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during my research and Prof. Bob Schmitz for his helpful scientific inputs. My gratitude
also goes to the ”Technical University of Munich- Institute for Advanced Study” and
Deutsche Forschungsgemeinschaft (DFG) for funding this work within the research no.
291763 and Sonderforschungsbereich924.

I would like to thank my colleagues who gave me the opportunity to discuss my works,
and for the great working atmosphere, scientific discussions, and engaging coffee breaks,
especially Dr. Rashmi Hazarika, for her advice and support during my PhD projects.
I also wish to acknowledge the help provided by Susanna Fink for her administrative
assistance.

I am particularly grateful to my family for their support encouragement. I do not have
the words to tell you how truly fortunate I feel to have you in my life.

Finally, I would like to express my profound gratitude to my wife, Fahimeh, for her
unwavering patience and encouragement throughout the process of completing my thesis.
Her support was invaluable, especially during times when the tasks felt overwhelmingly
challenging. Fahimeh, your strength and encouragement have meant the world to me. I
love you.

iv



Abstract

DNA methylation, an important chromatin modification, plays crucial roles in silencing
transposable elements and regulating certain genes. However, the methylation status of
individual cytosines or clusters of cytosines can sometimes change stochastically, leading
to what is termed ”spontaneous epimutations”. These epimutations can accumulate dur-
ing plant development and aging, and some even pass through the gametes to subsequent
generations. A goal in the field of plant epigenetics is to obtain accurate estimates of the
rate of spontaneous epimutations, identify genetic and environmental factors that can
modulate the rate, and to delineate the molecular mechanisms underlying epimutational
processes.

The overarching goal of this thesis is to develop a computational framework to facilitate
quantitative insights into epimutational processes in plants. My approach to this problem
is to implement a stochastic model within a computational workflow that starts with
pedigree-based whole genome bisulfite sequencing (WGBS) data and ends with statistical
estimates of the spontaneous epimutation rate.

To achieve this, my first aim is to develop MethylStar, a bioinformatic pipeline for the
high-throughput analysis of WGBS datasets. MethylStar is a fast, stable and flexible pre-
processing pipeline for WGBS data. MethylStar integrates well-established tools for read
trimming, alignment and methylation state calling in a highly parallelized environment,
manages computational resources and performs automatic error detection. It offers
easy installation through a dockerized container with all preloaded dependencies and
also features a user-friendly interface designed for experts/non-experts. Application of
MethylStar to various WGBS datasets demonstrates favorable performance in terms of
speed and memory requirements compared with existing pipelines.

My second aim is to develop AlphaBeta, a stochastic model that takes pedigree-based
WGBS data as input to estimate epimutation rates. AlphaBeta starts with base-level
or region-level DNA methylation state calls for each of the samples in the pedigree. Al-
phaBeta fits an explicit epimutation model to the DNA methylation divergence data,
and relates this information to the temporal divergence of the samples, as calculated
from the pedigree topology. I show that the software can be applied to data from
multi-generational mutation accumulation lines, derived either through sexual or clonal
propagation. Furthermore, I demonstrate that AlphaBeta can also be used to estimate
somatic epimutation rates in long-lived perennials, such as trees. In this case, Alpha-
Beta interprets the tree branching topology as a phylogeny of somatic cell lineages with
the leaves representing the end-points of these lineages. The software calculates DNA
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Abstract

methylation divergence between leaves and relates this information to their temporal
divergence, as determined from coring data on branch/stem ages.

Application of MethylStar and AlphaBeta to published and new data reveals that
spontaneous epimutations accumulate neutrally at the genome-wide scale, originate
mainly during somatic development and that they can be used as a molecular clock
for age-dating trees.
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Zusammenfassung

DNA-Methylierung, eine wichtige Chromatinmodifikation, spielt eine entscheidende Rolle
bei der Stilllegung von Transposons und der Regulation bestimmter Gene. Allerdings
kann sich der Methylierungsstatus einzelner Cytosine oder Cytosincluster manchmal
stochastisch ändern, was als ”spontane Epimutationen” bezeichnet wird. Diese Epimu-
tationen können sich während der Entwicklung und Alterung von Pflanzen ansammeln,
und einige gelangen sogar über die Gameten in nachfolgende Generationen. Ein Ziel im
Bereich der Pflanzenepigenetik ist es, genaue Schätzungen der Rate spontaner Epimu-
tationen zu erhalten, genetische und umweltbedingte Faktoren zu identifizieren, die die
Rate modulieren können, und die molekularen Mechanismen zu erläutern, die epimuta-
tionalen Prozessen zugrunde liegen.

Das übergeordnete Ziel dieser Dissertation ist die Entwicklung eines rechnergestützten
Rahmens, um quantitative Einblicke in epimutationale Prozesse bei Pflanzen zu ermöglic-
hen. Mein Ansatz für dieses Problem besteht darin, ein stochastisches Modell innerhalb
eines rechnergestützten Workflows zu implementieren, der mit auf Stammbaumdaten
basierender whole genome bisulfite sequencing (WGBS) beginnt und mit statistischen
Schätzungen der spontanen Epimutationsrate endet.

Um dies zu erreichen, ist mein erstes Ziel die Entwicklung von MethylStar, einer bioin-
formatischen Pipeline für die Hochdurchsatzanalyse von WGBS-Datensätzen. Methyl-
Star ist eine schnelle, stabile und flexible pre-processing für WGBS-Daten. Methyl-
Star integriert etablierte Werkzeuge für das Trimmen von Reads, die Ausrichtung und
die Klassifizierung des Methylierungszustands in in einem hochparallelisierten Rahmen.
Verwaltet Rechenressourcen und führt automatische Fehlererkennung durch. Es bi-
etet eine einfache Installation durch einen dockerisierten Container mit allen vorgelade-
nen Abhängigkeiten und verfügt auch über eine benutzerfreundliche Schnittstelle, die
für Experten/Nicht-Experten konzipiert ist. Die Anwendung von MethylStar auf ver-
schiedene WGBS-Datensätze zeigt eine sehr gute Leistung in Bezug auf Geschwindigkeit
und Speicheranforderungen im Vergleich zu bestehenden Pipelines.

Mein zweites Ziel ist die Entwicklung von AlphaBeta, einem stochastischen Modell,
das auf Stammbaumdaten basierende WGBS-Daten verwendet, um Epimutationsraten
zu schätzen. AlphaBeta beginnt der Klassifizierung des DNA-Methylierungszustands
auf Nukleotid oder Regionsebene für jede der Proben im Stammbaum. AlphaBeta
passt ein explizites Epimutationsmodell an die DNA-Methylierungsdivergenzdaten an
und stellt diese Informationen in Bezug zur zeitlichen Divergenz der Proben, wie sie aus
der Stammbaumtopologie berechnet wird. Ich zeige, dass die Software auf Daten von
über mehrere Generationen gehenden Mutationsakkumulationslinien angewendet werden

vii



Zusammenfassung

kann, die entweder durch sexuelle oder klonale Vermehrung abgeleitet wurden. Darüber
hinaus demonstriere ich, dass AlphaBeta auch zur Schätzung somatischer Epimutation-
sraten bei langlebigen mehrjährigen Pflanzen wie Bäumen verwendet werden kann. In
diesem Fall interpretiert AlphaBeta die Baumverzweigungstopologie als eine Phylogenie
somatischer Zelllinien, wobei die Blätter die Endpunkte dieser Linien darstellen. Die
Software berechnet die DNA-Methylierungsdivergenz zwischen den Blättern und stellt
diese Informationen in Bezug zu ihrer zeitlichen Divergenz, wie sie aus Kernbohrungs-
daten über das Alter von Ästen/Stämmen bestimmt wird.

Die Anwendung von MethylStar und AlphaBeta auf veröffentlichte und neue Daten
zeigt, dass spontane Epimutationen auf genomweiter Skala neutral akkumulieren, hauptsä-
chlich während der somatischen Entwicklung entstehen und als molekulare Uhr zur Al-
tersbestimmung von Bäumen verwendet werden können.
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1 Introduction

1.1 DNA methylation in Plants

DNA cytosine methylation (mC) represents a crucial nucleotide modification, preva-
lent in the majority of plant genomes. Its primary functions include the repression
of transposable elements (TEs) and repeated sequences, along with playing a role in
gene regulation [1]. Plants undergo cytosine methylation at both symmetrical CG and
CHG sites, as well as at asymmetrical CHH sites, with H representing A, T, or C. The
mechanisms responsible for initiating and preserving methylation across these distinct
sequence contexts are thoroughly understood [2] (Fig.1.1), and demonstrate a broad level
of conservation among various plant species [3–5].

The de novo establishment of methylation across all three sequence types is predom-
inantly driven by the RNA-directed DNA methylation (RdDM) pathway. This process
involves the use of 24-nucleotide (nt) small RNAs (sRNAs) serving as guiding entities
for the action of DOMAINS REARRANGED METHYLTRANSFERASE 2 (DRM2).
For sRNA production and their precise targeting to specific genomic regions, RdDM is
dependent on two RNA polymerases, Pol IV and Pol V (reviewed in Law Jacobsen, [1];
Matzke et al., [6]). Beyond their involvement in heterochromatin formation, sRNAs play
a critical role in the modulation of gene activity through both transcriptional and post-
transcriptional silencing strategies. They are also integral to various aspects of plant
development, reproduction, and the capacity for phenotypic adaptation [7].

A variety of specific pathways play a role in maintaining DNA methylation once
it has been established. Within a CG sequence, proteins from the VARIANT IN
METHYLATION (VIM1) family detect hemimethylated CG sites, subsequently attract-
ing METHYLTRANSFERASE (MET1) to perform CG methylation on the new strand
through template duplication. Disrupting MET1 leads to a total loss of CG methylation
across the genome [8]. Predominantly, CHG methylation is preserved by the unique
plant methyltransferase CHROMOMETHYLASE 3 (CMT3), which establishes a rein-
forcing feedback loop with both histone H3 lysine 9 dimethylation (H3K9me2) and the
histone methyltransferase SUVH4 [9]. Additionally, at certain CHG and CHH loca-
tions, CMT2, which also necessitates H3K9me2, sustains methylation through de novo
activity [1]. Examination of diverse DNA methylation mutants has revealed extensive
interactions among these distinct pathways [10,11].

In addition to DNA methyltransferases, the regulation of DNA methylation patterns
involves the crucial role of the chromatin remodeler DECREASE IN DNA METHY-
LATION 1 (DDM1). DDM1 indirectly influences methylation by facilitating access for
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1 Introduction

Figure 1.1: Overview of DNA methylation pathways and their targets contexts. Figure
source: modified from Robert M. et al. [12]

DNA methyltransferases to H1-containing histones, primarily within long transposable
elements (TEs) found in heterochromatic regions [13]. The loss of DDM1 leads to a
significant decrease in DNA methylation across all three sequence contexts, accompa-
nied by a widespread overaccumulation of TE-related transcripts [14–16]. DDM1 also
plays a vital role in maintaining histone H3 methylation patterns. The loss of DNA
methylation correlates with the replacement of methylation at lysine 9 with methylation
at lysine 4 [17, 18], which aligns with the transcriptional activation of regions that are
otherwise repressed. These findings emphasize the intricate interplay between DDM1,
DNA methylation, and histone modifications in shaping the epigenetic landscape and
gene expression dynamics.

1.2 Measuring DNA methylation using whole genome
bisulphite sequencing (WGBS)

The elucidation of DNA methylation pathways in plants has advanced significantly due
to the capability to decipher DNA methylation at single-base resolution with high-
throughput techniques. Whole genome bisulfite sequencing (WGBS) stands out as the
benchmark procedure for such analyses. This technique encompasses the exposure of
genomic DNA (gDNA) to sodium bisulfite, followed by subsequent next-generation se-
quencing. During this process, unmethylated cytosines undergo conversion to uracils
due to the action of bisulfite, which are ultimately read as thymidines in the sequencing
phase. Conversely, methylated cytosines remain unaffected by the treatment, allowing
them to be identified as cytosines in the resulting sequence data. Utilizing a range of
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1 Introduction

Figure 1.2: Overview of WGBS, Methylated cytosines (’Me’) remain unchanged after treat-
ment, while unmethylated cytosines convert to uracil (U), and are read as thymine (T) dur-
ing PCR. This allows for comparison with the reference genome to identify DNA methylation
patterns.

computational tools to conduct comparative analyses between treated and untreated
sequences facilitates the accurate determination of the methylation status of individual
cytosine residues (Fig. 1.2).

1.3 The molecular origin of spontaneous epimutations

Advanced base-resolution methylation techniques have enabled detailed monitoring of
cytosine methylation changes over developmental phases and generational spans. It has
become apparent that, despite stringent control mechanisms, the methylation status of
cytosines, whether individual or in clusters, does not always maintain integrity across
cell division cycles. Spontaneous alterations in cytosine methylation, a phenomenon
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1 Introduction

Figure 1.3: Model of molecular basis of spontaneous CG epimutations. CG epimutations
can spontaneously occur due to occasional MET1 methyltransferase malfunction. The illus-
tration depicts two cell division cycles. During DNA replication, VARIANT IN METHY-
LATION proteins identify hemimethylated CG sites, guiding METHYLTRANSFERASE
1 to induce CG methylation on the fresh strand via a ”template-copying” method. Any
lapses in enzymatic function or unintended methyltransferase actions might result in endur-
ing methylation reductions or additions in offspring cells and their subsequent cell lineages
(referred to as the epimutated cell line). To keep things clear, only the CG methylation
decrease is shown. Figure source: Yao, N., et al. [23]

described as “spontaneous epimutation” have been identified in both animals and plants.
These epimutations, known to accumulate over the course of development and aging [19],
are predominantly observed at CG dinucleotides in plant species.

A basic molecular model suggests that the random loss of CG methylation arises
from the flawed enzymatic function of MET1 during the process of DNA replication. In
instances where MET1 fails to methylate the new DNA strand, permanent methylation
losses could be passed down to daughter cells and their subsequent generations, including
germline cells (Fig. 1.3). Occasional de novo methylation activities of MET1 [20] may
account for unexpected gains in CG methylation, a notion supported by the similar roles
observed in the mammalian equivalent, DNA (cytosine-5)-methyltransferase 1 (DNMT1)
[21]. Notably, in mammals, such activities are largely limited to retrotransposons [22].

Discrepancies in the maintenance of CG methylation are notably evident in somatic
contexts, particularly when they stem from the activity within shoot apical meristems
(SAMs). These meristems, a specialized and small collection of stem cells, are integral
to the development of the plant’s aerial components. The fact that only a select few
meristematic cells act as the progenitors for new lateral branches [24], as well as for
leaves and flowers, means that this limited cellular representation leads to fixation of
CG epimutations within newly developing vegetative lineages. This dynamic, known
as ”somatic epigenetic drift” (Fig. 1.4A), often culminates in pronounced chimerism
[25]. This phenomenon is particularly observable in perennial species, where sequential
methylation changes in consecutively layered sections of the plant are evident [26,27].
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1 Introduction

Figure 1.4: Somatic origin and transgenerational inheritance of CG epimutations in plants.
A) During mitotic divisions of progenitor cells originating from SAM, a lack of CG methyla-
tion preservation results in unexpected somatic epimutations passed onto the side branches.
For clarity, we’ve depicted only the spontaneous addition of methylation on a singular
genome. Due to a limited number of these progenitor cells serving as starting points for new
side branches, there’s a notable constraint on CG epimutations at every branching juncture.
Consequently, these become permanently set in fresh vegetative lineages due to ”somatic
drift.” This phenomenon amplifies the differences between leaves from distinct terminal
branches—for instance, leaf methylomes from Branches 1 and 2 resemble each other more
than those from Branches 1 and 3. B) Cells that evolve into gametes have their origins in
SAM precursors, typically at advanced stages of growth. This implies that CG epimutations
acquired during the somatic phase can be passed on to future generations. Plants allow for
a consistent transfer across generations since the CG methylome is not radically altered
in reproductive cells and initial zygotic stages. For clarity, only a pair of gametes from a
singular lineage (either male or female) are presented per generation. Figure source: Yao,
N. et el. [23]

This methylation change pattern reflects the occurrence of rare somatic DNA nu-
cleotide mutations [26] and [28–32], implying a shared meristematic origin for these
stochastic genetic and epigenetic variations.

Unlike animals, plants do not possess a designated germline. Cells destined to form
gametes are instead derived from SAM precursors relatively late in development [33],
implicating that somatically acquired CG epimutations are often transmitted to subse-
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1 Introduction

quent generations (Fig. 1.4B). Ensuring stable intergenerational transfer necessitates a
lack of reprogramming of the CG methylome in sex cells and the early zygote, a condition
that is typically met in plant species [34].

This heritability underscores the contribution of epimutations to the DNA methylation
diversity within plant populations, providing a substrate for selection over evolutionary
timescales. The realization that these epimutations, which occur at rates significantly
higher than genetic mutations and exhibit apparent neutrality and are inherited with
stability, underscoring their potential as a reservoir for genetic variability, which might
play a significant role in long-term evolutionary processes and species diversification.

Therefore, it is essential to study and quantify these epimutational processes within
controlled experimental systems to understand their broader implications on plant bi-
ology, evolution, and potentially, agricultural breeding strategies. This understanding
can provide insights into the evolutionary mechanisms at play and could be leveraged
to harness plant diversity and resilience in changing environments.

1.4 Experimental systems to study epimutational processes

In multi-generational studies of epimutational phenomena, a key challenge lies in dif-
ferentiating “germline” epimutations from other types of methylation alterations, such
as those linked to genetic variation that segregates or temporary environmental dis-
turbances [35]. To address this, mutation accumulation (MA) lines cultivated under
stringent laboratory conditions serve as an important experimental framework. Origi-
nating from a single isogenic progenitor, MA lines are propagated independently across
numerous generations. The advancement of these lines can be executed through clonal
methods or sexual reproduction, including self-fertilization or mating between siblings
(Fig. 1.5A). In the context of MA lines produced clonally, maintaining isogenicity in the
progenitor is not a prerequisite, given that the genome remains “fixed” , thus eliminating
the factor of genetic segregation.

The relational structure among diverse MA lineages can be graphically depicted through
a pedigree or phylogenetic tree (Fig. 1.5A), with its topology usually predefined due to
deliberate choices in experimental design, including the timing of branch points and the
lengths of branches. When paired with multi-generational methylome assessments, MA
lines offer the unique capability for ”real-time” monitoring of ”germline” epimutations,
all while maintaining a nearly constant genomic background. This setup aids in de-
riving estimates for the rates of epimutation per generation [36]. Currently, sequenced
methylomes from an extensive array of sexually propagated MA lines are accessible for
A. thaliana [37–42] and rice [43]. Additionally, various other MA lines are in the process
of being developed for epimutation analyses across different genotypes, environmental
conditions, and plant species.

In addition to experimentally derived MA lines, natural mutation accumulation sys-
tems are also observable in the context of plant development and aging. Long-lived
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1 Introduction

Figure 1.5: Mutation Accumulation systems.(A) Development of mutation accumulation
(MA) lines spanning multiple generations (from G0 to GN) can be achieved either through
sexual methods like self-breeding or mating among siblings or through asexual means such
as clonal reproduction. These various lineages, from L1 to L3, can be depicted as a phy-
logenetic tree. Both the points of divergence and the lengths of the branches are usually
predetermined from the experimental setup. mC sampling can be carried out at chosen gen-
erational intervals, either directly from the progenitor plant material or from their sibling
counterparts. (B) A tree can be seen as a representation of intra-species phylogeny. The
branching structure or topology is typically known, and the points and lengths of branches
can be determined using coring methods. For clarity, only three branches (L1 to L3) are em-
phasized. Using measurements from leaf mC, one can compute CG methylation differences.
Likewise, by retracing the history of the branches to their most recent common point of di-
vergence, divergence durations (expressed in years) between pairs of leaves can be assessed.
This can be done only up to the tree’s earliest point of branching (in this example, Yr = 5)
and not for periods before that (indicated by the orange segment). Figure source:Yao, N.
et al. [23]

perennials, like trees, provide a particularly illustrative example. The branching struc-
ture of trees can be treated as a phylogeny of somatic lineages, carrying valuable informa-
tion about the epimutational history of each branch [44]. To determine the branch-point
times and branch lengths, one can utilize coring data or other dating methods (Fig.
1.5B).

By integrating this information with contemporary leaf methylome measurements, it
is possible to infer the rate of somatic epimutations as it varies with age [26]. This ap-
proach allows for the examination of the dynamic changes in epigenetic patterns over the
lifespan of the plant and offers insights into the accumulation and persistence of somatic
epimutations over time. The exploration of natural mutation accumulation systems in
perennial plants provides an invaluable opportunity to understand the complexities of
epigenetic processes in the context of plant growth and aging.

7



2 Aims and outline

1.5 Challenges with quantifying epimutation rates

Efforts to determine the rate of spontaneous epimutations across various plant systems
are significantly impeded due to a shortage of analytical methods. Simplistic approaches
that simply count the number of methylation alterations over a given time period are
impractical in this context, as measurements of DNA methylation are exceedingly prone
to noise.

From a technological perspective, this noise originates from heightened errors in se-
quencing and alignment of bisulfite reads, as well as inefficiencies in bisulfite conversion.
On the biological front, augmented measurement errors may arise from heterogeneity
within tissues in terms of 5mC patterns [45], and the dependency of DNA methy-
lomes on variations in environmental and laboratory conditions, potentially resulting
in transcription-dependent methylation changes [46].

To navigate these obstacles, a model-based estimation approach that accurately ac-
counts for measurement errors in the data is imperative. This approach should describe
the temporal accumulation of epimutations through a clearly defined statistical model.

2 Aims and outline

The overarching goal of this thesis is to implement such a model within a general com-
putational workflow that starts with the raw WGBS data and ends with statistical
estimates of the spontaneous epimutation rate. To achieve this, my first aim is to con-
struct a bioinformatic pipeline for the high-throughput analysis of WGBS data. My
approach to this problem is summarized in section 4.1 (“Publication 1”). The second
aim of this thesis is to use the WGBS data from mutation accumlation systems (see Fig.
1.5) to estimate the rate of spontaneous epimutations. The computational approach to
this problem is presented in section 4.2 (“Publication 2”). Key methodological aspects
contained in the two publicaitons are highlighted in section 3 (“Materials and meth-
ods”), and a discussion and outlook based on these publications is given in section 5
(“Discussion and outlook”).

8



3 Materials and methods

3.1 Bioinformatic processing and analysis of WGBS data

Whole Genome Bisulfite Sequencing (WGBS) has emerged as a gold standard for exam-
ining genome-wide DNA methylation, a critical epigenetic modification with profound
implications in various biological processes, including gene regulation, genomic imprint-
ing, and cellular differentiation. The generation of high-throughput WGBS data pro-
vides an unparalleled depth of insight into the methylation landscape across the genome.
However, the voluminous and intricate nature of WGBS data necessitates robust bioin-
formatics processing and analysis to effectively decipher and interpret the underlying
methylation patterns.

To navigate the complexities of WGBS data, an array of bioinformatic tools and
pipelines have been developed, each designed to efficiently handle distinct aspects of
the data processing and analysis workflow. This array of tools encompasses a variety
of functions, such as data normalization (e.g. RnBeads [47], SWAN [48], ChAMP [49]),
the identification of differentially methylated regions (DMRs) with tools like Methylkit
[50], DMRcaller [51], Methylpy [52], and metilene [53]. Additionally, there are tools
designed for the imputation of methylomes from bulk whole-genome bisulfite sequencing
(WGBS) data, such as METHimpute [54], and others for the imputation of single-cell
methylomes, like Melissa [55] and deepCpG [56]. Also included are tools for addressing
dropouts in single-cell data, such as SCRABBLE [57]. Among these, the MethylStar
pipeline [58] stands out as a comprehensive solution, offering an integrated suite of
analytical processes for the precise and reliable examination of bisulfite sequencing data.

MethylStar includes an interactive command-line user interface, designed with Python,
which simplifies the process of configuring software settings and running the pipeline.
This easy navigation allows both experts and non-experts to handle large batches of
samples efficiently, without the necessity to type commands at the terminal.

MethylStar automatically manages computational resources and performs error detec-
tion. It integrates well-established tools and operates in a highly parallelized environ-
ment. This setup ensures that errors are minimized and any that do occur are promptly
identified and addressed, contributing to the stability and reliability of the software in
processing large datasets.

The ensuing sections delineate the core components of the MethylStar pipeline, shed-
ding light on their functions and contributions to the overall data analysis process. The
following parts provide a more detailed description of each component of the MethylStar
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pipeline, focusing on the input and output at each stage and how these processes work.
See Figure 3.1 for the workflow of the MethylStar pipeline.

3.1.1 Quality Control (QC) of Raw Data

Quality control in sequencing data constitutes a rigorous assessment of various quality
metrics, including read length and base quality. This evaluative step guarantees the
utilization of only high-quality data for subsequent analyses. MethylStar executes QC
assessment to ascertain and uphold the integrity of the sequencing data.

Tool used: FastQC [59].

Starting point: The pipeline begins with raw sequencing data, typically in the form
of FASTQ files. FASTQ files are a standard format in genomics and bioinformatics,
providing a way to store sequence data along with quality information.

Process: The pipeline initiates by assessing raw sequencing data (FASTQ format)
through FastQC, which evaluates key quality metrics such as per-base sequence quality,
sequence duplication levels, and overrepresented sequences. This step is pivotal in iden-
tifying potential quality issues in the sequencing data, thereby informing the necessity
for subsequent trimming and alignment adjustments.

Output: HTML reports and plots detailing various quality metrics.

3.1.2 Adapter Trimming and Quality Filtering

Next, the pipeline employs Trim Galore! to process Fastq files. Adapter trimming is a
pivotal preprocessing step that involves the exclusion of adapter sequences inadvertently
incorporated during the sequencing process. The presence of these sequences can lead
to analytical complications, underscoring the necessity of their removal.

Tool used: Trim Galore! [60].

Input: The FASTQ files post-initial QC

Process: Trim Galore! It focuses on two main tasks: trimming adapter sequences from
sequencing reads and filtering out low-quality bases. The removal of adapter sequences
is vital for preventing inaccurate results in downstream analyses, such as sequence align-
ment. Simultaneously, the software filters out bases with low Phred quality scores,
ensuring that only high-quality data is used for further analysis. This dual functionality
of Trim Galore! ensures that the resulting data is not only of high quality but also
free from sequences that could lead to erroneous interpretations, thereby bolstering the
reliability of genomic and transcriptomic studies.

Output: The output from this step is a set of trimmed and cleaned FASTQ files, ready
for the next stage.
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Figure 3.1: Basic workflow of MethylStar showing the pipeline architecture. Figure source:
modified from Shahryary et al. [58]

3.1.3 Post-trimming Quality Control

While Trim Galore! effectively trims adapters and removes low-quality sequences, it is
imperative to validate the quality of the resulting data. Post-trimming quality control
assesses parameters such as the distribution of sequence quality scores, GC content, se-
quence length distribution, and the presence of overrepresented sequences. By conduct-
ing this analysis, researchers can ensure that the trimming process has not inadvertently
introduced biases or errors, and that the data is of sufficient quality for accurate and
reliable downstream analysis.

Tool used: FastQC [59].

Input: Trimmed and cleaned FASTQ files from the previous step.

Process: This step repeats the initial QC process using FastQC but with the trimmed
data. It reassures that the trimming process has been effective and that the data quality
is suitable for the next steps.

Output: Updated HTML reports and plots assessing the quality of the trimmed reads.
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3.1.4 Alignment to Reference Genome

Read alignment involves the precise mapping of sequenced reads onto a reference genome.
MethylStar employs Bismark for read alignment, a tool specially designed for bisulfite-
treated sequencing reads. Bismark negotiates the challenges posed by bisulfite conver-
sions (C to T or G to A) by transforming the reference genome to its bisulfite-converted
form. This approach allows for the effective alignment of reads, concurrently accounting
for bisulfite conversions, and enabling the accurate determination of methylation states
by monitoring converted and non-converted cytosines.

Tool used: Bismark Mapper [61].

Input: Quality-filtered and trimmed FASTQ files.

Process: Bismark performs alignment by first converting the reference genome and the
reads to their bisulfite-treated equivalents. It then aligns the reads to this converted
reference genome. Bismark handles the complexities of bisulfite sequencing data, like
the C-to-T conversions, ensuring accurate alignment and preparation for methylation
state analysis.

Output: BAM files representing the aligned reads.

3.1.5 Post-alignment Processing

When Bisulfite sequencing is performed, the DNA is often fragmented and then amplified
through a process like PCR (Polymerase Chain Reaction). This amplification can result
in multiple copies of the same DNA fragment. These duplicates can skew the data anal-
ysis, leading to inaccurate representation of methylation levels. Bismark-Deduplication
is the process of eradicating duplicate reads originating from PCR amplification dur-
ing library preparation, a step crucial for obviating analytical bias. In the MethylStar
pipeline, deduplication is conducted post-alignment, ensuring that each read is uniquely
accounted for in the ensuing analysis, thereby enhancing the robustness and precision of
the analysis.

Tool used: Bismark-deduplication [61] and Samtools [62].

Input: BAM files from the alignment step.

Process: In Bismark, deduplication works by comparing the start coordinates of uniquely
aligned sequencing reads in the reference genome. If multiple reads have identical start
coordinates, indicating PCR duplicates, all but one of these reads are discarded, ensuring
that only unique, non-duplicated reads are retained for accurate methylation analysis.
Similarly, SAMtools contributes by marking or removing these duplicates based on their
alignment position and orientation. This integrated approach ensures that only unique,
non-duplicated reads are used in the analysis, preventing the overrepresentation of any
DNA fragment and providing a more accurate reflection of the genome’s methylation
status.

Output: Sorted and indexed BAM files.

12



3 Materials and methods

3.1.6 Methylation Extractor

The Bismark Methylation Extractor processes the results of bisulfite-treated DNA se-
quencing from the post-alignment processing phase.

Tool used: Bismark Methylation Extractor [61].

Input: BAM files from the alignment step.

Process: The supplementary bismark methylation extractor script within Bismark is
designed to analyze Bismark result files, extracting methylation data for each cyto-
sine. It outputs the positions of these cytosines, categorized by their genomic context
(CpG, CHG, or CHH). The script distinguishes between methylated and non-methylated
cytosines, denoting methylated cytosines as forward reads (+) and non-methylated cy-
tosines as reverse reads (-).

Output: CX report format.

Additionally, MethylStar create files compatible with genome browsers, bedGraph, and
coverage file formats, facilitating diverse downstream analyses.

After this part, the remaining data is used for further analysis, such as determining the
methylation status of cytosines in the genome (see Methylation state calling).

3.2 Methylation state calling

The end point of the WGBS data processing pipeline described in 3.1 is cytosine-level
statistics of the number of reads aligning to a given cytosine that report that the cytosine
is methylated over the total number of reads aligning to that cytosine. This information
is typically used to define so-called “methylation levels”:

methylationlevels = R/S

where R is number of reads reporting methylation and S total number of reads.

However, it is often of interest to obtain discrete methylation state calls; that is, infor-
mation if a cytosine is methylated or unmethylated.

3.2.1 Classical Binomial model

A common way to call cytosine-level methylation states from WGBS data is to use a
binomial model. At a given cytosine position the binomial model calculates the prob-
ability of observing k number of methylated reads out of n total reads where(n ≥ k),
given the null hypothesis that the cytosine is actually unmethylated. Let the random
variable X follows the binomial distribution with parameters n ∈ N and p ∈ [0, 1]. The
probability of obtaining exactly k successes (i.e. methylated reads) in n independent

13



3 Materials and methods

Bernoulli trials is given by the probability mass function:

P (K = k) =

(
n

k

)
pk(1− p)n−k (3.1)

for k = 0, 1, 2, ..., n where
(
n
k

)
= n!

k!(n−k)! is the binomial coefficient. Here p is the success
probability which is typically take to fixed at 1−C, where C is the bisulfite conversion
rate (e.g. Becker et al.. 2011 [63], Schmitz et al. 2011 [38], van der Graaf et al.
2015 [37]). The bisulphite conversation rate is typically determined from counting the
fraction of methylated reads aligning to the chloroplast genome, which is known to be
unmethylated.

Using the binomial model, the sample size of the test is the total number of reads (n)
aligning to the cytosine. In samples with low sequencing depth this approach has low
statistical power and will lead to substantial undercalling of methylated cytosines (i.e.
false negatives). Methimpute [54] is an alternative approach that largely overcomes this
problem.

3.2.2 Hidden Markov Model

Methimpute is a hidden markov model with binomial emission densities. It is capable
of making accurate methylation calls even for cytosines with missing or low read counts.
Another advantage of Methimpute is its ability to identify not only epihomozygotous
unmethylated (UU) or epihomozygous methylated sites (MM), but also epiheterozygous
sites (MU). Knowledge of epiheterozygous sites is absolutely necessary when studying
epimutation accumulation in clonal species / lineages, as most epimutations are of the
form UU ↔MU , or MM ↔MU . Methimpute actually reduces to a standard binomial
model in samples with large read coverage, which is the case in the present study. In such
situations, Methimpute does not impute anything, but just performs binomial calling
similar to the standard binomial model. The only difference is that Methimpute makes
use of its underlying hidden markov structure for statistical inference.

In its two-state implementation, the algorithm operates through a HMM, where the
hidden states correspond to the unmethylated (UU) and methylated (MM) statuses of
cytosines. The model parameters, including the binomial parameters pU and pM , and
the transition matrix, are estimated during the training phase. The algorithm calculates
posterior probabilities γU and γM , which represent the probability that a given cytosine
belongs to one of the hidden states. These probabilities serve as a measure of confidence
in the methylation status call. Based on the posterior probabilities, METHimpute pro-
vides discrete methylation status calls for every cytosine in the genome. A cytosine’s
maximum posterior probability represents its most likely methylation status, and the
magnitude of this probability can be used as a measure of confidence in the underlying
status call. In addition to methylation status calls, METHimpute outputs recalibrated
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methylation levels per cytosine, calculated as:

m∗ = pU · γU + pM · γM (3.2)

This ensures that the methylation levels are adjusted based on the model’s estimations,
providing a more accurate representation of the methylation status.

3.3 Epimutation rate estimation

Having obtained methylation state calls for all samples in any one of the mutation ac-
cumulation systems introduced above, the next object is to estimate the rate at which
spontaneous epimutations arise per unit time. To achieve this, the AlphaBeta software
was developed, facilitating the precise analysis of these epigenetic alterations. This tool
proved essential in quantifying epimutation rates across various plant species, such as
Arabidopsis thaliana, poplar, and dandelion, thereby significantly advancing our com-
prehension of plant epigenetics. In what follows I will outline my approach to this
problem.

3.3.1 Calculating mC divergence function

In the context of the ith sequenced sample within the pedigree, let’s denote sik as the
observed methylation state at the kth locus (where k ranges from 1...N). These N loci
could refer to individual cytosines or predefined regions containing clusters of cytosines.
We adopt a coding system where sik can take on values of 1, 0.5, or 0. These values
correspond to the diploid epigenotype at that specific locus: m/m for 1, m/u for 0.5, and
u/u for 0. Here, m represents a methylated epiallele, while u signifies an unmethylated
epiallele. Utilizing this coding scheme, we proceed to calculate the mean absolute 5mC
divergence denoted as D. This calculation allows us to quantify the divergence between
any two samples, say i and j, within the pedigree. The formulation of this divergence
metric involves assessing the differences in methylation patterns between these samples.

Dij =

N∑
k=1

I(sik, sjk)N
−1, (3.3)

where I(·) is an indicator function, such that

I(sik, sjk) =


0 if sik = sjk
1
2 if sik = 0.5 and sjk ∈ {0, 1}
1
2 if sjk = 0.5 and sik ∈ {0, 1}
1 if sik = 0 and sjk = 1
1 if sjk = 1 and sik = 0.
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AlphaBeta performs automated computations of both Dij and ∆t across all distinct
pairs of samples. This calculation is carried out using the methylation state calls and
the corresponding pedigree coordinates of each individual sample as input.

3.3.2 Modeling 5mC divergence

The model for 5mC divergence is formulated as:

Dij = c+D•ij(MΘ) + εij , (3.4)

Here, the term εij ∼ N(0, σ2) represents the normally distributed residual error, c
denotes the intercept, and D•ij(MΘ) signifies the anticipated divergence between samples
i and j. This divergence is a function of an underlying epimutation model M(·) with
parameter vector Θ, as detailed below.

The expected divergence, D•ij(MΘ), is computed using the following equation:

D•ij(MΘ) =
∑
n∈v

∑
l∈v

∑
m∈v

I(l,m)

· Pr(sik = l, sjk = m|sijk = n,MΘ)

· Pr(sijk = n|MΘ),

(3.5)

where sijk represents the methylation state at locus k of the most recent common an-
cestor of samples i and j, and v = {0, 0.5, 1}.

Given the conditional independence of samples si and sj , we can further express:

Pr(sik, sjk|sijk,MΘ) = Pr(sik|sijk,MΘ)

· Pr(sjk|sijk,MΘ).
(3.6)

In order to assess these conditional probabilities, it becomes necessary to establish an
explicit form for the epimutational model, MΘ. To motivate this, we introduce G as a
3 × 3 transition matrix, summarizing the probability of transitioning from epigenotype
l to m within the time interval [t, t+ 1]:

G =

u/u (t+1) m/u (t+1) m/m (t+1) f11(α, β, w) f12(α, β, w) · u/u (t)

f21(α, β, w) · · m/u (t)

· · f33(α, β, w) m/m (t)

(3.7)

The elements of this matrix depend on parameters such as the gain rate α, loss rate
β, and selection coefficient w ∈ [0, 1]. Depending on the propagation method, G has
distinct forms.
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For diploid systems propagated by selfing:

G =

 (1− α)2 2(1− α)α α2

1
4

(β + 1− α)2 1
2

(β + 1− α)(α+ 1− β) 1
4

(α+ 1− β)2

β2 2(1− β)β (1− β)2

 ◦ W, (3.8)

For systems propagated clonally or somatically:

G =

(1− α)2 2(1− α)α α2

β(1− α) (1− α)(1− β) + αβ α(1− β)
β2 2(1− β)β (1− β)2

 ◦ W, (3.9)

Here, ◦ denotes the Hadamard product, and W is a matrix of selection coefficients
depending on the nature of selection against epialleles u or m.w

(w+1)
2 1

w (w+1)
2 1

w (w+1)
2 1

 or

1 (w+1)
2 w

1 (w+1)
2 w

1 (w+1)
2 w


Utilizing this framework, we are able to categorize four distinct models, denoted as

ABneutral, ABmm, ABuu, and ABnull. The ABneutral model postulates that the ac-
cumulation of spontaneous 5mC gains and losses is selectively neutral (w = 1, α and/or
β > 0). In this scenario, all epigenotype transitions from time t to t + 1 are governed
solely by the rates α and β, and in the case of selfing, also by the Mendelian segregation
of epialleles u and m.

In contrast, the selection models ABmm and ABuu propose that the accumulation
of epimutations is influenced by selection against spontaneous gains or losses of 5mC,
respectively (w < 1, α and/or β > 0). For instance, in the case of selection favoring
epiallele u (ABuu model), the fitness of epihomozygote m/m and epiheterozygote m/u
is reduced by factors of w and (w + 1)/2, respectively. This fitness reduction is directly
incorporated into the transition matrix by adjusting the transition probabilities to these
epigenotypes accordingly [64]. Similar principles apply when selection is in favor of epial-
lele m. As a reference, the ABnull model is defined as the null model of no accumulation,
characterized by α = 0, β = 0, and w = 1.

To ensure the row sum of G (i.e., transition probabilities) remains unity in the presence
of selection, we redefine G using the normalization:

G′ =

(
∑

iG1i)
−1 0 0

0 (
∑

iG2i)
−1 0

0 0 (
∑

iG3i)
−1

 ·G (3.10)
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Drawing on Markov chain theory, the conditional probability Pr(sik|sijk,MΘ) can be
expressed in terms of G′ as outlined below:∑

n

Pr(sik = 0|sijk = n,MΘ) =
∑3

r=1(G′ti−tij )r1 (3.11)∑
n

Pr(sik = 0.5|sijk = n,MΘ) =
∑3

r=1(G′ti−tij )r2 (3.12)∑
n

Pr(sik = 1|sijk = n,MΘ) =
∑3

r=1(G′ti−tij )r3 (3.13)

where ti corresponds to the time-point of sample i, and tij signifies the time-point of the
most recent common ancestor shared between samples i and j (tij ≤ ti, tj). The expres-
sions for Pr(sjk|sijk,MΘ, tj) can be derived correspondingly by substituting ti with tj in
the aforementioned equation. Notably, the calculation of these conditional probabilities
necessitates iterative matrix multiplication. Nonetheless, a direct assessment of these
equations is feasible by leveraging the fact that

G′
ti−tij = pVti−tijp−1 and G′

tj−tij = pVtj−tijp−1, (3.14)

where p signifies the eigenvector of matrix G′, and V denotes a diagonal matrix of
eigenvalues. For selfing and clonal/somatic systems, these eigenvalues and eigenvectors
can be analytically obtained.

Finally, to deduce D•ij(MΘ), we also require Pr(sijk = n|MΘ); in other words, the
probability that locus k in the most recent common ancestor of samples i and j is in
state n (n ∈ {0, 0.5, 1}). To achieve this, consider the methylome of the pedigree founder
at time t = 1, and let π = [p1 p2 p3] denote a row vector of probabilities corresponding
to states u/u, u/m, and m/m, respectively. Leveraging Markov Chain theory, we obtain

Pr(sijk = 0|MΘ) =
[
πG′

(tij−1)
]

1
(3.15)

Pr(sijk = 0.5|MΘ) =
[
πG′

(tij−1)
]

2
(3.16)

Pr(sijk = 1|MΘ) =
[
πG′

(tij−1)
]

3
(3.17)

In many instances, the most recent common ancestor corresponds to the pedigree
founder itself, yielding tij = 1. In scenarios where the methylome of the pedigree founder
has been measured, the probabilities p1, p2, and p3 can be directly estimated from the
data using x1N

−1, x2N
−1, and x3N

−1, respectively. Here, x1, x2, and x3 represent the
number of loci observed in states u/u, u/m, m/m, and N denotes the total number of
loci. Typically, x2 remains unknown since most DMP and DMR callers do not output
intermediate methylation states (epiheterozygous calls). Hence, we adopt the following:

p1 =
x1

N
, p2 = γ

x3

N
, p3 = (1− γ)

x3

N
(3.18)
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where γ ∈ [0, 1] stands as an unknown parameter.

3.3.3 Parameter estimation

To estimate the values of Θ, our objective is to minimize the expression:

∇∑M
q=1

(
Dq −D•q(MΘ)− c

)2
= 0, (3.19)

In this equation, the summation spans across all M distinct pairs of sequenced samples
within the pedigree. The minimization process employs the ”Nelder-Mead” algorithm,
utilizing the optimx package in R. However, our experience reveals that achieving con-
vergence is not consistently stable. This issue likely arises due to the intricate and highly
non-linear nature of the function D•q(MΘ). To address this, we introduce an additional
constraint for minimization:

∇∑M
q=1

(
Dq −D•q(MΘ)− c

)2
+M

(
p̃1 − p1(t∞,MΘ)

)2
= 0. (3.20)

Here, p1(t∞,MΘ) signifies the equilibrium proportion of u/u loci in the genome as t
approaches infinity. In the context of a selfing system with w = 1, we find:

p1(t∞,MΘ) =
β((1− β)2 − (1− α)2 − 1)

(α+ β)((α+ β − 1)2 − 2)
, (3.21)

For a clonal/somatic system, it takes the form:

p1(t∞,MΘ) =
β2

(α+ β)2
(3.22)

For situations where 0 ≤ w < 1, the equations become more intricate and are excluded
from presentation here. Importantly, p̃1 represents an empirical estimation of these
equilibrium proportions. In cases where the methylomes of samples can be assumed to
be in equilibrium, we find that p1(t = 1) = p1(t = 2) = · · · = p1(t∞), signifying that the
proportion of loci in the genome exhibiting the u/u state remains dynamically stable for
any time t. Under this presumption, p̃1 can be replaced with p1, the average proportion
of u/u loci calculated from all samples within the pedigree.
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4.1 Publication 1. MethylStar

MethylStar: A fast and robust pre-processing pipeline for bulk or single-

cell whole-genome bisulfite sequencing data.

Shahryary, Y., Hazarika, R.R. & Johannes, F. MethylStar: A fast and robust pre-processing

pipeline for bulk or single-cell whole-genome bisulfite sequencing data.

Published in BMC Genomics 21, 479 (2020).

DOI: 10.1186/s12864-020-06886-3

Summary

As Whole-Genome Bisulfite Sequencing (WGBS) becomes increasingly central to

large-scale epigenetic studies, the necessity for specialized software to effectively

manage growing data volumes is paramount. This ensures accurate analysis and

interpretation of methylation patterns important for understanding their roles in

biological processes.

While existing WGBS tools like RnBeads [47], SWAN [48], ChAMP [49], Methylkit

[50], and DMRcaller [51] are adept at data normalization and identifying differ-

entially methylated regions, they depend on robust pre-processing steps such as

quality control, sequence sorting, adapter trimming, and genome alignment. How-

ever, comprehensive solutions like gemBS [65] and Methylpy [52], which aim to

integrate these stages, often face challenges with user-friendly setups and efficient

processing of large datasets.

MethylStar offers an advanced pre-processing pipeline adept at handling both bulk

and single-cell WGBS data. Utilizing sophisticated algorithms and parallel com-

puting, it accelerates the analysis of raw sequencing reads, effectively correcting

bisulfite conversion efficiencies and reducing batch effects. By incorporating es-

sential functions such as read trimming, alignment, and methylation state calling

within this parallel processing framework, MethylStar significantly enhances com-

putational throughput. Its adaptable framework also supports customized con-

figurations to accommodate diverse species and experimental designs, making it

exceptionally versatile for a range of epigenetic research initiatives. Additionally,

MethylStar is engineered for ease of use, featuring a dockerized container that
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simplifies installation by preloading all necessary dependencies. Its user-friendly

interface is accessible to both experts and novices alike, promoting broader adop-

tion and making it an invaluable tool for epigenetic research.
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Authors’ contributions

FJ, RRH and YS conceptualized the method. YS and RRH developed, imple-

mented and tested the pipeline. RRH, FJ and YS wrote the paper. FJ supervised

the project.

My detailed contributions:

Software implementation and optimization: I was responsible for the full

life-cycle development of the MethylStar pipeline, focusing on software imple-

mentation, performance optimization, and parallelization. This involved ensuring

that the pipeline was not only functionally robust but also optimized for high-

throughput data processing, leveraging parallel computing techniques to enhance

its speed and efficiency.

Data analysis and interpretation: I conducted thorough analyses of the WGBS

data, interpreting results to inform pipeline refinements.

Bug fixing and optimization: I was responsible for identifying and rectifying

bugs in MethylStar, improving its performance and reliability.

Manuscript preparation: I wrote the first draft of the paper, with subsequent

input from Frank Johannes and the other co-authors.
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4.2 Publication 2. AlphaBeta

AlphaBeta: computational inference of epimutation rates and spectra

from high-throughput DNA methylation data in plants.

Shahryary, Y., Symeonidi, A., Hazarika, R.R., Johanna, D., Talha, M., Brigitte, H., Thomas,

v.G., Maria, C.T, Koen J.F.V., Gerald, T., Robert J.S., Johannes, F. et al. AlphaBeta: com-

putational inference of epimutation rates and spectra from high-throughput DNA methylation

data in plants.

Published in Genome Biology 21, 260 (2020).

DOI: 10.1186/s13059-020-02161-6

Summary

DNA methylation, an important chromatin modification, plays crucial roles in si-

lencing transposable elements and regulating certain genes. However, the methy-

lation status of individual cytosines or clusters of cytosines can sometimes change

stochastically, leading to what is termed as ”spontaneous epimutations”. These

epimutations can accumulate during plant development and aging, and some even

pass through the gametes to subsequent generations. A goal in the field of plant

epigenetics is to obtain accurate estimates of the rate of spontaneous epimuta-

tions, identify genetic and environmental factors that can modulate the rate, and

to delineate the molecular mechanisms underlying epimutational processes. To

begin to address this challenge, I have developed AlphaBeta, a computational

method for estimating the rate and spectrum of spontaneous epimutations using

pedigree-based DNA methylation data as input.

The software starts with the assumption that base-level or region-level DNA methy-

lation state calls are available for each of the samples in the pedigree. These calls

can be produced with MethylStar (previous chapter), or with alternative methods.

AlphaBeta fits an explicit epimutation model to the DNA methylation divergence

data, and relates this information to the temporal divergence of the samples, as

calculated from the pedigree topology. I show that the software can be applied to
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data from multi-generational mutation accumulation lines, derived either through

sexual or clonal propagation. Furthermore, I demonstrate that AlphaBeta can

also be used to estimate somatic epimutation rates in long-lived perennials, such

as trees. In this case, AlphaBeta interprets the tree branching topology as a

phylogeny of somatic cell lineages with the leaves representing the end-points of

these lineages. In this case, the software calculates DNA methylation divergence

between leaves and relates this information to their temporal divergence, as deter-

mined from coring data on branch/stem ages.

Application of AlphaBeta to published and new data revealed that spontaneous

epimutations accumulate neutrally at the genome-wide scale, originate mainly dur-

ing somatic development and that they can be used as a molecular clock for age-

dating trees.
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Authors’ contributions

FJ and MCT conceptualized the method. YS, FJ, and RRH implemented and

documented the method. FJ, YS, AS, RRH, JD, TM, BTH, and TvG analyzed

the data. KV, GT, and RJS contributed materials. FJ, YS and RRH drafted the

paper.

My detailed contributions:

Model Implementation: I was responsible for the development and coding of

the AlphaBeta model.

Bioconductor R Package: I worked on integrating the AlphaBeta model into

the Bioconductor R package, ensuring its functionality, and submitted the package

to the Bioconductor repository center.

Testing: I conducted extensive testing of the AlphaBeta model across various

datasets to ensure its accuracy and reliability.

Tutorial: I developed the tutorial and user guide for the AlphaBeta tool, facili-

tating its use by other researchers.

Drafting the Paper: I wrote the first draft of the paper, with subsequent input

from Frank Johannes and the other co-authors.
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5 Discussion and outlook

5.1 Improving high-throughput analysis with MethylStar

The development of MethylStar marks a notable contribution to the processing

of whole-genome bisulfite sequencing (WGBS) data. Recognizing the existence of

other pipelines with similar capabilities, the focus shifts to the ongoing refinement

and adaptation of MethylStar, particularly in the dynamic field of genomics.

In advancing MethylStar towards its next iteration, a detailed and technical ap-

proach is required to address the complexities of genomic data processing. The

integration of workflow management systems such as Nextflow [66] or Snake-

make [67] into MethylStar represents a significant step forward in enhancing its

usability and efficiency. While Nextflow and Snakemake are powerful tools for

managing complex genomic workflows, they primarily serve as workflow orches-

trators without specialized functionalities for bisulfite sequencing data. Nextflow

for instance, offers a DSL (Domain-Specific Language) for parallel and distributed

computational pipelines, ideal for managing complex workflows like those required

for genomic data processing. Its containerization support, through technologies

like Docker [68](MethylStar version 1.0 supports this technique) and Singular-

ity [69], ensures that MethylStar can be run consistently across different com-

puting environments. This is crucial for genomic research, where reproducibility

and consistency across different labs and studies are paramount. Additionally,

Nextflow’s compatibility with cloud platforms and high-performance computing

clusters aligns well with the proposed enhancements for MethylStar, especially in

terms of scalability and adaptability to diverse computational resources. Similarly,

Snakemake, another workflow management system, could also be an excellent fit

for MethylStar. Known for its simplicity and flexibility, Snakemake allows for the
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creation of complex workflows using a human-readable, Python-based language.

It integrates seamlessly with conda and Bioconda [70], which could facilitate the

management of dependencies and the installation of MethylStar. Furthermore,

Snakemake’s ability to automatically determine the interdependencies of tasks

and efficiently schedule their execution would optimize the pipeline’s performance,

particularly in dealing with large and complex genomic datasets.

In the development of a user-friendly and accessible interface for MethylStar, the

incorporation of a web-based platform for running analyses or generating reports

would be a significant advancement. This web-based component could transform

how users interact with MethylStar, making it more accessible and convenient for

a broader range of researchers. A web-based platform for running MethylStar

analyses would allow users to access the tool from any device with an internet

connection, without the need for installing specific software or managing complex

computational resources. This approach could democratize access to advanced ge-

nomic analysis, enabling researchers from institutions with limited computational

infrastructure to engage in high-level genomic research. Users could simply up-

load their data to the platform, configure their analysis parameters through an

intuitive web interface, and initiate the processing. The platform would handle

the computational aspects on the backend, leveraging cloud computing resources

as necessary.

A web-based reporting system could also support collaborative research efforts.

Researchers could easily share their results with collaborators or advisors through

secure web links, fostering collaborative analysis and discussion. Additionally,

for educational purposes, such a platform could be an invaluable tool, allowing

students and trainees to gain hands-on experience with genomic data analysis in

a more accessible and controlled environment.

Transitioning to cloud-based computing platforms like AWS (Amazon Web Ser-

vices) [71] or Google Cloud Platform [72] could provide MethylStar with enhanced

scalability and flexibility. These platforms offer robust infrastructure for storing

and processing large genomic datasets, allowing users to access scalable computa-

tional resources on-demand. This transition would be particularly beneficial for

researchers and institutions that lack the necessary in-house computational infras-
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tructure. By leveraging cloud services, MethylStar could offer a more accessible

and scalable solution for genomic data processing, catering to a wider range of

research needs.

Finally, ensuring that MethylStar is compatible with common cluster submission

systems, such as SLURM [73] or PBS [74], is essential for its integration into high-

performance computing environments. This compatibility would allow researchers

to easily submit and manage MethylStar jobs on these systems, which are widely

used in genomic research institutions for large-scale data processing. Enhancing

MethylStar’s functionality in this regard would streamline its integration into ex-

isting research workflows, making it a more versatile and user-friendly tool for

genomic researchers.

Another challenge arises in integrating methylation calling for Oxford Nanopore

Technologies (ONT) [75] data into the MethylStar pipeline. Integrating methy-

lation calling for ONT data into the MethylStar pipeline requires a nuanced ap-

proach, focusing on the unique characteristics of ONT sequencing. This integra-

tion involves selecting and adapting software tools that can effectively handle the

longer reads and specific error profiles associated with ONT data, which pose

distinct challenges in methylation analysis.

A key aspect of this integration is the use of long-read alignment tools. These

tools, for instance, Minimap2 [76], are essential for mapping the long reads of ONT

data to a reference genome. However, for methylation analysis, these tools need to

be specifically adapted to account for ONT’s unique error profiles and methylation

patterns. This means enhancing the alignment algorithms to accurately map long

reads while distinguishing true methylation signals from sequencing errors inherent

in ONT data.

Furthermore, error correction plays a crucial role in this process. ONT sequenc-

ing is known for higher error rates, making sophisticated error correction algo-

rithms a necessity. Software like Nanopolish [77], which has capabilities for work-

ing with ONT data, could be a starting point. However, its algorithms would need

significant enhancements to interpret the methylation context accurately from the

long-read data. The goal is to develop tools that can precisely identify methylation

states in the context of ONT’s specific sequencing characteristics.
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Additionally, there is potential in leveraging existing Whole Genome Bisulfite

Sequencing (WGBS) tools as a transitional approach. Tools originally designed for

bisulfite sequencing, such as BSMAP [78] or BRAT-nova [79], could be adapted

or used as a foundation for developing new algorithms tailored to ONT data.

The challenge here lies in modifying these tools to accommodate the length and

complexity of ONT reads and their distinct methylation calling requirements.

In summary, the integration of MethylStar with ONT data for methylation anal-

ysis is a multifaceted task. It involves combining the capabilities of long-read align-

ment, sophisticated error correction, and methylation calling algorithms, along

with adapting existing WGBS tools.

An additional advancement could be the use of deep-learning-based methods for

methylation calling and imputation. MethylStar currently employs Methimpute,

a first-order HMM, to achieve this. While Methimpute learns DNA methylation

transitions in different cytosine contexts, it ignores other potentially informative

sequence features in the genomic neighborhood during methylation calling and/or

imputation. Deep learning tools such as DeepCpG [56] and DeepSignal-plant [80]

employ a combination of convolutional and recurrent neural networks for enhanced

accuracy in predicting methylation states across a broad range of DNA methyla-

tion datasets. DeepCpG was initially designed for imputation of single-cell DNA

methylation data, which is inherently sparse due to technical limitations in NGS li-

brary preparation. Although DeepCpG has been trained on human data, it should

be possible to retrain it on plant genomic data.

However, one challenge will be the analysis of non-CG methylation, which is

essentially absent in mammals but is the primary type of methylation in plant

genomes. Non-CG methylation patterns are not only more complex, often oc-

curring in highly repetitive regions of the genome, but are also measured with

substantially more uncertainty due to cell-to-cell heterogeneity. Indeed, the initial

motivation for the development of DeepSignal-plant for ONT methylation calling

was precisely to account for non-CG methylation, as previous ONT calling tools

were exclusively designed around CpG data from mammalian systems. A sec-

ond challenge in extending tools like DeepCpG to plants will be the generality of

the trained model. Plant methylome landscapes differ substantially from others,
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partly due to vast differences in genome architectures and the differential evolution

of DNA methylation pathways [81]. One strategy to address this latter challenge

could be to train a cross-species model and apply deep learning approaches such

as transfer learning.

In summary, MethylStar Version 2 is an updated and improved version of the

original tool. This update builds on the strong base of MethylStar, adding new

features and enhancements that respond to the latest needs in genomic research.

The enhancements in Version 2 include more powerful machine learning algorithms,

better handling of multiple tasks at once, and improved compatibility with new

sequencing technologies and computer systems. Version 2 also improves the user

interface with a web-based platform that makes it easier to access from anywhere.

By integrating well-known workflow management tools like Nextflow or Snakemake

and using cloud computing, MethylStar Version 2 strengthens its ability to support

genomic researchers with a tool that is more efficient, flexible, and easy to use.

5.2 Improving somatic epimutation analysis with AlphaBeta

The AlphaBeta statistical approach was originally designed to model epimuta-

tional processes in plants propagated by selfing. Fundamental to its assumptions

is that epimutations pass through a single-cell bottleneck at the beginning of each

generation, i.e., via the male and female gametes. We have subsequently used the

same assumptions in a clonal version of this model to estimate somatic epimuta-

tions in trees. In this case, we treated the tree branching topology as a pedigree (or

phylogeny) of cell lineages. Model fit diagnostics suggest that the model performed

reasonably well. However, closer inspection of the biology of how the branching

topology in trees is actually initiated from cell lineages suggests that several of our

initial model assumptions are violated.

In higher plants, lateral branches are initiated from axillary buds, which are

formed at the axils of developing leaves along the stem. The buds themselves

derive from a cluster of cells known as axillary meristems (AM). Recent studies

using live imaging support a ”detached-meristem” model, where AMs derive from

a few precursor cells sequestered from the periphery of the shoot apical meristem
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(SAM) [24,82]. These precursors maintain their meristematic characteristics in the

leaf axil, eventually increase in number, and develop into active AMs generating

new organs. As such, they become the SAM of the newly emerging shoot and

share all the functional and morphological properties with the original SAM (e.g.,

organization, capability of self-maintenance, and organ formation [83]. Thus, shoot

branching represents a developmental transition from a SAM at the original shoot

to the establishment of a new SAM on the emerging lateral branch. The sampling

of AM precursors presents a major cellular bottleneck during shoot branching.

However, unlike during sexual reproduction, the bottleneck is not defined by the

sampling of a single cell, but rather by the selection of multiple cells (usually

around 2-3). It can be shown formally [84] that this more relaxed epigenetic

drift gives rise to a mixture of cell phylogenies that lead to somatic epigenetic

heterogeneity in the SAM over time, as well as in the tissues derived from the

SAM (e.g., leaves).

This has at least two implications: First, statistical models that account for

moderate epigenetic drift could provide an improved fit to the data, and possi-

bly lead to slightly different somatic epimutation rate estimates in trees. Second,

DNA methylation data based on bulk sequencing of leaf tissues may mask the

underlying cell-to-cell DNA methylation heterogeneity. Alternative sequencing

approaches based on single-cell or low-input WGBS may be necessary in this set-

ting, although such approaches remain technically challenging and often lead to

highly sparse data. Nonetheless, it is worth exploring these latter approaches in

future implementations of AlphaBeta.
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Abstract

Background: Whole-Genome Bisulfite Sequencing (WGBS) is a Next Generation Sequencing (NGS) technique for
measuring DNA methylation at base resolution. Continuing drops in sequencing costs are beginning to enable
high-throughput surveys of DNA methylation in large samples of individuals and/or single cells. These surveys can
easily generate hundreds or even thousands of WGBS datasets in a single study. The efficient pre-processing of these
large amounts of data poses major computational challenges and creates unnecessary bottlenecks for downstream
analysis and biological interpretation.

Results: To offer an efficient analysis solution, we present MethylStar, a fast, stable and flexible pre-processing pipeline
for WGBS data. MethylStar integrates well-established tools for read trimming, alignment and methylation state calling
in a highly parallelized environment, manages computational resources and performs automatic error detection.
MethylStar offers easy installation through a dockerized container with all preloaded dependencies and also features a
user-friendly interface designed for experts/non-experts. Application of MethylStar to WGBS from Human, Maize and A.
thaliana shows favorable performance in terms of speed and memory requirements compared with existing pipelines.

Conclusions: MethylStar is a fast, stable and flexible pipeline for high-throughput pre-processing of bulk or
single-cell WGBS data. Its easy installation and user-friendly interface should make it a useful resource for the wider
epigenomics community. MethylStar is distributed under GPL-3.0 license and source code is publicly available for
download from github https://github.com/jlab-code/MethylStar. Installation through a docker image is available from
http://jlabdata.org/methylstar.tar.gz

Keywords: DNA methylation, Whole genome bisulfite sequencing, NGS, Pipeline, Single cell

Background
Whole-Genome Bisulfite Sequencing (WGBS) is a Next
Generation Sequencing (NGS) technique for measur-
ing DNA methylation at base resolution. As a result
of continuing drops in sequencing costs, an increas-
ing number of laboratories and international consor-
tia (e.g. IHEC, SYSCID, BLUEPRINT, EpiDiverse, NIH
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ROADMAP, Arabidopsis 1001 Epigenomes, Genomes and
physical Maps) are adopting WGBS as the method of
choice to survey DNA methylation in large population
samples or in collections of cell lines and tissue types,
either in bulk or at the single-cell level [1, 2]. Such sur-
veys can easily generate hundreds or even thousands of
WGBS datasets in a single study. A broad array of soft-
ware solutions for the downstream analysis of bulk and
single-cell WGBS data have been developed in recent
years. These include tools for data normalization (e.g.
RnBeads [3], SWAN [4], ChAMP [5]), detection of dif-
ferentially methylated regions (DMRs) (e.g. Methylkit [6],
DMRcaller [7], Methylpy [8], metilene [9]), imputation
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intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative
Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made
available in this article, unless otherwise stated in a credit line to the data.
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of methylomes from bulk WGBS data (e.g. METHimpute
[10]), imputation of single-cell methylomes (e.g. Melissa
[11], deepCpG [12]) and dropouts in single-cell data (e.g.
SCRABBLE [13]).
However, these downstream analysis tools are depen-

dent on the output of a number of data pre-processing
steps, such as quality control (e.g. FastQC (https://www.
bioinformatics.babraham.ac.uk/projects/fastqc), Qual-
iMap [14], NGS QC toolkit [15]), de-multiplexing of
sequence reads, adapter trimming (e.g. Trimmomatic
[16], TrimGalore (https://github.com/FelixKrueger/
TrimGalore) , Cutadapt [17]), alignment of reads to a
reference genome and generation of methylation calls
(e.g. BSseeker2 [18], BSseeker3 [19], Bismark [20],
BSMap [21], bwa-meth (https://github.com/brentp/bwa-
meth/) , BRAT-nova [22], BiSpark [23], WALT [24],
segemehl [25]). From a computational standpoint, data
pre-processing is by far the most time-consuming step
in the entire bulk or single-cell WGBS analysis workflow
(Fig.1). In an effort to help streamline the pre-processing
of WGBS data several pipelines have been published
in recent years. These include nf-core/methylseq [26],
gemBS [27], Bicycle [28] and Methylpy, some of which
are currently employed by several epigenetic con-
sortia. gemBS, Bicycle and Methylpy integrate data
pre-processing and analysis steps using their own cus-
tom trimming and/or alignment tools (see Table 1). By
contrast, nf-core/methylseq implements well-established
NGS tools, such as TrimGalore for read trimming and
Bismark and bwa-meth/MethylDackel for alignment. The
nf-core/methylseq framework is built using Nextflow
[29], and aims to provide reproducible pipeline templates
that can be easily adapted by both developers as well as
experimentalists. Despite these efforts, the installation
and execution of these pipelines is not trivial and often
require substantial bioinformatic support. Moreover,
managing the run times of these pipelines for large
numbers of WGBS datasets (i.e. in the order of hundreds
or thousands) relies on substantial manual input, such
as launching of parallel jobs on a compute cluster and
collecting output files from temporary folders.
In an attempt to address these issues, we have devel-

oped MethylStar, a fast, stable and flexible pre-processing
pipeline for WGBS data. MethylStar integrates well-
established NGS tools for read trimming, alignment and
methylation state calling in a highly parallelized environ-
ment, manages computational resources and performs
automatic error detection. MethylStar offers easy instal-
lation through a dockerized container with all preloaded
dependencies and also features a user-friendly interface
designed for experts/non-experts. Application of Methyl-
Star toWGBS from Human, Maize and A. thaliana shows
favorable performance in terms of speed and memory
requirements compared with existing pipelines.

Implementation
Core pipeline NGS components
In its current implementation, MethylStar integrates pro-
cessing of raw fastq reads for both single- and paired-
end data with options for adapter trimming, quality
control (fastQC) and removal of PCR duplicates (Bis-
mark software suite). Read alignment and cytosine con-
text extraction is performed with the Bismark software
suite. Alignments can be performed for WGBS and Post-
bisulfite adaptor tagging (PBAT) approaches for single-
cell libraries. Bismark was chosen because it features
one of the most sensitive aligners, resulting in compara-
tively highmapping efficiency, lowmapping bias and good
genomic coverage [30, 31]. Finally, cytosine-level methy-
lation calls are (optionally) obtained with METHimpute,
a Hidden Markov Model for inferring the methylation
status/level of individual cytosines, even in the presence
of low sequencing depth and/or missing data. All the
different data processing steps have been optimized for
speed and performance (see below), and can run on local
machines as well as on larger compute nodes.

User interface
MethylStar features a lightweight python-based user
interface, which is particularly useful for bench-scientists
who are not familiar with command-line scripting. The
aim of the interface is to improve useability and to reduce
human error arising from typing mistakes or from the
misspecification of parameter settings during pipeline
configuration. The interface offers configuration tem-
plates that can be easily re-used for subsequent sam-
ples/projects, thus ensuring consistency and repeatabil-
ity of data analysis projects. Unlike many web-based or
graphical-based interfaces, the MethylStar interface does
not require additional resources and/or dependencies.
Users navigate through an index menu and run selected
pipeline components by typing the menu index of choice.
We designed the interface for both experts and non-
experts. Non-experts are able to execute all pipeline com-
mands without having to edit a single bash script, while
advanced users can easily configure additional parameters
and install software/tools (e.g. most recent/legacy version
of a software) to integrate withMethylStar by simply spec-
ifying path variables. Finally, users can configure email
addresses to receive automatic notifications when a job
completed or failed. A video demonstrating the use of the
interface can be found at https://github.com/jlab-code/
MethylStar#MethylStar_tutorial_on_YouTube.

Pipeline architecture, optimization of parallel processes
andmemory usage
The pipeline architecture comprises three main layers
(Fig. 1). The first layer is the interactive command-line
user interface implemented in Python to simplify the
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Fig. 1 Basic workflow of MethylStar showing the pipeline architecture. The left panel shows a standard BS-Seq workflow and on the right are the
different components of the MethylStar pipeline integrated as 3 different layers viz. Python, Shell and R. All steps of the pipeline have been
parallelized using GNU parallel. MethylStar offers the option for “Quick run” (indicated in red) which runs all steps sequentially in one go or each
component can be executed separately. MethylStar incorporates all pre-processing steps of a standard BS-Seq workflow and generates standard
outputs that can be used for input into several downstream analysis tools

process of configuring software settings and running
MethylStar. The second layer consists of shell scripts, and
handles low-level processes, efficiently coordinates the
major software components and manages computational
resources. The final layer is implemented in R, and is
used to call METHimpute and to generate output files that
are compatible with a number of publicly available DMR-
callers such as Methylkit, DMRcaller and bigWig files for
visualization in Genome Browsers such as JBrowse [32].
All outputs are provided in standard data formats for
downstream analysis.
All components/steps of the pipeline have been

parallelized using GNU Parallel (https://www.gnu.org/

software/parallel/) (Fig. 1). The user can either set the
number of parallel jobs manually for each pipeline com-
ponent, or can opt to use the inbuilt parallel option from
the “configuration” option of the menu. The inbuilt paral-
lel implementation is also available under the “Quick Run”
option. This latter option detects the number of parallel
processes/jobs automatically for each pipeline component
based on available system cores/threads andmemory, thus
allowing the user to run the entire steps of the pipeline in
one go.
In the parallel implementation of all pipeline steps, we

use genome size (in base pairs) as an additional fac-
tor in the optimization of computational resources. For
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Table 1 Table showing different features of MethylStar as compared to other BS-seq pipelines

Methylpy MethylStar methylseq gemBS Bicycle

Pipeline Features

Multi-threading
√ √ √ √

language Python Python, shell, R Java C, Python Java

distribution github, PyPI GitHub Github GitHub Github

(Apache license) (GNU GPL3) (MIT license) (GNU GPL3) (GNU GPL3)

Installation & pip install, install Docker, install Docker, Docker, Docker

configuration dependencies dependencies Singularity, Singularity

Conda

User-interface -
√

- - -

Single/paired-end
√ √ √ √ √

Input data Single-cell, WGBS, WGBS, Single-cell WGBS RRBS, WGBS, WGBS

singlecell NOMe-seq, PBAT (PBAT) PBAT

Pipe steps

adapter trimming Cutadapt Trimmomatic TrimGalore - bicycle analyzemethylation

alignment bowtie/bowtie2 Bismark Bismark, gem3 bicycle align/

bwa-meth bowtie/bowtie2

remove PCR Picard Bismark Bismark, Picard Bscall bicycle analyzemethylation

duplicates

methylation
√

ProcessBismarAln, Bismark, Bscall bicycle

calling Bismark MethylDackel analyzemethylation, GATK

imputation of - METHimpute - - -

missing cytosines

DMR calling
√

- - - bicycle analyze

differential

methylation

SNP calling - - - Bscall -

Alignment QC - Bismark Qualimap
√ √

summary reports
√

FastQC Bismark,
√ √

MultiQC, Preseq

Methylation BigWig BigWig, bedGraph - BigWig, BigWig

visualization bedGraph

example, in the analysis of A. thaliana samples (genome
size ∼135 mega base pairs), our parallel implementation
of Trimmomatic (a java tool) sets the optimal number of
jobs to 12 on a system with 88 cores and 386 GB RAM.
This setting allocates (12 jobs ×8 threads) =96 threads
for trimming (java threads) and (12 jobs ×1 threads)
=12 threads to the gzip tools (default no. of threads
fixed to 8 in the pipeline). By contrast, for read trim-
ming in Maize (genome size ∼2500 mega base pairs),
the optimal number of jobs is set to 5. In the paral-
lel implementation of Bismark alignment step under a
similar system configuration, while running paired-end
reads from A. thaliana, we optimally set the number of

jobs to 4. This setting allocates (4 jobs ×8 files/threads)
=32 threads to Bowtie2 and (4 jobs ×8 files/threads ×2)
=64 threads to the bismark alignment tool (default no. of
threads fixed to 8 in the internal bismark parallel argu-
ment). In a similar way, for deduplicate_bismark, the opti-
mal number of jobs is set to (1/4th of total 88 cores) =22.
For bismark_methylation_extractor it is set as 4, which
allocates (4 jobs×8 threads) =32 threads each to itself and
to Bowtie tools as well as a few additional cores to gzip and
samtools streams. In this way, the maximum number of
threads never exceeds the total number of available cores,
which in turn allows other jobs such as file compression,
I/O operations to be performed simultaneously. Under the
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“Quick Run” option we have parallelized R processes such
as the extraction of methylation calls from BAM files (post
PCR duplicates removal) by bypassing the Bismarkmethy-
lation extractor step and by passing these calls directly
onto METHimpute for imputation of missing cytosines
(Fig. 1).

Automatic error handling and detection
MethylStar issues user-friendly messages related to
configuration errors such as non-existing paths to
input/output folders, low disk space, incorrect file exten-
sions, non-empty folders. In addition, we have introduced
checkpoints for each individual component of the pipeline
so that a job can be resumed easily from the nearest
checkpoint in the unlikely event of system failure (e.g.
disk issues, file corruption, user interruption). MethylStar
accepts intermediate files such as BAM files, CX-reports
etc., and is able to process these new files together with
pre-existing files in the folder. MethylStar issues user-
friendly warnings before resuming each run. For instance,
if a given folder is non-empty it will ask for user per-
mission to continue, and issues a message that files with
pre-existing names will be overwritten.

Running MethylStar
The user can choose to run each pipeline component
individually, and customize software settings at each step
by editing the configuration file, which is available as an
option through the interactive command-line user inter-
face. The user interface displays the available options as
an index menu, and users can execute specific pipeline
steps. Some of the key configuration parameters include
setting file paths to input and output data, options for
handling large batches of samples, file format conver-
sions, as well as options for deleting auxiliary files that
are generated during intermediate analysis steps. Our
interactive user interface aids in the fast execution of
complex commands and will be particularly effective for
users who are less familiar with command line script-
ing. As an alternative, MethylStar also features a “Quick
Run option”, which allows the user to run all pipeline
steps in one go using default configuration settings
(Fig. 1).

Installation and documentation
MethylStar can be easily installed via a Docker image. This
includes all the softwares, libraries and packages within
the container, and thus solves any dependency issues.
Advanced users can edit the existing docker container and
build their own image.
Detailed description about installation and running

the pipeline is available at https://github.com/jlab-code/
MethylStar.

Results and discussion
Benchmarking of speed
To demonstrate MethylStar’s performance we analyzed
bulk WGBS data from a selection of 200 A. thaliana
ecotypes (paired-end, 295 GB, ∼ 8.63× depth, 85.66%
genome coverage, GSE54292), 75 Maize strains (paired-
end, 209 GB, ∼ 0.36× depth, ∼22.12% genome cov-
erage, GSE39232) and 88 Human H1 cell lines (single-
end, 82 GB, ∼ 0.12× depth, ∼10.62% genome coverage,
GSM429321). MethylStar was compared with Methylpy,
nf-core/methylseq and gemBS. All pipelines were runwith
default parameters on a computing cluster with a total of
88 cores (CPU 2.2 GHz with 378 GB RAM). Speed perfor-
mance was assessed for a series of batch sizes (A. thaliana:
50, 100, 150, 200 samples; Human H1 cell line: 22, 44,
66, 88 samples; Maize: 15, 30, 45, 60, 75 samples) and
was restricted to a fixed number of jobs (=32), (Fig. 2a-c
and Additional file 1: Table S2). Although gemBS achieved
the fastest processing times for the A. thaliana sam-
ples, MethylStar clearly outperformed the other pipelines
when applied to the more complex genomes of Maize
and Human, which are computationally more expansive
and resource-demanding (Fig. 2b-c). For instance, for
88 Human WGBS samples (82 GB of data), MethylStar
showed a 75.61% reduction in processing time relative to
gemBS, the second fastest pipeline (∼909 mins vs. ∼3727
mins). Extrapolating from these numbers, we expect that
for 1000 Human WGBS samples, MethylStar could save
about ∼22.24 days of run time (4× faster). To show that
MethylStar can also be applied to single-cell WGBS data,
we analyzed DNA methylation of 200 single cells from
Human early embryo tissue (paired-end, 845 GB,∼ 0.38×
depth, ∼9.97% genome coverage, GSE81233) split into
batches of 100 and 200 (Fig. 2d and Additional file 1:
Table S2). MethylStar’s processing times were compared
to Methylpy which also supports single-cell data. For 100
cells, MethylStar required only ∼2225 mins as compared
to ∼5518 mins required by Methylpy. Hence, MethylStar
presents an efficient analysis solution for deep single-cell
WGBS experiments.
To demonstrate that MethylStar’s processing speed

does not come at the expense of poor read alignments,
we analysed the read mapping statistics of 50 sam-
ples each of A. thaliana, Maize, Human H1 cell line
and single-cell Human data using MethylStar, Methylpy,
nf-core/methylseq and gemBS. Our results show that
MethylStar and nf-core/methylseq, both of which employ
the Bismark alignment tool, provide the most accurate
and sensitive alignments. This observation that is consis-
tent with recent benchmarking results [30, 31]. By con-
trast, Methylpy and gemBS use their own inbuilt aligners
and generally display poorer alignment statistics. Interest-
ingly, although gemBS was the fastest pipeline for the A.



Shahryary et al. BMC Genomics          (2020) 21:479 Page 6 of 8

Fig. 2 Performance of MethylStar as compared with other BS-Seq analysis pipelines viz. Methylpy, nf-core/methylseq and gemBS in (a) A. thaliana (b)
Maize (c) H1 cell line and (d) scBS-Seq samples. CPU processing time taken by METHimpute was not included in the current benchmarking process as
there is no equivalent method in the other pipelines to compare with. Because of the very long run times observed for the A. thaliana data, Methylpy
and Methylseq were no longer considered for benchmarking of speed in Maize and H1 cell line samples. All pipelines were run using 32 jobs. (e) Peak
memory usage as a function of time for 10 random A. thaliana samples. (f) Time taken by each component of MethylStar. X-axis shows the individual
components of MethylStar where the dot with lighter shade of orange indicates -without parallel and darker shade of orange indicates - with parallel
implementation of MethylStar. On the y-axis is the time in mins. The size of the dot indicates the peak memory usage in MB by each component

thaliana samples, the percentage of ambiguously mapped
reads was considerably higher than that of MethylStar,
thus demonstrating a trade-off between speed and map-
ping performance. We also noticed that the percentage of
ambiguously mapped reads by gemBS was even further
increased in the case of the Maize samples (Additional
file 1: Fig. S1 and Table S1). This could indicate that
gemBS’s alignment performance is particularly challenged

in complex plant genomes, although this hypothesis
should be explored in more detail.

Memory usage statistics
Along with benchmarking of speed, we also evaluated
the performance of the MethylStar, gemBS, nf-
core/methylseq andMethylpy pipelines in terms of system
memory utilization using the MemoryProfiler (https://



Shahryary et al. BMC Genomics          (2020) 21:479 Page 7 of 8

github.com/pythonprofilers/memory_profiler) python
module (Fig. 2e). We assessed the CPU time versus
peak/max memory of all the 4 pipelines (default set-
tings) on a computing cluster (specifications above).
For 10 random samples from the above A. thaliana
benchmarking dataset (paired-end, 16 GB, GSE54292)
MethylStar and Methylpy showed the best balance
between peak memory usage (∼12000 MB and ∼15000
MB, respectively) and total run time (∼177 mins and
∼333 mins, respectively). In contrast, nf-core/methylseq
and gemBS exhibited strong trade-offs between memory
usage and speed, with nf-core/methylseq showing the
lowest peak memory usage (∼700 MB) but the longest
CPU time (∼697 mins), and gemBS the highest peak
memory usage (∼21000 MB) but the shortest run time
(∼42 mins) (Fig. 2e and Additional file 1: Table S5).
Furthermore, we inspected the run times of Methyl-

Star’s individual pipeline components, both with and
without parallel implementation (Fig. 2f and Additional
file 1: Table S3). Our results clearly show that the parallel
implementation is considerably faster for all components;
however, it is accompanied by a higher peak memory
usage. For instance, the implementation of the Bismark
alignment step required∼141mins (with parallel) as com-
pared to ∼210 mins (without parallel), a ∼33% reduction
in processing time. However, in exchange, peak mem-
ory usage was increased by ∼65%. Thus, with sufficient
computational resources, MethylStar’s parallel implemen-
tation of Bismark alignment can be very effective in han-
dling large numbers of read alignments in considerably
less amount of time (Fig. 2f ).
We further benchmarked memory usage using 10 ran-

dom samples from the above Maize dataset (paired-end,
23 GB, GSE39232). For this analysis, we focused on gemBS
and MethylStar due to their shorter processing times
for these datasets as compared to nf-core/methylseq and
Methylpy. For these Maize dataset, gemBS’s peak mem-
ory usage was ∼110000 MB as compared to ∼81000 MB
for MethylStar (∼1.3 times less memory), (Additional file
1: Table S4) with a total run time of ∼667 mins and
∼508 mins, respectively. We observed a 76% reduction
in processing times of Maize samples using the parallel
implementation of MethylStar pipeline (Additional file 1:
Table S4) as compared to the without parallel implemen-
tation. Taken together, these benchmarking results clearly
show that MethylStar exhibits favorable performance in
terms of processing time and memory, and that it is there-
fore an efficient solution for the pre-processing of large
numbers of samples even on a computing cluster with
limited resources.

Conclusion
MethylStar is a fast, stable and flexible pipeline for the
high-throughput analysis of bulk or single-cell WGBS

data. Its easy installation and user-friendly interface
shouldmake it a useful resource for the wider epigenomics
community.

Availability and requirements
Project name: MethylStar
Project home page: https://github.com/jlab-code/
MethylStar
Operating system(s): Cross-platform
Programming language: Python, Shell, R
License: GPL-3.0
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Abstract
Stochastic changes in DNA methylation (i.e., spontaneous epimutations) contribute to
methylome diversity in plants. Here, we describe AlphaBeta, a computational method
for estimating the precise rate of such stochastic events using pedigree-based DNA
methylation data as input. We demonstrate how AlphaBeta can be employed to study
transgenerationally heritable epimutations in clonal or sexually derived mutation
accumulation lines, as well as somatic epimutations in long-lived perennials.
Application of our method to published and new data reveals that spontaneous
epimutations accumulate neutrally at the genome-wide scale, originate mainly during
somatic development and that they can be used as a molecular clock for age-dating
trees.

Keywords: Epimutation, DNA methylation, Plants, Trees, Epigenetics, Epimutation
rate, Evolution, Molecular clock, Epigenetic clock, Bioinformatics software tool,
R/Bioconductor package

Introduction
Cytosine methylation is an important chromatin modification and a pervasive feature of
most plant genomes. It has major roles in the silencing of transposable elements (TEs)
and repeat sequences and is also involved in the regulation of some genes [1]. Plants
methylate cytosines at symmetrical CG and CHG sites, but also extensively at asymmet-
rical CHH sites, where H= A, T, C. The molecular pathways that establish and maintain
methylation in these three sequence contexts are well-characterized [2] and are broadly
conserved across plant species [3–7]. Despite its tight regulation, the methylation status
of individual cytosines or of clusters of cytosines is not always faithfully maintained across

© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were
made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative
Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made
available in this article, unless otherwise stated in a credit line to the data.
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cell divisions. As a result, cytosine methylation is sometimes gained or lost in a stochastic
fashion, a phenomenon that has been termed “spontaneous epimutation.” In both animals
and plants, spontaneous epimutations have been shown to accumulate throughout devel-
opment and aging [8], probably as a byproduct of the mitotic replication of small stem cell
pools that generate and maintain somatic tissues.
However, in plants, spontaneous epimutations are not only confined to somatic cells,

but occasionally pass through the gametes to subsequent generations [9, 10]. In the
model plant Arabidopsis thaliana (A. thaliana), these transgenerationally heritable (i.e.,
“germline”) epimutations are mainly restricted to CG sites and appear to be absent or not
detectable at CHG and CHH sites [11–14]. Initial estimates in A. thaliana indicate CG
“germline” epimutations are about five orders of magnitude more frequent than genetic
mutations (∼ 10−4 vs. ∼ 10−9 per site per haploid genome per generation) [12, 14–16].
Because of these relatively high rates, CG methylation differences accumulate rapidly in
the A. thaliana genome and generate substantial methylation diversity among individuals
in the course of only a few generations [12, 17–19] [20].
A key experimental challenge in studying epimutational processes in a multi-

generational setting is to be able to distinguish “germline” epimutations from other types
of methylation changes, such as those associated with segregating genetic variation or
transient environmental perturbations [21]. Mutation accumulation (MA) lines grown in
controlled laboratory conditions are a powerful experimental system to achieve this. MA
lines are derived from a single isogenic founder and are independently propagated for a
large number of generations. The lines can be advanced either clonally or sexually, i.e.,
self-fertilization or sibling mating (Fig. 1a). In clonally produced MA lines, the isogenic-
ity of the founder is not required because the genome is “fixed” due to the lack of genetic
segregation.
The kinship among the different MA lineages can be presented as a pedigree (Fig. 1a).

The structure (or topology) of these pedigrees is typically known, a priori, as the branch-
point times and the branch lengths are deliberately chosen as part of the experimental
design. In conjunction with multi-generational methylome measurements, MA lines
therefore permit “real-time” observations of “germline” epimutations against a nearly
invariant genomic background and can facilitate estimates of the per-generation epimu-
tation rates [11]. Sequenced methylomes from a large number of sexually derived MA
lines are currently available in A. thaliana [12–14, 18, 22, 23] and rice [24], and vari-
ous other MA lines are currently under construction for epimutation analysis in different
genotypes, environmental conditions, and plant species.
Beyond experimentally derived MA lines, natural mutation accumulation systems can

also be found in the context of plant development and aging. An instructive example is
long-lived perennials, such as trees, whose branching structure can be interpreted as a
pedigree (or phylogeny) of somatic lineages that carry information about the epimuta-
tional history of each branch [25]. In this case, the branch-point times and the branch
lengths can be determined ad hoc using coring data or other types of dating methods
(Fig. 1a). By combining this information with contemporary leaf methylome measure-
ments, it is possible to infer the rate of somatic epimutations as a function of age (see also
co-submission, [26]).
Attempts to infer the rate of spontaneous epimutations in these diverse plant systems

are severely hampered by the lack of available analytical tools. Naive approaches that
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Fig. 1 Overview of the AlphaBeta computational pipeline. a Top panel: Construction of multi-generational
(G0 to GN) mutation accumulation (MA) lines through sexual (selfing or sibling mating) or asexual (clonal)
propagation. The different lineages (L1 to L3) can be represented as a pedigree. The pedigree branch point
times and the branch lengths are typically known, a priori, from the experimental design. 5mC sampling can
be performed at selected generations, either from plant material of direct progenitors or from siblings of
those progenitors. The data can be used to estimate the rate and spectrum of “germline” epimutations.
Bottom panel: Long-lived perennials, such as trees, can be viewed as a natural mutation accumulation
system. The tree branching structure can be treated as an intra-organismal phylogeny of somatic lineages.
5mC samples can be performed on leaf tissues from selected branches. Along with coring data, the leaf
methylomes can be used to estimate the rate and spectrum of somatic epimutations. b Data pre-processing:
AlphaBeta requires methylation data and pedigree data as input. File conversion: Using the input files,
AlphaBeta calculates the 5mC divergence (D) as well as divergence time (�t) between all sample pairs. Model
estimation: AlphaBeta fit competing epimutation models to the data. The model parameters are estimated
using numerical non-linear least squares optimization. Model comparisons allow for tests of selection and
neutrality

try to count the number of epimutations per some unit of time cannot be used in this
setting, because DNA methylation measurements are far too noisy. On the technologi-
cal side, this noise stems from increased sequencing and alignment errors of bisulphite
reads and bisulphite conversion inefficiencies. On the biological side, increased mea-
surement error may result from within-tissue heterogeneity in 5mC patterns [27] and
the fact that DNA methylomes are in part transcriptionally responsive to variation in
environmental/laboratory conditions [28]. To overcome these challenges, we previously
implemented a model-based estimation method, which was originally designed for the
analysis of selfing-derived mutation accumulation lines [12]. This approach appropriately
accounts for measurement error in the data by describing the time-dependent accumula-
tion of epimutations through an explicit statistical model (Fig. 1b). Fitting this model to
pedigree-based 5mC measurements yields estimates of the rate of spontaneous methyla-
tion gains and losses and provides a quantitative basis for predicting DNA methylation
dynamics over time.
Here, we generalize this method and present AlphaBeta, the first software package for

inferring the rate and spectrum of “germline” and somatic epimutations in plants. Alpha-
Beta can be widely applied to multi-generational data from sexually or asexually derived
MA lines, as well as to intra-generational data from long-lived perennials such as trees.
Drawing on novel and published data, we demonstrate the power and versatility of our
approach and make recommendations regarding its implementation.
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The AlphaBetamethod
We start from the assumption that 5mC measurements have been obtained from mul-
tiple sampling time-points throughout the pedigree. These measurements can come
from whole genome bisulphite sequencing (WGBS) [29] [30], reduced representation
bisulphite sequencing (RRBS) [31], or epigenotyping-by-sequencing (epiGBS) [32] tech-
nologies, and possibly also from array-based methods. We only require that a “sufficiently
large” number of loci has been measured. Moreover, with multigenerational data, we
allow measurements to come from plant material of direct progenitors, or else from
individual or pooled siblings of those progenitors (Fig. 1a).

Calculating 5mC divergence

For the ith sequenced sample in the pedigree, let sik be the observed methylation state at
the kth locus (k = 1 · · ·N). Here, the N loci can be individual cytosines or pre-defined
regions (i.e., cluster of cytosines). We assume that sik takes values 1, 0.5, or 0, according to
whether the diploid epigenotype at that locus ism/m,m/u, u/u, respectively, wherem is
a methylated and u is an unmethylated epiallele. Using this coding, we calculate the mean
absolute 5mC divergence, D, between any two samples i and j in the pedigree as follows:

Dij =
N∑

k=1
I(sik , sjk)N−1, (1)

where I(·) is an indicator function, such that

I(sik , sjk) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0 ifsik = sjk
1
2 ifsik = 0.5 andsjk ∈ {0, 1}
1
2 ifsjk = 0.5 andsik ∈ {0, 1}
1 ifsik = 0 andsjk = 1
1 ifsjk = 1 andsik = 0.

The software automatically calculates Dij and �t for all unique sample pairs using as
input the methylation state calls and the pedigree coordinates of each sample (Fig. 1b).

Modelling 5mC divergence

Wemodel the 5mC divergence as

Dij = c + D•
ij(M�) + εij. (2)

Here, εij ∼ N(0, σ 2) is the normally distributed residual error, c is the intercept, and
D•
ij(M�) is the expected divergence between samples i and j as a function of an underlying

epimutation modelM(·) with parameter vector � (see below). We have that

D•
ij(M�) =

∑

n∈v

∑

l∈v

∑

m∈v
I(l,m)

· Pr(sik = l, sjk = m|sijk = n,M�)

· Pr(sijk = n|M�),

where sijk is the methylation state at the kth locus of the most recent common ancestor of
samples i and j, and v = {0, 0.5, 1}. Since samples si and sj are conditionally independent,
we can further write:
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Pr(sik , sjk|sijk ,M�) = Pr(sik|sijk ,M�)

· Pr(sjk|sijk ,M�).

To be able to evaluate these conditional probabilities, it is necessary to posit an explicit
form for the epimutational model, M�. To motivate this, we define G to be a 3 × 3 tran-
sition matrix, which summarizes the probability of transitioning from epigenotype l tom
in the time interval [ t, t + 1]:

u/u(t + 1) m/u(t + 1) m/m(t + 1)

G =
⎡

⎢⎣
f11(α,β ,w) f12(α,β ,w) ·
f21(α,β ,w) · ·

· · f33(α,β ,w)

⎤

⎥⎦
u/u (t)
m/u (t)
m/m(t)

The elements of thismatrix are a function of gain rate α (i.e., the probability of a stochas-
tic epiallelic switch from an unmethylated to a methylated state within interval [ t, t+ 1]),
the loss rate β (i.e., the probability of a stochastic epiallelic switch from a methylated to
an unmethylated state), and the selection coefficient w (w ∈[ 0, 1]). It can be shown that
for a diploid system propagated by selfing, G has the form

⎡

⎢⎣
(1 − α)2 2(1 − α)α α2

1
4 (β + 1 − α)2 1

2 (β + 1 − α)(α + 1 − β) 1
4 (α + 1 − β)2

β2 2(1 − β)β (1 − β)2

⎤

⎥⎦ ◦ W,

and for systems that are propagated clonally or somatically G is:
⎡

⎢⎣
(1 − α)2 2(1 − α)α α2

β(1 − α) (1 − α)(1 − β) + αβ α(1 − β)

β2 2(1 − β)β (1 − β)2

⎤

⎥⎦ ◦ W,

where ◦ is the Hadamard product andW is a matrix of selection coefficients of the form
⎡

⎢⎣
w (w+1)

2 1
w (w+1)

2 1
w (w+1)

2 1

⎤

⎥⎦ or

⎡

⎢⎣
1 (w+1)

2 w
1 (w+1)

2 w
1 (w+1)

2 w

⎤

⎥⎦

depending on whether selection is against epiallele u orm, respectively.
Using this formalism, we can distinguish four different models, which we denote by

ABneutral, ABmm, ABuu, and ABnull. Model ABneutral assumes that the accumulation
of spontaneous 5mC gains and losses is selectively neutral (w = 1, α and/or β > 0). In
this special case, all epigenotype transitions from time t to t + 1 are only governed by the
rates α and β , and—in the case of selfing—also by the Mendelian segregation of epialleles
u and m. The selection models ABmm and ABuu, by contrast, assume that epimutation
accumulation is in part shaped by selection against spontaneous losses or gains of 5mC,
respectively (0 ≤ w < 1, α and/or β > 0). For example, with selection in favor of epiallele
u (modelABuu), the fitness of epihomozygotem/m and epiheterozygotem/u are reduced
by a factor of w and (w + 1)/2, respectively. We incorporate this fitness loss directly
into the transition matrix by weighing the transition probabilities to these epigenotypes
accordingly [33]. Similar arguments hold for the case where selection is for epiallelem. As
a reference, we define model ABnull as the null model of no accumulation, with α = 0,
β = 0, and w = 1.



Shahryary et al. Genome Biology          (2020) 21:260 Page 6 of 22

To ensure that the rows of G (i.e., the transition probabilities) still sum to unity in the
presence of selection, we redefine G using the normalization:

G′ =
⎡

⎢⎣
(
∑

iG1i)−1 0 0
0 (

∑
iG2i)−1 0

0 0 (
∑

iG3i)−1

⎤

⎥⎦ · G

Based on Markov chain theory, the conditional probability Pr(sik|sijk ,M�) can then be
expressed in terms of G′ as follows:

∑

n
Pr(sik = 0|sijk = n,M�) =

3∑

r=1
(G′ti−tij)r1

∑

n
Pr(sik = 0.5|sijk = n,M�) =

3∑

r=1
(G′ti−tij)r2

∑

n
Pr(sik = 1|sijk = n,M�) =

3∑

r=1
(G′ti−tij)r3

where ti is the time-point corresponding to sample i and tij is the time-point of the most
recent common ancestor shared between samples i and j, (tij ≤ ti, tj), and r is a row index.
Expressions for Pr(sjk|sijk ,M�, tj) can be derived accordingly, by simply replacing ti by tj
in the above equation. Note that the calculation of these conditional probabilities requires
repeated matrix multiplication. However, a direct evaluation of these equations is also
possible using the fact that

G′ti−tij = pVti−tijp−1 and G′tj−tij = pVtj−tijp−1,

where p is the eigenvector of matrix G′ and V is a diagonal matrix of eigenvalues. For
selfing and clonal/somatic systems, these eigenvalues and eigenvectors can be obtained
analytically.
Finally, to derive D•

ij(M�), we also need to supply Pr(sijk = n|M�); that is, the prob-
ability that locus k in the most recent common ancestor of samples i and j is in state n
(n ∈ {0, 0.5, 1}). To do this, consider the methylome of the pedigree founder at time t = 1,
and let π =[ p1 p2 p3] be a row vector of probabilities corresponding to states u/u, u/m
andm/m, respectively. Using Markov Chain theory, we have

Pr(sijk = 0|M�) =
[
π G′(tij−1)

]

1

Pr(sijk = 0.5|M�) =
[
π G′(tij−1)

]

2

Pr(sijk = 1|M�) =
[
π G′(tij−1)

]

3

In many situations, the most recent common ancestor happens to be the pedigree
founder itself, so that tij = 1. In the case where the methylome of the pedigree founder
has been measured, the probabilities p1, p2 and p3 can be estimated directly from the data
using x1N−1, x2N−1 and x3N−1, respectively. Here, x1, x2, and x3 are number of loci that
are observed to be in states u/u, u/m, m/m, and N is the total number of loci. Typically,
however, x2 is unknown as most DMP and DMR callers do not output epiheterozygous
states (i.e., intermediate methylation calls). Instead, we therefore use

p1 = x1
N
, p2 = γ

x3
N
, p3 = (1 − γ )

x3
N

where γ ∈[ 0, 1] is an unknown parameter.
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Model inference

To obtain estimates for �, we seek to minimize the least-squares using

∇
M∑

q=1

(
Dq − D•

q(M�) − c
)2 = 0, (3)

where the summation is over all M unique pairs of sequenced samples in the pedigree.
Minimization is performed using the “Nelder-Mead” algorithm as part of the optimx
package in R. However, from our experience, convergence is not always stable, probably
because the function D•

q(M�) is complex and highly non-linear. We therefore include the
following minimization constraint:

∇
M∑

q=1

(
Dq − D•

q(M�) − c
)2

(4)

+M
(
p̃1 − p1(t∞,M�)

)2 = 0. (5)

Here, p1(t∞,M�) is the equilibrium proportion of u/u loci in the genome as t → ∞. For
a selfing system with w = 1, we have that

p1(t∞,M�) = β((1 − β)2 − (1 − α)2 − 1)
(α + β)((α + β − 1)2 − 2)

,

and for a clonal/somatic system, it is:

p1(t∞,M�) = β2

(α + β)2
.

For the case where 0 ≤ w < 1, the equations are more complex and are omitted here.
Note that the value p̃1 is an empirical guess at these equilibrium proportions. For samples
whose methylomes can be assumed to be at equilibrium, we have that p1(t = 1) = p1(t =
2) = · · · = p1(t∞), meaning that the proportion of loci in the genome that are in state
u/u are (dynamically) stable for any time t. Under this assumption, p̃1 can be replaced by
p1, which is the average proportion of u/u loci calculated from all pedigree samples.

Confidence intervals

We obtain confidence intervals for the estimated model parameters by boostrapping the
model residuals. The procedure has the following steps: (1) For the qth sample pair q
(q = 1, · · · ,M), we define a new response variable Bq = D̂q + ε̂k , where D̂q is the fitted
divergence for the qth pair and ε̂k is drawn at random and with replacement from the
1×M vector of fitted model residuals. (2) Refit the model using the new response variable
and obtain estimates for the model parameters. (3) Repeat steps 1 to 2 a large number
of times to obtain a bootstrap distribution. (4) Use the bootstrap distribution from 3 to
obtain empirical confidence intervals.

Testing for selection

To assess whether a selection model provides a significantly better fit to the data
compared to a neutral model, we define

RSSF =
M∑

q=1
εq(�̂)2

and
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RSSR =
M∑

q=1
εq(α̂, β̂ , γ̂ , ĉ|w = 1)2

to be the estimated residual sums of squares of the full model and reduced (i.e., neu-
tral) model, respectively, with corresponding degrees of freedom dfF and dfR. To test for
selection, we evaluate the following F-statistic:

F = (RSSR − RSSF)

RSSF
· dfF
dfN

,

where dfN = dfF − dfR. Under the Null F ∼ F(dfN , dfF).

Application
To illustrate the utility of our method, we used AlphaBeta to study “germline” epimu-
tations in selfing- and asexually derived MA lines of Arabidopsis (A. thaliana) and
dandelion (Taraxacum officinale), as well as somatic epimutations in a single poplar
tree (Populus trichocarpa). Our goal was to demonstrate the wide range of application
of our method and to highlight several novel insights into the nature of spontaneous
epimutations in plants.

Analysis of spontaneous epimutations in selfing-derived A. thalianaMA lines

We first analyzed three A. thaliana MA pedigrees (MA1_1, MA1_3, MA3, see Fig. 2a).
We chose theseMA pedigrees because they differ markedly in their topologies, 5mC sam-
pling strategies, sequencing method, and depth (Fig. 2a, b, Additional file 1: Table S1). All
MA pedigrees were derived from a single Col-0 founder accession. The first MA pedi-
gree (MA1_1) was originally published by Becker et al. [13]. The pedigree data consists of
11 independent lineages with sparsely collected WGBS samples (∼ 19.2X coverage) from
generations 3, 31, and 32, and amaximum divergence time (�t) of 64 generations. MA1_3
was previously published by van der Graaf et al. [12]. This data consists of single lineage
with dense MethylC-seq measurements (∼ 13.8X coverage) from generations 18 to 30,
and a maximum �t of 13 generations. Finally, we present a new pedigree (MA3), which
consists of 2 lineages with dense MethylC-seq measurements (∼ 20.8X coverage) from
generations 0 to 11, and a maximum �t of 22 generations. Unlike MA1_1 and MA1_3,
MA3 has 5mC measurements from progenitor plants of each sampled generation, rather
than from siblings of those progenitors (Fig. 2a). Further information regarding the sam-
ples, sequencing depths, and platforms is provided in Additional file 1: Table S1. A
detailed description of data pre-processing and methylation state calling can be found in
the “Materials and data pre-processing” section.

Spontaneous epimutations accumulate neutrally over generations

We started by plotting genome-wide (global) 5mC divergence (D) against divergence time
(�t). D increases as a function of �t in all pedigrees (Fig. 2d). A characteristic pattern is
the rapid, non-linear increase inD for the first ∼ 8 generations followed by a nearly linear
increase. As pointed out before [12], the initial non-linearity is driven by the stable seg-
regation and fixation of epiheterozygote loci that originate from the pedigree founder, a
phenomenon that has been well-described in the classical genetic theory of experimen-
tal line crosses [34–37]. By contrast, the subsequent linear increase in D is mainly due
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Fig. 2 Analysis of “germline” epimutations in A. thalianamutation accumulation (MA) lines. a Three different
MA pedigrees were analyzed. All three pedigrees were derived from a single Columbia (Col-0) inbred
genotype. Two of the pedigrees were previously published (MA1_1, Becker et al. 2011; MA1_3, van der Graaf
et al. 2015), and one pedigree (MA3) is new. These three MA pedigrees were chosen because they differ in
their topologies, 5mC measurement strategies, and the temporal resolution of the 5mC samples. b Overview
of the data: N is the total number of sequenced samples; Seq depth is the average sequence depths of the
samples; # TP is the number of unique time-points (or generations) that are sampled; max. (�t) is the
maximum divergence time (in generations) in the pedigree. c Application of models Abnull, Abneutral,
ABmm, and Abuu. The best fitting model is indicated for each MA pedigree, sequence context (CG, CHG, and
CHH), and genomic feature (global, exons, promoters, TEs). d Shown are the fits of the best fitting models for
each pedigree and context. e Schematic representation of transgenerationally stable CHH epimutations. The
barplots indicate the density of stable CHH epimutations in lineages L2 and L8 of the MA3 pedigree. f CHH
sites featuring stable epimutations tend to fall outside of sRNA clusters in lineages L2 and L8. g Analysis of
cmt2mutant and Col-0 wt from Stroud et al. [2] show loss of methylation in the mutant at the stable CHH
epimutation sites, indicating that these loci are targeted by CMT2. e Compared to the whole genome (wg),
stable CHH loci with stable epimutations are enriched for CWA trinucleotides, which is a preferred substrate
for CMT2 binding

to the accumulation of new epimutations that arise de novo during inbreeding. The co-
occurrence of these two processes is restricted to mutation accumulation systems that are
propagated sexually. In clonally or asexually derived MA lines, the non-linear increase in
D should be absent, as can indeed be seen in our later analysis of poplar and dandelion
(see below).
Another striking insight from the 5mC divergence patterns is that the increase in D is

particularly pronounced for context CG but appears to be low, or even absent, at CHG and
CHH loci. Similar observations have previously led to the hypothesis that the inheritance
of spontaneous epimutations may be restricted to CG dinucleotides [11, 12], perhaps as
a consequence of the preferential reinforcement of CHG and CHH methylation during
sexual reproduction [38, 39]. Using heuristic arguments, it had been further suggested
that CG epimutations accumulate neutrally, at least at the level of individual cytosines,
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meaning that 5mC gains and loss in this context are under no selective constraints [12].
However, these hypotheses have never been tested explicitly due to a lack of analytical
tools.
To address this, we fitted models ABneutral, ABmm, ABuu, and ABnull to

the divergence data of each pedigree (Fig. 2c). As mentioned above (see the
“The AlphaBeta method” section), model ABneutral assumes that spontaneous 5mC
gains and losses accumulate neutrally across generations, ABmm assumes that the accu-
mulation is partly shaped by selection against spontaneous losses of 5mC, ABuu assumes
that the accumulation is partly shaped selection against spontaneous gains, and ABnull is
the null model of no accumulation. Formal model comparisons revealed that ABneutral
provides the best fit to the 5mC divergence data in context CG in all pedigrees (Fig. 2c,
Additional files 2, 3, and 4: Tables S2-S4). This was true at the genome-wide scale (global)
as well as at the sub-genomic scale (exons, promoters, TEs). Globally,ABneutral explained
between 77 and 90% of the total variance inD, indicating that a neutral epimutationmodel
provides a good and sufficient description of the molecular process that generates herita-
ble 5mC changes at level of individual cytosines over time. Interestingly, we also detected,
for the first time, highly significant accumulation of neutral epimutations in contexts
CHG and CHH (Fig. 2c, Additional files 2, 3, and 4: Tables S2-S4). However, the detection
of these accumulation patterns was mainly restricted to MA1_1, the largest of the three
pedigrees in terms of both sample size (N=26) and divergence times (max.�t=64), and to
some extent also toMA3, the second largest of the three pedigrees (N = 13, max.�t=22).
The detected accumulation of CHH epimutations was somewhat surprising, given that

cytosine methylation in this context is typically targeted by the RNA-directed DNA
methylation pathway (RdDM). The de novo action of this pathway should prevent the
formation of trans-generationally stable epimutations, particularly those originating from
DNA methylation loss [40]. To explore this observation in more detail, we inspected
specific CHH sites that showed stable methylation status changes over generation time
(Fig. 2e). Our analysis revealed that these CHH sites actually fall outside of known sRNA
clusters and are therefore unlikely involved in RdDM (Fig. 2f ). Instead, they appear to be
targeted by CHROMOMETHYLASE 2 (CMT2), an enzyme that maintains methylation
at a subset of CHG and CHH sites, independently of RdDM. Support for this hypothesis
comes from the fact that these CHH sites are enriched for trinucleotide context CWA (W
= A, T) (Fig. 2g), which is a preferred substrate for CMT2 binding [41]. Moreover, a re-
analysis of a cmt2methylation mutant from Stroud et al. [2] revealed a marked reduction
in cytosine methylation at these CHH sites relative to wt (Fig. 2h), providing additional
evidence for a maintenance role of CMT2 at these loci.
Taken together, these results provide a possible molecular explanation for the accumu-

lation of CHH epimutations over generation time, at least for specific CHH subcontexts.
However, the ability to consistently detect these accumulation patterns from multi-
generational pedigree data should be explored more systematically in future studies,
particularly as a function of sample size, divergence time, and measurement uncertainly
in 5mC divergence.

The rate and spectrum of spontaneous CG, CHG, and CHH epimutations

We examined the estimated epimutation rates corresponding to the best fitting models
from above (Fig. 3a, Additional files 2, 3, and 4: Tables S2-S4). Globally, we found that
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Fig. 3 Comparisons of the CG epimutation rates and spectra. a Shown are the estimates (± 95% confidence
intervals) of the genome-wide (global) CG epimutation rates for the different pedigrees. For comparison, we
also show the range of previous estimates from A. thalianaMA lines (A. thaliana (2015)); see van der Graaf et
al. (2015). In poplar, the estimated per-year epimutation rates were converted to per-generation rates by
assuming a generation time of 15 years and 150 years. The gain and loss rates are all well within one order of
magnitude of each other, and differences are mostly within estimation error. The dashed vertical lines mark
off the lower and upper range of the point estimates. b Side-by-side comparison of “germlines” and somatic
epimutation rate estimates (± 95% confidence intervals) in A. thalianaMA lines and poplar, respectively, for
selected genomic features. The rank ordering of the magnitude of these rates is similar. For A. thaliana, the
order of presentation of the pedigrees is MA3, MA1_3, and MA1_1 (from bottom to top within each feature).
Feature-specific rates could not be obtained in dandelion since no annotated assembly is currently available

the CG methylation gain rate (α) is 1.4 · 10−4 per CG per haploid genome per generation
on average (range 8.6 · 10−5 to 1.94 · 10−4) and the loss rate (β) is 5.7 · 10−4 on average
(range 2.5 ·10−4 to 8.3 ·10−4). Using data from pedigreeMA1_1, we also obtained the first
epimutation rate estimates for contexts CHG and CHH. The gain and loss rates for CHG
were 3.5 · 10−6 and 5.8 · 10−5 per CHG per haploid genome per generation, respectively;
and for CHH, they were 1.9 · 10−6 and 1.6 · 10−4 per CHH per haploid genome per gen-
eration. Hence, transgenerationally heritable CHG and CHH epimutations arise at rates
that are about 1 to 2 orders of magnitude lower than CG epimutations in A. thaliana,
which is reflected in the relatively slow increase of 5mC divergence in non-CG contexts
over generation time (Fig. 2d).
In addition to global estimates, we also assessed the gain and loss rates for selected

genomic features (exons, promoters, TEs). In line with previous analyses [12], we found
striking and consistent rate differences, with exon-specific epimutation rates being 2 to
3 orders of magnitude higher than TE-specific rates (Fig. 3b, Additional files 2, 3, and 4:
Tables S2-S4). Interestingly, this trend was not only restricted to CG sites, but was also
present in contexts CHG and CHH. This later finding points to yet unknown sequence
or chromatin determinants that affect the 5mC fidelity of specific regions across cell
divisions, independently of CG, CHG, and CHHmethylation pathways.
We note that the CG epimutation rates reported here differ slightly from our previous

estimates [12] (Fig. 3a, Additional files 3 and 4: Tables S3-S4). This small discrepancy
is mainly the result of differences in the data pre-processing. Application of AlphaBeta
to published pre-processed samples yielded similar results to those reported previously
(data not shown), indicating that the statistical inference itself is consistent. Unlike past
approaches, we here utilized the recent MethylStar pipeline [42] for data pre-processing
and methylation state calling. The use of this pipeline leads to a substantial increase in
the number of high-confidence cytosine methylation calls for downstream epimutation
analysis (Additional file 5: Table S5). This boost in sample size is reflected in the lower
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variation in α and β estimates across MA pedigree compared with previous reports [12]
(Fig. 3a, Additional files 2 and 3: Tables S2-S3).

Analysis of spontaneous somatic epimutations in poplar

Despite the above quantitative insights into the rate and spectrum of spontaneous epimu-
tation in A. thaliana, it remains unclear how and where these epimutations actually
originate in the plant life cycle. One hypothesis is that they are the result of imperfect 5mC
maintenance during the mitotic replication of meristematic cells which give rise to all
above and below ground tissues, including the “germline” (Additional file 6: Figure S1). As
the germline is believed to be derived quite late in development from somatic precursors,
somatic epimutations that accumulate during aging can subsequently be passed to off-
spring. An alternative hypothesis is that heritable epimutations originate as a byproduct
of sRNA-mediated reinforcement errors in the sexual cell linages. One way to distin-
guish these two possibilities is to study epimutational processes in systems that bypass or
exclude sexual reproduction.
Long-lived perennials, such as trees, represent a powerful system to explore this. A

tree’s branching structure can be interpreted as an intra-organismal phylogeny of dif-
ferent somatic cell lineages. It is therefore possible to track mutations and epimutations
and their patterns of inheritances across different tree sectors. Recently, there has been
a surge of interest in characterizing somatic nucleotide mutations in trees using whole
genome sequencing data [43–46]. These studies have shown that fixed mutations arise
sequentially in different tree sectors, thus pointing at a shared meristematic origin.
To facilitate the first insights into epimutational processes in long-lived perennials,

we applied AlphaBeta to MethylC-seq leaf samples (∼ 41.1X coverage) from 8 sep-
arate branches of a single poplar (Populus trichocarpa) tree (see also co-submission,
[26]). The tree features two main stems (here referred to as tree 13 and tree 14), which
were originally thought to be two separate trees (Fig. 4a, b). However, both stems are
stump sprouts off an older tree that was knocked down about 350 years ago. In other
words, tree 13 and tree 14 are clones that have independently diverged for a long time.
Four branches from each tree were chosen and aged by coring at the points where
each branch meets the main stem as well as at the terminal branch (Fig. 4a, b, see the
“Materials and data pre-processing” section). Age dating of the bottom sector of the
tree proved particularly challenging because of heart rot, rendering estimates of the total
tree age imprecise. However, an estimate based on diameter measurements places the
minimum age of the tree at about 250 years.

Inferring total tree age from leafmethylome data

We used the coring-based age measurements from each of the branches along with the
branch points to calculate divergence times (�t) between all pairs of leaf samples (Fig. 4c).
We did this by tracing back their ages (in years) along the branches to their most recent
common branch point (i.e., “founder cells”) (Additional file 6: Figure S1). The calcula-
tion of the divergence times for pairs of leaf samples originating from tree 13 and tree 14
was not possible since the total age of the tree was unknown. To solve this problem, we
included the total age of the tree as an additional unknown parameter into our epimuta-
tion models. Our model estimates revealed that the total age of the tree is approximately
330 years (Fig. 4e), an estimate that fits remarkably well with the hypothesized age window
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Fig. 4 Analysis of somatic epimutations in poplar. a A single poplar (P. trichocarpa) tree was analyzed. Tree 13
and 14 are two main stems that have diverged early in development. Four branches from each tree were
chosen and aged by coring. b Shown are the coring sites along with the coring-based branch ages. Age
coring proved technically challenging at the bottom of the tree and led to unintelligible ring counts. An
educated guess places the age of the tree between 250 and 350 years. c The tree can be presented as an
intra-organismal phylogeny. Leaf methylomes were collected from each of the selected branches and served
as input for AlphaBeta. d Overview of the data: N is the total number of sequenced samples; Seq depth is the
average sequence depths of the samples; # TP is the number of unique time-points that are sampled; max.
(�t) is the maximum divergence time (in years) between leaf samples. e AlphaBetawas fitted to the global CG
methylation divergence data of the complete tree data treating tree age as an unknown parameter. Model
residual (LSQ) was minimized at an age of 330 years, which is our estimate of the age of the tree. fModel
comparisons indicate that somatic epimutations accumulate neutrally in context CG (red) and CHG (orange)
during aging, both at the global scale as well as within specific genomic features (exons, promoters, TEs). g, h
Shown are the fits of model ABneutral to the global CG (red) and CHG (orange) methylation divergence data
of the complete tree (intra-tree + inter-tree, g), as well as for tree 13 and tree 14 separately (intra-tree, h)

(between 250 and 350 years). Furthermore, the model fits provided overwhelming evi-
dence that somatic epimutations, in poplar, accumulate in a selectively neutral fashion
during aging, both at the genome-wide scale (globally) as well as at the sub-genomic scale
(exons, promoters, TEs) (Fig. 4f, see also co-submission [26]). This was true for CG and
CHG contexts (Fig. 4g). The fact that the accumulation of CHG epimutations is so clearly
detectable in poplar, but only inconsistently in A. thaliana MA lines, could indicate that
somatically acquired CHGmethylation changes experience some level of reprogramming
during sexual reproduction. But this hypothesis should be tested more directly using cell-
type-specific sequencing approaches. To rule out that the somatic accumulation patterns
in poplar are not dominated by our estimate of tree age, we also examined the accumula-
tion patterns within tree 13 and tree 14 separately. We found similar accumulation slopes
as well as epimutation rates (Fig. 4h, see also co-submission [26]).

Epimutation spectra have a somatic origin

We examined the somatic epimutation rate estimates from the complete tree analysis.
At the genome-wide scale, we found that the 5mC gain and loss rates in context CG are
1.7 · 10−6 and 5.8 · 10−6 per site per haploid genome per year, respectively, and 3.3 · 10−7

and 4.1 · 10−6 in context CHG. Interestingly, these per-year CG epimutation rates are
only about two orders of magnitude lower than the per-generation rates in A. thaliana
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MA lines. Assuming an average generation time of about 15 to 150 years in poplar [47],
its expected per-generation CG epimutation rate would be between ∼ 10−5 and ∼ 10−4,
which is within the same order of magnitude to that of A. thaliana (∼ 10−4) (Fig. 3a).
This close similarity is remarkable given that poplar is about ∼ 100 times larger and its
life cycle ∼ 1000 times longer than that of A. thaliana. Similar insights were reached in a
recent comparison of the per-generation nucleotide mutation rates between Oak (Quer-
cus rubur) and A. thaliana [45], which were also found to be remarkably close to each
other. Taken together, these findings support the emerging hypothesis that meristematic
cells of long-lived perennials undergo fewer cell divisions per unit time than annuals,
so that the cumulative life-time number of cell divisions is similar [46]. This hypothesis
should be tested more directly using cell count assays.
To assess whether the accumulation dynamics of somatic epimutations in poplar differs

between genomic features, we examined in more detail the estimated rates and spectra
for exons, promoters, and TEs (Fig. 3b). Focusing on context CG, we found considerable
rate differences. The gain rates for exons, promoters, and TEs were 2.4 · 10−6, 1.1 · 10−6,
and 7.5 · 10−7 per site per haploid genome per year, respectively, and the loss rates were
2 · 10−5, 8 · 10−6, and 2.8 · 10−7. Intriguingly, the rank order of these rates was similar
to what we had observed for germline epimutations in A. thaliana, with exons showing
the highest combined rates, followed by promoters and then TEs (Fig. 3b). These findings
indicate that the epimutation spectrum is deeply conserved across angiosperms and that
it is mainly shaped during somatic development, rather than being a byproduct of selec-
tive reinforcement of DNA methylation in the germline or early zygote. Identifying cis-
and trans-determinants that affect local epimutation rates seems to be an important next
challenge [11].

Analysis spontaneous epimutations in asexually derived dandelion MA lines

Our analysis of A. thaliana and poplar revealed strong similarities in epimutation rates
and spectra. To facilitate further inter-specific comparisons, particulary across differ-
ent mating systems, we generated novel MA lines in an asexual dandelion (Taraxacum
officinale) genotype (AS34) [48] (Fig. 5a). Apomictic dandelions are triploid and pro-
duce asexually via clonal seeds in a process that involves unreduced egg cell formation
(diplospory), parthenogenic embryo development, and autonomous endosperm forma-
tion, resulting in genetically identical offspring [49]. Using single-seed descent from a
single apomictic triploid founder genotype, 8 replicated lineages were propagated for 6
generations, and 5mC measurements were obtained from each generation (Fig. 5a).
The total dataset was relatively large, with 48 sequenced samples and a

maximum divergence time of 14 generations (Fig. 5b). 5mC measurements
were obtained using epigenotyping-by-sequencing (epiGBS) [32] (see the
“Materials and data pre-processing” section). Since there is currently no published
dandelion reference assembly, local assemblies were generated de novo from the epiGBS
short reads and served as basis for cytosine methylation calling [32]. With this approach,
∼ 24000 measured cytosines were shared between any two sample pairs on average and
were used to calculate pair-wise CG methylation divergence D.
Plotting D against divergence time (�t) revealed considerable measurement variation

across samples (Fig. 5c). This large variation could have several possible sources: First,
methylation state calling was based on local assemblies rather than on reference-based
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Fig. 5 Analysis of CG epimutations in apomictic dandelion. a Using single-seed descent from a single
apomictic triploid founder genotype, 8 replicated lineages were propagated for 6 generations. DNA
methylation measurements were obtained using epigenotyping by sequencing (epiGBS). b Overview of the
data: N is the total number of sequenced samples; Seq depth is the average sequence depths of the samples;
# TP is the number of unique time-points that are sampled; max. �t is the maximum divergence time (in
generations) between samples. *Note: the calculation of average read coverage was based only on
interrogated cytosines as epiGBS does not yield any genome-wide data. cModel fits to the CG divergence
data. Highly significant increases in 5mC divergence (D) over generation time (�t) were detected in all
sequence contexts, despite the relatively large variation in 5mC divergence patterns (see text)

alignments. Second, epiheterozygotes in this triploid genotype could not be effectively
distinguished on the basis of the observed methylation levels, which introduce uncertain-
ties in the calculation D. Third, early implementations of the epiGBS protocol could not
distinguish PCR duplicates, a problem that has since been solved [50].
Despite these limitations, application of AlphaBeta to the CG divergence data revealed

strong statistical evidence for epimutation accumulation over time (F941,945=6.68, p <

0.0001). Consistent withA. thaliana and poplar, a neutral epimutationmodel (ABneutral)
provided the best fit to the data. Based on these model fits, we estimate the global CG gain
rate and loss rate at 6.9·10−4 and 1.4·10−3 per CG site per haploid genome per generation,
respectively (Fig. 3). We note that these “per-haploid” rate estimates are slightly biased
upward, since we applied AlphaBeta’s diploid models to data from a triploid species, but
this model mis-specification should have little impact in the analysis of asexually repro-
ducing systems in which genetic segregation is absent. Keeping this caveat in mind, our
results show that the dandelion per-generation CG epimutation rates are close to those
obtained in A. thaliana and poplar (Fig. 3a), and at least within the same order of magni-
tude. This finding reinforces the notion that epimutational process are largely conserved
across angiosperms, which is probably a direct consequence of the fact that the DNA
methylationmaintenance machinery is itself highly conserved [5, 51]. Moreover, our find-
ings in dandelion lend further support to the hypothesis that sexual reproduction has
no major impact on the formation and inheritance of spontaneous epimutations. Future
studies should test this hypothesis more directly by studying the epimutation landscape
of a fixed genotype that has been propagated in parallel both sexually and asexually.

Discussion
Accurate estimates of the rate and spectrum of spontaneous epimutations are essential
for understanding how DNA methylation diversity arises in the context of plant evolu-
tion, development, and aging. Here, we presentedAlphaBeta, a computational method for
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obtaining such estimates from pedigree-based high-throughput DNA methylation data.
Our method requires that the topology of the pedigree is known. This requirement is typ-
ically met in the experimental construction of mutation accumulation lines (MA lines)
that are derived through sexual or clonal reproduction. However, we demonstrated that
AlphaBeta can also be used to study somatic epimutations in long-lived perennials, such
as trees, using leaf methylomes and coring data as input. In this case, our method treats
the tree branching structure as an intra-organismal phylogeny of somatic lineages and
uses information about the epimutational history of each branch.
To demonstrate the versatility of our method, we applied AlphaBeta to very diverse

plant systems, including multi-generational DNA methylation data from selfing- and
asexually derived MA lines of A. thaliana and dandelion, as well as intra-generational
DNA methylation data of a poplar tree. Our analysis led to several novel insights about
epimutational processes in plants. One of the most striking findings was the close similar-
ity in the epimutation landscapes between these very different systems. Close similarities
were observed in the per-generation CG epimutation rates between A. thaliana, dande-
lion, and poplar both at the genome-wide as well as at the subgenomic scale. Any detected
rate differences between these different systems were all within one order of a magnitude
of each other, and as such practically indistinguishable from experimental sources of vari-
ation. As a reference, variation in epimutation rate estimates across different A. thaliana
mutation accumulation experiments vary up to 75% of an order of a magnitude. Clearly,
larger sample sizes are needed along with controlled experimentally comparisons to be
able to identify potential biological causes underlying subtle epimutation rate differences
between species, mating systems, genotypes, or environmental treatments. Furthermore,
the close similarity between sexual and asexual (or somatic) systems reported here pro-
vide indirect evidence that transgenerationally heritable epimutations originate mainly
during mitotic rather than during meiotic cell divisions in plants.
Our application of AlphaBeta to poplar also provided the first proof-of-principle

demonstration that leaf methylome data, in combination with our statistical models,
can be employed as a molecular clock to age-date trees or sectors of trees. Analytically,
this is similar to inferring the branch lengths of the underlying pedigree (or phylogeny).
With sufficiently large sample sizes, it should be possible to achieve this with relatively
high accuracy and extend this inference to the entire tree structure. The comparatively
high rates of somatic and germline epimutations are instrumental in this as they pro-
vide increased temporal resolution over classical DNA sequence approaches, which rely
on rare de novo nucleotide mutations. Our methodological approach should be applica-
ble, more generally, to any perennial or long-lived species. We are currently extending the
AlphaBeta tool set to facilitate such analyses.
Analytically, AlphaBeta is not restricted to the analysis of plant data. The method could

also be used to study epimutational processes in tumor clones based on animal single-cell
WGBS data. Such datasets are rapidly emerging [52]. In this context, AlphaBeta could be
instrumental in the inference of clonal phylogenies and help calibrate them temporally.
Such efforts may complement current pseudotemporal ordering (or trajectory inference)
methods and lineage tracing strategies in single-cell methylation data [53, 54].
The implementation of AlphaBeta is relatively straight-forward. The starting point of

the method are methylation state calls for each cytosine. These can be obtained from any
methylation calling pipeline. In the data applications presented here, we used AlphaBeta
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in conjunction with MethylStar [42], which is an efficient pre-processing pipeline for
the analysis of WGBS data and features a HMM-based methylation state caller [55].
Application of this pipeline leads to up a substantial increase in the number of high-
confidence cytosine methylation calls for epimutation rate inference compared with more
conventional methods. We therefore recommend using AlphaBeta in conjunction with
MethylStar. Software implementing AlphaBeta is available as a Bioconductor R package
at https://bioconductor.org/packages/release/bioc/html/AlphaBeta.html.

Materials and data pre-processing
A. thalianaMA lines data

Plantmaterial

For MA3, seeds were planted and grown in 16-h day lengths and samples were harvested
from young above ground tissue. Tissue was flash frozen in liquid nitrogen and DNA was
isolated using a Qiagen Plant DNeasy kit (Qiagen, Valencia, CA, USA) according to the
manufacturer’s instructions. For MA1_1 and MA1_3, a detailed description of growth
conditions and plant material can be found in the original publications [12, 13].

Sequencing and data processing

For MA3, MethylC-seq libraries were prepared according to the protocol described in
Urich et al. [56]. Libraries were sequenced to 150 bp per read at the Georgia Genomics &
Bioinformatics Core (GGBC) on a NextSeq500 platform (Illumina). Average sequencing
depth was 20.8X among samples (Additional file 1: Table S1). For MA1_1 and MA1_3,
FASTQ files (*.fastq) were downloaded from https://www.ncbi.nlm.nih.gov/geo/query/
acc.cgi?acc=GSE64463. All data processing and methylation state calling was performed
using the MethylStar pipeline [42]. Summary statistic for each sample can be found in
Additional file 1: Table S1. All sequences have been submitted to the GEO repository with
the following GEO accession number GSE153055.

Poplar data

Tree coring

The tree used in this study was located at Hood River Ranger District [Horse Thief
Meadows area], Mt. Hood National Forest, 0.6 mi south of Nottingham Campground
off OR-35 at unmarked parking area, 500′ west of East Fork Trail nbr. 650 across river,
ca. 45.355313, -121.574284. Tree cores were originally collected from the main stem and
five branches in April 2015 at breast height (∼ 1.5 m) for standing tree age using a
stainless-steel increment borer (5 mm in diameter and up to 28 cm in length). Cores
were mounted on grooved wood trim, dried at room temperature, sanded, and stained
with 1% phloroglucinol following the manufacturer’s instructions (https://www.forestry-
suppliers.com/Documents/1568_msds.pdf).
Annual growth rings were counted to estimate age. For cores for which accurate

estimates could not be made from the 2015 collection, additional collections were
made in spring 2016. However, due to difficulty in collecting by climbing, many of
the cores did not reach the center of the stem or branches (pith) and/or the sam-
ples displayed heart rot. Combined with the difficulty in demarcating rings in porous
woods such as poplar Populus, accurate measures of tree age or branch age were
challenging.
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Sequencing and data processing

A single MethylC-seq library was created for each branch from leaf tissue. Libraries
were prepared according to the protocol described in Urich et al. [56]. Libraries were
sequenced to 150 bp per read at the Georgia Genomics & Bioinformatics Core (GGBC)
on a NextSeq500 platform (Illumina). Average sequencing depth was 41.1x among sam-
ples. MethylC-seq reads were aligned using Methylpy v1.3.2 [57]. Alignment was to the
new Stettler14 assembly of P. trichocarpa, as described in [26]. Starting from the BAM
files (*.bam), the MethylStar pipeline [42] was used for further data processing and
methylation state calling. All sequences have been deposited in SRA (see [26]).

Dandelion MA lines data

Plantmaterial

Starting from a single founder individual, eight replicate lineages of the apomictic
common dandelion (Taraxacum officinale) genotype AS34 [48] were grown for six
generations via single-seed descent under common greenhouse conditions. Apomictic
dandelions are triploid and produce asexually via clonal seeds in a process that involves
unreduced egg cell formation (diplospory), parthenogenic embryo development, and
autonomous endosperm formation, resulting in genetically identical offspring [49]. Seeds
were collected from each of the 48 plants in the six-generation experiment and stored
under controlled conditions (15 ◦C and 30% RH). After the 6th generation, from each
plant in the pedigree, a single offspring individual was grown in a fully randomized
experiment under common greenhouse conditions. Leaf tissue from a standardized leaf
was collected after 5 weeks, flash frozen in liquid nitrogen, and stored at − 80 ◦C until
processing.

Sequencing and data processing

DNA was isolated using the Macherey-Nagel Nucleospin Plant II kit (cell lysis buffer
PL1). DNAwas digested with the PstI restriction enzyme and epiGBS sequencing libraries
were prepared as described elsewhere [32]. Based on genotyping-by-sequencing [58],
epiGBS is a multiplex reduced representation bisulphite sequencing (RRBS) approach
with an analysis pipeline that allows for local reference construction from bisulphite
reads, which makes the method applicable to species for which a reference genome is
lacking [32]. PstI is a commonly used restriction enzyme for genotyping-by-sequencing;
however, its activity is sensitive to CHG methylation in CTGCAG recognition sequence.
This makes the enzyme better at unbiased quantification of CG methylation than of
CHG methylation [32]. After quantification of the sequencing libraries using a multi-
plexed IlluminaMiSeq Nano run, samples were re-pooled to achieve equal representation
in subsequent epiGBS library sequencing. The experimental samples were sequenced
on two Illumina HiSeq 2500 lanes (125 cycles paired-end) as part of a larger epiGBS
experiment which consisted of a total of 178 samples that were randomized over the
two lanes. Because of inadequate germination or due to low sequencing output (library
failure), four of the 48 samples were not included in the downstream analysis. All
sequences have been deposited in SRA under Bioproject: PRJNA608438. The biosam-
ples include SAMN14266774 to 778, SAMN14266797 to 802, SAMN14266821 to 826,
SAMN14266845 to 850, SAMN14266869 to 872, SAMN14266874, SAMN14266893 to
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894, SAMN14266896 to 897, SAMN14266916 to 921, and SAMN14266940 to 945. These
44 samples have been submitted as part of a bigger experiment of 178 samples total.

DNAmethylation analysis

Sequencing reads were demultiplexed (based on custom barcodes) and mapped against
a dandelion pseudo-reference sequence that was generated de novo from PstI-based
epiGBS [32]. This pseudo-reference contains the local reference of PstI-based epiGBS
fragments as inferred from the bisulphite reads. Methylation variant calling was based on
SAMtools mpileup and custom python scripts, following a similar approach as described
in van Gurp et al. [32]. For downstream analysis, we included only those cytosines that
were called in at least 80% of the samples. In addition, cytosine positions that did not pass
the filtering criteria for all generations were removed.
To obtain methylation status calls, we implemented a one-tail binomial test as previ-

ously described [12]. Multiple testing correction was performed using the Benjamini-
Yekutiely method [59], and the false discovery rate (FDR) was controlled at 0.05. All
statistical tests for obtaining methylation status calls of the samples were conducted
within the SciPy ecosystem.
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Table S1

Table S1: WGBS information for MA pedigrees MA1_1, MA1_3 and MA3. 

samples platform library layout Mean Coverage(X)

MA1_1_G31_109_r1 Illumina GAIIx Paired-end 10.75
MA1_1_G31_109_r2 Illumina GAIIx Paired-end 7.53
MA1_1_G31_119_r1 Illumina GAIIx Paired-end 9.91
MA1_1_G31_119_r2 Illumina GAIIx Paired-end 10.5
MA1_1_G31_29_r1 Illumina GAIIx Paired-end 7.91
MA1_1_G31_29_r2 Illumina GAIIx Paired-end 13.53
MA1_1_G31_29_r3 Illumina GAIIx Paired-end 7.86
MA1_1_G31_39_r1 Illumina GAIIx Paired-end 12.29
MA1_1_G31_39_r2 Illumina GAIIx Paired-end 6.98
MA1_1_G31_49_r1 Illumina GAIIx Paired-end 8.71
MA1_1_G31_49_r2 Illumina GAIIx Paired-end 11.26
MA1_1_G31_59_r1 Illumina GAIIx Paired-end 11.05
MA1_1_G31_59_r2 Illumina GAIIx Paired-end 7.07
MA1_1_G31_79_r1 Illumina GAIIx Paired-end 11.28
MA1_1_G31_79_r2 Illumina GAIIx Paired-end 13.77
MA1_1_G31_89_r1 Illumina GAIIx Paired-end 9.28
MA1_1_G31_89_r2 Illumina GAIIx Paired-end 7.94
MA1_1_G31_99_r1 Illumina GAIIx Paired-end 10.83
MA1_1_G31_99_r2 Illumina GAIIx Paired-end 7.18
MA1_1_G31_99_r3 Illumina GAIIx Paired-end 12.96
MA1_1_G32_39_r1 Illumina GAIIx Paired-end 9.81
MA1_1_G32_39_r2 Illumina GAIIx Paired-end 9.43
MA1_1_G32_49_r1 Illumina GAIIx Paired-end 8.65
MA1_1_G32_49_r2 Illumina GAIIx Paired-end 6.6
MA1_1_G3_26_r1 Illumina GAIIx Paired-end 7.99
MA1_1_G3_87_r1 Illumina GAIIx Paired-end 10.97
MA1_1_G3_87_r2 Illumina GAIIx Paired-end 7.66
MA1_3_G18_12_r1 Illumina NextSeq 500 Single-end 5.86
MA1_3_G19_12_r1 Illumina NextSeq 500 Single-end 6.25
MA1_3_G20_12_r1 Illumina NextSeq 500 Single-end 6.56
MA1_3_G21_12_r1 Illumina NextSeq 500 Single-end 8.55
MA1_3_G25_12_r1 Illumina NextSeq 500 Single-end 6.46
MA1_3_G26_12_r1 Illumina NextSeq 500 Single-end 6.75
MA1_3_G28_12_r1 Illumina NextSeq 500 Single-end 8.18
MA1_3_G29_12_r1 Illumina NextSeq 500 Single-end 6.67
MA1_3_G30_12_r1 Illumina NextSeq 500 Single-end 7.2
MA3_G0 Illumina NextSeq 500 Single-end 9.44
MA3_G11_L2 Illumina NextSeq 500 Single-end 10.31
MA3_G11_L8 Illumina NextSeq 500 Single-end 23.52
MA3_G1_L2 Illumina NextSeq 500 Single-end 8.85
MA3_G1_L8 Illumina NextSeq 500 Single-end 8.47
MA3_G2_L2 Illumina NextSeq 500 Single-end 9.91
MA3_G2_L8 Illumina NextSeq 500 Single-end 9.36
MA3_G4_L2 Illumina NextSeq 500 Single-end 9.8
MA3_G4_L8 Illumina NextSeq 500 Single-end 9.38
MA3_G5_L2 Illumina NextSeq 500 Single-end 8.82
MA3_G5_L8 Illumina NextSeq 500 Single-end 8.98
MA3_G8_L2 Illumina NextSeq 500 Single-end 8.97
MA3_G8_L8 Illumina NextSeq 500 Single-end 9.43
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Table S2

Table S2: Epimutation rate estimates and model selection results for pedigree MA1_1

A. thaliana (MA1_1)

context annotation alpha beta beta/alpha FM RM F-value df RM df FM P--value

CG global 8.605897E-05 0.0002497981 2.903 ABneutral Abnull 461.7119 350 346 2.70488E-137

CG exon 0.0003329146 0.0008854249 2.660 ABneutral Abnull 506.9881 350 346 2.99272E-143

CG promoter 4.390624E-05 0.0003396206 7.735 ABneutral Abnull 574.9184 350 346 2.19508E-151

CG TE 2.777663E-05 7.500164E-06 0.270 ABneutral Abnull 122.3618 350 346 6.001881E-65
CG global ABselectUU Abneutral 0.4806 347 346 0.4885955
CG exon ABselectUU Abneutral 0.0453 347 346 0.8316087
CG promoter ABselectUU Abneutral 1.8765 347 346 0.1716251
CG TE ABselectUU Abneutral 0.7210 347 346 0.3963924
CG global ABselectMM Abneutral 0.4731 347 346 0.4920452
CG exon ABselectMM Abneutral 0.1176 347 346 0.7318225
CG promoter ABselectMM Abneutral 0.4049 347 346 0.5249724
CG TE ABselectMM Abneutral 0.1476 347 346 0.7011182

CHG global 3.533486E-06 5.84628E-05 16.545 ABneutral Abnull 16.4449 350 346 2.399368E-12
CHG exon 1.537786E-06 0.0002547714 165.674 ABneutral Abnull 20.6207 350 346 2.958294E-15
CHG promoter 2.408792E-06 0.0001227248 50.949 ABneutral Abnull 19.3769 350 346 2.124209E-14
CHG TE 2.124037E-05 3.025496E-05 1.424 ABneutral Abnull 9.4822 350 346 2.768493E-07
CHG global ABselectUU Abneutral 0.0000 347 346 1
CHG exon ABselectUU Abneutral 0.0164 347 346 0.8980838
CHG promoter ABselectUU Abneutral 0.0000 347 346 1
CHG TE ABselectUU Abneutral 0.0000 347 346 1
CHG global ABselectMM Abneutral 0.0000 347 346 1
CHG exon ABselectMM Abneutral 0.0228 347 346 8.80E-01
CHG promoter ABselectMM Abneutral 0.0000 347 346 1
CHG TE ABselectMM Abneutral 0.0000 347 346 1

CHH global 1.905105E-06 0.0001614412 84.741 ABneutral Abnull 11.6186 350 346 7.294017E-09
CHH exon 1.09903E-06 0.0006017335 547.513 ABneutral Abnull 18.1246 350 346 1.577799E-13
CHH promoter 1.349004E-06 0.0002622809 194.426 ABneutral Abnull 19.3769 350 346 2.124209E-14
CHH TE 5.54414E-06 6.181445E-05 11.150 ABneutral Abnull 9.4822 350 346 2.768493E-07
CHH global ABselectUU Abneutral 0.9755 347 346 0.3240002
CHH exon ABselectUU Abneutral 0.0000 347 346 1
CHH promoter ABselectUU Abneutral 0.0000 347 346 1
CHH TE ABselectUU Abneutral 0.0000 347 346 1
CHH global ABselectMM Abneutral 0.0000 347 346 1
CHH exon ABselectMM Abneutral 0.0000 347 346 1
CHH promoter ABselectMM Abneutral 0.0000 347 346 1
CHH TE ABselectMM Abneutral 0.0000 347 346 1

FM = Full model
RM = Reduced model
df = degrees of freedom

Best performing model
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Table S3

Table S3: Epimutation rate estimates and model selection results for pedigree MA1_3

A. thaliana (MA1_3)

context annotation alpha beta beta/alpha FM RM F-value df RM df FM P--value
CG global 0.0001411325 0.0006480785 4.592 ABneutral Abnull 26.0964 35 31 1.545386E-09
CG exon 0.0004417924 0.001566664 3.546 ABneutral Abnull 36.7694 35 31 2.352825E-11
CG promoter 8.473369E-05 0.0009098872 10.738 ABneutral Abnull 22.7134 35 31 7.66475E-09
CG TE 0.0002361935 0.0001108124 0.469 ABneutral Abnull 7.9028 35 31 0.0001635841
CG global ABselectUU Abneutral 0.6312 32 31 0.4329535
CG exon ABselectUU Abneutral 0.1957 32 31 0.6612462
CG promoter ABselectUU Abneutral 0.4402 32 31 0.5119528
CG TE ABselectUU Abneutral 0.0135 32 31 0.9084139
CG global ABselectMM Abneutral 0.6343 32 31 0.4318425
CG exon ABselectMM Abneutral 0.2816 32 31 0.5994397
CG promoter ABselectMM Abneutral 0.2889 32 31 0.5947381
CG TE ABselectMM Abneutral 0.0163 32 31 0.8993372

CHG global NA NA NA ABneutral Abnull 0.6354 35 31 0.6410907
CHG exon NA NA NA ABneutral Abnull 0.4926 35 31 0.7411286
CHG promoter NA NA NA ABneutral Abnull 0.7356 35 31 0.5747893
CHG TE NA NA NA ABneutral Abnull 0.3041 35 31 0.8729979
CHG global ABselectUU Abneutral 0.0271 32 31 0.8703212
CHG exon ABselectUU Abneutral 0.0000 32 31 1
CHG promoter ABselectUU Abneutral 0.1223 32 31 0.7289703
CHG TE ABselectUU Abneutral 0.0759 32 31 0.7847896
CHG global ABselectMM Abneutral 0.0312 32 31 0.8609342
CHG exon ABselectMM Abneutral 0.0000 32 31 1.00E+00
CHG promoter ABselectMM Abneutral 0.1063 32 31 0.7466025
CHG TE ABselectMM Abneutral 0.0779 32 31 0.7820306

CHH global NA NA NA ABneutral Abnull 0.6695 35 31 0.6180636
CHH exon NA NA NA ABneutral Abnull 0.5049 35 31 0.732369
CHH promoter NA NA NA ABneutral Abnull 1.2939 35 31 0.2938961
CHH TE NA NA NA ABneutral Abnull 0.3691 35 31 0.8287454
CHH global ABselectUU Abneutral 0.0018 32 31 0.9661093
CHH exon ABselectUU Abneutral 0.0000 32 31 1
CHH promoter ABselectUU Abneutral 0.0016 32 31 0.9687817
CHH TE ABselectUU Abneutral 0.7337 32 31 0.3982717
CHH global ABselectMM Abneutral 0.0079 32 31 0.9296158
CHH exon ABselectMM Abneutral 0.0000 32 31 1
CHH promoter ABselectMM Abneutral 0.0003 32 31 0.9871071
CHH TE ABselectMM Abneutral 0.0325 32 31 0.8581938

FM = Full model
RM = Reduced model
df = degrees of freedom

Best performing model
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Table S4

Table S4: Epimutation rate estimates and model selection results for pedigree MA3

A. thaliana (MA3)

context annotation alpha beta beta/alpha FM RM F-value df RM df FM P--value

CG global 0.0001942304 0.0008340002 4.294 ABneutral Abnull 136.2307 65 61 1.103063E-29

CG exon 0.0005635082 0.001829657 3.247 ABneutral Abnull 210.1967 65 61 6.177088E-35

CG promoter 0.0001128601 0.001141507 10.114 ABneutral Abnull 108.4535 65 61 5.190251E-27
CG TE NA NA NA ABneutral Abnull 1.0608 65 61 0.383711
CG global ABselectUU Abneutral 0.0000 62 61 1
CG exon ABselectUU Abneutral 0.0000 62 61 1
CG promoter ABselectUU Abneutral 0.1053 62 61 0.7467267
CG TE ABselectUU Abneutral 0.0000 62 61 1
CG global ABselectMM Abneutral 0.0001 62 61 0.9934013
CG exon ABselectMM Abneutral 0.0000 62 61 1
CG promoter ABselectMM Abneutral 0.0000 62 61 1
CG TE ABselectMM Abneutral 0.1116 62 61 0.739439

CHG global NA NA NA ABneutral Abnull 2.0182 65 61 0.1030624
CHG exon NA NA NA ABneutral Abnull 0.0141 65 61 0.9995992
CHG promoter 1.783862E-06 0.0001055335 59.160 ABneutral Abnull 5.0076 65 61 0.001479819
CHG TE 5.517707E-05 0.0001307905 2.370 ABneutral Abnull 5.7078 65 61 0.0005720866
CHG global ABselectUU Abneutral 0.9363 62 61 0.3370451
CHG exon ABselectUU Abneutral 0.0000 62 61 1
CHG promoter ABselectUU Abneutral 0.0707 62 61 0.7912417
CHG TE ABselectUU Abneutral 0.5221 62 61 0.4727021
CHG global ABselectMM Abneutral 0.8975 62 61 0.3471843
CHG exon ABselectMM Abneutral 0.0000 62 61 1.00E+00
CHG promoter ABselectMM Abneutral 0.0000 62 61 1
CHG TE ABselectMM Abneutral 0.8804 62 61 0.3517958

CHH global NA NA NA ABneutral Abnull 1.0187 65 61 0.404864
CHH exon NA NA NA ABneutral Abnull 0.1767 65 61 0.9495845
CHH promoter 1.71043E-08 4.1274E-06 241.308 ABneutral Abnull 2.9878 65 61 0.02558529
CHH TE NA NA NA ABneutral Abnull 0.2803 65 61 0.8896153
CHH global ABselectUU Abneutral 0.7073 62 61 0.4036315
CHH exon ABselectUU Abneutral 0.4033 62 61 0.5277759
CHH promoter ABselectUU Abneutral 0.0000 62 61 1
CHH TE ABselectUU Abneutral 0.0000 62 61 1
CHH global ABselectMM Abneutral 1.2129 62 61 0.275082
CHH exon ABselectMM Abneutral 0.2588 62 61 0.6127902
CHH promoter ABselectMM Abneutral 0.0000 62 61 1
CHH TE ABselectMM Abneutral 0.0684 62 61 0.7945567

FM = Full model
RM = Reduced model
df = degrees of freedom

Best performing model
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Table S5

Table S5: Pre-processing of  WGBS data using MethylStar increases the number of high-confident cytosines that can be used for 
epimutation analysis compared with previous pre-processing approaches.

coverage > 3 posteriorMax >=0.99
MA AllC CG CHG CHH AllC CG CHG CHH
MA1_1 13417233 2344610 2513665 8558958 23428047 3030753 3797292 16600002
MA1_3 25009841 3450911 3937253 20731677 29141823 3753716 4183152 21204955
MA3 25679815 3086050 3542387 19051378 24357974 3655356 4131622 16570996

Previous methods
MethylStar
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Fig. S1: Developmental origin of somatic epimutations in plants. The failure to maintain the methylation status of 
cytosines during the mitotic maintenance of shoot apical meristematic cell pools leads to spontaneous somatic 
epimutations. Shown here are only spontaneous gains of methylation, for simplicity. A small set of ‘founder’ cells gives 
rise to lateral branches at developmental times k, l, and m. The random sampling of founder cells creates a bottleneck 
which increases the frequency of somatic epimutations in the cell populations of lateral branches. Somatic epimutation 
accumulation in shoot apical meristems thus leads to increased 5mC divergence between leafs originating from different 
lateral branches (e.g. leaf methylomes from Branch 1 and 2 are more similar than those from Branch 1 and 3). 
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