The final authenticated version is available online at https://
doi.org/10.1007/978-3-031-46846-9_23

Resource-Driven Process Manipulation:
Modeling Concepts and Valid Allocations

Felix Schumann[0009-0006-5431-1922] " G¢afanie Rinderle-Mal0000—0001-5656-6108]
Technical University of Munich, Germany; TUM School of Computation,
Information, and Technology
{felix.schumann, stefanie.rinderle-ma}@tum.de

Abstract. Insituations of scarce resource availability, flexibility on which
resources execute which tasks is key to process and system performance.
Tightly coupled control flow and resource modeling hampers flexible re-
source allocation. Hence, in this work, we propose resource-driven process
manipulation (RDPM) to enable the separation between the business and
resource requirements for a process. RDPM enables process modelers to
specify resource-specific requirements for the control flow as part of re-
source profiles, e.g., a machine (resource) requires configuration (task)
before execution. Moreover, the resource is promoted to a first-class cit-
izen in process-aware information systems and enabled to impact the
execution. The basic concepts of RDPM are defined and an algorithm is
provided to find valid resource allocations for a task. The approach is pro-
totypically implemented and compared to existing modeling approaches
w.r.t. complexity for the modeler and process participant.

Keywords: Process-Aware Information Systems, Resource Perspective,
Resource Modeling, Process Changes, Resource Allocation

1 Introduction

“The resources of an organization are valuable assets, often cost-intensive, and
limited” [7]. Especially in cooperative environments, processes and their in-
stances utilize resources in a shared manner [8/9]. Hence, modeling, assigning,
and allocating resources to process tasks is of utmost importance. Although exist-
ing approaches address the resource perspective of processes, often resources and
their assignments are only modeled as part of the control flow, e.g., as swimlanes
in BPMN. This “mixed modeling” approach results in unclear effects, especially
when resources change. Moreover, process and resource owner are not necessarily
the same person, hampering the modeling of both views and their requirements
(e.g., a resource demanding for an extra step or temporal requirement).

Hence, we propose the separation of concerns between control flow and re-
source requirements in process-aware information systems (PAIS) as depicted
in Fig. |1} i.e., to model resources as objects at design time, which can manip-
ulate the control flow of an instance at run-time to integrate its own process
requirements into it. With this resource-driven process manipulation (RDPM)

2 Felix Schumann, Stefanie Rinderle-Ma

approach, the process models are simplified, task modeling becomes easier for
process and resource owners, and resources can be flexibly added/deleted and
linked to the process. The latter particularly contributes to the adaptability of
processes to varying resource availability.

/ Business Process \ Process Model (_,_models _______ Process
—_— / : - - . Owner
Busine5§ Objective executed Instance Model
Requirements /
Resource 1 Resource 2 \ O_»Semp equlred by
- A Resource Profile 1 Resource Profile 2 R1 _RP1
Separation of Concerns | | | ©] Iiz)l-e_ ----- . F_lt-)l_e- ----- i R b
orioncems | [.- DO oo DOl |
Y @@ ! Control Flow ! i Control Flow ! ?RQZUI:PZ Y Check
L7 | Requirement ! 1 Requirement !
Resource | @B Check ! (setup >N |

Requirements ! Performance

Measures

- i Measures j

Fig. 1: Separation of process and resource requirements in RDPM

Rtttk
! Performance - models7 Resource
L. Measures 1)) Owner

The core modeling concept of RDPM is the resource profile as depicted in
Fig. [1] specifying resources, their linkage to the processes, and the manipulation
of process instances required by this resource. Manipulation of process instances
must not result in undesired side effects by introducing correctness issues into
the instances. Hence, we have to provide means to check the validity of resource
allocation in RDPM based on allocation trees.

In Sections [2] and [3] we will introduce the basic concepts of RDPM and an
algorithm for valid allocations. In Sect. [d] we present a first prototype, identified
use cases for RDPM and a visual representation on how RDPM simplifies the
models. Sect. [§] presents related work, Sect. [6] discusses the approach and gives
an outline of further planned development of the approach

2 Modeling Concepts of RDPM

The core concept of RDPM is the resource profile. In order to enable the sepa-
ration of control flow and resource requirements, a resource profile contains all
necessary information on the resource plus the linkage to the process and how
the resource will manipulate the process instances it is allocated to. Equation
[1] defines a resource profile rp as follows: it contains the resource r and its role
role. Moreover, task task that the resource can perform is specified. Additional
attributes Attr can be specified to, e.g., measure performance. Finally, the ma-
nipulation of a process instance, the resource is allocated to, is captured via a
set of change patterns C'P.

rp := (res, role, task, Attr, CP) (1)

Change patterns have been chosen as they are a well-defined concept for the
evolution and adaptation of processes and process instances [I8]. In this work,

Resource-Driven Process Manipulation 3

we focus on the insert, replace and delete pattern w.r.t. tasks. In the following,
we will provide the RDPM change patterns which are either adapted from the
change patterns in [I8] (insert) or can be directly used as defined in [I8] (replace,
delete). Note that inserting, deleting, and replacing tasks require an adaptation
of the control dependencies, e.g., to embed a newly inserted task into the control
flow. For these adaptations, we rely on the formal semantics of the insert, replace,
and delete patterns as defined in [I4].

— Insert: As defined in [18], the insert pattern Insert(S, X, A, B) — S’ inserts
new task X into process model S between activity sets A and B. It can be
specified whether X is inserted serially or in parallel. For RDPM, we adapt
the insert position of task X in relation to task task as specified in the
resource profile rp of resource, i.e., X can be inserted be fore|after|parallel
w.r.t. task. Overall, the insert pattern for RDPM is defined as oprppr :=
Insert(S, X, before|after|parallel).

— Replace: oprppry = Replace(S, X,Y) — S’ is concerned with the replace-
ment of a task with a new task. Although this operation can be expressed
by delete and insert patterns, we follow the argumentation of [I8] that the
higher level of abstraction is favorable for users.

— Delete: The change pattern oprppy = Delete(S, X) — S’ deletes task X
from process model S.

3 Finding Valid Resource Allocations

In general, when exposing a process model to change patterns, the risk of un-
dermining the soundness of the model arises [I§]. The previously refined change
operations of RDPM (cf. Sect. [2)) might not only affect control flow soundness,
but also the validity of resource allocation and of the data objects.
Guarantee of soundness and executability of the instance process
model: RDPM manipulates the instance model of a process and might affect the
successful execution of this instance. The successful execution depends on the
structural and behavioral soundness of the instance process model. Structural
soundness depends on the meta model and behavioral soundness demands for
being able to reach desired final states and the absence of tasks that can never
be executed (cf., e.g., [2]). Note that we assume the process model of interest to
be structurally and behaviorally sound before instance manipulation takes place.
As process meta model, we rely on refined process structure trees (RPST)
[I7] as the RPST model of structuring processes in fragments enables to check
the soundness of each fragment independently. Each fragment follows the single
entry point, single endpoint (SESE) structure. The leaves of the tree represent
the tasks. The RPST structure ensures the soundness of a node, iff all sub-
fragments of the node are also sound SESE fragments. For more description
of the RPST and how to compose other representations see [I7JI1I]. Thus the
soundness of the resulting process model after the application of a change pattern
is sound, iff the original process model and the change patterns are sound.

4 Felix Schumann, Stefanie Rinderle-Ma

Validity of resource allocation: An approach that deals with resources having
a direct impact on the execution of a process instance requires checking that
the execution is possible from the point of view of the resources. For RDPM,
soundness from this perspective means that a change pattern can only be applied
if there exist resources so that all tasks of the resulting instance model can
be successfully allocated. Thus after allocating the first task and applying the
connected change patterns, it must be checked if newly inserted tasks can also
be allocated. For finding valid allocations, an allocation tree is built with the
task to be allocated as its root node (cf. Algorithm [I)). The tree consists of task
nodes, and resource nodes and is created in a recursive way by building one
branch after the other.

Algorithm 1: build allocation tree

input : root: task node to allocate, ar: available resources, ex_ tasks:
excluded tasks, task parent, res parent
output: root: tree with all valid allocation branches for one task
for resource in ar do
for profile in resource.resourceprofiles do
if root.label = profile.task and root.role = profile.role then
‘ root.add _ child(resource) ; //Add resources as Children
end
end
end

if not root.children then
delete task nodes with current resource profile from res_parent

return root ; //Prune Branch without resources
end

for resource in root.children do

if resource.profile.change_patterns then

for cp in profile.change patterns do
tasks < cp.get _tasks

if any task of tasks in ex_tasks then
delete resource from root.children

break ; //Prevent cycle
end

for task in tasks do
task _parent < root

res_parent < resource
resource.add _child(build _allocation tree(task, ar, ex tasks,

task parent, res_parent)) ; //Recursive function call
end
end
return root
end
end

The children of each node must be of the opposite type than its parent. As
depicted in Fig. [2| a task node’s children are all resource profiles with a role

Resource-Driven Process Manipulation 5

that is part of the task’s authorized roles (Role Based Access). Each of these
resource nodes has the tasks defined in its change patterns as its children. As
input, the algorithm requires the task that needs a resource allocated to it and
the resources that are available for allocation. Excluded tasks, task parent, and
resource parent are optional parameters that are needed for the recursive call of
the algorithm. In order to prevent a cyclic allocation, a task that is already part
of a branch can not become part of the same branch again.

While building the tree, the validity of each branch is checked as follows:
For a branch to be valid, every task (main task and tasks introduced by change
patterns) needs an authorized resource allocated to it. Therefore, a branch only
represents a valid allocation if all its leaves are of type resource. A branch that
ends with a task as leaf (invalid allocation) can be pruned back until a task node
with a valid allocation is found (see Fig. 2| dashed box).

The pruning based on resource validity leads to a minimal tree of valid
branches. Once the whole tree is built, it is used to find the optimal branch
for the allocation. Each branch of the tree represents one valid allocation and
can be compared to the other branches based on the attributes defined in the
resource profiles. Since the role, performance attributes and change patterns are
part of the resource profile, the best branch for the set objective can be identified.

D Task Node
Q Resource Node

1 Areato Prune

> Valid Allocation Paths

Fig. 2: Allocation tree, two valid allocation branches, one invalid branch to prune.

Validity towards data objects: It is important to mention that also the data
perspective can lead to invalid allocations. During the execution of a process,
data objects are created, updated, and consumed. These data objects can be
created by tasks that are deleted through RDPM or tasks inserted by RDPM
need to consume data objects that are not yet created. Developing a concept of
ensuring the validity of data objects poses an important task for future work,
but is not in the scope of this paper.

4 Evaluation

The prototypical implementation of the RDPM approach is embedded in a
service-oriented architecture. As evaluation, we identify fitting use cases where

6 Felix Schumann, Stefanie Rinderle-Ma

RDPM will improve quality and simplicity of the model, followed by a compar-
ison of existing process and resource modeling approaches for a use case.
Prototypical Implementation: To realize RDPM, we propose to offer the
allocation of tasks as an external service to the PAIS. Figure [3] shows how the
RDPM service links the PAIS to a Resource Management System.

/" Workflow Management System

us‘es _,| Process Modeling & Stores. - Deploys.
< Definition Service Process ploy:
H Repository

Process X ;
Modeler e e st e TR R -
Requests Allocation of Returns Modified

Process Model Model

Instance
Model

Change

~" Resource Management System RDPM-Service
Patterns
Process

: Resource Modeling & - . Requests Resources Allocation
uses) . . Stores- H "
< B Definition Service Resoqrce | Returns Available ! Algorithm
: Repository ' Resources H
B H R Model

RESOUCE ™==-mmmmmommmomoomooo oo s -
Modeler

Fig. 3: Description of the system with RPDM as external service.

This service-oriented architecture enables a high level of flexibility towards
the resource allocation task while realizing the separation between the business
objective and the resource management as intended by RDPM by design.

For the implementation, we used the Cloud Process Execution Engine (CPEE)H
as service-oriented PAIS. As resource repository, a description of the available
resources, with resource profiles and change patterns, is given in an XML file.
The creation of a complete Resource Management System is not in the scope of
this work, but is considered for future development.

The allocation request is designed as a specific task in the CPEE at the
beginning of the process model to call the RDPM service. Figure [4] shows this
design in the CPEE. The "measure" and "operator" arguments set the objective
for the best branch. A prototype with demo use cases is availableﬂ

To generate the modified model, change operations are derived from the
change patterns and applied to the model (cf. [3]). The modified instance model is
returned to the CPEE and the execution of the instance is started. The returned
instance model is a CPEE-Tree which is based on the RPST [I0]. This modified
CPEE-Tree is now augmented with the allocated resources.

Use cases for RDPM: RDPM enables modelers to model a relation between
resources and their process requirements. This feature is also characteristic of
the field of Operations Research (OR). We identified that RDPM helps to sim-
plify the transition from OR problems, which are concerned with improving and
planning operations, to BPM, which is concerned with controlling and enacting

! cpee.org/
% https://github.com/Schlixmann/RDPM

Resource-Driven Process Manipulation 7

. D = a4

Endpoint = allocation
@ dlccation o Properties

a Drill hole into product al Label = Allocation
Method = :post

a Check quality of product | a2
Arguments

. resource_url

resource_file

lendpoints.resources
drill

Measure

=
=
= time
=

Operator max

Fig. 4: Description of the allocation task and its connected parameters.

these operations in a real-world setting [II5]. Therefore we argue that RDPM is
an important step for BPM to become more proactive as demanded in [13].

From the field of OR problems, we identified the order batching problem,
the flexible job shop scheduling problem and the parallel machine scheduling
problem as problems that are well supported by RDPM. At the current state of
RDPM, the parallel machine scheduling problem is best supported.
Comparison with Existing Modeling Approaches: Consider the following
use case (cf. Fig. [5)): In order to execute the task “drilling”, the machine needs
to be configured for “drilling”. The task “configure machine for drilling” has to
be inserted as predecessor (cf. setup time in yarn dyeing machines in [6]). In
addition, assume that after drilling the hole, a quality check of the product
is needed. Task “Check quality of product” can be done by three resources:
manually by a technician or an inexperienced student technician, and automated
by a 3D Measurement machine. The machine needs to be leveled before it can
perform the measuring and the student needs supervision while checking the
product. Figure [f|(a) shows the use case modeled in traditional fashion.

The expectation of RDPM is a “clean” process model and an executable
instance model. When using RDPM only the business objective must be modeled
in the process model. Figure b) shows this business objective-focused process.
After applying RDPM to an instance of the process model, the allocated instance
model of the use case is shown in Fig. c) and is ready for execution.

Figure [f] shows that RDPM simplifies the process model as well as the in-
stance model. Modelers and domain experts can profit from this visualization.
Modeling multiple variants of a process is an important research field in BPM,
where variants usually depend on data objects rather than the used resources.
Process families (cf. [4]) model every possible trace in a separate process model
and categorize these models into families. Another common approach is the def-
inition of sub-processes in combination with late binding [I8]. Both approaches
lead to highly complex (sub-) process repositories. RDPM’s advantage over these
approaches is the simplicity of change patterns and the easy adjustment of these
change patterns as part of the resource profile.

Resource-driven process manipulation generates a clean and easy-to-understand
process model. After the allocation, the instance model is shown in a fully flat-

8 Felix Schumann, Stefanie Rinderle-Ma

Allocation

(a) Traditional Process Model (b) RDPM Process Model

! exclusive
|

Technician) .- |-

[:S Drill hole into product
Machine with
Setup
Setup drill
H /
Drill hole into product /

\
N
exclusive \\

®

Technician) .-|-.

(s)

Allocation

Check quality of product
Setup dill

Drill hole into product

Check quality of product
Supervise quality check

Supervise quality check

B - 3D-Measurement
Machine

S | Level 3D measure machine

Check quality of product

Full 3D check

3

Fig.5: (a) Process model designed traditionally for all resources; (b) process
model designed following RDPM focused on the business objective of the process;
(c) the instance model shows what will actually be executed.

tened way and can help users to understand the upcoming tasks. The flattened
structure is considered more easily understandable [16]. If an adjustment of a
change pattern is done, it is automatically applied to all related processes and
thus the integrity of process models is ensured.

5 Related Work

Many approaches deal with flexibility or the usage of resources in BPM. The
description of resource profiles was originally used to mine multiple attributes
of resources in a process mining setting in [I2]. In terms of combining processes
based on their features, [4] describes the use of process families to enable multiple
different process options based on one process template. A larger review on
variability and change modeling in BPM is given in [I5] comparing different
approaches to model variability into process models.

Resource-Driven Process Manipulation 9

The authors of [8] discuss the requirements of an integrated view on process
and data. The study finds that neither imperative nor declarative approaches
fulfill the requirements of such an integrated view, while data-driven approaches
are not mature enough. [I9] provides more advanced allocation approaches for
human resources by utilizing process mining to optimize resource allocation with
the process costs as the optimization objective. We argue that RDPM is an
enabler to introduce such optimization algorithms to a more proactive BPM.

6 Discussion and Outlook

The proposed Resource-Driven Process Manipulation (RDPM) approach equips
resources with the chance to alter the control flow of a process instance. This way
a separation of concerns between the process requirements which serve the busi-
ness objective and the process requirements which serve the underlying resource
infrastructure can be achieved. Using the RDPM modeling approach, control
flow and resources become closer connected at execution, while a more precise
line can be drawn in modeling them.

While a strength of this approach is the focus on changing the instance model
and executing it, one could argue that the process model itself does not represent
all process options. Regarding the change patterns, the current implementation
is not yet able to realize the change pattern concerned with deletion. To do so, we
identified that dependencies are needed to further specify when a change pattern
should be applied, e.g., only if the previous task is allocated to the same resource.
The replace pattern in the current implementation is only applied to the task
open for allocation, with the implementation of the delete pattern this will be
enhanced to the full process. Lastly, the validity in terms of the data objects is
not yet guaranteed. In future work, we plan to implement the delete pattern and
to add the dependencies as a first step towards the data flow perspective.

Considering that one of RDPM’s strengths is the identification of non-business-
objective related processing times, the generated data can help to develop and
integrate optimization algorithms, which realize an optimized resource allocation
at run-time as described in [19]. To achieve this functionality, execution times or
process performance could be predicted for the valid branches of the allocation
tree. RDPM will help to enhance the flexibilty of PAIS w.r.t. resource allocation.

Acknowledgements: This work was funded by the Deutsche Forschungsge-
meinschaft (DFG, German Research Foundation) - Project number 277991500

References

1. van der Aalst, W.M.P.: Business process management: A comprehensive survey
2013, 1-37 (2013). https://doi.org/10.1155/2013/507984

2. van Dongen, B.F.; Mendling, J., van der Aalst, W.M.P.: Structural patterns for
soundness of business process models. In: Enterprise Distributed Object Comput-
ing Conference. pp. 116-128 (2006). https://doi.org/10.1109/EDOC.2006.56

https://doi.org/10.1155/2013/507984
https://doi.org/10.1155/2013/507984
https://doi.org/10.1109/EDOC.2006.56
https://doi.org/10.1109/EDOC.2006.56

10

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Felix Schumann, Stefanie Rinderle-Ma

Fdhila, W., Indiono, C., Rinderle-Ma, S., Reichert, M.: Dealing with change in
process choreographies: Design and implementation of propagation algorithms. Inf.
Syst. 49, 1-24 (2015). https://doi.org/10.1016/j.is.2014.10.004

Groner, G., Boskovic, M., Parreiras, F.S., Gasevic, D.: Modeling and validation of
business process families. Inf. Syst. 38(5), 709-726 (2013). https://doi.org/10.
1016/j.1s.2012.11.010

Hillier, F., Lieberman, G.: Introduction to Operations Research. McGraw-Hill Ed-
ucation (2021)

Hsu, H., Hsiung, Y., Chen, Y., Wu, M.: A GA methodology for the scheduling
of yarn-dyed textile production. Expert Syst. Appl. 36(10), 12095-12103 (2009).
https://doi.org/10.1016/j.eswa.2009.04.075

Ihde, S., Pufahl, L., Volker, M., Goel, A., Weske, M.: A framework for modeling
and executing task-specific resource allocations in business processes. Computing
104(11), 24052429 (2022). https://doi.org/10.1007/500607-022-01093-2
Kiinzle, V., Weber, B., Reichert, M.: Object-aware business processes: Fundamen-
tal requirements and their support in existing approaches. Int. J. Inf. Syst. Model.
Des. 2(2), 19-46 (2011). https://doi.org/10.4018/jismd.2011040102

Leitner, M., Rinderle-Ma, S.: A systematic review on security in process-aware
information systems - constitution, challenges, and future directions. Inf. Softw.
Techn. 56(3), 273-293 (2014). https://doi.org/10.1016/j.infsof.2013.12.004
Mangler, J., Rinderle-Ma, S.: Cloud process execution engine: Architecture and
interfaces. https://doi.org/10.48550/arXiv.2208.12214

Munoz-Gama, J., Carmona, J., Van Der Aalst, W.M.P.: Conformance Checking
in the Large: Partitioning and Topology. In: Business Process Management, pp.
130-145 (2013). https://doi.org/10.1007/978-3-642-40176-3_11

Pika, A., Leyer, M., Wynn, M.T., Fidge, C.J., ter Hofstede, A.H.M., van der Aalst,
W.M.P.: Mining resource profiles from event logs. ACM Trans. Manag. Inf. Syst.
8(1), 1:1-1:30 (2017). https://doi.org/10.1145/3041218

Poll, R., Polyvyanyy, A., Rosemann, M., Roglinger, M., Rupprecht, L.: Pro-
cess forecasting: Towards proactive business process management. In: Busi-
ness Process Management. pp. 496-512 (2018). https://doi.org/10.1007/
978-3-319-98648-7_29

Rinderle-Ma, S., Reichert, M., Weber, B.: On the formal semantics of change pat-
terns in process-aware information systems. In: Conceptual Modeling. pp. 279-293
(2008). https://doi.org/10.1007/978-3-540-87877-3_21

Rosa, M.L., Aalst, W.M.P.V.D., Dumas, M., Milani, F.P.: Business Process Vari-
ability Modeling: A Survey. ACM Computing Surveys 50(1), 2:1-2:45 (2017).
https://doi.org/10.1145/3041957

Tiretken, O., Dikici, A., Vanderfeesten, I.T.P.;, Rompen, T., Demirors, O.: The
influence of using collapsed sub-processes and groups on the understandability
of business process models. Bus. Inf. Syst. Eng. 62(2), 121-141 (2020). https:
//doi.org/10.1007/s12599-019-00577-4

Vanhatalo, J., Volzer, H., Koehler, J.: The refined process structure tree. Data
Knowl. Eng. 68(9), 793-818 (2009). https://doi.org/10.1016/j.datak.2009.
02.015

Weber, B., Reichert, M., Rinderle-Ma, S.: Change patterns and change support
features - enhancing flexibility in process-aware information systems. Data Knowl.
Eng. 66(3), 438-466 (2008). https://doi.org/10.1016/].datak.2008.05.001
Zhao, W., Yang, L., Liu, H., Wu, R.: The optimization of resource allocation based
on process mining. In: Advanced Intelligent Computing Theories and Applications
ICIC. pp. 341-353 (2015). https://doi.org/10.1007/978-3-319-22053-6_38

https://doi.org/10.1016/j.is.2014.10.004
https://doi.org/10.1016/j.is.2014.10.004
https://doi.org/10.1016/j.is.2012.11.010
https://doi.org/10.1016/j.is.2012.11.010
https://doi.org/10.1016/j.is.2012.11.010
https://doi.org/10.1016/j.is.2012.11.010
https://doi.org/10.1016/j.eswa.2009.04.075
https://doi.org/10.1016/j.eswa.2009.04.075
https://doi.org/10.1007/s00607-022-01093-2
https://doi.org/10.1007/s00607-022-01093-2
https://doi.org/10.4018/jismd.2011040102
https://doi.org/10.4018/jismd.2011040102
https://doi.org/10.1016/j.infsof.2013.12.004
https://doi.org/10.1016/j.infsof.2013.12.004
https://doi.org/10.48550/arXiv.2208.12214
https://doi.org/10.48550/arXiv.2208.12214
https://doi.org/10.1007/978-3-642-40176-3_11
https://doi.org/10.1007/978-3-642-40176-3_11
https://doi.org/10.1145/3041218
https://doi.org/10.1145/3041218
https://doi.org/10.1007/978-3-319-98648-7_29
https://doi.org/10.1007/978-3-319-98648-7_29
https://doi.org/10.1007/978-3-319-98648-7_29
https://doi.org/10.1007/978-3-319-98648-7_29
https://doi.org/10.1007/978-3-540-87877-3_21
https://doi.org/10.1007/978-3-540-87877-3_21
https://doi.org/10.1145/3041957
https://doi.org/10.1145/3041957
https://doi.org/10.1007/s12599-019-00577-4
https://doi.org/10.1007/s12599-019-00577-4
https://doi.org/10.1007/s12599-019-00577-4
https://doi.org/10.1007/s12599-019-00577-4
https://doi.org/10.1016/j.datak.2009.02.015
https://doi.org/10.1016/j.datak.2009.02.015
https://doi.org/10.1016/j.datak.2009.02.015
https://doi.org/10.1016/j.datak.2009.02.015
https://doi.org/10.1016/j.datak.2008.05.001
https://doi.org/10.1016/j.datak.2008.05.001
https://doi.org/10.1007/978-3-319-22053-6_38
https://doi.org/10.1007/978-3-319-22053-6_38

	Resource-Driven Process Manipulation: Modeling Concepts and Valid Allocations

