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Abstract

This thesis focuses on understanding the response of various spray sub-processes such as droplet
motion and evaporation to acoustic oscillations and then leverage this knowledge in analyzing
the response of a spray flame produced by an aero-engine injector to acoustic excitation using
Large Eddy Simulation and System Identification (LES/SI) procedure. The latter part of this dis-
sertation is dedicated to creating a methodology for uncertainty quantification that can quantify
both epistemic and aleatoric uncertainties in the dynamic flame response model. This approach
aims to consider how the sensitivity of operating conditions affects predictions of flame model
using the LES/SI method, and thereby thermoacoustic modal instability calculations.

To understand the response of spray processes to acoustics, an analytical formulation has been
developed. This formulation evaluates how the motion and evaporation of droplets react with
fluctuations in the upstream acoustic velocity. The proposed analytical model provides explicit
expressions to describe how the motion of the population of evaporating droplets responds to
velocity oscillations through the modulation of number density wave and spray evaporation rate.
The source term for the modulation of the spray evaporation rate is then incorporated into a one-
dimensional convective-diffusive transport equation to analyze how fluctuations in the equiva-
lence ratio evolve over time. The dynamics of evaporation is described using a transfer function
that depends on the frequency of the perturbations. The comparison between the frequency
response obtained from the analytical transfer function and that from a one-dimensional com-
putational fluid dynamics simulation demonstrates a close agreement. Additionally, the analysis
reveals the system’s low-pass characteristics and the inherent time delay, which are crucial fac-
tors to consider in the stability analysis of thermoacoustic systems.

In the following section of the thesis, an attempt is made to quantify the correlation of the
unsteady heat release to upstream acoustic perturbation through a Flame Transfer Function ob-
tained from the LES and System Identification of a turbulent spray flame generated by the GE
Avio PERM (Partially Evaporating and Rapid Mixing) injector for aero-engines. The estimated
flame transfer function from the combination of LES and system identification agrees qualita-
tively well with experimental trends with appropriate low-frequency behavior.

The dynamic flame response model obtained from LES/SI procedure is uncertain due to
aleatoric uncertainties caused by data corrupted by noise and epistemic uncertainties caused
by lack of knowledge of boundary conditions such as spray or wall thermal boundary condi-
tion in a CFD simulation. To quantify both types of uncertainties in the flame model a novel
data-driven univariate Gaussian Process (GP) surrogate model is proposed. The univariate GP
model trains on the Finite Impulse Response (FIR) models obtained from LES/SI at various
wall thermal boundary conditions. Subsequently, a bootstrapping procedure is used to quantify
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the variability of the FIR coefficients. The trained GP model applied to the FIR dataset obtained
with varying wall thermal boundary condition, predicts an FIR with wider confidence interval
as it takes into account both aleatoric and epistemic uncertainties. The Gaussian process model
effectively predicts the FIR coefficients at new parameter values that were not part of the initial
range studied, demonstrating the GP model’s ability to successfully capture the underlying LES
flame response to change in wall boundary conditions.
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Kurzfassung

Diese Arbeit befasst sich mit dem Verständnis der Antwort verschiedener Sprühteilprozesse wie
Tröpfchenbewegung und Verdampfung auf akustische Schwingungen und nutzt dieses Wis-
sen, um die Antwort einer Sprühflamme, die von einem Flugzeugtriebwerksinjektor erzeugt
wird, auf eine akustische Anregung mittels eines kombinierten Ansatzes aus Grobstruktursim-
ulation und Systemidentifikation, dem sogenannten LES/SI Ansatz, zu analysieren. Der letzte
Teil dieser Arbeit ist der Entwicklung einer Methode zur Quantifizierung von Unsicherheiten
gewidmet, die sowohl epistemische als auch aleatorische Unsicherheiten im dynamischen Flam-
menantwortmodell quantifizieren kann. Mit diesem Ansatz soll untersucht werden, wie sich die
Empfindlichkeit der Betriebsbedingungen auf die Vorhersagen des Flammenmodells mit der
LES/SI Methode und damit auf die Berechnung der thermoakustischen modalen Instabilität
auswirkt.

Um die Antwort von Sprühprozessen auf die Akustik zu verstehen, wurde eine analytische
Formulierung entwickelt. Mit dieser Formulierung wird untersucht, wie die Bewegung und
Verdampfung von Tropfen auf Änderungen der Schallgeschwindigkeit stromaufwärts reagiert.
Das vorgeschlagene analytische Modell liefert explizite Ausdrücke, um zu beschreiben, wie
die Bewegung der verdampfende Tröpfchenpopulation auf Geschwindigkeitsänderungen durch
die Modulation der Anzahldichtewelle und der Sprühverdampfungsrate reagiert. Der Quellterm
für die Modulation der Sprühverdampfungsrate wird dann in eine eindimensionale konvektiv-
diffusive Transportgleichung eingesetzt, um die zeitliche Entwicklung von Fluktuationen im
Äquivalenzverhältnis zu analysieren. Die Verdampfungsdynamik wird durch eine Übertra-
gungsfunktion beschrieben, die von der Frequenz der Störungen abhängt. Der Vergleich des
Frequenzgangs der analytischen Übertragungsfunktion mit dem einer eindimensionalen nu-
merischen Strömungssimulation zeigt eine gute Übereinstimmung. Darüber hinaus zeigt die
Analyse die Tiefpasscharakteristik des Systems und die inhärente Zeitverzögerung, die für die
Stabilitätsanalyse thermoakustischer Systeme von entscheidender Bedeutung sind.

Im folgenden Teil der Arbeit wird versucht, die Korrelation zwischen der instationären Wärme-
freisetzung und der stromaufwärts gerichteten akustischen Störung durch eine Flammenüber-
tragungsfunktion zu quantifizieren, die mit Hilfe des LES/SI Ansatzes einer turbulenten Sprüh-
flamme gewonnen wird. Der Injektor ist hierbei ein GE Avio PERM (Partially Evaporating
and Rapid Mixing)-Injektor für Flugzeugtriebwerke. Die aus der Kombination von LES und
Systemidentifikation abgeschätzte Flammentransferfunktion stimmt qualitativ gut mit den ex-
perimentellen Trends überein und zeigt ein typisches Verhalten im Niederfrequenzbereich.

Das dynamische Flammenmodell, das aus der LES/SI-Methode abgeleitet wird, ist mit Un-
sicherheiten behaftet, die durch aleatorische Unsicherheiten aufgrund verrauschter Daten und
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epistemische Unsicherheiten aufgrund mangelnder Kenntnis der Randbedingungen, wie z.B.
der thermischen Randbedingungen des Sprays oder der Wand in einer CFD-Simulation, verur-
sacht werden. Um beide Arten von Unsicherheiten im Flammenmodell zu quantifizieren, wird
ein neuartiges datengetriebenes univariates Gauß-Prozess (GP) Ersatzmodell vorgeschlagen.
Das univariate GP-Modell basiert auf den Finite Impulse Response (FIR) Modellen, die mit
LES/SI bei verschiedenen thermischen Wandgrenzbedingungen erhalten wurden. Anschließend
wird ein Bootstrapping-Verfahren verwendet, um die Variabilität der FIR-Koeffizienten zu
quantifizieren. Das trainierte GP-Modell, das auf den FIR-Datensatz angewendet wird, der mit
variierenden thermischen Randbedingungen der Wand berechnet wurde, sagt eine finite Impul-
santwort mit einem breiteren Konfidenzintervall voraus, da es sowohl aleatorische als auch epis-
temische Unsicherheiten berücksichtigt. Das GP-Modell sagt die FIR-Koeffizienten bei neuen
Parameterwerten, die nicht Teil des ursprünglich untersuchten Bereichs waren, effektiv voraus,
was die Fähigkeit des GP-Modells zeigt, die zugrundeliegende LES-Flammenreaktion auf Än-
derungen der Wandrandbedingungen erfolgreich zu erfassen.
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1 Introduction

The aviation industry is expected to grow significantly despite the restrictions bought about
by the recent pandemic. A recent estimate by the aviation industry’s United Nations (UN)
regulator- ICAO suggests that the demand for air transport will increase by an average of 4.3%
per year over the next 20 years [1]. The burgeoning rise in the air demand leads to increased
fossil-fuel burn from the contemporary aircraft engines and accelerates the production of green
house gases: carbon dioxide, nitrous oxides, and water contrails. Increased green house gases
correlates to a rise in global temperatures, which causes catastrophic changes to the natural
environment. At this point, the aviation industry stands at the crossroads of growth and rising
emissions. With increased pressure from the recent emission norms set out in the Paris Agree-
ment 1: the industry must respond to address its impact on the environment with continued
improvement of existing technologies, while investing in the greener and sustainable solutions.

In recent years, disruptive and sustainable aviation propulsion technologies have been consid-
ered for the commercial and passenger air transportation sectors. Notably, electric propulsion,
buoyed by the success in the automotive industry and hydrogen fuelled aero-engines that are al-
ready under advanced research and development phase. Each of these technological paths have
their fair share of disadvantages along with obvious advantages. Electric propulsion provides
improved efficiency in the energy conversion process and, depending on the origin of the mate-
rials used, can be seen as a technology with minimal emissions. Introducing electric propulsion
to ground based transportation devices seems to be simple as they are relatively unaffected by
the added weight of energy storage devices. Conversely, aircrafts are highly sensitive to the
additional weight brought on by the batteries. The state-of-the-art mass specific energy density
offered by the Lithium-ion batteries is in the range of 150-250 Wh/kg while the jet fuel has
mass specific energy density of ∼ 104 Wh/kg [2]. Bills et al [3] showed that the average short-
haul flights (∼ 900 km) would require 600 Wh/kg of battery density, medium-haul (∼ 2000
km) would need 820Wh/kg and long-haul (>∼ 4000 km) a staggering 1,280Wh/kg. They also
concluded that the current battery technology is not capable of servicing commercial airliners
and one needs to move beyond the current state-of-the-art to either Lithium-air or Lithium-
flourinated carbon chemistries.

Shifting to hydrogen as a fuel for aero-engines is not without challenges. The biggest deterrent
is the extra weight required for the fuel storage, be it in gaseous or liquid form. For liquid hy-
drogen, efforts needs to be put in producing lightweight vacuum insulated tanks that maintain
hydrogen below its boiling point of 20 K. Whereas gaseous hydrogen which has low volumetric
energy density of 0.01 MJ/L at atmospheric pressure requires heavy weight tanks to be built
that can withstand pressures of 250-300 bar [4] at which gaseous hydrogen’s volumetric energy
density exceeds that of kerosene. Although liquid hydrogen offers a higher mass-specific energy
density (142 MJ/kg) than aviation fuel (44 MJ/kg), much of that energy could be spent in cryo-

1https://unfccc.int/sites/default/files/english_paris_agreement.pdf
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Introduction

genic cooling (∼ 45%) and thus delivers less energy for thrust (low tank-to-wing efficiency).
Nevertheless, the development history hints that these technologies need another 20-30 years to
mature and be certified for safe air travel. In this transition phase, conventional liquid jet fuel
along with sustainable aviation fuels produced from sustainable raw materials will satisfy the
increasing demand of the aviation sector.

As a result of increasing environmental protection regulations, aero-engine combustors are
forced to operate in a lean combustion regime to reduce pollutant emissions. Operating in a lean
combustion regime makes the engine susceptible to thermoacoustic combustion instabilities [5–
8]. Thermoacoustic instabilities pose a severe technological hindrance in the development of
the gas turbine engine. These instabilities occur due to the feedback loop between the acoustic
waves, flow and flame. The gases traveling through the flame expand leading to pressure fluc-
tuations propagating as acoustic waves. These acoustic waves interact with system boundaries
and cause flow perturbation which then impinge on the flame leading to heat release fluctua-
tions. When constructive interference between acoustic waves, unsteady combustion, and flow
occurs, the amplitude of the pressure fluctuations can grow in time to a level that interferes with
engine operation and, in extreme cases, leads to failure of the system due to excessive structural
vibration and heat transfer [9].

A key ingredient in the feedback loop of thermoacoustic instabilities is the dynamic response
of flame to acoustic forcing i.e flame dynamics. Flame dynamics is mainly described in the
frequency domain using transfer functions that characterize the variations in the unsteady heat
release rate to upstream velocity fluctuations. Different approaches have been employed in the
literature to deduce the frequency response of a flame. These approaches range from highly
resolved and expensive measurements [10] or CFD of reacting flows [11] to inexpensive simple
mathematical models based on the kinematic balance between the flame and flow velocity [12].

Dynamic response of premixed gaseous flames has been well researched over the years with
some focus on gaseous non-premixed flames in the recent years. Whereas modeling of spray
flame dynamics has received sparse attention as the determination of spray flame response to
acoustic oscillations is not straightforward compared to gaseous fuels due to several competing
mechanisms involved in spray combustion. Several studies using experimental and numerical
techniques have highlighted the complexities that arise in the estimation of the dynamic re-
sponse of the spray flame and in subsequent analysis of thermoacoustic stability of liquid-fueled
combustors [13–16]. The complexities arise because, in the event of a combustion instability in
liquid-fuelled combustors, the spray processes such as atomization, droplet convection, droplet-
turbulence interaction, and evaporation are perturbed [17–19] and could control the flame dy-
namic response. Specifically, the acoustic velocity fluctuations caused by an instability directly
modify the flame surface area and generate heat release rate oscillations similar to the instabil-
ity mechanism in gaseous fuel combustion. In liquid-fuelled combustion additional mechanisms
are at play where the acoustic velocity fluctuation modifies the fuel atomization, evaporation and
mixing processes resulting in spatial and temporal variations in the equivalence ratio. Equiva-
lence ratio variation causes heat of reaction changes over the flame surface and flame speed,
giving way to additional pathways for overall heat release rate variation in the thermoacoustic
feedback loop.

Compared to gaseous fuel combustion, there are multiple mechanisms, as seen before, con-
tributing to thermoacoustic instability in a liquid fueled combustor. Understanding how these
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mechanisms respond to velocity fluctuations is imperative in the development of aero engine
as it enables the designer the means to stabilize the combustor. In this thesis an inexpensive
analytical tool is developed to study the acoustic response of the droplet motion and evapora-
tion. This theoretical study extends the work of Achury and Polifke [19] on the response of a
single droplet to acoustic excitation to the population of droplets with evaporation. A specific
closed-form formula is derived for the inhomogeneous and time-varying change in droplet con-
centration, referred to as the number density wave. This is then followed by an analysis of how
an evaporating spray responds to fluctuations in acoustic velocity, and a description of the evap-
oration dynamics using a transfer function is presented. Such a theoretical formulation gives
the possibility of carrying out parametric analysis with respect to different fuels, spray, and gas
boundary conditions. Therefore, such analytical approaches enable quick characterization and
turnaround needed at the early development stages of the engine.

One of the ways to evaluate the thermoacoustic stability of the system is through "divide and
conquer" approach. Such an approach requires a flame response model as an input to an acous-
tic solver to deduce the growth rate and frequencies of the thermoacoustic modes of the system.
The flame response in terms of the finite impulse response in the time domain is typically ob-
tained from the CFD/SI procedure [20]. The flame response identified from CFD/SI procedure
will be uncertain due to epistemic and aleatoric uncertainties. Epistemic uncertainties arise due
to lack of knowledge of boundary conditions, such as spray boundary conditions after primary
breakup of liquid, which are generally not modeled. Aleatoric uncertainties arise due to the
application of the statistical SI procedure on time series data corrupted by turbulent noise. Fig-
ure 1.1 pictorially depicts the location of the occurrence of epistemic and aleatoric uncertainties
in the CFD/SI flame model identification procedure.

Figure 1.1: Identification of FIR/FTF is impacted by different sources of uncertainties in the
LES/SI procedure

The second section of the thesis presents the assessment of epistemic and aleatoric uncertainties
in the flame response model. Previous works focused on quantifying either epistemic [21] or
aleatoric uncertainties [22] in the estimated flame model. To quantify both types of uncertainties
in the impulse response flame model, a data-driven univariate Gaussian Process surrogate model
is developed. This model is trained on the Finite Impulse Responses (FIRs) obtained from the
LES/SI procedure under various boundary conditions. Additionally, a bootstrapping procedure
is employed to address the variability of the estimated FIR coefficients. The surrogate model
provides a robust approach to not only predict the FIR at any test location but also to pro-
vide combined epistemic and aleatoric uncertainty in the associated prediction of the impulse
response.

In the concluding section of the dissertation, initial findings from the Large Eddy Simulation
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(LES) of a turbulent spray flame generated by the GE Avio PERM (Partially Evaporating and
Rapid Mixing) injector for aero-engine application, along with the FTF derived from using the
SI method, are presented. The examination of how the spray flame reacts to acoustic forcing
is based on the insights obtained from the analytical investigations conducted in the initial sec-
tion of the thesis. The Large Eddy Simulation (LES) is utilized as a framework to implement
the Gaussian Process surrogate technique established in this thesis to assess the influence of
uncertain spray boundary conditions on the flame model.

The purpose of the thesis is to give an overview of the Gaussian process surrogate method used
in this work to quantify mixed uncertainties, describe the LES setup of the PERM injector and
preliminary results of the FTF and provide the context and summary of how different publica-
tions connect to this thesis.
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2 Flame Dynamic Response

Flame dynamic response also known as combustion dynamics, is the response of the flame to
upstream acoustic fluctuations which plays a key role in the thermoacoustic instability. Math-
ematically, this relates how global heat release rate fluctuation Q̇ ′ is linked to a driving factor
such as the upstream velocity, equivalence ratio that causes these fluctuations. In a simple case
of perfectly premixed flames that are velocity sensitive, global heat release rate fluctuations Q̇ ′

due to velocity perturbations u′ upstream of the flame can be characterized in terms of either
flame frequency response or flame transfer function, such that

Q̇ ′(ω)

Q̇
=F (ω)

u′(ω)

ū
(2.1)

or by corresponding flame impulse response h(t )

Q̇ ′(ω)

Q̇
= 1

ū

∫ T

0
h(τ)u′(t −τ)dτ (2.2)

The (′) denotes deviation of a quantity from its mean value (). The symbols ω and τ denote
angular frequency and time delay respectively. T corresponds to the duration of the impulse
response h(t ). A variety of models with different levels of complexity can be found in the
literature to describe the FTF.. One of the earliest and simple model of FTF is the n −τ model
introduced by Crocco and Cheng [23]. In this model, the global heat release rate responds with
a gain n for an acoustic disturbance produced upstream of the flame after a time delay of τ. This
can be represented for a wide range of frequencies as

F (ω) = n(ω)exp(iωτ(ω)) (2.3)

The flame transfer function is valid only in the limit of small acoustic fluctuations and thus
cannot be used to determine the limit cycle amplitude of the thermoacoustic instability. Large
amplitude oscillations trigger non-linear response and require a non-linear description of the
flame dynamic response in terms of a Flame Describing Function [24]. In this work, the flame
impulse response identified from LES and system identification procedure is used to emphasize
the effect of inherent uncertainties that are associated with this widely used procedure.

As mentioned in the introductory section, combustion instabilities arise from the constructive
interference between the flame and acoustics, which can be characterized by a suitable FTF.
Figure 2.1 illustrates a general feedback loop for combustion instabilities. This loop consists of:
1) fluctuations in flow and mixture leading to fluctuations in heat release rate, 2) fluctuations
in heat release rate inducing acoustic disturbances, and 3) these acoustic disturbances subse-
quently creating velocity fluctuations as described in step 1, thus completing the feedback loop.
Depending on the energy added and the acoustic losses, the amplitude of the oscillations may
decay, remain constant or grow non-linearly until limit cycle regime.
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Flame Dynamic Response

Flow
perturbations

Heat Release
Rate

Acoustic 
Oscillations

Figure 2.1: Schematic of the feedback processes responsible for thermoacoustic instabilities

Thermoacoustic instabilities can be driven by many mechanisms depending on the fuel used.
Figure 2.2 shows different flow and flame processes that cause thermoacoustic instabilities in
gas turbines. As the figure suggests, combustion instabilities in gaseous flames can be driven

Figure 2.2: Illustration of different processes that can cause combustion instabilities. Courtesy
Lieuwen et al. [25]

by many processes except for the vaporization and atomization which only occurs in a liquid
fuel combustor. Because of the introduction of liquid fuel, acoustics interact with the injection,
transport, and evaporation of liquid fuel to cause periodic release of gaseous vapor. This causes
fluctuations in the equivalence ratio and perturbs the heat release rate. Depending on the time
delay of the atomization, evaporation processes involved, and the distance of the reaction zone to
the liquid fuel injector, the combustion instability can be driven by this additional pathway. The
physical mechanisms driving combustion instabilities in gaseous fuels have been reviewed by
[7, 25, 26]. However, the literature is sparse on the mechanisms driving combustion instabilities
in liquid fuel combustion systems [13, 14, 27] due to the additional complexities caused by the
liquid fuel combustion processes described earlier.
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3 Response of spray to acoustics

A key component of the thermoacoustic instability process is the perturbation of the unsteady
heat release rate by acoustic pressure. For an acoustically compact flame, the flame is insensi-
tive directly to acoustic pressure fluctuations p ′. However, fluctuations in acoustic pressure p ′

indirectly through fluctuations in gas velocity u′ cause a disturbance in the global heat release
rate. For gaseous flames, the perturbation of u′ breaks the flow-flame kinematic balance and
results in flame wrinkling. As a result of flame wrinkling, the flame curvature increases, and
consequently increases the local flame speed. Enhanced flame speed further causes flame wrin-
kling by kinematic restoration [12]. In the case of swirl-stabilized combustors, vorticity waves
are generated and in combination with acoustic waves again cause fluctuations in the flame area
[28].

In liquid fuel combustion, as both the liquid phase and the gas phase exist, the mechanisms dis-
cussed above for gas phase interactions are supplemented by the acoustic wave and liquid spray
interaction. As shown in Figure 3.1, the fluctuations in the inlet velocity modify the atomization
process, causing a variation in the droplet sizes. Further, the differently sized droplets, while
being convected downstream with the oscillating gas flow, also simultaneously evaporate. As a
result, all of these processes contribute to the spatial and temporal variations of the equivalence
ratio field. Perturbations in the equivalence ratio result in heat of reaction variations over the
flame surface, giving rise to heat release rate oscillations.

Figure 3.1: Schematic of the acoustic velocity coupling mechanism generating heat release rate
oscillation for spray flames

One of the approaches used for thermoacoustic stability analysis is the construction of a the-
oretical description of the response of the flame to acoustic perturbations. Such analytical de-
scriptions facilitate rich parametric analysis at a fraction of cost compared to numerical or ex-
perimental analysis. These analytical tools provide great help in the early combustor design
phase and reduce the amount of time spent performing costly numerical and physical experi-
ments. In any combustor, the overall heat release rate fluctuations due to acoustic perturbations
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Response of spray to acoustics

is governed by different mechanisms such as flame area changes, flame roll-up, flame stretching
and so on. Extensive studies [12, 29] have been conducted to quantify analytical flame transfer
functions for gaseous laminar and turbulent flames of different flame shapes. However, com-
prehending the contribution of different mechanisms towards the global spray flame response
to velocity disturbances has received little attention due to the difficulties that arise when taking
into account the two-phase nature of the problem. In recent years, there has been emphasis on
numerical modeling of the response of a single droplet evaporation to an acoustic field [30–
34]. Some studies have used the theoretical approach using the Euler-Lagrange framework to
quantify the response of a single droplet to velocity oscillations [19, 35]. Recently, Moriniere
[36] also introduced an analytical framework to describe the response of the droplet population
to the perturbation of the upstream velocity using the Euler-Euler formulation. An analytical
description of the acoustic response of a monodisperse droplet population (spray) within Euler-
Lagrange has not been well documented, and this knowledge is important to build an analytical
FTF of spray flames similar to premixed gaseous flames. In this section, a detailed derivation of
the response of a population of monodisperse droplets with evaporation is introduced, which is
used in the PAPER-EVAPORATION RESPONSE.

3.1 Analytical Formulation

In both the CFD and theoretical contexts, there are two approaches to model multiphase flows:
Euler-Euler or Euler-Lagrange. For an analytical description of the response of a population
of droplets to velocity perturbations, the Lagrange-mass point approach is considered to be a
reasonably low-cost alternative, compared to methods that resolve the particle-fluid interface.
Lagrangian approach requires modeling all the forces acting on the droplet to determine its
velocity and location. The Lagrangian equation of motion for a spherical droplet with mass md

and velocity ud is given by:

dud

d t
= g︸︷︷︸

body: gravity

+ 1

γ

(
Duc

Dt
−g

)
︸ ︷︷ ︸
undisturbed flow

+ 3CD

4γD
|uc −ud | (uc −ud )︸ ︷︷ ︸
steady state drag

+ ∆A

2γ

(
Duc

Dt
− dud

d t

)
︸ ︷︷ ︸

virtual mass

+FBasset (3.1)

In liquid fuel-air combustion systems, the density of the liquid is much higher than that of air
(ρl i q >> ρg as) and in such cases, the virtual mass and Basset forces become negligible. The
effect of gravitational acceleration on the droplet is also neglected. In the overarching context
of constructing an analytical spray flame transfer function, the work described here introduces
a simplified 1D approach, which nevertheless addresses the basic physics involved. For 1D flow
in the Stokes flow regime, the Lagrangian equation of motion reduces to:

dud

d t
= 1

γ

(
∂uc

∂t
+uc

∂uc

∂x

)
+ 18νc

γD2 (uc −ud ) (3.2)

For the theoretical description of the response of droplets to velocity oscillations, the droplet
motion equation is solved with the fluctuating carrier gas velocity uc :

uc = uc + ûc sin(ωt +φ), (3.3)
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3.1 Analytical Formulation

Droplets are continuously being injected with a velocity of ud in the fluctuating gas velocity
environment resembling droplet injection from an atomizer. In Eq. 3.3, uc is the mean velocity,
ûc is the fluctuating component of the gas velocity, ω = 2π f is the angular frequency, and φ

is the phase angle of the flow oscillation, which is included to generalize the solution. In this
work, droplets are injected into an oscillating flow of an incompressible medium at the mean
gas velocity, corresponding to the zero slip velocity with respect to mean gas velocity (ud = uc).
Substituting the gas velocity equation 3.3 in Eq. 3.2 gives:

dud

d t
= 1

γ

(
ûcωcos(ωt +φ)

)+C
(
uc + ûc si n(ωt +φ)

)
(3.4)

where C = 18ν/γD2. As we are interested in the trajectory of the particle from the injection time
ti until some measurement time t , the above differential equation can be solved by assuming
that a general solution is of the form ect and integrating in the limit from ti to t :∫ t

ti

d(ect ud )

d t
=

∫ t

ti

1

γ

(
ûcωcos(ωt +φ)

)+ (
uc + ûc si n(ωt +φ)

)
(3.5)

Applying integration by parts on the right hand side terms and the integration limits we get:

ud =C3

[
sin(ωt +φ)

(
ω2

γ
+C 2

)
+ωC cos(ωt +φ)

(
1

γ
−1

)]
+

uc −uc eC (ti−t ) +ud0eC (ti−t )+

C3

[
ωC eC (ti−t ) cos(ωti +φ)

(
1

γ
−1

)
−eC (ti−t ) sin(ωti +φ)

(
C 2 + ω2

γ

)]
(3.6)

with C3 defined as:

C3 = ûc

ω2 +C 2
(3.7)

Integrating the droplet velocity equation above gives the droplet trajectory equation:

xd =C3C

[
sin(ωt +φ)

(
1

γ
−1

)
− cos(ωt +φ)

(
C

ω
+ ω

γC

)]
+uc t +uc eC (ti−t ) −ud0eC (ti−t )−

C3

[
ωeC (ti−t ) cos(−ωti +φ)

(
1− 1

γ

)
−eC (ti−t ) sin(ωti +φ)

(
ω

γC
+ C

ω

)]
+C1 (3.8)

The trajectory equation can be written in a compact way:

xd =C1 +C2eC (ti−t ) +uc t +C3C

(
sin(ωt +φ)

(
1

γ
−1

)
−cos(ωt +φ)

(
C

ω
+ ω

γC

))
(3.9)

with,

C2 =C3ωC

(
cos(ωti +φ)

(
1

γ
−1

)
+

(
ω

γC
+ C

ω

))
+ uc −ud0

C
(3.10)

The integration constant C1 in Eq. 3.8 is obtained by substituting initial conditions: at t = 0,
xd = 0 and ud = ud0:

C1 =C2 −C3C

(
C

ω
+ ω

γC

)
(3.11)
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Response of spray to acoustics

Equation 3.9 represents the dimensional droplet trajectory equation for mono-disperse droplets
injected in an oscillating flow field. The first term of the droplet position equation (Eq. 3.9) is a
constant, the second term describes an exponential decay where the droplets "loose" the influ-
ence of the initial condition as time progresses, the third term represents the mean convection
of droplets which increases linearly with time and the fourth term describes the modulation of
the droplet positions due to flow oscillation.

In the work of PAPER-EVAPORATION RESPONSE, the droplet is injected into the gas stream
close to the wet bulb temperature of the liquid at the given temperature and pressure of the gas
phase. Thus, the droplet heating time is negligible. In practical scenarios, significant droplet
heating may occur, leading to additional droplet heating duration that could be crucial in the
analysis of thermoacoustic stability.. The following analytical work adopted from Lupo and
Duwig [37] shows the calculation of the droplet heat up time that can be included in the theo-
retical framework.

When the droplet is injected into the gas phase, the droplet evolution is characterized by two
regimes:

1. Initial transient period until the droplet heats up to the wet bulb temperature Twb .

2. Evaporation at constant wet bulb temperature Twb under the d 2-law.

In the transient regime, when the initial liquid temperature Tl0 is less than the wet bulb tempera-
ture Twb , the heat is transferred from the gas to the liquid in part to raise the droplet temperature
to Twb and partly it is used as latent heat of vaporization. In this work, a rapid mixing model
is assumed in which the liquid field is treated as uniform and at constant temperature. Such an
assumption is applicable in the case of a strong internal circulation or a small Biot number. With
the rapid mixing model, the droplet temperature evolution for a droplet of initial diameter d0

and at initial temperature Tl0 can be written as

dTl

dt
= β1

τh

[
(T∞−Tl )−β2

]
(3.12)

where τh = d 2
0 /4α0 and α0 is the thermal diffusivity of the liquid. The solution for the above

differential equation is given by:

Tl = T∞−β2 −
[
(T∞−Tl0)−β2

]
e−β1t/τh (3.13)

with β1 and β2 given as:

β1 = ln(1+BM0)

Le0

1

BT 0

κ̄0

κl0
(3.14)

β2 = Λ0BT 0

cp0
(3.15)

In the above equations, BM0 and BT 0 correspond to initial Spalding mass transfer and heat
transfer number respectively. For a droplet convecting through the gas phase, the Spalding mass
and heat transfer numbers are given by:

BM = Ys −Y∞
1−Ys

(3.16)

BT = (1+BM )1/Le −1 (3.17)
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3.1 Analytical Formulation

where Ys and Y∞ represent the droplet mass fraction at the surface and far away from the surface
respectively and Le is the Lewis number of the liquid. The droplet heat up time to reach the wet
bulb temperature is given by:

τwb = τh

β1
ln

(
(T∞−Tl0)−β2

(T∞−Twb)−β2

)
(3.18)

Finally, the overall lifetime of the droplet is given by adding the heat up time and the droplet
vaporization time at constant Twb using the d 2-law:

τl i f e = τwb +
d 2

s

Kwb
(3.19)

where Kwb is the evaporation coefficient.
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4 Estimation of flame dynamic response
using LES simulations

Combustion instability is one of the critical issues that affects the stable operation of a lean
combustion gas turbine engine. As we have seen earlier, these instabilities are the result of con-
structive interference of pressure oscillations and unsteady heat release rate, which eventually
damages the engine components and reduces the life span of the engine. Therefore, the predic-
tion of the thermoacoustic stability of the system in the early design phase becomes important.
For a successful prediction of the thermoacoustic behavior, a thorough understanding of the
flame dynamics and its driving mechanisms is necessary. Generally for gaseous flames, its dy-
namic response to acoustic perturbations is quantified by a flame transfer function if the level of
perturbations is small. The FTF over the desired range of frequencies is derived from applying
a broadband excitation to the flame in a high fidelity LES simulation coupled with System Iden-
tification methods [20]. The FTFs identified from the LES/SI procedure are combined together
with an acoustic model to determine the thermoacoustic eigenmodes of the system.

Quantifying an FTF for spray flames is rather complex due to the effect the acoustic perturba-
tions may have on various processes such as atomization, evaporation, transport, and mixing.
As seen in the earlier work - PAPER EVAPORATION RESPONSE [38], the perturbation in
velocity gives rise to periodic variation of the droplet size distribution and equivalence ratio
which consequently produces heat release rate oscillations. The physical processes involved in
the combustion of liquid fuel are intertwined, and further research is necessary to understand
these interactions accurately.

The following review of the literature highlights the important driving mechanisms involved in
liquid fuel dynamics. Tachibana et al. [14] performed LES of a self-sustained instability event
of a swirled spray flame at elevated pressure and noticed the importance of the time delay intro-
duced by evaporation and proposed a simple acoustic velocity mechanism as a driving factor of
the thermoacoustic instability in their LES study. Pillai et al. [39] showed the effect of temporal
variation of the droplet diameter distribution on the instability behavior of a backward-facing
step combustor. Vignat et al. [13] in their study also show various mechanisms such as fluc-
tuation of the swirl number due to acoustics, fluctuations of the fuel flow rate resulting from
the response of the injector to acoustics and together with the fluctuation of the total mass flow
rate drives the fluctuation of the heat release rate. These processes give rise to a combined time
delay of the injector response, convection time, and chemical conversion time. Interestingly, va-
porization time is not included, as it happens simultaneously with convection. Kitano et al. [15]
remarked that in their high equivalence ratio flame, reaction dominates droplet evaporation, as
the surrounding rich fuel gas mixture consumption leads to enhanced droplet evaporation. They
also concluded that the thermoacoustic mode is affected by the initial diameter of the droplets,
which controls the release of fuel vapor. Recently, Lo Schiavo et al. [40] showed the importance
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of the liquid fuel injection angle and the liquid film dynamics on the stability of the SICCA
combustor. These studies with high fidelity LES simulations show the existence of different
mechanisms and how they contribute in driving combustion instabilities while highlighting the
complexity that comes in predicting combustion instability of liquid fuels.

Another approach to evaluate thermoacoustic stability of the system is to use the "divide and
conquer" approach, also known as the hybrid approach as elucidated in the previous chapter
of this thesis. For the hybrid approach, a flame model is required, which is generally repre-
sented by a flame transfer function. Numerous works exist in the literature on the estimation
and measurement of FTF of gaseous fuels, whereas few investigations have been carried out on
the estimation and measurement of FTF of liquid fuel flames mainly due to the complexities
involved. Concerning the FTF of liquid fuel, Eckstein et al. [41] indicated that for air-assisted
atomizers, in the limit of negligible prevaporization, the heat release rate is directly proportional
to the droplet evaporation rate. It was noted that with low-frequency combustion oscillations,
increases in air velocity result in a corresponding increase in heat release rate oscillations. This
establishes a direct relation between heat release rate and the droplet diameter. Andreini et
al. [42] investigated different formulations of liquid flame FTF to reproduce the flame behavior
obtained from an aeroengine liquid fuel PERM injector and concluded that simple FTF formula-
tions are inadequate to capture the dynamic flame behavior generated from the PERM injector,
which has been shown to be strongly dependent on operating conditions [43].

As simple FTF formulations are insufficient to describe the dynamic behavior of the flame
produced by the PERM injector, an alternate way of estimating the flame dynamics from the
CFD/SI method described earlier can be employed. Zhu et al. [44] performed RANS of a spray
flame of a simplified domain and computed the transfer behavior of the system by estimating the
coefficients of the infinite impulse response filter in the low-frequency regime. They observed
that that the rate of combustion increases in the primary zone when the air velocity upstream
is high, consistent with the findings of Eckstein and Sattelmayer at a later time. At high fre-
quencies, the combustion lags the quasi-steady response through a simple time lag. Badhe and
coworkers [45] conducted flame dynamics studies using LES of the SICCA burner, which had
been previously studied for self-excited instabilities. They applied harmonic acoustic forcing
at varying frequencies to analyze the Flame Transfer Function (FTF) using LES/SI methods
and to explore how the injection angle affects flame dynamics. It was observed that when the
inlet was forced, the level of acoustic velocity fluctuation obtained prior to the swirler was in-
consistent with the experiments indicating inadequate acoustic resolution of the domain. While
the outlet forcing matches the results with inlet forcing, there is an overall mismatch with the
measured data. In another study, Innocenti et al. [46] performed URANS of a spray flame pro-
duced by GE Avio PERM injector with β − PDF combustion model and estimated the FTF
using System Identification techniques. Through the CFD/SI procedure, they showed the sen-
sitivity of the flame dynamics to the liquid fuel properties and the wall thermal boundary con-
dition. They found that constant or variable liquid fuel properties as a function of temperature
impacted the evaporation location and velocity. Similarly, adiabatic and isothermal combustor
back plane boundary condition changed the FTF qualitatively and quantitatively. Overall, qual-
itative trend of the FTF was in agreement with the measured data. Quantitatively, a mismatch
with experimental data was observed particularly in the low-frequency region which could be
due to multiple modeling assumptions: value of the combustor wall temperature, liquid fuel
injection boundary condition and reaction mechanism of the fuel.
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Estimation of flame dynamic response using LES simulations

One of the objective of the current thesis is to identify FTF of both gaseous and spray flames
using LES/SI method which is to be used for different investigations. For the flame models
to be determined via SI techniques, the input-output time series data needs to be generated
through LES simulations and this constitutes as a first step in the overall FTF identification and
uncertainty quantification procedure. In the current work both compressible and incompressible
reactive LES is used for data generation step.

4.1 Overview of LES methods

One of the major challenges in solving fluid dynamical flows computationally is to accurately
resolve turbulent structures. There is no universal model for turbulence and it is often geometry-
dependent. In a turbulent flow, large turbulent structures exist which are often dependent on the
geometry of the fluid containment and the kinetic energy continuously transfers from larger
structures to smaller structures until the energy is dissipated at the smallest Kolmogorov scales.
For homogeneous isotropic turbulence the energy transfer happens through a constant dissi-
pation rate. This energy cascade process is shown in Figure 4.1 Resolving different scales in a

Figure 4.1: Different turbulence modeling approaches visualized through turbulent energy
spectrum against wave numbers

CFD simulations gives rise to different modelling approaches. On one extreme end is the RANS
approach where all the scales are modeled resulting in statistical mean flow quantities that are
dissipative and do not represent temporal nature of the quantities of interest. On the other ex-
treme end is the DNS approach, where all the scales down to the smallest Kolmogorov scales
are resolved via a highly refined mesh. Such a highly resolved simulation is practically not pos-
sible for engineering problems due to the high computational demand of the DNS approach.
Another approach is the LES method, which utilizes best of both the RANS and DNS methods.
In LES, large-scale geometry-dependent turbulent structures that contain most of the energy are
resolved by the computational grid filtering out the small scales. The filtered small scales that
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4.1 Overview of LES methods

exhibit universal characteristics are modeled using the information of the resolved scales with a
suitable subgrid scale (SGS) model. In this work, subgrid stresses exerted by the smallest scales
are modeled using the Wall Adapting Linear Eddy (WALE) model as:

τ̄
sg s
i j =−ρ̄ (�ui u j − ũi ũ j

)
(4.1)

A turbulent viscosity is used to model the viscous stress as:

τ̄
sg s
i j = ρ̄νt

(
∂ũ j

∂x̃i
+ ∂ũi

∂x̃ j

)
− 2

3
ρ̄νt

(
∂ũk

∂x̃k
δi j

)
(4.2)

In the WALE model, the turbulent viscosity is modelled as:

νt = (Cw∆x)2

(
Sd

i j Sd
i j

)3/2

(
S̃i j S̃i j

)5/2 +
(
Sd

i j Sd
i j

)5/4
, (4.3)

with

Sd
i j =

1

2

[(
∂ũi

∂x̃ j

)2

+
(
∂ũ j

∂x̃i

)2
]
− 1

3

(
∂ũk

∂x̃k

)2

δi j , (4.4)

and

S̃i j = 1

2

(
∂ũ j

∂x̃i
+ ∂ũi

∂x̃ j

)
(4.5)

Cw = 0.4929 is the model constant. Unresolved species fluxes and energy fluxes are closed
using turbulent Schmidt and Prandtl numbers, respectively.

In turbulent reactive systems, the flame thickness produced by the fuel/air combustion is smaller
than the grid size for the given operating conditions, pointing out the need for a subgrid scale
combustion model. A Thickened Flame Model (TFM) is used as a subgrid scale combustion
model in this work. As the adopted mesh is larger than the laminar flame thickness, the flame
front is artificially thickened to be able to resolve it on the LES grid. Thickening is achieved
while preserving the laminar flame speed by increasing the thermal diffusivity D th and reducing
the reaction rate exponent A by a factor F named thickening factor for a single step reaction.
Scaling the diffusivity and reaction rate exponent gives a constant laminar flame speed S0

L and
increased flame thickness δ0

L as:

S0
L ∝

√
D th A

Thickening−−−−−−−→
√

F D th
A

F
=

√
D th A (4.6)

δ0
L =

√
D th

A

Thickening−−−−−−−→
√

F D th
F

A
= F

√
D th

A
(4.7)

With appropriate values of F , the reaction zone can be sufficiently resolved on the adopted
mesh. Typically, F is used such that 5-7 mesh points lie inside the flame zone. Constant values
of F cannot be used in regions where no reactions occur. To limit the thickening to regions
around the flame only, a sensor factor S is used to detect premixed reaction zones and apply the
thickening [47]. This approach is known as a dynamically thickened flame model. The value of
S is calculated from the flame front characterizing reaction rate equation for the global one-step
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Estimation of flame dynamic response using LES simulations

and two-step reaction schemes. The Value of S needs to be adjusted when multistep reaction
schemes are used. Artificial thickening of the flame causes a reduction in the Damköhler num-
ber Da, altering the rates of wrinkling of the flame and fuel consumption. To compensate for
reduced Da, the thermal diffusivity and reaction rate are multiplied by an efficiency function
E adopted from the work of Colin et al. [48]. The efficiency function is the wrinkling ratio
of the non-thickened flame to the thickened flame. The TFM model is used with a two-step
global mechanism for kerosene/air combustion developed by Franzelli et al. [49] for the LES
simulations in this work.

4.2 Overview of LES models for spray flames

There are two approaches when it comes to numerical simulation of multiphase flows: Euler-
Euler approach, where different phases are treated as interacting continuum and equations are
solved for the phase volume fraction, which is a continuous function of space and time, and the
sum of different phases always reaches unity. For LES applications, governing equations are
filtered and suitable subgrid scale modeling is employed where necessary; in Euler-Lagrange
approach that is used in this thesis, fluid phase is treated as continuum characterized by the
Navier-Stokes equation, while the dispersed phase is solved by tracking large number of par-
ticles/droplets through the continuous fluid phase. The dispersed phase can exchange mass,
momentum, and energy with the continuous fluid phase. In the Euler-Lagrange approach, no
subgrid-scale modeling or ensemble averaging is used, thus making it suitable for tracking
polydisperse sprays.

In the Euler-Lagrange approach, the spray droplets are assumed to be discrete spherical droplets,
which are smaller than the Kolmogorov length scales. The trajectory of particles is computed
by integrating the momentum equation, which is written in Lagrangian reference frame as:

dup

d t
= FD (u −up )+Fx (4.8)

where Fx represents additional forces (added mass, Basset history force) that act on the droplet.
The force of gravity is neglected. In combustion applications where the density difference be-
tween liquid and gas is high (ρl i q >> ρg as), these force terms become irrelevant and only drag
forces are significant. FD is the drag force per unit particle mass given by:

FD = 18µ

ρp d 2
p

CD Re

24
(4.9)

Here, u is the fluid phase velocity, up is the discrete phase velocity, µ is the molecular viscosity
of the fluid, ρ is the density of the fluid, ρp is the density of the discrete phase and dp is the
diameter of the particle. Re is the relative Reynolds number defined as:

Re = ρd |up −u|
µ

(4.10)

Equation 4.8 is integrated in time over discrete time steps to yield the velocity of the particle
at each point along the particle trajectory. Particle trajectory itself is calculated by integrating
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4.2 Overview of LES models for spray flames

the velocity. Particle velocity and trajectory equation are coupled ordinary differential equations
and can be cast in general form as:

dup

d t
= 1

τp

(
u −up

)+a (4.11)

with

τp =
ρp d 2

p

18µ(1+0.15Re0.687)

τg = lg

ug

St = τp

τg

where a includes acceleration due to all the other forces except drag force, lg and ug represents
gaseous phase space and time scales, τp is the particle relaxation time, τg is the flow time scale
and St is the Stokes number which is ratio of two time scales.

The steady-state drag force FD needs drag coefficient, CD information. CD is a complex func-
tion of flow parameters, turbulence level, particle shape etc. For a spherical shape particle, CD

is calculated according to Morsi and Alexander [50] which is valid over a large of Reynolds
numbers:

CD = a1 + a2

Re
+ a3

Re2
(4.12)

where model coefficients, a1, a2 a3 are defined for large range of Reynolds numbers as defined
in [50].

4.2.1 Droplet Vaporization

Ansys FLUENT uses a simple heat balance equation to relate particle temperature Tp to con-
vective heat transfer. Radiation heat transfer is not considered in this work.

mp cp
dTp

d t
= h Ap

(
T∞−Tp

)
(4.13)

where mp is the mass of the particle, cp is the specific heat capacity of the particle, Ap is the
surface area of the particle, h is the convective heat transfer coefficient. Equation 4.13 assumes
that there is no temperature gradient within the particle, i.e., the particle is at a uniform tem-
perature throughout. The convective heat transfer coefficient required in Eq. 4.13 is calculated
using the Ranz and Marshall correlation [51]:

Nu = hdp

k∞
= 2+0.6Re1/2

d Pr 1/3 (4.14)

When the rate of vaporization is slow, the vaporization is controlled by the difference in the
concentration of the fuel vapor at the droplet surface and droplet concentration in the bulk gas
and the vaporization rate is given by:

N = kc (Cs −C∞) (4.15)
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Estimation of flame dynamic response using LES simulations

where N is the molar flux of vapor, Cs is the concentration of fuel vapor at the droplet surface,
C∞ is the concentration of fuel vapor in bulk gas and kc is the mass transfer coefficient. The
mass transfer coefficient is calculated from the Sherwood correlation as:

ShAB = kc dp

Di ,m
= 2.0+0.6Re1/2

d Sc1/3 (4.16)

where Di ,m is the diffusion coefficient of vapor in bulk and Sc is the Schmidt number. For
high vaporization rates, the convective flow of the vapor from the surface to the bulk becomes
important, known as the Stefan flow. In such cases, the droplet evaporation rate is given by:

dmp

d t
= kc Apρp ln(1+Bm) (4.17)

where Bm is the Spalding mass transfer number:

Bm = Yi ,s −Yi ,∞
1−Yi ,s

(4.18)

with mass transfer coefficient given by Eq. 4.16.

4.2.2 Droplet Injection

To represent the polydisperse spray, it is necessary to obtain information on the particle size
distribution. The droplet size distribution information can be obtained from measurements. In
numerical simulations, the droplet size distribution is conveniently represented by the Rosin-
Rammler expression. The complete range of sizes is divided into an adequate number of discrete
bins; each represented by a mean diameter for which trajectory calculations are performed:

Yd = e(−d/d̄)n
(4.19)

where d̄ is the mean diameter and n is the spread parameter. The values of these parameters
can be obtained by fitting the measured spray size distribution data to the Rosin-Rammler equa-
tion. However, often size measurement data are not available, and the users need to guess these
parameters such that certain performance indicators from the simulations agree with the mea-
surement. This gives rise to uncertainty in the droplet injection conditions.

Once the droplet size distribution is known, the location and type of injection of the droplet need
to be fixed. Ansys FLUENT allows as many as 11 different injection types (single, surface,
pressure-swirl-atomizer, etc.). In this thesis, the surface injection type is used where droplets
are released from the chosen surface(s) with user-defined velocity, temperature, and total liq-
uid mass flow rate. The chosen sufrace represents the lip of the atomizer in experiments where
atomization of the liquid fuel occurs. The droplet injection location, temperature, velocity, and
droplet size distribution constitute spray injection boundary conditions. The spray boundary
conditions significantly affect liquid penetration in the combustion chamber [52], liquid/vapor
distribution, flame stand-off distance and overall heat release rate. In the context of thermoa-
coustic stability analysis, lack of knowledge of the physical spray boundary conditions and
model parameters causes unreliable flame response and thermoacoustic stability predictions.
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5 Uncertainty Quantification and
Surrogate Modeling

Computer simulations have become an indispensable part of the design development and anal-
ysis of engineering problems. Courtesy of advancement in computing power and algorithms,
computational models that mimic the underlying physics facilitate valuable insights of the sys-
tem. However, performing numerical simulations is not straightforward as the various models
involved in the simulations are fraught with uncertainties. Simulating a model with uncertain-
ties may cause the outcomes to differ from reality, leading to unreliable simulations. To quote
George Box, "all models are wrong, but some are useful". Utilizing these "imperfect" models
effectively relies on the significance of uncertainty quantification. This process aids in mea-
suring the influence of variability and randomness within the models, thereby facilitating the
analysis of how uncertainties affect the outcomes of simulations.

In reality, performing reliable simulations is a nontrivial task, as various sources of uncertainties
corrupt the reliability of the results. These sources of uncertainties can be broadly categorized
into the following two types: aleatoric and epistemic uncertainties.

• Aleatoric uncertainty arises due to inherent randomness in the system being modelled. It
is also known as stochastic uncertainty. Aleatoric uncertainty cannot be reduced by addi-
tional information of the experiment. Due to the randomness of the uncertainty, aleatoric
uncertainty is studied using probabilistc framework. In the context of this thesis, aleatoric
uncertainties appear in the FIR model identified via LES/System Identification method-
ology. The FIR model coefficients are uncertain due to the statistical nature of the SI
process, low signal-to-noise ratio, etc. and are characterized by the confidence interval
of each coefficient. Generally, uncertainties of the FIR coefficients are estimated using
residual analysis.

• Epistemic uncertainty arises from the limited knowledge or information available about
the system being modeled. Unlike aleatoric uncertainty, epistemic uncertainty can be re-
duced through additional data. In other words, it is a measure of how well we understand
a system. Epistemic uncertainty can be represented as a lack of information about model
parameters, boundary and initial conditions or limited knowledge of the underlying physi-
cal phenomena. In the context of this thesis, epistemic uncertainties are taken into account
due to unknown thermal boundary conditions or spray boundary conditions (injection an-
gle, droplet size distribution etc.).

Typically, an assessment of the impact of these sources of uncertainties on the variation of
the outputs is carried out using a sampling-based Monte Carlo method. This procedure in-
volves drawing random samples from the input probability distributions and then using the

19



Uncertainty Quantification and Surrogate Modeling

chosen computational model to calculate the corresponding response for each sample. Uncer-
tainty statistics of the output can then be inferred based on the ensemble of the results. This
method is non-intrusive and has gained widespread usage due to its easy implementation. Al-
though this method is simple and effective, it suffers from slow convergence as the estimation
error of the mean of a random variable with the N number of samples converges rather slowly
on the order of N−1/2 [53]. Due to slow convergence behavior, Monte Carlo can be expensive
when dealing with quantifying the impact of uncertainties in already computationally expensive
LES simulations.

To alleviate the high computational cost associated with the Monte Carlo method, the surrogate
modeling methodology is explored in this thesis [54]. In particular, we employ Gaussian Process
(GP) as a surrogate model, which is a form of supervised machine learning algorithm that aims
to obtain a cost-efficient surrogate model by learning the input-output relationship of the under-
lying computer simulation [55]. Monte Carlo method is then applied on this efficient surrogate
model to attain the uncertainty estimates. In addition, like most regression algorithms, the GP
model not only provides point estimates, but also quantifies the uncertainties in the prediction
resulting from possible measurement and parameter estimation procedure. In the following, the
fundamentals of GP are described, which lay the foundation for the bootstrapping GP method
used in the work of PAPER - TOTAL UNCERTAINTY [56].

For a supervised learning algorithm, the core problem lies in trying to learn a mapping y = f (x)
that is a black-box representation of the input-output relationship. The general solution approach
is to find a best guess f ∗(x) for the black box mapping f based on the known output values
f (xi ) that result from a set of input values xi , i = 1. . . N . Unlike other models, the process of
constructing a surrogate model is non-parametric in nature where a Gaussian prior over the
function f is defined and this assumed prior is updated using the training dataset to arrive at the
posterior of the function f .

The Gaussian prior is defined over the function output values at arbitrary points x1, . . . , xN such
that each output f (xi ) and their ensemble f (xi ), . . . , f (xN ) is a realization of a random process
and can be denoted using a set of random vectors:

f =

 f (x1)
...

f (xN)


This random distribution is defined by a mean 1µ where 1 is a column vector of ones of size
N ×1. In practice, the mean µ is simply set as some unknown constant m. We assume that the
output random variables which are being predicted are correlated, smooth, and continuous over
the input space. We express the correlation among the random variables using a basis function.
Among the different basis functions available we use a Gaussian basis function or "kernel" to
define the correlation among the function outputs at two different input locations.

Cor [ f (xi ), f (xl )] = exp

(
−

k∑
j=1

θ j

∣∣∣x(i )
j −x(l )

j

∣∣∣2
)

(5.1)

where θ j represents the hyperparamemter that controls the spatial correlation between the loca-
tions within the input dimension j . The Gaussian kernel definition (5.1) is used to populate the
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N ×N correlation matrix Ψ of all the observed data as:

Ψ=

 cor
[

f
(
x(1)

)
, f

(
x(1)

)] · · · cor
[

f
(
x(1)

)
, f

(
x(N )

)]
... . . . ...

cor
[

f
(
x(N )

)
, f

(
x(1)

)] · · · cor
[

f
(
x(N )

)
, f

(
x(N )

)]
 (5.2)

and a covariance matrix K which measures the correlation between two random variables as:

K =σ2Ψ (5.3)

where σ is the process variance. From Eq. 5.1 we see that the correlation between random
variables depends on the distance between the sample points and the hyperparameter. Figure 5.1
shows how the value of θ affects the degree of correlation. A low value of θ represents a slow
rate of decay of correlation among the variables in that given dimension, suggesting that the
function is rather "inactive" along that dimension. Whereas a high value of θ in the figure
suggests a high rate of decay of correlation among the variables in the given dimension, thus
indicating that the function is "active" along that dimension. By examining the elements of θ
one can determine which are the most important input variables that helps in dimensionality
reduction.

Figure 5.1: Effect of varying θ on correlation

The kernel parameters θ andσ2 along with the mean function m are estimated from the observed
data using the likelihood approach. In the likelihood approach the parameters are estimated in
such a way that the likelihood of obtaining the observations is maximized. For given parameters
(m,σ2,θ), the likelihood function L is defined as:

L = 1(
2πσ2

)N /2 |Ψ|1/2
exp

[
− (y−1m)TΨ−1(y−1m)

2σ2

]
(5.4)

In practice, the logarithm of Eq. 5.4 is maximized to avoid round-off error to give:

ln(L) =−N

2
ln(2π)− N

2
ln

(
σ2)− 1

2
ln |Ψ|− (y−1m)TΨ−1(y−1m)

2σ2
(5.5)

21



Uncertainty Quantification and Surrogate Modeling

For maximum estimation, setting the derivates of Eq. 5.5 to zero, we obtain the maximum
likelihood estimate for m̂ and σ2:

m̂ = 1TΨ−1y

1TΨr−11
(5.6)

σ̂2 = (y−1m̂)TΨ−1(y−1m̂)

N
(5.7)

The values of θ, are further estimated by solving an auxiliary optimization problem:

θ̂ = argmax
θ

[
−N

2
ln

(
σ̂2)− 1

2
ln(|Ψ|)

]
(5.8)

The values of θ cannot be solved analytically and instead an optimization technique is em-
ployed. Generally, a local optimization approach (e.g., gradient-based methods) or a global op-
timization approach (e.g., evolutionary algorithms) are used. Local optimization methods tend
to converge faster and are computationally inexpensive, but may yield local minima. Whereas
global optimization approaches are computationally expensive, but are robust against local min-
ima and are able to find global minima. In the current thesis, a multi-start global optimization
approach is adopted to find the optimum θ.

Given the observed training dataset D = (
xi , f (xi ), i = 1. . . N

)
and the estimation of hyperpa-

rameters discussed above, one can make a prediction f̂ at x in such a way that the prediction is
consistent with the observed data and therefore with the correlation parameters found before.
Hence the idea is to choose a prediction which maximizes the likelihood of the observed data
given the estimated correlation parameters. This is achieved by augmenting the observed data y
with a new prediction ŷ which is to be determined to yield ỹ = {yT, ỹ}T. We can also construct
the associated augmented correlation matrix:

Ψ̃=
(
Ψ ψ

ψT 1

)
(5.9)

where ψ is the correlation matrix between the observed data and new prediction. Again using
the likelihood maximization estimate, the prediction ŷ can be obtained as:

ŷ(x) = m̂ +ψTΨ−1(y−1m̂) (5.10)

where m̂ is the prediction mean.The prediction covariance matrix is defined as:

σ̂2(ΨP −ψTΨ−1ψ) (5.11)

where ΨP is the correlation matrix between the testing samples.

5.1 Gaussian Process for combined uncertainty using Boot-
strapping methodology

The GP formulation derived above has been used by Guo et al. [57, 58] to quantify the impact
of aleatoric uncertainties in the flame model on the prediction of the growth rate of a ther-
moacoustic mode. In the present thesis, the GP formulation shown above is used to predict
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5.1 Gaussian Process for combined uncertainty using Bootstrapping methodology

the mean of the FIR distribution and then use the bootstrapping methodology to determine the
aleatoric uncertainty, which includes the model approximation uncertainty and the FIR estima-
tion uncertainty. Further, the effect of epistemic uncertainty (unknown wall boundary condi-
tions) is taken into account by performing Monte Carlo procedure on the already configured GP
model to obtain the comprehensive uncertainty estimate at any test location within the range
considered. The bootstrapping methodology was developed and implemented in the work of
PAPER-TOTAL UNCERTAINTY. The workflow discusses an example to quantify epistemic
uncertainty (unknown wall temperature boundary condition) and aleatoric uncertainty (stochas-
tic nature of system identification) in the flame model that is typically obtained from a CFD/SI
procedure.

Step 1: Generate FIR (h ∼ (m,C)) models from LES/SI at different wall temperatures (Tw ). FIRs
at different temperatures constitutes as training dataset. A visual representation of a training
dataset of FIRs is shown below.

Figure 5.2: Training dataset of FIR flame models obtained at different wall temperatures

Step 2: Train a univariate GP model on the mean values of FIRs at different temperatures
((Tw , (m)) to determine the nominal FIR GP hypersurface. An example of a trained GP hyper-
surface is shown in Figure 5.3:

Step 3: To predict an FIR distribution at a test location the nominal GP hypersurface is used
from step 2. The corresponding uncertainty is determined by aggregating the uncertainties due
to FIR coefficient uncertainty, model approximation and unknown temperatures. This is done
in steps:

• Due to the stochastic nature of the FIR identification process, the identified FIRs have
an associated uncertainty estimate. To capture the uncertainty given by the SI procedure,
multiple realizations (p) of the training data are generated within the FIR coefficient un-
certainty given by the SI procedure.

• At each realization generated in the previous step, the GP model hyperparamters are re-
calculated. The re-calibrated GP model is then leveraged to predict at any test location.
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Figure 5.3: Illustration of a GP hypersurface

• The GP model prediction at any test location is uncertain as the model is only approxi-
mating the FIR distribution at the test location. This uncertainty estimate is obtained by
generating multiple realizations within the covariance matrix of the GP model predic-
tion 5.11. This is shown with an example sketch in Figure 5.4

Figure 5.4: Illustration of uncertainty aggregation in the bootstrapping procedure

Step 4: All the uncertainty estimates generated in different items listed in step 3 are aggregated
to derive the comprehensive uncertainty containing aleatoric and epistemic uncertainty.

5.2 System Identification in Thermoacoustics

This section introduces the theoretical background of system identification in general. This is
followed by the discussion on the four step identification procedure that is used in estimation
of a flame model: general of excitation signal, model structure, estimation of model coefficients
and assessment of model quality.
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5.2 System Identification in Thermoacoustics

More often that not, real world processes are too complex to be understood using first princi-
ples. In such scenarios, a practical alternative is to understand the process through an empirical
approach that is based on the analysis of observations in contrast to first principles modelling.
System identification is one such method that attempts to describe the process using a suitable
mathematical model based on observed/experimental data. This method, although introduced in
the mid-1960s, has gained traction in recent years due to increasing access to sensor data and as
well as computational power. Figure 5.5 pictorially depicts the identification of a mathematical
model representative of the underlying process using input-output data.

Figure 5.5: Schematic of the identification process using input-output data. Courtesy of Tangi-
rala [59]

In the context of thermoacoustics, a system representing the flame can be considered as a linear
time-invariant system. For any linear time-invariant system, velocity fluctuations at a given
reference position u′

r e f describe the total heat release rate Q̇ ′ by

Q̇ ′(t ) =G ·u′
r e f (t ) (5.12)

wherein, the plant model G can be associated with a flame transfer function since it establishes
a causal relation between the input velocity fluctuations u′

r e f (t ) and output heat release rate
fluctuations Q̇ ′(t ). Thus, the objective of the SI procedure is to estimate the plant model G.
Identification of such a model consists of four steps: 1. generation of the input excitation signal
2. selection of model structure 3. determination of model coefficients using an optimization
algorithm, and finally 4. model quality assessment. In the following sub-sections, these steps
are briefly described.

5.2.1 Input excitation signal generation

SI is a method that attempts to estimate a model based on input and output. In this thesis, LES
is used to generate input-output time series through acoustic forcing of the LES. Generally, a
characteristic signal fi n applied at the inlet produces a system response in terms of heat release
rate fluctuations. This system can then be characterized by its response to the input excitation
signal. The transfer behavior or the FTF at a particular frequency can be estimated by exciting
the flame with that particular mono-frequency input signal. Repeated simulations with mono-
frequency excitation would be needed to determine the FTF across a given frequency range. In
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the context of LES, this would be rather expensive as for each excitation frequency multiple
forcing cycles need to be computed. Instead of performing simulations repeatedly with distinct
mono-frequency excitation signals, one can perform only a single simulation with a broadband
excitation signal, which contains spectral energy across a specified frequency range. With the
resulting input-output time series from broadband excitation, the FTF can be estimated across
a complete frequency range with the help of the SI techniques. As a single simulation with
broadband forcing yields a transfer function that is valid in the complete complex plane, this
technique significantly reduces the computational effort in LES.

Different types of signals are possible for broadband excitation. To ensure a reliable and accu-
rate identification of the flame response, in this thesis the in-going characteristic wave based on
Daubechies wavelets [60] is used, which is optimized for the estimation of FTF. This type of
signal offers certain advantages for use in LES. First, the amplitude of the signal is bounded.
This makes certain that no non-linear flame response is triggered by the input signal forcing.
Second, the spectral energy is constant up to a specified cut-off frequency, after which the spec-
tral energy monotonically decreases. Finally, the Daubechies wavelet exhibits minimal auto-
correlation in the time domain. Otherwise, strong auto-correlation of the input signal corrupts
the identification procedure. A typical broadband input-output time series generated by LES is
shown in Figure 5.6.
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Figure 5.6: Normalized broadband input-output time series generated by LES

When generating an excitation signal for LES, one should pay attention to the amplitude of the
signal and the cutoff frequency. First, care should be taken to choose an optimal signal ampli-
tude, as a lower value might cause low signal-to-noise ratio, while a higher value might trigger
non-linear flame response. Second, the cut-off frequency should ideally be higher. However, a
higher cutoff frequency results in a wide spread of the spectral energy, lowering the spectral
energy content per frequency, which hampers the identification accuracy.

5.2.2 Selection of model structure

After input-output data are generated, a model structure needs to be selected. The general poly-
nomial model structure is defined as:

A(q,θ)Q̇ ′(t ,θ) = B(q,θ)

F (q,θ)
u′

ref(t )+ C (q,θ)

D(q,θ)
e(t ) (5.13)

wherein A,B,C,D and F are polynomials with time shift operator q−i :

q−i u′(t ) = u′(t − i∆t ) (5.14)
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By including or excluding some of the polynomial filters A,B,C,D and F, different model struc-
tures can be obtained. One of the well established model structure used to analyze the flame
dynamic response is the Flame Impulse Response model (FIR) [20, 61, 62]. The FIR model
structure can be obtained from the general model structure by setting polynomial filters A,C,D
and F to unity

Q̇ ′(t ,θ) = B(q,θ)u′
ref(t )+e(t ) (5.15)

This means that, the output Q̇ ′ is the result of convolution of the model coefficients θ =
{b0,b1, . . . ,bnb } with the prior inputs of u′

ref(t ). In principle, an infinite number of model co-
efficients must be considered, which specifies the number of prior inputs that are taken into
account for convolution. As an infinite number of model coefficients are used, such a model
structure is called the Infinite Impulse Response (IIR) model. Practically, only a finite number
of model coefficients (θ = nb) are sufficient to describe the system leading to a Finite Impulse
Response (FIR) model. The number of model coefficient times the time step size (nb∆ t) gives
the characteristic convective time of the system. As polynomials C and D are set to unity, no
noise model is inferred. Therefore, the noise contribution is assumed to be Gaussian white noise.
However, when the source models for combustion noise is to be identified, then a more general
Box-Jenkins model structure is suitable [63]. It is important to mention that when both model
structures are applied to the same input-output data, they tend to yield similar results for short
time series. [63].

5.2.3 Estimation of model coefficients

After a model structure is chosen, model coefficients θ = {b0,b1, . . . ,bnb } need to be estimated.
As input-output data exist, a least-squares optimization problem can be setup as:

argmin
θ

∑
(Q̇ ′− ̂̇Q ′(θ))2 (5.16)

where ̂̇Q ′ denotes the actual output. Model coefficients are estimated using correlation analysis,
where in the likelihood of obtaining the observations is maximized, thereby minimizing the cost
function. Regularization might be applied when the length of the time series used are very short
to avoid over-fitting by adding constraints to the cost function.

It should be emphasized here that the model estimation procedure discussed above is an empiri-
cal approach in which only observed data are used to deduce input-output transfer behavior. No
first-principle approach was used to identify the models. As the input-output transfer behavior is
deduced by minimizing the error between the model prediction and the observed output, SI can
also be classified as a supervised learning algorithm. Advantages of such data-driven models is
that their reliance on physical modeling information is negligible and is not limited to a specific
problem, e.g., to a certain combustion, flame shape, etc.

5.2.4 Assessment of model quality

The final aspect of the model identification procedure is the quality assessment of the model.
The quality of the identified model generally depends on the selected model structure and the
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model order. The chosen model structure must represent the physics of the process. Inaccu-
rate model structure gives rise to a biased estimate, where a systematic error is introduced, thus
preventing the identified model to converge to the true solution even with infinitely long time se-
ries. The model order impacts the variance and generalization behavior of the identified model,
similar to the bias-variance trade-off problem encountered in machine learning problems. In
case of system identification, if the chosen model order is too small, then the identified model
cannot capture the average response of the system. However, if the model order is higher than
necessary, then the identified model attempts to capture the noise in the system. The fitting of
noise leads to high variances of the model coefficients. As a result of overfitting to a particular
dataset, the model cannot generalize and would perform poorly on a test dataset, as the noise
components would be different in the test dataset.

To find whether a chosen model order is sufficient, Akaike’s Information Criterion (AIC) and
residual analysis are used. For more information on these methods, please refer to [64]. These
methods help in assessing the quality of the identified model. Typically, a good identified model
should have a lower AIC value (meaning low model order and model inaccuracy) and should
pass the Independence Test and Whiteness Test. Both these tests are based on the residuals,
which is the difference between the predicted output and the measured output. According to
the independence test, a model is considered good if the residuals are uncorrelated to their past
inputs. Evidence of correlation suggests that the model does not describe how part of the output
relates to the corresponding input. According to the whiteness test, a good model should have
no auto-correlation of the residuals. Significant auto-correlation means that the residuals exhibit
prediction of the residual dynamics (e.g. colored noise contribution) that are not related to input
signal.
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6 Contextualization and Discussion of
Publications

This chapter discusses the publications connected to the present thesis and clarifies the con-
text among them. First, Analytical modeling of response of spray to external forcing discusses
the development of an analytical formulation for the assessment of droplets’ motion and the
response of evaporation rate to acoustic excitation. Second, Uncertainty quantification in the
flame model proposes a strategy to quantify mixed uncertainties (epistemic and aleatoric) in the
estimated flame response model.

6.1 Response of Monodisperse Droplets to Velocity Pertur-
bations

Numerous works described in the literature have aimed at characterizing the effect of acoustics
on the behavior and evaporation of a single droplet. Duvvur et al. [30] investigated the burning
of a single droplet in a standing acoustic wave. It was observed that droplet vaporization may
drive longitudinal instability based on the fuel vapor flow direction caused by the acoustic veloc-
ity with respect to the bulk flow direction and in certain frequency ranges. Another important
conclusion from this study was that the amplitude of the pressure fluctuation had little effect
on the droplet vaporization and the system response. This implies that even a low-amplitude
pressure fluctuation can cause unsteady heat release rate, leading to growing thermoacoustic
instability. Sujith et al. [18] observed that acoustics modifies the fuel evaporation rate as ob-
served by Carvalho et al. [65] and that the evaporation rate increases with increasing acoustic
driving frequency. While Prud’Homme et al. [33] also observed enhanced evaporation through
a theoretical investigation of the droplet vaporization response to acoustic oscillations, they
also noticed that the internal thermal exchange inside the droplet model is critical factor in the
context of thermoacoustic instabilities.

Single droplet approaches are insightful, but such models cannot be generalized to describe the
complex physics comprising of population of droplets (spray). In practical situations such as
aero engines, the dynamics of the droplet or spray population is important. Dubey et al [66]
experimentally studied the acoustic response of ethanol spray. As seen in the single droplet
studies, the evaporation rate in the spray increased, causing a reduction of the Sauter Mean
Diameter (SMD). The acoustic interaction with spray not only enhances evaporation but also
impacts atomization and transport. For large droplets (≈ 2 mm) secondary atomization can be
caused by acoustic forces acting on the droplets. With smaller droplets that are of relevance in
aero-engine combustors, the spray exhibits droplet number density fluctuation caused by the
impact of the oscillating flow on the atomization process and transport of droplets [27]. Stud-
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ies from different fields have also identified the inhomogeneous and time-varying change in
droplet concentration, also known as the number density wave subjected to acoustic perturba-
tions. Katoshevski et al. [35] attributed the creation of nodes and antinodes of particle clusters
to the local relaxation of particles to the relative gas phase velocity depending on their position
in the standing acoustic wave. Li et al. [34] using the Euler-Euler two-phase numerical model
identified two types of droplets clustering: first formed by relaxation of the particle velocity
from its mean value to the instantaneous gas velocity, and second due to modulation of the
particle velocity by the acoustic wave introduced at the inlet. Such particle clustering regimes
were also observed by Achury and Polifke [67]. Multiple experimental investigations [13, 68–
71] performed on the response of spray to acoustic excitation have validated the formation of
a droplet number density wave due to the effect of oscillating flow on the transport of droplets.
Recently, Aradhey et al. [72] performed reacting spray measurements in a lean direct ignition
geometry to reveal droplet coupling mechanisms during a combustion instability event. They
proposed a new combustion instability pathway which includes droplet surface area rate param-
eter instead of droplet diameter (SMD : D32) as SMD does not take into account the droplet
number density. These experimental and numerical works shed light on the response of various
mechanisms involved in the spray formation, transport and evaporation that eventually perturb
the heat release rate of the spray flame. Nevertheless, general conclusions from these studies
are hard to ascertain unless elaborate parametric studies are performed. Parametric evaluations
with experimental campaigns and numerical investigations are time-consuming and expensive.
However, a theoretical framework based on simple mathematical formulation yet with desired
physics gives an opportunity to perform inexpensive parametric studies and enable quick char-
acterization of the system.

To facilitate inexpensive parametric studies and enable quick characterization of the system,
Kulkarni et al. developed an analytical formulation based on the Lagrangian point mass ap-
proach to quantify the response of monodisperse droplets and their simultaneous vaporization
behavior to acoustic oscillations. The work was developed based on the single droplet study of
Achury and Polifke [19] and extended to a population of evaporating droplets. Kulkarni and
co-workers deduced an analytical solution from the Maxey-Riley equations of motion [73] in
the linear drag regime for the response of the monodisperse droplet population to acoustic exci-
tation in terms of the droplet number density. The analytical solution of the droplet population
dynamics was extended by incorporating the effect of evaporation to describe an oscillatory
evaporation rate.

The analytical study shows that the oscillatory evaporation rate profile inherits the character-
istics of the number density wave without any phase lag. As a consequence, the oscillatory
evaporation rate causes the formation of a vapor wave, which convects downstream at the mean
flow speed and manifests itself in the form of equivalence ratio perturbations in space and time.
The equivalence ratio oscillation determined by solving a 1D droplet transport equation with ap-
propriate Green’s function shows good agreement with the results from the 1D Euler-Lagrange
CFD simulation. Kulkarni and co-workers also show that the evaporation dynamics calculated
by a transfer function follows a low-pass behavior and that the evaporation process introduces
a characteristic time delay in the fluctuation of the equivalence ratio. Thus, future studies with
polydisperse and detailed evaporation models could facilitate accurate determination of addi-
tional time delays that could be critical for thermoacoustic stability analysis.
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6.2 Quantification of Mixed Uncertainties in the Flame
model

Section 6.1 introduces a theoretical framework to assess the response of different mechanisms
of spray combustion to acoustic excitation. The understanding of the results and the analysis of
the theoretical framework can be leveraged in the larger context of analyzing the spray flame
response to acoustic excitation. Generally, the flame response to acoustic excitation is calculated
by computing FTF through a data-driven LES/SI approach [74]. However, the FTF calculated
from such an approach is uncertain due to aleatoric and epistemic uncertainties. The following
work presents a surrogate modeling methodology to propagate these uncertainties on the flame
response model.

The model for the acoustic response of the flame plays a major role in the hybrid approach that
is often used to determine thermoacoustic stability of a system. As shown in numerous works,
LES/SI is an efficient way to estimate a flame response model in terms of a FIR [44, 62, 75].
The flame model derived from LES/SI of a turbulent flame is typically characterized by uncer-
tainties, which are partially attributed to epistemic uncertainties arising from insufficient un-
derstanding of operating conditions [76], such as spray boundary conditions [77] and thermal
wall boundary conditions [62], and partially stemming from aleatoric uncertainties resulting
from employing SI on systems affected by combustion noise produced by turbulent flames [61].
Previous works have focused on propagating only aleatoric uncertainties in the estimated FIR
model to the thermoacoustic modal growth rate [22]. Avdonin and Polifke [21] proposed the
polynomial chaos method to quantify epistemic uncertainties caused by uncertain operating
conditions in the estimated FIR of LES / SI of a laminar flame. To quantify both epistemic
and aleatoric uncertainties in the FIR model, a Gaussian Process (GP) based surrogate model
is developed in this thesis. The novelty of the method lies in the way the surrogate model is
constructed. First, a univariate GP model is employed to account for two inputs and one output
where each of the FIR model coefficients is a function of time delay and uncertain tempera-
ture. Second, bootstrapping methodology is used to capture the variability of the estimated FIR
coefficients.

The univariate bootstrapping GP model trained on the FIR models generated from LES at differ-
ent back plate temperatures showed to successfully approximate the complex response surface
of the FIR. The GP model when applied on the entire investigated range shows a FIR with
wider confidence interval due to the aggregation of both epistemic and aleatoric uncertainties.
In addition, a key feature of the developed GP methodology is that the trained GP model can
be leveraged to interpolate FIR coefficients with uncertainty at locations not seen during the
training phase. Such a feature could be used to determine a more accurate value of the uncertain
variable which best fits the validation data such as experiment or LES results.

In summary, the two papers discussed above contribute towards understanding and quantifying
spray flame dynamics with confidence. The first work contributes to understanding and mod-
eling of the physical mechanisms involved in the response of spray to acoustics. Although the
physical mechanisms that are responsible for response of gaseous flames have been well docu-
mented in the literature, works on modeling of response of spray sub-processes such as droplet
motion and evaporation are relatively scarce. The analytical framework on the response of a
population of monodisperse droplets presented in section 6.1 showed the formation of a num-
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ber density wave, modulation of the evaporation rate and the characteristic time delay involved
in the dynamic response of the evaporation that is important in the thermoacoustic stability anal-
ysis. While the first work focuses on understanding the physical mechanisms that are necessary
to describe the dynamic response of spray, the second work carried out in this thesis contributes
to estimation of a dynamic flame response model from the LES/SI procedure in the presence
of both types of uncertainties (aleatory and epistemic). Previous studies focused on either prop-
agating aleatoric uncertainties in the flame model to the growth rates of the thermoacoustic
modes or quantifying epistemic uncertainties in operating conditions on the flame model. The
work presented in section showed the quantification of both types of uncertainties in the flame
model using a novel Gaussian Process surrogate model. This work allows for the trained GP
method to deduce uncertain variable that was previously unknown. The initial findings outlined
in the chapter 7 and the knowledge gained from the two works described in this section, enable
the analysis of the dynamic response of spray flames with a reliable level of statistical certainty.

The two studies described above establish the foundation for forthcoming research. The knowl-
edge obtained from the analytical model investigating the response of droplet evaporation to
velocity oscillations can be applied to examine the spray flame response derived from LES/SI.
Additionally, the approach developed in the uncertainty quantification study can be utilized to
evaluate the influence of uncertain liquid boundary conditions in the droplet injection model of
an LES simulation on the predicted spray flame response model.
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7 Estimation of Spray Flame dynamics
using LES/SI

This work presents the preliminary results on the dynamics of the spray flame generated by
the GE Avio PERM injector obtained from LES simulations using Thickened Flame Model.
The PERM lean injection system was previously investigated by Innocenti et al. [46] through
URANS simulations. The FTF obtained from the URANS simulation was quantitatively not in
good agreement with the experiments and also presented strong dependence on the wall thermal
boundary conditions. The goal of this work is to better estimate the FTF through LES/SI ap-
proach during which following objectives will be realized: (1) to demonstrate an incompressible
Large Eddy Simulations of a lab-scale combustor equipped with PERM atomizer using a dy-
namically thickened flame model is able to capture the correct flame shape, (2) assess the liquid
fuel statistics such as spray penetration depth using the statistically steady fields; (3) perform
LES with isothermal wall boundary conditions and upstream velocity perturbations to generate
time series data of the heat release rate oscillations and velocity perturbations for the estimation
of Flame Impulse Response using System Identification methods. The objectives were realized
in collaboration with the group of Prof. Andreini at University of Florence. In the following
section a brief description of the investigated combustor is given followed by the preliminary
results of the LES/SI investigation and the outlook.

7.1 Combustor Configuration

As mentioned in the introduction, the aim of the project was to perform an incompressible LES
simulation of the lean spray flame generated by the GE Avio PERM injection system in lab-scale
combustor and validate the dynamic response of the lean spray flame to acoustic perturbation
against the measurement data of Gikadi [78] using the LES/SI approach.

A schematic of the GE Avio PERM injector is shown in Figure 7.1. The injector has a double
radial co-rotating swirler, where liquid is injected in a pre-filming airblast fashion. The injected
fuel forms a film of fuel on the inner surface of the lip that separates the two swirling flows.
Primary atomization is achieved when the film reaches the edge of the lip. Due to the dou-
ble swirler configuration, fine droplets and rapid mixing is achieved. For stable operation, the
airblast injector is coupled with a hollow cone pressure atomizer located at the center of the
primary swirler which generates a pilot flame to stabilize the combustion process. When oper-
ating at atmospheric pressure setting, the atomizer is operated only using the pilot fuel injection.
The injected pilot fuel at low pressures, does not evaporate instantly and the droplets hitting the
inner surface forms a liquid film as shown in Figure 7.1.

The flame produced by the PERM injector was investigated using an atmospheric test rig built at
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Figure 7.1: Schematic of PERM injector

TU Munich by Gikadi as part of the KIAI European Project. In the test rig, the PERM injector
is fed by an upstream plenum with circular cross section as shown in Figure 7.2. A highly
homogeneous reacting fuel mixture is produced by the PERM injector and a flame is stabilized
in the combustion chamber which has a square cross section. The walls of the combustion
chamber are cooled using impinging air jets. Flame Transfer Function of the spray flame was
obtained with perforated screen at the outlet by measuring the acoustic transfer matrices with
two-source technique [79]: by measuring the acoustic pressures and velocities of the burner with
and without the flame. The FTF measurement at atmospheric pressure will be used to validate
the FTF estimated from the LES/SI method used in this work.

Figure 7.2: Sketch of the test rig at TU Munich

7.2 Numerical Setup

The test rig with PERM injector sketched in Figure 7.2 is a single burner swirled spray with
kerosene/air configuration. The incompressible form of the LES-filtered Navier-Stokes equa-
tions are solved using the Ansys Fluent 2021.R2 code. From the previous work of Innocenti et
al. [43, 46] it can be seen that the flame is acoustically compact and the heat release rate due
to velocity oscillations is dominant while the effect of pressure oscillations are rather weak.
Therefore, the flame dynamics is governed by the hydrodynamic processes and can be tackled

34



7.2 Numerical Setup

by incompressible solvers [80]. The computational domain of the test rig is shown in Figure 7.3
which has circular cross-section for the plenum and square cross-section for the combustion
chamber and a converging section at the outlet to ensure no-recirculation at the outlet. The
computational domain is first discretized with 29 million cells (unstructured tetrahedral and
quad elements) with further mesh refinement in the flame region and swirler to correctly repro-
duce liquid fuel evolution and flame dynamics. However, performing two-phase simulation on a
29 million mesh for about 150 ms as demanded by the LES/SI procedure for FTF identification
results in very long run times. To alleviate this, the unstructured mesh was converted to poly
mesh while preserving the accuracy [51] using the built-in algorithm of Ansys Fluent 2021.R2.
Finally, the LES-filtered incompressible Navier-Stokes equations are solved on a poly mesh of
11 million elements as shown in Figure 7.4. It is to be noted that during this mesh conversion
process the accuracy of the flow field was conserved. To further perform LES simulations, ac-

Figure 7.3: Computational domain of the test-rig

Figure 7.4: Polyhedral mesh visualized on the mid-longitudinal plane

cording to the best practice guidelines from Ansys Fluent, a steady-state RANS solution with
liquid fuel injection on the poly mesh was calculated. The RANS solution was used to assess
the turbulence resolution of the mesh for the LES and accordingly further refinement was car-
ried out. The refinement procedure led to a mesh with sufficient turbulence energy resolution
measured by the LES quality index [81] as shown in Figure 7.5 where a value greater than
0.7 shows more than 70% turbulence energy resolution. The effect of non-resolved eddies was
taken into account using the WALE subgrid scale model [82]. Two-phase simulation and spray
dynamics is realized using Eulerian-Lagrangian formulation. Explicit modelling of primary and
secondary breakup is not included to reduce the computational effort. Hence, the liquid droplets
are injected directly from the lip where the primary breakup occurs. This is done using a surface
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injection over the circular area of the lip. Liquid droplets are injected at 0° injection angle and
at a temperature of 25°C following the Rosin-Rammler distribution with mean droplet size of
6.32 µm and a spread parameter q = 2.

Gaseous and liquid phase interaction are taken into account using the two way coupling ap-
proach with the exchange of mass, momentum and energy source terms. For the liquid phase
momentum equation, only drag and gravity terms are included where the drag is calculated
according to Morsi and Alexander [50]. Secondary breakup effect is enabled through Taylor
Analogy Breakup (TAB) model [83] as the Weber number for the given boundary condition is
less than 100. Turbulent dispersion of the liquid droplets is taken in to account using the ran-
dom walk model of Gosman and Ioannides [84]. Droplet evaporation is modelled using uniform
temperature model of Abramzon and Sirignano [85] where the effect of Stefan flow on the mass
transfer is included according to formulation of Sazhin [86]. Temperature dependent liquid fuel
properties are used as suggested in the work of Innocenti et al. [46]. Turbulence-chemistry in-
teraction is modeled using the TFM model as described in Section 4.1.

Figure 7.5: Contour of LES quality index on the mid-longitudinal plane

Pressure based solver with SIMPLEC algorithm for pressure-velocity coupling was used. The
LES-filtered equations are solved using a bounded second order implicit scheme for time and
Green-Gauss node-based method for space. Bounded Central Differencing for momentum and
Second-Order Upwind schemes were used for all other equations. A constant time step size of
1×10−6 s was used to ensure a CFL number below 0.7 in the simulation.

7.3 Preliminary Results

7.3.1 Axial velocity and temperature field

After obtaining a mesh with sufficient turbulence energy resolution for the LES, directly reactive
simulations were performed. Due to the absence of cold flow measurements, the velocity field
could not be validated in the absence of flame. The time averaged statistics for axial velocity and
temperature were obtained after running the simulation for two flow through times. Figures 7.6
show the instantaneous and time averaged normalized axial velocity with iso-contours of zero
axial velocity. Normalization was performed based on the maximum obtained in the simulation
on the mid-longitudinal plane.
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7.3 Preliminary Results

(a) Instantaneous axial velocity field

(b) Time averaged axial velocity field

Figure 7.6: Instantaneous and time averaged velocity field on the mid-longitudinal plane

From the contours of axial velocity, a typical flow field can be observed where the flow expands
into the combustor with high velocity jets impinging on the walls of the combustor. This creates
two outer recirculation regions. Due to the nozzle, pressure drop arises giving rise to a central
recirculation region which extends downstream in to the combustion chamber. The central re-
circulation region helps in sucking hot gases back and aids in droplet heat up and evaporation.
From the temperature field (Figure 7.7) it can be observed that high temperature regions occur
within the lower external recirculation region and low temperatures in the swirling jet region
coming from the nozzle. In the central recirculation region temperature of 1400-1500 K exists.
Furthermore, cooling due to isothermal wall boundary conditions can be seen at the walls i.e.,
T ∼ 1200 K close to the side windows and T ∼ 1000 K at the combustor dump plane.

7.3.2 Droplet distribution and evaporation

The droplets injected from the injector lip are immediately trapped in the highly vitiated flow
before impinging on the liner wall. From the contour of the droplet diameter distribution (Fig-
ure 7.8) it can be seen that the droplets reflect off the surface of the liner and penetrate deeper
into the combustion chamber. However, looking only at the droplet diameter contour (Fig-
ure 7.8) may be misleading as it shows that only a few large droplets survive the hot reaction
zone without evaporating and travel further downstream. This can be evidenced by the liquid
volume fraction (Figure 7.9) field, where it can be seen that most of the evaporation occurs
before the droplets hit the wall of the liner and only a small amount of evaporation happens
downstream due to the presence of larger droplets.
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(a) Instantaneous temperature field

(b) Time averaged temperature field

Figure 7.7: Instantaneous and time averaged temperature field on the mid-longitudinal plane

(a) Instantaneous droplet diameter distribution

Figure 7.8: Contour of droplet diameter distribution visualized on the mid-longitudinal plane

7.3.3 Mixing and Flame stabilization

Flame stabilization plays a key role in the design of a stable and safe combustion chamber of
an aero-engine. Flame stabilization is not only governed by the vaporization in a liquid fuelled
combustor but also the mixing of the fuel vapour with the incoming oxygen in the air. To analyse
the mixing behaviour, the mixture fraction definition based on the elemental mass fraction from
Bilger et al. [87] is introduced:

Z =
2 YC
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+ 1

2
YH
MH

+ YO,ax−YO
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2
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(7.1)

where YC , YH and YO are the elemental mass fractions of the elements C , H and O respectively.
The quantity Z, mixture fraction varies from Z = 0 in the oxidizer stream and Z = 1 in the fuel
stream. The stoichiometric value is given by:
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7.3 Preliminary Results

(a) Time averaged liquid evaporation mass source distribution

Figure 7.9: Time averaged mass source distribution visualized on the mid-longitudinal plane

Figure 7.10: Instantaneous temperature field superimposed with isocontours of mixture frac-
tion

For the investigated condition, the stoichiometric value of the mixture fraction in the burner
yields Zst = 0.063. Figure 7.10 displays the instantaneous temperature field along with the mix-
ture fraction field according to Eq. 7.1. From the figure different zones can be seen:

1. Unmixed region: It is the region close to the exit of the injector that is only covered by the
oxidizer from air stream. In this zone, no droplet evaporation occurs as no heat is supplied
from the combustion products.

2. Flame region: Highest temperatures are encountered in this region (T > 1700 K) where
the mixture fraction is close to the stoichiometric value of 0.06 (green lines). In this
region majority of the fuel evaporation takes place and is being continuously mixed by
the hot combustion products through the external recirculation regions. At the same time
these hot combustion products are cooled by the side and bottom plate of the combustion
chamber.

3. Upper mixing zone: In this zone mixing is aided by the central recirculation. Hot gases
together with unburnt droplets are cooled slightly by the side walls and then transported
back towards the nozzle in the central region.

In summary due to the action of the upper and central recirculation regions, hot combustion
products provide a constant source of energy to continuously ignite the incoming reactants after
being sufficiently mixed by the swirling motion created by the swirlers. Due to the transport
of hot combustion products back to the flame root, the flame stabilizes in the shear layer along
the mean spray trajectory resulting in a v-shaped flame on a time-averaged basis as shown in
Figure 7.11
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Figure 7.11: Time averaged field of heat release rate visualized on the mid-longitudinal plane

7.3.4 Flame Transfer Function

In this section, the LES simulation is leveraged to obtain the flame impulse response model for
flame dynamics according to the procedure discussed in the Section 5.2. According to the four
step flame model identification process, a Daubechies wavelet signal with 10 % excitation am-
plitude and constant power spectral density up to a cut-off frequency of 1000 Hz is used as the
experimental FTF shows flame behaviour to drop after 800 Hz. The excitation signal is applied
for 150 ms to generate the time series of acoustic velocity and heat release rate perturbations.
This data is then subsequently used to infer the FIR coefficients via System Identification tech-
niques of correlation analysis as described earlier. Time series length of 150 ms corresponds
to roughly 15 times the length of the impulse response. Even though in practice longer time
lengths have been used for premixed flame analysis, it was observed that increasing the time
series length from 100 to 150 ms did not change the FIR coefficients and hence a signal length
of 150 ms was deemed sufficient for this study.

Figure 7.12 illustrates the flame transfer function derived by utilizing the z-transform on the FIR
model, which is obtained through the LES/SI process with isothermal wall boundary conditions
for the combustor side walls and combustor dump plane. The FTF obtained with LES/SI pro-
cedure is shown in blue solid lines and the uncertainty of the estimation is given by the shaded
area. The raw data of the experimental FTF was not available and hence the FTF was recon-
structed from Figure 18 of Innocenti et al. [46] and is shown in black markers. The FTF obtained
by Innocenti et al. [46] with isothermal wall boundary conditions is shown in green unfilled cir-
cles (reconstructed due to lack of raw data). The trend of the FTF gain has the typical shape of
a premixed flame response where the response of the flame to acoustic fluctuations decreases
with the frequency showing low-pass behaviour of the flame. While, the trend obtained from
the simulations for FTF gain is in good agreement with the measurement data, the steeper slope
in the FTF phase compared to measurement suggests that the flame length computed with the
thickened flame model might be shorter than in the measurement. As there was no experimental
data on the temperature field and heat release rate, the flame length could not be validated. The
same trend for phase is also observed for the FTF of Innocenti et al. with the isothermal wall
boundary conditions.

The trend of the FTF (both gain and phase) in the current work matches the experimental FTF
at high frequencies. Nevertheless, a discrepancy in the trend of the FTF at low frequencies is
seen when compared with the FTF from Innocenti’s work and experiments. In particular, a ma-
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Figure 7.12: Comparison of FTF (blue) inferred from LES time series data against measured
FTF (black) and FTF from URANS with isothermal wall boundary conditions
(green, Figure 18 of [46])

jor difference is observed in the low-frequency behaviour. The FTF from the current work with
LES/SI differs from the FTF of Innocenti et al. obtained with isothermal wall boundary con-
ditions, where the gain at low frequencies tends to two. Although the trend of the experiments
seems to suggest an FTF gain higher than one at low frequencies, it should be noted that mea-
surements below 100 Hz are inaccurate due to a poor pressure signal recorded with downstream
excitation for the calculation of the transfer matrix [88]. Recent experimental investigations on
swirling spray flames show that the FTF gain tends to zero as the frequency goes to zero [89, 90].
This was also recently confirmed through an analytical function for a planar isothermal spray
flame by Morinere [36]. Such an observation is valid for spray flames with stiff fuel injection:
once all the transients have died out, the overall effect of adjustments in fuel vapour release,
flame speed, position etc., must result in an unchanged total heat release rate, because the rate
at which fuel is injected is fixed. Regarding the phase at low frequencies, Prieur [89] and Mirat
et al. [90] through experiments have argued that the low-frequency behaviour of spray flames
is similar to that of technically premixed flames. Many studies appear to have different low-
frequency limits of the phase for spray flames or technically premixed flames. For example,
recent works[91–94] show that the low-frequency limit of the phase is π, whereas Morinere
[36] through a series expansion of the analytical transfer function at zero frequency deduced the
phase of the FTF to be π/2. In Figure 7.12 the URANS work of Innocenti et al. [46] suggest
that the phase tends to π at zero frequencies, while the phase from LES/SI tends to zero. As the
gain of the transfer function tends to zero at steady-state limit, description of the phase becomes
physically meaningless, and there can be no unique solution to the phase at steady-state limit.
For spray flames or technically premixed flames, the overall flame transfer function has two
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leading contributors: velocity and equivalence ratio fluctuations. Depending on the time delay
of both the velocity and the equivalence ratio fluctuation in reaching the flame, it is possible to
obtain a different low-frequency limit for the phase of the overall FTF. Therefore, discrepancies
of phase at low-frequency is not further investigated.

Apart from discrepancies in the low-frequency region, the overall trend of the FTF estimated
from the LES/SI differs from the FTF identified from URANS of the 1/4th sector of the same
geometry. The variations could be due to differences in the turbulence model, turbulence-
chemistry interaction, and the chemical reaction scheme used. The table 7.1 outlines the key
similarities and differences between the present study and the URANS study by Innocenti et
al. [46]. Droplets in both studies are injected from a given surface representing the lip of the
atomiser with the Rosin-Rammler droplet size distribution and 0° injection angle. Due to the
better resolution of the turbulence in LES simulation, the particle dispersion in LES is different
from the URANS study. Additionally, because of the isothermal combustor wall temperature,
liquid fuel evaporates more quickly in the LES, resulting in a shorter flame length and short
flame lift-off height from the combustor back plane. However, a longer flame length and re-
duced product formation were achieved in the URANS study by modifying the reaction order
of the dominant reaction. As a result of the detailed reaction mechanism, there could be addi-
tional time delays from "slow" reactions. Furthermore, because of the different time scales of
the chemistry of the detailed reaction scheme and the URANS turbulence model, the Damköh-
ler number is different. This causes a change in the reaction rate and overall heat release rate. In
terms of the combustion model, the URANS work uses the β−PDF combustion model, which
infers the thermochemical state from the lookup table with a detailed reaction mechanism and
does not calculate the heat release rate directly. Instead, the heat release rate is calculated in the
post-processing step, and the FTF obtained consequently cannot be directly compared with the
heat release rate predictions from the LES.

Table 7.1: Comparison of models between present study and Innocenti’s URANS study

Present Study Innocenti et al.[46]
Turbulence LES URANS
Combustion TFM β-PDF
Reaction Scheme 2 step BFER 39 reactions scheme of Kundu
Droplet Size Distribution Model Rosin-Rammler Rosin-Rammler
Spray Injection Surface Surface
Wall Boundary Condition Isothermal, Tw = 600 K Isothermal, Tw = 600 K

7.4 Conclusion

In this study, the dynamics of the spray flame generated by PERM injector was studied using
LES simulations with thickened flame model. The time series from LES simulation was used
to infer the FTF using SI techniques. The FTF obtained from LES/SI highlighted the difference
between the FTF obtained from Innocenti et al using isothermal wall thermal boundary condi-
tions. However, the validity of the FTF trend could not be derived due to lack of measurement
data. This study also lays platform to perform uncertainty quantification studies to assess the
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7.4 Conclusion

impact of liquid boundary conditions on the flame topology and thereby on the flame dynamics.
The UQ methodology developed in the work of PAPER TOTAL UNCERTAINTY [56] could
be leveraged to find a right wall thermal boundary condition such that the FTF phase is in good
agreement with the measurement.

43



8 Summary and Contributions

8.1 Response of Spray Number Density and Evaporation
Rate to Velocity Oscillations

Label: PAPER- EVAPORATION RESPONSE

Outcome: In this publication, an analytical solution for the response of a monodisperse popu-
lation of droplets to acoustic excitation in terms of a number density wave was developed. The
analytical formulation was further extended to incorporate the evaporation of droplets, result-
ing in a theoretical description of the oscillatory evaporation rate. It was further shown that the
oscillatory evaporation rate convects at the mean flow speed, causing equivalence ratio fluctua-
tions in space and time. Such an analytical formulation facilitated the construction of a transfer
function to characterize the evaporation response to velocity oscillations. The evaporation trans-
fer function exhibits low-pass behavior. The work lays the foundation for future investigations
on the effect of transient droplet heating, which might introduce additional time delay and that
might impact the thermoacoustic stability of the system.

Relevance for the thesis: This paper introduces a theoretical model for the response of motion
of a population of droplets and their evaporation to velocity oscillations that occur typically in an
aero-engine combustor. This paper demonstrates how an analytical framework for evaporation
response aids in the development of a low-order representation of the spray combustion system.

Contribution: The conceptualization of the topic was formulated by Camilo Silva and Wolf-
gang Polifke based on the single droplet studies of late Javier Achury. I contributed in re-
formulating the analytical equations for the droplet population and evaporation modulation
and introducing analytical Green’s function formulation for 1D convection-diffusion process.
I set up the Euler-Lagrange CFD simulations in OpenFOAM for validation of the analytical
approach. The manuscript was written by me followed by a rebuttal for the journal publication.
Significant feedback on the analytical formulation was given by Wolfgang Polifke and Camilo
Silva. Proof-reading and suggestion for improvement were given by all co-authors.

Status: Published in International Journal of Spray and Combustion Dynamics

Comment: A first version of this manuscript was first presented and published in the proceed-
ings of the Symposium on Thermoacoustics: Industry meets Academia, 2021 (SoTiC 2021).

Review Process: Peer-reviewed, Scopus listed.

Reference: Sagar Kulkarni, Camilo F. Silva, and Wolfgang Polifke. Response of Spray Number
Density and Evaporation Rate to Velocity Oscillations. Int. J. Spray Comb. Dynamics, 14(1-
2):107–117, 2022. DOI: 10.1177/17568277221085957. Reproduced on p. 49ff.
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8.2 Confidence in Flame Impulse Response Estimation From Large Eddy Simulation With
Uncertain Thermal Boundary Conditions

8.2 Confidence in Flame Impulse Response Estimation From
Large Eddy Simulation With Uncertain Thermal Bound-
ary Conditions

Label: PAPER- TOTAL UNCERTAINTY

Outcome: The present work investigated the impact of epistemic uncertainties that are caused
by the lack of knowledge of boundary conditions (uncertain combustor wall temperature) and
aleatoric uncertainties that are caused by the stochastic nature of the system identification proce-
dure that is used to determine the flame model. To account for total uncertainties (epistemic and
aleatoric) in the flame model, a novel univariate Gaussian Process surrogate model with boot-
strapping technique was developed. The trained Gaussian Process surrogate model was able to
approximate the response surface of FIRs obtained from LES/SI at different training locations
(wall temperatures) and interpolate the FIR coefficients with reasonable accuracy along with
total prediction uncertainty. The trained GP model was used to find a wall temperature where
the flame model matched the experimental results satisfactorily.

Relevance for the thesis: This work contributes to the quantification of mixed uncertainties in
the estimated flame model from the LES/SI approach. The confidence intervals shown in the
spray flame FTF (7) only accounts for uncertainties due to the application of system identifica-
tion procedure on a noisy time series data. The UQ methodology developed in this paper not
only accounts for the aleatoric uncertainty, but also accounts for epistemic uncertainties. Such a
methodology provides a tool to explore the impact of unknown operating/boundary conditions
on the flame dynamics and thermoacoustic stability analysis.

Contribution: The research objective of quantifying the uncertainties from LES and SI in the
flame model was formulated by Wolfgang Polifke. The concept of using Gaussian Process for
the UQ analysis was a result of discussion between the lead author and Shuai Guo based on the
previous works of Shuai Guo. The lead author along with Shuai Guo implemented the Gaussian
Process surrogate model with bootstrapping strategy in Matlab to quantify total uncertainties
in the FIR prediction. I performed LES simulations in AVBP at different combustor wall tem-
peratures to generate the data for subsequent UQ analysis. The lead author performed further
data post-processing, analyzing and composing the manuscript, preparing rebuttal and presen-
tation at the virtual conference. All other co-authors provided significant suggestions for the
improvement of the manuscript and the study.

Status: Published in Journal of Engineering for Gas Turbines and Power

Comment: A first version of this manuscript first appeared in the Proceedings of the ASME
Turbo Expo 2021: Turbomachinery Technical Conference and Exposition, Online

Review Process: Peer-Reviewed, Scopus Listed

Reference: Sagar Kulkarni, Shuai Guo, Camilo F. Silva, and Wolfgang Polifke. Confidence
in Flame Impulse Response Estimation From Large Eddy Simulation With Uncertain Thermal
Boundary Conditions. Journal of Engineering for Gas Turbines and Power, 143(12):121002,
December 2021. DOI: 10.1115/1.4052022. Reproduced on p. 60ff.
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9 Outlook

This thesis research was carried out with the broad objective of understanding the response of
a spray flame to acoustic perturbation through analytical and numerical modeling. In particular
the objective is classified into three tasks which focuses on i) an analytical model to understand
the response of various spray mechanisms such as evaporation and transport to velocity oscil-
lations that impact the eventual flame response, ii) determination of spray flame response to
acoustics via FTF using LES/SI method, and iii) data driven surrogate model to quantify both
the aleatoric and epistemic uncertainties in the flame response model identified from LES/SI
method. In the following, conclusion and possibilities for future work for each of these three
tasks are discussed:

9.1 Response of motion of droplets and evaporation to veloc-
ity oscillation

An analytical formulation for the response of a mono-disperse population of droplets is devel-
oped and extended to include evaporation effects. The analytical formulation describes the os-
cillatory evaporation rate which further gives rise to equivalence ratio fluctuations. The dynamic
response of equivalence ratio fluctuations is characterized by a transfer function. Although the
transfer function is arrived at by simplifying approximations, the results are in good agreement
with 1D Euler-Lagrange CFD simulation results. With the validation of the analytical model,
this work can be extended to more realistic conditions, first by including the effect of droplet
heating, which introduces a time delay, and might play a critical role in the thermoacoustic
stability of the system. Second, the effect of varying the droplet size as produced by a typi-
cal atomizer can be incorporated by evaluating the analytical model on the size distribution of
the droplets. Finally, the analytical model with increased complexity can be validated against a
DNS study by Pera and Reveillon [95] of the spray flame produced by a bunsen-type injector
or with the recent study of Moriniere on an monodisperse isothermal spray using Euler-Euler
formulation.

9.2 Estimation of spray flame transfer function using LES/SI

To understand the dynamic spray flame response to acoustic velocity oscillations, LES of a
spray flame generated by the GE Avio PERM injection system is performed. The flame transfer
function estimated by applying system identification techniques on the time series data gener-
ated by LES reveals a low-pass behavior similar to the response of gaseous fuels with a low
frequency limit of zero. Although the FTF estimated from LES/SI agrees qualitatively with the
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9.3 Quantification of aleatoric and epistemic uncertainties in the flame response model

measurement, some disagreement in the phase at low frequencies against measurement is rec-
ognized. The results of the current LES study deviate from the results of the same setup with
URANS by Innocenti et al. [46] in the low frequency limit. As discussed in the chapter( 7), the
variation in the results may arise due to differences in the turbulence resolution, combustion
model, reaction mechanism, and the system identification technique. As the URANS solution
of Innocenti et al. with adiabatic wall thermal boundary condition matches the current LES so-
lution with isothermal wall boundary condition, this warrants another LES study with adiabatic
wall thermal boundary condition to clarify the differences. Further, a Dynamic Mode Decom-
position (DMD) analysis on the time series obtained with Gaussian pulses can be performed to
identify the dominant modes at various frequencies.

9.3 Quantification of aleatoric and epistemic uncertainties in
the flame response model

Many UQ studies have focused on propagating only aleatoric uncertainties in the flame model
to eigenmode predictions. The current work extends this approach by propagating epistemic un-
certainties due to lack of knowledge of operating conditions and aleatoric uncertainties caused
by performing SI on LES data corrupted by noise on the FIR coefficients that represent the
flame dynamics. This mixed uncertainty is quantified using a univariate bootstrapping Gaus-
sian Process model. The trained GP surrogate model successfully approximates the complex
response surface of the FIRs and interpolates the FIR model at unseen test locations. The GP
surrogate model in the current study is trained on the FIRs obtained from LES/SI from uniform
sampling space.which can be computationally expensive. This can be alleviated by employing
an active learning scheme in which fewer training points are needed with longer simulation
times to gain the same information. This scheme improves the efficiency of the surrogate model
training procedure and helps to reduce the computational cost of the UQ procedure. The current
work provides a platform for using the LES results of the forced spray flame response carried
out in this thesis to quantify the impact of uncertain liquid fuel boundary conditions on the
dynamic spray flame response.
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Response of spray number density and
evaporation rate to velocity oscillations

Sagar Kulkarni1 , Camilo F. Silva1 and Wolfgang Polifke1

Abstract
A theoretical investigation of the effect of gas velocity oscillations on droplet number density and evaporation rate is pre-

sented. Oscillations in gas velocity cause a number density wave, i.e. an inhomogeneous, unsteady variation of droplet

concentration. The number density wave, as it propagates downstream at the mean flow speed, causes modulation of

the local evaporation rate, creating a vapour wave with corresponding oscillations in equivalence ratio. The present

work devises an analytical formulation of these processes. Firstly, the response of a population of droplets to oscillations

in the gas velocity is modelled in terms of a number density wave. Secondly, the formulation is extended to incorporate

droplet evaporation, such that an analytical expression for the evaporation rate modulation is obtained. Subsequently, the

droplet 1D convection-diffusion transport equation with the calculated evaporation source term is solved using an appro-

priate Green’s function to determine the resulting equivalence ratio perturbations. The dynamic response of equivalence

ratio fluctuations to velocity oscillations is finally characterized in terms of a frequency-dependent transfer function. The

aforementioned analytical approach relies on a number of simplifying approximations, nevertheless it was validated with

good agreement against 1D Euler-Lagrange CFD simulations.

Keywords
Droplet Number Density Wave, evaporation, equivalence ratio fluctuations, transfer function
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Introduction
The economic and environmental requirements for aero-
engines continue to push for combustors operating in lean
combustion regimes to reduce NOX emission. Due to
energy density requirements, liquid fuels are used for aero-
engines. Operating liquid fuelled engines in lean conditions
may give rise to combustion instabilities.1–6 Combustion
instabilities occur due to the coupling of pressure and vel-
ocity oscillations with unsteady heat release rate. In liquid
fuelled systems affected by combustion instabilities, the
gas velocity oscillations modulate the evaporation rate
and thereby, the equivalence ratio. Equivalence ratio fluc-
tuations cause heat release fluctuations,7,8 which make the
overall system prone to combustion instabilities.
Investigating spray combustion involves the modelling of
several interacting phenomena – such as atomization, evap-
oration and transport of droplets – that occur over a wide
range of spatial and temporal scales. Among the various
sub-processes of spray formation and transport, droplet
evaporation is particularly important, because it is often
rate controlling. Additionally, the unsteady evaporation

rate may lead to various burning regimes – from premixed
to non-premixed – thus impacting the flame structure.9 As a
result, the dynamic response of evaporation is a key con-
stituent of spray combustion dynamics that needs to be
modelled accurately.

As droplet evaporation plays an important role in spray
combustion, previous works have assessed the impact of
acoustics on a single evaporating droplet. Tong et al.10

numerically studied the effect of travelling acoustic waves
on droplets that are injected at regular intervals into a com-
bustor. It was observed that the overall droplet evaporation
rate is enhanced and that the gain of the droplet vaporization
response function is sufficiently large to sustain instability
in the combustor. In a similar study, Duvvur et al.11
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numerically investigated the effect of acoustic standing
waves on the droplet vaporization process with an
improved droplet evaporation model. It was seen that
only in certain frequency ranges the droplet vaporization
process was able to drive combustion instabilities in the
combustor and the amplitude of the oscillation had
minimal impact on the vaporization rate compared to
changes in the fuel volatility. Sujith et al.12 examined the
effect of an axial acoustic field on the behaviour and evap-
oration of the droplet. The conclusion from this study was
that the droplet evaporation rate increases with the increase
of acoustic velocity frequency. Prud’Homme et al.13 con-
ducted a theoretical investigation of the droplet dynamic
vaporization response to acoustic oscillations with a
droplet evaporation model accounting for finite thermal
conductivity inside the liquid phase of the droplet.
Enhanced evaporation rate due to the application of acous-
tic waves was observed. It was concluded that the internal
thermal exchange inside the droplet is an important factor
in modelling the droplet evaporation rate in the context of
combustion instabilities.

Adequate studies have been carried out on the response
of a single droplet to acoustic oscillations. However, in real-
istic situations we are more concerned with response of a
population of droplets. The following discussion reviews
some works concerned with response of a spray to acoustic
oscillations. The effect of acoustic field on an ethanol spray
flame was experimentally studied by Dubey et al.14. The
Sauter mean and arithmetic mean diameters of the spray
were seen to decrease in the presence of an acoustic field
by 15% and 20%, respectively, due to enhanced evapor-
ation rate of the spray. Gurubaran et al.15 observed
droplet clustering and a variation of droplet mean diameter
downstream of the injector and concluded that the acoustic
pressure amplitude has a significant effect on the particle
size distribution. Gajan et al.16 experimentally investigated
the behaviour of a spray downstream of an aero-engine
injector submitted to acoustic excitation and noticed the for-
mation of a spray droplet density wave. With numerical
analysis, the droplet density wave was shown to have two
origins: due to the atomization process and due to the
effect of oscillating flow on the transport of droplets.
Apeloig et al.17 experimentally studied the unsteady inter-
action of a kerosene spray downstream from a multi-point
injector with the flame, where the liquid jet was injected
into the air as a crossflow. During an instability cycle, dif-
ferent droplet concentration were seen, leading to heat
release rate oscillations. In a recent, similar experimental
study by Bodoc et al.18 the formation of an alternating
dense and diluted zones of two-phase flow was observed
downstream of the multipoint jet-in-crossflow injector.

On the one hand, experimental and numerical studies19–
22,2 of the response of a single droplet or a population of
droplets to an acoustic field have been carried out.
Nevertheless, general conclusions from these studies

cannot be drawn unless an elaborate parametric analysis
is performed. Such parametric analysis in experimental
campaigns and numerical studies might be expensive. On
the other hand, theoretical study on the response of a popu-
lation of droplets to an acoustic field may lead to a simple
mathematical formulation and facilitate a rich and inexpen-
sive parametric analysis of the number density wave and
subsequent modulated evaporation rate. In the present
work, we aim to devise an analytical formulation of the
response of a population of droplets with and without evap-
oration to an acoustic field. The goal of formulating an ana-
lytical description of the response of population of droplets
to acoustic oscillation comprises of three objectives: (1)
analytical formulation of number density wave without
evaporation, (2) analytical formulation of the evaporation
spray response, and finally (3) description of the evapor-
ation spray dynamics using a transfer function.

Previous studies have observed droplet clustering15 and
the formation of a droplet density wave23,16 downstream of
the injector through experiments and simulations. Achury
and Polifke24 proposed a theoretical approach to study the
response of a single droplet to acoustic oscillations. The
current work extends this work from a single droplet to a
population of droplets by proposing an analytical formula-
tion of the Number Density (ND) wave. Such a ND wave
results from modulating the gas velocity with continuous
injection of mono-disperse droplets.

Prior studies11,10,25 have dealt with the response of dro-
plet(s) to large acoustic pressure oscillations leading to an
oscillatory response of the evaporation. However, in those
studies the implicit role of velocity fluctuations was not
taken into account. Velocity oscillations cause an ND
wave, where droplets exhibit a heterogeneous distribution,
which leads to a spatio-temporal oscillation of evaporation
rate and the formation of a fuel vapour wave. The vapour
wave is convected downstream at the mean flow speed
causing equivalence ratio fluctuations. A theoretical devel-
opment, based on the concept of solving the droplet motion
equation by perturbation theory, was used to incorporate
droplet evaporation to the spray number density wave by
Katoshevski et al.26. In the present work, instead, we
extend the analytical formulation of the ND wave by
incorporating the droplet evaporation. Furthermore, we
model the equivalence ratio fluctuations caused by the
propagation of the vapour wave by analytically solving
the 1D convection-diffusion equation by means of a
Green’s function. The oscillatory evaporation response is
then characterized by an analytical transfer function of the
evaporation. The results of the analytical approach are vali-
dated against 1D Euler-Lagrange CFD simulations.

Modelling the spray as a collection of sub-systems com-
prising of a given droplet ND wave, evaporation and fuel
vapour transport facilitates the development of a so-called
network model27 for the response of a flame to acoustic
wave. A Network model is a low-order representation of
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all the involved sub-systems characterised by blocks with
associated inputs and outputs, which subsequently can be
interconnected forming a global system (investigated
spray) that can be described analytically by a transfer func-
tion. Such a method of studying acoustic response via
network modelling may be useful when studying realistic
sprays with increased complexity.

In the next section, an analytical formulation of the
number density wave is deduced from the droplet motion
equation. This is followed by the Evaporative Spray
Response section, which shows the formation of evapor-
ation rate fluctuations caused by the ND wave. Finally,
the Equivalence Ratio Fluctuations section describes the
formation of equivalence ratio fluctuations and subsequent
characterisation of the evaporation response in terms of an
analytical transfer function.

Droplet Dynamics
In the present study, we aim at analytically determining the
response of a population of droplets to velocity oscillations
that typically occur in liquid-fuelled combustors. In
pressure-swirled atomizers used in gas turbine combustors,
due to the hydrodynamic instabilities involved in the
breakup process, primary atomization occurs. In this
region, the spray is quite dense and its velocity and tem-
perature do not substantially change from their injection
values.28 Further break-up of the droplets occurs down-
stream due to the interaction with the turbulent gaseous
flow in the secondary atomization process. Droplet
heating and vaporization occurs only downstream from
the primary atomization region, once the droplet dispersion
causes the spray to become dilute to allow for the droplets
to receive thermal energy from the surrounding gas. As a
consequence, atomization, spray formation, vaporization
and combustion can be studied independently. In the fol-
lowing discussion, we focus on the dynamics of the dro-
plets’ motion and simultaneous vaporization behaviour
due to fluctuating gas velocity occurring in the dilute down-
stream region where the liquid volume fraction is small.
Due to small liquid volume fraction, the droplet-droplet
interaction can be neglected and the modelling approach
can be carried out with a “one-way” coupling approach as
shown in the work of Elghobashi.29 As seen in the previous
studies,16,21 due to the oscillation of the gaseous field, dro-
plets downstream of the injector concentrate inhomogen-
eously in space and time, thus giving rise to a droplet
number density wave. Such a droplet number density can
be analysed by studying the response of a population of dro-
plets to acoustic forcing. In CFD, as well as theoretical
approaches, the Lagrangian or mass-point perspective is
well-suited to model dilute spray problems, as it is compu-
tationally inexpensive and easier to model than approaches
that resolve droplet/fluid interfaces. In the Lagrangian
framework, the droplet acceleration is balanced by the

forces acting on it, which need to be modelled for accurate
droplet dynamics. The Lagrangian equation of motion for a
spherical droplet with mass md and velocity ud is given by:

md
dud
dt

= FB + FS, (1)

where FB refers to body forces, such as gravity acting on the
droplet, and FS refers to surface forces, such as pressure
gradient and shear stress. Maxey and Riley30 presented an
equation of motion for a small rigid particle of diameter
D immersed in a non-uniform flow field that resolves all
the forces acting on the particle. In their hypothesis,
forces can be split broadly into two categories: undisturbed
and disturbed flow forces. The former represent the surface
forces required to accelerate the fluid that would occupy the
volume of the particle if the particle were absent.31 Maxey
and Riley further classified undisturbed flow forces into
pressure gradient force and shear stress. The latter Fuf

can be written as:

Fuf = Vd( −∇p︸�︷︷�︸
press.grad.

+ νc∇2uc︸��︷︷��︸
shearstress

) = 1
γ

Duc
Dt

− g
( )

, (2)

where g corresponds to buoyancy force, γ = ρd/ρc repre-
sents the density ratio of the liquid to carrier fluid, νc repre-
sents the kinematic viscosity of the carrier fluid and Vd is
the velocity of the droplet. The disturbed flow forces Fdf

correspond to the forces exerted due to the presence of
the droplet. The disturbed flow forces can be sub-divided
into steady-state drag, virtual mass force and Basset or
history integral forces. The complete Maxey-Riley equation
including all the surface forces is given as:

dud
dt = g︸︷︷︸

body : gravity

+ 1
γ

Duc
Dt

− g
( )

︸������︷︷������︸
undisturbedflow

+ 3CD

4γD
uc − ud| | uc − ud( )︸�������������︷︷�������������︸
steadystatedrag

+ΔA

2γ
Duc
Dt

− dud
dt

( )
︸���������︷︷���������︸

virtualmass

+FBasset

(3)

where ΔA is an empirical constant used to extend the
approach to high Reynolds number flows. Added or
virtual mass effects become important only when the par-
ticle/droplet density is comparable to the fluid density, for
example when the ‘particle’ is a gas bubble in a liquid,
and therefore can be neglected in this investigation.
Similarly, Basset forces, which represent history acceler-
ation effects, become insignificant when the density of the
particle is very large compared to the gaseous phase
density.32 In the current investigation, the particle density
(water) is higher than the density of the gaseous medium
(air) and therefore Basset forces can be neglected. The
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drag force depends on the coefficient of drag,
CD = 24f1/Red, where Red is the droplet Reynolds
number defined as Red = |ud − uc|D/νc. A non-linearity
is introduced by the drag force33 if the flow is outside the
Stokes regime, then f1 becomes a function of Red as
shown below:

f1 = 1 → Stokes flow, Red < 1
1+ 0.15Re0.687d → Schiller Naumann, Red < 800

{
(4)

In a 1D flow, with ẍd = u̇d and ẋd = ud and particle relax-
ation time τd = γD2/18νc, the equation of motion for par-
ticle position xd in the Stokes flow regime (f1 = 1) after
neglecting the gravity, Basset and virtual mass forces
reduces to:

ẍd + f1ẋd
τd

= f1uc
τd

+ 1
γ

∂uc
∂t

(5)

Droplet Population Response
In this section, an analytical description of the response of a
population of droplets to velocity oscillations is introduced.
Consider droplets with velocity ud being continuously
injected into the one dimensional domain with carrier gas
velocity uc (Eq. (6)) resembling droplets being sheared
from an atomizer.

uc = uc + ûc sin (ωt + ϕ), (6)

where uc is the mean velocity, ûc is the fluctuating compo-
nent of the gas velocity, ω = 2πf is the angular frequency
and ϕ is the phase angle of the flow oscillation, which is
included to generalize the solution. In this work, droplets
are injected into a pulsating flow (oscillation superposed on
mean flow) of an incompressible medium at the mean gas
velocity, corresponding to zero slip velocity with respect to

mean gas velocity (ud = uc). Due to the application of pul-
sating flow, the domain under investigation is assumed to
be acoustically compact, i.e. the droplet-acoustic interactions
occur over a length considerably smaller than the acoustic
wavelength. Therefore, acoustic velocity and displacement
are homogeneous in the domain.

Due to the acoustic compactness of the problem, a non-
dimensional equation can be derived from Eq. (5) by nor-
malizing time with the oscillation time period, t̃ = t/τd
and velocity by the oscillation amplitude, ũd = ud/̂uc.
Under the dilute flow regime the governing equation can
be written with relative amplitude of oscillation,
ε = ûc/uc, non-dimensional frequency ω̃ = ω̃t along with
other dimensionless parameters which control the response
to velocity oscillation12:

d̃ud
d̃t

= − f1
2π

ũd − sin (ω̃̃t)− 1
ε

( )
+ ω̃

γ
cos (ω̃̃t) (7)

An analytical solution of Eq (7) is possible as the droplets
are injected at the fluid mean flow velocity (Red ∼ 0,
f1 = 1) and due to the application of oscillating flow (infin-
ite acoustic wavelength). If the Schiller-Naumann extension
for the drag law is accounted for, an analytical solution is
not possible and is resolved numerically as discussed in
Achury et al.24.

In an acoustically compact domain, the number density
wave, as reported previously in the works of Gurubaran
et al.15 and Gajan et al.16, results from the interaction of the
pulsating flow with the droplets at the injection time. When
droplets are continuously injected into a pulsating flow, dro-
plets at an asymptotic state (after a long time) convect at mean
flow speed uc and oscillate around that for a given frequency,
amplitude of oscillation, droplet size and fluid and gas

Figure 2. Individual trajectories of six droplets injected at ti (c.f.
Figure 1) according to Eq. (8) . Black crosses show droplet

positions at time t̃ = 280. Dimensional parameters for this

example: Droplet size 35 μm, (Stokes number = 0.8), mean flow

velocity uc = 5 m/s, gas phase oscillation amplitude ûc = 2.5m/s

and frequency f = 250Hz (T = 1/f = 0.004 s)

Figure 1. Droplet injection times ti (i=0,1,…6) marked by

vertical coloured solid lines on the time axis
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properties. When droplets are injected into the flow domain,
each droplet experiences a different gas velocity correspond-
ing to the relative phase of the fluctuating gas velocity. For
example, in Figure 1 a droplet injected at instance t2 (blue)
sees a higher gas velocity, whereas a droplet injected at t1
(red) sees a lower gas velocity. As droplets experience differ-
ent gas velocity when injected, the trajectory of each droplet
is different as shown by the dotted lines in Figure 2.
Differences in droplet trajectories due to different injection
times gives rise to differences in spacing of the droplets in
the domain at any given observation time. This inhomogen-
eous distribution of droplets in space, as shown by black
crosses in Figure 2, determines the Number Density wave.

In thiswork,we seek to obtain a closed formsolution for the
proposed number densitywave. This is achieved byfirst asses-
sing an individual droplet trajectory and then analysing the
evolution of an ensemble of droplet positions with observation
time to determine the NDwave function. In 1-D, to assess the
response of a droplet to a given fluid excitation, onemay solve
Eq. (3) with flow excitation uc(x, t). Using the ansatz for
uc(x, t) in the droplet motion equation, the analytical solution
of the droplet positions xd in the Stokes flow regime (f1 = 1)
can beobtained by integrating over the lifetime t of the particle.
To identify relevant parameters that govern the droplet trajec-
tories, the analytical solution is represented in a non-
dimensional form with the droplet relaxation time τd and
mean velocity uc as characteristic time and velocity scales.

x̃d (̃t, t̃i) = C̃1 + C̃2e
−(̃t−̃ti) + t̃

+ C̃3
γ − 1
γ

sin (ω̃̃t + ϕ)− 1
ω̃
+ ω̃

γ

( )
cos (ω̃̃t + ϕ)

[ ]
(8)

The coefficients C̃1 and C̃2 calculated using the initial condi-
tion xd(0) = 0 and ẋd(0) = ud0 = uc are also shown in non-
dimensional form as:

C̃3= ûc/uc
1+ ω̃2

= ε

1+ ω̃2
(9)

C̃2=uc−ud0
uc

+ C̃3
1−γ

γ
cos ω̃̃ti−ϕ

( )− 1
ω̃
+ ω̃

γ

( )
sin ω̃̃ti−ϕ

( )[ ] (10)

C̃1 = −C̃2e
−̃ti

+C̃3
1
ω̃
+ ω̃

γ

( )
cos ω̃̃ti − ϕ

( )+ 1− γ

γ
sin ω̃̃ti − ϕ

( )[ ]
(11)

Thefirst termof the non-dimensional droplet position equation
(Eq. (8)) is a constant, the second termdescribes an exponential

decay where the droplets “loose” the influence of the initial
condition as time progresses, the third term represents the
mean convection of droplets which increases linearly with
time and the fourth term describes the modulation of the
droplet positions due to flow oscillation. The trajectory of the
individual droplets injected at different injection times: ti =
0, T/5, 2T/5, 3T/5, 4T/5, T of the 250Hz gas oscillation
signal uc, and for a given phase angle ϕ = 0, is shown in
Figure 2 by dotted lines at an observation non-dimensional
time of 280. It is to be noted that, a high excitation amplitude
(50%) and a low convection velocity, which is not typical of
values seen in gas turbines, are used to distinctly visualize indi-
vidual droplet trajectories in Figure 2 which otherwise would
not visible. However, higher velocity can be considered in
the current analytical framework.Differences in thedroplet tra-
jectories due to different injection times can also be seen in the
zoomed in view (inset) in Figure 8. Since the gas phase excita-
tion is periodic, a periodic behaviour of the droplet trajectories
is also reached asymptotically where they convect at mean
speed and fluctuate at the oscillation frequency. This asymp-
totic behaviour can also be seen by zeroing the exponential
term in Eq. (8), which results in an expression with terms

involving convection at uc and oscillation (C̃1 and C̃3

without C̃2), as given in Eq. (12):

x̃d (̃t, t̃i) = t̃ + C̃3
1−γ
γ sin (B)− sin (A)( )

[
− 1

ω̃
+ ω̃

γ

( )
cos (B)− cos (A)( )

]
,

(12)

where A = ω̃̃t + ϕ and B = −ω̃̃ti + ϕ.

Definition of the Number Density Wave
Figure 2 shows that individual droplet trajectories differ
from each other leading to different inter-droplet spacing
at any given observation time, as shown by black crosses.
Such a heterogeneous distribution of droplets in space
results in a number density wave. The evolution of the
number density wave can be obtained by tracking the
change in spacing of droplets as time progresses. The
change in spacing of droplets is inversely dependent on
injection time ti. Thus, the number density wave can
be mathematically written as the inverse of time
derivative (dxd/dti)−1. In order to obtain the inverse time
derivative, we first differentiate the dimensional form of
Eq. (8) to get dxd/dti (Eq. (13)) and then take the inverse
to get the expression for number density wave (ϱ(xd(ti), ϕ)):

d̃xd
d̃ti

=1− uc − ud0
uc

( )
e−̃ti+ε 1− e−̃t

( )
ω̃

γ
cos −ω̃̃ti + ϕ

( )+ sin −ω̃̃ti + ϕ
( )( )

.

(13)
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ϱ̃ x̃d ,ϕ
( )= ṅτd

[
1− uc−ud0

uc

( )
e−̃ti

+ ε
ω̃

γ
cos ω̃̃ti−ϕ

( )−sin ω̃̃ti−ϕ
( )( )

1− e−̃ti
( )]−1

(14)

where, ṅ is the rate of droplet injection and ϕ is the phase
angle of the gas oscillation corresponding to the time when
the droplet is injected into the domain. The number density
wave fundamentally depends on xd and time of injection ti.
It also depends on time t through the inverse function ti
and xd. Equation. (14) is not yet useful as ti is not known
explicitly. By inspection of Eq. (8), it can be recognized
that xd(ti) is composed by the superposition of the trajectories
due to the relaxation of the droplets to the mean flow and the
oscillation induced by ûc when ûc > 0. An approximation for
the inverse function to obtain ti from Eq. (8) assuming small
oscillation amplitudes is given by:

t̃i xd( ) = x̃d + uc − ud0
uc

+W(z), (15)

whereW(z) is a Lambert W function, which can be expressed
as a power series according to the Lagrangian inverse
theorem in the following way:

W(z) =
∑∞
n=1

(− n)n−1

n!
zn, with

z x̃d
( )=e−

1
uc

uc−ud0+̃xd
( )

ud0−uc
uc

( )
.

(16)

As ti(xd) is obtained, a closed form expression for the
Number Density is obtained by combining Eqs. (14), (15)
and (16). Before proceeding further, the analytical formula-
tion of the obtained ND wave expression is validated
against a 1D CFD simulation carried out in OpenFOAM.

Validation of the ND wave model
In this section, the number density wave is validated against
a 1D CFD simulation with Lagrangian particle tracking
scheme to obtain droplet statistics. Droplet position and

liquid mass flow data from the simulation are post-
processed to validate the number density wave and evapor-
ation rate modulation, which will be discussed in the next
section.

TheCFD setup consists of a 1Dduct of length 0.3m in the x
direction and is discretized with 500 grid points.Water is used
as the dispersed phase and air is used as the carrier phase. As
the focus of the work is to demonstrate an analytical frame-
work to capture the evaporation response of droplets to vel-
ocity oscillations, water is chosen as the material for
dispersed phase, because compared to other fuels there is
little ambiguity concerning the available thermophysical prop-
erties. The current framework can be used with typical fuels
such as heptane, kerosene by considering respective thermo-
physical properties without altering the analytical framework.
Mono-disperse droplets are injected continuously at the inlet
of the domain (x = 0m) as shown in the Figure 3, which are
tracked using Lagrangian particle tracking method. To
assess the response of a spray to velocity oscillations, the
gas velocity at the inlet is modulated at a given frequency
and amplitude. Other boundary conditions used for the simu-
lation and analytical procedure are given in Tab. 1.

The transient simulation with time step of Δt =
5 × 10−4 of the laminar flow is carried out for 0.1 s. The
Lagrangian data in terms of velocity, position in the
domain at any given observation time, and number of dro-
plets is recorded at each time step. The number density is
obtained by using the histogram and the position informa-
tion of the droplets. The normalized ND wave
(ϱ = ϱ/ϱ(̂uc = 0)) calculated from the closed expression
(Eq. 14) is in good agreement with the CFD simulation as
shown in Figure 4.

Evaporative Spray Response
This section focuses on the characterisation of the evapora-
tive spray response to a pulsating flow, where the

Figure 3. Schematic of the CFD domain with droplet injection

Table 1. Boundary conditions for the CFD simulations

Diameter, μm uc (m/s) ûc (m/s) ud0 (m/s) Tgas (K) Td0 (K)

30 5 2.5 5 700 300

Figure 4. Comparison of analytical (—) and CFD (- - -)

Normalized Number Density profile
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previously developed theory regarding the formation of a
number density wave for non-evaporating droplets is
recalled and droplet evaporation is incorporated. This can
be simply seen as the progressive reduction of the droplet
size, along with the droplet convection. To include the
effect of evaporation, we consider the D2 model for evapor-
ation of droplets injected with zero slip velocity with
respect to mean velocity. We show later that for moderate
amplitudes of excitation, the D2 law can recover quite
accurately the evaporation response as obtained with an
advanced evaporation model employed in CFD. For a
spherical droplet the rate of evaporation from D2 law is
expressed as:

ṁd = 2πDρgDAB ln 1+ BM( ) (17)

which yields the following equation for the droplet diameter
evolution:

dD2

dt
= − 8ρgDAB

ρd
ln 1+ BM( ) (18)

where ρg is the average gas density evaluated at film tem-

perature and composition obtained using the 1/3rd rule,34

ρl is the density of the liquid, DAB is the binary diffusion
coefficient and BM is the Spalding mass transfer number.
The droplet lifetime can then be calculated as:

td = D2
0

K
(19)

where D0 is the initial droplet size and K is the evaporation
constant. As a first approach, the simple aforementioned D2

law can be used in the number density wave to incorporate
size variation. In this case the droplet size evolution can be
resolved for initial injection size D0 and constant evapor-
ation coefficient K (Eq. (20)) which does not depend on
the droplet Reynolds number. Please note that a constant
evaporation coefficient can be justified in this case as the
droplet is injected close to the wet-bulb temperature of
water for the given gas phase temperature and pressure.
Thus droplet heating time is negligible and the evaporation
coefficient can be considered constant in time and can be
deduced analytically. However, future work will consider
extension of the theoretical framework to include non-
negligible droplet heat up time analytically based on the
liquid injection temperature, liquid material and gas phase
temperature and pressure.

K = 8ρgDAB
ρd

ln 1+ BM( ) (20)

The droplet size evolution can be further used in the
Number Density equation (Eq. (14)) via the droplet relax-
ation time parameter τd. The function xd(t, ti) gives the pos-
ition of the droplets at a given observation time t, that were
injected at injection time ti. In order to obtain the droplet
size evolution for all the droplets injected in the domain,

the D2 law for size evolution can be written as:

D(ti) =
����������
D2

0 − Kti

√
(21)

After having obtained the droplet size evolution equation
for all the droplets, the droplet size evolution function is
introduced in the ND wave Eq. (14) via parameter
τd(D(ti)) which recursively depends on ti.

The number density wave equation (Eq. (14)) contains
an implicit function in τd(ti), which is solved using a
predictor-corrector scheme. In the first step, the initial
droplet size D0 is used to determine the τd(D0) as done in
the non-evaporative case. τd(D0) is then used to obtain
the ti values. In the next step, the injection time ti estimated
in the first step is substituted in Eq. (21) to give the droplet
size evolution.

Eq. (14) for the number density wave was derived for a
constant droplet relaxation time τd. Inclusion of a variable
τd(D(ti)) in the derivation of the number density equation
(14) results in a problem that appears analytically intract-
able. Fortunately, given that the time scales of droplet
relaxation and oscillation are smaller than the droplet
life time td, a quasi-steady approximation for the oscilla-
tory evaporation appears justified, which is obtained by
simply inserting the time-varying τd in Eq. (14). The
fact that results from the analytical approach are in good
agreement with CFD (see below) provides a posteriori
validation of the quasi-steady ansatz. The limits of the
validity of this assumption will be explored in future
work.

Finally, the parameter τd(D(ti)) is updated and then used
in the evaluation of the ND wave (Eq. (14)). The profile of
the evaporation rate (Eq. (17)) is extended with ND wave
Eq. (14) to give the evaporative spray response:

ṁ xd(ti)( ) = π

4
ρd

��������������
D2

0 − Kti xd( )
√︷�������︸︸�������︷D

K
︷︸︸︷dD2/dt

︸��������������︷︷��������������︸
individualdroplet

ϱ xd(ti), ϕ
( )︸�����︷︷�����︸
numberdensity

(22)

The constant evaporation coefficient K for the analytical
expression in Eq. (22) is obtained by the D2 law for
Red = 0. In the Lagrangian CFD solver, the film theory
of Abramzon and Sirignano35 is employed for the calcula-
tion of the evaporation of droplets. The evaporation rate
in the CFD case is estimated as the local sum of the evapo-
rated liquid which is added to the gas-phase system in the
given time interval. This evaporation rate source term is
extracted using a user-defined routine in OpenFOAM.
The oscillating component of the gas velocity ûc > 0,
which elicits the formation of a ND wave, produces a
local fluctuation of the droplet rate of evaporation.
Droplet grouping caused by the ND wave in space and
coupled with simultaneous evaporation of droplets gives
rise to the spatio-temporal modulation of the evaporation
rate. The evaporation rate in non-dimensional form
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(m̃d = ṁd/ρdAdomainuc) with cross-sectional area Adomain, is
shown in Figure 5.

Figure. 5 compares the evaporation rate profile accord-
ing to Eq. (22) with the CFD simulation. A good agreement
is seen, except for the fact that the CFD case exhibits a
gradual increase in oscillations at the start of the domain ∼
x = 0, which is not reproduced by the analytical result. This
is plausible due to the absence of droplet heating process in
the analytical formulation. Another important takeaway
message from Figure 5 is that the D2 law used for the ana-
lytical prediction recovers the group evaporation response
obtained with the more realistic Abramzon and Sirignano
evaporation model. In summary, the timing of the injection
of droplets and fluctuation velocity lead to the formation of
a number density wave. As a result of the ND wave and
simultaneous evaporation of droplets, the evaporation rate
ṁ is also modulated.

Equivalence Ratio Fluctuations
In this section, we seek an analytical solution for the evap-
oration response of a population of droplets. We have seen
from the previous section that due to the imposition of
acoustic excitation, an inhomogeneous distribution of dro-
plets occurs downstream of the injector to form a ND
wave. As a result of the ND wave the rate of evaporation
oscillates giving rise to the fuel vapour wave, which propa-
gates downstream at mean convection speed.36,37

Oscillations in fuel vapour production lead to oscillations
in the equivalence ratio. The fact that air velocity oscilla-
tions lead to oscillations in the equivalence ratio allows to
construct a transfer function characterizing the evaporation
response to velocity oscillations. Such a transfer function
block for the evaporation process coupled with a transfer

function for other processes, such as atomization and heat
release rate dynamics, completes the low-order model of a
spray flame for the study of combustion instabilities.

The evaporated mass flow feeds the gaseous phase with
fuel vapour. Thus, the expression Eq. (22) for the evapo-
rated mass flow rate obtained in the previous section can
be utilized as a source term in a transport equation for
gaseous fuel to determine the mass fraction modulation of
fuel vapour:

ρ
∂Y
∂t

+ ρuc
∂Y
∂x

− ρD ∂2Y
∂x2

= ṁ. (23)

Essentially, Eq. (23) captures the effect of acoustic modula-
tion via the source term, while the transport of mass fraction
ignores the fluctuations in the convective-diffusive trans-
port. This is justified as the evaporated vapour convects at
mean flow speed which allows to evaluate Eq. (23) using
only the mean flow speed without oscillation. It is to be
noted that the density ρ is out of the differential operators
due to the combination of the conservative form of the
transport equation and continuity equation, along with the
assumption that density fluctuations are negligible due to
compact acoustics and small vapour loading. This assump-
tion is justified a posteriori, as the results from the analytical
approach matches well with the CFD, where density varia-
tions are taken into account. The limit of the validity of such
an assumption will be investigated in the future work.

We solve the 1D transport equation via the Green’s func-
tion method for convection-diffusion problem with a source
term.

Y(x, t) =
∫t
0

∫ξ
0
G(ξ, τ; x, t)ṁ(ξ, τ)dξdτ (24)

Now, the problem turns to find a Green’s function form that
can solve Eq. (23). For the given 1D transport equation,
where the source term ṁ is set to act in the domain x ∈ 0−
ξ and during time 0− τ, the Green’s function38 with mean
flow can be derived as:

G(ξ, τ; x, t) = H(t − τ)������������
4πD(t − τ)

√ exp − [ξ− x+ uc(t − τ)]2

4D(t − τ)

[ ]
,

(25)

where D is the diffusion coefficient and H is the Heaviside
function. It is to be noted here that, first, the solution Y is
evaluated at time t, which means the source (evaporation
of droplets) is active in 0− ξ until time τ = t. The diffusion
coefficient χ is set equal to the value used in the
OpenFOAM CFD simulation to enable direct comparison
of the results.

The mass fraction result obtained from solving Eq. (23)
is validated against the mass fraction result obtained from
CFD by post-processing the mass fraction in the flow
domain. Figure 6 shows the mass fraction obtained from
CFD and the analytical Green’s function method with

Figure 5. Comparison of analytical (—) and CFD (- - -)

evaporation rate of droplets, D = 30 μm, f = 250 Hz, K = 7.7e-8

m2/s, Tair = 700 K, Tp0 = 300 K.
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only mean flow at a given time instance. The result of the
analytical solution in terms of the oscillation amplitude
and the diffusion of fuel vapour is in good agreement
with the CFD results. The discrepancies between the analyt-
ical solution and CFD result could be due to the absence of
an oscillating component in the Green’s function solution of
the transport equation Eq. (25).

The dynamic response of the equivalence ratio to air vel-
ocity oscillations can be studied by a evaporation transfer
function as shown below:

F(ω) = Y ′
H2O

/YH2O

u′c/uc
= G(ω)eiφ(ω) (26)

where G(ω) and φ(ω) represent the gain and phase delay of
the evaporation response. Such a transfer function enables
one to characterize the response of the evaporation
process across the relevant frequency spectrum.

In this study, the gain of the transfer function for both
analytical approach and CFD simulations is calculated by
taking the ratio of the normalized mass fraction fluctuation
and air velocity fluctuation time series signals imposed at
the reference inlet position. The phase is calculated by
taking the phase difference between mass fraction fluctu-
ation and air velocity fluctuation time series signals at the
reference location.

The gain and phase are calculated for the boundary con-
ditions given in Tab. 1 at different Strouhal number (Sr =
fL/uc) where L is the axial length of the domain as shown
in Figure 8. The evaporation process describes a low-pass
behaviour meaning that the droplet evaporation process
becomes unresponsive to rapid changes in the gas velocity
similar to the observations made by Chaussonnet et al.39 for
the atomization process. Such an observation needs to be
rigorously studied for the realistic poly-disperse spray,

which can exhibit different liquid evaporation time scales
that will affect their frequency response. An estimate for
the time delay of the transport process of vapour can be
given by t̃ = x̃ = 11.2, which is almost equal to the value
obtained by measuring the peak to peak signal from
Figure 7. Furthermore, the evaporation process introduces
an additional time delay due to the evaporation and trans-
port processes, as seen in Figure 7, which can be a critical
factor during combustion instability process. The time
delay from only the convection process is plotted in
Figure 8 phase plot as a solid red line. While the phase cal-
culated from convection time delay agrees well for lower
frequencies, there is a mismatch for higher frequencies.
Therefore, an accurate characterisation of the evaporation
response to acoustic excitation is necessary for robust ther-
moacoustic stability analysis of realistic spray flames.

Figure 6. Comparison of analytical (—) and CFD (- - -) mass

fraction profiles for given boundary conditions: D0 = 30 μm, f =

250Hz, uc = 5 m/s, u′ = 2.5 m/s, Tair = 700 K, Tp0 = 300 K

Figure 7. Time series of the air velocity (top) and fuel mass

fraction measured at x̃ = 11.2 for D0 = 30 μm, f = 100 Hz,

uc = 5 m/s, u′ = 2.5 m/s

Figure 8. Calculated Analytical (—) and CFD (- - -) evaporation

transfer function. The convective phase decay is shown in red.
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Summary and Outlook
This work proposes an analytical solution of the response of
a mono-disperse population of droplets to acoustic excita-
tion in terms of the number density. Due to relative
timing of the injection of droplets with gas velocity, a ND
wave is formed. The analytical expression for a particle
population response is extended by incorporating the evap-
oration of the droplets. The resulting analytical formulation
describes the oscillatory evaporation rate for the linear drag
regime. It is shown that the evaporation rate profile inherits
the characteristics of the ND wave without any phase lag.
The oscillatory evaporation rate gives rise to a fuel
vapour wave, which convects downstream with the mean
flow speed.

The propagation of vapour wave manifests itself in the
form of equivalence ratio fluctuations. The latter are deter-
mined by solving a 1D convection-diffusion equation for
gaseous phase using an appropriate Green’s function.
Results from the analytical approach are in good agreement
with 1D Euler-Lagrange CFD simulations. The evaporation
response of monodisperse evaporative spray to acoustic
oscillations has been calculated. The resulting transfer func-
tion exhibits a low-pass behaviour. Additionally, the evap-
oration process introduces a characteristic time delay in the
equivalence ratio fluctuation. An accurate determination of
such a time delay is critical for thermoacoustic stability
analysis.

Future work will explore the limits of the validity of the
assumptions made in this work. Subsequent work will also
consider the inclusion of transient droplet heating, which
can be seamlessly integrated to the current formalism.
Droplet heating may introduce a non-negligible time
delay in the evaporation process. As such, a simple estimate
of the global time delay associated with convection process
(t = x/V as done above) will not be accurate. Furthermore,
the present work can be easily extended to account for poly-
disperse flows. For that purpose, the current evaporation
response has to be evaluated over the size distribution of
the droplets. Finally, it will be important to perform the
evaporation response study for turbulent flows, where
increased mixing and turbulent diffusion might play a key
role in determining the amplitude of equivalence ratio
oscillations.
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Confidence in Flame Impulse
Response Estimation From
Large Eddy Simulation With
Uncertain Thermal Boundary
Conditions
Thermoacoustic stability analysis is an essential part of the engine development process.
Typically, thermoacoustic stability is determined by hybrid approaches. These
approaches require information on the flame dynamic response. The combined approach
of advanced system identification (SI) and large eddy simulation (LES) is an efficient
strategy to compute the flame dynamic response to flow perturbation in terms of the finite
impulse response (FIR). The identified FIR is uncertain due in part to the aleatoric uncer-
tainties caused by applying SI on systems with combustion noise and partly due to episte-
mic uncertainties caused by lack of knowledge of operating or boundary conditions.
Carrying out traditional uncertainty quantification techniques, such as Monte Carlo, in
the framework of LES/SI would be computationally prohibitive. As a result, the present
paper proposes a methodology to build a surrogate model in the presence of both alea-
toric and epistemic uncertainties. Specifically, we propose a univariate Gaussian Process
(GP) surrogate model, where the final trained GP takes into account the uncertainty of SI
and the uncertainty in the combustor back plate temperature, which is known to have a
considerable impact on the flame dynamics. The GP model is trained on the FIRs
obtained from the LES/SI of turbulent premixed swirled combustor at different combustor
back plate temperatures. Due to the change in the combustor back plate temperature the
flame topology changes, which in turn influences the FIR. The trained GP model is suc-
cessful in interpolating the FIR with confidence intervals covering the “true” FIR from
LES/SI. [DOI: 10.1115/1.4052022]

Introduction

To reduce NOX emissions, lean premixed combustion systems
have been developed. Lean premixed combustors, however, may
exhibit thermoacoustic instabilities [1], which are detrimental to
the engine operation. As a result, thermoacoustic stability analysis
needs to be carried out at the design stage of the engine develop-
ment. Generally, thermoacoustic stability is evaluated by a hybrid
approach, where the calculation chain is divided into two steps. In
the first step, acoustics and flame dynamics are calculated sepa-
rately. On the one hand, acoustic models such as Helmholtz solver
[2] or network models [3], which describe the propagation and
scattering of acoustic waves within the system environment, are
evaluated. On the other hand, flame response models characterize
the influence of acoustic waves on the flame dynamics. Flame
response model may be obtained experimentally [4] or numeri-
cally, i.e., by combining high fidelity simulations such as large
eddy simulations (LES) and system identification techniques
(LES/SI) [5,6]. In the second step of the hybrid approach, acous-
tics and flame response models are combined. The resulting eigen-
value problem delivers the growth rates and frequencies of the
thermoacoustic modes of the system.

The flame response is highly sensitive to the burner geometry
and operating conditions, i.e., incoming flow conditions (fuel
composition, mean flow temperature) and burner thermal bound-
ary conditions [7–11]. Most of the time operating and boundary
conditions are uncertain. Such uncertainty is generally of

epistemic nature: a lack of knowledge in the flow or thermal
boundary conditions at which the system operates. Modeling the
flame response under uncertain boundary conditions leads to
flame response models with epistemic uncertainties. The latter
may alter the thermoacoustic stability prediction of the system
[12].

The flame response model can be described in the time domain
in terms of finite impulse response (FIR) coefficients. The FIR
model is more general and realistic than an n� s model, where
only a constant time delay [13] is used. In the FIR model, the
flame response to upstream flow perturbations is the result of dis-
tributed time delays [14], each one associated with a coefficient of
the impulse response. The coefficients of the impulse response
can be obtained by combining SI techniques with high-fidelity
numerical simulation. Such evaluation of the impulse response
can be challenging if the flame under evaluation is turbulent. Tur-
bulent flames produce combustion noise, which is detrimental for
an accurate evaluation of the FIR coefficients. Such a lack of
accuracy leads to uncertainties in the FIR coefficients, which can
be considered of aleatoric nature: combustion noise may be seen
as a random process that cannot be set to zero by increasing the
knowledge in the system. Summarizing, uncertainties in flame
response models may be of epistemic (operating/boundary condi-
tions) and aleatoric nature (applying SI on data corrupted by
noise).

Previous works have concentrated on uncertainty quantification
(UQ) in the second step of the hybrid approach by propagating the
aleatoric uncertainties in the flame model to the growth rate of the
eigenmodes of the system. In the majority of these studies, uncer-
tainties in the flame model are assumed. Whether they are of epis-
temic or aleatoric nature is not of interest. For example, [15–18]
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used the n� s flame model to investigate the effect of uncertain-
ties in n and s on the thermoacoustic modes of different combus-
tors. Guo et al. [19] considered the FIR model obtained by the
LES/SI technique. Unlike previous studies, the aleatoric uncer-
tainties in the flame model due to the application of SI were rigor-
ously determined with residual analysis. They showed that
irrespective of the nature of uncertainties present in the flame
model, the thermoacoustic stability prediction is significantly
impacted and that the aleatoric uncertainties in the flame model
can be reduced by considering longer time series. However, these
studies did not consider any epistemic uncertainty in the flame
model. Therefore there is a need to quantify the uncertainties in
the flame model reliably for robust thermoacoustic stability
analysis.

To this day, the work of Avdonin and Polifke [20] is the only
one that has focused on UQ in the first step of the hybrid
approach. In that study, the uncertainty in the flame response
obtained from high fidelity simulations was studied using the
polynomial chaos expansion method. The work of Avdonin et al.
[20] took into account only uncertainties of epistemic nature
(operating and boundary conditions). As a laminar flame was
investigated, no aleatoric uncertainties – associated with system
identification on data corrupted by noise – were accounted for.

The present study focuses on UQ in the first step of the hybrid
approach, where we aim at simultaneously quantifying both epis-
temic and aleatoric uncertainties in the FIR model coefficients
characterizing the flame response of a turbulent, confined flame.
A naive way to tackle the proposed UQ problem is by carrying
out the Monte Carlo approach, which involves performing Oð104Þ
simulations, which is computationally prohibitive in the case of
LES. Previous studies have shown that surrogate models can be
used in Monte Carlo simulation to facilitate faster UQ analysis.
However, in the presence of both aleatoric and epistemic uncer-
tainties, the challenge lies in building the surrogate model itself,
which constitutes the main goal of the current work. This chal-
lenge is twofold: first of all, since an FIR model usually contains
30–50 coefficients, this high output dimensionality would greatly
impact the efficiency of any surrogate modeling approach. Sec-
ondly, for each wall temperature, the corresponding FIR coeffi-
cients are not unique due to the application of SI on data
corrupted with noise. Building surrogate models for uncertain var-
iables is not trivial.

To overcome the above-mentioned problems, we adopt the follow-
ing strategy which represents the novelty of the current work: (1) to
address the problem of high output dimensionality a univariate surro-
gate model is proposed, where the output FIR coefficients are
described as a function of time delay and the uncertain boundary con-
dition to deduce the mapping between the inputs (time delay and wall
temperature) and the output (FIR coefficients). (2) To address the issue
of variability of FIR coefficients, we propose a bootstrapping strategy.
In this methodology we generate multiple realizations of training data
based on the FIR coefficient uncertainty information given by the SI
method; For each set of realization, we fit a surrogate model and
record its corresponding uncertainty estimation. Finally, we aggregate
the calculated ensemble of uncertainty estimates to derive the compre-
hensive uncertainty accounting for both aleatoric and epistemic uncer-
tainty. Once the way of building a surrogate is finalized, any type of
surrogate model can be chosen which can then be plugged into Monte
Carlo simulation to facilitate subsequent UQ analysis. In this study we
choose a univariate Gaussian Process as a surrogate model first, as it
has been proven to accelerate UQ analysis in the framework of ther-
moacoustic problems [21]; Secondly, it not only outputs the prediction
at unsampled points but also gives the associated prediction uncer-
tainty courtesy of its Bayesian nature [22]. Later, the developed UQ
methodology is applied to infer the FIR at any location in the investi-
gated temperature range to search for a better agreement with the
measured FIR highlighting the uncertainty of the boundary condition.

This paper is structured as follows: section “Thermoacoustic
Framework” describes the computational setup of the thermoa-
coustic problem at hand along with the description of the flame

model identification procedure and the flame topology variation.
Section “Gaussian Process Overview” provides the technical over-
view of the employed Gaussian Process followed by the descrip-
tion of the bootstrapping procedure to estimate the prediction
uncertainty at a test temperature. Section “Results and Dis-
cussion” elucidate the application of the proposed univariate
Gaussian Process on the thermoacoustic problem under investiga-
tion showing the performance of the Gaussian Process (GP) model
and the effect of combined uncertainty on the FIR.

Thermoacoustc Framework

In this section, we discuss the computational test setup that is
used to generate the time series data for the estimation of the
flame dynamics response model. This is followed by the formal
description of the flame model identification procedure and the
comparison of the identified flame model against experimental
measurements. Finally, the effect of variation of combustor back
plate temperature on the flame topology is discussed.

Combustor Configuration. The system under investigation is
the NOISEDyN combustor, which was conceived at the EM2C
laboratory. Numerical validation of the flow field and flame of
this combustor were carried out by Merk et al. [23] using AVBP
[24]. Figure 1 shows the setup of the EM2C laboratory-scale test
rig. The shaded area shows the computational domain, which fully
resolves the radial swirler and the combustor geometry without
geometric simplifications. Fully compressible LES-filtered
Navier–Stokes equations are solved on an unstructured grid with
approximately 19 million tetrahedral cells and 0.6 mm maximum
cell size in flame region with a second-order accurate Lax-
Wendroff scheme. The Dynamically thickened flame model is

Fig. 1 Sketch of the NOISEDyN Turbulent Swirl Combustor.
Dimensions are in mm [23].
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used with an efficiency function adopted from Colin et al. [25],
resolving the laminar flame thickness with seven cells. Classical
Navier–Stokes characteristic boundary conditions [26] are used to
treat inlet and outlet. According to Refs. [27,28], the inlet relaxa-
tion coefficient K controls the magnitude and phase of the inlet
reflection coefficient. A value of K ¼6000 s�1 is used to strike a
balance between the drift of the mean velocity and acoustic reflec-
tion, which is aimed at low values. This relaxation factor corre-
sponds to a cut-off frequency of �470 Hz according to the theory
[27]. For the outlet, the ambient pressure is imposed with outlet
relaxation coefficient K ¼ 500 s�1. Note that the time domain
impedance boundary condition [28] used with success in the
works of [23,29,30] are not implemented in version 7.0 of AVBP
at the time of this work and, consequently, could not be adopted
for the modeling of fully anechoic boundary conditions. The
metallic combustor back (dump) plate is defined as a no-slip iso-
thermal wall. In a first computation, the temperature is tuned to
823 K to match the LES outlet gas temperature with measure-
ments [23]. Nevertheless, such a temperature is highly uncertain
and constitutes a matter of investigation in the present study.

Flame Model. In this work, the flame response is characterized
via the Finite Impulse Response model. This model can be trans-
formed to the frequency domain through the z transform [31],
resulting in the so-called flame transfer function (FTF), FðxÞ

F xð Þ �
_Q
0
xð Þ= �Q

u0ref xð Þ=�uref

(1)

where _Q is the integrated global heat release rate, uref is the veloc-
ity at reference location, overbar and prime indicate average and
fluctuations. In the current study, the FTF is obtained by forcing
the flame with a broadband signal and applying SI on the down-
sampled time series data as has been successfully applied in previ-
ous studies [5,11,32,33]. Note that before excitation is applied, the
cold flow and heat release characteristics are validated against
experimental measurements. Further details on the LES validation
procedure can be found in [23]. Once the simulation reaches a
statistically stationary state after the initiation of combustion, the
flame is acoustically forced with broadband excitation for �350
ms to generate the time series of acoustic velocity and heat release
rate fluctuations. This data is subsequently used to infer the FIR
coefficients via advanced System Identification techniques [6].
The excitation signal applied at the inlet is the in-going character-
istic wave external (wavelet type [34]). It is designed in such a
way that it exhibits constant power spectral density up to a cut-off
frequency of 1000 Hz. The excitation amplitude is equal to 10%
of the mean flow velocity. This value of excitation amplitude is a
compromise as low excitation amplitude leads to a low signal-to-
noise ratio, while high excitation amplitude triggers a nonlinear
response that cannot be studied by linear identification procedures
used in this study. Time series length of �350 ms has proven to
be successful in describing the premixed flame dynamics [11,30].
Note that this time interval corresponds to roughly 35 times the
length of the impulse response and such a temporal length is
deemed appropriate in SI practice [31].

Compared to the Box-Jenkins model structure used for system
identification in a previous study [30], a more simple structure –
the FIR model [33,35] – is used in this work, as it converges to
similar results as those provided by Box-Jenkins when short time
series are considered [36]. Additionally, in this study, we focus
exclusively on the flame response and do not aim at inferring
source models of combustion noise. The FIR model structure is
formally written as

_Q
0
u0 ðtÞ ¼

Xnb

i¼0

hiu
0ðt� iDtÞ (2)

where nb is the number of impulse response coefficients hi, Dt is
the model time-step and _Q

0
u0 ðtÞ is the global heat release rate

fluctuation caused by the velocity fluctuation u0ðtÞ upstream of the
flame. The detailed explanation on the FIR model structure can be
found in [31]. The FIR identification procedure is applied on the
time series generated by LES. A polynomial order nb¼ 25 is con-
sidered. The identification procedure and data processing is real-
ized in MATLAB 2018a.

Figure 2 shows the identified impulse response coefficients hk’s
and the associated FTF along with the confidence intervals. The
confidence interval which shows the aleatoric uncertainty in the
estimated FIR coefficients is represented by covariance matrix. A
rigorous derivation of the covariance matrix which results from
solving the least-squares approach is shown in the works of
Sovardi et al. [37] and Guo et al. [19]. Explicitly, the diagonal ele-
ments of the covariance matrix shown in Fig. 2(c) represent the
coefficient variances whereas the off-diagonal elements show the
covariance among the pairs of parameters. The covariance matrix
exhibits a diagonal dominant nature, which is expected in a typi-
cal flame response.

Flame Topology. First row in Fig. 3 shows the mean volu-
metric heat release rate calculated by LES in the mid-longitudi-
nal plane at three different temperatures. Flow is from bottom
to top. The depicted mean reaction zone is normalized by the
maximum value found in the time series, which is averaged
over 70 ms worth of accumulated data. Numerous works have
studied the flow and flame topology changes due to variation in
the thermal state of the combustor walls [38,39] and have
observed that the flame length changes, hence affecting the
flame dynamic response.

The flame length at combustor back plate temperature of
720 K is longer than the flame at 926 K. Due to the cooler back
plate temperature, the outer recirculation zone has higher heat
loss and does not supply the flame root and the outer shear
layer with burnt gases at adiabatic flame temperature resulting
in reduced flame speed/longer flame length [9,11]. On the other
hand, due to the hotter combustor back plate temperature, heat
loss in the outer recirculation zone is reduced and the flame
root is supplied by relatively hot burnt gases leading to
increased flame speed/shorter flame length. This also leads to
re-attachement of the flame outer branches to the outer rim of
the injection tube and transition from V to M type flame [40].
The change in flame topology affects the flame dynamic
response as shown in the FTF and FIRs of Fig. 3. The sensitiv-
ity of the flame response to thermal boundary conditions is
indisputable in both gain and phase. The dependence of the
flame response phase on the flame length is readily understood.
The flame length affects the characteristic convection time of
perturbations reaching the flame tip. This is evident when com-
paring the results of the case at 720 K with the other two cases:
the slope of the identified FTF phase slightly changes, as shown
in the phase plot in second row of Fig. 3.

The third row of Fig. 3 shows the estimated Finite Impulse
Response at three corresponding temperatures which are
obtained by LES/SI procedure. The FIR obtained from the LES/
SI procedure is shown by solid lines and the uncertainty of the
estimation is given by the shaded area. The confidence interval
represents the aleatoric uncertainty caused by applying SI on a
LES time series with combustion noise and finite length of time
series for identification. The measured FIR is obtained by per-
forming the inverse Fourier transform of the measured FTF. In
order to facilitate the comparison of the FTFs, the number of
coefficients nb is held constant. As a result, the low frequency
limit [41] for premixed flames at 720 K and 926 K do not start
at the same point as 823 K indicating that the filter length is
inadequate to describe flame response at these temperatures.
Change in the filter length nb leads to an appropriate low-
frequency limit. For the sake of brevity, it is not shown here.
The impulse response obtained from LES/SI is in good agree-
ment with neither of the three temperatures highlighting the fact
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that the tuned combustor back plate temperature in the LES
simulation of 823 K is only an educated guess. Later, the
trained GP model is leveraged to predict the FIR at any temper-
ature in the given range that is in better agreement with the
measured FIR highlighting the effect of uncertain combustor
back plate temperature.

Gaussian Process Overview

To efficiently address the impact of both aleatoric and epistemic
uncertainties on the flame dynamics, a supervised machine learning
algorithm called Gaussian Process surrogate model is employed in
this UQ study. A Gaussian Process surrogate model has been applied

Fig. 2 FTF and FIR obtained from FIR identification along with covariance matrix

Fig. 3 Comparison of mean reaction zone calculated from LES, FTF inferred from FIR ( ) and FIR’s obtained from LES/SI
( ), experimental measurement ( ) and GP model prediction ( ), at three different combustor back plate temperatures.
Shaded and dashed lines represent the confidence interval of the estimated FIR from LES/SI and GP model, respectively.
(Color version online.)
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previously to UQ analysis in thermoacoustic problems, where only
the impact of aleatoric uncertainties in the flame model on the growth
rate of the thermoacoustic modes of the system has been studied [19].
Meanwhile, the impact of both aleatoric and epistemic uncertainties
on flame dynamics has not been explored. In the following, we dis-
cuss various approaches to account for both uncertainties and their
respective shortcomings. Afterwards, we briefly discuss the technical
overview of the adopted bootstrapping univariate Gaussian Process
followed by the bootstrapping methodology to obtain prediction
uncertainty at any test temperature.

In this study, we aim at assessing the impact of uncertain com-
bustor back plate temperatures Tw and combustion noise on the
flame dynamics (FIR) estimation. A naive way to tackle this prob-
lem is by Monte Carlo simulation, which implies generating a large
number of samples ðOð104ÞÞ of Tw according to a given predefined
probability distribution, and obtaining the corresponding FIR from
LES/SI for each Tw. However, carrying out Oð104Þ realizations of
LES is not a viable solution in reality. Therefore, surrogate model-
ing techniques (e.g., Gaussian Process) can be employed to learn
the mapping between Tw and FIR coefficients based on a small
number of carefully selected training samples, thus significantly
improving the uncertainty propagation efficiency.

Mapping the input Tw to output FIR coefficients h is not
straight-forward due to the high output dimensionality of the FIR.
Generally, the identified FIR has 20� 60 FIR coefficients which
exhibit a significant degree of correlation. Constructing a surrogate
model for each coefficient would be cumbersome and computation-
ally expensive, leading to a degraded UQ analysis. Furthermore, as
previously mentioned, the FIR identified from LES/SI for each Tw

is uncertain: the FIR coefficients are not deterministic but stochas-
tic, and described by a given probability density function.

Ideally, for the current problem, a surrogate model which out-
puts the FIR coefficients hi’s for a given input parameter (in this
case, the combustor wall temperature Tw) is desired. Nevertheless,
instead of building a surrogate model for all coefficients hi given
a value of Tw, we build a univariate GP model, where we treat the
output FIR coefficients as a function of wall temperature Tw and
time delay s ¼ nbDt (two inputs - one output). In the following
section, we briefly introduce the fundamental overview of the uni-
variate Gaussian Process and the bootstrapping procedure to
obtain the prediction uncertainty.

Gaussian Process modeling is a supervised machine learning
algorithm, that trains on carefully selected inputs and their corre-
sponding responses to obtain a computationally efficient surrogate
model that learns the underlying response surface. The trained
model is then used in the desired UQ analysis. This avoids repeti-
tive, computationally expensive, high fidelity solver calculations
for predicting the distribution of the FIR coefficients at an
untrained temperature. In the following, key formulas for the
mean and the variance of the prediction are given. For a detailed
derivation of the GP method please refer to [22,42].

GP model treats the output f ðxÞ of the high fidelity solver as the
realization of the Gaussian process

f ðxÞ ¼ bþ ZðxÞ (3)

where b is a constant value and ZðxÞ is the departure from b at x,
which is modeled as a Gaussian distribution with zero mean, var-
iance r2, and covariance matrix defined as

Cov½Zðxi; xjÞ� ¼ r2Rðxi; xjÞ (4)

where Rðxi; xjÞ is the correlation between two sample locations xi and
xj in the input space. In practice, generally a Gaussian kernel is used
to describe the correlation function Rðxi; xjÞ which is represented as

Rðxi; xjÞ ¼ exp �
XM

p¼1

hpðxi
p � xj

pÞ
2

2
4

3
5 (5)

where M denotes the number of input parameters, subscript p rep-
resents the p-th component of the input vector x, and h ¼
½h1;…; hM� controls the strength of correlation in the correspond-
ing dimension p. A low value of h means there will be high level
of correlation among input samples and vice versa.

For given samples X ¼ ½x1;…; xN �T and their corresponding
responses Y ¼ ½f ðx1Þ;…; f ðxNÞ�T we can train a GP model by
finding the values for the hyperparameters b;r2; h such that the
likelihood of matching the observations is maximized. Maxi-
mum likelihood estimate for the mean, b and variance, r2 is
given by

b̂ ¼ ð1TR�1
D 1Þ�1

1TR�1
D Y (6)

r̂2 ¼ 1

N
Y� 1b̂
� �T

R�1
D Y� 1b̂
� �

(7)

where RD is N � by� N is correlation matrix between training
samples and 1 is a vector of ones of size M. For estimating h, the
following auxiliary optimization problem has to be solved

ĥ ¼ argmax
h

�N

2
ln r̂2ð Þ � 1

2
lnðjRDjÞ

� �
(8)

Finally, the GP model prediction f̂ ðxÞ at multiple locations Xp ¼
½x1;…; xL�T is given by mean lðf̂ ðxÞÞ and covariance covðf̂ ðxÞÞ
as

lðf̂ ðxÞÞ ¼ 1b̂ þ RT
PDR�1

D ðYD � 1b̂Þ (9)

covðf̂ ðxÞÞ ¼ r̂2ðRP � RT
PDR�1

D RPDÞ (10)

where RPD represents the N-by-L correlation matrix between
the prediction inputs XP and the training inputs X. RP repre-
sents the L-by-L correlation matrix between the prediction
inputs XP.

Gaussian Process Model Training. In this study, we train a
single Gaussian Process surrogate model to predict the mean of
the FIR distribution and then use the bootstrapping procedure to
predict the variance, which accounts for the model approximation
and FIR estimation uncertainty. To further quantify the uncer-
tainty due to combustor wall temperature Tw, Monte Carlo is then
performed on the configured surrogate model to obtain the com-
prehensive uncertainty estimate at any arbitrary temperature
between the range considered. Detailed description of this proce-
dure is given below:

Gaussian Process Interpolation

Step 1: Select N training samples Tw¼ T1
w;…; TN

w . In the cur-
rent study we assume that Tw follows a uniform distribution
with Tw � ðTmin;TmaxÞ. As a rule of thumb, N can be chosen
as 10.
Step 2: For each T

ðkÞ
w ; k ¼ 1;…;N run LES and estimate FIR

coefficients hðkÞ � ðmðkÞ;CðkÞÞ. Here, m denotes the mean value
vector and C denotes the covariance matrix. Note that the
dimension of h has to be kept the same for all identifications.
Step 3: Train a univariate GP model to determine the nominal
FIR surface from the training set ðTw; ðmðkÞÞÞ which fits a GP
hypersurface h � GPðs;TwÞ as illustrated in Fig. 4.

Prediction Uncertainty. The procedure to determine the pre-
diction uncertainty is described in Algorithm 1. First, to capture
the uncertainty given by the SI procedure, multiple realizations
(p) of the training data (N) are generated within the FIR coeffi-
cient uncertainty given by the SI procedure applied on the LES
time series data. Further, for each prediction temperature i in S,
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the GP model hyperparameters for each rth realization in p are re-
calculated. Then, the re-calculated GP model is leveraged to pre-
dict at ith temperature. At each prediction, q realizations are gen-
erated within the covariance matrix given by the GP model
approximation (Eq. 10) and its corresponding uncertainty in the
estimation of the FIR is recorded. Finally, we aggregate the
ensemble of the uncertainty estimates to derive the total prediction
uncertainty containing aleatoric and epistemic uncertainty. All the
code and data to produce the results will be made open-source and
can be found in the website.2

Algorithm 1 Total prediction uncertainty using bootstrapping
GP model

1: Perform LES on N Tw samples to create a training matrix ðTw; ðmðkÞÞÞ
2: Train GP model h � GPðs; TwÞ
3: while j < lengthðNÞ do

4: Obtain the uncertainty information for each of the N training data
(Tj

w; ðmðjÞ;CðjÞÞ) given by SI.
5: Generate p realizations within the covariance matrix to capture the

uncertainty given by the SI procedure.
6: end while

7: Draw S samples from ðTmin;TmaxÞ via Latin Hypercube Sampling
8: while i < lengthðSÞ do

9: i ¼ iþ 1.
10: while r < lengthðpÞ do

11: Recalculate the GP model for each rth realization (surface) to
obtain the updated hyperparameters.

12: Predict FIR using the recalculated GP model at the ith temperature.
13: Generate q realizations with the covariance of the GP model prediction

given in (Eq. 10) to capture the model approximation uncertainty.
14: Store the generated q realizations in a FIR holder.
15: end while

16: end while

17: Aggregate all the calculated ensemble of uncertainties (SI, model
approximation and Tw) in a FIR container.

18: Determine the uncertainty statistics (mean and covriance) from the
FIR container.

Results and Discussion

Section “Gaussian Process Overview” discussed the Gaussian
Process training methodology to predict the FIR for any given
combustor back plate temperature. In this section, the proposed
methodology is applied to the data obtained from the identifica-
tion procedure described in section “Thermoacoustic Frame-
work”. The workflow of carrying out uncertainty quantification
with the GP surrogate is discussed next. The comparison of the
GP model prediction results against the LES/SI simulation
follows.

The overall workflow of quantifying the uncertainty in the FIR
coefficients at a given temperature consists of two parts. The first
part discusses the bootstrapping GP procedure to estimate h given
Tw. The second part leverages on the trained GP model to perform
Monte Carlo simulation and to obtain uncertainty estimates at any
arbitrary temperature, within the trained temperature space.

Sampling Plan: Following the training procedure elucidated in
the section “Gaussian Model Training”, a uniform distribution on
the combustor back plate temperature ranging from –15% to 15%
is chosen with the expected value of this distribution equal to the
base case, that is 823 K. A list of the temperature points used for
training and testing is given in Table 1

Data Acquisition: Once the sample points are finalized, one
LES for each temperature listed in Table 1 is executed. This gen-
erates the response matrix of the sample response pair (Tw;h).

GP model training: The GP model is trained using the Sample-
Response pair (Tw;h). As explained in the section “Prediction
Uncertainty”, from the training dataset (Tw;h), p¼ 500 realiza-
tions are generated from the FIR coefficient uncertainties of each
training data. Further, q¼ 500 realizations are drawn from the
covariance matrix given by the GP model prediction (Eq. 10) at
the test location. The average of the ensembles (500� 500; nb)
gives the prediction uncertainty: FIR identification uncertainty
and the GP model uncertainty. Finally, the total prediction uncer-
tainty is obtained by using the trained GP model to predict at
�1000 Tw samples, which are drawn from the temperature range
shown in Table 1. This gives the total prediction uncertainty
due to FIR identification procedure and thermal boundary
condition Tw.

Results of Gaussian Process Methodology. The third row of
Fig. 3 shows the comparison of the prediction of the GP model
(dashed lines) against the FIRs obtained from LES/SI (shaded
area) for three selected temperatures except for the first and last
index, as the only prediction based on GP interpolation is sought.
For example, at prediction site of 823 K, all the temperatures
except 823 K are used in the training dataset. The aggregated GP
model interpolation fits closely the FIRs obtained from the LES/
SI. The confidence intervals given by the aggregated GP model
are wider than those obtained with LES/SI as it contains the alea-
toric uncertainties from the noisy FIR obtained by system identifi-
cation (low signal to noise ratio, shorter time series data) as well
as the uncertainty due to the approximation caused by the GP
model. The confidence interval of the GP model prediction
increases for sparse sampling scheme as the approximating func-
tion may exhibit strong undulating behavior and the nearest train-
ing points then are not sufficient to infer the change in the FIR
shape. Hence, a dense sampling scheme is used, as the main aim
of this work is to demonstrate a methodology to account for joint
aleatoric and epistemic uncertainties. Future work will focus on
how to tackle the current UQ problem in more efficient way.

Figure 6 shows the GP model prediction within the temperature
range investigated that is obtained by averaging the conditional
distributions obtained for 1000 samples of Tw’s. The uncertainty
marked by the confidence interval of the GP model is wider as it
incorporates both the epistemic uncertainty from combustor back
plate temperature Tw and the aleatoric uncertainty introduced by
the noisy and limited training data. This can be validated by con-
sidering the PDF of any single FIR coefficient prediction (15th in
this case) at given temperatures (no epistemic uncertainty) as seen
in Fig. 5. Due to the absence of epistemic uncertainty, the
obtained PDF is narrower than the total uncertainty resulting in
narrower confidence interval as seen in the third row of Fig. 3.
However, when the epistemic uncertainty is considered, the PDF
of the single FIR coefficient prediction becomes wider due to the
aggregation of all the aleatoric uncertainties. Wider PDF results in
a wider confidence interval as seen in Fig. 6. This shows that the
proposed way of building a surrogate model in the presence of
both aleatoric and epistemic uncertainties is successful in

Fig. 4 Illustration of the interpolated GP hypersurface

2https://github.com/sagark9299/GaussianProcess_total_uncertainty.git
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accounting for both uncertainties. It also shows the suitability of
the univariate GP model proposed.

In section “Flame Topology” we saw that the FIR obtained at
three exemplary temperatures including the tuned combustor back
plate temperature did not match well against the measured FIR,
hence highlighting the uncertainty of the thermal boundary condi-
tion. We now leverage the trained GP model to predict the FIR
within the temperature range of interest and to check for best fit
against experimental measurements. By doing so, one may deduce
a highly probable value of the combustor back plate temperature.
Figure 7 shows the FIR and FTF obtained from GP prediction at
850 K, where the LES data at 850 K was not included in the train-
ing data. It can be seen that the 850 K results are in much better
agreement with the measured FIR and FTF. Further, the GP model
prediction is compared against the LES data. The GP model pre-
diction is in good agreement with the LES data demonstrating the
capability of the GP model to capture the underlying response

surface successfully. This serves as additional validation of the
proposed UQ methodology.

Summary and Conclusion

Most UQ studies in thermoacoustics have focused on the propa-
gation of uncertainties in the flame model to the growth rate of the
thermoacoustic modes of the system. In this study, we made a
step forward and focus on the first step of the hybrid approach,
where we carry out UQ by combining high-fidelity numerical sim-
ulation (LES) with system identification and surrogate modeling.
By means of the latter, we are able to propagate epistemic uncer-
tainties – due to uncertainties in thermal boundary conditions in
LES – and aleatoric uncertainties – due to system identification on
LES data corrupted by noise – on the FIR coefficients that
describe the flame response. One of the novelties of this work lies
in the way the surrogate model is built. We employed a univariate
bootstrapping Gaussian Process model because it fulfills the speci-
fications required for our study: it is an affordable surrogate model
with a simple structure that accounts for two inputs and one single
output. As a result, the FIR coefficients were considered function
of time delay and temperature.

Fig. 6 GP model prediction uncertainty in the temperature
range considered

Fig. 5 Comparison of aleatoric uncertainty at three different
temperatures (dashed) and total uncertainty (solid) PDF for a
single FIR coefficient

Fig. 7 Comparison of FIR and FTF of GP prediction ( ) and
LES ( ) at 850 K temperature against measured ( ) FIR and
FTF. (Color version online.)

Table 1 List of combustor back plate temperatures used for GP surrogate model

Index 1 2 3 4 5 6 7 8 9 10 11 12 13

Temperature 700 720 740 760 786 800 823 842 860 885 905 926 946
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To assess the uncertainty of the combustor back plate tempera-
ture, LES simulations were run at well-defined combustor wall
temperatures. The FIR coefficients were identified for the corre-
sponding wall temperatures using the LES/SI approach. Varia-
tions in the combustor wall thermal boundary condition showed to
drive variations in the flame topology. In turn, changes in the
flame topology resulted in changes in the flame dynamic response
described by the FIR coefficients. The trained univariate Gaussian
Process model was able to approximate the complex response sur-
face of the FIRs, hence interpolating the FIR model with reasona-
ble accuracy. The GP model was leveraged to evaluate the FIR
coefficients at temperatures within the trained values, which it had
not seen during the training. Such an exercise allowed to find a
temperature, where the flame response model satisfactorily
matches the experimental and LES results.

The present approach demonstrated a surrogate methodology to
quantify uncertainties in the flame response model in the presence
of both epistemic and aleatoric uncertainties by considering a uni-
form sampling space. Future works will focus on an active learn-
ing scheme, where fewer training points are used with longer
simulation times to gain more quality information on the response
surface. This enhances the efficiency of the surrogate model train-
ing and reduces the computational cost. Additionally, the present
methodology of constructing a bootstrapping GP-based surrogate
framework can be used in the case of forced spray flame response,
where the liquid phase boundary conditions such as droplet diam-
eter, velocity, and size distribution may be uncertain.
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Nomenclature

FIR ¼ finite impulse response
FTF ¼ flame transfer function
GP ¼ Gaussian process
hi ¼ FIR model coefficient

LES ¼ large eddy simulation
N ¼ number of FIR model coefficients
SI ¼ system identification

Tw ¼ combustor back plate temperature
UQ ¼ uncertainty quantification

s ¼ mean of distributed time delay for axial velocity
perturbation
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