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Abstract
Technical systems are getting more and more complex. One reason for this is the constantly
growing proportion of software within systems. Consequently, safety analysis, which is
mostly required for the approval process, is becoming increasingly complex and leads to
higher development costs. Model-based safety analysis (MBSA) can significantly improve
the development process. In model-based safety analysis, safety and design engineers work
on a common model and thus always with the same state. Analyses can be automated and
at the same time, the results obtained are objective and do not depend on the engineers’
skills. The analyses require less time and the development costs decrease. Safety analyses
should be performed in the early stages of the development process. The later errors are
discovered, the more expensive it is to fix them. When a system is developed, usually only
a rough idea of the system behavior is available. Therefore, special formalism is needed.

This thesis introduces the smartIflow (State Machines for Automation of Reliability-
related Tasks using Information FLOWs) formalism, which is particularly developed for
the safety analysis of systems in the early development phase. smartIflow is a qualitative
approach in which the components in the system are considered as finite-state machines.
The communication between the components is extremely flexible. The components
can publish so-called properties at the connection points which are propagated over
bidirectional connections to all reachable components. With this mechanism, systems
can be represented very well at the logical level. Depending on the focus of the analysis,
systems can also be described at the physical level using the qualitative energy flow analysis.
State changes of a component can be caused by internal or external influences. It will be
addressed how temporal behavior can be described on an abstract level. Furthermore, the
smartIflow language is going to be introduced, which can be used to describe the models
in a computer-understandable language.

Unfolding is used to determine the transition system of the system models. It is
discussed how the state space can be limited. An important task in the development of
systems is the verification of safety requirements. In the thesis, a method for automated
verification of a specification against a model is described. The algorithm delivers all
relevant counterexamples in case of a violation of the specification. This is an essential
difference to the existing model checkers. Moreover, an extension of the temporal logic
CTL is going to be discussed, so that the temporal behavior of the smartIflow system
models can be considered as well. From the counterexamples the minimal cutsets can be
determined, which can be represented as a fault tree. In the thesis, an approach for efficient
modeling is discussed, too. The practical usability of the approach is demonstrated by
some case studies.
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Zusammenfassung
Technische System werden zunehmend komplexer. Ein Grund dafür ist der stetig wach-
sende Softwareanteil. Folglich werden die Sicherheitsanalysen, die meist für den Zulas-
sungsprozess erforderlich sind, zunehmend aufwändiger und treiben die Entwicklungskosten
in die Höhe. Modellbasierte Sicherheitsanalyse (MBSA) kann den Entwicklungsprozess
signifikant verbessern. Bei der modellbasierten Sicherheitsanalyse arbeiten die Sicherheits-
und Konstruktionsingenieure an einem gemeinsamen Modell und somit immer mit dem
gleichen Zustand. Analysen können automatisiert werden und gleichzeitig sind die erzielten
Ergebnisse objektiv und hängen nicht von den Fähigkeiten der Ingenieure ab. Die Analysen
benötigen weniger Zeit und die Entwicklungskosten sinken. Die Sicherheitsanalysen sollten
bereits im frühen Entwicklungsstadium durchgeführt werden. Je später Fehler entdeckt
werden, desto teurer ist es diese zu beheben. Bei der Entwicklung eines Systems ist zu
Beginn meist nur eine grobe Idee vom Systemverhalten vorhanden. Dafür werden spezielle
Formalismen benötigt.

Diese Thesis stellt den smartIflow (State Machines for Automation of Reliability-
related Tasks using Information FLOWs) Formalismus vor, der insbesondere für die
Analyse von System im frühen Entwicklungsstadium geeignet ist. smartIflow ist ein
qualitativer Ansatz, bei dem die Komponenten im System als endliche Zustandsautomaten
betrachtet werden. Die Kommunikation zwischen den Komponenten ist extrem flexibel.
Die Komponenten können sogenannte Properties an die Anschlusspunkte legen, welche über
bidirektionale Verbindungen an alle erreichbaren Komponenten propagiert werden. Mit
diesem Mechanismus können Systeme auf logischer Ebene beschrieben werden. Abhängig
vom Analysefokus können die Systeme mit Hilfe der qualitativen Flussberechnung auch
auf Ebene der physikalischen Wechselwirkungen beschrieben werden. Zustandsänderungen
einer Komponente können durch interne oder externe Einflüsse erfolgen. Es wird diskutiert,
wie zeitliches Verhalten auf einer abstrakten Ebene beschrieben werden kann. Weiterhin
wird die smartIflow Sprache vorgestellt, mit der die Modelle in einer für den Computer
verständlichen Sprache beschrieben werden können.

Durch Entfaltung wird der Zustandsraum der Systemmodelle bestimmt. Es wird
diskutiert, wie der Zustandsraum begrenzt werden kann. Eine wichtige Aufgabe bei der
Entwicklung von Systemen ist die Überprüfung von Sicherheitseigenschaften. In der Thesis
wird ein Verfahren zur automatischen Überprüfung einer Spezifikation gegen ein Modell
beschrieben. Der Algorithmus liefert bei einer Verletzung der Spezifikation alle relevanten
Gegenbeispiele. Dies ist ein wesentlicher Unterschied zu den existierenden Modellprüfern.
Des Weiteren wird eine Erweiterung der Temporale Logik CTL diskutiert, dass auch
das zeitliche Verhalten der smartIflow Systemmodelle berücksichtigt werden kann. Aus
den Gegenbeispielen können die minimalen Schnittmengen bestimmt werden, welche als
Fehlerbaum dargestellt werden können. In der Thesis wird auch ein Ansatz zur effizienten
Modellierung diskutiert. Die praktische Nutzbarkeit des Ansatzes wird anhand einiger
Fallstudien gezeigt.
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1 Introduction

Safety analysis plays an important role in the development of safety-critical systems. It is
essential to verify design concepts and requirements as soon as possible, preferably before
they are implemented (see Figure 1.1).
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Figure 1.1: The V-Model with early verification

Discovering design flaws at a later stage makes it more expensive to fix them. Undetected
design flaws can lead to failures or critical situations causing considerable material and
environmental damage, or even to the loss of life. If a faulty system is already on the
market, it can be extremely expensive and potentially dangerous. Expensive recall actions
are necessary to fix the flaws and at its worst, people may have already been injured.

There are numerous examples from the past where undetected design flaws led to
considerable material and environmental damage or even to the loss of life. The best-
known example is probably the launch of Ariane 5 in 1996 [JM97] as the flight ended
already a few seconds after take-off. The rocket drifted off course due to a malfunction in
the control software and in consequence self-destructed. The error caused a loss of 290
million Euros. Apart from the total loss of the rocket, fortunately, no one was injured.

A software bug in the radiation therapy machine Therac-25 led to a massive overdose
of radiation [Lev17]. As a consequence, three cancer patients died between 1985 and 1987
and others were seriously injured. Appropriate countermeasures were not taken until after
these incidents.

A more recent example is the malfunction of the Teslas autopilot feature that caused a
fatal crash in which the driver was killed [Tes]. The crash happened when a truck crossed
the road in front of the autonomously driving Tesla Model S. The autopilot probably could
not distinguish the white painted side of the truck from the sky behind it and therefore
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1 Introduction

crashed into the truck.
Safety analysis techniques are applied during the development process of systems to

prevent the above-mentioned situations or to minimize the probability of their occurrence.
However, there are even more reasons why safety analysis is so crucial: Failures can have
significant financial consequences, including repair costs and potential fines. Safety analysis
helps in identifying and preventing situations that could lead to financial consequences.
Moreover, unplanned downtime of systems due to accidents or failures can affect processes
and therefore lead to additional costs. Many industries define strict regulations and
standards to ensure the safety of their technical systems. Compliance with these regulations
is often essential for the certification of the systems.

Of course, there is no guarantee for 100% safety, but it is possible to minimize failure
probabilities. Developing safe systems has always been a challenge and will not get easier.
One challenge in safe product design is the countless ways in which real-world systems can
fail. Another challenge is the increasing complexity of the systems. Ubiquitous computing,
autonomy, or the high connectivity of different subsystems enable innovative systems, but
at the same time, they lead to enormous complexity. Imagine for example a modern car
featuring an automated driving system (e.g., a traffic jam assistant, which automatically
brakes, accelerates, and stays in lane at low speeds). Usually, such cars are equipped with
more than 150 Electronic Control Units (ECUs) that communicate with each other over
the CAN bus [Ecu]. Each subsystem considered individually is already complex, but the
interconnections between them further increase the complexity. Additionally, the system
must react to changes in environmental conditions in real-time. It is impossible to analyze
such systems manually.

Safety analysis, no matter whether it is done manually or automated, is an iterative
task. Each time the system design changes, the requirements must be verified all over. In
manual safety analysis, this requires a lot of time, leading to high costs. Furthermore,
the quality of the results of a manual analysis depends on the skill of the safety engineer.
Even if two safety engineers come to the same result, it does not automatically mean that
the result is flawless. To obtain objective results and reduce costs, safety analysis must be
automated.

1.1 Model-Based Safety Assessment

Model-Based Safety Assessment (MBSA) as described in [Jos+05] is an approach that
tries to address some of these problems. Nowadays, model-based techniques are well
established in industry for the analysis and verification of the nominal behavior of a
system. The central point is a formal and computer-understandable model of the nominal
system behavior, which is used for various tasks such as code generation or testing. MBSA
is inspired by these traditional model-based techniques. Figure 1.2 depicts the MBSA
approach. To automate the safety analysis process, MBSA extends the system model by
a fault model (=extended system model). The fault model contains information about
possible failure modes and their effects. In addition to an extended system model, safety
requirements must be specified in a formal and computer-understandable form. Analysis
techniques are used to verify the extended system model against the safety requirements
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and to deliver safety artifacts such as Fault Trees.
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Figure 1.2: The model-based safety analysis process

MBSA enables safety and system engineers to work on the same model. On top of
that, results are objective, reproducible, and the quality does not depend so much on the
skills of the safety engineer. Different system designs can be compared efficiently, and the
knowledge is reusable. Of course, the results are only as good as the models. An incorrect
model will also produce incorrect results.

1.2 Motivation

The MBSA concept merely proposes the use of an extended system model but does not
describe any modeling formalism.

A central challenge in the automation of safety-related tasks is the choice of an ap-
propriate level of abstraction under which the systems are considered. Finding a good
balance between abstraction and high fidelity constitutes a major challenge. Detailed
system models deliver exact and comprehensive results, but at the same time lead to
a high computation effort. Simulation tools like Simulink or Simscape are designed to
analyze specific scenarios on a quite detailed level of abstraction. Simscape uses physical
system models that deliver detailed values about timing or physical signals. To create
such models, deep knowledge about the system is required.

This leads to the next problem: Ignorance. In the early phases of product development,
the exact behavior of components in a system is often unknown. However, detailed system
models do not necessarily lead to better predictions. In real systems, the behavior often
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depends on a large set of parameters (e.g., environmental temperature or system runtime)
that may change over time. It is not possible to reflect all these external influences in
system models. Therefore, even with a precisely defined behavior, the predictions only
cover small parts of what actually happens.

Qualitative abstraction is the key to the problems mentioned above. The idea is to
combine similar real states into one qualitative state. For example, the speed of a car can
be reduced to the qualitative states Stopped, Accelerating, Moving, and Braking. This
abstraction reduces the state space significantly. With a quantitative approach, there
would be innumerable states. Qualitative models describe how the different qualitative
states are reached. As long as the same state is reached, all extraneous implementation
details in the model can be omitted.

A drawback of qualitative abstraction are ambiguities. For instance, if the amount of
flow through pipes is modeled by signs (+,-,0), there are often situations where the exact
behavior is unpredictable. An extension such as order-of-magnitude reasoning improves
the reliability of the results.

Existing qualitative approaches to automated safety analysis use quite different levels
of abstraction. HiP-HOPS [PM99] is an approach using an extremely high level of
abstraction. System models are created in Simulink. Communication between components
is unidirectional and limited to the propagation of deviations. Each Simulink component
is assigned a failure logic that describes how deviations at the input or internal failures
cause deviations at the output. HiP-HOPS supports automated generation of Fault Trees
and FMEA tables. However, the directed connections, the limitation to failure behavior,
and the lack of state variables significantly limit the applicability in practice. Some
approaches to automated safety analysis utilize formal verification tools. Joshi et al.
[Jos+05] propose an approach in which Simulink is used to create an extended system
model. Once the system is modeled, the Simulink block diagram is translated into the
input language of the NuSMV model checker. The model checker automatically verifies the
system model against safety requirements specified in some formal language. If the model
checker finds a specification violation, the algorithm stops and provides a counterexample.
Another approach uses a formal modeling language and model transformations to support
several verification tools (e.g., [GO11]). One problem with these approaches is that most
model-checking tools only deliver one counterexample. Apart from that, these modeling
formalisms are restricted to directed connections and timing aspects can only partly be
covered. AltaRica 3.0 is the latest and most advanced version in the history of AltaRica.
The level of abstraction of AltaRica 3.0 is somewhere between physical system models
and HiP-HOPS. Components in systems are characterized by classes. AltaRica 3.0 is
based on Guarded Transition Systems and is therefore able to handle looped systems
and bidirectional information flow. However, communication between components is still
limited and events can not be triggered by components within the system.

1.3 Mission Statement

This thesis aims to introduce a new modeling formalism for automated safety analysis of
technical systems in the early stages of product development. To overcome the limitations

4



1.4 Contributions beyond the State of the Art

of the existing approaches, the new modeling formalism must fulfill some requirements:

• Component behavior must be described on a qualitative level

• The modeling formalism should be component-oriented

• Component models should include both, nominal and failure behavior

• Connections between components must be bidirectional and can change depending
on the state

• Components exchange quite different information, such as sensor values, failure
modes, or abstracted physical quantities. Thus, communication between components
should be as flexible as possible

• Timed aspects need to be described qualitatively

• Mechanisms to limit search spaces are required

The system models need to be created in a formal and computer-understandable form.
Therefore, this work introduces an intuitive textual language. Since safety engineers
usually do not have much experience with modeling languages, a graphical modeling
approach is also discussed. Safety engineers need to know whether a system meets
certain specifications. Formal verification methods such as model checking are promising
candidates for this task since they are fully automated. However, existing tools are
not appropriate for real-world applications (e.g., most model checkers deliver only one
counterexample if a specification is not fulfilled). Therefore, a new verification algorithm
must be developed. The verification results must be available in an appropriate form for
safety analysts (e.g., as Fault Trees). To sum up, the objectives of this thesis are:

• The introduction of a new modeling formalism for safety analysis of technical systems
in the early product life cycle states

• The definition of a textual modeling language and an approach for efficient modeling

• The development of mechanisms for automated verification of safety requirements
and generation of safety artifacts

• The demonstration of the practicability of the approach using case studies

1.4 Contributions beyond the State of the Art

The following points summarize the contributions of this work that go beyond the state
of the art:

• Contribution C1: New modeling formalism for automated safety analysis
The proposed formalism (smartIflow) is a combination of features of existing ap-
proaches together with new concepts:
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– smartIflow system models are created on a very high level of abstraction, but
at the same time, the dynamic aspects of a system can be described on a very
detailed level. In contrast to many existing approaches, component models are
quite close to the specifications.

– Many approaches limit communication between components to the exchange of
values from predefined domains (e.g., HiP-HOPS). In smartIflow, the property
concept enables a very flexible message exchange between components.

– In [SL14], Snooke and Lee present an approach in which events in component
models are assigned time delay periods of a certain order of magnitude. In
a state, only the active events with the lowest delay value are triggered. In
smartIflow, a differentiation is made between internally and externally triggered
transition statements. Therefore, the mechanisms for specifying timed behavior
in smartIflow are also more comprehensive. First, internally triggered transition
statements can be assigned delay or stability values. Stability values limit
the activation of internal events while delay values are used to model delayed
reactions. Beyond that, externally triggered transition statements can be
assigned stability conditions that limit the activation of external events to
states that are stable at least with respect to the specified value. In this way,
the frequency of external events can be controlled.

– In smartIflow, physical interactions between components can be modeled by
means of qualitative energy flows. The qualitative energy-flow-based reasoning
based on different orders of magnitude is nothing new. The concept is based
on bond graphs first described by Paynter [Pay60]. In the meanwhile, different
versions of bond graphs were developed and used by many approaches. An
innovation is, that the qualitative energy flow analysis can be used together with
a communication mechanism based on messages. On the one hand, systems,
or parts of them, can be represented quite detailed on a physical level using
the qualitative energy flow analysis as introduced in [SL14]. On the other
hand, systems, or parts of them, can be described at the logical level using the
message exchange mechanism.

– In contrast to other approaches, connections between components are in general
bidirectional, and transferred information is not limited to one specific domain.
Optionally, the direction of flow at ports can be restricted to inputs or outputs.
While many approaches (e.g., AltaRica or HiP-HOPS) only allow one value per
connection at a time, connections in smartIflow can simultaneously transport
several messages. This enables a bus-like information exchange. Thus, artificial
connections between the components can be avoided, and models are quite
close to the specification.

– Compared to existing approaches, the mechanisms for modeling state transitions
in smartIflow are much more comprehensive. For example, a distinction is made
between internal and external events. This leads to smaller state spaces during
unfolding since internal transitions are executed synchronously. Moreover, a
differentiation can be made between necessary system reactions and possible
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external stimuli.

– The smartIflow language is object-oriented and strongly inspired by Java,
making it very easy to learn. Compared to other modeling languages, many
concepts of object-oriented programming languages are offered (e.g., inheritance
or type variables). Another innovation is the feature concept, which enables
the extension of component classes (or parts of them) without having to extend
the language itself.

• Contribution C2: Formal definition of smartIflow system model

If parts of the safety analysis process are automated, it is very important to have
a clear understanding of the modeling formalism. In contrast to some existing
formalism, the semantics of smartIflow system model, the underlying transition
systems, and the new timed variant of CTL are formally defined.

• Contribution C3: Flexible and effective mechanism for search space limitation

Existing approaches to Model-Based Safety Assessment utilize quite simple con-
straints to keep the search space manageable (e.g., an upper limit for failure events).
Event Trigger Specifications (ETS) also allow to limit the state space during unfold-
ing. Compared to existing mechanisms, ETS are more powerful and flexible. For
example, the state space can be restricted to nominal behavior or fault scenarios can
be restricted to a maximum of two failure events. External events can be categorized
into different groups which can be considered in Event Trigger Specifications. Beyond
that, different filter conditions can also be chained together.

• Contribution C4: Model checking algorithm for generation of all relevant coun-
terexamples.

Most model checkers (e.g., NuSMV) stop the verification after the first counterex-
ample is found. Only a few model checkers can generate multiple counterexamples,
however, a lot of counterexamples are variations of each other and therefore do not
lead to new knowledge. The model checker introduced in this thesis differs from
existing tools in two aspects:

1. To check whether a system fulfills a certain requirement, the model checker
systematically explores the system behavior for all possible sequences of events
(including failure events) by performing a simple depth-first search. Most
existing model-checking tools utilize symbolic algorithms or are based on the
calculation of satisfaction sets. Different from most other implementations
the proposed model checker can produce all relevant counterexamples if a
specification is not fulfilled. Thus, cutsets and Fault Trees can be created,
which makes this approach so unique.

2. In contrast to the existing model checkers, this approach enables to consider
only paths that fulfill certain relevance criteria (e.g., paths with a maximum
of two failure events) when traversing the transition system. This limits the
search space significantly.
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• Contribution C5: A new variant of CTL to express timed properties for smartI-
flow system models
There already exists timed variants of CTL. TCTL, for example, can be used to
express properties to timed automata. In smartIflow system model, timed behavior
relies on different orders of magnitude of time. Therefore, existing timed variants of
CTL are not compatible. Orders of Magnitude timed CTL (OMT-CTL) introduces
a new timed variant of CTL that can consider the stability of states and the delays
between state transitions based on different orders of magnitude in time.

• Contribution C6: Successful integration in an industrial project
The presented modeling approach does not only exist in theory but has also been
implemented in a prototypical tool (smartIflow Workbench) which has been success-
fully used in an industrial project. The integration in Simulink/Simscape enables
efficient modeling in a familiar modeling environment as well as the conversion of
the architecture of an existing model into the smartIflow language.

1.5 Structure of the Thesis
This dissertation introduces a new modeling formalism for the safety analysis of technical
systems in early product life cycle stages. The structure of this thesis is as follows:
Chapter 2 provides a brief description of the most important definitions. In addition
to terminology, model-checking techniques and an algorithm for determining strongly
connected components in directed graphs are explained. In Chapter 3 some safety-related
model-based approaches are introduced and their differences are analyzed. Chapter 4
starts with the motivation for a new modeling formalism. It discusses how to overcome the
weaknesses of existing approaches and introduces the new modeling formalism formally.
This chapter also describes the modeling language and the unfolding algorithm that is
used to create the transition system. A way is shown that reduces the search space and
an approach for efficient modeling is introduced. Chapter 5 is dedicated to the formal
verification of safety requirements. It is shown how an existing temporal logic is extended
to describe safety requirements for the models. This chapter also focuses on the model
checking algorithm, the calculation of minimal cutsets, and the generation of Fault Trees.
In Chapter 6, the practicality of the new modeling formalism is shown with some example
systems. Chapter 7 summarizes this thesis and discusses possible directions for future
work. Last but not least, Appendix A contains the grammar of the proposed modeling
language, the grammar of the logic to describe safety requirements, and the grammar to
reduce search space.
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2 Basic Definitions and Concepts

Before focusing on the basic definitions and concepts, it might be helpful to look at an
example system. By using this system, we will explain the basic techniques and concepts.
An Electric Park Brake (EPB) is available in many modern cars today [Bay+14]. A
parking brake in a car is designed to block the wheels permanently and to prevent the
vehicle from rolling away. In mechanical parking brake systems, the brakes are connected
via cables to a pulling mechanism that can be operated by the driver. Modern cars are
equipped with Electric Park Brake systems that have several advantages in comparison to
mechanically operated parking brakes:

• No issues with freezing handbrake cables

• It takes much less force to activate or release the brake

• High braking power

• Childproof (in most cases the ignition must be switched on to release or activate
the brake)

EPB
Caliper

(rear left)

EPB
Switch

Electronic
Control

Unit

(ECU)

EPB
Caliper

(rear right)

G-Sensor

CAN-BUS

Control Panel

Main
Battery

Backup
Battery

Signal
CAN bus
Electric power

Figure 2.1: Electric Park Brake system
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Figure 2.1 depicts the structure of an Electric Park Brake system. The central component
is an ECU (Electronic Control Unit) that processes the input signals provided by various
sensors and controls the motors at the brake calipers. Due to mechanical pressure emerged
by the motors, the calipers are pressed onto the brake disks. The system automatically
calculates the braking power that is necessary to prevent the vehicle from rolling away.
The Electric Park Brake system is connected to the CAN (Controller Area Network)
bus which enables access to sensor values of the car (seat belt sensor, tilt sensor, road
speed sensors, ...). Therefore, even when the brake discs cool down whereby the material
contracts, the system adapts the braking power to ensure a safe stand.

2.1 Safety Engineering and Terminology

This section introduces some important safety-related definitions used throughout this
thesis. The following definitions are based on the work of Avizienis et al. [Avi+04].

A system, whether a hardware or software system, has the task of providing several
services. Users (humans, other systems, or the environment) can interact with these
services using the service interfaces. The situation in which the service result deviates
from the intended behavior is called service failure (or just failure). The ways in which
a system may fail are called failure modes. The situation when one or more external
states of the system deviate from the correct behavior is referred to as error. An error
is a deviation in a single state or in a sequence of system states. Errors are caused by
internal or external faults. A fault is a flaw in software or hardware. A fault must not
necessarily lead to a service failure, since the system could detect, react, and consequently
avoid a failure. A hazard is the undesired situation that can cause harm or damage to
humans or the environment.

In the case of the electric parking brake system, potential failure modes could be as
follows:

• Total loss of brake power

• Insufficient braking power

• Unintended activation of the brake while driving

An error is defined as incorrect values in the system state as for example a valve that is
closed but should be opened. Such an error can be caused by one or more of the following
faults:

• Programming mistake, e.g., signals on the bus are interpreted incorrectly

• Defective switch that enables respectively disables the parking brake

• Material fatigue, e.g., a leakage in a hydraulic line

To avoid such hazards there exist a lot of standards and norms in industry that
define a process with required activities and work products as well as methods for
development and production. The regulation authorities require compliance with the
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standards. Well-known standards are for example ISO 26262 (“Road vehicles – Functional
safety”), SAE ARP4761 (“Guidelines and Methods for Conducting the Safety Assessment
Process on Civil Airborne Systems and Equipment”), or IEC61508 (“Functional Safety of
Electrical/Electronic/Programmable Electronic Safety-related Systems”). Classical safety
assessment methods, such as Fault Tree Analysis (FTA) or Failure Modes and Effects
Analysis (FMEA) are often part of these standards.

2.2 Classical Safety Assessment Methods

In this section, some traditional, industry-relevant safety assessment methods are intro-
duced.

2.2.1 Fault Tree Analysis

Fault tree analysis (FTA) is a widely-used technique for safety analysis in the industry in
which the causes of an undesired system effect (hazard) are explained in terms of event
combinations [Lee+85]. Such events can be either component failures or human operation
errors. In addition, there might be also intermediate events. Events can be combined
using AND and OR gates as shown in Figure 2.2. In this example hazard H1 is caused by
one of the following combinations:

• e1 or

• e2 and e3 or

• e4 and e5

H1: Total loss of brake power

e4: CaliperLeft.fail e5: CaliperRight.fail

e1: ECU.failure

e3: EPBSwitchLine.faile2: EPBSwitch.fail

Figure 2.2: Fault tree for hazard “Total loss of brake power”

Fault tree analysis is a top-down, deductive failure analysis method that starts at the
system hazard level and successively moves down to component failures (basic events)
to find all possible causes. After the fault tree has been created, the evaluation can be
started. In qualitative analysis, it is the goal to find groups of events that cause the top
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event. Such groups are called minimal cut sets if they do not contain any redundant
element. The top event only occurs, if all events of a minimal cut set occur.

In quantitative fault tree analysis, each basic event is assigned a probability of occurrence.
By iterative calculation of the probabilities at the AND- and OR-gates, the probability
of the top-event can be calculated. Note that the basic events need to be statistically
independent. The probability of an AND-gate with two inputs (P (A) and P (B)) is just
the probability that both systems fail:

P (A andB) = P (A ∩B) = P (A) · P (B)

In the case of an OR-gate, the probability is calculated using the formula

P (A orB) = P (A ∪B) = P (A) + P (B) − P (A) · P (B)

2.2.2 Failure Mode and Effects Analysis

Failure Mode and Effects Analysis (FMEA) is a bottom up, inductive analysis technique
[MMB09]. The objective of FMEA is the identification of dependencies between causes and
consequences, but also the prioritization of these cause-effect relations in terms of their risk.
The analysis starts with an identification of all possible failures on the component level.
For each failure mode, the effects and causes are determined. Frequently an evaluation
of failure modes and consequences according to severity is performed. The result of an
FMEA analysis is a table like shown in Table 2.1. There is no common standard format
for a FMEA table, i.e., most industries define their own formats and processes.

Component Failure
Mode

Potential
Effects

Severity Potential
Causes

...

Electronic Control
Unit: Controls the
motors placed at
the calipers
depending on the
switch signal.

Output port Loss of
braking
power. The
car could roll
away.

5
Fatigue

Failure in
control logic

Excess
pressure

Stuck at posi-
tion interme-
diate

Loss of control
signal

Table 2.1: Example FMEA table
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2.3 System Modeling Fundamentals

2.3.1 Transition Systems

Many approaches to model-based safety analysis describe the system under analysis as a
transition system. As defined in [BK08], a transition system is a tuple

TS = (S,Act,→, I, AP,L)

where

• S is a set of states,

• Act is a set of actions,

• →⊆ S ×Act× S is a transition relation,

• I ⊆ S is a set of initial states,

• AP is a set of atomic propositions, and

• L : S → 2AP is a labeling function.

Actions cause the model to change its current state as described by the transition
relation. States are labeled with propositions that provide the base for the specification of
safety properties. Finite-state machines are quite similar to transition systems. In the
latter case, however, the set of states does not necessarily have to be finite.

For a state s ∈ S of a transition system TS = (S,Act,→, I, AP,L) the set of direct
successors of s is defined as:

Post(s) =
⋃

α∈Act

{
s′ ∈ S | s α−→ s′}

Accordingly, the predecessors of s are defined as:

Pre(s) =
⋃

α∈Act

{
s′ ∈ S | s′ α−→ s

}

2.3.2 Program Graphs

A program graph PG is a graph consisting of locations (=nodes) and transitions (=edges)
that are labeled with conditions over variables [BK08]. This is an important distinction
in comparison to transition systems that do not have conditional transitions. Formally a
program graph PG over a set of typed variables V ar is a tuple

PG = (Loc,Act,Effect, ↪→,Loc0, g0)

where

• Loc is a finite set of locations and Act is a set of actions,
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• Effect : Act× Eval(Var) → Eval(Var) is the effect function,

• ↪→⊆ Loc× Cond(V ar) ×Act× Loc is the conditional transition relation,

• Loc0 ⊆ Loc is a set of initial locations, and

• g0 ∈ Cond(V ar) is the initial condition.

Eval(Var) denotes the set of variable evaluations over V ar, i.e., all feasible variable-value
combinations. The variable values determine not only the possible transitions but also the
behavior at locations. Variable values are modified by effect functions. Effect functions
are executed once the condition of a transition holds. Conditions of transitions are called
guards. The transition system of each program graph represents the state space and can
be gathered by unfolding [MP92].

2.3.3 Timed Automata

Timed automata are the key techniques for modeling time-critical systems. In prin-
ciple, a timed automaton is a program graph extended with a finite set of clocks
and clock constraints at transitions [BK08]. Formally, a timed automata is a tuple
TA = (Loc,Act, C, ↪→, Loc0, Inv,AP,L) where

• Loc is a finite set of locations,

• Loc0 ⊆ Loc is a set of initial locations,

• Act is a finite set of actions,

• C is a finite set of clocks,

• ↪→⊆ Loc× CC(C) ×Act× 2C × Loc is a transition relation,

• Inv : Loc → CC(C) is an invariant-assignment function,

• AP is a finite set of atomic propositions, and

• L : Loc → 2AP is a labeling function for the locations.

Like stopwatches, clock values are increased continuously with the same speed. The
access to the clocks is limited to read-only, but optionally clocks can be updated (e.g.,
reset to 0). Eval(C) are evaluation functions that determine the current value of clocks
C. The edges describe how the timed automaton can move between locations (l

g:α,D
↪→ l′).

In the transition relation, 2C denotes all possible combinations of clocks that can be
reset. These edges are labeled with the tuple (g, α,D) where g is a clock constraint, α
is an action, and D ⊆ C is a set of clocks that will be reset to 0. CC(C) denotes the
clock constraints over clocks C, and ACC(C) denotes the atomic clock constraints over
clocks C. Clock constraints at transitions are logical expressions built upon comparisons
between clock values and integers. Typically, a clock constraint specifies a time interval,
for example, cc1(x) = x >= 2 ∧ x < 5. Such time intervals are often abbreviated with
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an interval notation: [c1, c2). These expressions can be seen as guards that initiate the
transitions only under specific timing conditions. Inv is the invariant of a location that
specifies the duration of time that can be stayed at the location. In summary, clock
variables can be used in guards, invariants, and updates.

An example of a timed automaton is shown in Figure 2.3. The timed automaton
depicts the behavior of a simple traffic light with a 3-stage sequence. The automaton
consists of three locations (green, yellow, and red) and one clock variable (x). Initially,
the automaton remains in location green. From there it is possible at any time, regardless
of the value of the clock, to move to location yellow. The invariant in location yellow
states: Once x > 5, the automaton must leave this location.

green
true

yellow
x ≤ 5

red
x ≤ 60

true: activate-traffic-light
reset(x)

x ≥ 4 : set-red

x ≥ 55 : set-green
reset(x)

Figure 2.3: Traffic light represented as a timed automaton using clock variable x.

2.4 Model Checking
Model checking [BK08][Cla08] is a formal method for verifying the correctness of safety-
critical systems. This verification technique is also known as “push-button” method since
no user interaction is needed. Figure 2.4 illustrates the principle idea of model checking.
Once the system model M is created and a correctness property ϕ is specified, the model
checking tool will automatically check whether the system satisfies these requirements. In
other words: Does M |= ϕ ? The system model describes how the system behaves while
the requirements specification describes what the system should do (e.g., reaction to a
certain event). Such system models are mostly characterized by transition systems such
as Kripke structures [CGP99]. A Kripke structure M over a set of atomic propositions
AP is the tuple M = (S, S0, R, L) where

• S is a finite number of system states

• S0 ⊆ S is a set of initial system states

• R ⊆ S × S is transition relation. This relation must be total, i.e., each state s ∈ S
must have a subsequent state s′ ∈ S (R(s, s′))
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System Model
M

Specification
ϕ

Verifier
M  ⊧ ϕ ?

No (Counter- 
examples)

Yes!

  

Figure 2.4: The principle of model checking

• L : S → 2AP is a labeling function that determines the set of atomic propositions
that are true in a state

Figure 2.5 shows an example of a Kripke structure.

S
1

S
2

S
3

S
6

S
5

S
4

x,yz

y x,y,z

M =(S, S0, R, L)
AP ={x, y, z}
S ={S1, S2, S3, S4, S5, S6}
S0 ={S1}
R ={(S1, S2), (S1, S4), (S2, S3), (S3, S3), (S3, S6),

(S4, S5), (S5, S4), (S5, S2), (S5, S6), (S6, S6)}

L(S1) = {∅} L(S2) = {y} L(S3) = {x, y, z}
L(S4) = {z} L(S5) = {x, y} L(S6) = {∅}

Figure 2.5: Example of a Kripke structure

The safety requirements need to be specified in some formal and computer-understandable
language. Most model-checking tools accept requirements properties specified in some tem-
poral logic, introduced by Pnueli [Pnu77]. In the meanwhile, different variants of temporal
logic have been developed. Linear Temporal Logic (LTL) and Computation Tree Logic
(CTL) are probably the best-known and most important temporal logic.

2.4.1 Linear Temporal Logic

LTL (Linear Temporal Logic) is based on a linear-time perspective [JK04]. In contrast to
the propositional logic, where propositions about a single state can be expressed, LTL
allows statements about the future of paths. These formulae are verified on each possible
execution path of a system (linear time). A LTL formula is built up from a set of atomic
propositions AP , logical operators (∨,∧,¬,→), and temporal operators (X,U,G,F, and
R). The semantics of the temporal operators is defined as follows:
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• Xϕ: ϕ must hold in the next state.

• Gϕ: ϕ must be satisfied globally on the complete path.

• Fϕ: ϕ must hold in a future state, somewhere on the path.

• ψUϕ: ϕ is true in the next or some future state. Until then, ψ must be satisfied.

• ψ Rϕ: ϕ must be true up to the first state when ψ is valid. If ψ is never satisfied, ϕ
must be true on the complete path.

Figure 2.6 shows some examples of LTL formulae that are valid on the path. LTL is
often used to express safety properties to a system. Such a safety property describes an
unwanted situation ϕ that should never occur (G¬ϕ).

Φ Φ Φ Φ ...G¬ψ

Φ ψ ...FΦ˄Fψ

Φ ...XΦ

ψ ψ ψ Φ ...ψUΦ

Figure 2.6: Examples of LTL formulae

2.4.2 Computation Tree Logic

The temporal logic CTL is a branching-time logic which means that different futures can
be considered [CE82]. To achieve this, CTL provides not only the usual logical operators
and temporal operators (X, G, F, U, and R like in LTL), but also two path quantifiers
namely A (“along All paths”) and E (“there Exists at least one path”). A path quantifier
is always followed by a temporal operator, resulting in a total of 10 combinations (AX,
AG, AF, AU, AR, EX, EG, EF, E U, and ER). Figure 2.7 visualizes three examples of valid
CTL expressions.

AG p:
On all paths proposi-
tion p is always true.

p

p

p

p p

p

p

AF p:
On all paths p is some-
where in the future satisfied.

p

p p

A[pU q]:
On all paths p is true un-
til the first occurrence of q

p

q

p

q q

p

q

Figure 2.7: Examples of valid CTL formulae
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Note that any CTL expression can be converted to the existential normal form (ENF).
A CTL formula in ENF consists only of the operators ∧, ¬, EX,E U, and EG. Each CTL
formula can be converted into an equivalent CTL formula in ENF using the following
conversion rules:

• AX(ϕ) = ¬ EX(¬ϕ)

• EF(ϕ) = E((true) Uϕ)

• AG(ϕ) = ¬ EF(¬ϕ)

• AF(ϕ) = ¬ EG(¬ϕ)

• A(ϕUψ) = ¬ E(¬ψU(¬ϕ ∧ ¬ψ)) ∧ ¬ EG(¬ψ)

• A(ϕRψ) = ¬ E(¬ϕU¬ψ)

• E(ϕRψ) = ¬ A(¬ϕU ¬ψ)

Comparison of LTL and CTL

One might think that CTL has a higher expressiveness than LTL, but this is actually
not true. LTL is neither a super- nor subset of CTL. Both logics offer different views of
time [EH86]. There exist formulae of each language that cannot be expressed in the other
language. For instance, the property “There is always the possibility that a state reset
can be reached” can only be expressed with CTL using the formula AG(EF(reset)). LTL
can only express that the reset state is always reached and not that it can be reached.
FG(p), however, is not expressible in CTL, but in LTL.

2.4.3 Counterexamples and Witnesses

One big advantage of model checking is the generation of counterexamples in case a formula
is not valid for a given system model (M ̸|= ϕ). In the case of LTL, a counterexample is
characterized by a finite trace of system states that indicates why M ̸|= ϕ. For example, a
counterexample of the expression Gϕ is a path (s0s1...sn) where si |= ϕ for 0 ≤ i < n and
sn ̸|= ϕ.

In the case of an CTL expression with a universal path quantification (e.g., AG, AF, or
AX) the situation is quite similar. For example, the counterexample of AXϕ is characterized
by a pair of states (s, s′) where s′ ∈ Post(s) and s′ ̸|= ϕ. However, for an CTL expression
with an existentially quantified path formula such as EFϕ the situation is different because
it makes no sense to create a counterexample if M ̸|= EFϕ. M ̸|= EFϕ means that no
path satisfies ϕ and subsequently all the paths of the transition system would represent a
counterexample. If M ̸|= EFϕ the answer No is sufficient. For the answer Yes (M |= EFϕ),
a witness is created. A witness is a path that indicates the satisfaction of an existentially
quantified path formula (e.g., EG, EF, or EX). That being said, depending on the operator,
CTL model checking either delivers counterexamples or witnesses.

Most model checkers (e.g., NuSMV) stop the verification after the first counterexample
is found even though there could exist more.
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Kripke structure Counterexample #1 Counterexample #2

Figure 2.8: Counterexamples for AG(Z)

Figure 2.8 shows a Kripke structure and all corresponding counterexamples for the CTL
expression AG(Z). AG(Z) denotes “On all paths, Z has to hold globally (in each state).”.
This specification is violated if there exists a path where somewhere Z does not hold. The
Kripke structure contains two paths that violate the specification.

2.4.4 Model Checking Algorithm

After creating a model of the system M and specifying a safety property ϕ, the goal is to
find out whether the system fulfills the property. In other words: M |= ϕ?

For that an algorithm is needed that explores the states of the system systematically
and checks whether each state satisfies the property. In principle, there are two categories
of model checking algorithms namely explicit-state model checking and symbolic model
checking.

2.4.5 Explicit-State CTL Model Checking

Explicit-state model checking algorithms are based on an explicit representation of the
transition system, meaning that each state knows its predecessor and successor states.
Basically, there are two possibilities for developing an explicit-state model-checking
algorithm as described in [Fra+10].

(a) One way is to construct the transition system during the verification process, such as
in the SPIN model checker [Hol97]1. Meaning that the way in which the transition
system is built up depends on the CTL formula. For example, if a state s is found
that violates the specification, all subsequent states s′

0, ...s
′
n of s do not need to

be explored. In case a cycle was found, the further search on the current path
can be canceled as well. This approach has the advantage that the constructed

1The SPIN model checker accepts models described in Promela (Process Meta Language).
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transition system consists only of paths that are actually relevant for verification.
Conversely, this also means that the transition system must be reconstructed for
each new specification.

(b) The other possibility is a two-step approach, meaning that the transition system is
constructed prior to the verification. Thus first of all a transition system must be
created, which in most cases is much larger than it is necessary for verification. On-
the-fly model-checking algorithms stop the exploration on a path if the specification is
violated in the current state, while algorithms based on a two-step approach compute
the state space completely. Even though the search space might be too large, this
approach has some significant advantages. Firstly, the decoupling leads to a clear
separation between the model description and verification. Therefore, the model-
checking algorithm is not limited to just one specific modeling language, because
the verification needs only a clear interface to the transition system. Secondly,
the complete transition system enables to verify different specifications against the
system model without the need for re-simulation. Model checkers like CADP follow
this approach [Gar+11].

A well-known algorithm for CTL model checking is shown in Algorithm 1. The algorithm
is based on a recursive procedure that determines the satisfaction sets for all sub-formulae
of the original CTL formula Φ in ENF. A satisfaction set is defined by the set of states
s ∈ S in which Φ holds. The calculation of satisfaction sets starts at the leaves in the
parse tree, which are either the constant true or an atomic proposition a ∈ AP . For the
calculation of satisfaction sets for intermediate nodes, the results of the sub-formulae
are used. The result of Sat(Φ) contains all states in which Φ is fulfilled and not just
the initial states. This is described as global model checking. In the end, if all initial
states are included in the satisfaction set, the system meets the specification: TS |= Φ iff
I ⊆ Sat(Φ)

For example, for a formula in the form Φ = Φ1 ∧ Φ2, first the satisfaction sets for
Sat(Φ1) and Sat(Φ2) are calculated (recursive bottom-up computation). Sat(Φ1) contains
all states s ∈ S in which Φ1 holds and Sat(Φ2) contains all states s ∈ S in which
Φ2 holds. Sat(Φ) results from the states contained in both, Sat(Φ1) and Sat(Φ2):
Sat(Phi) = Sat(Φ1) ∩ Sat(Φ2). If I ⊆ Sat(Φ), the system meets the specification.

Satisfaction sets implicitly also contain witnesses respectively counterexamples. For
example, counterexamples for formulae of the form AG Φ can be calculated by performing a
backward search starting at states in which ¬Φ holds. The states in which ¬Φ holds can be
determined using the satisfaction set Sat(Φ) in the following way: Sat(¬Φ) = S \ Sat(Φ).
The backward search looks for path fragments s0, s1 . . . sn where si |= Φ for 0 ≤ i < n and
sn |= ¬Φ.

For formulae of the form A Φ U Ψ counterexamples are calculated using the graph
G = (S,E) where

E = {(s, s′) ∈ S × S | s′ ∈ Post(s) ∧ s |= Φ ∧ ¬Ψ}

First, the SCCs in graph G are calculated. Finally, counterexamples are all paths in G
starting in an initial state and leading to a terminal SCC.
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Algorithm 1 Algorithm for computation of the satisfaction sets of a CTL formula Φ for
a transitions system TS with state set S. [BK08]

1: function Sat(Φ, TS) returns the satisfaction sets
2: switch Φ do
3: case true : return S;
4: case a : return {s ∈ S | a ∈ L(S)};
5: case Φ1 ∧ Φ2 : return Sat(Φ1) ∩ Sat(Φ2);
6: case ¬Ψ : return S \ Sat(Ψ);
7: case EX Ψ : return {s ∈ S | Post(s) ∩ Sat(Ψ) ̸= ∅};
8: case E(Φ1 U Φ2) :
9: T := Sat(Φ2); // compute the smallest fix point

10: while {s ∈ Sat(Φ1) \ T | Post(s) ∩ T ̸= ∅} ≠ ∅ do
11: let s ∈ {s ∈ Sat(Φ1) \ T | Post(s) ∩ T ̸= ∅};
12: T := T ∪ {s};
13: end while
14: return T;
15: case EG Φ :
16: T := Sat(Φ); // compute the greatest fix point
17: while {s ∈ T | Post(s) ∩ T = ∅} ≠ ∅ do
18: let s ∈ {s ∈ T | Post(s) ∩ T = ∅};
19: T := T \ {s};
20: end while
21: return T;
22: end function

Sat(EG(Φ)) can be solved by using a backward search (see Algorithm 2). The principle
of the algorithm is quite simple: Initially, the satisfaction set T of the expression Φ
is calculated. For each state in T the number of successors is assigned to count. The
counters are used to capture for each state the number of successors that satisfies Φ. The
set E contains all states in which Sat(EG(Φ)) is not fulfilled. For each state s′ ∈ E it is
checked whether the predecessor of s′ is in the set T . If so, this means that this state
has a successor that does not satisfy Φ. Therefore, the counter for this state must be
decremented. If the counter for this state has the value 0, no successor satisfies Φ. This
falsifies the semantic of EG and therefore this state is removed from the satisfaction set T .

One big challenge in explicit-state model checking is the state space explosion problem.
Consider the following situation: A system with just 20 Boolean variables has 220 =
1.048.576 states. If we add 5 variables with a domain of 6 potential values, the state space
grows to 1.048.576 ∗ 65 = 8.153.726.976 states. With concurrent processes, the number of
states grows even exponentially. This phenomenon is also known as the state explosion
problem. Large state spaces can only be handled with efficient model-checking algorithms.
Therefore, a set of optimization strategies in explicit-state model checking like partial
order reduction or exploiting symmetry exist. With partial order reduction independent
concurrent processes (given by transition systems) are represented only once [Pel98].
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Two processes are defined as independent if the order execution does not influence the
resulting system state. Using symmetries is a method that tries to reduce the state space
by avoiding redundancies. Model checkers using these clever algorithms can handle state
spaces up to 109 states [BK08]. Despite these optimization strategies, explicit-state model
checking is applicable only for quite small models.

Algorithm 2 Enumerative backward search to compute Sat(EG Φ) [BK08]
1: function Sat(EG Φ, TS) returns the satisfaction sets
2: E := S \ Sat(Φ);
3: T := Sat(Φ);
4: for all s ∈ Sat(Φ) do
5: count[s] := |Post(s)|;
6: end for
7: while E ̸= ∅ do
8: let s′ ∈ E;
9: E := E \ {s′};

10: for all s ∈ Pre(s′) do
11: if s ∈ T then
12: count[s] := count[s] − 1;
13: if count[s] = 0 then
14: T := T \ {s};
15: E := E ∪ {s};
16: end if
17: end if
18: end for
19: end while
20: return T ;
21: end function

2.4.6 Symbolic Model Checking

In symbolic model checking the transition system is not represented explicitly, but rather
symbolically using boolean formulae or binary decision diagrams (BDD)[Ake78]. The
advantage of this is that the state explosion can be avoided (for most systems). Symbolic
model checking, however, requires a symbolic representation of the state space, transition
relation, and specification. Furthermore, algorithms must work on symbolic representation

A binary decision diagram (BDD) is a data structure based on directed acyclic graphs
for the representation of boolean formula f in an efficient way. The diagram is created in
a way that each row in the truth table of f has a correspondent path in the diagram from
the root to a terminal node. Terminal nodes are labeled with the corresponding outcome
of f (0 or 1 ). Each other node k is labeled with a binary variable and has exactly two
successors: lo(k), if xi = 0 and hi(k), if xi = 1. Figure 2.9 shows a boolean formula
represented using a BDD. A formula with n variables is represented by a directed graph
with 2n+1 − 1 nodes and 2n paths.
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f = (x1 ∧ x2) ∨ x3

x1 x2 x3 f

0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1
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2
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x
3

x
3

x
3

0 1 0 1 0 1 1 1

0 1

Figure 2.9: Representation of a Boolean formula using a BDD

Bryant introduced in [Bry86] two concepts for a more efficient representation of BDDs.
The first concept is based on the order of the variables in the BDD. A BBD is called
ordered (OBDD) if the variables appear on all paths in the same order. The order of the
variables in BDDs has a high impact on the number of required nodes for representing a
boolean formula. Therefore, for huge systems, it is very important to find the optimal
variable order. Finding the optimal variable order is NP-complete. However, there exist
various heuristic approaches. The second optimization technique reduces the size of
OBDDs by transformation. [Bry86] describes a transformation rule called elimination
that is based on removing duplicate nodes and subgraphs (reduced OBDDs). Figure 2.10
shows the reduced OBDD (variable order x1 < x2 < x3) of the BDD introduced in Figure
2.9.

x
1

x
2

x
3

0 1

Figure 2.10: Reduced OBDD of the BDD shown in Figure 2.9

The main idea in symbolic model checking is to use OBDDs for representing the Kripke
structure. To describe a transition system using an OBBD, a suitable representation of
the states is required. The solution is to represent a state by a boolean vector. This
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enables a system to be represented by OBDDs. Consider the Kripke structure shown in
Figure 2.11. A vector with two components (x2, x1) is sufficient to represent this Kripke
structure with its four states. For example, state S2 is represented by the vector (0, 1).
State transitions can be represented as a pair of states ((x2, x1), (x′

2, x
′
1)). For example,

the state transition from s2 to s3 is described by ((0, 1), (1, 0)). The labeling functions are
described in the same way.

S
1

S
2

S
3

S
4

x

y

y

(1,0)(1,1)

x,y

(0,1)(0,0)

Explicit representation

M =(S, S0, R, L)
AP ={x, y, z}
S ={S1, S2, S3, S4}
S0 ={S1}
R ={(S1, S2), (S2, S3), (S3, S4),

(S4, S4), (S4, S1)}
L(S1) ={x} L(S2) = {y}
L(S3) ={x, y} L(S4) = {∅}

Symbolic representation

S1 ≡(0, 0)S2 ≡ (0, 1)
S3 ≡(1, 0)S4 ≡ (1, 1)
R ={((0, 0), (0, 1)), ((0, 1), (1, 0)),

((1, 0), (1, 1)), ((1, 1), (1, 1)),
((1, 1), (0, 0))}

L(x) ={(0, 0), (1, 0)}
L(y) ={(0, 1), (1, 0)}

Figure 2.11: Symbolic representation of a Kripke structure

The transition relation R of the Kripke structure can be expressed with the following
boolean formula:

R =(((¬x2 ∧ ¬x1) ∧ (¬x′
2 ∧ x′

1)) ∨ ((¬x2 ∧ x1) ∧ (x′
2 ∧ ¬x′

1)) ∨ ((x2 ∧ ¬x1) ∧ (x′
2 ∧ x′

1))∨
((x2 ∧ x1) ∧ (x′

2 ∧ x′
1)) ∨ ((x2 ∧ x1) ∧ (¬x′

2 ∧ ¬x′
1)))

This boolean formula can be represented as an OBDD as shown in Figure 2.12. The
question arises, how this efficient representation of a transition system can be used to
verify a CTL formula? OBDDs provide a set of efficient operations such as Apply or
AndExist. In the worst case, the OBDD operations have an exponential run-time, which,
however, hardly occurs in practice. The function Apply connects two boolean functions
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with any boolean operator while AndExists performs an existential quantification over
the conjunction of two OBDDs. Symbolic model-checking algorithms are based on these
functions. The input of the evaluation function is a CTL formula, and the result of the
verification is an OBDD that represents the states in which the specification is fulfilled.
Thanks to these efficient algorithms systems with 1020 states and more can be handled.
Note that in the area of asynchronous systems and communication systems, explicit-state
model checkers outperform symbolic model checkers [Don+99].
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Figure 2.12: Transition relation R described by an OBDD

2.5 Requirements to Real-Time Systems

Over the last decades, several formalisms for safety requirements specifications for real-time
systems have been developed. The most popular logic in this context are probably Metric
Temporal Logic (MTL), Timed Computation Temporal Logic (TCTL), and Real-Time
Computation Tree Logic (RTCTL).

2.5.1 Metric Temporal Logic

MTL is an extension of LTL (Linear Temporal Logic) in which the temporal operators G
(Globally), F (Finally), and U (Until) are extended by timing constraints [Koy90]. The
extension of LTL operators leads to the following syntax:

φ ::=⊤ | ⊥ | p | ¬φ | φ ∧ φ | φ ∨ φ | φUIφ
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where I is an interval with integer endpoints that defines the time interval for the formula.
MTL formula can be interpreted over both, discrete (e.g., N) and dense (e.g., R) time
domains. These extended operators enable the specification of different temporal properties
as shown by the following practical examples:

• G(brakePedalPressed → F(0,5) brakingResponse) defines a maximal distance of 5
time units between pressing the pedal and the brake operation.

• G(crash → F{5} airbagActivated) specifies a distance of exact 5 time units between
a crash situation and the airbag activation.

• G(failure → ¬ F(0,20) failure) defines a minimal distance of 20 time units between
two failure situations.

• F{5}(selfCheck) ∧ G(selfCheck → (¬selfCheck U{5} selfCheck) states that every 5
time units a self-check is performed (periodically).

There exist different semantics for timed logic like MTL. The two most common
semantics for MTL are the point-based semantic and the interval-based (continuous)
semantic [OW08].

2.5.2 Timed Computation Tree Logic

Timed Computation Tree Logic (TCTL) is an extension of CTL where path quantifiers
are extended with clock constraints to specify properties for timed automata. Let C be a
set of clocks, the syntax of a TCTL state formula is created by

ϕ ::=⊤ | a | g | ¬ϕ | ϕ ∧ ϕ | ∃φ | ∀φ

where a ∈ AP is an atomic proposition and g ∈ ACC(C) is an atomic clock constraint
over the clocks in C. The path formula ϕ extended with clock constraints is defined
by φ ::= ϕUJϕ. J ⊆ R≥0 is an interval with natural numbers that specifies the clock
constraints over the clocks in C.

Consider the following property to the traffic light example described in Section 2.3.3:
“The red light will stay on for exactly 60 seconds and then switch to green”. This property
can be expressed in TCTL with the following formula:

AG(s == red ∧ (x = 0) → (AG≤60 s == red ∧ AF>60 s == green)

2.5.3 Real-Time Computation Tree Logic

Expressions like “φ must be fulfilled within the next 3 successor states” can be specified
using the next-operator: EX(φ∨EX(φ∨EX(φ))). Of course, this is only feasible for shorter
periods of time. RTCTL (Real-Time Computation Tree Logic) [Eme+92] addresses this
problem by introducing special operators:

• ABG i..j Φ: For all paths Φ holds at a each point in time k, with i ≤ k ≤ j

26



2.6 Strongly Connected Components in Directed Graphs

• ABF i..j Φ: For all paths Φ holds at some point in time k, with i ≤ k ≤ j

• EBG i..j Φ: There is at least one path on which Φ holds at a each point in time k,
with i ≤ k ≤ j

• EBF i..j Φ: There is at least one path on which Φ holds at some point in time k,
with i ≤ k ≤ j

For example, the RTCTL expression ABF0..5φ states that within the next 5 steps a
state s is reached where s |= φ.

2.6 Strongly Connected Components in Directed Graphs
Directed graphs are special graphs where the edges have a direction [Die00]. Formally, a
directed graph G = (V,A) consists of

• a set of vertices V and

• a set of edges E

An important property of directed graphs for this work is called strongly connected. A
directed graph G is strongly connected if there exists a path from n1 to n2 and a path from
n2 to n1 for each pair of different nodes (n1, n2) ∈ V 2. Strongly connected components
are subgraphs of a directed graph that are strongly connected. Tarjan’s algorithm (see
Algorithm 3) determines all strongly connected components in directed graphs in linear
time.
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Algorithm 3 Tarjan’s algorithm for determination of strongly connected
components[Tar71]

Input directed graph G = (V,E)
Output set of strongly connected components (sets of vertices)

1: result = {};
2: index = 0;
3: U = V;
4: S = {};
5: for each v ∈ U do
6: tarjan(v);
7: end for
8:
9: function tarjan(v)

10: v.index = index;
11: v.lowlink = index;
12: index = index + 1;
13: S.push(v);
14: U = U \ {v};
15: for each (v, w) ∈ E do
16: if w ∈ U then
17: tarjan(w)
18: v.lowlink = min(v.lowlink, w.lowlink);
19: else if w ∈ S then
20: v.lowlink = min(v.lowlink, w.index);
21: end if
22: end for
23: if v.lowlink == v.index then
24: scc = {};
25: repeat
26: scc = scc ∪ S.pop;
27: until w == v
28: result = result ∪ scc;
29: end if
30: end function
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Current approaches to MBSA differ in many aspects. In [LKN11] Lisagor et al. defined
two important distinguishing criteria by which approaches to MBSA can be differentiated:
The first criterion introduced by Lisagor et al. concerns the semantics of component
interfaces. In principle, there are two approaches, namely failure effect modeling (FEM)
and failure logic modeling (FLM). The idea of FLM is to model only failures and how they
are propagated through the components in a system. In other words, components only
share information about deviations from intended behavior (e.g., commission or omission
of a signal). Components can react to failures, repair them, or simply pass them on to
other connected components. In FEM the nominal behavior is extended with failure
behavior. Component failures, for example, may affect the output signal of a component.

The second criterion introduced by Lisagor et al. relates to model construction. Stan-
dalone safety assessment models are, as the name already implies, system models that
are created just for the purpose of safety analysis. Such models incorporate only that
knowledge that is required for safety analysis. Thus, complexity can be reduced signif-
icantly. The other concept is called failure injection (FI). In failure injection already
existing system models are extended with fault models. This allows designers and safety
engineers to work on the same model.

Beyond that, two additional criteria are introduced in [HL14]. One essential aspect is
the level of abstraction of the system models. Quantitative approaches (e.g., Simscape)
will obviously produce considerable detailed results than qualitative approaches. At the
same time, however, the computational effort is much higher. The level of abstraction
used by the modeling formalism has a high impact on both, the expressiveness of the
models and the computational effort.

Another distinguishing criterion is the type of connection modeling. Connections
between components can be directional or bidirectional. Directed connections can lead to
problems in failure situations where the cause-effect relationship reverses. With directed
connections such situations can only be handled by creating artificial connections, which
obviously increases model complexity. Bidirectional connections keep the model structure
close to reality, especially if physical interactions are essential in system behavior.

Several approaches to model-based safety analysis exist already. This chapter presents
some relevant approaches to MBSA that are particularly applicable for automated safety
analysis of technical systems in the early stages of product development. At the end of
the chapter, the approaches are classified according to the criteria presented above.
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3.1 Qualitative Order of Magnitude Reasoning

Neal Snooke and Mark Lee present in [SL14] an energy-flow-based qualitative modeling
approach based on order of magnitudes for automated FMEA. The approach is premised
on a two-level modeling strategy. On the lower level, a qualitative algorithm is used to
derive flow and effort values in a resistance network. Depending on these values, state
transitions are performed which affect the component’s behavior.

3.1.1 Flow Direction Determination

The power network is represented by a Graph G(T,A) with a set of edges A and nodes
T . Each edge e ∈ A is assigned a resistance value R(e) and each edge always connects
two nodes. Resistance values are reduced to their relative order of magnitude (OM). The
authors introduced the notation q>n to specify a value that is n orders of magnitude
below reference value q. Conversely, q<n indicates n orders of magnitude above
reference value q. Negative order of magnitude values can be converted into a positive
representation and vice versa (q>n = q<(−n)). q<x+1 dominates q<x for all x > 0. To
make the approach applicable to different domains, a generalized version of Ohm’s law
is applied. That means, that the simulation task is not to determine exact current or
voltage values but rather to calculate the flow and effort for each edge. Flow is measured
through an edge F (e), and the effort is measured between two nodes E(t1, t2). Flow and
effort values are also expressed with the order of magnitude representation. Table 3.1
shows the relationship between effort, resistance, and flow.

Effort, E Resistance, R Flow, F
0 0 ? (qualitative ambiguity)
0 r 0
0 ∞ 0
u 0 ⊔ (impossible case)
u r f
u ∞ 0

Table 3.1: Qualitative current assignment

To calculate the flows and efforts in a system, first of all, the power network is reduced
to a single equivalent resistor. Subsequently, the flow through the equivalent resistor is
calculated. The calculated flow value is then used to calculate the flow and effort values
on the upper levels by successively expanding the network back to the original state.

Network Reduction

The network is reduced by series and parallel circuit simplifications. For non-serial or
parallel reducible networks an order of magnitude version of the qualitative star-delta
(Y − ∆) transformation is used. The following reduction rules are used:
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Two edges e1, e2 in series (e1 | e2) are replaced by an equivalent edge where

R(e1 | e2) = max(R(e1), R(e2)) (3.1)

Parallel edges (e1 || e2) are replaced by an equivalent edge where

R(e1 || e2 || ... || en) = min(R(e1), R(e2), ..., R(en)) (3.2)

e3 e2

e1

e13 e12

e23

Figure 3.1: Y − ∆ transformation

Nonserial or parallel reducible networks are transformed in such a way that the result
is serial/parallel reducible (see Figure 3.1). This is achieved by replacing all edges e1...en

that are connected to a non-serial and parallel reducible star of degree n by new edges ejk

where 1 ≤ j ≤ n, 1 ≤ k ≤ n, 1 ≤ m ≤ n, k > j and

R(ejk) = R(ej)R(ek)
min(R(em)) (3.3)

The multiplication is defined as follows:

r>n ∗ r>m = r>(n+m) (3.4)

Conversely, the division is defined as follows:

r>n/r>m = r>(n−m) (3.5)

Flow Assignment

The approach utilizes a generalized version of Ohm’s law (E = F ∗ R). In general, the
flow is always identical for edges that are part of a series.

F (e1) = F (e2) = F (e1 | e2) (3.6)

For parallel edges, the effort is equal:

E(e1) = E(e2) = E(e1 || e2) (3.7)

The effort at an edge, given the flow and resistance, can be calculated using the following
formula:

E(e1) = F (e1)R(e1) (3.8)
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For edges of a star-delta transformation, we have to use the following formula (for a n
star node: 1 ≤ j ≤ n, 1 ≤ k ≤ n, k > j):

Fek
=

k−1∑
m=1

F (emk) −
n∑

m=k+1
F (ekm) (3.9)

The rules for order of magnitude addition are listed in Table 3.2.

+ 0 +p>n −p>n ∞ ?

0 0 +p>n −p>n ∞ ?
+p>m +p>m +p>min(m,n) −p>n if n < m

+p>m if m < n
? if n == m

∞ ?

−p>m −p>m +p>n if n < m
−p>m if m < n

? if n == m

−p>n ∞ ?

∞ ∞ ∞ ∞ ∞ ?
? ? ? ? ? ?

Table 3.2: Rules for OM addition

Figure 3.2 shows an example for the reduction and assignment steps for flow calculation
in a simple resistance network. For reduction, the parallel resistors R2 and R3 are replaced
by an equivalent resistor with value r<2 first. The remaining resistors in series are replaced
by an equivalent resistor with value r<4 (R4 dominates). Now the flow through the single
remaining resistor can be calculated using formula 3.7: F = e<0/r<4 = f<(0−4) = f>4.
In step 5 the series reduction is expanded and the flow is assigned to each individual
edge which is simply the flow through the reduced resistor. Finally, the flow through
the parallel resistors can be determined. For this purpose the effort across the resistors
needs to be calculated first using formula 3.7: E = f>4 ∗ r<2 = e<(−4+2) = e>2. The
flow through resistors R2 and R3 can be calculated using the effort and resistance value.
For example, the flow through R2 is e>2/r<2 = f<(2−(−2)) = f>4. The flow through R2
is one order of magnitude higher compared with the flow through R3. This is plausible
because R3 > R2.

The approach also supports multiple effort or flow sources by utilizing the principle
of superposition. This means that each network is analyzed separately for each source
s1...sn. The flow results from the maximum of all flow analysis steps:

sn∑
s1

F (e) = max
(
Fs1(e)...Fsn(e)

)
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Figure 3.2: Qualitative flow calculation in a simple resistance network

3.1.2 Component Behavior

On the second layer, the component behavior is described in terms of finite-state machines.
State transitions are triggered by flow and effort changes in the power network. In addition,
there are also input events to initiate state changes from outside the system. State variable
changes may affect the structure or the resistance value of connections. The behavioral
model is separated from the structural model. Both are described in a graphical notation.
A special subset of the UML state diagrams is used to describe the finite state machines.

Figure 3.3 shows the component model of a simple tank with a vent and an inlet. The
behavioral model consists of two states namely empty and full. There are state entry
actions that are executed when entering a state. For example, when entering the state
empty, the level is set to 0, and information about the substance is propagated. Event
conditions are used to describe the situations in which transitions are triggered. In the
tank example, a flow of substance fluid into the tank will cause a state change from empty
to full after some time. This event is called filling. The time at which the transition is
triggered depends on the local variable volume of the tank and the order of magnitude
of flowing water into the tank. A tank with a volume value of order of magnitude < 3,
for instance, takes three times longer to be filled in comparison to a tank with a volume
value of order of magnitude < 1.
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Figure 3.3: Component model of a tank (taken from [SL14])

3.1.3 Simulation and FMEA Generation

The simulation is based on a time-ordered priority list that contains all component events
whose event conditions are satisfied. The events in the queue are ordered by their time
delay. Event conditions with minimal delay are triggered first. Event conditions that are
no longer fulfilled are removed from the queue. If the queue is empty, a steady state has
been reached and the simulation is finished.

The models can be used for an automated FMEA generation. In principle first the
system is simulated without failures and after that, each possible component failure is
simulated. The result of a simulation run are the values of all system variables in each
state of the simulation. A separate model is used to assign each system state a functional
state which can be Achieved, Failed, Unexpected Behavior, or Inoperative. To find the
effects of a component failure, the results of the nominal and failure behavior need to be
compared.

3.2 HiP-HOPS

HiP-HOPS (Hierarchically Performed Hazard Origin and Propagation Studies) is a method
for automated safety analysis using an extremely high level of abstraction [PM99]. HiP-
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HOPS aims to simplify the analysis of complex hierarchical systems, such as the generation
of Fault Trees, and to provide a mechanism that leads to consistent results. The idea
originates from traditional analysis tasks like FMEA and FFA (Functional Failure Analysis)
and Failure Propagation and Transformation Notation (FPTN).

The analysis process in HiP-HOPS is comprised of two steps. First, a functional
failure analysis is performed to identify possible faults (single or multiple faults). This
is helpful to get a first impression of the critical components of the systems. After that,
the dependencies between the components are analyzed. This is an important step since
component failures may not only be caused by internal or external faults but also by
deviations at the input caused by other components. In other words, components can
generate, detect, or respond to failures. In HiP-HOPS this step is called IF-FMEA
(Interface Focused-FMEA). For each component output, it is described how a deviation
can occur in dependence on internal faults or deviations at the inputs.

The result of an IF-FMEA is a table where each row describes the failure logic to each
possible output deviation. The definition of input/output deviation consists of two parts.
The first part is the failure class. As this can be anything, meaning that there are no
limitations or predefined classes. The second part is the name of the port. Failure logic
is described using boolean expressions consisting of input deviation or internal failure
combined with the logical operators AND or OR. Table 3.3 shows an example of component
characterization in HiP-HOPS.

Output Deviation Description Failure logic
OmissionFlow-Out Omission of flow of fluid at the out-

put of Valve1 can be caused either
by omission of flow at the input, by
a failure of Valve1 or by omission of
the command at input

OmissionFlow-In or
Omission-Cmd or
ValveFailure

Commission-Out Commission of flow of fluid at the
output of Valve1 can be caused either
by commission of command at input

Commission-Cmd or
ComponentFailure

. . . . . . . . .

Table 3.3: Component characterization in HiP-HOPS

These component failure models can then be used for generating Fault Trees. In
HiP-HOPS the algorithm for Fault Tree generation is called Fault Tree Synthesis (FTS).
This algorithm traverses the hierarchical model from a hazard back to the basic failure by
following the propagation of failures in the reverse direction.

Models in HiP-HOPS can be created with Matlab Simulink [PM01] or the simulation
tool SimulationX 1. In the case of Simulink a tool that enables annotation of blocks (e.g.,
simple subsystems with a failure model) with a failure model is used.

1https://www.simulationx.com/simulation-software/beginners/safety-designer.html
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3.3 AltaRica
AltaRica is a formal language for automation of safety-related tasks developed by the
computer science laboratory of Bordeaux (Laboratoire Bordelais de Recherche en Informa-
tique) at the end of the nineties [GA99]. The modeling language is component-oriented
and supports hierarchical models. In AltaRica each component in a system is represented
by a node. A node consists of a set of variables, events, transitions, and assertions. There
are two types of variables namely flow variables and state variables. Flow variables are
shared variables used for communication between components. In contrast, state variables
are visible only inside components. State variables are used to describe the internal state
of components. Both, flow and state variables are typed (e.g., the types Boolean or
Integer are supported). The explicitly defined (external) events cause state changes. The
reaction to these events is described by transitions. A transition consists of the name of
the event that induces the state change, a guard expression, and a list of state variable
assignments. The guard expression is a boolean formula that must be true to trigger the
transition. If the guard expression is not fulfilled, the transitions will not be executed.
AltaRica is an asynchronous language which means that only one transition can be fired at
a time. However, there exists a synchronization mechanism to trigger multiple transitions
simultaneously. Assertions describe the assignment of values to flow variables depending
on the state of the node. The following listing shows the model of a simple electrical
switch in AltaRica:

1 node Switch
2 flow
3 p1,p2 : bool;
4

5 event
6 Open, Close, Failure;
7

8 state
9 open : bool;

10 ok : bool;
11

12 init
13 open := true;
14 ok := true;
15

16 trans
17 not open and ok |- Open -> open := true;
18 open and ok |- Close -> open := false;
19 ok |- Failure -> ok := false;
20

21 assert
22 (not open) => (p1=p2);
23 edon

Listing 3.1: Model of an electrical switch the in AltaRica language

In this example, electrical flow is represented by a simple boolean signal. Either there
is flow (value true) or not (value false).
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AltaRica supports bidirectional flows between components. A constraint solver is used
to update the value of the flow variables depending on the current state of the system
(state variables and their values). Models with loops are not supported. Moreover, the
approach based on the constraint solver is rather inefficient and is therefore not applicable
for industrially relevant systems [Bat+13].

AltaRica Data-Flow [Boi+06] has been developed to address these problems. The
first version of AltaRica version allowed bidirectional flows. To make the calculations more
efficient, AltaRica Data-Flow restricts the flow variables to a specific direction (input or
output). Flow variable values are updated by propagation in a fixed order (the direction
of propagation is determined at compile time). So-called transfer-functions describe the
output values depending on the values of the inputs. This reduces the computational
effort significantly. However, cyclic system models are still not supported. The syntax
of AltaRica Data-Flow has significantly changed over time. Among other changes, the
latest version of AltaRica Data-Flow describes the components by classes instead of nodes,
and declarations of transitions have changed. The AltaRica Data-Flow language is used
by many tools such as Cecilia OCAS or Dassault Systems Safety Designer. The lack of
support for looped systems and the limitation to directed flow variables was the motivation
for an improved version.

The latest version, AltaRica 3.0 [Bat+13], changed in two aspects. On the one hand,
new concepts were added to the language (e.g., systems can also be modeled using blocks
for prototyping). On the other hand, the mathematical model was changed to Guarded
Transition Systems (GTS) [Rau08]. Formally, a Guarded Transition System is the tuple
(V,E, T,A, ι), where:

• V is a set of flow variables (F ) and state variables (S)

• E is a set of symbols for events

• T is a set of transitions

• A is a set of instructions over F , called assertions

• ι is the initial variables assignment

A transition consists of an event e ∈ E, a boolean formula built over V (= guard condition),
and a set of actions. The guard decides whether a transition is fireable or not. A transition
can only be fired in a state if the guard condition is fulfilled. The actions of a transition are
instructions over S, i.e., variable value assignments. Optionally, events can be synchronized
as in the previous versions. Flow variables in AltaRica 3.0 allow flow in both directions.
Assertions describe the value of flow variables depending on the current state. Assertions
are executed immediately after the transitions are fired. During runtime, it is decided
for each component which flow variables operate as inputs/outputs. For assertions, there
are operators for bidirectional (:=:) and unidirectional (:=) assignments between flow
variables.

The compilation into Fault Trees starts with a flattening function that converts a
hierarchical model into a single GTS. During this step, bidirectional assignments are
converted into two unidirectional assignments, and for synchronized events, a simple
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transition is created. Thereafter, the flattened GTS is partitioned into independent parts
using Tarjan’s algorithm (described in Algorithm 3) and the corresponding reachability
graph is calculated. A reachability graph is a Kripke structure, i.e., a graph in which
nodes correspond to variables and edges are labeled with event names. The graph is an
explicit representation of all reachable states of a GTS (the GTS implicitly describes the
states by the state variables). A reachability graph can be obtained from a GTS in the
following way: Initially, all variables are set to their default/reset value. Subsequently, the
fireable transitions are determined and executed resulting in a set of new states (=nodes).
For each new state, flow variables are updated using the assertions, and transitions are
executed. This procedure is repeated until a fixpoint is reached, i.e., no more node or
vertex can be added to the graph [BPR17]. Flow variable updates are also based on fix
point calculations. After the calculation of the reachability graphs, each reachability graph
is converted into boolean equations. The set of boolean equations already represents the
set of Fault Trees of the system [PR14]. Top events can be defined in the model by using
observers. An observer is a simple boolean expression that quantifies a property to be
observed. Thanks to this new technique looped systems as well as bidirectional flows can
be handled.

Example 3.3.1 A simple source-valve-consumer system
Listing 3.2 shows the AltaRica 3.0 model of a simple system consisting of a source, a
controllable valve, and a consumer. The consumer is only supplied if the valve is opened.
Figure 3.4 shows the corresponding reachability graph.

1 block SimpleSystem
2

3 block Valve
4 Boolean closed (init = false);
5 Boolean working (init = true);
6 Boolean in (reset = false);
7 Boolean out (reset = false);
8 event Open;
9 event Close;

10 event Failure;
11

12 transition
13 Open: working and closed -> closed := false;
14 Close: working and not closed -> closed := true;
15 Failure: working -> working := false;
16

17 assertion
18 if not closed then out :=: in;
19 end
20

21 block Source
22 Boolean out (reset = true);
23

24 assertion
25 out := true;
26 end
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27

28 block Consumer
29 Boolean in (reset = false);
30 end
31

32 assertion
33 Source.out :=: Valve.in;
34 Valve.out :=: Consumer.in;
35

36 observer Boolean ConsumerNotSupported = not Consumer.in;
37 end

Listing 3.2: A simple source-valve-consumer system in AltaRica 3.0. The implementation
of the valve is taken from [Bat+13].

Source.out == true
Valve.closed = false
Value.working = true
Valve.in = true
Valve.out = true
Consumer.in = true

Source.out == true
Valve.closed = false
Value.working = false
Valve.in = true
Valve.out = true
Consumer.in = true

Source.out == true
Valve.closed = true
Value.working = true
Valve.in = true
Valve.out = false
Consumer.in = false

Source.out == true
Valve.closed = true
Value.working = false
Valve.in = true
Valve.out = false
Consumer.in = false

Valve.Open Valve.Close

Valve.Failure

Valve.Failure

s0

s1

s2

s3

Figure 3.4: Reachability graph of the source-valve-consumer system

(a) The boolean equations for each node in the reachability graph in Figure 3.4 are as
follows:

• ϕs0 = Open ∧ Close ∧ Failure

• ϕs1 = Open ∧ Close ∧ Failure

• ϕs2 = Open ∧ Close ∧ Failure

• ϕs3 = Open ∧ Close ∧ Failure
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(b) The boolean equations for each variable and its value are as follows:

ϕ(Source.out,true) = ϕs0 ∨ ϕs1 ∨ ϕs2 ∨ ϕs3 ϕ(V alve.closed,true) = ϕs1 ∨ ϕs3

ϕ(V alve.working,true) = ϕs0 ∨ ϕs1 ϕ(V alve.in,true) = ϕs0 ∨ ϕs1 ∨ ϕs2 ∨ ϕs3

ϕ(V alve.out,true) = ϕs0 ∨ ϕs2 ϕ(V alve.out,false) = ϕs1 ∨ ϕs3

ϕ(Consumer.in,true) = ϕs0 ∨ ϕs2 ϕ(Consumer.in,false) = ϕs1 ∨ ϕs3

... ...

The Fault Tree for the top event “Consumer is not supplied”, defined by the observer
ConsumerNotSupported (see observer declaration in line 36) can be constructed quite
simply using boolean equations in (a) and (b). It follows from (b) that the observer
property is violated in ϕs1 and ϕs3 . It follows from boolean equations (a) that ϕs1 is
reached if the valve is closed (by event Close) and ϕs3 is reached by the events Close and
Failure. ■

Another concept added to AltaRica 3.0 is timed GTS. Events can be assigned deter-
ministic or stochastic delays. Delays are used to determine the firing date of an event.
There exists a so-called oracle that determines the sequence of events that are allowed to
be triggered based on the delays [Pro14]. Note that in AltaRica 3.0 only one transition is
executed at once. Therefore, there is an expectation value that can be assigned to events.
This weight is used in situations when there exist several transitions that can be triggered
at the same time.

To conclude, Table 3.4 shows an overview of the successive versions of AltaRica.

Variant AltaRica AltaRica Data-Flow AltaRica 3.0
Mathematical Constraint Automata Mode Automata GTS
Flow propaga-
tion method

Constraint solving Propagation Fix point

Efficiency Low High High
Looped system
supported?

No No Yes

Bidirectional
flows?

Yes No Yes

Object-
oriented?

Yes Yes Yes

Prototype-
oriented?

No No Yes

Available tools AltaRica Studio Cecilia OCAS OpenAltaRica

Table 3.4: Overview of the AltaRica versions
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3.4 Approaches based on Formal Verification
Some approaches to automated safety analysis utilize formal verification tools. These
approaches follow the principle of failure-injection.

3.4.1 Approach by Joshi et al.

The approach proposed by Joshi et al. is based on Mathworks Simulink and the model
checking tool NuSMV [JWH][Jos+05]. The safety assessment starts with creating a model
of the nominal system behavior in Simulink. After that, this model is extended with a
fault model. The fault model is directly integrated into the nominal system behavior and
created using Simulink blocks.

Example 3.4.1 Fault model of a stuck-at failure
Figure 3.5 shows a possible implementation of a fault model of a stuck-at failure. The

 > 0

Switch

0

StuckAtValue

1

StuckAtTrigger

2

NominalValue

1

Out

Figure 3.5: Fault modeling in Simulink

failure behavior is defined in a subsystem with two input ports and one output port. The
input port StuckAtTrigger is used to activate the failure behavior. Depending on the
value at this port, the output value is either constant (e.g., constant 0) or defined by the
input NominalValue. This subsystem can, for example, be connected to the output of a
valve to realize a stuck-at-closed failure. ■

To perform the safety analysis with model checking, the extended system model created
in Simulink must be converted into the correct input language (input language of the model
checker). The transformation algorithm fully automatically creates an equivalent SMV
module for each Simulink block. After the conversion to the input language of NuSMV, the
model can be verified against a safety requirement specified in CTL. If the specification is
not fulfilled by the model, NuSMV will return just one single counterexample even though
there could exist more. Because of the limited functions of failure modeling in Simulink,
Joshi and Heimdahl introduced LustreFM [JH07]. LustreFM is a dataflow language
based on Lustre, which provides special functions for failure modeling like conditional
fault activation. Thanks to this language, the fault model can be separated from the
nominal system model (defined in Simulink). Despite these improvements, the limitation
to directed connections in Simulink remains.
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3.4.2 SAML

Another approach based on formal verification techniques is SAML. SAML (Safety Analysis
and Modeling Language) enables the construction of models with probabilistic and non-
deterministic behavior [GO11][GO10]. SAML is used as an intermediate layer between
engineering and verification. System models in Simulink, for example, are transformed
into equivalent SAML models. During this transformation step, a fault model is added.
With SAML as an intermediate layer, various analysis tools can be used. Among others,
the transformation from SAML into the input language of model checking tools NuSMV
and PRISM is possible. Thus, qualitative and quantitative analysis is possible.

SAML is based on finite stochastic state automata, which are all executed in parallel.
Models in SAML are constructed using so-called modules, which consist of variables
and transitions. State variables are either enumerations, bounded integers, doubles, or
boolean variables. Transitions between states can be specified in non-deterministic and
probabilistic ways. Components can be nested to model hierarchical systems. Note that
there are no explicit events in SAML (as for example in AltaRica 3.0) [Lip+15].

Example 3.4.2 Example system model in SAML
The following SAML code shows a simple model consisting of a power source, a switch,
and an actuator.

1 component main
2

3 constant double f_powersource := 1E-13;
4 constant double r_powersource := 1E-6;
5

6 formula is_ps_on := switch.state=CLOSED & power_source.failure_mode=OK;
7

8 component power_source
9 enum FM_STATE := [OK, FAILURE];

10 failure_mode : FM_STATE init OK;
11

12 failure_mode=OK -> choice:(f_powersource:(failure_mode’=FAILURE) +
13 (1-f_powersource):(failure_mode’=OK));
14 failure_mode=FAIL -> choice:(r_powersource:(failure_mode’=OK) +
15 (1-r_powersource):(failure_mode’=FAILURE));
16 endcomponent
17

18 component switch
19 enum SW_STATE := [OPENED, CLOSED];
20 state : SW_STATE init OPENED;
21

22 state=OPENED -> state’=CLOSED;
23 state=CLOSED -> state’=OPENED;
24 endcomponent
25

26 component actuator
27 enum AC_STATE := [OFF, ON];
28 state : AC_STATE init OFF;
29
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30 state=OFF & ps_on -> state’=ON;
31 state=ON & !ps_on -> state’=OFF;
32 endcomponent
33 endcomponent

Constants and formulae (see lines 3-6) are macros that can be used in any subcomponent.
The component model of the power source consists of a variable that specifies the failure
mode of the component (see line 10). Initially, the component is in state OK. State variable
updates (see lines 12-15) are defined by non-deterministic choices. For example, the
power source changes its state from OK to FAILURE with a probability of f_powersource
(=1E−13) or it remains in state OK with a probability of 1-f_powersource. The actuator
operates if the switch is closed and the power source is in state OK. ■
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3.5 Classification
The presented approaches to MBSA have different characteristics in different aspects.
Figure 3.6 categorizes the approaches based on the distinguishing criteria presented at
the beginning of the chapter.

Interface between components
Failure logic modeling Failure effect modeling 

Level of abstraction
High Low

Purpose of the model
Extended design model Single Purpose 

Connection modeling
Directed Bidirectional

HiP-HOPS
FPTN
AltaRica 3.0
Snooke et al.
Joshi & Heimdahl
SAML

1

3

4

2

5

1 32

31 2 5 4

1 345 2

45

2 1 3 45

6

6

6

6

6

Figure 3.6: Classification of relevant approaches to MBSA
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“Any verification using model-based
techniques is only as good as the
model of the system.”

Principles of Model Checking [Cla08]

This chapter introduces the new smartIflow formalism and its underlying concepts. The
chapter is structured as follows: After stating the motivation for a new approach, it is
discussed which basic concepts a new approach should feature. The combination of all
these concepts forms a modeling formalism called smartIflow (State Machines for Au-
tomation of Reliability-related Tasks using Information FLOWs). Subsequently, the main
aspects of the smartIflow language are presented. After that, the smartIflow system
models are formally defined and their semantics as well as the unfolding to transition
systems are described. Finally, an approach for efficient graphical modeling is presented.

4.1 Why yet another Approach?

Today there exist many tools for automated reasoning about faults are available in early
phases of product development. However, there is no silver bullet. But what are the
reasons for this issue?

The greatest challenge in the automation of safety-related tasks is probably the choice of
an appropriate level of abstraction. HiP-HOPS uses an extremely high level of abstraction
to perform a steady-state analysis. Components only share information about possible
failures (e.g., the omission of a signal) via directed channels. The behavioral description
only specifies how a failure at the inputs affects the outputs. Therefore, component models
can be constructed quite easily, models remain lightweight, and there are probably fewer
problems with computational effort. However, as attractive as this kind of modeling looks,
some drastic limitations need to be considered. One problem is the lack of nominal behavior.
In real systems, faults can also occur due to a certain combination of operational modes.
Consider for instance two actuators working against each other due to an operational
mistake and as a result causing physical damage. Such situations cannot be handled with
HiP-HOPS. Another problem is the lack of state variables. Therefore, it is not possible to
specify state-dependent behavior, which is problematic for many situations. Consider for
example a fuse. Normally, a fuse only breaks when the current exceeds a certain value for a
certain duration. A broken fuse behaves totally differently compared to a deactivated fuse
(the electric circuit is interrupted if the fuse is blown). HiP-HOPS cannot describe this
behavior. Another problem arises with the limitation to directed connections. Situations
in which the cause-effect relationship may reverse obviously cannot be handled. A way to
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get rid of this problem is artificial connections. Every time the cause-effect relationship
may reverse, artificial connections need to be created. These artificial connections are
also needed for components that are not directly connected but may influence each other.
Unfortunately, these artificial connections cause structural differences between the real
system and the model and models become more and more complex.

A great advantage of formal verification is the exhaustive analysis and reliable results
(if the model is correct). Once the model and specification are defined, the method
works fully automated. Model checking is a formal verification method used by several
approaches for automated safety analysis. Model checking can find relevant effects that are
invisible in simulation-based approaches. Compared to HiP-HOPS, approaches based on
model checking incorporate more knowledge into the models so that much more detailed
results can be obtained. However, most model checkers (e.g., NuSMV) deliver only one
counterexample if the model does not fulfill a certain specification even though there could
exist more. This is a rather drastic limitation. Safety engineers know that their system
will eventually fail (with a certain number of failure events). For safety engineers, the
reasons for a system failure are way more important. A single counterexample indicates
only one scenario that led to the specification violation but does not list all possible causes.
Another problem is the input languages of model checkers. Most model checkers limit
the communication between components to directional channels. This results in the same
problems that occur with HiP-HOPS. Timing is crucial in many safety-critical systems.
However, there are only limited possibilities in the input languages of model-checking tools
to specify temporal behavior. For example, delays must be specified in NuSMV using
counters. Another problem arises when specifying the safety requirements in temporal
logic such as CTL or LTL. The temporal operators of CTL or LTL are often not sufficient
to specify safety requirements for real-world applications. Consider the following example:
AF Φ. The expression only states that Φ must hold somewhere in the future. This could
be in the next state or after any number of intermediate states. Understandably, this is
not accurate enough, since system reactions must often occur within a certain duration.
Another issue is the state space explosion. The state space grows exponentially with an
increasing number of variables. This is problematic with larger systems since verification
is often not possible at all or only with very high computational effort. The approach by
Joshi et al. also suffers from limited fault modeling in Simulink. Transient faults and
the differentiation between external or internal failure are not supported. The number
of failures that are triggered can only be limited to an upper bound using an additional
expression in CTL. There is no possibility to specify classes for the different failure events.
Furthermore, the incorporation of failure behavior into the system model increases the
complexity and leads to clutter. From a high-level perspective, no indicator shows which
component has already been extended with failure behavior. Component changes (e.g.,
adding an additional failure behavior) require a lot of work since each component must
be updated manually.

In [Bie+04], Bieber et al. present lessons learned of using AltaRica (the original version)
for the safety assessment of two aircraft systems. Apart from problems with cycles in the
system topology (such systems are rejected), they also found weaknesses in the definition
of safety requirements using observers. AltaRica significantly evolved over time, and
at first glance AltaRica 3.0 seems to be the perfect tool for safety analysis in the early

46



4.2 Towards a new Modeling Formalism

product life cycle stages. Connections between components are bidirectional and looped
systems are supported. Even though the expressiveness of AltaRica 3.0 is much higher in
comparison to its original version, (but also in comparison to HiP-HOPS) there are still
some limitations. In AltaRica 3.0, flow variables are used to share information with other
components. Flow variables are restricted to a specific domain and can transfer only a
single value. This leads to problems when implementing a bus-like communication between
components where different information (e.g., different sensor values or logical signals)
can be shared. A possible solution could be an enumeration type where all potential
values are defined, though it is not possible to combine numbers with enumeration types.
Another example where this limitation leads to difficulties is the modeling of a leakage
in a hydraulic circuit. In order to indicate a leakage properly, information about fluid
and pressure must be propagated. AltaRica 3.0 is not capable to propagate this pair of
information. Even though AltaRica 3.0 supports bidirectional flows, there is no possibility
of physical flow direction determination. In AltaRica 3.0 all state transitions are triggered
completely by external events. There exist only limited features for event synchronization.
Even though there are guard expressions to trigger events only in certain situations, no
mechanism to define an upper bound for the activation of events exists. For example,
there is no possibility to set a limit of double faults or to trigger operation events only
(nominal behavior). Therefore, the state space can become very large in bigger systems.
Complexity can also become a problem when building the reachability graph of a GTS.
In order to manage the high complexity, GTS are split into independent subsystems.
However, if a system cannot be divided into independent parts, which pertains to many
real word systems, the state space of the reachability graph explodes. Another problem
arises when specifying safety requirements using observers. For example, an observer
cannot differentiate between a temporal or permanent loss of electrical power:

1 observer Boolean ConsumerIsNotSupplied = Consumer.input == false

Last but not least, physical system models (e.g., Simscape) are too detailed to obtain
widespread results.

This short discussion reveals that there is a great demand for a new approach. But how
could a new approach that is capable of overcoming the limitations of the existing tools
look like?

4.2 Towards a new Modeling Formalism
This section implements Contribution C1.
To overcome the weaknesses of the existing tools, a new modeling formalism called
smartIflow (State Machines for Automation of Reliability-related Tasks using Informa-
tion FLOWs) was developed [HL14]. smartIflow tries to eradicate the flaws of existing
tools by combining concepts from existing approaches and adding some new features.

The main idea behind smartIflow is quite simple: Each component in a system is
considered as a finite state machine. Therefore, a component model consists of several
typed variables that represent, for example, the operational or failure mode of a component.
Variables take values of discrete domains. Each variable has a defined initial value. So
far, this is nothing new. Differences occur in the mechanisms for state changes. While
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AltaRica 3.0 only uses external events, smartIflow has two different mechanisms for state
changes. The reason for this is that internal and external influences require quite different
mechanisms for state changes. In addition, this strict separation between internal and
external influences enhances the readability of the models. External influences are for
example the activation of a failure situation or changing the operational model of a
component. In smartIflow they are modeled using events and corresponding transition
statements, much like in AltaRica 3.0. The events of a component are just a set of symbols
that define possible external influences while transition statements specify the reaction
to them. Each transition statement defines the effects to a specific event. Additional
guard conditions can be added to the transition statements to trigger external events
only in specific states, similar to guards in finite state machines. Consider for example an
electrical switch that can be turned on or off. Changing the operational modes can be
easily modeled using external events TurnOn and TurnOff. Triggering the event TurnOn
only makes sense if the switch is in the off state, which can be ensured by the guard
condition state==off. Guards are an important mechanism to reduce search space.

Internal influences are variable value changes or information shared by other components.
The reaction to internal influences is also specified by means of transition statements. A
transition statement for internal events consists of at least a triggering condition and a set
of effects. The triggering condition is a logical expression of comparisons between symbolic
values and all kinds of variables including information shared by other components.
Transition statements are only triggered if the value of the triggering condition changes
from false to true. Figure 4.1 illustrates this rising edge semantics which ensures that
transition statements are not executed more often than necessary. Transition statements
for internal influences can be equipped with guards, too. A transition statement is only
executed if the value of the triggering condition changes from false to true and the guard
condition is fulfilled. The effects of transition statements for internal and external events
are defined by assignments to at least one variable. In many situations, the action effect of
an event is not known. Therefore, smartIflow supports nondeterministic state transitions.
Non-deterministic state transitions are modeled by assigning all possibly arising values to
a variable: var = Value1 or Value2;

t

Truth value of triggering condition tc 

1

0

Trigger Trigger 

Figure 4.1: Rising edge semantics of transition statements in smartIflow

Let us continue with the component behavior. Components in a model need to somehow
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communicate with each other. Consider for example a valve that controls a flow depending
on the control signal. The control signal can be provided by a controller that receives
and processes data from sensors. Information shared between components is quite diverse.
Components can for instance share information about flow, logical signals, or sensor values.
In smartIflow the communication between the components is achieved by means of ports
and connections. Each component has a set of ports that represent the possible connection
points of a component. The ports in smartIflow are typed, and, unlike AltaRica, a port
can be assigned multiple values. Connections are used as communication channels between
components. Of course, these connections must propagate information in both directions.
Otherwise, situations in which the cause-and-effect relationship reverses cannot be handled.
In smartIflow, components publish messages in terms of so-called properties (properties
are going to be addressed later on in this chapter). Once a component publishes a property
at a port, the property is then propagated to all other connected ports. Sometimes it
makes sense to restrict propagation at the port level, for example when modeling a sensor.
A sensor could be modeled by publishing the captured value at a port. In principle, the
sensor is not dependent on any information from the connected components. Therefore,
information flow at the sensor can be limited in such a way that only the captured sensor
values can be propagated, but no information from connected components can be read by
the sensor. For this reason, ports in smartIflow can be restricted to inputs or outputs.

Example 4.2.1 Inputs and outputs in smartIflow
Figure 4.2 shows a simple model consisting of three components. Each component is
equipped with one port. Port p1 of component B allows flow of information in both
directions (no restriction). Component A has an output port and component C has an
input port. Let us assume each component sets a property on its port:

• Component A: stateA=active

• Component B: stateB=active

• Component C: stateC=active

  stateA=active
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stateC=active
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Properties at p1:
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Figure 4.2: Effects of inputs and outputs in smartIflow
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Figure 4.2 shows the properties available at ports inside components before and after
propagation. Although components B and C are not directly connected to each other,
the property published by component B (stateB=active) is available inside component
C, since the property from component B is propagated to component A and finally to
component C. Note that the properties available on a port can be different inside and
outside of its component. For example, at port p1 inside component A only property
stateA=active is available, because p1 does not let any information flow inside. When
accessing port p1 of component A from outside, properties stateA=active, stateB=active
and stateC=active are available. ■

The components should be able to establish the connection structure depending on
their current state. Consider for example a simple electrical switch that connects its two
ports in state closed. The switch could be modeled as follows: The state of the switch is
described by a variable with values Opened and Closed. Changes in the operation mode
are initiated by external events and corresponding transition statements. Two ports (p1
and p2) define the connection points of the switch. A connection between p1 and p2
may only be established in the state Closed. Therefore, the behavior description of a
component in smartIflow consists of a set of conditional branches, in which the behavior of
the respective state is described. Conditions only consist of logical combinations between
variables and their possible values. The behavior of a component is described in terms
of modifications of the network structure and the publication of properties across the
network. A connect function is provided to link two ports. Once two ports are connected,
properties can be passed through them.

The kind of information the components exchange with each other has not been discussed
in detail yet. In AltaRica 3.0 the possible messages exchanged between components are
limited to the domain of flow variables. Therefore, only two flow variables of the same
type can be connected. In addition, as already mentioned, a flow variable can always
be assigned only one specific value. This kind of message exchange is quite limited. For
example, it is not possible to propagate information about different sensors simultaneously
using a single flow variable. For this reason, smartIflow provides a flexible mechanism for
message exchange between components. Components communicate with other components
by writing properties to ports which are then propagated to all other connected ports.
In fact, properties are simple key-value pairs. The properties are used to abstract from
physical signals. For example, the values of an acceleration sensor can be abstracted
by the properties sensor1=low and sensor1=high. The key (sensor1) indicates the
origin of the information. Thus, it is possible to distinguish between several sensor values.
Components have access to the properties at ports and can react to them using transition
statements. Depending on the shared information, a component may update its variable
values, modify the connection structure, or add additional properties. Components may
lose their context freedom. The benefit of this approach however is an extremely flexible
mechanism for message exchange.

Example 4.2.2 State-dependent behavior in smartIflow
Consider a simple valve that controls the flow of fluids. The valve can either be closed
or opened. Only in state Open, fluid can flow through the valve. The component can be
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modeled in the smartIflow language1 as follows:
1 class Valve {
2 Ports:
3 Fluidal p1;
4 Fulidal p2;
5 Signal ctrl;
6

7 Variables:
8 Enum[Open, Closed] state;
9 Enum[Ok, StuckOpen, StuckClosed] fm;

10

11 Events:
12 ActivateStuckOpen {type=failure};
13 ActivateStuckClosed {type=failure};
14

15 Behavior:
16 if (state == Open)
17 connect(p1, p2);
18

19 Transitions:
20 when (ctrl.exists(cmd=Open) && fm != StuckClosed)
21 state=Open;
22 when (ctrl.exists(cmd=Close) && fm != StuckOpen)
23 state=Closed;
24

25 EventHandlers:
26 when (ActivateStuckOpen) [fm == Ok && state == Open]
27 fm = StuckOpen;
28 when (ActivateStuckClosed) [fm == Ok && state == Closed]
29 fm = StuckClosed;
30 }

In smartIflow, component models are defined by means of classes. Ports p1 and p2
define the connection points between which the flow of fluid or gas is controlled. The
transition statements in lines 20-23 define the reaction to control signals on port ctrl
(published by other components). The property cmd=Open defines the command to open
the valve. If the valve receives this property, the value of variable state is changed
to Open. However, this transition may only be executed if the valve is not stuck at
position StuckClosed. Stuck-at faults are modeled by the events ActivateStuckOpen
and ActivateStuckClosed and corresponding transition statements (see lines 26-29).
Note the guard conditions in the square brackets that limit triggering the events to specific
situations. For example, a stuck-at-closed failure may only be activated if the valve is
closed and works properly (fm=Ok). The state-dependent behavior of the valve is quite
simple: A connection between port p1 and p2 is established only in state Open. Other
components that are somehow connected to port ctrl can publish the property cmd=Open
respectively cmd=Close to control the valve (e.g., set(valve1, [cmd=Open])). ■

An important aspect that has been ignored so far is timing. The components in real
1The smartIflow language is described in detail in Section 4.3
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systems react to events at quite different speeds. For example, emptying a reservoir
filled with hydraulic oil takes much longer than a controller’s response to changes at
inputs. To model such delayed reactions, internally and externally triggered transition
statements need to be extended with timing information. smartIflow allows to specify
order-of-magnitude (OM) values in transition statements for internal events to quantify
delays. Consider for example the transitions statements ts1 with delayts1 = 4 and ts2 with
delayts2 = 2. If ts1 is triggered, corresponding state changes will happen after a delay
of four orders of magnitude above reference. The effects of ts2 will happen after a delay
of two orders of magnitude above reference. If ts1 and ts2 are triggered simultaneously,
effects of ts2 happen immediately, while ts1 must be delayed (the delay of ts1 is larger).
Therefore, all internally triggered transition statements are queued and only transitions
with the minimum value (=active transition statements) are executed in the next step. All
active transition statements are executed simultaneously leading to at least one subsequent
state. In the case of nondeterministic state transitions, the result is a set of subsequent
states.
Example 4.2.3 Delayed transitions in smartIflow
A security alarm system as depicted in Figure 4.3 consists of a set of sensors (e.g., motions
sensors, glass-break, or infrared detectors) that are connected via bus technology or
wirelessly to a central controller (premises control unit).

motionSensor

controller

xxxx

7 8 9
4 5 6
1 2 3

keypad

alarm

Figure 4.3: Architecture of a security alarm system

The premises control unit reads the sensor/detector states and signals intrusions. An
intrusion must only be signaled if the security alarm system is armed. An authorized
person must be able to disarm the alarm system. Many alarm systems can be disarmed
by entering a pin on a keypad that is installed inside the building. In order to prevent
an unwanted alarm from going on when entering the building, the alarm system triggers
with a predefined delay. Modeling this control logic in smartIflow requires appropriate
delay values and guards:
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1 // ...
2 Transitions:
3 when {delay=3} (motionSensor.exists(motion=true)) [state ==Armed]
4 alarm=On;
5 when {delay=1} (keypad.exists(disarmed=true) && state == Armed)
6 state=Disarmed;
7 // ...

If a motion is detected, intrusion is signaled with a delay of three orders of magnitude
(above reference), but only if the security alarm system is still armed. Order of magnitude
value of three represents several seconds, while the order of magnitude value of one is
about a second. Within this delay, the alarm system can be disarmed by entering the
correct pin. If the alarm system is disarmed, the guard (state == Armed) will prevent
executing the delayed transition statement (line 3). This example demonstrates that the
guard condition of a delayed transition statement must be rechecked before it is actually
executed. ■

Each state is stable with respect to a certain order of magnitude (OM) value. A state
is stable to order of magnitude value tmin if all internally triggered transition statements
have a delay of OM value of tmin . To make sure that every delayed transition statement
is executed after it is triggered, no infinite path of states with low OM values must exist.
Transition statements are only executed if the guard condition is fulfilled. Therefore, it is
essential to recheck the guard conditions of delayed transition statements before executing
them. A delayed transition statement is removed from the queue once the guard condition
becomes false.

A delay value for externally triggered transition statements does not make sense. Once
an external event is triggered, the effect should take place immediately. However, it makes
sense to define a filter condition to limit the activation of external events to states that
are stable at least with respect to the specified value. Executing an external event in all
conceivable situations (where the guard condition is satisfied) will certainly explode the
state space. Therefore, externally triggered transitions can also contain an OM value that
defines a stable condition. The stable condition does not cause delays in execution but
filters triggers for external events. This is an important feature to control the frequency
of external events and consequently to keep the search space manageable.

Example 4.2.4 Stable condition in transition statements for externally triggered events
The listing below shows a transition statement for the external event ActivateStuckOpen.
The stable condition limits the execution of ActivateStuckOpen to states that are stable
at least with respect to five orders of magnitude above reference.

1 when {stable=5} (ActivateStuckOpen) [fm == OK && state == Open]
2 fm = StuckOpen;

■

A stable condition can also be specified for transition statements for internally triggered
events. The semantics is the same as for the external events. Thus, the activation of
internal events can be limited to states that are stable to a certain value. Note that the
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stable condition in internally triggered transition statements will disable the rising edge
semantics.

Properties offer a quite flexible communication between components. For some scenarios,
however, a behavioral description on a physical level would be desirable. For this reason,
smartIflow integrates the qualitative order of magnitude energy-flow-based reasoning
introduced in [SL14]. The concept is implemented in smartIflow in the following way:
Each connection that is part of the power network is assigned a resistance value by means
of features:

1 // connect p1 and p2 with a resistance of two orders of magnitude above
reference:

2 connect{r=1}(p1, p2);

Sources are created by adding built-in features to a component class. The following
component class represents a bipolar effort source for electrical circuits with a power of
four orders of magnitude above reference:

1 class PowerSupply {flowComponent=bipolarEffortSource, om=4}{
2 Ports:
3 Electrical{flowPort=source} plus;
4 Electrical{flowPort=drain} minus;
5 }

After qualitative energy flow analysis, the flow and effort values are stored in terms of
simple properties at ports, which can be considered in the triggering conditions of the
transition statements:

1 when(flow.om(p1,p2) > 1) {
2 //...
3 }

To summarize, smartIflow is a formalism for model-based safety analysis with the
following characteristics:

• smartIflow incorporates more knowledge into the models compared to other com-
petitors (see Figure 4.4)

• Components in a system are considered as a finite state machines:
– Each component consists of a set of typed variables with discrete domains
– Events and corresponding transition statements specify reactions to external

influences
– Internally triggered transition statements define the reactions to changes on

ports or variables
– Internally and externally triggered transition statements can be extended with

information about timing in terms of order of magnitude values (delays/stable
conditions)

• Each component in a system is described by a separate smartIflow system model

• Behavior is generally described qualitatively and object-oriented
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• Ports represent the connection points of a component

• The dynamic connection structure relies on bidirectional connections

• Components communicate with each other by writing properties to ports which are
propagated to all other connected ports

• Systems behavior can also be described at the physical level using the qualitative
energy flow analysis
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Figure 4.4: Positioning of smartIflow at level of abstraction with respect to competitors

In fact, smartIflow system models are extended/modified program graphs that implicitly
describe the transition system. The explicit representation of the transition system can
be obtained by unfolding. In unfolding, the following steps are performed alternately:

• Process behavior: Establish dynamic connection structure based on current variables
values, add properties to ports, and propagate them

• Determine subsequent states: Execute possible transition statements for internal
and external influences

Before focusing on the formal basics of smartIflow system models and the unfolding
function in detail, first the smartIflow language will be introduced in the following.
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4.3 The smartIflow Language
For automated reasoning about faults, smartIflow models must be specified in a formal
and computer-understandable way. This chapter introduces the smartIflow language that
is used to create smartIflow system models.

System models are typically created with the help of modeling languages or formalism.
Joshi et al. [JWH][Jos+05] use for example logic blocks and the Simulink system editor for
modeling. Afterward, the Simulink models are transformed into the input language of the
symbolic model checker NuSMV. This approach is attractive to those who are not familiar
with programming languages or textual modeling formalism. AltaRica 3.0 [Bat+13] is an
example of an approach using a textual modeling language. The language was designed
specifically for the formalism. Models remain lightweight and all features of the modeling
formalism are supported. Both types of languages have their benefits. Therefore, the
smartIflow approach will provide both a textual and a graphical modeling language. The
textual modeling language is called smartIflow language and will be described in this
section. Later a concept for efficient modeling based on a graphical formalism will be
presented in this chapter (see Section 4.8).

Java is a beginner-friendly, modern, and popular programming language. The smartI-
flow language2 is inspired by Java and therefore shows some common characteristics. The
smartIflow language is an object- and component-oriented language in which components
of a system are represented by classes. Components of the same type need to be modeled
only once and can be instantiated several times. A regular source file that defines a
component class, port, or enumeration must be named after the type it contains, ending
with “.sif”. For example, the component class Switch must be named Switch.sif. In
addition, there are special source files that may contain multiple type definitions. These
source files must be named “definitions.sif” and can be placed in any package (the package
concept will be introduced afterward). The definition files are especially helpful for the
elements that are used in several components (e.g., port types or enumerations). A single
import statement can be used to import several types (described in a definitions file) at
the same time.

First, some basic aspects of the smartIflow language will be described. After that, the
different types (class, port, enum) will be explained in detail.

4.3.1 Fundamentals

Identifiers As in most programming languages, identifiers in smartIflow are names
given to classes, variables, events, or transitions to refer to the element from somewhere
else. The rules for defining a valid identifier in smartIflow are equivalent to Java:

• Reserved keywords cannot be used as an identifier (e.g., class, Enum, if, or when
cannot be used as an identifier)

• Identifiers are case-sensitive

• Allowed characters are digits, alphanumeric characters, and the underscore
2The entire grammar of smartIflow is shown in Extended Backus Naur Form (EBNF) in Appendix A.1
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• Identifiers must not start with a digit

Properties Properties are, as already described in Section 4.2, simple key-value pairs.
The key can be any identifier. The value can be an identifier or a number (integer or
double). Properties are separated by an equal sign. The key is placed on the left side and
the corresponding value is placed on the right of the equal sign. Valid properties are for
example key1=value1 or e=1e-9. A set of properties is comma separated and grouped in
curly brackets: {k1=v1, k2=v2, ...}

Features Features extend, for example, variable values, port instances, or events with
additional data such as information about timing or probabilities. Features are, like
properties, key-value pairs where the key and value are separated by an equal sign. The
key can be an arbitrary identifier, the value of an identifier, a number (integer or double),
or a string literal. Like properties, a set of features is comma separated and grouped in
curly brackets: {f1=v1, f2=1e-9, f3="Some text", ...}

Packages Same as in Java, packages in smartIflow language are used to group related
definitions together. Packages can be nested into each other. The names of nested
packages are separated by a dot. Definitions from other packages can be used either by
using the full qualified name or by preceding an import statement. The source code of any
type starts with a package declaration, followed by some import statements and after that,
the actual definition of the type follows. Packages not only provide a better overview but
also help with naming conflicts, since only elements within a package need to be uniquely
named.

Comments In smartIflow language, there are two possibilities for writing comments:

1. Block comments start with /* and end with*/ and comments out everything in
between. The text in the block comment must not contain any */ itself, as block
comments must not be nested

2. Line comments start with two slashes // and comment out the remaining content of
a line

Statements and Blocks In smartIflow language, the semicolon (;) is used to indicate
where a statement ends. Function calls, declarations, or variable assignments must
be terminated with a semicolon. A block is a statement that combines a sequence of
statements in curly braces { } to a new statement. In principle, the complete code of
a component class in smartIflow language could be written in one single line without
indentation or line breaks.

4.3.2 Type port
Connection points of smartIflow components (=ports) are typed. The port type defines
the set of admissible properties that could be present at the port. Note that different
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properties can be present at a port at the same time. A port type definition consists of
a set of property domain specifications. The property domain specification defines for
the key of a property the set of admissible values. In the smartIflow language, a port
type is defined using the keyword port. For example, a port type definition allowing the
properties key1=value1, key1=value2, key2=value1, key2=value2, and key2=value3
to be present at a port is defined as follows:

1 port PortType1 {
2 Properties:
3 key1 = {value1, value2};
4 key2 = {value1, value2, value3};
5 }

A port type without any property domain specifications allows any kind of property to be
assigned to a port of this type.

4.3.3 Type enum

Type enum is used to define a set of predefined values for variables. The value of a variable
must always be one of the values defined in the predefined constants. There is no limit on
the number of variable values, but at least one value must be defined. Optionally, variable
values can be extended with features. The following example shows the definition of an
enumeration type:

1 enum Type1 {
2 A, B, C, D, E{feature=value}
3 }

A variable of type Type1 can be assigned the value A, B, C, D, or E.

4.3.4 Component Classes

In smartIflow language, classes are used to represent components in a system. A component
class is defined using the keyword class. For the sake of clarity, the various characteristics
of a component model (e.g., ports, variables, state-dependent behavior, or transitions)
are separated into seven sections, namely Components, Ports, Variables, Events,
Behavior, Transitions, and EventHandlers. Each section is optional, however, the
order of the sections is fixed:

1 class Test {
2 Components: //...
3 Ports: //...
4 Variables: //...
5 Events: //...
6 Behavior: //...
7 Transitions: //...
8 EventHandlers: //...
9 }

58



4.3 The smartIflow Language

Components: The smartIflow language supports hierarchical modeling. The subcom-
ponents of a component are defined in section Components. A component class instance
is defined by the name of the class followed by a unique identifier. Naturally, instances of
a class in the class itself cannot be created (this would lead to infinite recursion). The
following example demonstrates the instantiation of two components:

1 Components:
2 Type1 instance1;
3 Type2 instance2;

Ports: In this section, the connection points of a component to communicate with
each other are specified. To instantiate a port in smartIflow, a port type followed by an
identifier must be added to section Ports. Optionally, the information flow at a port
can be restricted to a certain direction by using the built-in features direction=input
respectively direction=output.

1 Ports:
2 PortType1 input{direction=input}; // Port that allows flow inside
3 PortType1 output{direction=output}; // Port that allows flow outside
4 PortType1 port; // Port that allows flow in both directions

Variables: The variables of a component are specified in section Variables. Basically,
variables can be created in two different ways. Either the variable with the corresponding
domain is defined and instantiated directly in the class itself using an anonymous type 1⃝
or a variable type is defined in a separate file and in section Variables only instances
are created 2⃝. The first method is quite useful for special variable types that are only
required once because they can be defined and instantiated directly within the classes
without any additional variable type definition. The latter has the advantage that in case
of multiple instances, the variable type must only be defined once, and several instances
can be created.

The instantiation of a variable inside a class using an anonymous type 1⃝ starts with
the definition of the domain using the keyword Enum and a set of constants in square
brackets followed by an identifier. A variable instance of a predefined enum 2⃝ is created
by using the type name followed by an identifier. The assignment of the initial value is
optional for both methods. If no initial value is specified, the first value of the domain is
used. The variables within a class must be uniquely identified. Optionally, features can
be added to variable values or instances.

The following listing shows examples of both methods:
1 Variables:
2 Enum[Value1, Value2, Value3] var1 = Value2; // 1⃝
3 Enum[Value1, Value2] var2 = Value2; // 1⃝
4 Type1{feature=value} var3 = A; // 2⃝

Events: The set of external stimuli is defined in section Events. An event is described
by an identifier with an optional set of features. The features can be used to categorize
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the events in different groups (e.g., failure, operational, or repair events) or to specify
the probability of occurrence. The following listing demonstrates the declaration of some
events:

1 Events:
2 Event1{type=opm};
3 Event2{type=opm};
4 FailureEvent{type=failure, p=1e-7};
5 RepairEvent{type=repair};

Events within a class must be uniquely identified. In section Events the events are just
declared, while the reaction to them is described in section EventHandlers.

Behavior: Section Behavior is used to describe the state-dependent behavior of a
component. The behavior is expressed in terms of set- and connect- functions. Function
set is used to publish a set of properties to a port. Therefore set requires two parameters,
namely the name of the port and a set of properties. Function connect establishes a
connection between two ports and optionally publishes a set of properties. Only ports of
the same type can be interconnected. The first two parameters of connect are mandatory,
namely the name of the ports to be connected, while the set of properties is optional. The
order of the parameters is fixed for both functions. set- and connect-functions declared
directly in section Behavior are executed independently of the state of a component
(=default behavior).

A connect-function with simultaneous property publication (using a single statement)
is semantically equivalent to a simple connect-action and a set-action to one of the two
connected ports (two statements):

1 Behavior:
2 connect(input, output, {key1=value1, key2=value2});
3 // is semantically identical to:
4 connect(input, output);
5 set(input, {key1=value1, key2=value2});

The state-dependent behavior is expressed in terms of conditional branches. smartIflow
provides if- and if-else statements for this purpose. An if statement consists of the keyword
if, followed by a logical expression in parentheses. After that, either a single statement
or a block with several statements can follow. The optional keyword else can be used to
specify a statement or a set of statements in a block that is executed if the condition from
the if part is false. In addition, smartIflow also supports nested conditional statements.
Conditions for if-statements can be any logical combinations of comparisons between
variables and their values using the relational operators == and != as well as logical
operators !, ||, and &&.

1 Behavior:
2 connect(input, output); // default behavior
3

4 if (var1 == Value1 && var2 == Value2) {
5 connect(input, port, {key1=value1, key2=value2};
6 } else {
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7 if (var3 != E || var1 == Value2)
8 set(port, {key3=value3});
9 else

10 set(port, {key4=value4});
11 }

Transitions: The section Transitions consists of a set of when-expressions describing
the variable value changes depending on signal changes on ports, variable assignments, or
combinations of both. When-expressions have the following structure:

1 when{<features> 1⃝}(<triggering condition> 2⃝)[<guard> 3⃝] {
2 <variable value assignments> 4⃝
3 }

When statements start with the keyword when, followed by an optional set of features
1⃝, a triggering condition in parentheses 2⃝, and an optional guard condition in brackets
3⃝. After that, the variable value changes are specified using assignments 4⃝. In smartI-

flow language, variables can be updated using the assignment operator (=) that assigns
a value on its right to the variable on its left. Nondeterministic variable value changes
are defined by assigning a variable a set of values separated by or. The set of features
1⃝ is used to enrich when statements with additional parameters. There exists a set of

predefined features:

• delay specifies the delay of a transition statement

• stable is used to restrict the activation of a transition to states that are stable at
least with respect to the specified value

• name is used to identify active transitions in the transition system

Triggering conditions 2⃝ are logical expressions similar to the logical expressions used
in the behavior section, the difference being that property changes at ports can also
be taken into account in trigger conditions. Function exists is a boolean function
applied to a port, which tests the existence of a property (port.exists(key=value))
or a key (port.exists(key)) at the specified port. The function returns true if the
property respectively the property key is available at the specified port in the current
state, otherwise it returns false. The guard condition 3⃝ is also a logical expression with
the same rules as for the triggering condition.

1 Transitions:
2 when{delay=5, name=Transition1}(input.exits(key=value))[var1 == Value1] {
3 var2 = Value2;
4 var3 = A or B or C;
5 }
6

7 when{stable=10}(var_1 == Value2 || var_2 == Value1)[var3 == A]
8 var1 = Value1;
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EventHandlers: In this section, the reaction to external events declared in section
Events are described using when-expressions. Each when expression describes the reaction
to an event and is constructed as follows:

1 when{<features> 1⃝}(<event> 2⃝)[<guard> 3⃝] {
2 <variable value assignments> 4⃝
3 }

After the keyword when, an optional set of features 1⃝ can be defined. The only
predefined feature in this context is stable, which is used to restrict the activation of a
transition to states that are stable at least with respect to the specified value. Afterwards,
the name of the event is specified 2⃝, followed by a guard expression 3⃝. This is followed
by a set of variable value changes 4⃝ like in section Transitions. Nondeterministic
transitions can be described in the same way as with internal transitions. Only events
declared within the component can be accessed in an event handler.

1 EventHandlers:
2 when{stable=5}(Event1)[var1 == Value1] {
3 var3 = D or E;
4 }
5

6 when{stable=10}(Event2) {
7 var1 = Value1;
8 }

Inheritance and Generics In the smartIflow language, it is possible to inherit compo-
nents, ports, variables, events, behavior, and transition statements from one component
class to another. The subclass can access the ports, variables, and events of its parent
class. The inheritors can add further information and/or behavior, but can never override
transition statements or behavior. To inherit from a class, the keyword extends is used.
Note that a component class in the smartIflow language can inherit features from only one
parent component class. The following example demonstrates how an existing component
class can be extended by the use of inheritance:

1 class A {
2 Ports:
3 PortType p1;
4 PortType p2;
5

6 Variables:
7 Enum[Value1, Value2] var = Value1;
8 }
9

10 class B extends A {
11 Ports:
12 PortType1 p3;
13

14 Behavior:
15 connect(p1,p2);
16
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17 Transitions:
18 when (var == Value1)
19 var = Value2;
20

21 }

Inheritance in the smartIflow language is an essential feature to avoid redundancy. Another
helpful feature in the smartIflow language is the possibility to create generic component
classes. A generic component class is created by adding type parameters to the class:

1 class GenericClass<T1, T2, ..., Tn> {
2 // ...
3 }

Type parameters can be used only in section Ports. A type parameter can be any port
type. The following listing shows a generic component class with two type parameters, T
and V:

1 class GenericClass<T, V> {
2 Ports:
3 T p1;
4 V p2;
5 }

When instantiating a generic component class, the type parameters must be replaced with
some concrete value:

1 class AnotherClass {
2 Components:
3 GenericClass<Logical, Electrical> instance;
4 }

In this case, port p1 of component instance is of type Logical and port p2 is of type
Electrical. Type parameters in the smartIflow language provide a way to reuse the
same component class with different inputs for port types. For example, a valve can
be modeled by a generic component class where the port type is specified using a type
variable (e.g., Air or Hydraulic). Without generics, a separate component class would be
necessary for each substance.

Example 4.3.1 Generic component and inheritance
The following smartIflow class defines a generic component for bipolar effort sources.
Special class features (built-in features) are used to define the type of source and its order
of magnitude. Class BipolarEffortSource defines a bipolar effort source whose power is
two orders of magnitude above reference. Instead of using specific port types for the plus
and minus port, we use the type parameter T.

1 class BipolarEffortSource<T> {flowComponent=bipolarEffortSource, om=2} {
2 Ports:
3 T{flowPort=source} plus;
4 T{flowPort=drain} minus;
5 }
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This type variable makes it possible to use the class BipolarEffortSource in quite
different domains. For example, this bipolar effort source can be used as a battery in an
electrical system:

1 class ElectricalNetwork {
2 Components:
3 BipolarEffortSource<Electrical> battery;
4 Switch switch1;
5 // ...
6 Behavior:
7 connect{r=1}(switch1.p1, battery.plus);
8 }

When instantiating class BipolarEffortSource, the type parameter T is replaced with
the concrete port type Electrical.

However, it is also possible to use an instance of class BipolarEffortSource as a
hydraulic pressure source in hydraulic power networks:

1 class HydraulicPowerNetwork {
2 Components:
3 BipolarEffortSource<Fluid> source;
4 Line line1;
5 // ...
6 Behavior:
7 connect{r=1}(line1.p1, source.plus);
8 }

■
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4.4 smartIflow System Models
This section implements Contribution C2.
If the correctness of a system design is proven by showing the correctness of its model, it is
extremely important that the meaning of the model is clearly defined. And this is exactly
what is done in this section. After the formal definition of the smartIflow system models,
the flattening and the semantics of the underlying transition systems are described.

Definition 4.4.1 smartIflow System Models
The set of all smartIflow System Models SSM is defined as a set of tuples of the following
form:

ssm = (Comp,Port,Var , Init,Event,PA,Conn,TS int,TSext, )

where:

• Comp is a function which maps part names to SSM instances,

• Port is a set of typed ports,

• Var is a set of typed variables,

• Init ∈ Eval(Var) is a set of initial variable value assignments,

• Event is a set of symbols for external events,

• PA ⊆ CondAction(Var) ×Effectsp
where Effectsp = {effect | effect : Eval(Port) → Eval(Port)}
is a set of conditional property assignments to ports,

• Conn ⊆ CondAction(Var) ×P × P where
P =

{
⟨p, false⟩ | p ∈

⋃
c∈Comp

c.Port
}

∪
{

⟨p, true⟩ | p ∈ Port
}

is a set of conditional connections between ports,

• TS int ⊆ Delay × Stable × CondTrigger(Var ,Port) × CondGuard(Var) ×Effectsv
where Effectsv = {effect | effect : Eval(Var) → 2Eval(Var)}
is a set of transition statements for internal events, and

• TSext ⊆ Event × CondGuard(Var) × Stable ×Effectsv
where Effectsv = {effect | effect : Eval(Var) → 2Eval(Var)}
is a set of transition statements for external events.

■

The set Var of variables is used to describe the possible states of a component. This
includes operational modes and failure modes. Variables are typed and have finite
domains. Initially, each variable vi ∈ Var is assigned its initial value specified by the
set Init ∈ Eval(Var). Eval(Var) is the set of functions where each function maps each
variable to a value of its domain. Let Values = {

⋃
var∈Var

dom(var)}.
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Formally, Eval(Var) is defined by:

Eval(Var) = {eval | eval : (Var → Values ∧ ∀var ∈ Var : (eval(var) ∈ dom(var)))}

Event denotes the set of symbols for external events, and Port denotes a set of connection
points. Ports are typed and they can be assigned a set of properties. dom(p) of port
p defines the type of p. dom(p) contains all allowed key-value pairs of the port type
including the empty property. A port can only be assigned the set of properties that is
defined in its type. Properties are tuples of the form (key, value) where key is a symbol
and value is a number or a symbol. Eval(Port) denotes the evaluations of properties to
ports. The evaluation ep ∈ Eval(Port) is the mapping that assigns a set of properties to
any port pi ∈ Port. Let KVM = {kvm | kvm : KEY → VALUE}. Formally, Eval(Port)
is defined by:

Eval(Port) = {eval | eval : (Port → KVM ∧ ∀p ∈ Port : (eval(p) ∈ dom(p)))}

Example 4.4.1 3/3 directional control valve
Consider a 3/3 directional control valve equipped with three ports namely one source (s)
and two outputs (o1 and o2 ). The valve has three spool positions. Depending on the
position of the spool, the flow of fluid (e.g., gas or liquid) is controlled. As illustrated in
Figure 4.5, the flow can be restricted or permitted to one of the outputs.

o1

o2

s

o1

o2

s

o1

o2

s

1 2 3ctrl ctrl ctrl

Figure 4.5: States of a three-position valve

The valve is characterized by the two variables om and fm with domain

dom(om) = {Closed,Pos1,Pos2}, dom(fm) = {Ok,StuckAt,Leakage}

Variable om is used to represent the different operational modes of the valve and fm
captures the different failure modes. The initial variable assignment is

Init = {om=Closed, fm=Ok}

The set of symbols for external events are

Event = {ActivateStuck,ActivateLeakage}
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For set Port = {s, o1 , o2 , ctrl} two different types are required. The ports s, o1, o2 are
of type Fluidal, while ctrl is of type Logical. The logical signals at port ctrl are used to
control the spool and therefore to control the flow of fluid. Port types allow to restrict
published properties to specific key-value pairs. For the port type Logical the properties
cmd=close, cmd=pos1 and cmd=pos2 are allowed. For the port type Fluidal the properties
flow=low, flow=normal and flow=high are allowed. ■

Let Pred(Var) and Pred(Port) be predicates. Pred(Var) are predicates built on compar-
isons between variables and their values using comparison operators (==, ! =). Pred(Port)
are predicates built on calls of function exists that check whether a property is available
at a port.

Formally, the propositional symbols of Pred(Var) and Pred(Port) are of the form
“var == valvar” respectively “p.exists(propertyp)” where var ∈ Var , valvar ∈ dom(var),
p ∈ Port and propertyp ∈ dom(p).

Cond(Pred(Var)) is the set of Boolean expressions over Var formulated with logical
operators (∧,∨,¬) and predicates Pred(Var).

CondTrigger(Var ,Port) = Cond(Pred(Var) ∪ Pred(Port)) is the set of arbitrary combi-
nations of conditions from Var and Port that defines the triggering conditions for the
internal events.

CondGuard(Var) = Cond(Pred(Var)) defines the guard conditions for the internal
events and CondAction(Var) = Cond(Pred(Var)) is the set of conditions for the property
assignments to ports as well as for conditional connections between ports.

Let Cond(AP ) be the set of boolean expressions over the set of atomic propositions
AP with logical operators ∧, ∨ and ¬, also including constants true and false.

Example 4.4.2 Conditions for transition statements and conditional behavior
A triggering condition for the valve described in Example 4.4.1 that is fulfilled if the
property cmd=Pos2 exists at port ctrl and the valve is not defective, can be formulated
as follows:

fm==Ok ∧ ctrl.exists(cmd=Pos2)

In the operational mode Pos2 a connection between s and o2 must be created. The
condition for this conditional connection can be expressed as follows:

fm==Ok ∧ om==Pos2

■

Stable ∈ N0 are the stability values for the transition statements and Delay ∈ N0 defines
the delay values for the transition statements.

Comp is a function which maps part names to SSM instances to enable hierarchical
modeling. Hierarchical system models are in a tree structure. The set Conn of condi-
tional connections is not limited to connections between the ports of a component itself.
Connections to ports of any subcomponent can be established, too. Since information
flows at ports can be limited to input or output, it is important to know whether two
ports are connected inside or outside a component. For this reason, the two connection
points of a component are extended with position information that indicates whether the
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connection takes place outside (true/false). Therefore, connections are pairs of the form
(pc1, pc2) where

pci ∈ ({⟨pi, false⟩ | pi ∈ Port} ∪ {⟨pi, true⟩ | pi ∈
⋃

c∈Comp
c.Port})

The effect of conditional property assignments to ports is defined using the mapping

PA ⊆ CondAction(Var) ×Effectsp

which describes how the evaluation of properties at ports is changed by the conditional
property assignments to ports depending on the current variable evaluation. We will use
ηv for variable evaluations and ηp for evaluations of properties at ports.

Example 4.4.3 Variable and port evaluation
The valve example introduced in Example 4.4.1 consists of two variables, fm and om. As
already mentioned, Eval(Var) is a set of functions that maps each variable to a value of
its domain. Regarding the example, the following variable evaluations are possible:

Eval(Var) =
{

{om=Closed, fm=Ok}, {om=Closed, fm=StuckAt}, {om=Closed, fm=Leakage},

{om=Pos1, fm=Ok}, {om=Pos1, fm=StuckAt}, {om=Pos1, fm=Leakage},

{om=Pos2, fm=Ok}, {om=Pos2, fm=StuckAt}, {om=Pos2, fm=Leakage}
}

Eval(Port) will generate the following evaluations:

Eval(Port) =
{{
ctrl = {cmd=pos1}, s = {flow=normal}, o1 = {flow=normal}, o2 = {}

}
,{

ctrl = {cmd=pos2}, s = {flow=normal}, o1 = {}, o2 = {flow=normal}
}
,{

ctrl = {cmd=pos1}, s = {flow=normal}, o1 = {}, o2 = {}
}
,{

ctrl = {cmd=close}, s = {flow=normal}, o1 = {}, o2 = {}
}
, . . .

}
■

Now we take a closer look at the transition statements. Let

• e ∈ Event

• ct ∈ CondTrigger(Var ,Port)

• cg ∈ CondGuard(Var)

• effect ∈ Effectsv

• ς ∈ Stable

• ∆ ∈ Delay
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The notation ηv ↪
ct,cg,ς,∆−−−−−→tint ηv

′ is used as abbreviation for (ηv , ct, cg, ς,∆, effect) ∈ TS int
and ηv

′ ∈ effect(ηv). Note that effect is the effect function of a transition statement that
updates variable values. ηv ↪

e,cg,ς−−−→text ηv
′ is the shorthand for (ηv , e, cg, ς, effect) ∈ TSext

and ηv
′ ∈ effect(ηv). ηp denotes the evaluations of properties at ports. We access elements

of transitions by dot notation. For example, for tsi ∈ TS int the expression tsi.∆ delivers
Π2tsi - the second element of tsi – which is the delay value.

4.4.1 Flattening

For unfolding, smartIflow System Models are reduced to a single system model without
any sub-components.

Definition 4.4.2 Flattened smartIflow System Models
The set of all flattened smartIflow system models FSSM is defined as a set of tuples of
the following form:

fssm = (Var , Init,Event,Port,TS int,TSext,Conn,PA)

The fssm of a ssm is the result of a flattening function:

Flatten : SSM → FSSM

Algorithm 4 shows the definition of the flattening function. ■

Name conflicts can occur if elements on different levels have identical names. Therefore,
each symbol in the system model (e.g., events, variables, ports, . . . ) is prefixed with a
path name (the absolute path in the hierarchy is used). On the first call of the flattening
function, an empty path is passed.

Algorithm 4 Flattening algorithm
1: function flatten(ssm, path) returns the flattened version of a hierarchical system

model
2: extendSymbols(ssm, path);
3: cf =

⋃
name∈Domain(ssm.Comp)

{
flatten

(
ssm.Comp(name), concat(path,name)

)}
;

4: fssm =
(
ssm.Var ∪

( ⋃
c∈cf

c.Var
)
, ssm.Event ∪

( ⋃
c∈cf

c.Event
)
,

ssm.Port ∪
( ⋃

c∈cf

c.Port
)
, ssm.TSint ∪

( ⋃
c∈cf

c.TSint
)
,

ssm.TSext ∪
( ⋃

c∈cf

c.TSext
)
, ssm.Conn ∪

( ⋃
c∈cf

c.Conn
)
,

ssm.PA ∪
( ⋃

c∈cf

c.PA
))

;

5: return fssm
6: end function
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4.4.2 Transition System Semantics

Like program graphs or timed automaton, ssms respectively fssms can be interpreted as
a transition system (see Section 2.3.1). The transition system results from the unfolding
function described in Algorithm 5. The transition system of a ssm differs from the
transition system of a program graph in the following aspects: In the transition system of
a program graph, a state is characterized by the location and an evaluation of the variables.
In smartIflow, the states of the underlying transition system consist of an evaluation ηv of
the variables, the trigger conditions of all transition statements for internal events of the
previous state (statetsprev), and the set of delayed transition statements for internal events
(statetsdel). States are thus triples of the form (ηv , statetsprev , statetsdel). This modification
is necessary for the rising edge semantics and the delay values of the transition statements.
Compared to the transition system of a program graph, the transition relation in smartIflow
is quite different. The transition relation of a program graph describes how the system
changes its locations and the actions that are performed when a location is entered. In
smartIflow the transition relation relies on internally and externally triggered transition
statements, rising edge semantics, delays, and stable conditions describing how variables
change their values. Each transition in the transition system is labeled with a delay
value and a symbol of the event that triggered the transition. ι is a symbol that is used
to label a transition that originates from internally triggered transition statements. A
transition that originates from an externally triggered transition statement is labeled
with the according symbol of the external event. I denotes the initial state in which all
variables are assigned their initial value, and both, statetsdel and statetsprev , are empty. AP
is the set of atomic propositions and L is the labeling function. Function Behavior(.) is
responsible for establishing the connection structure and propagation of properties along
the network structure (processing behavior will be described in detail in Section 4.5.2).

Definition 4.4.3 Transition System Semantics of a smartIflow System Model
The transition system TS(fssm) of a flattened smartIflow system model

fssm = (Var , Init,Event,Port,TS int,TSext,Conn,PA)

is the tuple (S, I, AP,L,−→) where

• S = Eval(Var) × Statets × Statets
where Statets = 2TS int

• I =
(
Init, ∅, ∅

)
• AP = Cond(Pred(Var))

• L : S → 2AP where
L

(
(ηv , statetsprev , statetsdel)

)
={

cv ∈ Cond(Pred(Var)) | ηv |= cv
}

∪{
cp ∈ Cond(Pred(Port)) | Behavior(ηv , fssm) |= cp

}
• −→⊆ (S × S × N0 × E) defines the transition relation

let
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– s ∈ S, s′ ∈ S, d ∈ N0 and e ∈ Event ∪ {ι}

– s
d−→e s

′ ⇐⇒ (s, s′, d, e) ∈−→
– (ηv , statetsprev , statetsdel) = s and (ηv

′, statetsprev
′, statetsdel

′) = s′

– ηp = Behavior(ηv , fssm) //Available properties at ports after behavior execution
– tsho = {tsi | tsi ∈ TS int ∧ ηv , ηp |= tsi. ct} //Transition statements whose condi-

tion are fulfilled
– tstr = {tsi | tsi ∈ tsho ∧ tsi ̸∈ statetsprev} ∪ statetsdel //All transition statements,

which are triggered in s or were triggered before and were not executed yet
– tstrg = {tsi | tsi ∈ tstr ∧ ηv |= tsi. cg} //Transition statements whose guard

conditions are fulfilled

– tmin = min
( ⋃

tsi∈tstrg

{
tsi.∆

}
∪

⋃
tsi∈tstrg

{
tsi.ς

})
//Minimum of all delay and stable

values from all transition statements in tstrg

– tshons = {tsi | tsi ∈ tsho ∧ ¬exists(tsi.ς)} //All transition statements of tsho for
which no stable value is defined

– tsdel = {tsi | tsi ∈ tstrg ∧ tsi.∆ > tmin} //Delayed transition statements
– tsex = {tsi | tsi ∈ tstrg ∧ (tsi.∆ == tmin ∨ tsi.ς == tmin)} //Internally triggered

transition statements that are executable based on their stability or delay values
– tsextho = {tsi | tsi ∈ TSext ∧ tsi.ς ≤ tmin ∧ ηv |= tsi. cg} //Admissible externally

triggered transition statements

the internal transition (ηv , statetsprev , statetsdel)
d−→e (ηv

′, statetsprev
′, statetsdel

′) holds iff
a) statetsprev

′ == tshons and
b) statetsdel

′ == tsdel and
c) ηv

′ ∈ Effect(ηv , tsex) and
d) d == tmin

e) e == ι

the external transition (ηv , statetsprev , statetsdel)
d−→e (ηv

′, statetsprev
′, statetsdel

′) holds iff
a) ∃tsi ∈ tsextho . ηv

′ ∈ Effect(ηv , e) and
b) statetsprev

′ == tshons and
c) statetsdel

′ == tsdel ∪ tsex and
d) d == tsi.ς and
e) e == tsi.event

Finally, the transition relation −→ is defined as the union of all internal and external
transitions.

TS(ssm) is finite if S, AP , and → are finite, too. Note, that we write s d−→e s
′ instead of

(s, s′, d, e) ∈−→. ■

71



4 The smartIflow Formalism

In simplified form, the behavior of a transition system can be described as follows: The
transition system of a smartIflow system model starts in the initial state s0 = I. For s0
the transition system evolves according to the transition relation −→ depending on the
property evaluations at ports which is the result of function Behavior(.). From state s
all admissible transitions s d−→ s′ are taken, and the procedure is repeated in state s′.
The procedure terminates if in a state s′ no outgoing transition statements are available.
Function Effect(.) combines effects of a set of internally or externally triggered transition
statements leading to a set of successor states.

Definition 4.4.4 Direct Successors and Predecessors
The set of direct successors for s ∈ S is defined as:

Post(s) = {s′ ∈ S | ∃d, e : s d−→e s
′}

Accordingly, the set of predecessors for s ∈ S is defined by:

Pre(s) = {s′ ∈ S | ∃d, e : s′ d−→e s}

Let Q ⊆ S subset of S. In this case, the sets of direct successors are defined in the
following way:

Post(Q) =
⋃

s∈Q

Post(s)

The sets of predecessors for Q ⊆ S can be defined similarly:

Pre(Q) =
⋃

s∈Q

Pre(s)

■

Definition 4.4.5 Terminal States
Terminal states in TS(fssm) are states without outgoing transitions. In other words,
s ∈ S is a terminal state iff Post(s) = ∅. ■

Definition 4.4.6 Delays and Stability Values in Transition Systems
Each transition s

d−→ s′ from the transition relation is assigned an order of magnitude
delay value. Function Delay(s, s′) enables access to the delay value of a transition in the
following way:

Delay(s, s′) = d iff s, s′ ∈ S, s′ ∈ Post(s), and (s, s′, d) ∈ s
d−→ι s

′

Each state s ∈ S in a transition system TS(fssm) is stable with respect to a certain OM
value. The stability value of a state s ∈ S can be determined using function Stable(s).
Formally, Stable(s) is defined as follows:

Stable(s) = min
({

∃s′ ∈ Post(s) : s d−→ι s
′
}

∪ ∞
)

Terminal states are stable with respect to OM value of ∞ (above reference). ■

72



4.5 Unfolding Algorithm

4.5 Unfolding Algorithm
As already mentioned, the transition system of a smartIflow system model can be obtained
by unfolding. Algorithm 5 shows an implementation of an unfolding function that creates
an explicit representation of the transition system for a smartIflow system model (in the
following called system).

Algorithm 5 The unfolding function
1: function unfold(system) returns a node (=initial state of the transition system)
2: create sinit with statetsprev(sinit) = {}, statetsdel(sinit) = {},

stateport(sinit) =
{
(p, {}) | p ∈ Port

}
,

and statevar(sinit) defined by initial variable values; // Initial state
3: queue = []; // Queue of not yet processed state nodes
4: lookup = {}; // Map, which maps processed states to corresponding nodes
5: root = createNode(sinit);
6: lookup.addEntry(sinit, root);
7: queue.add(root);
8:
9: while queue not empty do

10: ncurr = queue.remove();
11: scurr = state(ncurr);
12:
13: // establish connection structure, set properties to ports and propagate them
14: stateport(scurr) = processBehavior(system, statevar(scurr));
15:
16: // process transition statements
17: successors = processEvents(system, ncurr);
18:
19: for each (events, ssucc) in successors do
20: if ssucc not in lookup then
21: nsucc = createNodeFor(ncurr, events, ssucc);
22: queue.add(nsucc);
23: lookup.addEntry(ssucc, nsucc);
24: else
25: createReferenceFor(ncurr, events, lookup.get(ssucc));
26: end if
27: end for
28: end while
29: return root;
30: end function

The resulting transition system is a directed graph of nodes, where the root node refers
to the initial state, and successor nodes refer to successor states. The graph is directed
and rooted since in smartIflow there is only one initial state. The initial state is defined
by the default variable values. The unfolding function returns only the root node (initial
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state), as all subsequent states can be reached by traversing the graph. Each node consists
of a model state and child nodes that refer to successor states. Nodes can also be marked
as stable with respect to an order of magnitude value. A model state s = state(node) is
characterized by four components:

• statevar(s) describes the value of all variables. It maps each variable to its current
value.

• statetsprev(s) describes the truth values of all transition conditions without guards of
the parent state. It is a set and contains all fulfilled internally triggered transition
statements.

• statetsdel(s) is a set of transition statements and describes the delayed transition
statements.

• stateport(s) describes the properties of all ports. Each port is mapped to the set of
(key, value) pairs that are currently present at the port. When initializing a new
state, each port is mapped to the empty set.

stateport(s) is determined by statevar(s) (conditional behavior is executed and properties
are propagated). Therefore, only statevar(s), statetsdel(s), and statetsprev(s) are used to
decide whether two states are equal or not.

The unfolding function utilizes a queue and a lookup table. The queue manages not
yet processed nodes and the lookup table maps states to corresponding nodes. The latter
is necessary to avoid multiple analyses of the same state. The unfolding function first
determines the initial state where all state variables are set to their default value. For
each node in the queue, first, the behavior is processed, and afterward, subsequent states
are determined. The function terminates once there are no more nodes in the queue.

The following two sections explain the processing of internal and external events and
the behavior in more detail.

4.5.1 Process Events

Internally and externally triggered transition statements are processed by use of func-
tion processEvents (used in function unfold(system) in line 17). The result of function
processEvents is a set of (event-list, state) pairs covering all possible subsequent states.
Note that the states are not yet completely computed. statevar, statetsdel , and statetsprev

are computed, but not stateport. stateport is computed by the function processBehavior.
The lookup table is used to check whether a successor has already been explored. For
already explored successors a reference is used instead of a parent-child relationship. Only
successors that are not yet part of the lookup are added to the queue and processed
further. References and parent-child links are labeled with the events that caused the
state change. This makes it possible to distinguish whether a transition was caused by
internal or external events.

A possible implementation of function processEvents is shown in Algorithm 6. First,
tsho the set of all internally triggered transition statements whose conditions hold in the
current state (state(ncurr)) is determined. tstr contains delayed transition statements from
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Algorithm 6 Process internally and externally triggered transition statements
1: function processEvents(system, ncurr) returns a list of (event-list, state) pairs
2: scurr = state(ncurr);
3: result = {};
4: tsho = all internally triggered transition statements in system which hold in

statevar(scurr), stateport(scurr);
5: tstr = (tsho - statetsprev(scurr)) ∪ statetsdel(scurr);
6: test guards of all transition statements in tstr and remove transition statements

of unfulfilled guards in statevar(scurr), stateport(scurr);
7: tmin= minimum of all delay and stable values of transition statements in tstr,

infinity if tstr == {};
8: remove all transition statements from tsho where stable exists;
9: remove all transition statements from tstr where stable > tmin;

10: tsac = transition statements from tstr with delay = tmin or stable = tmin;
11: evho = externally triggered transition statements for ncurr with stable <= tmin;
12: mark ncurr as stable with respect to tmin;
13:
14: if evho exist then
15: // process possible externally triggered transition statements (external events)
16: for each e in evho do
17: assignments = computeNextStateAssignments(system, scurr, {e});
18: for each assignment in assignments do
19: create ssucc with statevar(ssucc) = assignment, statetsprev(ssucc) = tsho,

statetsdel(ssucc) = tstr;
20: result.add((list(e), ssucc));
21: end for
22: end for
23: end if
24:
25: if tsac exist then
26: // process internally triggered transition statements (internal events)
27: assignments = computeNextStateAssignments(system, scurr, tsac);
28: for each assignment in assignments do
29: create ssucc with statevar(ssucc) = assignment, statetsprev(ssucc) = tsho,

statetsdel(ssucc) = tstr - tsac;
30: result.add((collectInternalEvents(tstr), ssucc));
31: end for
32: end if
33: return result
34: end function

the parent state as well as all transition statements from tsho that follow the rising edge
semantics. Next, guard conditions are checked. Only transition statements for which the
guard condition is satisfied remain in tstr. Afterward, the transition statements that may
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be executed with respect to their stable or delay value are identified. tmin is the minimum
of all delay and stable values from transition statements in tstr. The current node ncurr is
marked as stable with respect to tmin. Note that all transition statements with specified
stable value are removed from tsho (see line 8). This is necessary because the rising edge
semantics is only applied to transition statements without a stable value. In addition,
all transition statements in tstr for which a stable condition is defined and not fulfilled
are deleted (see line 9). This prevents inactive transition statements (i.e., transition
statements where the stable condition is not fulfilled) from being delayed. Finally, tsac
contains the transition statements that are executed. evho is the set of externally triggered
transition statements that are admissible to be executed with respect to tmin.

After that, the successor states can be determined. First, the successor states for
each externally triggered transition statement are determined (only one external event is
executed at the same time). Subsequently, all internally triggered transitions are processed.
Transition statements that are in tstr but not in tsac are delayed. This corresponds to all
transition statements whose trigger and guard conditions are true but may not yet be
executed due to their delay values.

Internally and externally triggered transition statements allow nondeterministic variable
value updates. Therefore, the execution of an internally or externally triggered transition
statement can lead to multiple subsequent states. Function computeNextStateAssignments
(see Algorithm 7) computes all next state assignments for a set of transition statements
(ts).

Algorithm 7 Computation of next state assignments
1: function computeNextStateAssignments(system, s, ts)

returns a set of (variable, value) maps
2: result = {statevar(s)};
3: compute a (variable, value-set)-map mapvar using the assignments belonging to ts;
4: for each entry (variablecurr, value-setcurr) ∈ mapvar do
5: resultnew = {};
6: for each valuecurr ∈ value-setcurr do
7: for each assignmentMap ∈ result do
8: assignmentMapcopy = create copy of assignmentMap;
9: update variablecurr in assignmentMapcopy by valuecurr;

10: resultnew.add(assignmentMapcopy);
11: end for
12: end for
13: result = resultnew;
14: end for
15: return result;
16: end function

Example 4.5.1 Unfolding example
Consider a simple system consisting of a controller and a valve. The controller is responsible
for opening and closing the valve periodically. For this purpose, the controller sends a
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control signal to the valve. Depending on the control signal, the valve is opened or closed.
This kind of control logic is needed, for example, in watering systems. The following
listing shows the component model of the controller in the smartIflow language.

1 class Controller {
2 Ports:
3 Logical vCtrl;
4

5 Variables:
6 Enum[Idle, Supply] opm = Idle;
7

8 Behavior:
9 if (opm == Idle)

10 set(vCtrl, {cmd=close});
11 if (opm == Supply)
12 set(vCtrl, {cmd=open});
13

14 Transitions:
15 when {delay=2, name=ts_supply} (opm == Idle)
16 opm = Supply;
17 when {delay=2, name=ts_idle} (opm == Supply)
18 opm = Idle;
19 }

The valve can be modeled as follows:
1 class Valve {
2 Ports:
3 Logical ctrl;
4

5 Variables:
6 Enum[Opened, Closed] opm = Closed;
7

8 Transitions:
9 when {delay=1, name=ts_close} (ctrl.exists(cmd=close)) [opm == Opened]

10 opm = Closed;
11 when {delay=1, name=ts_open} (ctrl.exists(cmd=open)) [opm == Closed]
12 opm = Opened;
13 }

In class Main both component types are instantiated and connections are established.
1 class Main {
2 Components:
3 Controller contr;
4 Valve valve;
5 Behavior:
6 connect(contr.vCtrl, valve.ctrl);
7 }

The control signal for the valve is modeled using the properties cmd=open to open and
cmd=close to close the valve. The transition statements ts_close and ts_open in class
Valve specify the reaction to changes on the control signal. The controller constantly
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toggles between the states Idle and Supply using the transition statements ts_idle and
ts_supply. The behavioral description of the controller is quite simple. The controller
publishes either property cmd=open or cmd=close depending on its current state (defined
by the opm variable). Note that two different OM values are used for the delays of the
transition statements. The valve reacts to changes on the control signal with a delay of
OM value of one (some milliseconds). The controller changes its state with a delay of OM
value of two (some minutes).

0 1 2 3 4

Figure 4.6: Transition system obtained by unfolding represented as directed rooted graph

Figure 4.6 shows the transitions system represented as directed rooted graph obtained
by unfolding. For the sake of clarity, each state is assigned a unique number. Table 4.1
gives an overview about the variable values, properties at ports, triggering states, delayed
transition statements, and stable values of the states of the transition system.
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0 Idle Closed cmd=close cmd=close 0 0 0 0 0 0 0 0 2
1 Supply Closed cmd=open cmd=open 0 0 0 0 1 0 1 0 1
2 Supply Opened cmd=open cmd=open 0 1 0 0 0 1 0 1 2
3 Idle Opened cmd=close cmd=close 0 0 0 0 0 1 0 1 1
4 Idle Closed cmd=close cmd=close 1 0 0 0 1 0 1 0 2

Table 4.1: States of the transition system obtained by unfolding

The unfolding function first determines the initial state (variables are set to their default
values, and both, statetsprev and statetsdel are empty). After that, the behavior is executed
and the next states are determined: In the initial state (state 0), the triggering conditions
of transition statements ts_supply and ts_close are fulfilled. However, only the transition
statement ts_supply is executed because the guard condition of ts_close is false. The
execution of ts_supply leads to a new successor state (state 1). statetsprev of state 1
contains ts_supply and ts_close because their triggering conditions were satisfied in the
previous state. After the prediction of behavior in state 1, the possible successor states can
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4.5 Unfolding Algorithm

be determined. In state 1, the triggering conditions of ts_idle and ts_open are fulfilled
and the corresponding guard conditions are fulfilled. ts_idle has a delay of OM value of 2
and ts_open has a delay of OM value of 1. Therefore, ts_open is executed immediately
and ts_idle is delayed (ts_idle is added to statetsdel of the successor states). The execution
of ts_open leads to one successor state (state 2). This procedure is repeated until no new
successor state is discovered. In our example, this occurs in state 4. The successor state
that results from the execution of ts_supply in state 4 is identical to state 1. Therefore,
state 1 is referenced and the unfolding procedure terminates.

■

The example system just shown was rather simple (there were only deterministic variable
value changes and no external events). The obtained transition system was also simple,
consisting only of a sequence of states with a reference back to the second state. With
more complex systems, probably there will be many branches and overlapping edges. The
latter leads to the problem that the graphical representation of the transition systems as
a directed graph can become very confusing. To counteract this problem, an alternative
representation is needed. Figure 4.7 shows two different representations for the transition
system of the diagonal car braking system (see Section 6.1). The representation as a
directed graph (left part) contains many overlapping edges. In the representation as a tree
structure (right part), references to already existing states are represented by reference
nodes (highlighted in blue). This results in a tree structure without overlapping edges.
The root of the tree corresponds to the initial state.
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Figure 4.7: Transition system represented as a directed graph and in a tree structure

4.5.2 Process Behavior

Function processBehavior (used in function unfold(system) in line 14) is responsible for
the construction of the connection structure, adding properties to ports, and propagation
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of properties published by the components to all reachable ports. Building the connection
structure is simple: Collect all conditional connection statements from each component in
the model, determine the set of active connections based on the current variable evaluation,
and finally execute them. Before propagation, all active conditional property assignments
to ports must be executed. In principle, conditional property assignments to ports can be
performed in the same way as the connection structure setup. First, all active property
assignments based on the current variable evaluation are determined. This set contains all
property assignments for which the corresponding condition is fulfilled. Each conditional
property assignment publishes a set of properties to a port. Properties can be published
to ports of its own component as well as to the ports of subcomponents. As information
flow at ports can be restricted to inputs or outputs (see Section 4.2), properties on a
port can be quite different depending on the point of view (access outside or inside).
Therefore, for each port, the properties accessible inside and outside the component must
be stored separately. In the next step, the properties at each port must be propagated to
all reachable ports. Note that connections let the information flow in both directions, while
ports can limit the flow of information to a certain direction (input/output). A very simple
approach for the propagation of properties could look like this: For each port in a system,
follow all paths to other connected ports (port directions must be considered!). During
the traversal, collect the properties from the active conditional property assignments and
the predecessor state and assign this set to every subsequent port. The traversal of a
path can be stopped as soon as a cycle is detected or when a terminal port is reached.
Basically, the algorithm performs for each port in a system a depth-first search and tries
to propagate at each port all available properties to all other connected ports. All kinds
of network topologies are supported and the algorithm is rather efficient (O(|Ports|2)).
However, there are scenarios where propagation can be done more elegantly and efficiently.
Consider the connection structure shown in Figure 4.8. In this example, every port is
reachable from every other port. Therefore, the properties at each port in this system
are identical (the set of properties at each port is equal to the collection of all published
properties). In this example, it is sufficient to collect the properties of each port and then
assign the combination to each port. But how can such scenarios be detected?
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p1

p1
 Dp1

p2

p1 p2

Figure 4.8: Connection structure example
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As defined in literature, a graph is strongly connected if every vertex is reachable from
every other vertex (see Definition 2.6). The topology of the connection structure shown
in Figure 4.8 also fulfills this property (every port is reachable from every other port).
Tarjan’s algorithm can determine the strongly connected components in a directed graph
(see Section 2.6). Unfortunately, the connectivity structure is neither a directed nor an
undirected graph (connections are bidirectional, while ports can be directed). However, it
is possible to represent the connection structure as a directed graph.

Definition 4.5.1 Connection Structure Representation as a Directed Graph
In principle, the connection structure of a smartIflow system model can be interpreted as
a directed graph G = (V,E) where V is a set of vertices and E is a set of edges. Every
(bidirectional) connection between two ports A and B is represented by two edges A → B
and B → A. Each port p ∈ fssm.Port is represented by two artificial vertices (pin and
pout). If P is an input port, an edge Pout → Pin is created. If P is an output port, an
edge Pin → Pout is created. Otherwise, (unrestricted port) two edges are created. ■

The idea of an improved behavior prediction algorithm is quite simple: First, the
connection structure is converted into a directed graph (linear in the number of ports and
connections: O(|Ports| + |Conns|)). Afterward, all strongly connected components in
this graph are determined using Tarjan’s algorithm (O(|V | + |E|)). As already mentioned,
the properties at all ports that are part of strongly connected components are identical.
The set of properties of a strongly connected component is defined by the execution of all
active conditional property assignments to ports that are part of the strongly connected
component. Strongly connected components can be linked via edges. If strongly connected
components are connected by an edge, properties must be propagated. We will denote the
edges between strongly connected components as bridges. Bridges between the strongly
connected components can result in arbitrarily directed acyclic graphs, but never in a
cyclic graph, since this would have been detected by Tarjan’s algorithm. In fact, these
bridges between strongly connected components are always based on restricted ports (i.e.,
input and output ports). In order to perform the information exchange between strongly
connected components, each strongly connected component is replaced with a single vertex.
This condensation results in a directed acyclic graph. In the last step, properties between
vertices in this graph must be propagated. First, the vertices without predecessors are
determined and then the properties are propagated to all other reachable edges. Instead
of writing the properties to the ports themselves, the properties of a port are stored in its
corresponding strongly connected component. Note that every vertex that is not part of a
strongly connected component already forms a strongly connected component itself.

Example 4.5.2 Propagation of properties
The example shown in Figure 4.9 illustrates the three steps of behavior prediction (directed
graph construction, determination of strongly connected components, and propagation of
properties between strongly connected components). In step 1, the connection structure is
converted into a directed graph. Connections are replaced by two opposing edges. For each
port, two vertices are created. Depending on the port type, one or two edges between each
pair of vertices are created (input/output port = one edge; bidirectional port = two edges).
In step 2, strongly connected components are determined using Tarjan’s algorithm. The
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Figure 4.9: Property propagation example

connection structure in the example system contains two strongly connected components,
with port p2 of component c2 acting as a bridge between them. In the last step, the
properties between the strongly connected components are propagated. ■

The translation of a connection structure into a directed graph is straightforward.
Algorithm 8 shows a possible conversion implementation. The algorithm utilizes lookup
tables that map ports to corresponding vertices. portMapin maps ports to vertices, that
represent the connection point inside the component of the port, and portMapout maps
ports to vertices, that represent the connection point outside the component of the port.
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Algorithm 8 Converting the connection structure into a directed graph
Input: Ports of a smartIflow system model (portsssm) and conditional

connections whose conditions are fulfilled (connsactive)
Output: The tuple ( adjacencyList, portMapin, portMapout) where adjacencyList

is the directed graph G = (E,V) represented as adjacency list, and
the maps portMapin and portMapout that map ports to vertices

1: function constructDirectedGraph(portsssm, connsactive)
2: portMapin= create empty map;
3: portMapout= create empty map;
4: adjacencyList[ ] = create empty map;
5:
6: for each porti ∈ portsssm do
7: vpin= create vertex for connections linked to porti inside;
8: vpout= create vertex for connections linked to porti outside;
9: adjacencyList.addEntry(vpin , {});

10: adjacencyList.addEntry(vpout , {});
11: portMapin.addEntry(porti, vpin);
12: portMapout.addEntry(porti, vpout);
13: if porti is of type output then
14: adjacencyList.get(vpin).add(vpout);
15: else if porti is of type input then
16: adjacencyList.get(vpout).add(vpin);
17: else
18: adjacencyList.get(vpout).add(vpin);
19: adjacencyList.get(vpin).add(vpout);
20: end if
21: end for
22:
23: for each conni ∈ connsactive do
24: vp1= getVertex(conni, conni.p1, portMapin, portMapout);
25: vp2= getVertex(conni, conni.p2, portMapin, portMapout);
26: adjacencyList.get(vp1).add(vp2);
27: adjacencyList.get(vp2).add(vp1);
28: end for
29: return (adjacencyList, portMapin, portMapout);
30: end function
31:
32: function getVertex(conni, porti, portMapin, portMapout)
33: if conni is linked inside to porti then
34: return portMapin.get(porti);
35: else
36: return portMapout.get(porti);
37: end if
38: end function
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The directed graph resulting from the conversion is represented as an adjacency list.
As for each port, two vertices are created, and the list contains at the end twice as many
entries as there are ports. The algorithm first iterates over all ports in the model. For each
port, two vertices are created and added to the adjacency list (lines 7-10). The lookup
tables are also filled with the port and corresponding vertex (lines 11-12). Afterward,
the type of the port is inspected. If the port is unrestricted, then each vertex is added
as a neighbor to the opposite vertex. For input or output ports only one edge between
both vertices is added (direction depends on port type). After that, each connection is
replaced by two opposing edges (lines 23-28). Function getVertex is used to determine the
corresponding vertex for the connection point of a connection.

Algorithm 9 shows a possible implementation for processing the behavior. Once all active
connections and property assignments are determined (i.e., all conditional connections
and conditional property assignments to ports whose condition is fulfilled), the connection
structure is represented as a directed graph. Afterward, strongly connected components
in this graph are determined using Tarjan’s algorithm (described in Algorithm 3). The
properties of each active conditional property assignment (pa) are added to the strongly
connected component that contains the port of pa (lines 8-11). Afterward, each edge
e = (v, w) of the directed graph is analyzed. If the vertices v and w of edge e are in part of
different strongly connected components, then edge e is a bridge. Therefore, the strongly
connected component containing w is inserted in an adjacency list as the successor of the
strongly connected component containing v. Function propagate recursively traverses the
condensed graph and propagates properties between strongly connected components. The
set sources is used to identify the strongly connected components without any predecessor.
Initially, all strongly connected components from SCCs are inserted. Once a strongly
connected component (sccdest) is inserted as a successor into the adjacency list, sccdest
is removed from set sources. Each port side exactly belongs to one strongly connected
component. After propagation, the available properties of each port are available in the
corresponding strongly connected component.
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Algorithm 9 Process behavior
1: function processBehavior(system, statevar(scurr)) returns maps that represent the

properties currently present at each port inside and outside
2: PAactive= property assignments from system.PA whose conditions are fulfilled;
3: connsactive= connections from system.Conn whose conditions are fulfilled;
4:
5: (G, portMapin, portMapout) = constructDirectedGraph(system.Port, connsactive);
6: SCCs = tarjan(G); // Determine strongly connected components
7:
8: for each pa ∈ PAactive do
9: scc = find strongly connected component for pa;

10: scc.addProperties(pa.properties);
11: end for
12:
13: SCCAdjacencyList = create map and add all entries of {(s, {})|s ∈ SCCs};
14: sources = create set of length size(SCCs) and add all entries of SCCs;
15:
16: for each (v, w) in G.edges do
17: sccsrc = get strongly connected component for v in SCCs;
18: sccdest = get strongly connected component for w in SCCs;
19: if sccsrc ̸= sccdest then
20: SCCAdjacencyList.get(sccsrc).add(sccdest);
21: sources.remove(sccdest);
22: end if
23: end for
24:
25: for each scc∈ sources do
26: propagate(scc)
27: end for
28:
29: propsinside = create empty map;
30: propsoutside = create empty map;
31: for each porti ∈ portsssm do
32: sccpin = get strongly connected component for portMapin.get(porti) in SCCs;
33: sccpout = get strongly connected component for portMapout.get(porti) in SCCs;
34: propsinside.addEntry(porti, sccpin.getProperties());
35: propsoutside.addEntry(porti, sccpout.getProperties());
36: end for
37: return (propsinside, propsoutside);
38: end function
39:
40: function propagate(scc)
41: for each (scc, scc′) in SCCAdjacencyList.get(scc) do
42: scc′.addProperties(scc.getProperties());
43: propagate(scc′);
44: end for
45: end function
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4.6 Qualitative Energy Flow Analysis
Properties offer an extremely flexible mechanism for communication between components.
In certain situations, however, the property concept will reach its limits. Consider the
simple electrical circuit shown in Figure 4.10. The circuit consists of a voltage source, a
resistor, and two thermistors. The resistance of a thermistor changes depending on the
temperature and thus the current in the circuit changes too.

U R2

R1

R3

Figure 4.10: Simple electrical circuit with temperature-dependent resistors

Modeling the energy flows in this system by means of properties only is possible with
some workarounds. One possible solution could look as follows: The resistors continuously
send their resistance value to the voltage source (e.g., R1 sends r1=high for a high
resistance value, R2 sends r2=normal for a normal resistance value, and R3 sends r3=low
for a low resistance value). Depending on the received properties the voltage source decides
about the current in the circuit. This is obviously not a good solution as the models
become quite complex and this kind of modeling is anything but intuitive. Moreover,
the behavior of the component models is no longer context-free. Last but not least, this
solution is only applicable to small circuits.

A solution for this problem is the approach introduced by Snooke et al. [SL14] that
enables qualitative reasoning about energy flows in power networks. But how can this
approach be integrated into the smartIflow formalism? Basically, the smartIflow formalism
has to be extended by the following aspects:

• The connections of the smartIflow system models must be assigned resistance values

• Special components for flow and effort sources are required

• Function processBehavior (see Algorithm 9) must be extended in such a way that
the energy flows in the circuit (given by the connection structure) are calculated

Let us first discuss the resistance values of the power network. Connections in a smartI-
flow system model that are part of a power network need to be assigned a resistance value.
Fortunately, the syntax of the smartIflow language does not have to be changed, since the
resistance values can be assigned to the connections by use of the feature concept. The
following listing shows the component class of a thermistor in the smartIflow language:
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1 class Thermistor {
2 Ports:
3 Electrical p1;
4 Electrical p2;
5

6 Variables:
7 Enum[Hot, Warm, Cold] temp = Warm;
8

9 Events:
10 HeatUp;
11 CoolDown;
12

13 Behavior:
14 if(temp == Hot)
15 connect{r=1}(p1,p2);
16 if(temp == Warm)
17 connect{r=2}(p1,p2);
18 if(temp == Cold)
19 connect{r=3}(p1,p2);
20

21 EventHandlers:
22 when(HeatUp)[temp==Cold]
23 temp = Warm;
24 when(HeatUp)[temp==Warm]
25 temp = Hot;
26 //...
27 }

The resistance of the connection between ports p1 and p2 changes depending on the
temperature. For example, the feature r=3 denotes a resistance that is three orders of
magnitude above the reference value.

To create a current or effort source, two special properties must be added to the
smartIflow component class. The first feature is used to define the type of the source (e.g.,
flowComponent=bipolarFlowSource denotes a bipolar flow source). smartIflow supports
two types of sources namely bipolar effort sources and bipolar flow sources. The second
feature defines the power of the sources. For example, the feature om=1 defines that the
power of the source is one order of magnitude above reference. Afterward, the source
and drain of the source need to be defined. This requires two ports to be created first.
The port that should act as source must be assigned the feature flowPort=source and
the port that should act as drain must be assigned the feature flowPort=drain. The
following smartIflow class shows the definition of a power supply based on a bipolar effort
source:

1 class PowerSupply {flowComponent=bipolarEffortSource, om=1}{
2 Ports:
3 Electrical{flowPort=source} plus;
4 Electrical{flowPort=drain} minus;
5 }

The qualitative energy flow analysis can easily be integrated into the unfolding process.
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The function processBehavior (introduced in Section 4.5.2 first establishes the connection
structure and then propagates the properties. After these two steps, the energy flows
can be calculated by passing the model state (which includes the system model) to the
function calculateFlows. A possible implementation of the function calculateFlows is
shown in Algorithm 10.

Algorithm 10 Qualitative engery flow analysis
1: function calculateFlows(modelState)
2: results = []; // List of flow analysis results
3: for each sourcei in getSources(network) do
4: sourcei.setActive(false);
5: end for
6: for each sourcecurr in getSources(network) do
7: sourcei.setActive(true);
8: network = createPowerNetwork(modelState);
9: transformations = reduceNetwork(network);

10: sourcecurr.assignFlow();
11: while transformations not empty do
12: transformationcurr = transformations.pop();
13: transformationcurr.expandAndAssignFlows(network);
14: end while
15: results.add(network);
16: sourcei.setActive(false);
17: end for
18: flowAnalyisResult = combineResults(results);
19: modelState.setFlows(flowAnalyisResult);
20: end function

First, the power network is established (the vertices correspond to the ports and the
edges to the connections). In the case of multiple sources, the flow analysis must be
carried out separately for each source. For the analysis of one source, all other sources are
inhibited (lines 5-10). In order to calculate the flows in the network, the network must be
first reduced single equivalent resistance by applying the transformation rules described
in Section 3.1.1. Each performed transformation is pushed to the stack transformations.
After network reduction, the flow through the remaining edge between the source and
drain can be calculated (line 13). After that, transformations are expanded back and at
each level, the flows are assigned to the edges (lines 14-17).

Finally, the results of the qualitative network flow analysis for each source are combined
and added to the model state. The results (e.g., the flow through a connection or the
effort across a connection) are stored in terms of simple properties at the corresponding
ports.

Figure 4.11 shows the smartIflow Workbench with a system model of a simple electrical
circuit (right part) and the corresponding results of the energy flow analysis (left part).
The property flow.om(p2,minus) denotes a flow from port p2 to port minus with one
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order of magnitude below reference. Similarly, the property effort.om(p1,p2) describes
a voltage between ports p1 and p2 of one order of magnitude above the reference.

Of course, the energy flow analysis results can also be used in the logical expressions
of transition statements of internally triggered events. For this purpose, there are some
additional expressions. The expression flow.dir(p1,p2) can be used to determine the
direction of the flow between the ports p1 and p2. The return value is defined as follows:

• 1 denotes a positive flow (from p1 to p2)

• -1 denotes a flow in reverse direction (from p2 to p1)

• 0 denotes that there is no flow or the flow direction is undetermined (due to
ambiguities)

The expression flow.om(p1,p2) returns the order of magnitude of the flow through the
connection between the ports p1 and p2. If there is no flow, the expression returns null.
The expressions effort.om(p1,p2) and effort.dir(p1,p2) behave similarly, except
that here the effort across a connection is considered. The component class shown in
Figure 4.11 demonstrates how these expressions can be used in transition statements.

Figure 4.11: Result of the energy flow analysis of a simple circuit shown in the smartI-
flow Workbench
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4.7 Search Space Limitation
This section implements Contribution C3.
The size of the state space obtained by the unfolding depends on several factors. At first
glance, one might assume that the number of variables is the deciding factor about the
size of the state space. In most cases, this assumption is wrong, as the following example
demonstrates:

1 class TimerSwitch {
2 Variables:
3 Enum[Off, On] opm = Off;
4 Enum[Failure, Ok] fm = Ok;
5 Events:
6 Repair;
7 ActivateFailure;
8 TurnOff;
9 TurnOn;

10 Transitions:
11 when {delay=2} (opm == On) [opm == On && fm == Ok]
12 opm = Off;
13 EventHandlers:
14 when {stable=1} (ActivateFailure) [fm == Ok]
15 fm = Failure;
16 when {stable=1} (Repair)[fm != Ok]
17 fm = Ok;
18 when {stable=1} (TurnOff) [opm == On]
19 opm = Off;
20 when {stable=1} (TurnOn) [opm == Off]
21 opm = On;
22 }
23 // Main component:
24 class System {
25 // ...
26 Components:
27 TimerSwitch t1;
28 TimerSwitch t2;
29 TimerSwitch t3;
30 // ...
31 }

TimerSwitch is a simple timed switch. If this switch is activated, it switches off
automatically after a certain time. However, the switch can also be disabled manually
at any time. In addition to the events for switching on and off, there are also events
for activating a failure and its repair. Although class TimerSwitch consists of only two
variables, the transition system obtained by unfolding consists of 587 different states.
Reasons for this are the internally and externally triggered transition statements, but also
the combinatorics (System consists of three timer switches). The unnecessary execution of
internally triggered transition statements is already prevented by the rising edge semantics.
Internally triggered transition statements are an essential part of the component behavior
and therefore often can not be reduced. Of course, appropriate trigger conditions and
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guard conditions also help to limit the state space to a certain degree (e.g., execution of a
transition statement only if a new state results). But what about externally triggered
transition statements? External events are usually used to activate failure situations or
to change the operational states. In the example, external events are triggered at any
possible point in time. Stable conditions are one mechanism for limiting the triggering
of external events. They can limit the activation of external events to states that have
a certain stability. Despite stable conditions, external events can occur any number of
times on a path. In industrial systems, often only double faults or multiple faults up to
a certain probability of occurrence are analyzed. This discussion demonstrates that we
need a mechanism to control the triggering of external events. A rather naive approach
for controlling external events could be an overall upper limit on the number of external
events that are allowed to be triggered during unfolding. Despite this restriction, events
can still be triggered in any possible combination (e.g., several failure events in sequence).
Another approach is to define the relevant event combinations on a path. A typical rule
looks as follows: “On each path, a maximum of two failure events and three events that
change the operational mode of a component are allowed”. To be able to distinguish
the different types of events, features are assigned to them. For example, the feature
type=failure can be used to describe failure events and feature type=operation can be
used to define events that change the operational mode of a component. We call these
rules Event Trigger Specifications (ETS). Event Trigger Specifications need to be
specified in a formal and computer-understandable language. In fact, the Stream API
introduced in Java 8 comes very close to what is needed. A Java stream is a sequence of
data that can be modified by various operations in a pipeline. These so-called intermediate
operations can be chained together and applied to a stream. filter() is an intermediate
operation that passes the elements of a stream that satisfy a certain condition. The result
of each intermediate operation is again a stream. In the end, the result is collected. In
the following example, the source of the stream is the list items which contains a set of
strings.

1 List<String> items = Arrays.asList("Failure", "Event1", "Event2", "Failure", "Fail");
2 long count = items.stream().filter(s -> s.contains("Fail")).filter(s -> s.length() > 4).

count(); // count = 2

Two chained filters are applied to the stream. The first filter will pass only elements that
contain the text “Fail”. The second filter only allows strings that have a length of at least
five. In the last step, the elements remaining in the stream after filtering are counted using
the function count(). Event Trigger Specifications are logical expressions that define the
relevant event combinations on a path. An event may only be executed if the ETS is
still fulfilled after triggering. The rules are constructed in the following way: The events
triggered on a path can be considered as a stream. The source elements are called path
and hist. path delivers a stream that contains all events that have been triggered on a
path, while hist contains all events on a path, except the event to the last state. Filter
conditions can be added to the stream to focus on relevant event combinations. This
is quite similar to the Java Stream API. The remaining events can be counted (using
function count) and compared with symbolic values. These expressions represent the
atomic statements. Atomic expressions can be combined with logical operators. To make it

91



4 The smartIflow Formalism

easier to distinguish between multiple ETS, each specification is given a unique identifier3.
Consider the following example:

1 max2Failures3Operations := path.filter(type=failure).count() <= 2
2 && path.filter(type=operation).count() <= 3;

The ETS above allows on a path at maximum two events of type failure and three events
of type operation. The integration into the unfolding function (described in Algorithm 5)
is quite easy. For each event that is allowed to be triggered according to its guard and
stability condition, it must be checked whether the ETS is still fulfilled after execution.
Only if the ETS is fulfilled after execution of an event, the event may be executed. To
check an ETS at a state s, all paths back from s to the root must be analyzed.

Definition 4.7.1 Satisfaction of Event Trigger Specifications
Let s ∈ S and ε an Event Trigger Specifications. ε is fulfilled in state s iff ε is valid on
some path from initial state to s ■

Often there are several paths from a state s back to the root. It is important to use the
path with the minimal number of events to check an ETS since otherwise paths can occur
that contain fewer events as defined in the ETS. As a result, safety-critical situations may
not be detected, as certain external events have not been triggered. Checking all paths
back to the root from a state s can lead to high computational effort. In the worst case,
all paths of the transition system must be traversed. The efficiency of the verification
of an ETS can be significantly enhanced in the following way: For each state s ∈ S the
minimum number of relevant events triggered on the way from the root to s is captured
(=event counters). Relevant events are the events that are part of the filters of an ETS.
For example, for the following ETS, only the events containing features type=failure
and group=a need to be considered:

1 max2FailuresOfGroupA := path.filter(type=failure).filter(group=a).count() <= 2;

These event counters can easily be calculated during unfolding. In the initial state, all
event counters are assigned 0. If at a state s an event is triggered whose features are part
of a filter condition of the ETS, the corresponding event counters are incremented in the
subsequent state of s (s′). Once an already explored state is referenced, the event counters
at the referenced state must possibly be updated as the following example demonstrates:

Example 4.7.1 Updating event counters
Consider the following model:

1 class Test {
2 Variables:
3 Enum[Off, Mode1, Mode2] state = Off;
4 Enum[Start, A, B, C] pos = Start;
5

6 Events:
7 Change{type=operation};
8 TurnOn{type=operation};

3The entire grammar of Event Trigger Specifications in Extended Backus Naur Form (EBNF) in Appendix
A.3
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9

10 EventHandlers:
11 when (TurnOn) [state == Off]
12 state = Mode2 or Mode1;
13 when(Change) [state != Off && pos == Start]
14 pos = A;
15 when(Change) [state != Off && pos == A]
16 pos = B;
17 when(Change) [state != Off && pos == B]
18 pos = C;
19 when(Change) [state != Off && pos == C] {
20 pos = A;
21 state = Mode2;
22 }
23 }

The above smartIflow system model will be unfolded using a stack as a data structure for
unprocessed states and with the following ETS:

1 maxFiveOperations := path.filter(type=operation).count() <= 5;

Figure 4.12 shows the transition system created by the unfolding and the event counter
in the respective state. The execution of event TurnOn in the root (state 0) results in
states 1 and 2. Accordingly, the event counters for both states have the value 1. Both
states are added to the stack of unprocessed states (first state 1, then state 2). The
unfolding continues with state 2 (the state is on the top of the stack) and a path of new
states results. In state 6 the event Change is allowed to be triggered to its guard/stable
condition. However, the event must not be triggered, otherwise the ETS would be violated.
On the way to state 6, five events have already been triggered that contain the feature
type=operation. However, the ETS allows a maximum of five events of this type on one
path. Therefore, the event Change must not be triggered in state 6 and the unfolding
procedure stops at this state. Next, the last unprocessed state (state 1) is removed from
the stack. The event Change is allowed to be triggered according to its guard/stable
condition but also based on the ETS. The execution of event Change results in a state
that already exists (state 6). Therefore, a reference to this state is created.

0

2 3 4 5 6

1 6

State #type=operation
0 0
1 1
2 1
3 2
4 3
5 4
6 5

Figure 4.12: Transition system without event counters update

By this reference, the counters for this new path are no longer correct. On the path
0 → 1 → 6 only two operation events were triggered. Therefore, the event counter for
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state 6 must be updated to value 2. Note that the ETS allows on each path a maximum of
five events that contain the feature type=operation. By the change of the event counter
of state 6, now possibly events may be executed, which were not permitted during the
unfolding due to the ETS. Event Change has not yet been triggered in state 6 and is
admissible to be triggered due to its guard/stability condition. The execution of the event
results in a new state (state 7) which is then added to the stack of unprocessed states. In
state 7, the event Change is executed once again resulting in state 8. The reference from
state 8 back to state 6 caused by the event Change terminates the unfolding (no more
new states are discovered). Figure 4.13 shows the final transition system resulting from
the execution of additional events after event counters update.

As the event counters are assigned to states, the counters do not count the events
actually needed to reach the state but only the minimum possible ones. In other words,
the event counters represent the minimum number of events by which a state can be
reached. Consequently, the graph will most likely also contain paths that do not satisfy
the ETS.

0

2 3 4 5 6

1 6

7 8 6

State #type=operation
0 0
1 1
2 1
3 2
4 3
5 4
6 2
7 3
8 4
9 5

Figure 4.13: Transition system after execution of additional events resulting from the
event counters update

■

The example shows that each time an existing state is referenced, it must be checked
whether the event counters of the referenced state must be updated. Updating an
event counter affects not only the referenced state but also possibly the successor states.
Algorithm 11 shows a possible implementation for updating event counters and execution
of events retrospectively. First, the new event counters for the referenced state arising
from the new path are determined (see lines 8-11). The event counters of the referenced
state need to be updated if the new values differ from the current values (line 13). If
the referenced state has already been processed (state is not part of the stack/queue of
unprocessed state), also events may have to be executed subsequently. Since updating an
event counter may also affect the event counters of the successor states, the method is
called recursively for all transitions to the successor states (lines 16-18). The recursive
exploration stops at successor state s′ if
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• s′ is a terminal state or

• there are no changes at the event counters of s′ or

• s′ is an unprocessed state (state is part of the stack/queue of unprocessed states)

Function getMissingEvents determines the set of events that have not been triggered in
a state and that are allowed according to the ETS and stable/guard conditions. The
events are executed and the obtained states are added to the set of unprocessed states
respectively references are created if the state already exists.

Algorithm 11 Update event counters
1: function updateEventCounters(transition, transitionSystem, ets)
2: statesrc = transition.getStateSrc();
3: statedest = transition.getStateDest();
4: evtCtrssrc = transitionSystem.getEventCounter(statesrc);
5: evtCtrsdest = transitionSystem.getEventCounter(statedest);
6: evtCtrsdestactual = evtCtrssrc.add(transition.getEvent());
7: i = 0;
8: while i < evtCtrsdest.size() do
9: evtCtrsdestactual .set(i, min(evtCtrsdestactual .get(i), evtCtrsdest.get(i)));

10: i = i+ 1;
11: end while
12: if evtCtrsdest ̸= evtCtrsdestactual then // Updated required if counters differ
13: transitionSystem.setEventCounter(statedest, evtCtrsdestactual);
14: if statedest ̸∈ transitionSystem.getUnprocessedStates() then
15: // Update event counters of subsequent states
16: for each transnext∈ statedest.getTransitions() do
17: updateEventCounters(transnext, transitionSystem, ets);
18: end for
19: events = getMissingEvents(statedest, ets, transitionSystem);
20: execute events and insert new states into transitionSystem as unprocessed;
21: end if
22: end if
23: end function

Event Trigger Specifications help to focus on relevant situations and to keep the search
space manageable. In addition, Event Trigger Specifications are also useful during model
construction. When modeling, it is quite unlikely that a component model will match the
behavior as described in design documents on the first attempt. Rather, modeling is an
iterative task in which models emerge incrementally from alternate building and testing.
Here, the Event Trigger Specifications help to focus on the nominal system behavior, for
example, by disabling all failure events:

1 nominalBehavior := path.filter(type=failure).count() == 0;
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The specification nominalBehavior does not allow triggering of external events that
contain the feature type=failure. External events can be assigned multiple features. This
also allows the events to be divided into different categories. In the following example,
failure events are separated into three categories:

1 ...
2 Events:
3 ActivateFailure1{type=failure, category=a};
4 ActivateFailure2{type=failure, category=b};
5 ActivateFailure3{type=failure, category=c};
6 ...

The following Event Trigger Specification allows at maximum two failure events of category
a on a path and rejects failure events of category b and c:

1 failureCatA := path.filter(type=failure).filter(category=a).count() <= 2 &&
2 path.filter(type=failure).filter(category=b).count() == 0 &&
3 path.filter(type=failure).filter(category=c).count() == 0;
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4.8 Efficient Modeling
This section implements Contribution C6.

4.8.1 Challenges in Modeling

The smartIflow language is strongly inspired by Java and therefore has many common
characteristics. For this reason, most engineers with programming experience will easily
become familiar with the smartIflow language. However, many safety engineers have no
or very limited experience with programming languages, making text-based modeling to a
frustrating, time-consuming, and error-prone task. Modern IDEs (integrated development
environments) offer tools such as syntax highlighting, code search, refactoring, or debugging
that support the developer in writing code. However, these features are only beneficial
when modeling individual components. It will still be challenging to get an overview
of the model structure. Especially with larger hierarchical models, consisting of several
subsystems at different levels, even people with programming experience can easily lose
the overview. Graphical modeling is the way to get rid of the described problem. In
principle, there exist various possibilities to provide graphical modeling for smartIflow.

One approach could be to create a graphical modeling environment from scratch or to
use a framework like Eclipse Graphical Modeling Framework (GMF)4. The result could
be a standalone tool combining a graphical editor, a simulation environment, and several
analysis tools. If we neglect the high effort for the implementation of a graphical modeling
environment, there is still the issue that the safety engineers have to use another tool
besides their standard simulation tool (e.g., MathWorks Simulink or Simscape). Existing
models cannot be reused and therefore must be created from scratch, or a translation tool is
used. Every time the design documents change, both models need to be updated. Keeping
the separated models consistent is a time-consuming and error-prone task. Nevertheless,
a standalone tool can be perfectly designed for the language. For example, the graphical
modeling can be integrated into the simulation environment. This allows the states of the
components (e.g., variable assignments or properties on ports) to be displayed in real-time
in the graphical representation.

Another approach is to utilize simulation tools already used by safety engineers. Safety
engineers are very familiar with their simulation tools. Beyond that, most simulation
tools already provide graphical modeling. Therefore, it is obvious to use such tools as
a platform for graphical modeling technical systems in the smartIflow formalism. As
depicted in Figure 4.14, the idea is to use existing simulation models (or parts of them)
and automatically translate them into the smartIflow language. New systems can also be
created in the familiar simulation environment. Ideally, there will be only a single model.
Therefore, this variant seems to be the better option for graphical modeling. Simulink
and Simscape developed by The MathWorks are de facto standards for the simulation of
technical systems and are widely used in industry. Simulink and Simscape differ in several
important aspects from smartIflow. In Simulink models are composed graphically using a
set of continuous and discrete blocks that are connected through directed connections.

4http://www.eclipse.org/modeling/gmp/
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Converter

Simulink/Simscape
block diagram

smartIflow classes

Figure 4.14: Proposed process for graphical model composition

Simulink is based on signals. A Simulink block processes the input signals and then the
processed signal is available at the output port(s). Signal values are typed and among
others the data types integer, floating-point and boolean are supported. Reactive systems
are modeled using Stateflow. For simulation Simulink utilizes numerical solver. This is
quite different from smartIflow where only qualitative values exist.

Variant New modeling environment Simulation tool integration
Advantages + Modeling environment can be

perfectly designed for smartIflow
+ Modeling in familiar environ-
ment

+ Tight integration with the sim-
ulation environment

+ Already existing models can
be reused (or parts of them)
+ Tools share a single model

Disadvantages - High effort to keep models
consistent

- Modeling formalism are quite
different

- Multiple tools have to be used

Table 4.2: Advantages and disadvantages of the approaches to graphical modeling

Table 4.2 summarizes the advantages and disadvantages of the graphical modeling
approaches just presented. Engineers who are not very familiar with programming
languages will probably find it much easier to get started with smartIflow if they can
model in their familiar environment. Therefore, we will follow this approach. In the next
section, we will discuss what a formalism for the graphical design of smartIflow models in
Simulink/Simscape could look like.
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4.8.2 Towards an efficient Modeling Process in Simulink

Basically, there are two challenges in realizing a process for graphical model composition
in Simulink/Simscape. On the one hand, it is necessary to find an appropriate modeling
formalism to represent smartIflow models in Simulink/Simscape. On the other hand, a
converter is required that translates system models into the smartIflow language. Ideally,
this converter is part of the simulation environment. There are several possibilities for
graphical modeling of smartIflow systems in Simulink/Simscape. In the following, two
quite different approaches are presented and evaluated afterward.

Full Modeling in Simulink/Simscape

One approach is to create smartIflow models from scratch in Simulink/Simscape. That
means that aspects of a smartIflow model are represented by Simulink/Simscape compo-
nents. The question is, which aspects of a smartIflow component model can be represented
in Simulink, Simscape, and Stateflow. Are the blocks from the standard library sufficient?
Let us begin by finding an appropriate block from Simulink/Simscape for the smartIflow
components. A subsystem in Simulink is a special block that can contain other blocks
including other subsystems. Thus, subsystems enable the building of hierarchical models.
smartIflow also allows hierarchical modeling. It seems to be a good idea to represent
each smartIflow component by a separate subsystem. The components can be placed in a
custom library in Simulink. The advantage of this is, that a component only needs to be
modeled once and multiple instances can be created by drag and drop (see Figure 4.17).
The name of the subsystem in the library corresponds to the component type. The name
of a library block instance (created by drag and drop) in a block diagram corresponds to
the instance name of the component. In case a certain type is not yet available in the
custom smartIflow library in Simulink, the type can be represented by a new subsystem,
created directly in the Simulink block diagram where the system is modeled. The name
of such a subsystem corresponds to the instance name of the component. The component
type is undefined because Simulink subsystems are untyped.

Ports are represented by Simscape physical ports (PMIOPort). In smartIflow, ports
are typed explicitly, while in Simscape the type of a port is defined implicitly by the
connection or signal it transfers. Therefore, a mechanism is needed to assign a type to
PMIOPorts. A possible solution could be a special block that is connected to such a port.
This block (called sifPortTyp) is a simple dummy component that provides a mask where
the port type can be defined. sifPortTyps don’t affect the behavior in Simscape. Note
that each port should only be assigned one sifPortTyp block. Otherwise, it can lead to
ambiguities, as the example in Figure 4.15 demonstrates. In this scenario, it is not clear
which port is assigned to which type.

In theory, directed Simulink Inport and Output ports can also be used but with certain
limitations. Basically, connections in smartIflow are solely bidirectional, i.e., information
can flow in both directions. Optionally, ports can be restricted to let information flow in a
certain direction. In Simscape, connection ports, and connections are nondirectional (quite
similar to smartIflow). In Simulink, data solely flows over directional connections (in fact
the connection structure is a directed graph). This kind of connection modeling is quite

99



4 The smartIflow Formalism

1
p1

2
p2Simscape

sifPortType
out

Simscape

sifPortType
out

Figure 4.15: Critical situation with ambiguous port types in graphical modeling in Simulink

different from smartIflow with its bidirectional connections. Therefore, only Simscape
connections and ports can be used in graphical modeling.

Default connections (i.e., connections that are active in any state) that do not publish
any properties can be created as usual by interconnecting the component ports (see Figure
4.17) in Simulink. But what about the state-dependent behavior, transitions, and external
events?

Sections Transitions and Behavior are without a doubt the most complex parts of a
smartIflow component. Stateflow is a toolbox in Matlab for modeling state diagrams and
seems to be the solution for representing the transitions and the behavior of a component.
A possible approach could be exactly one Stateflow chart for each smartIflow component.
In this chart both, the transitions and the behavior are defined [HLH15].

As the example in Figure 4.16 shows, the Stateflow chart consists of two superstates,
namely Transitions and Behavior. The superstate Transitions is used to describe
the variables, their potential values, and as the name implies, the transitions between
values. In the Stateflow chart notation, substates with dashed borders indicate a parallel
decomposition, while solid borders indicate exclusive state decomposition. The substates
of superstate Transitions describe the variables of a component and their substates
represent the potential values. The chart from the example defines the following variables
(initial values are highlighted in bold):

• opm: [Idle, Operated]

• circuit1ReservoirLevel: [Full, Empty]

• circuit2ReservoirLevel: [Full, Empty]

Initial variable values are specified using default transitions, i.e., transitions with no
source object. State transitions are labeled with the same logical expressions and features
as in the smartIflow language (see Section 4.3.4). Nondeterministic transitions can be
modeled by creating transitions that have the same source state and label and end at
different destination states.

The state-dependent behavior of a component is defined in superstate Behavior. For
each conditional behavior, a separate state is created. This state contains two substates,
namely Off and On. The transition from Off to On is labeled with a logical expression
that describes the condition under which the behavior is executed. The actual behavior
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Behavior

b2

OffOn
entry:	circuit2[pressure=true]

[opm	==	Operated	&&	circuit2ReservoirLevel	==	Full] 22

b1

OffOn
entry:	circuit1[pressure=true]

[opm	==	Operated	&&	circuit1ReservoirLevel	==	Full] 11
22

Transitions

circuit1ReserviorLevel

Empty Full
{delay=2}	(circuit1.exists(leakage=true)	&&	circuit1.exists(pressure=true))

22

circuit2ReserviorLevel

Empty Full
{delay=2}	(circuit2.exists(leakage=true)	&&	circuit2.exists(pressure=true))

33

opm

Operated Idle

(~pedalPosition.exists(position=pushed))	[opm==Operated]

(pedalPosition.exists(position=pushed))	[opm==Idle]
11

11

Figure 4.16: A possible graphical representation of transitions and behavior of the master
cylinder from the diagonal car braking system (see Section 6.1) in Stateflow
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is described in terms of entry actions in state On using a simplified syntax. For exam-
ple, the expression circuit1[pressure=true] is the shortened form of set(circuit1,
pressure=true);. The expression p1=p2[leakage=true] connects the ports p1 and p2
and publishes the property leakage=true. For default behavior, i.e., actions that are
executed in any state, the condition from Off to On is omitted.

Of course, these models cannot be simulated in Simscape since the semantics of the mod-
els can only be partially interpreted by Simscape. In contrast, the converter understands
the models quite well.

Lightweight Approach

Another approach is a half-automated translation process: Instead of modeling all aspects
of a component solely in Simulink, use Simulink to model only the component interface
(=ports) as well as the default connections. The components are stored in a library as in
the first approach, but in addition, each component is assigned the raw smartIflow class.
Components from the library can be instantiated as usual by drag and drop (see Figure
4.17). For a novel type that does not exist in the library yet, at least a component class
with ports and subcomponents can be created. Consequently, the connection structure of
arbitrary Simulink/Simscape models can be completely transferred to smartIflow.

Figure 4.17: Graphical representation of smartIflow components in Simulink

Evaluation

The formalism of the first approach obviously does not follow the modeling guidelines for
Stateflow charts. However, the additional syntax is mandatory for publishing properties,
specifying delays, etc. In principle, behavior, and transitions modeled in a Stateflow
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chart have the same expressive power as defining them in the smartIflow language. This
is good news because it proves that it is possible to compose models graphically in
Simulink/Simscape that are semantically equal to the models in raw smartIflow classes.
The drawback is that very special kinds of Simscape models have to be created. The
component models need to follow some conventions (e.g., sifPortTyps are used to define
a port type). With larger systems, this kind of modeling is not practicable. The reason
for this is the inconvenient modeling of behavior and transitions in Stateflow. While the
definition of variables is quite intuitive, problems occur with the definition of actions
(set/connection) and logical expressions as there is absolutely no support. The safety
engineer gets feedback about the syntactic correctness of the expressions only when parsing
the converted smartIflow classes. This results in a tedious and time-consuming process
that is not applicable for use in industry. In addition to this, the graphical representation
is by no means better readable than the textual representation.

With respect to the second approach, there are (at least) three scenarios where the
Simulink integration improves modeling efficiency:

(1) In situations when modeling systems solely using blocks from the custom smartIflow
library in Simulink/Simscape (and underlying raw smartIflow classes). Ideally, the
translated models can be executed without any manual work.

(2) Existing Simulink/Simscape models can easily be converted into smartIflow classes.
In this case, at least the connection structure can be transferred. Variables, behavior,
transitions, and events must be defined manually.

(3) For modeling completely new systems, Simulink/Simscape can be used to specify
the system architecture with very little effort. Figure 4.18 depicts this process. The
system architecture can be represented just with subsystems, ports, and connections
(1). After translation into smartIflow classes (2), variables, behaviors, transitions,
and events can be added to the classes manually (3).

Table 4.3 summarizes the advantages and disadvantages of both approaches. Obviously,
the lightweight approach seems to be a much better option. This is also confirmed by the
experience of an industrial project in which also a lightweight approach has been developed.
In the SysRO Project [Gir+20], technical systems were described with the SysML (focus
on structural modeling) language and then analyzed using smartIflow. The next chapter
describes, how these special models can be converted from Simulink/Simscape into the
smartIflow language.

4.8.3 A first Prototypical Implementation and Experimental Validation

In principle, there are two possibilities for converting system models in Simulink to the
smartIflow language: One way is to perform the conversion directly in Matlab. Matlab
offers a comprehensive API (Application Programming Interface) that enables access to
block parameters and properties (e.g., information about ports, layout, or the block type).
The API can be used to traverse a system model, gather all relevant information, and
generate smartIflow code out of it. Another way to perform the conversion is to use a
separate tool that takes the system model in the Matlab file format as input. Matlab
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Variant Full Modeling in Simulink/
Simscape

Lightweight Approach

Advantages + New models can be created
solely in Simulink/ Simscape

+ Simple and intuitive modeling
process
+ Models are easy to read
+ For existing models, at least
the connection structure can be
transferred

Disadvantages - Models cannot be simulated in
Simulink/Simscape

- Synchronization of mod-
els (smartIflow ↔ Simulink/Sim-
scape) is quite complex

- Complex modeling formalism
- Models are hard to read
- No feedback about the correct-
ness of expressions

Table 4.3: Comparison of full modeling in Simulink/Simscape and the lightweight approach

stores models in the so-called SLX format5. Actually, an SLX file is just a compressed
file that contains a set of XML files that describe the structure of a block diagram. In
principle, it is possible to parse the XML files and generate smartIflow classes out of them.
However, the format will likely change between the different Simulink versions due to new
features. Therefore, it is not possible to create a reliable conversion tool that accepts
every model regardless of its version. For this reason, the conversion should be done in
Matlab.

Algorithm 12 shows a possible conversion implementation. The approach is quite
simple: The hierarchical model structure is traversed, and at each level, all blocks are
analyzed and a new smartIflow class is created. Depending on the existing block types
at a level, either ports or subcomponents are added to the corresponding smartIflow
class. Simulink/Simscape ports (PMIOPort, Inport and Outport) can be converted
straightforward. For component instances from a custom library, the assigned smartIflow
class is also copied. Additionally, the connection structure is analyzed and corresponding
connections are added to the smartIflow class. To keep the layout of the model, the
position information of each block is saved in an XML file.

The prototype is implemented in the Matlab language. The block diagram has to be
translated and the output folder where the smartIflow classes are stored can be selected
using a simple dialog (see (2) in Figure 4.18). The translation of a system consisting of 90
components takes approximately two seconds. Since translation time grows linear with the
number of blocks in a model, computational effort is no limitation factor of this approach.

Our experiments with the prototype showed, that the approach has the potential to

5The SLX format has been standard since 2012 and has replaced the outdated MDL format.
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Algorithm 12 Traversing Simulink models
1: function convert(block, outputFolder)
2: sifClass = new smartIflow class instance;
3: sifClass.typeName = block.name + ‘Type’ ;
4: sifClass.instanceName = block.name;
5: children = all blocks inside block;
6: for each blocki ∈ children do
7: instanceName = get name of blocki;
8: pos = get position of blocki;
9: analyzeConnectionStructure(blocki, sifClass);

10:
11: if blocki is a port then
12: convertPort(blocki, sifClass, outputFolder);
13: else if blocki is referenced from library then
14: comp = create empty component;
15: comp.instanceName = instanceName;
16: comp.typeName = get name of referenced block;
17: sifClass.components = sifClass.components ∪ comp;
18: comp.position = pos;
19:
20: // Copy raw smartIflow class if type is available
21: if lookuptable contains comp.typeName then
22: copy smartIflow class to outputFolder;
23: end if
24: else
25: comp = create empty component;
26: comp.instanceName = instanceName;
27: comp.typeName = instanceName + ‘Type’ ;
28: sifClass.components = sifClass.components ∪ comp;
29: comp.position = pos;
30:
31: // Analyze blocks of the subsystem recursively
32: if blockType == ‘SubSystem’ then
33: convert(blocki, outputFolder);
34: end if
35: end if
36: end for
37: writeSmartIflowClass(outputFolder, sifClass);
38: end function

105



4 The smartIflow Formalism

increase the efficiency of modeling. Especially when modeling completely new systems, the
approach is quite practicable and reduces effort significantly. Modeling systems solely using
blocks from the custom smartIflow library in Simulink/ Simscape is applicable in practice
only with certain restrictions. Even with a very comprehensive library of predefined blocks
in Simulink there are often special component types (e.g., controller) required that are not
available in the library yet. In this case, the safety engineer needs to model the component
in the smartIflow language. Another drawback is, that the translation works only in one
direction. Models can be translated into the smartIflow language but not the other way
around. Therefore, changes in the system architecture in raw smartIflow classes do not
affect the graphical representation. This results in inconsistencies that need to be fixed
manually. Nevertheless, the approach provides a good starting point for safety engineers
who had no experience with smartIflow so far. The approach also is very useful for the
analysis of existing systems, since systems can be modeled faster and thus development
costs are reduced.

Figure 4.18: Modeling a system architecture in Simulink/Simscape and translation to
smartIflow classes
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Verification of safety requirements is one important task during the development of
safety-critical systems. The first step in this analysis task is the specification of safety
requirements. These requirements describe how the system should behave in general
(e.g., expected behavior after a switch is pressed) or under special circumstances (e.g.,
behavior after a failure has happened). An example of a safety requirement could be “The
cooling system shall keep the pressures of cooling liquid at any time”. After requirements
specification, these requirements are verified against the model behavior. A specification
is fulfilled by a design model if the system behaves as defined in the specification in every
situation.

In principle, this task can be performed manually for smartIflow system model by check-
ing whether all relevant execution paths of the transition system (obtained by unfolding)
fulfill the specification. However, this is only feasible for very small systems. Despite
mechanisms such as the referencing already explored states or the Event Trigger Specifica-
tions, the state space can grow very fast even of smaller models to several thousand states.
A manual analysis of such results is extremely time-consuming, tedious, and therefore not
practicable. Verification of safety requirements for real systems requires an automated
method.

Many approaches to model-based safety analysis (e.g., Güdemann et al. [GO10], AltaR-
ica 3.0 [Bat+13] or Joshi et al. [JWH]) use formal verification methods to automate the
verification process. They utilize model checkers as they operate completely automatically,
in contrast to deductive verification based on a theorem prover that requires expert
knowledge. Model checking is also known as the ‘push-button’ method, meaning that it
automatically checks whether a system fulfills a given specification. Model checkers require
the system description and the specification in a formal language. As described in Section
2.4, there are two types of model-checking algorithms, namely symbolic model checking and
explicit-state model checking. Symbolic model checkers are quite efficient, i.e., they can
handle large state spaces. However, symbolic model checking is not compatible with the
complicated implicitly defined transitions of smartIflow. Therefore, explicit-state model
checking seems to be the solution. Explicit-state model checkers use a system description
in a formal language to construct, as the name already implies, the transition system in
an explicit representation. There already exist several explicit-state model checking tools
(e.g., SPIN[Hol97] or PRISM[KNP11]). One approach to automate the verification of
safety requirements of smartIflow system model could be to use an existing model-checking
tool. The idea is to translate smartIflow system model into the input language of a
model checker, define safety requirements in temporal logic, and let the model checker
automatically verify the requirements against the model. Unfortunately, there is no input
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language that can represent the complex component behavior of smartIflow system model
due to the following reasons:

• smartIflow allows to specify delays for internally triggered transition statements for
reasoning about orders of magnitude of time. Existing model-checking tools do not
support this type of time semantics.

• Existing model checking tools do not support mechanisms for state space limitation
such as Event Trigger Specifications.

In addition to the reasons mentioned above, there is another strong argument to develop
a new model checker specifically for smartIflow system model: One strength of model
checking is the generation of counterexamples, in case the system model does not meet
a specification. Of course, one counterexample is sufficient to disprove a specification.
However, in safety analysis, the main question is not, whether a system can fail, but
whether the probability of a failure is acceptable. Any system will fail if a certain number
of failures occur in the system. Consider, for example, an auto emergency braking system
available in many modern cars. Such systems utilize various sensors, such as radar sensors,
to prevent a collision with an obstacle or to reduce the collision speed. One important
safety requirement is “The emergency brake assist must only brake if there is an obstacle
in front of the vehicle.”. Obviously, it cannot be guaranteed that this specification is
fulfilled in any imaginable situation. The sensors may deliver falsified values or there
could be an error in the software that is responsible for detecting obstacles. It cannot be
guaranteed that the specification is always met, but the likelihood of it can be optimized.
Therefore, it is not sufficient to deliver just one counterexample but rather to calculate all
relevant counterexamples that lead to a violation of a specification. There already exist
some approaches to tackle this problem (e.g., [Cla+02]), however existing tools still do
not support multiple counterexample generation.

For this reason, an explicit-state model checker for smartIflow system model has been
developed (the approach was first introduced in [HLH16][HLH17]) which is described
in this chapter. To capture the timed behavior based on orders of magnitude of time
in safety requirements, operators in CTL are extended as described in the next section.
Finally, the calculation of minimal cutsets and generation of Fault Trees is explained.

5.1 Safety Requirements Specification
The safety requirements verified against a system model need to be specified in some
formal language. Existing model-checking tools usually accept requirements specified in
temporal logic such as CTL or LTL. As already described in Section 2.4.2, CTL does not
a have higher expression power than LTL or vice versa, but their underlying concept is
different. In other words, they are semantically incomparable. But which logic is more
suitable for specifying safety requirements for technical systems? First, consider some
typical specifications for real-world scenarios:

1. “There is always a possibility that the light can be turned on.”

2. “It must be possible to switch to manual mode at any time.”
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3. “The airbag must be triggered only in case of a crash.”

The first example describes that there is always a possibility that a state can be reached
(also known as reset property). This property cannot be expressed with LTL. LTL can
only state that a state is always reached (e.g., F(Light == On)). With branching in CTL
it is possible to specify expressions that must be valid on at least one possible execution
path. For example, the first requirement can be described by the following expression in
CTL: AG(EF(Light == On)). Requirements in the form of the first example are quite
important in real-world scenarios. Thus, CTL is used as a formal language to describe
safety requirements for smartIflow system models. The remaining requirements can be
expressed in both LTL and CTL.

Temporal logic like LTL or CTL abstracts from precise timing. For example, the
expression AFφ states only that on all paths φ must be reached sometime in the future.
“Somewhere in the future” could be a subsequent state or an arbitrary state along the
reachable paths. Of course, this is not sufficient for real-world applications. In real-world
applications, reactions to events are often expected within a guaranteed time.

Example 5.1.1 Diagonal Car Braking System
Consider the diagonal car braking system (see Section 6.1 for detail description) and the
following property:

“Whenever the pedal is pressed, the brake must operate after less than 10 ms.”

Most aspects of the requirement could be expressed by the following CTL formula:

AG(PedalPressed == true → AF(BrakeOperates == true))

AF(BrakeOperates == true) means that the brake must operate somewhere in the future.
This could be the next state or any future state. This is obviously too weak since a
reaction is expected after at least 10 ms.

In this example, there are some interesting aspects that should be considered in CTL
expressions:

• What is the maximum delay allowed before the reaction (braking effect) occurs?

• How long does the pedal have to be pressed until a reaction is possible?

• How long does the expected reaction (braking effect) have to last?

■

There already exists variants of CTL such as TCTL or RTCTL that can express timed
properties. Properties to timed automata can be expressed with TCTL. TCTL uses clock
constraints over the clocks of timed automata for reasoning about timing. TCTL cannot
be used to specify requirements for smartIflow system models, because the timing in
smartIflow is based on different orders of magnitude of time. RTCTL is also not suitable
for specifying temporal requirements for smartIflow system models, as operators in RTCTL
are just a helper macro for n next-operators in series. Since no suitable temporal logic for
specifying safety properties to smartIflow system models exists, a new variant of CTL is
required. CTL must be extended in such a way that safety requirements can also take
into account the stability of states and the delays between state transitions.
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5.2 Orders of Magnitude timed CTL (OMT-CTL)

This section implements Contribution C5.
Orders of Magnitude timed CTL (OMT-CTL, for short) is a variant of CTL aimed to
express timed properties for smartIflow system models. To address temporal behavior
in safety requirements, CTL is extended by two new concepts: The first concept is an
additional predicate that can be attached to state formulae. This predicate is used to
specify properties about the stability of states. It is a term of the form

Φ{stable ω x}

where Φ is a state formula, stable is the keyword for the stability value of a state, ω can be
any relational operator (<,<=, >,>=, ! =,==), and x is a natural number. For example,
AG(true{stable >= 3}) asserts that each state in the transition system must be stable
with respect to three orders of magnitude above reference.

The second concept introduces a constraint to temporal operators (F,G, and U) that
enables limiting the search depth. The so called delay constraint is a term of the form

Θ{delay ω x}

where Θ is a path-specific quantifier (F,G, or U), delay is the keyword for the delay of the
transitions, ω can be any relational operator (<,<=, >,>=, ! =,==), and x is a natural
number. For example, Φ U{delay < 3}Ψ asserts that Ψ has to hold within a delay from
at maximum two orders of magnitude above reference while only visiting Φ-states before
reaching Ψ (all transitions on the path to Ψ must have a delay of order of magnitude
value of two or less). Note that in OMT-CTL, as in TCTL, there is no timed variant of
the next-step operator (X).

Definition 5.2.1 Syntax of OMT-CTL
Basically, the formulae in OMT-CTL have the same structure as CTL, RTCTL or TCTL
expressions and are either state or path formulae. OMT-CTL state formulae are built
upon a set AP of atomic propositions according to the following grammar:

Φ ::= true | a | Φ{stable ω x} | ¬Φ | Φ ∧ Φ | Eφ | Aφ

where a ∈ AP and φ is a path formula defined by φ := Φ U{delay ω x} Φ. ■

Other propositional logic operators (∨,→, . . . ) can be obtained straightforward:

true = ¬false

Φ → Ψ = ¬(Φ ∧ ¬Ψ)

Φ ↔ Ψ = (Φ → Ψ) ∧ (Ψ → Φ)

Φ ∨ Ψ = ¬(¬Φ ∧ ¬Ψ)
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Order of magnitude timed variants of the Operators F and G can be obtained in the same
way as in TCTL:

EF{delay ω x} Φ = E true U{delay ω x} Φ

AF{delay ω x} Φ = A true U{delay ω x} Φ

EG{delay ω x} Φ = ¬ AF{delay ω x} ¬Φ

AG{delay ω x} Φ = ¬ EF{delay ω x} ¬Φ

{stable ω x} and {delay ω x} are optional constraints that can be applied to state
formulae respectively path-specific quantifiers. An OMT-CTL expression without any
stable or delay constraint complies with regular CTL syntax and semantics.

Definition 5.2.2 Atomic Propositions in OMT-CTL
In OMT-CTL, atomic propositions are comparisons between variables and their values
using the relational operators == and !=. Variables of components are accessed using the
full qualified name. ■

Definition 5.2.3 Full Qualified Variable Name
A fully qualified variable name includes all component names separated by "." in the
hierarchical sequence starting from the root component to the component that contains
the desired variable and the name of the variable itself. ■

Example 5.2.1 OMT-CTL examples
Consider the following source code, which contains several OMT-CTL specifications:

1 stablityProperty1 := AG(true{stable >= 3});
2 stablityProperty2 := AG(true{stable >= 3} -> opm = Idle);
3 restartProperty := AG(EF{delay <= 2}(system.om == Restart));
4 correctBehavior :=
5 AG((system1.om == Request){stable >= 2}
6 -> AF{delay <= 3}((system2.om == Acknowledge){stable >= 2}));
7 failureDectection := AG(component1.fm == Failure -> AF(system.om == Repair));
8 systemOk := correctBehavior && restartProperty && failureDectection;

Each OMT-CTL specification is identified by a unique identifier. Therefore, specifications
are uniquely referenceable, and in addition, sub-formulas can be reused (the rule ’Declare
before use’ holds). Formulae can be reused by referencing them using their identifier.
Specification stablityProperty1 defines that all states in a system are stable with respect
to at least 3 orders of magnitude above reference. Specification stablityProperty2 reuses
stablityProperty1 and states:

“In all states on all paths that are stable with respect to 3 orders of magnitude
above the reference, the system is in state idle.”

The restart property defined in specification restartProperty expresses that from any
state it is possible to perform a restart. The specification is not satisfied if, before the
restart is performed, there is a state that is stable with respect to the order of magnitude 3
(or higher), even if all subsequent states have stable values that are smaller. The Property
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“Whenever a request holds for a duration of at least two orders of magnitude,
an acknowledge is expected after a delay of 3 orders of magnitude at the latest,
which holds for a duration of at least 2 orders of magnitude.”

is expressed by the OMT-CTL formula correctBehavior. Specification systemOk is an
example where existing requirements are reused. ■

Definition 5.2.4 Satisfaction Relation for OMT-CTL
Like regular CTL formulae OMT-CTL expressions are evaluated over the states and paths
of transition systems TS(fssm) = (S, I, AP,L,−→). Let Paths(s) be the set of maximal
path fragments π where π[i] denotes the (i+ 1)th state of path π, and π[0] = s. For state
s = (ηv , statetsprev , statetsdel) in TS(fssm), a ∈ AP , OMT-CTL state formulae Φ and Ψ,
and OMT-CTL path formula φ, the satisfaction relation |= for state formulae is defined
by

s |= true

s |= a iff a ∈ L(s)

s |= Φ{stable ω x} iff s |= Φ and Stable(s) ω x

s |= ¬Φ iff not s |= Φ

s |= Φ ∧ Ψ iff (s |= Φ) and (s |= Ψ)

s |= Eφ iff π |= φ for someπ ∈ Paths(s)

s |= Aφ iff π |= φ for allπ ∈ Paths(s)

Remember that ω can be any relational operator, x is a natural number, and Stable(s) =
x iff s is marked stable with respect to OM value x.

Let π = s0
d0−→e0 s1

d1−→e1 s2
d2−→e2 . . . and delay(si, sj) = max({dk | i ≤ k < j}). The

satisfaction relation |= for OMT-CTL path formulae is defined by:

π |= G{delay ω x} Φ iff ∀j : (delay(π[0], π[j])ω x) → (π[j] |= Φ)

π |= Φ U{delay ω x} Ψ iff ∃j ≥ 0 : (delay(π[0], π[j])ω x) ∧

(Φ[j] |= Ψ) ∧ (∀0 ≤ k < j : π[k] |= Φ)

■
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Example 5.2.2 Examples of OMT-CTL formulae
Figure 5.1 visualizes three OMT-CTL expressions. Example 1 states that proposition p
is always true on all paths within the specified time period. The time period is defined
by paths whose delay values are less than the order of magnitude value 2. The second
example defines that a state where proposition p is true is reached on all paths after a
maximum delay of three orders of magnitude. Example 3 states that there is at least one
path on which a q-state is reached after a delay of at maximum two orders of magnitude
above reference, whereby only p-states are visited before q is reached. Although each path
fulfills the property “p-states are visited before q is reached”, the transition system does
not fulfill the specification because the q-state is not reached within the specified time
interval.

Example 1:
AG{delay < 3} p ✓

d=2       d=2

d=5        d=5 d=1        d=1

p

p

p

p p

p

Example 2:
AF{delay <= 3} p ✓

d=2       d=2

d=1        d=1 d=5        d=5

p

p p

Example 3:
E p U{delay <= 2} q ×

d=2       d=1

d=5        d=5 d=4        d=4

p

q

p

q q

p

q

Figure 5.1: Examples of OMT-CTL formulae

■

In CTL, all temporal modalities can be expressed using the basic operators EX, EF, and
EG (=Existential Normal Form). For each OMT-CTL formula also exists an equivalent
formula in ENF. Universal path quantifiers can be eliminated using the following duality
laws:

Definition 5.2.5 Duality Laws for OMT-CTL

AF{delay ω x}(Φ) ≡ ¬ EG{delay ω x}(¬Φ)

EF{delay ω x}(Φ) ≡ E((true) U{delay ω x} Φ)

AG{delay ω x}(Φ) ≡ ¬ EF{delay ω x}(¬Φ)

A(Φ U{delay ω x} Ψ) ≡ ¬ E(¬Ψ U(¬Φ ∧ ¬Ψ)) ∧ ¬ EG{delay ω x}(¬Ψ)

AX(Φ) ≡ ¬ EX(¬Φ)

■
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5.3 Explicit-State OMT-CTL Model Checking

This section implements Contribution C4.
The model checking problem for OMT-CTL is the same as the model checking problem for
CTL: It is to verify for a OMT-CTL formula Φ and transition system TS whether TS |= Φ.
Therefore, it is obvious to use an existing model-checking algorithm. The explicit-state
CTL model checker presented in [BK08] is quite efficient. The question whether TS |= Φ
can be answered in linear time (O((N +K) ∗ |Φ|), where |Φ| is number of subformulae of
CTL formula Φ, N is the number of nodes and K is the number of transitions in TS).
The algorithm is based on the calculation of satisfaction sets for each subformula Ψ of a
CTL formula Φ. Remember, a satisfaction set Sat(ϕ) contains those states that satisfy
ϕ. However, the use of this algorithm for the verification of smartIflow system models is
associated with some considerable difficulties:

• During the calculation of the satisfaction sets, timing constraints and ETS must
be considered. The calculation of Sat(EϕUψ), Sat(EGϕ), Sat(EXϕ) is based on
backward search. If the backward search discovers a path where the ETS or a timing
constraint is violated, then the path must not be explored further.

• For the calculation of a satisfaction set of a subformula, the results of the compu-
tations of its children are used. For testing an ETS during backward search of an
intermediate formula in addition to the events on the current path, the events that
were triggered in the satisfaction sets of its children must also be considered. A
possible solution could be as follows: For each element, si in satisfaction set Sat(Ψ)
for subformula Ψ, the relevant events that were triggered to satisfy subformula Ψ
must be captured. Relevant events are those that occur in the ETS.

• During backward search, references and, depending on the ETS, cycles must be
followed.

The probably greatest advantage of the model checking approach based on the calculation
of satisfaction sets is its efficiency. However, it is not clear whether this algorithm can
even be implemented for smartIflow system model. In addition, the approach does not
support on-the-fly model checking, where only the paths relevant to model checking (e.g.,
to determine cut sets) are unfolded. For these reasons, a very simple but not particularly
efficient model checker has been developed. This algorithm should satisfy the following
properties:

• In case of specification violation, all relevant counterexamples should be generated.

• The model checker may only check the paths in the transition system that are
allowed with respect to the ETS. Thus, search space can be limited to relevant paths
(e.g., at a maximum of two failure events).

• While exploring new paths, the timing requirements of the OMT-CTL formulae
must be considered.
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5.3.1 Basic Algorithm

The proposed model checking algorithm accepts OMT-CTL formulae in ENF, i.e., OMT-
CTL formulae consisting only of the basic operators EG, EU, and EX. Each OMT-CTL
formula can be transformed automatically into an equivalent ENF formula using the
duality laws from Definition 5.2.5. For example, the OMT-CTL formula

AG(AF{delay < 3}(om == Ok))

is automatically transformed to

!(E(true U!(!(EG{delay < 3}!(om == Ok)))))

As OMT-CTL formulae are expected in ENF, only algorithms for E Φ1 U Φ2, EG Ψ, EX Ψ,
and Φ are required.

After the transformation of OMT-CTL formula Φ to ENF, the question of whether
TS |= Φ can be solved. Algorithm 13 sketches the basic idea of the model-checking
procedure. The recursive algorithm is based on an incremental top-down traversal of
the parse tree of the OMT-CTL formula Φ. As OMT-CTL formulae are expected in
ENF, labels of inner nodes of the parse tree are ¬,∧,EG,EU, or EX. Leaves can be
atomic propositions a ∈ AP or the constant true. For complying ETS and cycle detection
(cycles will be discussed later) while traversing the transition system, the state transitions
visited must be remembered. The list history (the order is important) consists of a set
of state transitions that describe the path towards the state where Φ is verified. The
history must necessarily be composed of state transitions since each state transition is
assigned information about the event (e.g., type of the externally triggered transition
statement) that is essential for testing the ETS. Initially, history contains an artificial
state transition leading to the initial state of the transition system (we expect that there is
only one initial state). Function verify analyzes the formula Φ and evaluates subformulae
by recursively calling function verify. If Φ is of the form E Φ1 U Φ2, EG Ψ, or EX Ψ, the
expression is evaluated by the corresponding functions verifyEU, verifyEG and verifyEX.
The result of each function (verify, verifyEU, verifyEG, and verifyEX) is a tuple of the
form (result, proofs). The result is true iff TS |= Φ. The set proofs consists of paths
that prove the result. If result is true, proofs are witnesses and if result is false, proofs
are counterexamples. Note that a negation will invert the result, i.e., witnesses turn to
counterexamples and counterexamples turn to witnesses.
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Algorithm 13 Function for computation of verification results
Input: Finite transition system TS with state set S, OMT-CTL formula Φ in ENF,

an ETS, and history describing the trace to the state where Φ is verified.
Output: The tuple (result,proofs) where result = true iff TS |= Φ in state

lastState(history) and proofs is a set of counterexamples/witnesses
(depending on result).

1: function verify(Φ,history,TS , ets)
2: switch Φ do
3: case true :
4: return (true, ∅);
5: case a :
6: if a ∈ L(lastState(history)) then
7: return (true, ∅);
8: else
9: return (false, ∅);

10: end if
11: case Φ1 ∧ Φ2 :
12: (resultΦ1 ,proofsΦ1) = verify(Φ1, history,TS , ets);
13: (resultΦ2 ,proofsΦ2) = verify(Φ2, history,TS , ets);
14: return (resultΦ1 ∧ resultΦ2 , proofsΦ1 ∪ proofsΦ2);
15: case ¬Ψ :
16: (result,proofs) = verify(Ψ,history,TS , ets);
17: return (¬result,proofs);
18: case Ψ{stable ω x} :
19: if lastState(history) ω x then
20: return verify(Ψ, history,TS , ets);
21: else
22: return (false, ∅);
23: end if
24: case EX(Ψ) :
25: return verifyEX(Ψ,history,TS , ets);
26: case E(Φ1 U{delay ω x}(Φ2)) :
27: return verifyEU(Φ1,Φ2, ω, x, history,TS , ets);
28: case EG{delay ω x}(Ψ) :
29: return verifyEG(Ψ, ω, x, history,TS , ets);
30: end function

5.3.2 The Operator EG

The basic idea behind functions verifyEU, verifyEG, and verifyEX is quite similar: The
functions accept existential statements (E Φ1 U Φ2, EG Ψ, or EX Ψ) for which they search
for all relevant witnesses. In the following, the function verifyEG is described in more
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detail. Consider the OMT-CTL formula EG(Φ), where Φ can be an arbitrary OMT-CTL
formula in ENF. The expression states that there is at least one path in the transition
system on which Φ holds on the entire path. To check whether such paths exist, the
transition system is traversed as described in Algorithm 14.

Algorithm 14 Function for the computation of the verification result for EG{delay ω x}(Φ)
based on depth-first search

Input: OMT-CTL formula Φ in ENF, the delay constraint of operator EG,
history describing the trace to the state where EG{delay ω x}(Φ) is verified,
the finite transition system TS , and an ETS.

Output: The tuple (result,proofs) where result = true iff TS |= EG{delay ω x}(Φ)
in state lastState(history), and proofs is a set of witnesses.

1: function verifyEG(Φ, ω, x, history,TS , ets)
2: stack = create empty stack;
3: stack.push(lastState(history));
4: witnesses = {};
5: while stack ̸= ∅ do
6: pathcurr = stack.pop();
7: pathcurrfull = connect(history, pathcurr);
8: (result, proofs) = verify(Φ,pathcurrfull ,TS , ets);
9: if result == true then

10: validPathFound = false;
11: for each transnext ∈ getRelevantTransitions(pathcurrfull , ω, x, ets) do
12: pathnext = connect(pathcurr, transnext);
13: if ¬isCyclic(pathcurr, ets, transnext) then
14: stack.push(pathnext);
15: else
16: witnesses = witnesses ∪ pathnext;
17: end if
18: validPathFound = true;
19: end for
20: if (¬validPathFound) then
21: witnesses = witnesses ∪ pathcurr;
22: end if
23: end if
24: end while
25: return ( witnesses ̸= ∅, witnesses);
26: end function

The idea of the algorithm is quite simple: The starting point is the last state that is
reached by history. From this state, the transition system is traversed and it is searched
for paths on which Φ holds globally. A stack is used to manage all paths that have not
been completely explored yet. The function is terminated as soon as there is no more path
on the stack. Initially, the last state reached by path history is added to the stack. This
is the state from which witnesses for EG(Φ) are searched. pathcurr contains the path that
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is currently being examined (starting from the state where EG(Φ) is verified). pathcurrfull

contains the entire path, i.e., history plus pathcurr. For each state, it is checked whether
Φ holds. This is achieved by a recursive call of function verify (line 8). Only if the result
is true, the subsequent states are explored. Otherwise, the current path is skipped, as
it cannot lead to a witness (the specification is already violated on the path). Function
getRelevantTransitions(.) determines the admissible subsequent transitions with respect
to both, the ETS and delay constraint. The ETS and delay constraint act as filters, i.e.,
only paths that comply with the ETS respectively delay constraint are considered during
verification. If a transition leads to a true cycle (tested by function isCyclic), the resulting
path is added to the witnesses (see line 16). Otherwise, the resulting path (pathnext) will
be added to the stack. If at least one subsequent transition exists (regardless of whether
this transition leads to a cycle or not), the flag validPathFound is set to true. If there is
no valid subsequent transition (validPathFound=false), the current path is a witness since
Φ holds globally on it (see lines 20-22). Unlike most available model checkers that stop
after the first witness is found, our approach keeps searching to find all relevant available
witnesses. Finally, the result is returned. The expression EG Φ is fulfilled once at least
one witness has been found.

5.3.3 The Until and Next Operator

The function verifyEX (see Algorithm 15) for expressions of the form EX Φ and the
function verifyEU (see Algorithm 16) for expressions of the form E Φ U{delay ω x} Ψ follow
the same principle as verifyEG. verifyEU searches for all paths on which Φ holds until
the first occurrence of Ψ, and verifyEX searches for all transitions on which Φ has to hold
at the next state.

Algorithm 15 Function for the computation of the verification result for EX(Φ)
Input: Finite transition system TS , OMT-CTL formula EX(Φ) in ENF, an ETS

and history describing the trace to the state where EX(Φ) is verified.
Output: The tuple (result,proofs) where result = true iff TS |= EX(Φ) in state

lastState(history) and proofs is a set of witnesses.
1: function verifyEX(Φ,history,TS , ets)
2: witnesses = {};
3: for each transnext ∈ getRelevantTransitions(history, ets) do
4: pathnext = connect(history, transnext);
5: (result, proofs) = verify(Φ, pathnext,TS);
6: if result == true then
7: witnesses = witnesses ∪ transnext;
8: end if
9: end for

10: return ( witnesses ̸= ∅, witnesses);
11: end function
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Algorithm 16 Function for the computation of the verification result for E Φ(U{delay ω x} Ψ)
based on depth-first search

Input: OMT-CTL formulae Φ and Ψ in ENF, the delay constraint of operator EU,
history describing the trace to the state where E Φ(U{delay ω x} Ψ) is verified,
the finite transition system TS , and an ETS.

Output: The tuple (result,proofs) where result = true iff TS |= E Φ(U{delay ω x} Ψ)
in state lastState(history) and proofs is a set of witnesses.

1: function verifyEU(Φ,Ψ, ω, x, history,TS , ets)
2: stack = create empty stack;
3: stack.push(lastState(history));
4: witnesses = {};
5: while stack ̸= ∅ do
6: pathcurr = stack.pop();
7: pathcurrfull = connect(history, pathcurr);
8: (resultΨ,proofsΨ) = verify(Ψ, pathcurrfull ,TS , ets);
9: if resultΨ == true then

10: if proofsΨ ̸= ∅ then
11: for each pi ∈ proofsΨ do
12: witnesses = witnesses ∪ connect(pathcurr, pi);
13: end for
14: else
15: witnesses = witnesses ∪ pathcurr;
16: end if
17: else
18: (resultΦ, proofsΦ) = verify(Φ, pathcurrfull ,TS , ets);
19: if resultΦ == true then
20: for each transnext ∈ getRelevantTransitions(pathcurrfull , ω, x, ets) do
21: pathnext = connect(pathcurr, transnext);
22: if ¬isCyclic(pathnext, ets, transnext) then
23: stack.push(pathnext);
24: end if
25: end for
26: end if
27: end if
28: end while
29: return (witnesses ̸= ∅, witnesses);
30: end function
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5.3.4 Cycle Detection and Relevant Counterexamples

The transition systems obtained by unfolding will most likely be cyclic. Sooner or later
such cycles will be encountered during verification. A cycle occurring during verification
means that a state has been reached that already has been verified at some time previously.
To be more concrete: If we encounter a cycle when verifying an expression of the form
EG Φ, we have found a path on which Φ holds globally. However, such a path is not
automatically a witness, as Example 5.3.1 will demonstrate.

Example 5.3.1 Handling cycles during verification
Consider a simple electrical switch with the two states On and Off. This component can
be modeled in smartIflow by the following component class:

1 class Switch {
2 Variables:
3 Enum[On, Off] state = Off;
4

5 Events:
6 TurnOn{type=operation};
7 TurnOff{type=operation};
8

9 EventHandlers:
10 when(TurnOn)[state == Off]
11 state = On;
12 when(TurnOff)[state == On]
13 state = Off;
14 }

Changes in the switching state are caused by the external events TurnOn respectively
TurnOff. The following ETS allows only paths with at maximum four events of type
operation:

1 max4Operations := path.filter(type=operation).count() <= 4;

The unfolded transition system is extremely simple:

As the system model reflects only the nominal behavior of a switch, the transition system
consists only of two states. In the initial state (state 0), the switch is off (state=Off).
Triggering the external event TurnOn leads to a second state (state 1), where the switch is
on (state=On). Triggering the external event TurnOff in state 1 leads back to the initial
state. Consider the following CTL formula, which expresses that the switch can be turned
on at any time:
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1 SwitchCanBeTurnedOn := AG(EF state == On);

At first glance, one might think that the formula SwitchCanBeTurnedOn must be satisfied
without any doubt. However, this is not the case, as the following path π1 illustrates:

0
π[0]

1
π[1]

0
π[2]

1
π[3]

0
π[4]

TurnOn TurnOff TurnOn TurnOff

The cyclic path contains four events of type operation and it therefore is an admissible
path with respect to ETS max4Operations. However, this path does not fulfill CTL
formula SwitchCanBeTurnedOn as in π[4] the switch is off and cannot be turned on again.
This is caused by the ETS which does not allow further events to be triggered in π[4] (the
maximum number of events of type operation already is reached). ■

The example shows, that the exploration of a path during the verification must not be
stopped immediately when a cycle is detected. In the example, stopping the exploration
of the path after the first cycle has occurred would leave the violation of the specification
undetected. However, the verification does not have to follow all cycles generally. In the
example, the violation of the CTL formula is not caused by the model itself but by the
ETS which prevents the execution of external events (if the path is traversed further, the
CTL formula is fulfilled, but at the same time the ETS is violated). Cycles on which only
internal events occur do not influence the ETS and therefore do not need to be followed.
Cycles on which external events occur, but whose event types do not occur in the ETS,
also do not have to be followed. If we had used the ETS

1 max2Failures := path.filter(type=failure).count() <= 2;

in Example 5.3.1, the specification would have been fulfilled. Therefore, cycles only must
be checked if at least one external event occurs on the cycle whose type occurs in the
ETS. Function isCyclic (see Algorithm 17) determines whether for pathcurr the transition
transnext leads to a cycle. Function isCyclic requires the ETS used for verification to check
whether external events occur on the cycle, whose event types occur in the ETS.

Initially, it is checked whether transnext leads to a cycle at all (regardless of whether
external events occur or not). This is done checking whether transnext already exists on
pathcurr (transnext ∈ pathcurr). Then, for each event type that occurs in the ETS, we
count how many events of that type have occurred in the path up to the first and last
transition of the cycle. The result is two so-called event counters. Basically, an event
counter is a vector where each component represents the number of events of a certain
type. If both vectors (vectors at the first and last transition of the cycle) are equal, the
cycle certainly does not affect the satisfiability of the ETS. Thus, the cycle does not have
to be followed during verification.

1Remember: π[i] denotes the (i + 1)th state of path π
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Algorithm 17 Function for cycle detection for verification
Input: pathcurr represented by a set of transtions, transition transnext and an ETS
Output: true iff transnext leads cycle which has no influence on the satisfiability

of the ETS
1: function isCyclic(pathcurr, ets, transnext)
2: if pathcurr.contains(transnext) then
3: pathnext = connect(pathcurr, transnext);
4: indexCycleFirst = pathcurr.lastIndexOf(transnext);
5: indexCycleLast = pathnext.size() - 1;
6: eventCountersCycleFirst = getEventCounters(pathnext, ets, indexCycleFirst);
7: eventCountersCycleLast = getEventCounters(pathnext, ets, indexCycleLast);
8: if eventCountersCycleFirst == eventCountersCycleLast then
9: return true;

10: else
11: return false;
12: end if
13: else
14: return false;
15: end if
16: end function

Example 5.3.2 Event counters
The event counters for Example 5.3.1 are quite simple. Since only one event type
(type=operation) occurs in the ETS, the event counters consist of just one component.
At each transition in the path, an event of type=operation is executed. As a result, the
counter values along the path increase successively.

State on path π[0] π[1] π[2] π[3] π[4]
Event counters (0) (1) (2) (3) (4)

Since the event counters at the states where the cycles start and end (π[0], π[2] and
π[2], π[4]) have different values, it is mandatory to follow the cycles in this example. ■

Definition 5.3.1 Relevant counterexamples
Let Φ be a specification in OMT-CTL and CE full is the set of all counterexamples obtained
by verification of Φ. CE irrel ⊂ CE full is the set of irrelevant counterexamples if each
counterexample ceext ∈ CE irrel is a variant of another counterexample ce ∈ CE full extended
by a cyclic subpath. The extensions of the paths do not lead to any new knowledge about
the reason for the violation of the specification. Thus, these paths are irrelevant. Finally,
the set of relevant counterexamples (CE rel) is defined by: CE rel = CE full \ CE irrel ■

The proposed cycle detection ensures that all relevant counterexamples are detected.
The following example demonstrates which counterexamples are relevant.

Example 5.3.3 Relevant counterexamples
Consider the following transition system and the specification !(EF(Φ)):
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The specification !(EF(Φ)) is obviously not fulfilled since there are paths leading to a Φ
state:

Path1 0 1 2 4
Φ

Path2 0 1 2 3 5 2 4
Φ

Path3 0 1 2 3 5 2 3 4
Φ

. . .

. . .
In fact, there are infinite paths that disprove the specification. Consequently, all of

these paths are also counterexamples. However, only the first counterexample (Path1) is a
relevant counterexample. Path1 is a path that shows how a Φ state is reached. The other
paths (Path2, Path3, ... Pathn) also show how this state is reached, but not directly
but by a cyclic extension (2 → 3 → 5 → 2). Thus, these paths do not contain any new
knowledge and therefore only Path1 is a relevant path. ■

To summarize, following cycles can be stopped if...

• ...the event-counters at the beginning and at the end of the cycle are equal

• ...a counterexample/witness has been found

• ...the Event Trigger Specification or timing constraint is violated

5.4 Minimal Cutsets and Fault Tree Generation
The verification of real-world systems will likely produce a lot of counterexamples. The
number of counterexamples depends first on the model and the specification, of course,
but the ETS also has a major impact. An ETS allowing multiple failure events on a path
will probably lead to more counterexamples than allowing nominal behavior only. The
resulting counterexamples are often very similar, as only the order of events on the paths
differs.

Example 5.4.1 Relevant information in counterexamples
Consider the following system model that consists of variable (var), three external events
(ActivateFailure, ActivateMode1 and ActivateMode2), and according event handlers
to react to the events:

1 class Demonstrator {
2 Variables:
3 Enum[Init, Mode1, Mode2, Failure] var = Init;
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4

5 Events:
6 ActivateFailure{type=failure};
7 ActivateMode1{type=operation};
8 ActivateMode2{type=operation};
9

10 EventHandlers:
11 when(ActivateMode1)[var != Mode1 && var != Failure] {
12 var = Mode1;
13 }
14 when(ActivateMode2)[var != Mode2 && var != Failure] {
15 var = Mode2;
16 }
17 when(ActivateFailure)[var != Failure] {
18 var = Failure;
19 }
20 }

Initially, the system is in state Init. In state Init, it is possible to switch to state Mode1
or Mode2. A change between Mode1 and Mode2 is possible at any time. The failure mode
var=Failure can also be activated at any time. However, as soon as the system is in
state Failure, it is no longer possible to switch back to Mode1 or Mode2.

The following OMT-CTL formula states, that the failure mode will never be activated
(on all paths there must be no state in which var=Failure).

1 Spec1 := AG(var != Failure);

Since the failure mode can be activated at any time, there will be some paths where
this condition does not hold. Using an ETS allowing at maximum four events of type
operation, the model checker delivers 9 counterexamples which disprove specification
Spec12. Consider the following paths that are part of the counterexamples:

0 1
ActivateFailure

0 2 1
ActivateMode1 ActivateFailure

0 2 3 1
ActivateMode1 ActivateMode2 ActivateFailure

0 2 3 2 1
ActivateMode1 ActivateMode2 ActivateMode1 ActivateFailure

. . .
The counterexamples are quite different. There are both short and long paths in the

counterexamples. Generally, the counterexamples show all possible paths that lead at
the end to the state where var=Failure. However, the event ActivateFailure is solely
responsible for the violation of the specification. This message is essential for the safety

2Because of the ETS, cycles must be followed during verification (see previous section) and therefore
counterexamples can be cyclic.
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engineers. It’s nice to have the list of all relevant counterexamples, but what matters
are the minimal cutsets, i.e., the sets of critical events that lead to the violation of the
specification. ■

Remember: A cutset describes a set of basic events (failure events) that together lead
to the violation of a specification. A minimal cutset consists of the smallest set of basic
events that together lead to the specification violation.

Algorithm 18 Algorithm for the generation of minimal cutsets
Input: Set of counterexamples
Output: Set of minimal cutsets

1: function generateMinimalCutsets(counterexamplesfull)
2: // First determine all cutsets...
3: cutsetMap= create empty map;
4: for each cei ∈ counterexamplesfull do
5: cutsetcei= filter(cei); // Get all failure events of cei

6: if cutsetMap.contains(cutsetcei) then
7: cutsetMap.get(cutsetcei).add(cei);
8: else
9: cutsetMap.addEntry(cutsetcei , {cei});

10: end if
11: end for
12:
13: // ...then determine minimal cutsets
14: noMinimalCutsets= create empty set;
15: for each ( cutset1, counterexamples1) ∈ cutsetMap.entries() do
16: for each ( cutset2, counterexamples2) ∈ cutsetMap.entries() do
17: if cutset1⊂ cutset2 then
18: // cutset2 is definitely no minimal cutset
19: noMinimalCutsets.add(cutset2);
20: cutset1.addCounterexamples(counterexamples2);
21: end if
22: end for
23: end for
24: cutsetMap.removeAll(noMinimalCutsets);
25: return cutsetMap;
26: end function

Algorithm 18 shows a possible implementation for the calculation of the minimal cutsets
based on a set of counterexamples. First, all cutsets are determined. A cutset is a set
of failure events (external events to which the feature type=failure is assigned) that
cause the specification violation. These cutsets are organized in a map (cutsetMap)
that maps cutsets to corresponding counterexamples. In fact, it would be enough to
remember only the cutsets. However, it may be interesting for safety engineers to view the
corresponding counterexamples for a cutset. For each counterexample, the corresponding
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cutset is calculated using function filter. This function filters events in a counterexample
to include only failure events (see line 5). Finally, cutsetMap contains all cutsets and
its corresponding counterexamples. After that, the minimal cutsets are determined by
comparing all cutsets with each other. If cutset1 is a subset of cutset2, cutset2 is definitely
not a minimal cutset. Therefore, cutset2 is added to set noMinimalCutsets. On the other
hand, cutset1 is not automatically a minimal cutset, because there may exist cutsets which
are subsets of cutset1. Finally, the set of minimal cutsets is defined by all cutsets that are
in cutsetMap but not in noMinimalCutsets.

The minimal cutsets from the counterexamples of a specification violation can be
represented as a Fault Tree. The events of a minimal cutset are basic events and linked
using an AND gate (the specification is only violated if all events occur). The outputs
of these AND gates are linked using an OR gate and the top event is the specification
(=undesired state).

Example 5.4.2 Representation of minimal cutsets as Fault Tree
Consider the following minimal cutsets, obtained by verification of specification TankOver-
flowShallNotOccur:

1. sensorE.ActivateDisconnected, sensorF.ActivateDisconnected

2. valve.ActivateStuckClosed

3. sensorE.ActivateStuckFalse, sensorF.ActivateDisconnected

4. sensorF.ActivateStuckFalse

The corresponding Fault Tree for these minimal cutsets is shown in Figure 5.2. We used
the tool Abre Analyste3 for rendering the Fault Tree. Using features, probabilities of
occurrence can be assigned to the external events. These values can be used by the FTA
tools for the calculation of the probability of the undesirable event.

Figure 5.2: Minimal cutsets represented as Fault Tree

■

3https://www.arbre-analyste.fr/en.html
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6 Case Studies

All concepts presented in this thesis and several others are implemented in the smartI-
flow Workbench1. The smartIflow Workbench is an integrated development environment
(IDE) that supports the creation, unfolding, analysis, and verification of smartIflow system
models. An integrated editor with instant feedback about syntax errors assists in the
development of models. Different views such as a change history or watch list can be used
to debug models. These views also help to understand how variable values, and properties
at ports or connections evolve on a path in the transition system.

Figure 6.1: smartIflow Workbench showing the state space and verification result with
cut sets and counterexamples

1An evaluation version of smartIflow Workbench is available for free download under
https://smartiflow.bitbucket.io/
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The state view (see the upper part of Figure 6.1) visualizes the state space in a tree
structure where dark blue nodes represent references to other nodes in the tree. Yellow
diamonds indicate internal events and red diamonds indicate external events. Nodes with
red stars and diamonds indicate an external failure event. A separate view shows the
results of the verification (see the lower part of Figure 6.1) with minimal cut sets and
counterexamples. In addition, traces of counterexamples can be highlighted in the tree
structure. smartIflow Workbench can export the minimal cut sets into different formats,
among others Open-PSA (Open Probabilistic Safety Assessment2) is supported. The Open-
PSA initiative defined a standard format for safety-related models that is supported by
many Fault Tree tools (e.g., Arbre Analyste3 or FaultCat4). The smartIflow Workbench is
implemented in Java and thanks to the Java Platform Module System (JPMS) introduced
in version 9, new features can be easily integrated, even during runtime.

The following experiments have been performed on a standard computer with an Intel
Core i7-9700K, 3.6GHz Octa Core, and 64 GB RAM. Arbre Analyste was used to visualize
the verification results as a Fault Tree. Note that in the code snippets import and package
statements are omitted.

6.1 The Diagonal Car Braking System

Nowadays, most cars are equipped with a hydraulic brake system based on two independent
brake circuits. These systems are also known as dual-circuit braking systems. There are
either circuits for the front and rear axle or a diagonal division (X split) is made. The
latter one is examined in this case study. Two independent brake circuits enable safe
braking of the vehicle even if one of the brake circuits fails.

Figure 6.2 depicts the structure of a diagonal car braking system. The system consists of
two independent hydraulic circuits in which each front brake is connected to the opposed
rear brake. The master cylinder converts non-hydraulic pressure from the pedal into
hydraulic pressure and a vacuum booster assists braking effort. Each circuit has its own
reservoir filled with hydraulic fluid. Hydraulic pressure is conducted over hydraulic lines
and thus force is applied to the calipers at the disc brakes.

A hazardous situation can be described as follows: “No braking effect after pressing the
brake pedal.” How likely is it, that this hazard will occur, and how many components
must fail? Is there a single point of failure? In order to answer these questions, this
system is modeled using smartIflow Workbench. In principles, there are many ways to
model the system. The steps to create a quite simple system model based on properties
are explained hereafter.

6.1.1 Towards a simple System Model based on Properties

Let us start with the identification of necessary components and their responsibilities. For
a simple system model at least the following components are required:

2The format is described in detail under https://open-psa.github.io/mef/
3https://www.arbre-analyste.fr/en.html
4http://www.iu.hio.no/FaultCat
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Disk 
brake Pedal
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Caliper with cylinder
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cylinder

Brake fluid
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Figure 6.2: The diagonal car braking system

• Disk brake: The brake operates if pressure is available.

• Hydraulic line: It conveys pressure from the master cylinder to the disk brakes.
The hydraulic line can start leaking (e.g., caused by corrosion, material fatigue, or
damaged pipe joints).

• Master cylinder: Converts non-hydraulic pressure from the pedal into hydraulic
pressure. A leakage in a hydraulic line causes the reservoirs to drain.

• Pedal: Can be pressed or released. If the pedal is pressed, pressure is conveyed to
the master cylinder. Extremely unlikely but still possible is, that the pedal could
break due to material fatigue.

• Diagonal car braking system: Main component where all sub-components are
interconnected.

The next step is to define the connection points (ports), variables, and events. In
principle, two port types are necessary, namely Mechanical and Hydraulical. The former
is required for the connection between the pedal and the master cylinder. Hydraulical is
used for ports of master cylinder, hydraulic line, and disc brake.

External events are used for pedal operations (press, release) as well as for the activation
of the failure modes.

The variables and their domain to define the operational mode respectively the failure
mode of a component are:

• DiskBrake
– opm: [Idle, Braking]

• HydraulicLine
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– fm: [Ok, Leakage]

• Pedal
– fm: [Ok, Broken]
– opm: [Idle, Pressed]

• MasterCylinder
– fm: [Ok, Delayed]
– opm: [Idle, Operated]
– circuit1ReservoirLevel: [Full, Empty]
– circuit2ReservoirLevel: [Full, Empty]

For the sake of simplicity, it is assumed, that the disk brakes do not fail and the master
cylinder only has a failure mode with delayed reaction. In reality, the disk brakes and the
master cylinder can fail in many more different ways.

The hydraulic fluid can be implemented in two different ways. Either the qualitative
energy flow analysis concept is applied or the hydraulic pressure is abstracted by use of
properties. The former one has the advantage, that distinctions between pressure levels
resulting from different pedal positions can be made. However, to answer the preceding
questions, it is sufficient to know whether pressure at the disk brakes is present or not.
Beyond that, the additional pressure generated by the vacuum booster can be neglected,
too. Therefore, it is sufficient to model the pressure in the pipes using a property. The
idea is to publish the property pressure=true if the pedal is pressed. The property is
propagated from the master cylinder over the hydraulic line to the disk brakes. The
behavior of the master cylinder can be expressed in smartIflow as follows:

1 Behavior:
2 if (opm == Operated && circuit1ReservoirLevel == Full)
3 set(circuit1, {pressure=true});
4 if (opm == Operated && circuit2ReservoirLevel == Full)
5 set(circuit2, {pressure=true});

The existence of property pressure=true at the disk brakes indicates that pressure is
present and therefore the brake operates. Conversely, if there is no property (i.e., there is
no pressure), the brake does not operate. The corresponding transition statements for the
disc brake can be defined as follows:

1 Transitions:
2 when (cylinder.exists(pressure=true)) [opm==Idle]
3 opm = Braking;
4 when (!cylinder.exists(pressure=true)) [opm==Braking]
5 opm = Idle;

The leakage in the hydraulic line can be realized simply by publishing the property
leakage=true:

1 Behavior:
2 connect(p1, p2);
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3 if (fm == Leakage)
4 set(p1, {leakage=true});

The property is propagated to both, the disk brake and to the master cylinder, but
only the master cylinder will react to it. If the master cylinder receives the property
leakage=true at one of the circuits, the corresponding reservoir drains:

1 Transitions:
2 when (circuit1.exists(leakage=true) && circuit1.exists(pressure=true))
3 circuit1ReservoirLevel = Empty;
4 when (circuit2.exists(leakage=true) && circuit2.exists(pressure=true))
5 circuit2ReservoirLevel = Empty;

6.1.2 Verification Results

The time for unfolding the system model without a limiting Event Trigger Specification
(ETS) is negligible (< 100 milliseconds) and the result is 348 different reachable states.
The safety requirement “Whenever the pedal is pressed, at least one brake on each side
must operate.” can be specified in OMT-CTL as follows:

1 brakeOnEachSideActive :=
2 (frontLeftBrake.opm == Braking || rearLeftBrake.opm == Braking) &&
3 (frontRightBrake.opm == Braking || rearRightBrake.opm == Braking);
4

5 SafeBraking:=
6 AG(pedal.opm == Pushed -> AF brakeOnEachSideActive);

For the sake of clarity, the requirement is separated into two parts. The expression
SafeBraking requires that all states on all paths must fulfill the following implication:
Whenever the pedal is pushed, at least one brake on each side must operate.

Figure 6.3: Fault Tree for top event SafeBraking

As expected, some counterexamples disprove this specification. Overall, the verification
generated 50277 counterexamples within 2025 milliseconds5. The results show that the
break of the pedal alone leads to a violation of the specification. This is plausible because

5Without any limiting ETS
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with a broken pedal, no pressure is generated at the master cylinder and therefore the
brakes cannot operate anymore. The good news is, that this event is extremely rare but
nevertheless, special attention should be paid during the development and production of
this part. All remaining counterexamples consist of arbitrary combinations of leakage in
each circuit. A leakage in each circuit causes both to leak and therefore no more pressure
can be generated when pressing the pedal. Figure 6.3 shows the complete Fault Tree for
the event SafeBraking.

6.2 Airbag System

Even though an airbag system is not mandatory, almost all new vehicles are usually
equipped with one, especially in small cars. In case of a crash, the airbag is deployed
automatically within a few milliseconds. This prevents the passengers from colliding with
hard parts of the interior such as the dashboard or steering wheel. Figure 6.4 shows in
simplified form the architecture of an airbag system as described in [Alj+09]. There are
three types of subsystems, namely sensors, evaluation, and actuators. The impact in
a crash situation is detected by acceleration sensors. Two redundant microcontrollers
evaluate the sensor signals and decide whether the airbag needs to be triggered or not.
The microcontroller sends the decision to each other and only if both come to the same
decision, the airbag is actually triggered. Airbag activation consists of a FET (Field Effect
Transistor) that delivers the power for the FASIC (Firing Application Specific Integrated
Circuit) to ignite the airbag.

Figure 6.4: Schematic structure of an airbag system

The following failures can occur in the system:

• The acceleration sensor delivers falsified values. For example, the sensor generates a
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value that indicates high acceleration even though the vehicle does not move at all
or moves at constant speed.

• A microcontroller sends a fire command even though both sensors detect a low
acceleration. The other case is also possible, where both sensors detect a crash
situation, but the microcontroller does not send a fire command. Incorrect fire
commands also occur when both sensors deliver inconsistent values (e.g., sensor1:
acceleration=normal; sensor2: acceleration=high).

• FASIC or FET suppress a fire command or inadvertently activate their output pin.

The airbag system is designed to protect the life of passengers in case of a crash.
However, the system can also lead to critical situations in case of a malfunction. Basically,
there are two important safety requirements for the airbag system:

1. The airbag must always be triggered in case of an accident. If not, the passengers
are not protected from the impact.

2. The airbag must not be deployed unintentionally. If the airbag is triggered uninten-
tionally while driving, the driver can lose control of the vehicle and may cause an
accident.

6.2.1 Modeling the Control Logic in smartIflow

Component types are needed for sensors, microcontroller, FET, FASIC, and the airbag.
Finally, the whole system itself is described in class Car.

The flexible property concept has also proven to be very helpful in modeling this system.
Sensor signals as well as communication between microcontroller and airbag deployment
can be realized using properties. For the sensors, it is sufficient to differentiate between
high and normal acceleration. These values are evaluated by the microcontroller in the
following way:

1 class Microcontroller {
2 Ports:
3 Logical decisionInput;
4 Logical decisionOutput;
5

6 Logical output;
7

8 Logical sensor1Data;
9 Logical sensor2Data;

10

11 Variables:
12 Enum[Fire, Idle] decisionThis = Idle;
13 Enum[Fire, Idle] decisionOther = Idle;
14

15 Enum[Normal, FailureDetected] om = Normal;
16 Enum[Ok, StuckOnFire, StuckOnIdle] fm = Ok;
17

18 Behavior:
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19 if (decisionThis == Fire && om == Normal && fm == Ok)
20 set(decisionOutput, {airbag=fire});
21

22 if (decisionThis == Fire && decisionOther == Fire
23 && fm == Ok && om == Normal)
24 set(output, {airbag=fire});
25

26 if (fm == StuckOnFire) {
27 set(output, {airbag=fire});
28 set(decisionOutput, {airbag=fire});
29 }
30

31 Transitions:
32 /* Evaluate sensor signal */
33 when (sensor1Data.exists(acceleration=high)
34 && sensor2Data.exists(acceleration=high) && fm == Ok)
35 decisionThis = Fire;
36

37 /* Evaluate signal from other microcontroller */
38 when (decisionInput.exists(airbag=fire) && fm == Ok)
39 decisionOther = Fire;
40

41 /* Error detection */
42 when (sensor1Data.exists(deviation=true)
43 || sensor2Data.exists(deviation=true)
44 || decisionThis == Fire && decisionOther == Idle
45 || decisionThis == Idle && decisionOther == Fire) [fm == Ok] {
46 om = FailureDetected;
47 }
48

49 EventHandlers:
50 when (ActivateStuckOnFire) [fm == Ok] {
51 fm = StuckOnFire;
52 decisionThis = Fire;
53 }
54

55 when (ActivateStuckOnIdle) [fm == Ok] {
56 fm = StuckOnIdle;
57 decisionThis = Idle;
58 }
59 }

Each microcontroller stores its fire decision and the decision of the other microcontroller in
a variable. The helper variables (decisionThis and decisionOther) are required since
smartIflow does not allow sending messages as a direct reaction to events. Only if both
microcontrollers come to the same decision, a fire command is sent to FASIC and FET.
In case one microcontroller detects that its decision differs from the decision of the other
microcontroller, the component changes its operation mode to FailureDetected (see
lines 42-47). This causes the airbag indicator bulb to light up, alerting the driver that a
workshop should be visited as soon as possible.
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A fire command modeled with the property airbag=fire enables the FET to deliver
power to the FASIC to deploy the airbag. The following transition statement changes the
state of FET to Close when receiving the fire command:

1 when (control.exists(airbag=fire)) [fm == Ok]
2 om = Close;

The fire command in FASIC transmits the electrical power to the airbag which is then
ignited.

An open question is, how a crash situation can be modeled and how the sensors get
knowledge about the crash. A simple and intuitive solution is to add an external event
Crash in component Car. This event initiates a crash situation and propagates the
property acceleration=high via a connection to the sensors. In a sense, the connection
represents the mechanical link between the sensor and the car body. The proposed
mechanism for crash activation in component Car can be implemented in smartIflow as
follows:

1 //...
2 Behavior:
3 //...
4 if (om == Ok || om == Crashed) {
5 set(sensor1.sensorConnectionPoint, {acceleration=normal});
6 set(sensor2.sensorConnectionPoint, {acceleration=normal});
7 } else if (om == Crash) {
8 set(sensor1.sensorConnectionPoint, {acceleration=high});
9 set(sensor2.sensorConnectionPoint, {acceleration=high});

10 }
11 Transitions:
12 when (om == Crash)
13 om = Crashed;
14

15 EventHandlers:
16 when (Crash) [om == Ok]
17 om = Crash;
18 }

The sensor just passes the property to the microcontroller where the actual processing
takes place. As usual, component failures are activated by external events:

• Microcontroller: ActivateStuckOnFire, ActivateStuckOnIdle

• FASIC: ActivateInadvertentlyFailure, ActivateSupressFireCommand

• FET: ActivateInadvertentlyCloseFailure, ActivateStuckOpenedFailure

• AccelerationSensor: ActivateStuckHighFailure, ActivateMechanicalFailure,
ActivateWrongAmplitude

6.2.2 Verification Results

Unfolding takes 161 milliseconds and results in 694 different states (using an ETS allowing
a maximum of two failure events on a path). The requirement specifications for no
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inadvertent airbag activation and correct activation in case of a crash can be formulated
in OMT-CTL as follows:

1 CorrectAirbagActivation := AG(om==Crash -> AF(airbag.om==Fired));
2 NoInadvertentAirbagActivation := AG(om==Ok -> airbag.om!=Fired);

The model checker generates counterexamples for both requirements. Figure 6.5 shows
the Fault Tree for top event NoInadvertentAirbagActivation.

Figure 6.5: Fault Tree for top event NoInadvertentAirbagActivation

The good news is, that single faults cannot lead to inadvertent airbag deployment. A
combination of two component failures is required to ignite the airbag in a non-crash
situation.

However, if any component fails, there is no guarantee, that the airbag will be deployed
in case of an accident. This is reasonable, as the redundancy in the airbag system is
designed to prevent the airbag from being triggered unintentionally. Consequently, the
failure of a component can prevent the airbag from being triggered in the event of a crash.
However, most airbag systems automatically detect faults in the system and indicate this
to the driver in the instrument cluster.

6.3 Radio-Based Railroad Crossing
There are different ways to realize railway crossing protection systems. Basically, a dis-
tinction is made between signal-controlled and train-controlled types. In signal-controlled
variants, a control center supervises the state of gates and signals. For the train-controlled
version (see Figure 6.6) redundant sensors (inductive loops) that can detect the presence
of a train are installed before and after the crossing.

If the train-approaching sensor recognizes the train, traffic lights are switched on and
gates are closed. The gates are reopened when the train-leaving sensor detects the train.
A signal indicates the conductor whether the crossing is safe (gates must be closed). The
distance of the signal to the railway crossing is chosen in such a way, that the train can be
stopped before the railway crossing in case of an emergency brake. This implementation is
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Figure 6.6: Traditional design of a railroad crossing system based on sensors and signals

quite expensive and leads to long waiting times for cars. As soon as the train-approaching
sensor detects a train, the gates are immediately closed, regardless of the speed of the
train. This causes long waiting times when a slow train passes the crossing. The slower
the train, the longer the cars have to wait. Actually, these long waiting times are not
necessary, as the braking distance decreases with slower speeds, and therefore the gates
can be closed later.

A new variant of the railroad crossing system based on radio communication attempts
to overcome these problems (see Figure 6.7) [ORS05]. The strategy is as follows: The
train knows its position and speed (using GPS sensors) and the position of the crossing. If
the train knows the time needed to close the gates, it can determine the perfect moment
for closing the gates. The ideal time to close the gates is when the waiting time for cars
is as short as possible, but at the same time, there is still enough time for emergency
braking.

When approaching the gate, the train sends a close request to the crossing. Once the
crossing receives this signal, the gates are closed. To ensure that the gates are closed,
the train sends a status-request to the crossing. A position sensor installed at the gates
provides information about the actual state (opened/closed). The crossing utilizes this
sensor information to respond to the status-request. In case the gates are not closed,
an emergency break is performed. Otherwise, the train passes the crossing and the
train-leaving sensor causes the crossing to open the gates. The gates are automatically
reopened after some time if no further train actions occur in the meantime (e.g., the
train-leaving sensor has detected no train).

A significant advantage of this variant is, that the railroad crossing protection system is
activated individually by each train depending on its actual speed. In theory, this results
in a shorter waiting time for cars.

Of course, component failures can still occur:

• The gate-closed sensor delivers an erroneous value that does not reflect the actual
state of the gate.

• The train-leaving sensor detects a train even though there is no train.
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Figure 6.7: Components and potential failure events in the railroad crossing model

• Radio communication may be temporarily unavailable.

The train may only pass the crossing when the gates are closed. The question is whether
this planned strategy is safe. Is it possible that a temporary network failure leads to
disaster?

6.3.1 Modeling using different Orders of Magnitude of Time

Let us start with the identification of relevant components6. Obviously, component types
for the main parts of the system are required (Train and Crossing). Beyond that,
types for the radio network and the position sensor are necessary (RadioNetwork and
PosSensor). Both components can fail and therefore behavior needs to be specified. A
separate type for the gates is not necessary, since a variable with information about the
current state of the gate (opened/closed) in type Crossing is sufficient. In class Main the
whole system is described, i.e., all component types are instantiated and connections are
established:

1 class Main {
2 Components:
3 Train train;
4 Crossing crossing;
5 RadioNetwork network;
6 PosSensor trainLeavingSensor;
7 Behavior:
8 connect(train.radioConnection, network.p1);
9 connect(crossing.radioConnection, network.p2);

10 connect(train.isPassingSignal, trainLeavingSensor.in);
11 connect(crossing.isTrainPassingSignal, trainLeavingSensor.out);
12 }

Concerning the train, variables for position and speed are required. For speed, three
different levels are sufficient: Moving, SlowingDown, and Stopped. With respect to the

6The smartIflow system model was first introduced in [LHM18]
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position a differentiation between zones Far, Approaching, NearEmergencyBrakingZone,
InDangerZone, and Passed is made. Besides the variables speed and position two
helper variables (requestingClose and requestingStatus) are necessary. The helper
variables are helpful in two aspects: 1⃝ They help to limit the number of messages. Only
if such a variable is true, the corresponding message is sent. 2⃝ “smartIflow does not allow
to send messages as direct reaction to events. Instead, messages are state-dependent.”
[LHM18] Once an event has occurred, the appropriate value is assigned to the helper
variable, and in the state-dependent behavior, the corresponding messages are sent.

In the systems shown so far, delays in the transition statement for the control logic
have been neglected (the default value for delay is 1). For the radio-controlled railroad
crossing system, specific delays are mandatory as the following example illustrates: As
already described in the previous section, gates reopen after a specified time without train
interactions. This logic can be easily described with the following transition statement:

1 when {delay=5} (gateState==Closed) [gateState==Closed]
2 gateState = Opened;

Once the state of the gate is Closed, the transition statement is triggered. However,
the transition is not executed directly, but with a delay of five orders of magnitude above
reference. Before this transition is executed, all active transition statements with a delay
of less than magnitude five are executed. Guard conditions are permanently rechecked
until they are finally executed. In this case, the guard condition ensures that the transition
is only executed when the gate is in state Closed. When the transition is executed, the
state of the gate is changed from Closed to Opened. Without different delays, the result
would be that the gates would reopen immediately after closing. Obviously, this is not the
intended behavior. Overall, quite different orders of magnitude for delays are required for
this system. For example, moving from one zone to another takes much more time than
communication between trains and crossing via a radio network. The waiting time for the
response to a sent message also must be longer than the delay during sending a message.
How many different orders of magnitude are needed in total? Table 6.1 describes the set
of orders of magnitude of time used in the system model.

Relevant transitions Delay

Setting helper variables for sending messages via radio network OMT=1
Waiting time for the response to a sent message OMT=2
Changing the state of the gate (Opened, Closing, Closed) or changing
the speed of the train (e.g., from state Moving to SlowingDown)

OMT=3

Train position changes (e.g., from Far to Approaching) OMT=4
Reopen gates if the train-leaving sensor detected no train in the meantime
(e.g., due to a defective sensor)

OMT=5

Table 6.1: Different orders of magnitude of time in radio-controlled railroad crossing
system

The movement of the train from one zone to the next is realized by internal events. This
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is reasonable as the train moves independently (without external influence) depending
on the current speed. Nevertheless, a solution with external events is also possible. The
communication between trains and crossing over the radio network is realized again with
the help of properties. The component class definition for the train is sketched below:

1 class Train {
2 Ports:
3 Bus radioConnection;
4 BooleanSignal{dir=output} isPassingSignal;
5

6 Variables:
7 Enum[Far, Approaching, NearEmergencyBrakingZone, InDangerZone, Passed]

position = Far;
8 Enum[Moving, SlowingDown, Stopped] speed;
9 Boolean requestingClose;

10 Boolean requestingStatus;
11 Boolean isPassing;
12

13 Behavior:
14 if (requestingClose == True)
15 set(radioConnection, {closeRequest=True});
16

17 if (requestingStatus == True)
18 set(radioConnection, {statusRequest=True});
19

20 if (isPassing == True)
21 set(isPassingSignal, {value=True});
22

23 Transitions:
24 when {delay=4, name=StartingApproach} (position == Far) [speed !=

Stopped]
25 position = Approaching;
26 // ...
27 when {delay=1} (position == NearEmergencyBrakingZone)
28 requestingStatus = True;
29

30 when {delay=1} (requestingStatus == True)
31 requestingStatus = False;
32 // ...
33 when {delay=2} (position == NearEmergencyBrakingZone)
34 [!radioConnection.exists(releaseMsg=True)]
35 speed = SlowingDown;
36 // ...
37 when {delay=3} (speed == SlowingDown)
38 speed = Stopped;
39 // ...
40 }

Especially interesting is the transition which initiates emergency braking if the train
has not received a release message (lines 33-35). The transition is already triggered when
the position NearEmergencyBrakingZone is reached. As soon as the release message
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arrives, the guard condition is no longer fulfilled and therefore the transition is canceled.
Otherwise (no release message arrived) the transition is executed.

The radio network is realized by a quite simple component with two ports that forwards
messages. In case of an error, the communication is interrupted. The failure or reactivation
of the network is realized using external events. To limit the state space, besides the
feature type=failure to limit the number of independent failure events on each relevant
path, the stable condition stable=2 is added. This limits the failure activation to states
that are stable to an order of magnitude value of two or higher. In addition, the guard
condition must also be fulfilled. The listing below shows a possible implementation of the
radio network in the smartIflow language.

1 class RadioNetwork {
2 Ports:
3 Bus p1;
4 Bus p2;
5

6 Variables:
7 Enum[Ok, Disconnected] fm;
8

9 Events:
10 ActivateDisconnected{type=failure, p=1e-3};
11 ActivateConnected{type=repair, p=1};
12

13 Behavior:
14 if (fm == Ok)
15 connect(p1, p2);
16

17 EventHandlers:
18 when {stable=2} (ActivateDisconnected) [fm == Ok]
19 fm = Disconnected;
20

21 when {stable=2} (ActivateConnected) [fm == Disconnected]
22 fm = Ok;
23 }

Class Crossing and PosSensor are implemented similarly.

6.3.2 Verification Results

Unfolding the system model takes 55 milliseconds and results in a transition system with
270 different reachable states7. The requirement “Whenever the train passes the crossing,
the gates must be closed” can be expressed in OMT-CTL as follows:

1 UnsecuredPassing :=
2 AG(train.position == InDangerZone -> crossing.gateState == Closed);

Verification of the requirement takes 11 milliseconds and delivers 69 different counterex-
amples (see Figure 6.8). The good news is, that a temporary loss of radio connection
cannot lead to an unsecured train passing. Most of the counterexamples result from an

7An ETS that allows a maximum of two failure events and one repair event on a path was applied.
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erroneous activation of the train leaving sensor (event ActivateErroneously in class
PosSensor). There is a reasonable explanation for this: The train sends a close request
which causes the crossing to close the gates. The train received the release message and
continued moving. However, shortly afterward, the train leaving sensor is activated erro-
neously which causes the gates to open. Now the train is passing the crossing even though
the gates are open. The remaining counterexamples consist of a specific combination of
temporary loss of network and a gate sensor failure: Due to the temporary loss of the
radio connection, the close request will never reach the crossing and therefore the gates
remain open. Soon after that, the radio connection is available again. The train sends
the status request to the crossing which is answered incorrectly due to a sensor failure.
Therefore, gates remain open and the train passes the crossing.

Figure 6.8: Verification result with cut sets and counterexamples of the radio-controlled
railroad crossing system
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6.4 Simple Electrical System
The next example focuses on the built-in feature for qualitative energy flow analysis.
Imagine a simple electrical system with a battery and two (conventional) light bulbs that
can be controlled individually with a switch. A fuse provides overcurrent protection by
disconnecting the electrical circuit if the electric current exceeds a specified level. Figure
6.10 visualizes the component structure in smartIflow Workbench.

Figure 6.9: Component view of a simple electrical system in smartIflow Workbench

Besides Switch, Bulb and Fuse a component class Battery is necessary. Essentially,
the definition of the top-level class ElectricalNetwork looks as follows:

1 class ElectricalNetwork {
2 Components:
3 Battery source;
4 Switch switch1;
5 Switch switch2;
6 Fuse fuse;
7 Bulb bulb1;
8 Bulb bulb2;
9

10 Behavior:
11 connect{r=1}(switch1.p1, source.plus);
12 connect{r=1}(switch2.p1, source.plus);
13 connect{r=1}(switch1.p2, bulb1.p1);
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14 connect{r=1}(switch2.p2, bulb2.p1);
15 connect{r=1}(bulb1.p2, fuse.p1);
16 connect{r=1}(bulb2.p2, fuse.p1);
17 connect{r=1}(fuse.p2, source.minus);
18 }

In this class, components are instantiated and interconnected. Since the model is
based on energy flows, each connection must be assigned an order of magnitude value for
the resistance. The value r=0 defines the reference resistance value (resistance of zero,
reasonable for superconductors). The resistance value r=1 (one order of magnitude above
the reference resistance) is used for the connections between the components (electrical
cables), switches in the closed state, and the fuse. The resistance of a light bulb is higher
than the resistance of a cable. Therefore value r=2 is used (two orders of magnitude above
the reference resistance) for the light bulb. For simplicity, we assume that only one error
can occur in the system: If water gets into the bulb (e.g., due to mechanical damage),
the bulb will be destroyed and a short circuit will occur. The short circuit of the bulb is
modeled with the resistance value r=1.

The operational mode of the bulb is changed by transition statements in which the
flow between ports p1 and p2 is considered. If there is any flow in any direction, the
operational mode is changed to On8. In the opposite case (no flow), the state of the bulb is
set to Off. For the activation of the mechanical damage and intruding water, the external
event ActivateMechanicalDamage is used. The complete definition of class Bulb is shown
below:

1 import definitions.*;
2 class Bulb {
3 Ports:
4 Electrical p1;
5 Electrical p2;
6

7 Variables:
8 Enum[Ok, Short] fm = Ok;
9 Enum[Off, On] opm = Off;

10

11 Events:
12 ActivateMechanicalDamage{type=failure, p=1e-2};
13

14 Behavior:
15 if(fm == Ok)
16 connect{r=2}(p1,p2);
17

18 if(fm == Short)
19 connect{r=1}(p1,p2);
20

21 Transitions:
22 when{name=bulbOn}(flow.om(p1,p2) != null)[fm == Ok && opm == Off]
23 opm = On;
24

8The fact, that with low currents the bulb does not light up is neglected.
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25 when{name=bulbOff}(flow.om(p1,p2) == null)[fm == Ok && opm == On]
26 opm = Off;
27

28 EventHandlers:
29 when(ActivateMechanicalDamage)[fm == Ok] {
30 fm = Short;
31 }
32

33 }

The switch is characterized by variable opm for the state (Open, Closed) and two ports
(p1, p2). A connection between p1 and p2 is only established in state Closed. Switch
operations (open, close) can be realized with external events. The fuse disconnects the
electrical circuit when the current exceeds a specified level. This can be modeled with the
following transition statement:

1 when{name=fuseBreakes}(flow.om(p1,p2) >= 1)[fm == Ok]
2 fm = Broken;

If the flow between p1 and p2 is higher than one order of magnitude above the reference
value, the state is set to Broken. For the battery, a bipolar effort source is used whose
voltage level is two orders of magnitude above the reference value.

1 class Battery {flowComponent=bipolarEffortSource, om=2} {
2 Ports:
3 Electrical{flowPort=source} plus;
4 Electrical{flowPort=drain} minus;
5 }

By closing a switch, the circuit is closed and thus there is a flow through the bulb. The
qualitative energy flow analysis algorithm assigns the resulting effort and values to each
component in the system.

In the case of this simple system, the effort and flow values can be easily calculated
manually. Assume that switch1 is closed and all components are working properly. First,
the equivalent resistor must be calculated. For serial resistors, the maximum value is
used. Since the resistance of bulb1 dominates the other values, the equivalent resistor has
value r=2. The flow is calculated by the formula F = E/R (noting that the OM values
are subtracted). Since resistance and effort have the same order of magnitude, the flow
corresponds to the reference value.

In the case of a short circuit, the flow is two orders of magnitude above the reference
value. As a result, the state of fuse changes to Broken and thus the circuit disconnected.
This behavior is also reflected in the results of the verification. The requirement “After
pressing the switch, the associated lamp must light up.” can be specified in OMT-CTL as
follows:

1 Switch1Reaction := AG(switch1.opm==Closed -> AF(bulb1.opm==On));
2 Switch2Reaction := AG(switch2.opm==Closed -> AF(bulb2.opm==On));
3 CorrectReactionToSwitch := Switch1Reaction && Switch2Reaction;

The model checker delivers a set of counterexamples, each describing a situation in which
a short circuit leads to disconnection and therefore no more energy can flow.
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Of course, this system can also be implemented without the flow calculation. Instead,
properties can be used that indicate the presence of flow or overcurrent. However, this
implementation quickly reaches its limits, when changes in the component structure result
in new resistance values that affect voltage and current values in the system. Properties
cannot be used to reflect such situations.

The system is based on a serial/parallel reducible circuit so that all flow and effort values
can be calculated unambiguously. Problems may arise if the circuits are not serial/parallel
reducible. Consider the following smartIflow system model:

1 import definitions.*;
2

3 class QualitativeEnergyFlowsExample {
4 Components:
5 // bipolarEffortSource, om=0
6 EffortSource<Electrical> source;

7

8 Ports:
9 Electrical t1;

10 Electrical t2;
11 Electrical t3;
12

13 Behavior:
14

15 connect{r=1}(t1, t2);
16 connect{r=1}(t1, t3);
17 connect{r=3}(t2, t3);
18 connect{r=1}(source.plus, t1);
19 connect{r=1}(t2, source.minus);
20 connect{r=2}(t3, source.minus);
21 }

Figure 6.10: Example of a nonserial/parallel reducible circuit (the structure of the system
is taken from [SL14])

Obviously, the circuit is neither serial nor parallel reducible (because of the bridge
from port t2 to port t3). Port t2 can be eliminated by a star-delta transformation.
This transformation also eliminates the bridge from port t2 to port t3 and the resulting
circuit becomes series/parallel reducible. Subsequently, all flow and effort values can be
calculated unambiguously.

However, if the network reduction starts with a star-delta transformation at port t1,
the situation is quite different. After the elimination of port t1 (by means of a star-delta
transformation), the bridge between port t2 and port t3 still exists. Therefore, another
star-delta transformation for example at port t2 is necessary. After the reduction of the
circuit to a single equivalent resistor, the flow and effort values can be assigned successively.
Ambiguities arise in the calculation of the flow between port t1 and port t2. The flow
between port t1 and port t2 is given by the sum of the flows of the relevant connections
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from the previous step. This results in a sum of two opposing flows of the same magnitude,
which is obviously not possible.

Fortunately, an ambiguous flow value does not necessarily lead to problems at verification
tasks if the behavior of higher-level components does not depend on the value and the
model checker does not require it.

6.5 A Real World Application from the Aviation Industry

While the systems shown so far were still very manageable, the following example shows,
that even large systems from industry can be analyzed with smartIflow. Figure 6.11 shows
the architecture of a vibration monitor system as described for example in [Fv17]. The
purpose of such a system is to monitor the vibrations in aircraft engines. The information
about the vibrations helps, for instance, to detect material fatigue (e.g., cracks) on the
turbine wheels at an early stage (defective turbine wheels will lead to vibrations). The
system consists of a set of (redundant) sensors connected via a bus to a controller that
processes the data. To evaluate the sensor data, the controller needs additional information
about the state of the aircraft (e.g., whether the aircraft is on the ground or in the air).

Figure 6.11: Component view of a vibration monitor system in smartIflow Workbench

Each sensor can fail in several ways which are represented in the model as external
events. The model contains a total of 20 external events. Due to the combinatorial
complexity, the state space can become enormously large depending on the applied ETS.
Even with a limitation to a maximum of two failure events on a path, the unfolding
results in a state space with 557821 different states (unfolding took about one minute).
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One important property of the vibration monitor system is that possible vibrations are
properly captured (e.g., vibrations must not remain undetected). The verification of
this requirement (formulated in OMT-CTL) takes over 9 minutes and results in 133986
counterexamples.

This example shows that even a large system can be analyzed in smartIflow. But it also
shows the importance of the Event Trigger Specifications that help to keep the search
space manageable. Without suitable ETS, this system would hardly be manageable.
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7.1 Summary
smartIflow is a new approach to model-based safety analysis that attempts to overcome the
limitations of existing tools by combining mechanisms from existing approaches and adding
new techniques (Contribution C1). Models are created in the smartIflow language on a very
high level of abstraction and quite close to the specifications. The smartIflow language is
component- and object-oriented and strongly inspired by the programming language Java.
This makes the modeling language very beginner-friendly. In addition, system models
can also be composed graphically in Simulink/Simscape (Contribution C6). smartIflow
components are stored in a custom block library where each block is assigned its raw
smartIflow class. Models can be created as usual by adding blocks and creating connections
between them. An integrated converter translates the block diagrams to the smartIflow
language. For existing Simulink/Simscape models, at least the component structure can
be converted to the smartIflow language.

In smartIflow, component behavior is described by means of finite state machines.
The finite state machines can include states for nominal behavior as well as fault states.
The communication between the components is realized by means of typed ports and
connections. In contrast to other approaches, connections between components are in
general bidirectional. Furthermore, connections can change depending on the state. Thus,
the complete topology of systems can change depending on the current state. For the
interaction between components, two mechanisms are supported: Qualitative energy flow
analysis for reasoning about physical quantities and message exchange based on properties.
Properties are simple messages that enable communication between components in a very
flexible way. Components can publish properties and also react to properties sent by
other components. Properties published by components are automatically propagated
to all other reachable ports. The other mechanism for interaction between components
relies on effort and flow calculation based on network analysis. Connections are assigned
order of magnitude resistance values, and for sinks and sources there exist special built-in
components. The integrated solver works in two steps. First, the connection structure
is reduced to a single connection with a single equivalent resistance. After that, the
connection structure is incrementally expanded and with each extension flow and effort
values are assigned to the connections. With this feature, physical quantities in networks
can be modeled realistically and context-free. Components change their variables based
on internal or external events. The reaction to these events is specified using transition
statements. Since the components react to events at quite different speeds, an order
of magnitude value for the delay can be specified for each transition statement. Thus,
delayed reactions can be modeled very easily.

By unfolding the smartIflow system model an explicit representation of the transition

149



7 Summary, Conclusion & Outlook

system is created. The unfolding consists of three main steps, namely the processing
of the behavior, the qualitative energy flow analysis, and the processing of the internal
and external events. Event Trigger Specifications (ETS) define the maximum number of
external events on a path. These specifications can be applied during unfolding to keep
the search space manageable (Contribution C3). The transition system can be verified by
a special model checker. In contrast to most other implementations, the model checker
delivers all relevant counterexamples which are paths in which the specification is not
fulfilled (Contribution C4). Requirements are specified in Orders of Magnitude timed CTL
(OMT-CTL), an extended version of the Computation Tree Logic (CTL). OMT-CTL
is extended by predicates to express timed properties for smartIflow system models
(Contribution C5). The comprehensive counterexamples provide the base to create
minimal cut-sets and Fault Trees.

To get a clear understanding of the new modeling formalism, the semantics of smartI-
flow system model, the underlying transition systems, and the new timed variant of CTL
are formally defined (Contribution C2).

7.2 Conclusion & Outlook
In conclusion, safety engineers can benefit a lot from the smartIflow approach when
analyzing the safety of technical systems in the early design phases. One benefit is the
level of abstraction on which the systems are described. Systems are described on an
as-high-as-possible level of abstraction without losing too much prediction power. In
smartIflow, the mechanisms for modeling state transitions are more extensive compared
to other approaches. For example, the differentiation between internal and external events
leads to a smaller state space, since internal transitions are executed synchronously. The
extremely flexible message exchange between the components by means of properties has
proven to be quite practicable. Contrary to our expectations, communication could be
realized in almost all our experiments using the property concept. Nevertheless, there
are scenarios where the property concept reaches its limit and the qualitative energy flow
analysis can show its strength. The energy flow analysis works quite well for most circuits,
but in some scenarios, multiple executions of the star-delta transformation can lead to
ambiguities in the calculation of flow values. Possibly these ambiguities can be solved by
clever selection of the star account at which the star-delta transformation is performed (if
several nodes for this transformation are possible). This could be a potential extension for
the energy flow analysis. The smartIflow language is a quite intuitive modeling language.
Our experiments have shown that modeling in smartIflow Workbench is much more efficient
than the graphical modeling approach in Simulink. The reason for this is that whenever
the system model is modified, the model must first be converted to the smartIflow language
and afterward the analyses can be performed in the smartIflow Workbench. With a little
practice, textual modeling in the smartIflow Workbench performs very well. Nevertheless,
the graphical modeling approach in Simulink is a helpful tool to convert the structure of
existing Simulink/Simscape into the smartIflow language.

As important as ETS are, they also come with some pitfalls:

• If event counters are updated during unfolding by referencing an existing state, in
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the worst case all subsequent paths must be checked to see whether additional events
need to be triggered.

• The verification must follow cycles when events occur in the cycle that are part of
the ETS.

Nevertheless, Event Trigger Specifications are an extremely important instrument to keep
the state space manageable but also to limit the analysis to the relevant paths. Possible
extensions for the Event Trigger Specifications are:

• A limitation of paths containing all event combinations up to a certain probability
of occurrence.

• The definition of scenarios to analyze the effect of a sequence of events (event1 →
event2 → . . . → eventn)

• The introduction of more complex rules, e.g., to define that an event of type A is
always followed by an event of type B.

The explicit-state model checking algorithm is quite special, but unlike existing tools, it
uses Event Trigger Specifications to focus on relevant paths. The model-checking-based
approach to FTA is unique and has a high potential. At first glance, the transition system
resulting from unfolding often looks manageable, also for the model checker. However,
the transition system may contain an extremely large number of paths, which leads to
performance issues in model checking (depending on the specification, in the worst case
all paths have to be analyzed). In future work, it could be analyzed whether a model
checker based on satisfaction sets can handle larger state spaces more efficiently.
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This appendix contains the grammar definition in Extended Backus-Naur Form (EBNF) of
the smartIflow language, Orders of Magnitude timed CTL and Event Trigger Specifications.
The common lexer rules are <Identifer> for identifiers and <Number> for any number
(integer or double). Parser rules start in lowercase, lexer rules in uppercase. The grammar
is used for the ANTLR parser generator.

A.1 smartIflow Language
For the sake of clarity, the grammar of logical formulas for if- and when-expressions as
well as features and properties are described separately.

⟨compilationUnit⟩ ::= ⟨packageDeclaration⟩? ⟨importDeclaration⟩*
(⟨classDeclaration⟩

| ⟨enumTypeDefinition⟩
| ⟨portTypeDefinition⟩)*

⟨packageDeclaration⟩ ::= ‘package’ ⟨qualifiedName⟩ ‘;’

⟨importDeclaration⟩ ::= ‘import’ ⟨qualifiedName⟩ (‘.’ ‘*’)? ‘;’

⟨classDeclaration⟩ ::= ‘class’ ⟨Identifier⟩ ⟨typeVariables⟩? ⟨superclass⟩?
⟨classFeatures⟩? ‘{’ ⟨memberDeclaration⟩ ‘}’

⟨classFeatures⟩ ::= ⟨featureList⟩

⟨typeVariables⟩ ::= ‘<’ ⟨Identifier⟩ (‘,’ ⟨Identifier⟩ )* ‘>’

⟨superclass⟩ ::= ‘extends’ ⟨qualifiedName⟩ ⟨typeParameters⟩?

⟨typeParameters⟩ ::= ‘<’ ⟨qualifiedName⟩ (‘,’ ⟨qualifiedName⟩ )* ‘>’

⟨memberDeclaration⟩ ::= ⟨componentsSection⟩?
⟨portsSection⟩?
⟨variablesSection⟩?
⟨eventsSection⟩?
⟨behaviorsSection⟩?
⟨transitionsSection⟩?
⟨eventHandlersSection⟩?

⟨componentsSection⟩ ::= ‘Components:’ ⟨componentInstance⟩*
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⟨componentInstance⟩ ::= ⟨qualifiedName⟩ ⟨typeParameters⟩? ⟨Identifier⟩ ‘;’

⟨portsSection⟩ ::= ‘Ports:’ ⟨portInstance⟩*

⟨portInstance⟩ ::= ⟨qualifiedName⟩ ⟨portInstanceFeatures⟩? ⟨Identifier⟩ ‘;’

⟨portInstanceFeatures⟩ ::= ⟨featureList⟩

⟨variablesSection⟩ ::= ‘Variables:’
(⟨anonymousTypeInstance⟩ | ⟨variableInstance⟩)*

⟨anonymousTypeInstance⟩ ::= ‘Enum’ ‘[’ ⟨potentialValues⟩ ‘]’ ⟨Identifier⟩
⟨featureList⟩? (‘=’ ⟨Identifier⟩)? ‘;’

⟨potentialValues⟩ ::= (⟨Identifier⟩ (‘,’ ⟨Identifier⟩)*)*

⟨variableInstance⟩ ::= ⟨qualifiedName⟩ ⟨Identifier⟩ ⟨featureList⟩?
(‘=’ ⟨Identifier⟩)? ‘;’

⟨eventsSection⟩ ::= ‘Events:’ (⟨Identifier⟩ ⟨featureList⟩? ‘;’)*

⟨behaviorsSection⟩ ::= ‘Behavior:’ (⟨ifStatement⟩ | ⟨action⟩)*

⟨ifStatement⟩ ::= ‘if’ ‘(’ ⟨ifLogicalExpression⟩ ‘)’
⟨ifStatement⟩

| ⟨action⟩
| ⟨statementList⟩

⟨elseIfStatement⟩? ⟨elseStatement⟩?

⟨elseIfStatement⟩ ::= ‘else’ ⟨ifStatement⟩

⟨elseStatement⟩ ::= ‘else’
| ⟨action⟩
| ⟨statementList⟩

⟨statementList⟩ ::= ‘{’ (⟨ifStatement⟩ | ⟨action⟩)* ‘}’

⟨action⟩ ::= ⟨setAction⟩ | ⟨connectAction⟩

⟨setAction⟩ ::= ‘set’ ‘(’ ⟨qualifiedName⟩ ‘,’ ⟨propertyList⟩ ‘)’ ‘;’

⟨connectionAction⟩ ::= ‘connect’ ⟨featureList⟩? ‘(’ ⟨qualifiedName⟩ ‘,’
⟨qualifiedName⟩ ‘,’ ⟨propertyList⟩? ‘);’

⟨transitionsSection⟩ ::= ‘Transitions:’ ⟨condition⟩* ⟨conditionalStateTransition⟩*

⟨condition⟩ ::= ⟨Identifier⟩ ‘=’ ⟨whenLogicalExpression⟩ ‘;’
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⟨conditionalStateTransition⟩ ::= ‘when’ ⟨featureList⟩? ‘(’⟨whenLogicalExpression⟩‘)’
⟨guardExpression⟩?
⟨stateTransitionList⟩

| ⟨stateTransition⟩

⟨eventHandlersSection⟩ ::= ‘EventHandlers:’ ⟨eventHandler⟩*

⟨eventHandler⟩ ::= ‘when’ ⟨featureList⟩? ‘(’⟨Identifier⟩‘)’ ⟨guardExpression⟩?
⟨stateTransitionList⟩

| ⟨stateTransition⟩

⟨stateTransitionList⟩ ::= ‘{’ ⟨stateTransition⟩* ‘}’

⟨stateTransition⟩ ::= ⟨Identifier⟩ ‘=’ ⟨Identifier⟩ (‘or’ ⟨Identifier⟩) ‘;’

⟨guardExpression⟩ ::= ‘[’ ⟨whenLogicalExpression⟩ ‘]’

Qualified Names, Properties and Features

⟨qualifiedName⟩ ::= ⟨Identifier⟩ (‘.’ ⟨Identifier⟩)*

⟨propertyList⟩ ::= ‘{’ ⟨property⟩ (‘,’ ⟨property⟩)* ‘}’

⟨property⟩ ::= ⟨qualifiedName⟩ ‘=’ ⟨propertyValue⟩

⟨propertyValue⟩ ::= ⟨Identifier⟩ | ⟨Number⟩

⟨featureList⟩ ::= ‘{’ ⟨feature⟩ (‘,’ ⟨feature⟩)* ‘}’

⟨feature⟩ ::= ⟨Identifier⟩ ‘=’ (⟨Number⟩ | ⟨Identifier⟩ | ⟨stringLiteral⟩)

Logical Expressions for if-Statements

⟨ifLogicalExpression⟩ ::= ⟨ifConjunction⟩ (‘||’ ⟨ifConjunction⟩)*

⟨ifConjunction⟩ ::= ⟨ifUnaryExpression⟩ (‘&&’ ⟨ifUnaryExpression⟩)*

⟨ifUnaryExpression⟩ ::= ⟨ifAtomExpression⟩ | (‘!’ ⟨ifAtomExpression⟩)

⟨ifAtomExpression⟩ ::= ⟨equalityExpression⟩ | ‘(’ ⟨ifLogicalExpression⟩ ‘)’

⟨equalityExpression⟩ ::= ⟨Identifier⟩ (‘==’ | ‘!=’) ⟨Identifier⟩
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Logical Expressions for when-Statements

⟨whenLogicalExpression⟩ ::= ⟨whenConjunction⟩ (‘||’ ⟨whenConjunction⟩)*

⟨whenConjunction⟩ ::= ⟨whenUnaryExpression⟩ (‘&&’ ⟨whenUnaryExpression⟩)*

⟨whenUnaryExpression⟩ ::= ⟨whenAtomExpression⟩ | (‘!’ ⟨whenAtomExpression⟩)

⟨whenAtomExpression⟩ ::= ⟨propertyExistsFunction⟩
| ⟨propertyKeyExistsFunction⟩
| ⟨equalityExpression⟩
| ⟨portEqualityExpression⟩
| ⟨flowOMRelExpression⟩
| ⟨flowDirRelExpression⟩
| ⟨effortOMRelExpression⟩
| ⟨effortDirRelExpression⟩
| ⟨conditionReference⟩
| ‘(’ ⟨whenLogicalExpression⟩ ‘)’

⟨propertyKeyExistsFunction⟩ ::= ⟨qualifiedName⟩ ‘.exists(’ ⟨qualifiedName⟩ ‘)’

⟨propertyExistsFunction⟩ ::= ⟨qualifiedName⟩ ‘.exists(’ ⟨qualifiedName⟩ ‘=’
⟨propertyValue⟩ ‘)’

⟨equalityExpression⟩ ::= ⟨Identifier⟩ (‘==’ | ‘!=’) ⟨Identifier⟩

⟨portEqualityExpression⟩ ::= ⟨portValueFunction⟩ (‘==’ | ‘!=’) ⟨portValueFunction⟩

⟨portValueFunction⟩ ::= ⟨qualifiedName⟩ ‘.value(’ ⟨qualifiedName⟩ ‘)’

⟨OmRelationalOperator⟩ ::= ‘==’ | ‘!=’ | ‘>’ | ‘>=’ | ‘<’ | ‘<=’

⟨flowOMRelExpression⟩ ::= ‘flow.om(’ ⟨qualifiedName⟩ ‘,’ ⟨qualifiedName⟩ ‘)’
⟨OmRelationalOperator⟩ (‘null’ | ⟨Number⟩)

⟨flowDirRelExpression⟩ ::= ‘flow.dir(’ ⟨qualifiedName⟩ ‘,’ ⟨qualifiedName⟩ ‘)’
⟨dirRelationalOperator⟩ ⟨Number⟩

⟨effortOMRelExpression⟩ ::= ‘effort.om(’ ⟨qualifiedName⟩ ‘,’ ⟨qualifiedName⟩ ‘)’
⟨OmRelationalOperator⟩ (‘null’ | ⟨Number⟩)

⟨effortDirRelExpression⟩ ::= ‘effort.dir(’ ⟨qualifiedName⟩ ‘,’ ⟨qualifiedName⟩ ‘)’
⟨dirRelationalOperator⟩ ⟨Number⟩

⟨conditionReference⟩ ::= ⟨Identifier⟩
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Enumeration Definitions

⟨enumTypeDefinition⟩ ::= ‘enum’ ⟨Identifier⟩ ⟨superclass⟩?
‘{’ ⟨enumConstantList⟩ ‘}’

⟨enumConstantList⟩ ::= ⟨enumConstant⟩ (‘,’ ⟨enumConstant⟩)*

⟨enumConstant⟩ ::= ⟨Identifier⟩ (‘{’ ⟨featureList⟩ ‘}’)?

Port Type Definitions

⟨portTypeDefinition⟩ ::= ‘port’ ⟨Identifier⟩ ⟨superclass⟩? ‘{’ ⟨propertySection⟩? ‘}’

⟨propertySection⟩ ::= ‘Properties:’ ⟨propertyDeclaration⟩*

⟨propertyDeclaration⟩ ::= ⟨qualifiedName⟩ ‘=’ ‘{’ ⟨Identifier⟩ (‘,’ ⟨Identifier⟩)* ‘}’ ‘;’

A.2 Orders of Magnitude timed CTL
⟨ctlDefinitions⟩ ::= (⟨ctlDefinition⟩)*

⟨ctlDefinition⟩ ::= ⟨Identifier⟩ ‘:=’ ⟨biimplication⟩ ‘;’

⟨biimplication⟩ ::= ⟨implication⟩ (‘<->’ ⟨implication⟩’)*

⟨implication⟩ ::= ⟨disjunction⟩ (‘->’ ⟨disjunction⟩’)*

⟨disjunction⟩ ::= ⟨conjunction⟩ (‘||’ ⟨conjunction⟩’)*

⟨conjunction⟩ ::= ⟨expression⟩ (‘&&’ ⟨expression⟩’)*

⟨expression⟩ ::= ⟨unaryCTLOperator⟩
| ⟨binaryCTLOperator⟩
| ⟨unaryExpression⟩

⟨unaryCTLOperator⟩ ::= (‘AG’ | ‘AF’ | ‘EG’ | ‘EF’ | ‘AX’ | ‘EX’) ⟨pathTimeConstraint⟩?
⟨unaryExpression⟩

⟨binaryCTLOperator⟩ ::= (‘A’ | ‘E’) ‘(’ ⟨unaryExpression⟩ ‘U’ ⟨pathTimeConstraint⟩?
⟨unaryExpression⟩ ‘)’

⟨unaryExpression⟩ ::= (⟨atomExpression⟩ | (‘!’ ⟨atomExpression⟩))
⟨stateTimeConstraint⟩?

⟨atomExpression⟩ ::= ‘(’ ⟨biimplication⟩ ‘)’
| ⟨relationalExpression⟩
| ‘true’ | ‘false’
| ⟨Identifier⟩
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⟨relationalExpression⟩ ::= ⟨qualifiedName⟩ (‘==’ | ‘!=’) (⟨Identifier⟩ | ⟨Number⟩)

⟨stateTimeConstraint⟩ ::= ‘{stable’ (‘<’ | ‘<=’ | ‘>’ | ‘>=’ | ‘==’ | ‘!=’) ⟨Number⟩‘}’

⟨pathTimeConstraint⟩ ::= ‘{delay’ (‘<’ | ‘<=’ | ‘>’ | ‘>=’ | ‘==’ | ‘!=’) ⟨Number⟩‘}’

A.3 Event Trigger Specifications
⟨etsDefinitions⟩ ::= ⟨etsDefinition⟩*

⟨etsDefinition⟩ ::= ⟨Identifier⟩ ‘:=’ ⟨ets⟩ ‘;’

⟨ets⟩ ::= ⟨disjunction⟩ (‘->’ ⟨disjunction⟩’)*

⟨disjunction⟩ ::= ⟨conjunction⟩ (‘||’ ⟨conjunction⟩’)*

⟨conjunction⟩ ::= ⟨equalityExpression⟩ (‘&&’ ⟨equalityExpression⟩’)*

⟨equalityExpression⟩ ::= ⟨unaryExpression⟩ | ⟨relationalExpression⟩
(‘<’ | ‘<=’ | ‘>’ | ‘>=’ | ‘==’ | ‘!=’) ⟨unaryExpression⟩

⟨unaryExpression⟩ ::= ⟨primary⟩ | ‘!’ ⟨unaryExpression⟩ | ⟨Identifier⟩

⟨primary⟩ ::= ⟨function⟩ | ⟨Number⟩ | ‘(’ ⟨ets⟩ ‘)’ | ⟨booleanFunction⟩

⟨function⟩ ::= (‘hist’ | ‘path’) (‘.’ ⟨filter⟩)* ‘.count()’

⟨filter⟩ ::= ‘filter’ ‘(’ ⟨feature⟩ ‘)’
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