
We start by (i) explaining how to verify graph neural networks that have only uncertain
node features, and then (ii) describe the adaptations where, additionally, the graph struc-
ture is unknown. Moreover, we show (iii) how a subgraph can be efficiently extracted in
cases where not the entire graph is relevant to verify the specification.

4.1 Verification with Uncertain Node Features

Uncertainty in the node features requires us to define how the graph-specific layers can be
enclosed for an uncertain input. Using matrix polynomial zonotopes, the enclosure of a
graph convolutional layer (Def. 4) does not induce any additional outer approximation.

Proposition 11 (Enclosure of Graph Convolutional Layer) Given are a weight ma-
trix Wk ∈ Rck−1×ck , a graph G = (N , E), and an input Hk−1 ⊂ R|N |×ck−1 represented as a
matrix polynomial zonotope. Let A ∈ R|N |×|N | be the adjacency matrix of G, Ã = A+ I|N |,

and let D̃ = diag(1Ã) ∈ R|N |×|N | be the diagonal degree matrix. The exact output of a
graph convolutional layer k in Def. 4 is computed by

Hk = LGC
k (Hk−1) = D̃− 1

2 ÃD̃− 1
2Hk−1Wk.

Proof As the graph convolutional layer is composed of a left and a right matrix multipli-
cation, the computation is exact using (6).

The enclosure of a pooling layer (Def. 5) with a summation as aggregation function as
in (1) is obtained analogously.

Proposition 12 (Enclosure of Summation Pooling Layer) Given are a graph G and
an input Hk−1 ⊂ R|N |×ck−1 represented as a matrix polynomial zonotope. The exact output
of a pooling across all nodes via summation is computed by

Hk = LGP
k (Hk−1,G) = (1Hk−1)

⊤.

Proof As the pooling layer is computed by a left matrix multiplication, the computation
is exact using (6).

Thus, the graph-based layers can be computed without inducing additional outer approx-
imations using matrix polynomial zonotopes when we only have uncertain node features.

4.2 Verification with Uncertain Graph Structure

Verifying graph neural networks becomes more difficult if the presence of some edges is
unknown in an uncertain graph G. This case requires us to enclose the outputs of all possible
graph inputs (Sec. 2.5). We enclose these outputs by computing an outer-approximative
output set of an equivalent graph with uncertain edge weights: Let G have fixed edges E∗

11

Ladner, Eichelbeck, and Althoff

and uncertain edges Ẽ . Then, we set the edge weight to 1 for edges in E∗ and to [0, 1] for
edges in Ẽ . This uncertainty requires a set-based evaluation of the message passing P =
D̃− 1

2 ÃD̃− 1
2 in graph convolutional layers (Def. 4). In particular, we now have an uncertain

(weighted) adjacency matrix A ⊂ R|N |×|N | containing the respective edge weights, which
in turn leads to an uncertain degree matrix D̃ ⊂ R|N |×|N |, and eventually, an uncertain
message passing

P∗ = D̃− 1
2 ÃD̃− 1

2 . (7)

Please note that analogous holds if the graph has uncertain scalar edge weights. Subse-
quently, we detail the required steps to compute an enclosure of the message passing P ⊇ P∗

using matrix polynomial zonotopes (Def. 9). Please compare these steps with the definition
of a graph convolutional layer (Def. 4). We construct the uncertain adjacency matrix as a
matrix polynomial zonotope A ⊂ R|N |×|N |, where each generator of A corresponds to one
uncertain edge. Then,

Ã = A+ I|N | (8)

adds self-loops to the adjacency matrix. Analogously to Prop. 12, we compute the diagonal
entries of the degree matrix D̃ by summing across all rows of Ã using (6):

D̃diag = (1Ã)⊤. (9)

To obtain D̃− 1
2 , we note that the inverse of a diagonal matrix is given by the inverse of

each entry on the main diagonal. Additionally, we are required to compute the square
root of each entry individually. However, polynomial zonotopes are not closed under these
operations. Thus, we enclose the output of the inverse square root function using Prop. 8.
The function is already applied element-wise, hence it suffices to provide an appropriate
approximation error:

Lemma 13 (Approximation Error of Inverse Square Root) Given a polynomial p(x) =
ax+ b and bounds [l, u] ⊂ R+, then the maximum approximation error

d = max
x∈[l,u]

|f(x)− p(x)| = |f(x∗)− p(x∗)|,

where

x∗ ∈
{
l,

3

√
(1/2a)2, u

}
∩ [l, u].

Proof The approximation error d has to lie on the extreme point:

d

dx
(f(x)− p(x)) !

= 0

⇐⇒ −1

2
x−

3
2 − a = 0

⇐⇒ x−
3
2 = −2a

=⇒ x =
3

√
(1/2a)2,

or on a boundary point l, u if the extreme point lies outside [l, u] due to monotonicity.

12

Graph Convolutional Network Verification

1 2 3 4 5 6 7 8

0.4

0.6

0.8

Input x

O
u
tp
u
t

Inverse square root x−1/2

Approx. polynomial p(x)

Approx. error d

Figure 4: Enclosure of the inverse square root function. The x-axis corresponds to the
degree of a node in D̃, and the y-axis to the respective entry in D̃− 1

2 .

An example of the enclosure of the inverse square root function for a polynomial found
via regression is shown in Fig. 4. A tighter enclosure can be obtained using higher-order
polynomials (Ladner and Althoff, 2023). Thus, we can enclose the diagonal entries of the
degree matrix using Prop. 8:

D̂− 1
2

diag = enclose

(
x 7→ x−

1
2 , D̃diag

)
⊇ D̃− 1

2
diag, (10)

and place the entries D̂− 1
2

diag on the main diagonal of

D̂− 1
2 = diag

(
D̂− 1

2
diag

)
⊇ D̃− 1

2 . (11)

This is computed by first projecting D̂− 1
2

diag ⊂ R|N | into a higher-dimensional space with
zeros in the new dimensions:

⃗̂D− 1
2 = I|N |2(·,K)D̂

− 1
2

diag ⊂ R|N |2 , (12)

where K = {1, |N | + 2, . . . , |N |2} contains the indices of the diagonal entries of a diagonal

matrix, and then reshaping the polynomial zonotope to obtain D̂− 1
2 ⊂ R|N |×|N |. To ob-

tain the entire uncertain message passing P, we compute the matrix multiplication on the
involved matrix polynomial zonotopes D̂− 1

2 and Ã using Lemma 10:

Proposition 14 (Enclosure of Uncertain Message Passing) Given an uncertain ad-
jacency matrix A with h generators, then

P = D̂− 1
2 ⊡ Ã⊡ D̂− 1

2 ⊇ P∗,

encloses the message passing with O(h3) generators.

Proof The enclosure is computed using a set-based evaluation of the message passing
in Def. 4 using (8)–(12) and Lemma 10. These steps are computed using affine maps (6)
and matrix multiplications of polynomial zonotopes (Lemma 10), which are exact, and

13

Ladner, Eichelbeck, and Althoff

the enclosure of D̃diag using Prop. 8 with the approximation error in Lemma 13, which is
outer-approximative. Thus, the enclosure of the message passing is sound.

Number of generators: Affine maps do not increase the number of generators (6). The en-
closure of D̃diag in (10) adds one generator for each node with an uncertain degree (Prop. 8),
which are at most 2h as each uncertain edge in A has two adjacent nodes. Finally, two
applications of the matrix multiplication on matrix polynomial zonotopes (Lemma 10) ob-
tains the O(h3) generators of P.

After obtaining the uncertain message passing P, we can enclose the output set of a
graph convolutional layer as follows:

Proposition 15 (Enclosure of Graph Convolutional Layer) Given are a weight ma-
trix Wk ∈ Rck−1×ck , an uncertain graph G, and an uncertain input Hk−1 ∈ R|N |×ck−1 with
h1 generators. Let P ⊂ R|N |×|N | be the uncertain message passing according to Prop. 14
with O(h32) generators. The output for a graph convolutional layer k (Def. 4) is enclosed by

Hk = enclose
(
LGC
k ,Hk−1,P

)
= (P ⊡Hk−1)Wk ⊆ LGC

k (Hk−1,G),

with O(h1h32) generators.

Proof The enclosure follows directly from the enclosure of the message passing (Prop. 14),
the matrix multiplication on polynomial zonotopes (Lemma 10), and the affine map (6).
Given the number of generators of Hk−1 and P, the number of generators of Hk follows
from Lemma 10.

Our approach defines the enclosure layer-wise and thus realizes an arbitrary concate-
nation of the considered layers. To demonstrate the polynomial time complexity in the
number of uncertain edges and input features for an entire graph neural network with
multiple message-passing steps, let us consider Alg. 1: The graph neural network has κ′

message-passing steps, each consisting of one graph convolutional layer and one activation
layer (lines 3 to 6). For networks with a node-level output, the output of the last message-
passing step is directly the output of the network. For networks with a graph-level output,
the output is passed to a global pooling layer and optionally followed by standard, non-
graph-based layers (lines 11 to 14). With this algorithm, we can state the main theorem of
this work:

Theorem 16 Given a neural network Φ with κ layers and κ′ message passing steps, an
uncertain graph G = (N , E) with |N | nodes and he uncertain edges, and an uncertain in-
put X ⊂ R|N |×c0 with hx generators, then Alg. 1 satisfies the problem statement in Sec. 2.5.
More specifically, the number of generators of the computed output Y is given by:

hy ∈ O
(
h3κ

′
e (hx + |N |cmax) + (κ− 2κ′)nmax

)
,

where cmax := maxk′∈[κ′] c2k′ denotes the maximum number of features within the graph
layers and nmax := maxk∈{2κ′+2,...,κ} nk denote the maximum number of output neurons of
the non-graph-based layers after the global pooling layer.

14

Graph Convolutional Network Verification

Algorithm 1 Enclosing the Output of a Graph Neural Network

Require: Neural network Φ, number of layers κ, number of message passing steps κ′, input
set X , graph G.

1: H0 ← X
2: P ← Compute message passing based on G ▷ Prop. 14
3: for k′ = 2, . . . , 2κ′ do ▷ Graph-based layers
4: Hk′−1 ← enclose

(
LGC
k′−1,Hk′−2,P

)
▷ Prop. 15

5: Hk′ ← enclose
(
LACT
k′ ,Hk′−1

)
▷ Prop. 8

6: end for
7: if κ = 2κ′ then ▷ Graph-level output
8: Y ← Hκ

9: else ▷ Node-level output
10: H2κ′+1 ← LGP

2κ′+1(H2κ′ ,G) ▷ Global pooling layer, Prop. 12
11: for k = 2κ′ + 2, 2κ′ + 4, . . . , κ do ▷ Standard, non-graph-based layers
12: Hk ← LLIN

k (Hk−1) ▷ Def. 2
13: Hk+1 ← enclose

(
LACT
k+1 ,Hk

)
▷ Prop. 8

14: end for
15: Y ← Hκ

16: end if
17: return Enclosure of output set Y ⊇ Y∗

Proof The problem statement is satisfied as each step to compute Y is either exact
(Prop. 12, (4)) or outer-approximative (Prop. 14, Prop. 15, and Prop. 8), and the specifi-
cation can be checked as in previous approaches using polynomial zonotopes (Kochdumper
et al., 2023; Ladner and Althoff, 2023). The message passing P has O(h3e) generators
(Prop. 14). The enclosure of a nonlinear layer adds at most one generator for each output
neuron (Prop. 8). The global pooling layer (Prop. 12) and linear layers (4) do not change
the number of generators. Thus, the number of generators of Y in Alg. 1 is:

hy ∈ O
(

κ′ message passing steps (lines 3 to 6)︷ ︸︸ ︷

h3e ·
(
h3e · (· · · h3e · hx︸ ︷︷ ︸

(Prop. 15)

+ |N |c2︸ ︷︷ ︸
(Prop. 8)

· · ·) + |N |c2κ′−2

)
+ |N |c2κ′ +

(lines 11 to 14)︷ ︸︸ ︷
1

2

κ∑

k=2κ′+2

nk︸︷︷︸
(Prop. 8)

)

= O
(
(h3e)

κ′
hx + (h3e)

κ′−1|N |c2 + · · ·+ (h3e)
1|N |c2κ′−2 + |N |c2κ′︸ ︷︷ ︸

Polynomial of order κ′−1

+
1

2

κ∑

k=2κ′+2

nk

)

⊆ O
(
(h3e)

κ′
hx + (h3e)

κ′−1 max
k′∈[2κ′]

|N |ck′ +
1

2

κ∑

k=2κ′+2

nk

)

⊆ O
(
h3κ

′
e

(
hx + max

k∈[2κ′]
|N |c2k′

)
+

1

2

κ∑

k=2κ′+2

nk

)
= H̃y.

Next, we simplify the term by bounding the number of output neurons with their maximum:

15

Ladner, Eichelbeck, and Althoff

H̃y ⊆ O
(
h3κ

′
e

(
hx + |N |cmax

)
+

1

2

κ∑

k=2κ′+2

nmax

)

⊆ O
(
h3κ

′
e (hx + |N |cmax) + (κ− 2κ′)nmax

)
,

which shows that hy ∈ H̃y ⊆ O
(
h3κ

′
e (hx + |N |cmax) + (κ− 2κ′)nmax

)
.

Please note that all involved operations on polynomial zonotopes to compute the out-
put set Y (affine map, Minkowski sum, and quadratic map) have polynomial time com-
plexity (Kochdumper, 2022, Tab. 3.2), and that the time complexity is dominated by the
number of generators resulting from the applied quadratic map operations. Thus, it fol-
lows directly from Thm. 16 that Alg. 1 has polynomial time complexity in the number of
uncertain input features hx and uncertain edges he compared to an exponential complexity
when all 2he possible graphs need to be verified individually. While our approach is ex-
ponential in the number of message-passing steps κ′, we want to stress that κ′ is usually
small to avoid over-smoothing (Chen et al., 2020). To further improve the scalability of our
approach, the number of generators can be limited using order reduction methods (Ladner
and Althoff, 2024; Kochdumper, 2022, Prop. 3.1.39) at the cost of additional outer approxi-
mations. Additionally, we want to stress that many involved operations can be parallelized
and efficiently be computed on a GPU, in particular the matrix multiplication on matrix
polynomial zonotopes (Lemma 10).

Let us demonstrate our approach for verifying graph neural networks by a small example:

Example 2 Let Φ be a neural network with input X, graph G, and output Y computed by
two layers:

H1 = LGC
1 (X,G),

Y = LGC
2 (H1,G),

with W1 =W2 = I2.

The input graph G = (N , E) is chosen as

N =
{

1 , 2 , 3
}
, E =

{
1 − 2 , 1 − 3 , 2 − 3

}
,

and the input features for each node are

X(1,·) =

[
[0.9, 1.1]
[0.9, 1.1]

]⊤
, X(2,·) = X(3,·) =

[
1
1

]⊤
. Thus, X =

X(1,·)
X(2,·)
X(3,·)

.

Let us now consider the presence of the edge 1 − 3 as unknown during the evaluation of

Y∗ = Φ(X ,G). Thus, the uncertainty of the features of node 1 is passed to node 3 after

one message passing step if the edge 1 − 3 is present (in H∗
1 = LGC

1 (X,G)), and after two

steps otherwise (in Y∗ = LGC
2 (H1,G) via 2).

16

Graph Convolutional Network Verification

1

2 3

Graph G

0.35 0.4

0

0.2

0.4

0.6

P(1,2)

P
(1

,3
)

Message passing P

0.9 0.95 1 1.05

0.9

0.95

1

1.05

H1(3,1)

H
1
(3

,2
)

Hidden H1 of 3

0.9 0.95 1 1.05

0.9

0.95

1

1.05

Y(3,1)

Y
(3

,2
)

Output Y of 3

Exact with 1 − 3 Exact without 1 − 3 Enclosure uncertain 1 − 3

Subset with 1 − 3 Subset without 1 − 3 Enclosure interval arithmetic

Figure 5: Visualization of Example 2. Our approach allows a tight enclosure of the output
with uncertain input graph G.

Example 2 is visualized in Fig. 5: The input set X given as an interval is converted to a
(matrix) polynomial zonotope (Kochdumper, 2022, Prop. 3.1.10). We can obtain the exact
output set for either case by propagating the respective graph through the network (purple
and green) as well as their enclosure using our approach (Thm. 16, blue). Please note that
we explicitly preserve the dependencies between the considered sets via the identifier vector
of a matrix polynomial zonotope (Def. 9). We can visualize the preserved dependencies in
the enclosure of the uncertain edge: By plugging −1 and 1 into the dependent factor αk

corresponding to the uncertain edge, we obtain the subset (Kochdumper, 2022, Prop. 3.1.43)
corresponding to the respective case (orange and yellow). This demonstrates the tightness
of our approach.

Additionally, we show the respective message passing P from node 1 to the nodes 2

and 3 for each case (purple and green) as well as their enclosure (blue), where we use a

polynomial of order 2 to enclose D̂− 1
2

diag in (10). While the message passing from node 1

to 3 trivially becomes 0 if we remove that edge, the message passing from node 1 to 2
also changes due to the normalization during the computation of P through the degree
matrix. Moreover, we want to point out that the enclosure P is a non-convex, slightly
bent stripe. Please note that the enclosure of the output Y can also be non-convex in
general. For comparison, we include an enclosure of the uncertain message passing P∗

using interval arithmetic (Jaulin et al., 2001) in Fig. 5. We omit the enclosure of H∗
1 and

Y∗ using interval arithmetic as the obtained intervals are so large that the results using our
approach described above would be barely visible, even for this small example. This large
outer approximation comes from the lost dependencies between all involved variables.

4.3 Subgraph Verification

For a graph neural network with node-level output, we are not always required to propagate
the entire graph through all layers of the network. Given a node of interest and a network
with κ′ message passing steps, we are only required to verify the subgraph within the
(κ′ + 1)-hop neighborhood as all other nodes do not influence the considered node (Zügner

17

Ladner, Eichelbeck, and Althoff

and Günnemann, 2019). We require (κ′ + 1) hops due to the normalization through the
degree matrix in the message passing (Def. 4). The (κ′ + 1)-hop neighborhood can easily
be found using a breadth-first search on the given graph with the considered node as the
root node. The graph and the respective feature matrix can be reduced as follows:

Corollary 17 (Subgraph Selection) Given an input Hk−1 ∈ R|N |×ck−1 to a layer k, the

message passing P = D̃− 1
2 ÃD̃− 1

2 ∈ R|N |×|N | of a graph G, and the node indices K of a
subgraph G′, we can construct a projection matrix M = I|N |(K,·) such that

H ′
k−1 =MHk−1, P ′ =MPM⊤,

contain the input and the message passing corresponding to the subgraph.

Proof The statement follows directly from the construction of the projection matrix M ,
where nodes that are not in G′ are removed.

After each graph convolutional layer (Def. 4), we can further reduce the graph as the
number of remaining message-passing steps decreases. This can be achieved by implicitly
adding projection layers computing Cor. 17 after each graph convolutional layer. After the
last graph convolutional layer, we can remove all nodes except for the considered node,
as no information is exchanged between nodes from that point onward. The selection of
the subgraph only requires left and right matrix multiplications, thus, Cor. 17 can also be
computed if the input Hk−1 ⊂ R|N |×ck−1 or the message passing P ⊂ R|N |×|N | are uncertain
and represented by a matrix polynomial zonotope using (6).

5 Experimental Results

Our approach is implemented in the MATLAB toolbox CORA (Althoff, 2015), where
we extend the existing approach of verifying neural networks using polynomial zonotopes
(Kochdumper et al., 2023; Ladner and Althoff, 2023). Our implementation will be made
publicly available with the next release of CORA. All computations were performed on an
Intel Core Gen. 11 i7-11800H CPU @2.30GHz with 64GB memory.

We demonstrate our approach on three benchmark graph datasets: The first two, En-
zymes and Proteins, represent protein structures tailored for the task of protein function
classification (Borgwardt et al., 2005; Schomburg et al., 2004). The third dataset, Cora2,
represents a citation network with several classes of publications (Yang et al., 2016; Mc-
Callum et al., 2000). The main properties of each dataset are summarized in Tab. 1. All
graph neural networks considered here are as described in Alg. 1, where we have three
message-passing steps (κ′ = 3) and tanh activation unless stated otherwise. The number
of input and output neurons depends on the number of node features and classes of the
dataset (Tab. 1), respectively, and the networks have 64 neurons per node in hidden layers.

To evaluate our approach on the datasets, we perturb the node features and graph
structure as follows: We normalize all node features and perturb them using the same

2. The identical names of the toolbox CORA and the dataset Cora are coincidental, with no relation
between the two.

18

Graph Convolutional Network Verification

Table 1: Properties of the benchmark datasets.

Name Classification #Graphs #Nodes #Edges #Node features #Classes
min/max min/max c0

Enzymes graph-level 600 11/66 34/186 21 6
Proteins graph-level 1,113 4/238 10/869 4 2
Cora node-level 1 2,708 10,556 1,433 7

0 2 4 6 8
0

20

40

60

Number of uncertain edges Ẽ

V
er
ifi
ca
ti
o
m

ti
m
e
[s
]
/
|N

|

Enzymes

0 2 4 6 8
0

20

40

60

Number of uncertain edges Ẽ

Proteins

Graph enumeration Our approach

Figure 6: Time comparison of our approach with computing all possible graphs individually,
where we normalized the verification time by the number of nodes |N | of the verified graphs.

perturbation radius δ ∈ R+ on all features. Given a flattened input X⃗ ∈ R|N |·c0 , our input
set then becomes

X⃗ =
〈
X⃗, δI|N |·c0 , [], I|N |·c0

〉
PZ
⊂ R|N |·c0 , (13)

which we can reshape to a matrix polynomial zonotope X ⊂ R|N |×c0 . For the perturbation
of the graph structure, please recall that the uncertain graph G = (N , E) has nodes N ⊂ N
and edges E = E∗ ∪ Ẽ ⊆ N × N consisting of fixed edges E∗ and uncertain edges Ẽ . The
uncertain edges Ẽ can be seen as a budget an attacker has to perturb the graph structure for
the graph neural network to misclassify the input (Günnemann, 2022), and we verify that no
possible configuration results in a misclassification (Sec. 2.5) using our approach (Thm. 16).
The partitioning of the edges depends on the experiment: To preserve the structure of the
input graphs, the set of fixed edges E∗ always contains a spanning tree of the graph, and we
make the presence of some remaining edges unknown and, thus, part of the uncertain edges
Ẽ depending on the experiment. The spanning tree is constructed using a breadth-first
search, with the root node being the one with the highest degree (e.g., 1 in Fig. 1). We
repeat each experiment 50 times with different graphs sampled from the respective dataset.

In our first experiment, we evaluate the polynomial time complexity (Thm. 16) on
graphs with uncertain node features and uncertain graph structure. For this experiment,
we iteratively increase the number of uncertain edges Ẽ , and compare it to enumerating all

19

Ladner, Eichelbeck, and Althoff

0 200 400 600 800 1,000 1,200
0

0.2

0.4

0.6

0.8

1

Cumulative verification time [s]

V
er
ifi
ed

in
st
a
n
ce
s
[%

]

Enzymes

0 500 1,000 1,500 2,000 2,500
0

0.2

0.4

0.6

0.8

1

Cumulative verification time [s]

Proteins

|Ẽ | = 0.0% |Ẽ | = 0.1% |Ẽ | = 0.5% |Ẽ | = 1.0% |Ẽ | = 5.0%

Figure 7: Verified instances of the Enzymes dataset and the Proteins dataset, where the
number of uncertain edges |Ẽ | is relative to the total number of edges |E| in the graph.

0 200 400 600
0

0.2

0.4

0.6

0.8

1

Cumulative verification time [s]

V
er
ifi
ed

in
st
a
n
ce
s
[%

]

Cora (κ′ = 2)

0 500 1,000 1,500
0

0.2

0.4

0.6

0.8

1

Cumulative verification time [s]

Cora (κ′ = 3)

|Ẽ | = 0.0% |Ẽ | = 0.1% |Ẽ | = 0.5% |Ẽ | = 1.0% |Ẽ | = 5.0%

Figure 8: Verified instances of the Cora dataset with different numbers of message-passing
steps, where the number of uncertain edges |Ẽ | is relative to the total number of edges |E|
in the graph.

possible graphs based on the uncertain edges and verifying them individually. As illustrated
in Fig. 6, the verification time using enumeration quickly explodes due to its exponential
time complexity, whereas the verification time of our approach remains low. We repeated
this experiment only 20 times due to this reason.

In our second experiment, we examine the number of graphs verified by our approach
(Fig. 7). The graphs are sorted by their size in ascending order, and we state the number of
uncertain edges Ẽ relative to the total number of edges of a graph for better comparability
across differently sized graphs. We use a rather small perturbation radius δ = 0.001 on the

20

Graph Convolutional Network Verification

Enzymes and Proteins dataset as we have found that the graph neural networks are not
robust for larger radii, and counterexamples can easily be found. While we were able to
verify almost all instances taken from the Proteins dataset, the verification rate drops on
the Enzymes dataset. We think this is due to the smaller graphs in the Enzymes dataset,
which appear to be less robust to graph structure perturbations using our networks, and
smaller graphs have nodes with smaller degrees, which can result in a larger approximation
error during the enclosure of the inverse square root function (Lemma 13) using linear
polynomials (Fig. 4).

In our third experiment, we demonstrate the scalability of our approach by applying it
on the Cora dataset. For this dataset, we do not use a perturbation radius (δ = 0) as the
input data is binary, and thus perturbations do not have an intuitive justification. As this
dataset has a node-level output, we can also dynamically remove nodes that do not influence
a considered node throughout the verification process (Sec. 4.3). However, we want to stress
that, on average, about half of the nodes have to be considered initially, as the graph is
highly connected. The verification results for two graph neural networks with different
numbers of message-passing steps (κ′ = 2 and κ′ = 3) are shown in Fig. 8. We obtain high
verification rates despite the large size of the graph of the Cora dataset (Tab. 1). Please
note that for a fixed number of perturbed edges, the verification time varies significantly
despite always verifying a node on the same graph. This is primarily due to the dynamic
subgraph extraction being able to remove many nodes and, thus, significantly speeding up
computation time.

6 Conclusion

In this work, we present the first formal verification approach for graph convolutional net-
works, where both the node features and the graph structure can be uncertain. The con-
sidered network architecture is a) generic, b) may have arbitrary element-wise activation
functions, and, c) for the first time, can be verified over multiple message-passing steps.
This is realized by generalizing existing verification approaches using polynomial zonotopes
to graph neural networks. The use of (matrix) polynomial zonotopes allows us to preserve
the non-convex dependencies of the involved variables and efficiently compute all underlying
operations, resulting in an overall polynomial time complexity in the number of uncertain
edges and uncertain input features. We demonstrate our approach using illustrative ex-
amples and an experimental evaluation on three popular datasets: The evaluation shows
that our approach quickly outperformed verifying all individual graphs and produced tight
output sets, thus making it possible to verify large graph neural networks.

Acknowledgments and Disclosure of Funding

This work was partially supported by the project FAI (No. 286525601) and the project
SAFARI (No. 458030766), both funded by the German Research Foundation (DFG). We
also want to thank our colleagues Florian Finkeldei, Lukas Koller, and Mark Wetzlinger for
their revisions of the manuscript.

21

Ladner, Eichelbeck, and Althoff

References

Matthias Althoff. An introduction to CORA 2015. In Proceedings of the Workshop on
Applied Verification for Continuous and Hybrid Systems, pages 120–151, 2015.

Stanley Bak. nnenum: Verification of relu neural networks with optimized abstraction
refinement. In NASA Formal Methods Symposium, pages 19–36, 2021.

Christopher M. Bishop and Nasser M. Nasrabadi. Pattern recognition and machine learning,
volume 4. Springer, 2006.

Sergiy Bogomolov, Marcelo Forets, Goran Frehse, Kostiantyn Potomkin, and Christian
Schilling. JuliaReach: A toolbox for set-based reachability. In Proceedings of the 22nd
ACM International Conference on Hybrid Systems: Computation and Control, pages 39–
44, 2019.

Aleksandar Bojchevski and Stephan Günnemann. Certifiable robustness to graph pertur-
bations. In Advances in Neural Information Processing Systems, volume 32, 2019.

Aleksandar Bojchevski, Johannes Gasteiger, and Stephan Günnemann. Efficient robustness
certificates for discrete data: Sparsity-aware randomized smoothing for graphs, images
and more. In International Conference on Machine Learning, volume 119, pages 1003–
1013, 2020.

Karsten M. Borgwardt, Cheng S. Ong, Stefan Schönauer, S. V. N. Vishwanathan, Alex J.
Smola, and Hans-Peter Kriegel. Protein function prediction via graph kernels. In Bioin-
formatics, volume 21, pages i47–i56, 2005.

Elena Botoeva, Panagiotis Kouvaros, Jan Kronqvist, Alessio Lomuscio, and Ruth Misener.
Efficient verification of relu-based neural networks via dependency analysis. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 34, pages 3291–3299, 2020.

Christopher Brix and Thomas Noll. Debona: Decoupled boundary network analy-
sis for tighter bounds and faster adversarial robustness proofs. In arXiv preprint
arXiv:2006.09040, 2020.

Christopher Brix, Stanley Bak, Changliu Liu, and Taylor T. Johnson. The fourth inter-
national verification of neural networks competition (VNN-COMP 2023): Summary and
results. In arXiv preprint arXiv:2312.16760, 2023.

Michael M. Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Vandergheynst.
Geometric deep learning: Going beyond Euclidean data. In IEEE Signal Processing
Magazine, volume 34, pages 18–42, 2017.

Rudy Bunel, Ilker Turkaslan, Philip Torr, Mudigonda P. Kumar, Jingyue Lu, and Pushmeet
Kohli. Branch and bound for piecewise linear neural network verification. In Journal of
Machine Learning Research, volume 21, pages 1–39, 2020.

22

Graph Convolutional Network Verification

Deli Chen, Yankai Lin, Wei Li, Peng Li, Jie Zhou, and Xu Sun. Measuring and relieving
the over-smoothing problem for graph neural networks from the topological view. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, pages 3438–
3445, 2020.

Sikai Chen, Jiqian Dong, Paul Ha, Yujie Li, and Samuel Labi. Graph neural network
and reinforcement learning for multi-agent cooperative control of connected autonomous
vehicles. volume 36, pages 838–857, 2021.

Hanjun Dai, Hui Li, Tian Tian, Xin Huang, Lin Wang, Jun Zhu, and Le Song. Adversarial
attack on graph structured data. In International Conference on Machine Learning,
volume 80, pages 1115–1124, 2018.

Souradeep Dutta, Susmit Jha, Sriram Sankaranarayanan, and Ashish Tiwari. Output range
analysis for deep feedforward neural networks. In NASA Formal Methods Symposium,
pages 121–138, 2018.

Claudio Ferrari, Mark N. Mueller, Nikola Jovanović, and Martin Vechev. Complete verifica-
tion via multi-neuron relaxation guided branch-and-bound. In International Conference
on Learning Representations, 2022.

Timon Gehr, Matthew Mirman, Dana Drachsler-Cohen, Petar Tsankov, Swarat Chaudhuri,
and Martin Vechev. AI2: Safety and robustness certification of neural networks with
abstract interpretation. In IEEE Symposium on Security and Privacy, pages 3–18, 2018.

Ian Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing ad-
versarial examples. In International Conference on Learning Representations, 2015.

Stephan Günnemann. Graph neural networks: Adversarial robustness. In Graph Neural
Networks: Foundations, Frontiers, and Applications, pages 149–176, 2022.

Patrick Henriksen and Alessio Lomuscio. Efficient neural network verification via adaptive
refinement and adversarial search. In European Conference on Artificial Intelligence,
volume 325, pages 2513–2520. 2020.

Chao Huang, Jiameng Fan, Xin Chen, Wenchao Li, and Qi Zhu. POLAR: A polynomial
arithmetic framework for verifying neural-betwork controlled systems. In Automated
Technology for Verification and Analysis, pages 414–430, 2022.

Xiaowei Huang, Marta Kwiatkowska, Sen Wang, and Min Wu. Safety verification of deep
neural networks. In International Conference on Computer Aided Verification, pages
3–29, 2017.

Radoslav Ivanov, Taylor Carpenter, James Weimer, Rajeev Alur, George Pappas, and Insup
Lee. Verisig 2.0: Verification of neural network controllers using Taylor model precon-
ditioning. In International Conference on Computer Aided Verification, pages 249–262,
2021.

Luc Jaulin, Michel Kieffer, Olivier Didrit, and Éric Walter. Interval analysis. 2001.

23

Ladner, Eichelbeck, and Althoff

Jinyuan Jia, Binghui Wang, Xiaoyu Cao, and Neil Z. Gong. Certified robustness of com-
munity detection against adversarial structural perturbation via randomized smoothing.
In Proceedings of The Web Conference, pages 2718–2724, 2020.

Hongwei Jin, Zhan Shi, Venkata J. S. A. Peruri, and Xinhua Zhang. Certified robustness of
graph convolution networks for graph classification under topological attacks. In Advances
in Neural Information Processing Systems, volume 33, pages 8463–8474, 2020a.

Wei Jin, Yao Ma, Xiaorui Liu, Xianfeng Tang, Suhang Wang, and Jiliang Tang. Graph
structure learning for robust graph neural networks. In Proceedings of the 26th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining, pages 66–
74, 2020b.

Guy Katz, Clark Barrett, David L. Dill, Kyle Julian, and Mykel J. Kochenderfer. Reluplex:
An efficient SMT solver for verifying deep neural networks. In International Conference
on Computer Aided Verification, pages 97–117, 2017.

Guy Katz, Derek A. Huang, Duligur Ibeling, Kyle Julian, Christopher Lazarus, Rachel Lim,
Parth Shah, Shantanu Thakoor, Haoze Wu, Aleksandar Zeljić, David L. Dill, Mykel J.
Kochenderfer, and Clark Barret. The Marabou framework for verification and analysis
of deep neural networks. In International Conference on Computer Aided Verification,
pages 443–452, 2019.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. In International Conference on Learning Representations, 2017.

Niklas Kochdumper. Extensions of polynomial zonotopes and their application to verification
of cyber-physical systems. PhD thesis, Technische Universität München, 2022.

Niklas Kochdumper and Matthias Althoff. Sparse polynomial zonotopes: A novel set rep-
resentation for reachability analysis. In IEEE Transactions on Automatic Control, vol-
ume 66, pages 4043–4058, 2020.

Niklas Kochdumper, Christian Schilling, Matthias Althoff, and Stanley Bak. Open- and
closed-loop neural network verification using polynomial zonotopes. In NASA Formal
Methods Symposium, pages 16–36, 2023.

Matthias König, Annelot W. Bosman, Holger H. Hoos, and Jan N. van Rijn. Critically
assessing the state of the art in neural network verification. In Journal of Machine
Learning Research, volume 25, pages 1–53, 2024.

Tobias Ladner and Matthias Althoff. Automatic abstraction refinement in neural network
verification using sensitivity analysis. In Proceedings of the 26th ACM International
Conference on Hybrid Systems: Computation and Control, pages 1–13, 2023.

Tobias Ladner and Matthias Althoff. Exponent relaxation of polynomial zonotopes and its
applications in formal neural network verification. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 38, pages 21304–21311, 2024.

24

Graph Convolutional Network Verification

Diego Manzanas Lopez, Sung Woo Choi, Hoang-Dung Tran, and Taylor T. Johnson. NNV
2.0: The neural network verification tool. In International Conference on Computer Aided
Verification, pages 397–412, 2023.

Andrew K. McCallum, Kamal Nigam, Jason Rennie, and Kristie Seymore. Automating
the construction of internet portals with machine learning. In Information Retrieval,
volume 3, pages 127–163, 2000.

Mark N. Müller, Gleb Makarchuk, Gagandeep Singh, Markus Püschel, and Martin Vechev.
PRIMA: General and precise neural network certification via scalable convex hull approx-
imations. In Proceedings of the ACM on Programming Languages, volume 6, pages 1–33,
2022.

Luca Pulina and Armando Tacchella. An abstraction-refinement approach to verification of
artificial neural networks. In International Conference on Computer Aided Verification,
pages 243–257, 2010.

Marco Sälzer and Martin Lange. Fundamental limits in formal verification of message-
passing neural networks. In International Conference on Learning Representations, 2023.

Ida Schomburg, Antje Chang, Christian Ebeling, Marion Gremse, Christian Heldt, Gregor
Huhn, and Dietmar Schomburg. BRENDA, the enzyme database: Updates and major
new developments. In Nucleic Acids Research, volume 32D, pages 431–433, 2004.

Zhouxing Shi, Qirui Jin, Jeremy Z. Kolter, Suman Jana, Cho-Jui Hsieh, and Huan Zhang.
Formal verification for neural networks with general nonlinearities via branch-and-bound.
In 2nd Workshop on Formal Verification of Machine Learning, 2023.

Gagandeep Singh, Timon Gehr, Matthew Mirman, Markus Püschel, and Martin Vechev.
Fast and effective robustness certification. In Advances in Neural Information Processing
Systems, volume 31, 2018a.

Gagandeep Singh, Timon Gehr, Markus Püschel, and Martin Vechev. Boosting robustness
certification of neural networks. In International Conference on Learning Representations,
2018b.

Gagandeep Singh, Timon Gehr, Markus Püschel, and Martin Vechev. An abstract domain
for certifying neural networks. In Proceedings of the ACM on Programming Languages,
volume 3, pages 1–30, 2019.

Vincent Tjeng, Kai Y. Xiao, and Russ Tedrake. Evaluating robustness of neural networks
with mixed integer programming. In International Conference on Learning Representa-
tions, 2019.

Shiqi Wang, Huan Zhang, Kaidi Xu, Xue Lin, Suman Jana, Cho-Jui Hsieh, and Jeremy Z.
Kolter. Beta-CROWN: Efficient bound propagation with per-neuron split constraints for
complete and incomplete neural network verification. In Advances in Neural Information
Processing Systems, volume 34, 2021.

25

Ladner, Eichelbeck, and Althoff

Haoze Wu, Clark Barrett, Mahmood Sharif, Nina Narodytska, and Gagandeep Singh. Scal-
able verification of GNN-based job schedulers. In Proceedings of the ACM on Program-
ming Languages, volume 6, pages 1036–1065, 2022.

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and Philip S.
Yu. A comprehensive survey on graph neural networks. In IEEE Transactions on Neural
Networks and Learning Systems, volume 32, pages 4–24, 2020.

Weiming Xiang, Hoang-Dung Tran, and Taylor T. Johnson. Output reachable set estimation
and verification for multilayer neural networks. In IEEE Transactions on Neural Networks
and Learning Systems, volume 29, pages 5777–5783, 2018.

Zhilin Yang, William Cohen, and Ruslan Salakhudinov. Revisiting semi-supervised learning
with graph embeddings. In International Conference on Machine Learning, volume 48,
pages 40–48, 2016.

Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L. Hamilton, and Jure
Leskovec. Graph convolutional neural networks for web-scale recommender systems. In
Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery
& Data Mining, pages 974–983, 2018.

Huan Zhang, Tsui-Wei Weng, Pin-Yu Chen, Cho-Jui Hsieh, and Luca Daniel. Efficient
neural network robustness certification with general activation functions. In Advances in
Neural Information Processing Systems, volume 31, 2018.

Xiao-Meng Zhang, Li Liang, and Lin Liu. Graph neural networks and their current appli-
cations in bioinformatics. In Frontiers in Genetics, volume 12, 2021.

Daniel Zügner and Stephan Günnemann. Certifiable robustness and robust training for
graph convolutional networks. In Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, pages 246–256, 2019.

26

	Introduction
	Related Work
	Contributions

	Background
	Notation
	Neural Networks
	Set-Based Computing
	Verification of Feedforward Neural Networks
	Problem Statement

	Matrix Polynomial Zonotopes
	Formal Verification of Graph Convolutional Networks
	Verification with Uncertain Node Features
	Verification with Uncertain Graph Structure
	Subgraph Verification

	Experimental Results
	Conclusion

