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Abstract

Skin disease is one of the rapidly spreading diseases globally. Among them, skin cancer,
such as melanoma, is a hazardous form of cancer. Early detection of skin cancer can
significantly increase the 5-year survival rate of patients. However, accurate diagnosis
remains challenging and relies heavily on appropriate training and experience, which
takes considerable time to acquire. Additionally, even for experienced dermatologists,
diagnosis can be influenced by factors such as stress, fatigue, or other human elements,
making consistent high-accuracy diagnosis elusive. Therefore, a computer-aided
diagnosis system for skin cancer is anticipated to alleviate the burden on dermatologists
and enhance overall diagnostic efficiency.

Over the past decade, with the limitations of deep learning methods being overcome
by the availability of computing capacity and large-scale datasets, deep learning has
become predominant in various visual and textual tasks. Consequently, the research
community has increasingly explored applying deep learning methods for automatic
skin disease recognition to assist dermatologists. In clinical practice, clinicians make
diagnoses by considering multiple complementary modalities, including clinical images,
dermoscopy images, and metadata such as age, sex, and location of the lesion, among
others. However, most current methods are based solely on single-modality images.
Therefore, we aim to fill this gap by investigating the use of multi-modal deep learning
methods in skin lesion classification.

This dissertation investigates various multi-modal scenarios, ranging from two
modalities, such as Clinical Images (CI)-Dermoscopy Images (DI) or images-metadata,
to three modalities encompassing Clinical Images (CI), Dermoscopy Images (DI) and
metadata. More specifically, we present a joint-individual fusion structure with a fusion
attention module to effectively fuse images and metadata for skin disease recognition.
To efficiently conduct the modality interaction between Clinical Images (CI) and
Dermoscopy Images (DI), we present two methods: a prior-inspired asymmetric fusion
method and a single-shared network method. Finally, to fully use the information on
all three modalities, we present a multi-stage method that progressively hierarchically
integrates the three modalities’” data.






Zusammenfassung

Hautkrankheiten gehoren zu den weltweit schnell verbreitenden Krankheiten. Unter
ihnen ist Hautkrebs, wie das Melanom, eine gefdhrliche Krebsart. Eine friithzeitige
Erkennung von Hautkrebs kann die 5-Jahres-Uberlebensrate der Patienten erheblich
steigern. Die genaue Diagnose bleibt jedoch eine Herausforderung und héngt stark
von angemessener Ausbildung und Erfahrung ab, die viel Zeit erfordern. Dariiber
hinaus kann die Diagnose selbst bei erfahrenen Dermatologen durch Faktoren wie
Stress, Miidigkeit oder andere menschliche Einfliisse beeintréichtigt werden, wodurch
eine durchgehend prizise Diagnose schwer zu erreichen ist. Daher wird ein computer-
gestiitztes Diagnosesystem fiir Hautkrebs erwartet, das die Belastung fiir Dermatolo-
gen verringern und die allgemeine diagnostische Effizienz steigern soll.

In den letzten zehn Jahren, da die Einschréankungen von Deep-Learning-Methoden
durch die Verfiigbarkeit von Rechenkapazitdt und grofl angelegten Datensitzen
iiberwunden wurden, hat sich Deep Learning in verschiedenen visuellen und textuellen
Aufgaben durchgesetzt. Infolgedessen hat die Forschungsgemeinschaft zunehmend
die Anwendung von Deep-Learning-Methoden zur automatischen Erkennung von
Hautkrankheiten untersucht, um Dermatologen zu unterstiitzen. In der klinischen
Praxis stellen Arzte Diagnosen, indem sie mehrere sich ergianzende Modalitéiten
beriicksichtigen, darunter klinische Bilder, Dermatoskopiebilder und Metadaten wie
Alter, Geschlecht und Ort der Léasion, unter anderem. Die meisten aktuellen Methoden
basieren jedoch ausschlieBlich auf einmodalen Bildern. Daher beabsichtigen wir, diese
Liicke zu schlieflen, indem wir den Einsatz multimodaler Deep-Learning-Methoden
zur Klassifizierung von Hautlédsionen untersuchen.

Diese Dissertation untersucht verschiedene multimodale Szenarien, die von zwei
Modalitéten wie klinischen Bildern (CI) und Dermatoskopiebildern (DI) oder Bil-
dern und Metadaten bis hin zu drei Modalitédten reichen, einschliellich klinischer
Bilder, Dermatoskopiebilder und Metadaten. Insbesondere présentieren wir eine Joint-
Individual-Fusionsstruktur mit einem Fusionsaufmerksamkeitsmodul, um Bilder und
Metadaten effektiv fiir die Erkennung von Hautkrankheiten zu fusionieren. Um die
Interaktion zwischen klinischen Bildern und Dermatoskopiebildern effizient durch-
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zufiihren, stellen wir zwei Methoden vor: eine asymmetrische, auf Vorwissen basierende
Fusionsmethode und eine einheitliche Netzwerk-Methode. Schlieflich présentieren wir
eine mehrstufige Methode, um alle Informationen der drei Modalitéiten vollstédndig zu
nutzen, indem die Daten der drei Modalitéten schrittweise und hierarchisch integriert
werden.
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Introduction

The skin serves as the body’s largest organ, safeguarding against external threats and
invasion. Additionally, it plays crucial roles in thermoregulation, metabolism, and
sensory perception of the body [58, 63]. Skin disease is a prevalent and frequently oc-
curring condition that typically causes symptoms such as skin itching, pain, numbness,
and other discomfort, significantly impacting the lives of patients, such as vitiligo
that can significantly affect people’s appearance [121, 37]. In more severe cases, it can
even be life-threatening. Patients with ulcerated melanoma exceeding 4 mm thickness
experience a 15% five-year survival rate, whereas those with melanoma thinner than
Imm exhibit a 95% 5-year survival rate [7, 117]. In Europe, more than 100,000 new
cases of melanoma and 22,000 melanoma-related deaths are reported each year [16,
20]. In the US, there are over 910,000 new cases and 9,000 deaths reported annually.
The US alone spends about 3 billion dollars annually on melanoma treatment [20].
Other types of skin cancer, such as keratinocyte cancer and basal cell carcinomas,
are more common compared to melanoma. While these diseases often do not result
in fatalities, the medical care costs for patients with these conditions are very high
[48, 129]. Especially for basal cell carcinomas, costs can rise significantly if they are
diagnosed and treated in an advanced stage [129, 78]. Early detection of skin diseases
can substantially improve the five-year survival rate and decrease the associated costs
[9]. However, experienced dermatologists are often in short supply, especially in rural
areas [35, 69]. The diagnostic accuracy of non-specialists, including primary care
physicians, nurse practitioners, and physician assistants, is suboptimal, ranging from
24% to 70% [69, 34, 79]. Given that Deep Learning (DL)-based methods consistently
demonstrate superiority in lots of visual tasks, an Deep Learning (DL)-based system
is highly anticipated for decision support in dermatological diagnosis.

There have been many works [33, 116, 21| proving that Artficial Intelligence
(AI) or Deep Learning (DL)-based methods can assist dermatologist’s diagnosis
and has the potential to alleviate the burden. [33] proved a Convolutional Neural
Network (CNN) trained on 129,450 Clinical Images (CI) can achieve dermatologist-
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CHAPTER 1. INTRODUCTION

level classification of skin cancer. [116] demonstrated that physicians with Artficial
Intelligence (Al)-based decision support perform better than either AI or physicians
alone in skin lesion classification. [21] illustrated that the dermatologist’s confidence
in their diagnosis could significantly increase by explainable Artficial Intelligence (Al).
However, most current methods are solely based on single-modality images and need
more explorations of multi-modal data for decision support systems.

For Deep Learning (DL)-based methods, using multiple sources typically results in
better performance than using a single input. On the other hand, in clinical practice,
dermatologists typically examine patients in person over one or multiple visits rather
than relying solely on one imaging modality. Consequently, physicians can integrate
Dermoscopy Images (DI), Clinical Images (CI), and meta-data when analyzing each
lesion. Dermoscopy Images (DI) are obtained by dermoscopy, a popular non-invasive
imaging technique that enlarges and illuminates the skin image to improve the clarity
of skin spots. By eliminating surface reflections, the visual effect of deeper skin
layers can be enhanced, thereby providing more detailed information about skin
lesions [13, 117]. Clinical Images (CI) are taken with a standard digital camera or
smartphone to capture a macro view of the lesion, exhibiting more variations in terms
of view, angle, and lighting [39]. Meta-data indicates the personal information of the
patients, providing information beyond visual features, including age, gender, location
of the lesion, history of skin cancer, parent’s history of skin cancer, and others. Also,
this multi-source feature availability holds true for the majority of teledermatology
evaluations [14].

Therefore, this dissertation primarily focuses on leveraging Deep Learning (DL)
methods to integrate multi-modal data for a more precise and robust decision support
system in dermatology. While previous methods based on single-modality aimed to
enhance diagnoses and clinical practice, the main incentive for adopting multi-modal
decision support systems in dermatology is the worldwide shortage of dermatologists.

1.1 Outline

This dissertation focuses on applying Deep Learning (DL)-based methods in different
multi-modal scenarios for skin disease diagnosis. Chapter 2 introduces the concept
and knowledge of Deep Learning (DL), and Chapter 3 introduces the application of
Deep Learning (DL) in skin disease recognition.

Chapter 4 is a new method to effectively fuse single-image and metadata for more
accurate skin lesion classification. Chapters 5 proposes two multi-modal parameter-
efficient methods to combine two image modalities for multi-label skin lesion clas-
sification from different perspectives. Chapter 6 proposes a multi-stage method to
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integrate Clinical Images (CI), Dermoscopy Images (DI), and metadata progressively,
improving the accuracy of multi-label skin lesion classification.






Background

Deep Learning (DL) is the primary technique in all of our proposed multi-modal fusion
methods. So, in this chapter, I just briefly introduce the key concepts of Deep Learning
(DL) and notations used in my dissertation, including the components of Multi-Layer
Preceptron (MLP), Convolutional Neural Network (CNN), and Transformer (TS),
and the backbones. More systematic review of Deep Learning (DL)’s knowledge,
please refer to [40, 66, 137].

2.1 Feedforward Neural Network

The simplest artificial neural network is the Feedforward Neural Network (FNN), which
is inspired by the neuron connections in the human brain. An Multi-Layer Preceptron
(MLP), also known as fully or dense connected layers, is a type of Feedforward Neural
Network (FNN). As illustrated in Fig. 2.1, an Multi-Layer Preceptron (MLP) consists
of numerous computational units, or neurons, and includes various layers: an input
layer, hidden layers, and an output layer. The operation within each unit can be
defined as follows:

f(x) = h(wTx +b) (2.1)
where x indicates the input vectors, w = (wy, -+ - ,w,,) is the weight vector and b is
the bias. h(-) is the activation function that provides the non-linear mapping of the

vectors. Mostly used activation functions in visual tasks include:
(1) Sigmoid

o(z) = 1+1e—r (2.2)
(2) Softmax |
ow) = =7 (23



CHAPTER 2. BACKGROUND

Input Layer = R16 Hidden Layer € R1? Hidden Layer € R0 Output Layer € R?

Figure 2.1: A typical architecture of Multi-Layer Preceptron (MLP). It consists of
an input layer, hidden layers, and an output layer. These layers are composed of a
number of connected computational units called neurons.

(3) Rectified Linear Unit (ReLU)

o(x) = max(0, z) (2.4)
(4) Leaky ReLLU
o(z) = max(0.1z, x) (2.5)
(5) Tanh )
o(z) = % (2.6)

To enhance the ability of non-linear representation of Multi-Layer Preceptron (MLP),
we can embed more hidden layers into the neural network, so it can be formulated as
follows:



2.2. CONVOLUTIONAL NEURAL NETWORKS

f(x:©) = (fao---0 fi)(x)

=B (W7 (oo (B (RN (WTx 4 by) 4 b2) + bt + by) (27)

where © = {wy, - , Wy, by, ,b,} is the model’s parameters, which can be optimized
by back-propagation gradient descent [93]. The gradient is generated by minimizing
the loss function between the output (or called prediction) of the model and ground
truth. The model’s parameters © are optimized as follows:

et — o) _ nvEO), (2.8)

where 7 indicates the learning rate and ¢ is the iteration index.

8@128x128 24@16x16 14256

Max-Pool Convolution Max-Pool Dense

Figure 2.2: A sample convolutional neural network for classification. It consists of
convolutional layers, pooling layers, and densely connected layers.

2.2 Convolutional Neural Networks

Convolutional Neural Network (CNN) is designed for extracting a representative
feature from the imaging modality, inspired by the human visual system and the field
of neuroscience. The deep structure of most Convolutional Neural Network (CNN)
is based on the hierarchical processing of visual information in human perception,
starting from low-level visual features like edges and textures to high-level seman-
tic features like shapes and objects. The mechanisms of the local receptive field,
weight sharing, and sub-sampling contribute to a powerful representation ability of
Convolutional Neural Network (CNN) [98].

Generally, Convolutional Neural Network (CNN) for image classification tasks,
such as AlexNet [64] and VGGNet [101] mainly contains three types of layers, i.e.,

7



CHAPTER 2. BACKGROUND

convolutional layers, pooling layers, dense/fully connected layers (See Fig. 2.2). After
ResNet [45], the skip connection structure becomes one of the basic components
of following Convolutional Neural Network (CNN) works, including DenseNet [52],
Xception [24], Mobilenet [95], EffcientNet [108] and ConNext [72].

2.2.1 Convolutional layer

Since the Multi-Layer Preceptron (MLP) is designed for processing one-dimensional
(1D) data, it struggles to extract representative features from image data. Inspired
by sliding windows in image processing techniques, LeCun introduced a convolutional
layer to more efficiently capture image features [65]. Fig. 2.3 demonstrates how the
kernel of convolutional layers operates on two-dimensional (2D) data. Specifically, a
kernel with randomly initialized parameters is used to sweep over the 2D data step
by step to produce an output. Specifically, the kernel values and the values of the
swept area undergo element-wise multiplication to yield the corresponding output
value. For instance, as shown in the area of blue bounding in Fig. 2.3, the top-left
corner of the input data is swept by the kernel, resulting in the output value being
computed as 7=1x1+0x2+40 x5+ 1 x 6. The convolutional layer can be trained
to extract specific image characteristics, such as lines, textures, edges, and objects,
through a weight-sharine scheme and a local recentive field.

w

4 79 11
8. 10 7921212
5
1

O 1 419 7

I\)@\l’

Input Kernel Output

Figure 2.3: A simple convolution operation without bias and whose stride is 1 on
the 2D data (can be seen on the gray scale image).

Generally, a convolutional layer contains multiple kernels, so we Can assume there
is a group of N! kernels in the [** layer. The output of /th layer Y will contain N

8



2.2. CONVOLUTIONAL NEURAL NETWORKS

@

feature maps, where the " feature map Y;" can be formulated mathematically as:

NG-1)
YO =p Z KD «y'Y 4+ BY (2.9)

There are more advanced convolutional layers [28, 135, 130] available, such as the
one proposed by Yu et al. [130], which increases the dilation rate of convolution to
enlarge the receptive field of the model, and the deformable convolution introduced
by Dai et al. [28], which incorporates an offset to extract deformation information
from objects. However, all these advancements are built upon the basic convolutional
layer.

2.2.2 Pooling layer

The pooling layer is common in Convolutional Neural Network (CNN), aiming to
downscale the dimensionality of feature vectors and thus reduce the computational
cost. Also, the downscale operations make the feature vector represent more advanced
semantic information by increasing the receptive field. The pooling layer is similar
to the convolution layer applied over a part of the image via a sliding window. Two
types of pooling layers, i.e., AveragePooling and MaxPooling, are commonly used in
Convolutional Neural Network (CNN). As shown in Fig 2.4, for the area in the red
bounding box, the Averagepooling returns (1 + 2+ 5+ 6)/4 = 7 and MaxPooling
returns max([1,2,5,6]) =6

2.2.3 Batch normalization

Batch normalization was proposed by Ioffe and Szegedy [55] to stabilize and accelerate
the training process to ensure the distribution of input data in each network layer
remains relatively stable. Specifically, the output is normalized to have zero mean
and unit variance after each batch to counteract the distribution shift of data passing
through a layer, allowing the weights to be updated more effectively over time.

%urrently, lﬁllé) rr?(%{nv%?cf Tl used structure for classification tasks is ResNet [45],
according to Google Citations, as the proposed skip connection allows the network to
be deeper. More specifically, the skip connection was introduced by He et al. [45] to
address the problem of information flow to deep layers, thereby enabling the entire
network to become deeper and possess stronger representational ability. As illustrated
in Fig. 2.5, compared to the basic convolutional blocks in AlexNet [64] and VGGNet

9
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4 AveragePooling . 1 1
8 11 7
5 MaxPooling - 8
1 — 8 6

3
14
8 7 6
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Figure 2.4: Two kinds of poling layers, i.e., AveragePooling and Maxpooling.

Input Input —

T
RelLU
Output Output
(A) (B)

Figure 2.5: Comparison between the basic convolutional blocks (A) and residual
convolution blocks

[101] (see Fig. 2.5 (A)), the residual convolutional blocks [45] include an additional
skip connection that maps the input directly to the output (see Fig. 2.5 (B)). Skip
connections are also popular in encoder-decoder segmentation structures to combine
low-level spatial information with high-level semantic information for prediction, as
seen in architectures like UNet [91].
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2.3. TRANSFORMER

2.3 Transformer

In recent years, Transformer (TS)-based [5] methods have dominated tasks of Natural
Language Processing (NLP), exemplified by the GPT-series products [89, 90, 17, 1].

2.3.1 Self attention

The core component of the Transformer is the self-attention mechanism, which can
be defined as follows:

Vdy,

where ), K, and V indicate the query, key, and value vectors, respectively, and dg is
the scaling factor. K7 indicate the transposed key vectors. softmax is usually-used
activation function in attention mechanism. Actually, @), K, and V are different
representations mapping from the same input. Why does self-attention do this? The
intuitive reason is that the softmax function produces a feature distribution between 0
and 1 of the input, which can be considered as ”attention or importance,” indicating
the importance of each word (key) relative to a word (query). This importance is
then multiplied with the corresponding word (value). '

.
Attention(Q, K, V') = softmax <QK ) Vv (2.10)

2.3.2 Vision Transformer

- N

s |
1

|
B
BEE

Linear
inear
Output

Linear
Norm
Attention
Norm

- b/

Figure 2.6: A simple of vision transformer structure.

Since the significant success of transformer-based methods in the NLP field,
researchers have also begun to explore their potential in computer vision tasks. Vision

'An illustrated, detailed explanation of the transformer can be found at
https://jalammar.github.io/illustrated-transformer/
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CHAPTER 2. BACKGROUND

Transformer (VIT) [32] was the first work to apply a transformer-based structure to
process image data. As illustrated in Fig. 2.6, the input images are split into multiple
patches and fed into a linear layer, L x transformer blocks, and another linear layer
in sequence to get the final output.

2.4 Loss function

The loss function is the objective function to supervise the network in the training
stage. By minimizing the loss error between the prediction from the network and
ground truth, the network’s parameters will be optimized. For different tasks and
datasets, there are also different loss functions. For the multi-classes classification
task, the cross-entropy loss is mainly used, which can be defined as follows:

1 B C

Lep=—5 D> 6y = ¢)log(Ply; = c)) (2.11)

i=1 c=1

where B represents the batch size and C' represents the number of classes. §(y; = ¢)
is the indicator function and P(y; = ¢) is the prediction from network. For the
classification task on the unbalanced dataset, Focal loss [68] was introduced, and
for the image segmentation task, DCE loss was the most frequently used; other
segmentation loss can be found in [57] and [61].

2.5 Data Augmentation

2.5.1 Training

During the training stage of Convolutional Neural Network (CNN), data augmentation
is usually used to generate more data to enhance the model’s generalization ability
and thus increase the accuracy. However, not all the data augmentation techniques
are useful for skin lesion classification tasks. In our experiments, only geometric data
augmentations, including horizontal and vertical flipping, rotation, shift, scaling, and
random brightness and contrast are implemented. Thanks for the Albumentations
library that provides a convenient data augmentation pipeline [18]. More details
about data augmentation can be seen in [99, 99

12



2.5. DATA AUGMENTATION

2.5.2 Test Time Augmentation

During the testing stage, data augmentation can be used to create multiple trans-
formed versions of the input image, and thus, a more accurate and robust prediction
can be obtained by averaging the multiple predictions [97]. In our experiments, we
just applied the commonly used version of Test Time augmentation, i.e., geometric
transformation, including rotation and flipping.
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Background: Deep learning for skin
lesion classification

In this chapter, we primarily introduce the background of single-image-based Skin
Lesion Classification (SLC) methods, including datasets and related works, as well
as the skin lesion classification tasks, encompassing both the diagnosis task and
the seven-point checklist feature classification task. Given that there are different
datasets and related works for various multi-modal scenarios, we will discuss them in
the corresponding chapters accordingly.

3.1 Single image based skin lesion classification
methods

3.1.1 Dataset

Dermoscopy Images (DI)-based skin lesion classification methods are typically op-
timized using a supervised learning scheme, where the prerequisite for training
a Convolutional Neural Network (CNN) is the dataset. Here, we introduce the
commonly-used public datasets for single image-based SLC, including PH2 ' [76],
International Skin Imaging Collaboration (ISIC) challenges ? [42, 42, 26, 25, 115, 27,
92], SD-198, and SD-260 [104, 127]. More dataset information about skin lesions can
be seen in *

thttps:/ /www.fc.up.pt/addi/ph2%20database.html
Zhttps://challenge.isic-archive.com/data/
3https://github.com/sfu-mial /awesome-skin-image-analysis-datasets
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CHAPTER 3. BACKGROUND: DEEP LEARNING FOR SKIN LESION
CLASSIFICATION

PH2

To the best of our knowledge, PH2 [76] is the first publicly available dermoscopic image
database for melanoma detection. PH2 dataset was collected from the Universidade
do Porto, T” ecnico Lisboa, and the Dermatology Service of Hospital Pedro Hispano
in Matosinhos, Portugal. The images are with the size of 768 x 500 and obtained
through 20 times magnification of Tuebinger Mole Analyzer system. It was released
in early 2013 and contains only 200 images (120 cases of nevus and 80 cases of
melanoma) in total. Despite its small size, it is a high-quality dataset that includes
manual segmentation labels, clinical diagnosis labels, and the identification of several
dermoscopic features. As a result, many current studies still use it to evaluate
various skin analysis tasks, including classification [102], segmentation [31, 10], and
explainable AT [12].

ISIC 2016

The ISIC 2016 Challenge comprises three tasks: lesion segmentation, detection and
localization of visual dermoscopic features/patterns, and lesion classification. For the
SLC task dataset, a total of 900 images are provided for training, with an additional
374 cases reserved for performance evaluation. All the images are categorized into
two classes: melanoma and benign. These images are acquired from various devices
across multiple leading clinical centers.

ISIC 2017

The dataset of ISIC 2017 SLC Challenge [26] is the expansion of ISIC 2016 counterpart,
mainly reflected in the data scale and more classes. In the 2017 challenge, participants
were required to classify the lesion into three classes: Melanoma, Seborrheic Keratosis,
and Benign Nevus. The dataset is split into three parts: training (2000 images),
validation (150 images), and testing sets (500 images).

ISIC 2018

The ISIC 2018 SLC dataset expands on the ISIC 2017 dataset by incorporating the
HAM10000 dataset [115, 25]. The ISIC 2018 dataset consists of 10,015 training images,
193 validation images, and 1,500 test images. All images in this dataset are categorized
into seven classes, i.e., Melanoma, Melanocytic nevus, Basal cell carcinoma, Actinic
keratosis / Bowen’s disease (intraepithelial carcinoma), Benign keratosis (solar lentigo
/ seborrheic keratosis/lichen planus-like keratosis). Dermatofibroma and Vascular
lesion.
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3.1. SINGLE IMAGE BASED SKIN LESION CLASSIFICATION METHODS

More advanced versions of ISIC datasets, such as ISIC 2019 and ISIC 2020 datasets,
also exist, but the primary difference between them and the ISIC 2018 dataset lies in
the number of data. Therefore, we will not delve into the details of these datasets
here. For more information about these datasets, please refer to [27, 92].

SD-198

All of the above datasets are the dermoscopic images dataset, while the SD-198 [104]
is a clinical images dataset (obtained by standard camera or smartphone) for skin
disease recognition. The dataset is collected from DermQuest® and then annotated
by two professional experts. The dataset contains 6,584 images from 198 different
categories, with each category having 60 images at most to maintain the balance of

categories. SD-260 is the large and unbalanced version of SD-260; more details can
be seen in [127].

3.1.2 Related works

Most current SLC methods are based solely on single-image modalities, i.e., Der-
moscopy Images (DI) or Clinical Images (CI). Therefore, to understand the application
of deep learning in skin lesion classification, it is essential to be familiar with single
image-based methods.

However, SLC using clinical images is rare. To facilitate research in this area, [104]
released a large clinical skin diseases dataset, SD-198, as a benchmark for comparing
convolutional neural networks (CNNs) and hand-crafted features. [126] presented
effective feature representations by incorporating dermatologist’s criteria, enhancing
diagnostic performance, and capturing the manifestations of skin lesions. Additionally,
they introduced a new metric called the 'complexity of image category’ to guide
self-paced balanced learning, addressing the class-imbalanced problem in classification
tasks [127]. DL-based methods have significantly improved clinical-image (CI) based
skin lesion classification compared to hand-crafted methods. However, there still
exists a considerable gap between Cl-based and dermoscopy image-based methods
[113, 29]. For instance, in a comparative study by [29], dermoscopy image (DI)-based
CNN models significantly increased the accuracy of skin cancer diagnosis from 75%
to 88% compared to smartphone images.

More researches [8, 94, 74, 33, 41, 111, 128, 73, 37, 59, 77, 131, 134, 109, 132]
is directed towards dermoscopy images (DI) rather than clinical images (CI) due
to two main factors. Firstly, as mentioned earlier, dermoscopy images offer higher

4https://www.dermquest.com/
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diagnostic accuracy compared to clinical images [29]. Secondly, the availability and
high quality of numerous dermoscopy image datasets in challenges organized by
the International Skin Imaging Collaboration (ISIC) also plays a significant role.
Automatic SLC methods, generally based on supervised learning and dermoscopy
images, can be divided into traditional methods and Convolutional Neural Network
(CNN)-based methods. Traditional methods [8, 94, 74] typically consist of two main
steps: 1. Denoising and feature extraction involves using a color constancy algorithm
to eliminate illumination noise and extracting a scale-invariant feature transform
(SIFT) descriptor. 2. Building strong classifiers like AdaBoost, random forest, and
SVM. However, these methods heavily rely on various feature engineering algorithms
and could be more robust against dermoscopy images obtained from different imaging
devices and lighting conditions.

Because of the flexibility of CNN structures and its huge success in the ImageNet
challenge [100, 105], CNN-based methods and their variants have been applied in
many medical image tasks, including skin image analysis. Recently published CNN-
based SLC methods [59, 77, 131, 134, 109, 132] mainly focus on transfer-learning with
fine-tuned techniques, segmentation-classification models, self-attention modules, and
models based on the combination of deep features and handcrafted features. [59] and
[77] fine-tuned a CNN model with the pre-trained weight on ImageNet, and these two
methods outperformed the traditional methods by a large margin. [131] used a fully
convolutional network (FCN) to segment the region of interest (ROI) from dermoscopy
images and then directly classified the cropped images based on the ROI. Several
publications [134] also reported that the segmentation-classification methods achieve a
higher accuracy than other single-classification methods. [134] and [109] replaced the
segmentation model with a self-attention module to prioritize the skin lesion area. This
attention module enhances the classification performance without extra segmentation
labels. [132] adopted the Fisher vector and a CNN model for melanoma classification.
Some other methods [75, 43] use deep ensemble learning advantageously in the skin
lesion classification challenge that was organized by the International Skin Imaging
Collaboration (ISIC). Additionally, [41] presented a progressive transfer learning
method to address the generalization ability problem of fully-supervised methods and
improve recognition performance, where adversarial learning was introduced to learn
invariant attributes. [128] combined several techniques, including DropOut-related
regularization, modified RandAugment, and a multi-weighted new loss, to address
the class-imbalanced problem of skin lesion datasets. [37] explored and integrated
information from different views, including RGB, HSL, and YCbCr, rather than only
the RGB view, thereby enhancing skin lesion classification.
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Fusing single-image modality and
patient’s metadata for skin lesion
classification

4.1 Introduction

Multi-modal information fusion encompasses the integration of data from diverse
sources, aiming to augment machine learning algorithms by capturing complementary
and comprehensive information beyond what single-modality data can offer [6, 54].
In recent years, multi-modal deep learning models have demonstrated considerable
success across various domains beyond medical image analysis [54]. For instance,
[114] devised a multi-modal pipeline merging visual and textual features for social
media video classification. This approach elevated the classification accuracy from
76.4% using a single modality CNN to 88%, showcasing the efficacy of multi-modal
fusion techniques. Similarly, [87] engineered a detection system that amalgamates
image data with Light Detection and Ranging (LiDAR) sensor data for autonomous
driving. This fusion system achieved a 3.7% higher accuracy compared to models
trained solely on single modality data. The success stories of multi-modal information
fusion in non-medical domains have piqued the interest of researchers in the medical
field. The adoption of multi-modal fusion schemes holds the promise of providing
complementary insights and overcoming the limitations of single-modality models.
Notably, recent literature reviews [54] suggest a growing trend towards integrating
image data with electronic health records to tackle challenges that single-modality
models struggle to robustly address, particularly in medical image analysis, including
dermatological image analysis.

Patient demographics represent critical clinical information during dermatological
examinations, especially in scenarios where visual characteristics of skin lesions
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exhibit inter-class similarity and intra-class variation. Clinical metadata, including
age, gender, lesion location, parental background, and skin cancer history, among
others, emerge as pivotal factors in dermatological diagnosis [82].

Numerous studies have explored the fusion of dermoscopy images with patient
metadata [129, 60, 69, 82, 67]. To our knowledge, [129] pioneered the integration of
deep learning models for combining two-modal dermatological images and patient
metadata for skin lesion classification. Subsequent works such as [60] introduced
multi-modal learning networks that fuse image data and patient metadata for multi-
label skin lesion classification. Likewise, [69] developed a deep learning system that
combined multi-view images and metadata to differentiate skin diseases, achiev-
ing performance comparable to dermatologists while outperforming primary care
physicians and nurse practitioners in validation. Despite their noteworthy outcomes,
these methodologies relied on simple feature concatenation to integrate data from
two modalities, potentially overlooking latent relationships between dermatological
images and metadata [84, 67]. Recent research has suggested that concatenation
alone may not fully exploit multi-modal data. Thus, approaches such as Metablock,
Metanet, and Mutual Attention [82, 69, 19] have emerged to extract relevant image
features through attention-based mechanisms, surpassing the performance achieved
by concatenation operations. However, these approaches mentioned above generally
used the joint fusion structure to fuse images and patient metadata. This means that
these methods only learn a joint feature representation of multi-modality data and
neglect to retain the specific characteristics of each modality that has been verified to
be crucial for the multi-modal task [47, 51]. Also, most of the current fusion modules
(fusion operations) only used metadata to enhance the most relevant image features
and did not explore the possibility of using both image and metadata to enhance the
most related features of these two-modality data. Therefore, in our opinion, there
still exists great potential to get more accurate results by designing an improved
fusion approach regarding the overall structure and a multi-modal attention module.

In this study, we propose a novel joint-individual fusion (JIF) framework comple-
mented by a multi-modal fusion attention (MMFA) module to seamlessly integrate
dermatological images and patient metadata. Initially, the JIF structure concur-
rently learns an optimized shared multi-modal feature representation while preserving
modality-specific features. This approach aims to enhance the overall representation
capacity of the data by capturing both shared and distinctive characteristics. Subse-
quently, the MMFA attention module is devised to accentuate the most pertinent
image and metadata features. It achieves this by highlighting the most relevant
features of each modality, leveraging insights from both the modality itself and the
complementary information provided by the other modality. Our proposed method
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underwent rigorous evaluation on three public datasets: namely, the PAD-UFES-20
dataset [83], Seven-Point Check (SPC) dataset [60], and ISIC-2019 dataset [115,
26, 27]. We conducted a comparative analysis with other state-of-the-art fusion
techniques, including the Joint Fusion (JF) structure with Concatenation, Metanet,
Metablocks, and Mutual Attention [84, 67, 82, 19]. Our experimental findings un-
derscore the effectiveness of the JIF-MMFA method in consistently enhancing the
performance of various CNN architectures. Across the different datasets, our method
generally outperformed alternative fusion techniques, highlighting its robustness and
superiority in skin lesion classification tasks.
The method contribution can be summarized as follows:

1. Compared to previous methods that only focus on developing a new fusion
module, we add an idea to improve the performance by exploring more efficient
fusion structures.

2. A new joint-individual fusion (JIF) structure that learns modal-shared and
modal-specific features simultaneously, which can consistently improve the
classification performance of different fusion modules, different backbones, and
different datasets.

3. A new multi-modal fusion attention (MMFA) module that enhances the most
relevant image features and metadata features, where the most relevant features
of a modality will be highlighted by the features from the other modality and
itself.

4. Taking advantage of the JIF structure and MMFA module, we contribute a
JIF-MMFA method, which achieves state-of-the-art performance on multiple
skin disease datasets.

4.2 Method

4.2.1 Notation

For the purpose of skin lesion classification, we frame the fusion of dermatological
images and patient metadata as a multi-class classification task. Each case comprises
an image I'mage, a set of patient metadata Meta, and a ground truth label GT €
{1,2,3,..., N}, where N represents the number of labels. To process the raw image
data Image, we employ a Convolutional Neural Network (CNN) denoted as M; to
extract image features f; € RP’, which represent the last-layer feature maps of the
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Figure 4.1: Overview of joint fusion structure (a) and joint-individual fusion
structure (b), see also sections 2.1 and 2.2. In this figure, the dermatological image
branch is marked in blue, the patient metadata branch is marked in green, and the
fusion branch is marked in yellow. The corresponding forward and gradient flows of
these three branches are also marked in the corresponding color. M7 is the model
to extract image features; M), is the method to extract patient metadata features;
fr, far, and fra are the extracted image features, the extracted metadata features,
and the features integrated by f; and fy, respectively. C, Cys, and Cry, are the
corresponding classifiers of f7, fir, and Fjys, respectively. Py, Py, and Py, are the
predictions obtained from Cj, Cy, and Cyyy, respectively. Ly, Ly, and Ly are the
corresponding loss functions for Cy, Cy, and Cryy, respectively. In this workflow, the
inputs are the dermatological image and the patient metadata, and the outputs are
the predictions P, Py, and Pryy.

CNN. Here, Dy signifies the dimensionality of the image features f;. For the patient
metadata Meta, we utilize one-hot encoding along with multiple Fully Connected
Layers (FCLs) as M)y, to convert the raw data into nonlinear metadata features
fur € RPM where D) denotes the dimensionality of the metadata features fa;. These
two feature extraction processes can be formally expressed as follows:

fr = M;(Image) (4.1)

fu = My (Meta) (4.2)
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Therefore, our objective is to introduce a method denoted as ME, which aims to predict
the probability P of the ground truth label GT belonging to a class ¢ € {1,2,3,..., N},
given the image I'mage and the metadata Meta:

PGT = ME( GT = ¢ ‘ f[, fM) (43)

4.2.2 Joint-Individual Fusion (JIF) structure

To describe the former methods based on the Joint Fusion structure (see Fig. 4.1),
Eq. (4.3) is modified as follows:

P[M = C]M< GT = C | Fl( f[, fM) ) (44)

where C7jp; represents the classifier corresponding to the fused features Fry;, where
Frv = FA(fr, fm), and Fy denotes the fusion module. Py, denotes the prediction
obtained from Cyys. For the proposed Joint-Individual Fusion structure, Eq. (4.3) is
further derived as follows:

Py =Cu(GT = c| FA( fr, fm) )
Pr:=Ci(GT = c| fr)
Py :=Cyu(GT = ¢| fu)
Por = F5( Py, Pr, Py) (4.5)

where C; and C); are the corresponding classifiers of the image features f; and
metadata features f;. P; and P, are the predictions of C; and Cy,. Chyy is a fully
connected layer that is commonly used as a classifier by CNNs to predict the last
feature maps. From Eq. (5.4) and Eq. (4.5), it can be seen that the main differences
between the proposed JIF structure and the JF structure are in Fy, P, and Pyy.
These differences can be further differentiated by two aspects: training and testing.

During the training phase, we employ an intuitive approach where two loss
functions, Ly, and L,;, are incorporated to individually supervise the image branch
(Cr and F M) and the metadata branch (Cy; and F'M,;). This modification alters
the entire gradient flow, facilitating the model to acquire a joint feature representation
while preserving the distinctive features of each modality. As depicted in Fig. 4.1(b),
the gradients from L; (blue) and Ly, (green) direct the image and metadata branches
to maintain their specific representations, f; and fy;, respectively. The loss function
Lyy; optimizes the entire structure, thereby attaining the joint feature representation
F[M .

During the testing phase, given the presence of three classifiers in the JIF structure,
we naturally amalgamate these three predictions at the decision level to enhance
accuracy.
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Figure 4.2: Overview of (a) Metablock and MetaNet, in which the metadata (f)
is used to enhance the image features (f;), and (b) our proposed multi-modal fusion
attention module, in which both image features (f;) and metadata features (fy;) are
enhanced by the features of other modality data and its own features. TF indicates
the transformation operation, a single-layer neural network, in our experiment. AP
refers to the attention operations, such as element-wise multiplication and summation,
and self-attention. C is the concatenation operation. fr,; is the enhanced feature
representation after the fusion module fuses f; and fj,.

4.2.3 Multi-Modal Fusion Attention (MMFA) module

The proposed fusion module aims to enrich both patient metadata features and
image features by leveraging information from both modalities. For instance, image
features can be enhanced not only by metadata features but also by the image
features themselves simultaneously. This approach is grounded in the perspective of
data-driven learning, where integrating more information into the attention/fusion
operation enables the selection of more task-related features, thereby improving the
performance of skin lesion classification.

The MMFA module integrates both mutual attention and self-attention mecha-
nisms to enhance the two-modality data and obtain improved fusion feature vectors.
Subsequently, it incorporates a skip connection to include f7, fys, and the enhanced
feature vectors, thereby constructing the final fused feature vector fry,. This skip
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Figure 4.3: The structure of the Multi-Modal Fusion Attention (MMFA) module.
The MMFA module learns how to enhance both image features (f;) and metadata
features (fys) based on their own features and other modality features simultaneously.
The length of output feature f;j, is the sum of the length of f; and f; in our MMFA
module. gkv is a single-layer neural network, fras is the enhanced feature. fark, farg,
faros f1is f1as 1o, fresfos fvs fI, fg, fi are the intermediate feature vectors in the
attention mechanism, the details about them can be seen in the literature [5, 32]

connection addresses the vanishing gradient problem [45] and harnesses valuable
information from the original feature vectors.

A structural overview of the proposed MMFA module is illustrated in Fig. 4.3,
and its key characteristics can be summarized as follows:

Fiag = Fi(fi, far) = MMFA(f;, far) = MHA(fy, fou fv)) @ Concat(f1, frr)  (4.6)

where C'oncat presents the concatenation operation, which is used to link f; and fy;,
and @ represents the element-wise summation operation.

We follow the paper of [5] and build a multi-head attention block MHA to imple-
ment the self-attention mechanism in the MMFA fusion module, as the effectiveness
of this attention block in processing different modality data (such as sequence data
[5] and vision data [32]) has been shown. .

MHA(fk, fo, fv) = f(Concat(head,(fx, fo, fv), .., headn(fr, fo, fv)))

25



Softmaz((fi)" @ (f5))
NG

where /s represents the scaling factor, ® denotes the element-wise multiplication
operation, and (fi)' signifies the transpose of fi.. Here, the vectors fi, € R,
F}, € R% and f{, € R correspond to the key, query, and value vectors in head;,
respectively. Additionally, dy = d, = d; = s = Dr/h, where dy, d,, and d, denote the
dimensions of the key, query, and value vectors, respectively, and h represents the
number of heads.

head;(fx, fo. fv) = @vr((f)) (4.7)

fx = Concat( fak, frr)
fq = Concat(fug; f1q)
fv = Concat(farw, fro) (4.8)

Where k, g, and v represent a type of single-layer neural network, serving as an
intuitive means to conduct non-linear transformations on feature maps within deep
learning architectures. The transformations k,;, qas, and vy, are employed to convert
the metadata features to possess identical structures (i.e., the same input and output
feature numbers) but with distinct parameters. Conversely, k7, qr, and vy share the
same structure and are utilized to transform the image features.

f1a> fiis fro := D(qkvr(fr)) = D(BN(f; @ Wr + br))

Faags Py farw := D(qkon(far)) = D(BN (far @ War + bar)) (4.9)

Where Wy, € REm*dmeta and b, € R%meta are the weights and biases of ks, while
W € RErXdimg and b; € R%ms are the weights and biases of k;. D means divide
operation that equally divides the output of gkv into thirds, i.e., key, value, and query
features. BN indicates the batch normalization operation [55]. fx € RP*, fo € RPs
and fy € RPv are the query, key and value feature vectors in the self-attention
mechanism, where Dy, = D, = D, = djmg + dpeta-

nn(x) is a single-layer neural network like &, ¢, and v, but with a different structure
and parameters. nn(z) is defined as:

nn(z) = BN(x @ W™ + ™) (4.10)
where W/ € RPr>xLitham and b/ € RE1+EM are the weights and biases.
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4.3 Experiments

In this section, we evaluate the performance of our joint-individual fusion structure and
multi-modal attention module. We conduct experiments using five CNN architectures
and evaluate them on three established datasets. The section will cover the datasets
used, implementation details, experimental results, and subsequent discussions. We
will proceed by introducing each aspect in sequence.

4.3.1 Datasets

Three public skin lesion classification datasets with both dermatological images
and patient metadata, PAD-UFES-20 [83], Seven-Point Checklist (SPC) [60], and
ISIC-2019 [115, 26, 27|, are used for the performance evaluation:

PAD-UFES-20 dataset comprises 2298 patient cases, encompassing clinical
images captured via smartphone devices and accompanied by 21 metadata entries.
These metadata entries include age, gender, skin history, parent’s background, among
others. This dataset is used to classify six classes of skin lesions: Seborrheic Keratosis
(SEK), Melanoma (MEL), Nevus (NEV), Basal Cell Carcinoma (BCC), Squamous
Cell Carcinoma (SCC), and Actinic Keratosis (ACK).

Seven-Point Checklist (SPC) dataset consists of 413 training cases, 203
validation cases, and 395 testing cases. Each case includes dermatological image data
along with 14 metadata entries, encompassing information such as gender, location
of the skin lesion, management, and features of the seven-point checklist. The SPC
dataset mainly has five types of skin lesions, including MEL, NEV, SEK, BCC, and
Miscellaneous (MISC).

ISIC-2019 dataset comprises 25,331 dermoscopy images, with each image linked
to three clinical features: location, gender, and age. This dataset has eight types
of skin lesions: MEL, NEV, BCC, ACK, Vascular Lesion (VAL), Benign Keratosis
(BK), Dermatofibroma (DF), and Squamous Cell Carcinoma (SCC).

For the PAD-UFES-20 dataset and the ISIC-2019 dataset, we adhere to the
methodology outlined in the paper by [82], employing a five-fold cross-validation
approach stratified by the frequency of classes to evaluate our method. Regarding the
SPC dataset, we utilize the division provided by the dataset creator, which includes
predefined training, validation, and testing subsets. For a more robust analysis of the
SPC dataset, we train all the models five times and get the average and standard
deviation values for the comparisons.
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4.3.2 Implementation Details

In this paper, we evaluated the proposed method on the three datasets and conducted
four performance comparisons on each dataset. First, to demonstrate the effectiveness
of patient metadata, we compared methods using both images and metadata with
those using only image data. Then, to illustrate the superiority of our method,
we compared the proposed JIF-MMFA method with other current fusion methods.
Finally, to highlight the effectiveness of the JIF structure and the MMFA module, we
separately compared the JIF structure with the Joint Fusion (JF) structure and the
MMFA module with other fusion modules.

For the comparisons, we employed five CNN backbones: Mobilenet-v2 [95],
Efficientnet-B3 [107], Resnet-50 [45], Densenet-121 [52], and Xception [24]as M,
to evaluate the generalization ability of the fusion methods for those CNNs. We
utilized commonly used metrics such as balanced accuracy (BAC), accuracy (ACC),
and area under the curve (AUC) for performance evaluation. The BAC value was
chosen as the ranking metric [82], and the main paper tables display the performance
based on the BAC value. Other metrics are available in the supplementary materials.

All models were initialized with pre-trained weights from ImageNet [30] and
fine-tuned on the three skin lesion classification datasets for 150 epochs. We used
an SGD optimizer with an initial learning rate of 0.005 and a CosineAnnealingL.R
schedule in PyTorch. Training stopped early if the model’s validation BAC value did
not improve for 30 consecutive epochs. Given the imbalanced nature of the dataset,
we follow the paper of [82] that employed class-weighted cross-entropy as the loss
function.

In our JIF structure, we utilized three-branch loss functions: L;, Ly, and Ljy.
During training, the goal of the JIF structure was to minimize the total loss function
Liota = B Ly + (1 — B) % Las + Lyps, where [ represents the weight of each modality
in the training process. We set  to 0.5 to consider the two-modality data equally
important.

All images were resized to 224 x 224 x 3 and with a batch size of 128 before
training, and common data augmentations such as horizontal and vertical flipping,
shifting, rotation, and scaling were applied to expand the datasets. Test-time aug-
mentation, including flipping and rotation, was also used to improve the performance.
The Python libraries Pytorch [85], Sklearn [86], Numpy [44], and Albumentation [18§],
were used to build our workflow, including model design, data loader, training and
testing flows.
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4.3.3 Experiments results

To simplify the description in the following text, we use the following abbreviations:
JF: Joint Fusion; JIF: Joint-Individual Fusion; OFB: Only fusion branch; FS:
Fusion structure; Cat: Concatenation; MB: Metablock; MIN: MetaNet; MMFA:
Multi-Modal Fusion Attention. Also, we concatenate these abbreviations to name
the employed fusion methods. For example, we abbreviate our Joint-Individual
Fusion (JIF) structure with multi-modal fusion attention (MMFA) as JIF-MMFA
and the Joint Fusion structure (JF) with metablock (MB) as JF-MB. Additionally,
JIF-MMFA (OFB) denotes the result only from the Py of the JIF-MMFA method;
while JIF-MMFA (All) denotes the result by averaging the three predictions P,
Py, and Py of the JIF-MMFA method (see Fig. 4.1(b)).

In Table 4.1, Table 4.2, and Table 4.3, we present the performance comparisons
between our method and other existing methods. We showcase the mean value
and standard deviation of the BAC metric, aiming to illustrate the effectiveness of
utilizing metadata, the superiority of our proposed method, and ablation studies
of our JIF-MMFA. Then, Table 4.4, Table 4.5, and Table 4.6 provide the results of
the Wilcoxon test for the methods outlined in Table 4.1, Table 4.2, and Table 4.3,
respectively. This analysis offers a further comparison of these methods in terms of
their statistical differences. Moreover, Table 4.7, Table 4.8, and Table 4.9 individually
depict the experimental outcomes of the JIF structure and the JF structure with

different fusion modules. These tables analyze the effectiveness of the JIF structure
and the MMFA Module.

Table 4.1: Performance comparisons between JIF-MMFA and other methods on the
PAD-UFES-20 dataset in terms of BAC. F'S: Fusion structure; C'at: Concatenation;
M B: Metablock; M N: MetaNet; M A: Mutual Attention, M M F A Multi-Modal Fu-
sion Attention. JF': Joint Fusion Structure, JIF": Joint-Individual Fusion Structure.

FS JF JIF
Image

CNN CAT MB MN MA | MMFA|MMFA(OFB)| MMFA/(All)
densenet |68.9+2.6|73.841.4|72.4£2.1|68.6+2.2|76.0+2.3|75.6£1.7 78.0£2.0 77.7£1.8
mobilenet |67.1+1.5|73.7£1.2|70.1£3.7|69.1+3.0| 75.0£1.6 | 75.2£1.6 T4.7£1.4 75.6+0.7

resnet |66.14+1.572.9£1.7|72.1+1.6|68.843.0|73.3£1.6|73.6+2.4 76.0+1.2 76.4+1.5

effnet |64.6£1.4|76.8+1.4|71.442.2|65.4£2.0|74.8+£2.0|76.0+1.8 78.8£1.6 79.8+1.4
zception |68.3+£1.5|73.8+£1.9|70.1£1.6(66.8+1.3|73.54+2.9|74.1£3.0 75.9£1.4 76.3+1.2
Average |67.042.3|74.24£2.0|71.2+2.6|67.84+2.8|74.5+2.4|74.9+2.3 76.7£2.2 77.2+2.0
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Table 4.2: Performance comparisons between JIF-MMFA and other methods on
the SPC dataset in terms of BAC. F'S: Fusion structure; C'at: Concatenation; M B:
Metablock; M N: MetaNet; M A: Mutual Attention, M M F A Multi-Modal Fusion
Attention. JF': Joint Fusion Structure, JIF': Joint-Individual Fusion Structure.

FS JF JIF
Image

CNN CAT MB MN MA | MMFA |MMFA(OFB)| MMFA/(All)
densenet |54.9+£2.9| 61.1+2.2 |67.44+0.6{57.5£1.9]69.5+3.3|72.3+2.6 70.9£2.3 73.1+2.6
mobilenet|57.44+4.8| 70.3£1.2 {69.3£0.9|60.244.0|70.4£0.9|69.4+3.7 72.1£4.9 73.1+3.9

resnet |53.7£4.2| 62.8£5.1 |67.8£1.8|55.0£2.2|65.7+3.0|67.5+2.6 70.0£2.7 70.41+2.6

effnet |55.0£1.4| 73.2£2.3 |68.2+2.3|55.14+2.4|70.0£1.9|70.84+1.2 71.242.0 74.0£1.1
zception |55.7+3.7|72.84+2.2|67.0+£1.4|57.44+3.0(68.9£3.4|68.1£2.8 70.6£2.0 71.54+2.7
Average |55.4+3.8| 68.14£5.9 [68.0£1.7|57.1+3.4|68.9£3.1|69.6+3.2 71.0£3.1 72.4+3.0

Table 4.3: Performance comparisons between JIF-MMFA and other methods on the
ISIC-2019 dataset in terms of BAC. F'S: Fusion structure; C'at: Concatenation; M B:
Metablock; M N: MetaNet; M A: Mutual Attention, M M F A Multi-Modal Fusion
Attention. JF': Joint Fusion Structure, JIF: Joint-Individual Fusion Structure.

FS JF JIF
Image

CNN CAT MB MN MA | MMFA |MMFA(OFB)| MMFA/(All)
densenet |81.8+0.5|83.3+1.0{82.9£0.5(82.9+1.6|82.44+1.1|82.4£0.7 84.8+1.1 84.6+0.9
mobilenet |80.3+1.7|83.0£0.7|82.9£1.0|83.44+0.2|81.840.6 | 81.6£1.2 85.0+1.5 84.8+1.4

resnet |81.540.4(82.7£1.1|83.4+0.4|83.440.8|65.5+£9.4|68.84+5.3 83.7+0.5 83.7+0.3

effnet |79.440.7/80.240.5|79.3+1.7|79.6+0.7|81.9+1.2|80.8+1.5 82.6+0.6 82.5+0.7
zception |79.2+1.4|79.840.9|78.24£0.6(79.0+£0.4|82.1+1.4|81.1£1.5 82.54+0.3 82.7+0.3
Average |80.44+1.5|81.841.7|81.3+2.3|81.74£2.1|78.7+£7.9|78.945.8 83.8+1.4 83.7£1.3
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Table 4.4: The results of the statistical test (Wilcoxon pair-wise test) for all the
methods on the PAD-UFES-20 dataset. The P4, > 0.05 is highlighted in bold.

Model-Pairs P_value Model-Pairs P_value
Image - JF-CAT 5.96E-08 JF-MB - JF-MA 1.01E-05
Image - JF-MB 2.56E-06 JF-MB - JF-MMFA 1.13E-06
Image - JF-MN 0.2635 JF-MB - JIF-MMFA (OFB) 1.19E-07
Image - JF-MA 1.19E-07 JF-MB - JIF-MMFA (All) 1.19E-07

Image - JF-MMFA 1.19E-07 JF-MN - JF-MA 5.96E-08
Image - JIF-MMFA (OFB) |5.96E-08 JF-MN - JF-MMFA 1.79E-07
Image - JIF-MMFA (All) | 5.96E-08 JF-MN - JIF-MMFA (OFB) 1.19E-07
JF-CAT - JF-MB 6.37E-05 JF-MN - JIF-MMFA (All) 5.96E-08
JF-CAT - JF-MN 1.19E-07 JF-MA - JF-MMFA 0.5249
JF-CAT - JF-MA 0.3957 JF-MA - JIF-MMFA (OFB) 0.000714958
JF-CAT - JF-MMFA 0.2411 JF-MA - JIF-MMFA (All) 2.21E-05
JF-CAT - JIF-MMFA (OFB) | 2.21E-05 JF-MMFA - JIF-MMFA (OFB)  |0.004175186
JF-CAT - JIF-MMFA (All) |1.19E-07 JF-MMFA - JIF-MMFA (All) 0.000216901
JF-MB - JF-MN 8.80E-05 | JIF-MMFA (OFB) - JIF-MMFA (All){0.001815677

Table 4.5: The results of the statistical test (Wilcoxon pair-wise test) for all the
methods on the SPC dataset. The P4 > 0.05 is highlighted in bold.

Model-Pairs P_value Model-Pairs P_value
Image - JF-CAT 4.17E-07 JE-MB - JF-MA 0.1073
Image - JF-MB 5.96E-08 JF-MB - JE-MMFA 0.0236
Image - JF-MN 0.1135 JF-MB - JIF-MMFA (OFB) 1.83E-05
Image - JF-MA 5.96E-08 JF-MB - JIF-MMFA (All) 1.79E-07

Image - JF-MMFA 5.96E-08 JF-MN - JF-MA 5.96E-08
Image - JIF-MMFA (OFB) | 5.96E-08 JE-MN - JF-MMFA 5.96E-08
Image - JIF-MMFA (All) 5.96E-08 JF-MN - JIF-MMFA (OFB) 5.96E-08
JF-CAT - JF-MB 0.832509398 JF-MN - JIF-MMFA (All) 5.96E-08
JF-CAT - JF-MN 1.79E-07 JF-MA - JF-MMFA 0.3123
JF-CAT - JF-MA 0.6915 JF-MA - JIF-MMFA (OFB) 0.0088
JF-CAT - JF-MMFA 0.4578 JF-MA - JIF-MMFA (All) 1.23E-05
JF-CAT - JIF-MMFA (OFB)| 0.0255 JF-MMFA - JIF-MMFA (OFB) 0.1073
JF-CAT - JIF-MMFA (All) 0.0022 JF-MMFA - JIF-MMFA (All) 7.50E-05
JF-MB - JF-MN 5.96E-08 |JIF-MMFA (OFB) - JIF-MMFA (All)|4.54E-05

31



&t @ gt @ JRCNG S TR SC Y B S R S Y

071 0.14 0.02 0.02 011 0.01 0.82 0.7 0.01 0.01 009 0.0 0.83 0.04 001 0.03 0.06 0.03
o o« o«
013 076 0.01 0.05 0.05 0.0 0.1 083 0.0 0.04 0.03 0.0 0.09 082 0.2 0.03 0.03 0.0
ey Ko e
E0.0G 0.03 0.7 013 0.03 0.04 o 20.07 0.01 073 0.16 0.02 0.02 o E 01 0.02 071 012 0.02 0.04 @
s h s W s b
H H H
£ 0.03 0.09 011 0.69 0.02 0.07 4} £ 0.01 006 0.17 072 0.01 0.03 ‘:?} £ 01 0.09 017 0.61 0.01 0.02 9?}
032 028 0.0 00 039 001 043 014 00 00 043 0.0 03 0.06 004 0.07 053 001
o« o« o«
0.04 0.0 0.04 004 00 088 002 0.0 0.6 002 00 09 01 006 00 00 00 084
e W W
Predicted label Predicted label Predicted label
(a) Image (b) JF-CAT (c) JF-MB
C N C N \ C N
@ ot B N e R S 2 o© ot @t
0.78 0.09 0.02 0.02 0.09 0.0 085 0.04 0.01 00 009 0.0 0.86 0.05 0.01 0.01 0.07 0.0
o« o« o«
0.16 073 0.01 0.05 0.05 0.0 0.09 0.84 0.02 0.03 002 0.0 0.08 0.84 0.01 0.04 002 0.0
o ot W
9008 001 07 017 002 002 N 9004 00 077 012 004 003 N 9)007 002 076 008 002 0.05 N
£ S S ©
S S S
£ 0.03 005 013 076 0.0 0.03 (’d\ £ 0.03 004 02 067 001 0.04 6?"{\ £ 0.04 0.05 0.19 0.69 0.01 0.03 6‘?}
045 02 00 00 035 0.0 038 01 00 00 052 0.01 042 008 00 00 05 0.0
o« o« o
00 00 016 004 00 08 0.02 0.02 0.06 002 0.0 0.88 0.02 0.0 0.04 0.02 00 0092
e W e
Predicted label Predicted label Predicted label
(d) JE-MN (¢) JE-MMFA (f) JP-MA
&t @ o &t @ ot
0.87 0.05 0.0 0.01 007 0.0 %L(, 0.85 0.04 001 0.0 0.09 00 %‘5’
0.08 0.84 0.01 0.04 003 0.0 Pd‘ 0.09 0.84 0.02 0.3 002 00 P~d~
8/007 00 08 011 001 002 ‘\?,‘l 8004 00 077 012 0.04 003 $@
5 s
S S
£ 0.02 005 015 077 0.0 0.01 ‘7?} £ 0.03 004 02 0.67 0.01 0.04 c)ﬁ*
043 01 0.0 00 046 0.01 c)C(’ 038 01 00 0.0 052 001 "')(’C
0.02 002 0.2 00 00 094 Q\V} 0.02 0.02 006 0.02 00 088 ﬁ\@'
Predicted label Predicted label

Figure 4.4: The confusion matrix of the methods in Table 4.1 considering DenseNet-
121 on the PAD-UFES-20 dataset. BCC: Basal Cell Carcinoma; ACK: Actinic
Keratosis; NEV: Nevus; SEK: Seborrheic Keratosis; MEL: Melanoma; SCC: Squamous
Cell Carcinoma. See also sections 3.3.2 and 4.2.
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(g) JIF-MMFA (OFB) (h) JIF-MMFA (Al

Figure 4.5: The T-SNE figures of the methods in Table 4.1 considering DenseNet-
121 on the PAD-UFES-20 dataset. Here, 0-BCC: Basal Cell Carcinoma, 1-ACK:
Actinic Keratosis, 2-NEV: Nevus, 3-SEK: Seborrheic Keratosis, 4-SCC: Squamous
Cell Carcinoma and 5-MEL: Melanoma. See also sections 3.3.2 and 4.2.
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Table 4.6: The results of the statistical test (Wilcoxon pair-wise test) for all the
methods on the ISIC-2019 dataset. The P, > 0.05 is highlighted in bold.

Model-Pairs P_value Model-Pairs P_value
Image - JF-CAT 6.56E-06 JF-MB - JF-MA 0.8119
Image - JF-MB 0.0309 JF-MB - JF-MMFA 0.4742
Image - JF-MN 0.0025 JF-MB - JIF-MMFA (OFB) 2.56E-06
Image - JF-MA 0.3254 JF-MB - JIF-MMFA (All) 3.28E-06

Image - JF-MMFA 0.7712 JE-MN - JF-MA 0.6528
Image - JIF-MMFA (OFB) | 5.96E-08 JF-MN - JF-MMFA 0.2411
Image - JIF-MMFA (All) | 5.96E-08 JF-MN - JIF-MMFA (OFB) 1.23E-05
JF-CAT - JF-MB 0.1730 JF-MN - JIF-MMFA (All) 1.23E-05
JF-CAT - JF-MN 0.4578 JF-MA - JF-MMFA 0.6915
JF-CAT - JF-MA 0.4108 JF-MA - JIF-MMFA (OFB) 5.39E-05
JE-CAT - JF-MMFA 0.0957 JF-MA - JIF-MMFA (All) 1.83E-05
JF-CAT - JIF-MMFA (OFB) | 5.25E-06 JF-MMFA - JIF-MMFA (OFB) 1.13E-06
JF-CAT - JIF-MMFA (All) |2.56E-06 JF-MMFA - JIF-MMFA (All) 5.96E-07
JF-MB - JF-MN 0.1485 |JIF-MMFA (OFB) - JIF-MMFA (All)| 0.6073

Effectiveness of using patient’s metadata

The experiments in this section demonstrate the effectiveness of using patient metadata
in addition to image data. As depicted in Table 4.1, Table 4.2, and Table 4.3, models
that incorporate metadata achieve higher BAC values compared to those that rely
solely on image data across all three datasets. Particularly, the proposed JIF-MMFA
(All) method leads to a significant improvement for all five CNN backbones and
multiple datasets.

When comparing models using only images to those incorporating metadata, the
JIF-MMFA (All) method demonstrates substantial enhancements. Specifically, it
elevates the average BAC value from 67.0% +2.3% to 77.2%+2.0% on the PAD-UFES-
20 dataset, 55.4% % 3.8% to 72.4% =+ 3.0% on the SPC dataset, and 80.4% =+ 1.5% to
83.7% + 1.3% on the ISIC-2019 dataset. However, JF-MN only gets a slight increase
of 0.8% on the PAD-UFES-20 dataset.

These results underscore that fusing patient metadata with images can enhance
performance, with the degree of improvement varying based on the fusion methods
employed. Our proposed JIF-MMFA method demonstrates the most significant
improvement, highlighting its effectiveness in leveraging both image and metadata
information for skin lesion classification.
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Table 4.7: Performance comparison of different fusion structures (FS) with different
fusion modules and CNN backbones on the PAD-UFES-20 dataset in terms of the
BAC value. The highest are highlighted in bold for each row. F'S: Fusion structure;
Cat: Concatenation; M B: Metablock; M N: MetaNet; M A: Mutual Attention,
M MF A Multi-Modal Fusion Attention. JIF (OFB): the result only from the Pry, of
the JIF structure; JIF (All): the result by averaging these three predictions P, Py
and Prys of the JIF structure. (numbers in %)

FS JIF (OFB) JIF (ALL)

CNN CAT MB MN MA | MMFA | CAT MB MN MA MMFA

densenet |73.4+£1.4|72.742.1|67.3£2.8|75.7£1.3|78.04+2.0| 74.0£1.2|74.8+1.3|69.7+2.0| 76.3+1.5 | 77.7£1.8

mobilenet | 74.7£2.5|71.7£3.8|68.5+1.9|75.7£0.8 | 74.7£1.4 |75.7+£2.8|73.6+2.1|71.1£1.2|76.9£1.2| 75.6+0.7

resnet |73.2£1.4|71.3£2.9]69.7+1.8|75.1£1.9| 76.0£1.2 |73.94£1.6 |73.4£0.7|71.5+2.2| 75.4£1.8 |76.4+1.5

effnet |76.6£1.9|69.8+2.3|65.7+0.4|75.0£1.8| 78.8£1.6 |77.3+1.5|72.7£1.4|71.14£2.3| 77.0+£1.3 |79.8£1.4

zception |74.2+1.4|70.54+0.4|65.24+2.8|75.3£2.2| 75.9£1.4 |74.8£1.6|72.9£0.9|68.84+2.7| 75.6+1.8 | 76.3£1.2

Average |74.4£2.2|71.242.7\67.3+2.7|75.4£1.7| 76.7£2.2 |75.14£2.2|73.54+1.5|70.4+£2.4| 76.3£1.7 |77.24+2.0

Performance comparison between our JIF-MMFA method and other
fusion methods

In this part, we examine the performance enhancement achieved by the JIF structure
and the MMFA module in our JIF-MMFA method through an ablation study. We
compare the performance of JF-MMFA, JIF-MMFA (OFB), and JIF-MMFA (All) to
assess the impact of different components. Subsequently, we compare the proposed
JIF-MMFA approach with other fusion methods (JF-CAT, JF-MB, and JF-MN)
across the three datasets.

Firstly, in contrast to the JF structure, our JIF structure conserves the distinctive
properties of each modality to facilitate a more refined joint feature presentation,
seamlessly integrating multi-modal information at the decision-making stage. To
ascertain the performance enhancements attributable to these dual factors, we juxta-
pose the outcomes derived from the singular fusion branch (OFB) Py of the JIF
structure (JIF-MMFA (OFB)), against the collective average of all three predictions of
the JIF structure (JIF-MMFA (All)): Pry, Prand Py (see Fig. 4.1(b)), see Table 4.1,
Table 4.2, and Table 4.3. Compared with JF-MMFA, JIF-MMFA (OFB) elevates the
averaged BAC value from 74.9% +2.3% to 76.7%=+2.2% on the PAD-UFES-20 dataset,
from 69.6% =+ 3.2% to 71.0% =+ 3.1% on the SPC dataset, and from 78.9% + 5.9%
to 83.7% £ 1.3% on the ISIC-2019 dataset. Notably, JIF-MMFA (All) marginally
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Table 4.8: Performance comparison of different fusion structures (FS) with different
fusion modules and CNN backbones on the SPC dataset in terms of the BAC value.
The highest BAC values are highlighted in bold for each row. F'S: Fusion structure;
Cat: Concatenation; M B: Metablock; M N: MetaNet; M A: Mutual Attention,
M MF A Multi-Modal Fusion Attention. JIF (OFB): the result only from the Pry, of
the JIF structure; JIF (All): the result by averaging these three predictions P, Py
and Prys of the JIF structure. (numbers in %)

FS JIF (OFB) JIF (ALL)

CNN CAT MB MN MA |MMFA| CAT MB MN MA MMFA

densenet |64.4+4.1|69.842.9|56.5+£4.4|69.4+£4.3|70.9+2.3| 66.1+3.9 | 73.0£2.1 |60.9£4.3| 70.8£3.5 |73.1+2.6

mobilenet|68.0£2.4|68.9£1.8|62.54+2.9|74.5£2.3|72.1+£4.9| 68.9£1.9 | 72.24+1.9 |65.6+2.9|75.0+2.8| 73.1£3.9

resnet |61.1£1.8|68.7+2.5|53.943.2|68.3+3.9|70.0£2.7| 63.6£2.4 | 71.7+3.0|60.4£2.7| 69.1£3.4 | 70.4%2.6

effnet |74.7£1.3169.7£2.1|53.4+4.0|70.842.2|71.242.0|75.1£1.4| 71.6+1.3 |65.9+2.0| 72.2+1.8 | 74.0+1.1

zception |70.6£1.6/67.5+1.1|58.0+1.8|72.5+1.6|70.6£2.0| 71.3£1.8 | 68.9£0.9 |66.9£1.4|73.0+1.9| 71.5+2.7

Average |67.7£5.3|68.9£2.3|56.9+4.7|71.1£3.8|70.9£3.1| 69.0+4.7 | 71.5+2.4 |63.9+3.9| 72.14+3.4 |72.4+3.0

surpasses JIF-MMFA (OFB) in average BAC across these three datasets. These find-
ings underscore that the enhancements in JF-MMFA and JIF-MMFA predominantly
stem from the retention of modality-specific features, thereby facilitating a superior
joint feature representation with minimal influence from the decision-level fusion of
multi-modal data.

Secondly, we juxtapose JIF-MMFA against other fusion methodologies: Joint
Fusion structures employing Concatenation (JF-CAT), Metablock (JF-MB), Metanet
(JF-MN), and Mutual Attention (JF-MA) [67, 84, 82, 19]. Our proposed JIF-MMFA
(All) method surpasses all other methods across all datasets based on the average BAC
value. In comparison to prior techniques, JIF-MMFA (All) notably demonstrates
significant enhancements on both the PAD-UFES-20 and SPC datasets, exhibiting
an increase of 2.7% in averaged BAC value compared with the second-best method
(JF-MA) on the PAD-UFES-20 dataset (see Table 4.1), and an increase of 3.5% on
the SPC dataset (see Table 4.2), Also, concerning the ISIC-2019 dataset, JIF-MMFA
(OFB) (83.7% £ 1.3%) achieves an increase of 1.9% in averaged BAC value compared
with the second-best method (JF-CAT 81.8% =+ 1.3%), underscoring the advantageous
nature of our approach.

The Friedman test and subsequent Wilcoxon test were conducted for statistical

analysis, employing a significance level of p = 0.05. The Friedman test yielded p values
of approximately 1.99 x 10724, 8.71 x 10723, and 1.06 x 107!2 on the PAD-UFES-20
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Table 4.9: Performance comparison of different fusion structures (FS) with different
fusion modules and CNN backbones on the ISIC-2019 dataset in terms of the BAC
value. The highest are highlighted in bold for each row. F'S: Fusion structure; Cat:
Concatenation; M B: Metablock; M N: MetaNet; M A: Mutual Attention, MM F A
Multi-Modal Fusion Attention. JIF (OFB): the result only from the Pry of the JIF
structure; JIF (All): the result by averaging these three predictions Pr, Py; and Pryy
of the JIF structure. (numbers in %)

FS JIF (OFB) JIF (ALL)

CNN CAT MB MN MA MMFA | CAT MB MN MA MMFA

densenet |82.4+0.6|82.841.1|81.3£1.7|84.3£0.3 |84.8+1.1(82.440.7|82.4£1.0|81.6£1.7|84.5+0.4 | 84.6+£0.9

mobilenet|81.84+0.7(81.7£1.5|82.0+0.3|85.6£0.3 | 85.04+1.5 {81.9£0.8|81.4+1.2|82.0+0.6(85.7+0.2| 84.8+1.4

resnet |82.8£0.2]82.0+0.7|81.7+1.0|84.3+0.7| 83.7+0.5 |82.8+0.4|81.54+0.7|82.0£1.1|84.1£0.5 | 83.7+0.3

effnet |79.0£1.6]79.6£1.0|78.6+1.0|82.5£0.5 {82.6+0.6|79.0£1.7|79.940.7|79.1+1.0|{82.7+0.9| 82.5+0.7

zception |78.6+£1.3|79.0+0.9|78.0+0.7|82.3£0.3 | 82.540.3 | 78.7£1.3|79.0+0.8|78.54+0.5|82.2+0.4 |82.74+0.3

Average |80.9£2.0(81.0+£1.8/80.3+2.0/83.84+1.3|83.8+1.4|80.9£2.1|80.9+1.5|80.6+1.9|83.84+1.3| 83.7£1.3

dataset, the SPC dataset, and the ISIC-2019 dataset, respectively. Consequently, the
Wilcoxon test (two-sided) was carried out, and the results are presented in Table 4.4,
Table 4.5, and Table 4.6. Examination of these tables reveals that on the PAD-UFES-
20 and SPC datasets, the model pairings involving our JIF-MMFA (ALL) against
previous methods (JF-CAT, JF-MB, JF-MN, JF-MA) all returned values exceeding
0.05, indicating superior performance of JIF-MMFA (ALL) relative to these methods.
[lustrations of the confusion matrix and T-SNE plot for various fusion methods are
depicted in Fig.4.4 and Fig.4.5. Given the abundance of 15 confusion matrices and
T-SNE figures, we opted to showcase the results specifically for DenseNet-121 on the
PAD-UFES-20 dataset due to its lightweight nature and widespread use as a CNN
backbone in deep learning, presenting a fair performance in our experiments. An
observation can be made regarding the correlation between Fig.4.4 and Fig.4.5: a
higher misclassification rate between two types of skin diseases in Fig.4.4 corresponds
to a closer distance between the corresponding two types in Fig.4.5. For instance,
with our JIF-MMFA (All) model, 38% of SCC cases are predicted as BCC in Fig.4.4
(g). Consequently, the cluster between 0 (BCC) and 4 (SCC) is difficult to distinguish
in Fig.4.5. Conversely, no BCC cases were predicted as NEV and SEK in Fig.4.4
(g), resulting in a clear separation between the clusters representing 0 (BCC) and
2 (NEV), 3 (SEK) in Fig.4.5. This distinction arises from the features utilized for
T-SNE analysis, which comprise the final feature vector of the fusion method, which
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is directly utilized for prediction.

Effectiveness of Joint-Individual Fusion (JIF) structure

To further assess the efficacy of our JIF structure, we conduct a comparative analysis
between the JIF structure and the JF structure utilizing four distinct fusion modules,
as outlined in Table 4.7, Table 4.8, and Table 4.9. Upon examining the results
on the PAD-UFES-20 dataset (refer to Table 4.7), it is evident that the JIF (All)
structure enhances the performance of all four fusion modules in terms of the average
BAC value. Additionally, the JIF (OFB) structure demonstrates improvement in 3
out of 4 fusion modules, except for the Metanet, compared with the JF structure.
Similar trends are observed for the SPC dataset, as depicted in Table 4.8. Both
the JIF (All) and JIF (OFB) structures exhibit enhancements across all four fusion
modules compared to the JF structure. On the ISIC-2019 dataset (see Table 4.9),
JIF (All) and JIF (OFB) improve the performance of the MA fusion module from
78.7% + 7.9% to 83.8% + 1.3% and to 83.8% =+ 1.3%, respectively, and MMFA fusion
module from 78.9% + 5.5% to 83.6% + 1.3% and to 83.8% =+ 1.2%, respectively, while
degenerating the performance of MN fusion module from 81.7% £ 2.1% to 80.3% 2.0
and to 80.6% =+ 1.9%, respectively, and the CAT fusion module from 81.8% 4+ 1.7% to
80.9% =+ 2.0 and 80.9% =+ 2.1%, respectively.

In conclusion, when compared to the JF structure, the JIF (All) structure con-
sistently improves all fusion modules across the PAD-UFES-20 and SPC datasets,
which encompass a wider array of metadata types, as evidenced by the increased
averaged BAC value. However, its impact on the ISIC-2019 dataset, which features
fewer types of metadata, is varied, except for the MA and MMFA modules. This
observation underscores the JIF structure’s capacity for generalization across all
fusion modules on datasets rich in metadata. Furthermore, these findings suggest
that our JIF structure may exhibit diminished effectiveness for certain fusion mod-
ules—particularly those relying solely on metadata to enhance image features or
perform basic transformations—when applied to datasets with limited metadata.

Effectiveness of Multi-Modal Fusion Attention (MMFA) Module

To demonstrate the efficacy of the proposed MMFA module, we conduct comparisons
with three other fusion modules (CAT, MB, MN, and MA) across various fusion
structures and datasets. As illustrated in Table 4.1 and Table 4.2, as well as Table 4.7
and Table 4.8, our MMFA module consistently achieves the highest average BAC
value across all three fusion structures: JF, JIF (OFB), and JIF (All). Specifically,
on the PAD-UFES-20 dataset, the BAC values arethe BAC values are 74.9% =+ 2.3%,
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76.7% 4 2.2%, and 77.2% =+ 2.0%, respectively, while on the SPC dataset, they are
69.6% £3.2%, 71.0% £ 3.1%, and 72.4% £ 3.0%, respectively. As depicted in Table 4.3,
when combined with the JF structure on the ISIC-2019 dataset, MA exhibits the
lowest BAC value of 78.7% =+ 7.9% and MMFA achieves the second-lowest BAC value
of 78.9% =4 5.8%. However, Table 4.9 reveals a shift in performance, with both MA
and MMFA securing the top two rankings in terms of BAC value when integrated
with the JIF (OFB) (83.8% + 1.3% and 83.8% + 1.4%) and JIF (All) (83.8% + 1.3%
and 83.7% £ 1.3%) structures.

4.4 Discussion

4.4.1 Effectiveness of using patient’s metadata

The comparative analysis presented in Table 4.1, Table 4.2, and Table 4.3 reveals
notable disparities in performance between models utilizing metadata and those that
do not. Specifically, JIF-MMFA (All) exhibits substantial improvements on the PAD-
UFES-20 dataset and the SPC dataset while showcasing only marginal enhancements
on the ISIC-2019 dataset. We attribute these differences to the varying richness of
metadata across the datasets. The PAD-UFES-20 and SPC datasets boast 21 and
14 metadata features, respectively, which likely contribute significantly to model
performance. Conversely, the ISIC-2019 dataset offers limited patient metadata, such
as age, location, and gender, which may not carry as much predictive value.

4.4.2 Performance comparison between our JIF-MMFA
method and other fusion methods

Indeed, JIF-MMFA (All) demonstrates remarkable performance across a majority of
the CNN scenarios, achieving the highest BAC value in 12 out of 15 cases. Notably,
in the remaining three scenarios where it does not attain the top spot (Xception on
the SPC dataset, and Resnet-50 and Efficientnet-B3 on the ISIC-2019 dataset), JIF-
MMFA (All) still showcases comparable performance with the best fusion methods.
This underscores the generalization ability of our method for CNNs across diverse
scenarios. For instance, consider the scenario involving Efficientnet-B3 on the SPC
dataset. Despite not achieving the absolute highest BAC value, the performance gap
between JF-CAT, the best-performing method, and our JIF-MMFA (All) is subtle.
This further validates the robustness and effectiveness of our proposed method across
different CNN architectures and datasets.
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The statistical results presented in Table 4.4, Table 4.5, and Table 4.6 provide
compelling evidence that JIF-MMFA (All) combined with other fusion methods (ex-
cluding JF-MMFA and JIF-MMFA (OFB)) consistently yields statistically significant
outcomes (p < 0.05). This indicates that JIF-MMFA generally outperforms other
fusion methods in the evaluated scenarios.

Next, the confusion matrices displayed in Fig. 4.4 present an interesting result.
Generally, the metadata assists the CNN model in increasing the diagnostic rate
of all skin diseases. However, the misclassification rate between BCC and SCC is
still considerable. This is because these two lesions have not only similar visual
features but also many similar values in the metadata. In fact, classifying SCC and
BCC is a challenging task, even for experienced dermatologists who use dermoscopy.
Nevertheless, this confusion is not a big problem, as both are types of skin lesions and
require biopsy for further evaluation. It is a real problem to confuse them with ACK,
which is a minor skin disease that is treated without a surgical process [82]. What
is more, it is worth noticing that the metadata helps distinguish NEV from MEL,
which is quite helpful for the expert’s diagnosis since NEV is benign, circumscribed
malformations of the skin, while MEL is one of the most malignant cancers. For
the classification of BCC, SCC, and ACK, JIF-MMFA (All) and JE-MB achieve
better performance (see Fig. 4.4). A similar phenomenon is also observed in the
T-SNE figures (Fig. 4.5) that JIF-MMFA (All) and JF-MB improve the clustering
of samples between BCC, SCC, and ACK. However, it is still hard to differentiate
the lesions in the sub-clusters. It reflects the problem of inter-class similarity and
intra-class variation for skin lesion classification. For MEL, our JIF-MMFA (All)
method achieves the best performance according to the averaged BAC value.

Also, The analysis reveals that the Efficient-B3 CNN backbone consistently
outperforms other models when utilized in conjunction with JIF-MMFA (All) across
various scenarios. Moreover, it shows the most significant improvements compared
to using image data alone on the PAD-UFES-20 and SPC datasets. These findings
suggest that the Efficient-B3 model is well-suited as the image model (/) for multi-
modal skin disease classification tasks.

Finally, JIF-MMFA increases the parameters of the models that do not use
metadata when applied to the CNN backbone, but the increase is not significant.
We follow the paper of [82] and only consider the experiments on the PAD-UFES-20
dataset, in which the number of model parameters of Densenet-121, Mobilenet-v2,
Resnet-50, Efficientnet-B3, and Xception are increased by 0.08, 0.22, 0.04, 0.05, 0.08
and 0.05. It seems that Mobilenet-v2 is the most impacted model, with an increase
of 0.22. However, JIF-MMFA only increases the Mobilenet-v2’s parameters from
3.6 x 10° to 4.4 x 108, which is insignificant in terms of training time.
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4.4.3 Effectiveness of the Multi-Modal Fusion Attention
(MMFA) Module

Some interesting phenomenon about MMFA in Table 4.3 and Table 4.9 shows that
the MMFA module achieves the second-worst performance when combined with JF,
but the second-best performance when combined with JIF on the ISIC-2019 dataset.
Similar results also can be seen in MA, which suggest that the CNN with MMFA
module cannot conduct the mutual attention mechanism well on image and metadata
features when combined with JF structure on the dataset with little metadata (ISIC-
2019 dataset) due to the characteristic of MMFA and MA (the fusion module that
mutually enhances image and metadata features). Further considering the results
of the JF and JIF structures in Table 4.9, we believe that this problem of the JF
structure can be handled by the JIF structure that well preserves the modal-specific
feature.

4.5 Conclusion

In this chapter, we introduce the Joint-Individual Fusion (JIF) structure coupled
with the Multi-Modal Fusion Attention (MMFA) module for the classification of skin
lesions. Firstly, our proposed MMFA module enhances image and metadata features
concurrently through a multi-head self-attention mechanism, resulting in superior
performance compared to alternative attention modules. Secondly, we conduct a
comprehensive investigation into various fusion structures, contrasting with methods
that overlook fusion structure exploration. Moreover, the Joint-Individual Fusion
structure we propose facilitates the learning of shared features by preserving modal-
specific characteristics, thereby enhancing classification performance across most
scenarios. Experimental results across three public datasets demonstrate that our
proposed JIF-MMFA achieves the highest averaged BAC value, underscoring the
efficacy of both JIF and MMFA components. Furthermore, statistical analyses via
the Friedman and Wilcoxon tests corroborate the superiority of our method across
all datasets. Notably, experimental results on the ISIC-2019 dataset reveal that,
compared to the JF structure, our JIF structure fails to enhance the performance of
non-mutual attention fusion modules (CAT, MB, and MN) in datasets with limited
metadata. Consequently, our future research endeavors will center on the development
of adaptive fusion structures with robust generalization capabilities across diverse
scenarios.
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Fusing clinical and dermoscopy
images for skin lesion classification

In this chapter, we introduce two multi-modal imaging fusion methods for skin lesion
classification. Below is the outline of this chapter to help readers better understand
its structure:

Sec. 5.1 provides a gentle introduction to two modality images, a brief discussion
on current multi-modal Skin Lesion Classification (SLC) methods, and an explanation
of the seven-point checklist features. Sec. 5.2 covers Related works on multi-modal
SLC. The above sections serve as foundational parts for understanding the proposed
methods. The details of our proposed methods will be presented in Sec. 5.3 and Sec.
5.4 respectively.

5.1 Introduction

In addition to fusing single-image modality and patient metadata, there are also
two imaging modalities (Clinical Tmages (CI) and Dermoscopy Images (DI)) that
need to be efficiently fused for Skin Lesion Classification (SLC). For the presentation
of localized visual features, Dls, are captured using a high-resolution magnifying
(e.g. dermatoscopy and epiluminescence microscopy) imaging device [117] in direct
contact with the skin. In contrast, Cls, taken with a standard digital camera or
smartphone, exhibit more variations in terms of view and angle [39]. In contrast
to single-modality-based SLC, multi-modal-based SLC harnesses complementary
information from both modalities and leads to a more accurate and robust diagnosis,
driving further exploration on this topic [136].

With the development of deep learning, single-modality-based methods have
experienced significant improvements compared to former hand-crafted methods.
However, from a data-driven perspective, deep learning models tend to achieve
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more accurate predictions when they are provided with more information. From
the perspective of clinical diagnosis, dermatologists typically examine patients in
person over one or multiple visits rather than rely solely on one imaging modality
[129]. Therefore, an increasing number of researchers have begun to explore the
complementary information between clinical and dermoscopy images to achieve
more robust results in complex clinical scenarios. [60, 129] were among the first to
propose fusing multi-modal features using concatenation for skin lesion classification.
Subsequent research of [110, 36] improved performance by integrating prediction
information and feature fusion. To further enhance the diagnostic accuracy, [11, 46,
136] introduced more advanced fusion modules for the feature interaction of clinical
and dermoscopy images. They argued that more than simple concatenation is needed
to fully exploit the information from both modalities. However, the introduction of
fusion modules requires significant computational costs, limiting their applications in
real-world scenarios.

Hence, our primary objective is to explore an MM-SLC framework that achieves
a favorable parameter/accuracy trade-off, i.e., significantly reducing the model’s
parameters while only modestly affecting its accuracy. In this chapter, we introduce
two novel fusion structures from different perspectives: one is constructed based on
prior knowledge, and the other is developed using a deep learning scheme with a
parameters-sharing network.

5.2 Related works of multi modal-based skin

lesion classification

Despite the success of single modality-based methods for SLC, they tend to deviate
from routine dermatologists’ examinations [136] and overlook the potential to enhance
diagnostic accuracy by exploiting complementary information from both modalities.
To fill this gap, increasing works about MM-SLC were presented [39, 129, 60, 110, 36,
46, 136].

[39] and [129] extracted the features from clinical images and dermoscopy images
using VGG-16 [101] and Resnet-50 [45] and then fused the features by a simple
concatenation to learn a joint representation for final prediction. The introduction of
the Seven-Point Checklist (SPC) dataset by [60] marked a significant advancement in
multi-modal skin lesion classification. They proposed a multi-modal framework based
on Inception-V3 [106] for the simultaneous diagnosis classification and the seven-point
checklist.

After the SPC dataset’s release, many multi-modal approaches have been proposed
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for multi-label skin lesion classification. To enhance performance, [110] and [36]
introduced weighted-fusion and graph-based fusion schemes, respectively. Both
approaches combine CI and DI predictions in the model’s late stages.

More recently, [46] and [136] recognized the limitations of the simple concatenation
operation used in former methods. They introduced multiple bidirectional attention
blocks to mutually enhance CI and DI, facilitating efficient interaction between these
modalities across multiple scales.

However, in these methods, the emphasis on clinical images (CI) may impact their
performance, considering that CI is regarded as supplementary information to the DI.
Also, the introduction of additional fusion branches incurs high computational costs,
which may hinder their application in various scenarios, such as deploying on mobile
devices or implementing local Al-enabled family doctor systems for skin care.

5.2.1 Seven-point checklist features

In the commonly-used dataset, Derm7pt or Seven-Point Checklist (SPC) !, the
classification tasks include not only classifying skin lesions into several types of
diseases, such as nevus, basal cell carcinoma, and melanoma but also detecting the
seven melanoma-associated dermoscopic features (as shown in Table 5.1) [60].

Pattern analysis of multiple subtle skin lesion features is a common method for
experienced dermatologists to differentiate between benign and malignant skin tumors.
To simplify the diagnostic procedure, rule-based diagnostic algorithms such as the
ABCD rule [80] and the 7-point checklist [3] have been proposed and are widely
accepted [15]. Specifically, the seven-point checklist criteria assign seven labels to a
skin lesion, each with a corresponding score. For example, irregular dots and globules
are scored as one, while absent dots and globules are scored as zero. When the total
score of a skin lesion exceeds a certain threshold, it is assessed as melanoma [3, 4].

It can be challenging for dermatologists to understand how DL-based methods
make diagnoses and to explain them to patients. Detecting these criteria may assist
in developing more interpretable diagnostic models [60].
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Figure 5.1: The comparison between former MSLA methods and our method. The
height of each rectangle denotes its relative computational size. CE, DE, and MI are
short for clinical embedder, dermoscopy embedder, and modality interaction.

5.3 Pay Less On Clinical Images: Asymmetric
Multi-Modal Fusion Method For Efficient
Multi-Label Skin Lesion Classification

Our idea of this method is motivated by two observations: (1) Clinical Statistics:
According to experienced dermatologists, the diagnostic accuracy of melanoma based
on Dermoscopy Imaging (DI) is 25% higher than that of visual inspection with the
naked eye. Visual features observed by the naked eye are akin to those captured by
standard cameras and smartphones [113]. (2) Experimental Results of DL Algorithms:
In diagnosis tasks using the SPC dataset, the majority of papers [60, 11, 110, 36,
46, 136] reported a 6% higher accuracy in Dermoscopy Images (DI)-based diagnosis

thttp://derm.cs.sfu.ca/
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compared to Clinical Images (CI). Additionally, [29] demonstrated an increased diag-
nostic accuracy with DI (85%) compared to CI (75%). Considering both observations,
it is evident that a significant amount of key diagnostic information comes from DI
rather than CI. Therefore, employing two identical structures to extract information
from DI and CI individually is unreasonable.

Inspired by that, in this paper, we propose a novel Asymmetrical Multi-Modal
Fusion Method (AMMFEM) for efficient multi-label skin lesion classification. Our
approach differentiates itself from previous methods in two key aspects, i.e., Asym-
metric Fusion Framework (AFF) and Asymmetric Attention Block (AAB): Firstly,
differing from the commonly used Symmetrical Fusion Framework (SFF), our AFF
incorporates the prior domain knowledge into the structure design. AFF utilizes
an advanced model, e.g., ResNet, ConvNext, and SwinTransformer [45, 72, 71], for
capturing the primary diagnostic information from DI, but a lightweight deep model,
i.e., MobilenetV3 [49] for the supplementary information from CI. Compared to SFF,
AFF significantly reduces the model’s parameters with only a subtle decrease in
accuracy. Secondly, in contrast to previous methods utilizing bidirectional attention
blocks (BAB) to mutually enhance DI and CI (Fig. 5.1.a), we believe that enhancing
the supplementary information CI may lead to overfitting, affecting the final classifi-
cation. Therefore, we propose an asymmetric attention block (AAB) that exclusively
leverages the features of CI to enhance those of DI (Fig. 5.1.b), achieving superior
performance to BAB with fewer model parameters. In total, our contributions can
be summarized as follows:

1. Inspired by prior knowledge, we introduce a novel Asymmetrical Fusion Frame-
work (AFF) that significantly reduces the model’s parameters while maintaining
unchanged or slightly decreased classification accuracy compared to the currently
used Symmetric Fusion Framework (SFF).

2. We present a new Asymmetrical Attention Block (AAB) that exclusively utilizes
features extracted from clinical images (CI) to enhance those of dermoscopy
images. This approach addresses potential accuracy impacts associated with
focusing on supplementary information from CI. In comparison to the for-
mer Bidirectional Attention Block (BAB), our AAB demonstrates improved
classification performance with fewer parameters.

3. Our proposed Asymmetrical Multi-Modal Fusion Method achieves state-of-
the-art performance in both accuracy and model parameters. The extensive
results confirm the effectiveness of our proposed AFF and AAB, demonstrating
their applicability to various deep-learning algorithms, including both CNN and
Transformer structures.
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Figure 5.2: The overview of our Asymmetric Multi-Modal Fusion Method. Clinical
and dermoscopy blocks are used to extract the features from clinical and dermoscopy
images, respectively. Po, Pp, and Pry are the predictions from the clinical branch
(green), dermoscopy branch (blur), and fusion branch (yellow).

5.3.1 Related works about asymmetric fusion structure

A limited number of works on the Asymmetrical Fusion Model (AFM) [124, 138, 38,
125, 122] have been proposed for various computer vision tasks. For example, [138§]
introduced an asymmetric non-local network to fuse multi-scale features for semantic
segmentation. [38] presented an asymmetrical model to extract asymmetric relations
between humans and objectives for action recognition. Additionally, [122] proposed
an asymmetrical fusion framework focusing on the gallery side for image retrieval. In
the medical domain, [123] employed an asymmetrical model to address issues in 3D
slices for universal lesion detection.

These methods are tailored to specific modalities (e.g., 3D slices [38]) or tasks (e.g.,
semantic segmentation [138], action recognition [38], and image-text retrieval [122]).
Their design can not directly apply to the Multi-Modal Skin Lesion Classification
(MM-SLC) task. However, the successes of AFM in different fields encourage us to
explore the potential of asymmetrical fusion methods for the MM-SLC task.
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5.3.2 Asymmetrical Multi-Modal Fusion Method

As illustrated in Fig. 4.2, the proposed Asymmetric Multi-Modal Fusion Method
(AMMFM) is constructed with four components: Asymmetric Fusion Framework
(AFF), Asymmetric Attention Blocks (AABs), Fully Connected Layers (FCLs), and
Weighted Averaging (WA) operation. AFF and AABs are pivotal components
that extract information from two modalities and facilitate interaction. These two
components are core to our methodology, and we will delve into their details in
the following subsections. FCLs are used to classify the extracted features in three
branches: clinical branch (highlighted in green), dermoscopy branch (highlighted
in blue), and fusion branch (highlighted in yellow), as depicted in Fig. 4.2. WA is
employed to fuse predictions from clinical, dermoscopy, and fusion branches, namely,
Po, Pp, and Pry, resulting in the final prediction Pgy
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(a) Bidirectional Attention Block (BAB) (b) Asymmetrical Attention Block (AAB)

Figure 5.3: The computational graph of the former bidirectional attention block
(BAB) and our asymmetrical attention block (AAB).

5.3.2.1 Asymmetric Fusion Framework

Before introducing the Asymmetric Fusion Framework (AFF), let us define easier
understanding: in our article, the framework refers explicitly to the composing manner
of two feature extractors, excluding the modality interaction modules (see Fig. 5.2).

Currently, most methods are based on a symmetrical fusion structure (SFF),
utilizing two identical structures to extract features from clinical and dermoscopy
images. However, relevant research has demonstrated that the accuracy based on
dermoscopy is much higher than that based on naked eyes and clinical images captured
by smartphones with a standard digital camera. The seven-point checklist criteria
are also proposed based on features observed under dermoscopy. These phenomena
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drive us to consider dermoscopy images primary, with clinical images regarded as
supplementary for the multi-label skin lesion classification task. Therefore, we propose
an asymmetrical fusion structure (AFF) for this task.

Specifically, as shown in Fig. 4.2, AFF utilizes two different models for the feature
extractions from two modalities respectively, a lightweight model, MobilenetV3 [49],
for clinical images (CI) and an advanced model requiring much more parameters,
e.g., ResNet, ConvNext ans SwinTransformer [45, 72, 70], for dermoscopy images
(DI). Compared to that, our AFF can significantly reduce the model’s parameters
while maintaining unchanged or subtly decreased classification performance. This is
because replacing an advanced model with a lightweight model in the clinical branch
may affect the information captured from Clinical Images (CI), so it is important to
note that clinical images are considered supplementary in our pipeline. Therefore,
this change can only slightly impact the final classification.

5.3.2.2 Asymmetric Attention Block

Building on the discussion in Sec.5.2 and 5.3, the information from the clinical
branch is considered supplementary in this paper. Treating it as equal to dermoscopy
information and enhancing the supplementary information is not reasonable in our
pipeline. Therefore, we introduce an asymmetric attention block (AAB) for the
modality interactions between clinical and dermoscopy images.

In contrast to the former bidirectional attention block (BAB) [46] that mutually
enhances the features of both modalities (see Fig.5.3(a)), our AAB only adopts
clinical features to generate an attention map for enhancing dermoscopy features.
This design allows us to save approximately half of the parameters compared to BAB
(See Fig.5.3(b)). Like BAB, AAB is embedded into different stages of deep learning
models to facilitate the interaction of multi-scale features from the two modalities.

In our AAB, the inputs are the extracted clinical features C' € RT*Wx¢ and
dermoscopy features D € REXW*C "hoth of which have the same size (H, W, and C
indicate the height, width, and channel number of the features, respectively). As shown
in Fig. 5.3(a), firstly, two 1x1 convolutions are applied to C' to generate C}, and C;, and
one 1x1 convolution is employed on D to obtain D,,, where (Cy, C,, D,) € RHXWxC,
Then, Cy and C, are reshaped to R¥*¢ where N = H x W. Next, a multiplication
is conducted between the reshaped Cj and C,, followed by a non-linear activation
function Softmax to generate the attention map M. € RV*¥. Finally, the refined
dermoscopy features are obtained based on Eq. 5.1,

Drefined = Dv 'Mc+D7 (51)

where - indicates matrix dot product operation, and + indicates matrix summation.
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5.3.3 Loss Function and Final Prediction
The total loss Lyyq used to optimize our model is as follows:
Ltotal = Lderm + Lclic + qusion7 (52)

where Lierm, Leiic and Lyysion are the multi-label classifications losses for the der-
moscopy image branch (Pp in Fig. 5.2), clinical image branch Py in Fig. 5.2 and
fusion image branch Pry in Fig. 5.2, respectively. All the losses are computed as
Eq. 5.3

X v
Lx =) > CE(D’,C?,G Plibk), (5.3)
J K3

where X is the batch size in our training, Y =8 indicates the number of the multi-label
classification tasks (see Table 4.1), C7 and D’ represent input pairs of dermoscopy
and clinical images respectively. G{ and Pij are the corresponding ground truths and
predictions respectively and 6 is the parameters of our model. C'E indicates the
cross-entropy loss.

During the testing stage, we use a weighted average scheme to fuse Pp, Po and

Pry into the final prediction Pg; for the evaluation as follows:
PF[:WD*PD+W0*P0+WFU*PFU, (54)

where Wp, W and Wiy are the corresponding weights for Pp, Po and Ppry, respec-
tively, which are obtained by conducting a weight search scheme on validation dataset
[110].

5.3.4 Experiments and Discussion
5.3.4.1 Implementation Details

We use Adam [62] with a batch size of 24 to optimize our model for 250 epochs during
training. Data augmentations, including flipping, shifting, scaling, rotating, and
brightening operations, are randomly conducted to enhance the model’s generalization
ability. Stochastic Weights Averaging (SWA) [56] scheme is used in the last 50 epochs
to generate the final weights for evaluation. All images are resized to 224 x 224 x 3
for training and evaluating the model. Following [110], testing time augmentation
is also used during the evaluation to improve classification performance. All of
our experiments are conducted on a GPU of NVIDIA A100-PCIE-40GB. Without
special instructions, our AMMEM is based on MobinetV3 for clinical images and Swin-
TransFormer for dermoscopy images, as it achieves the best classification performances
in our experiments.
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Table 5.1: Details of the SPC dataset.

Classification Task Name Abbrev. | Num.

Basal Cell Carcinoma BCC 42

Nevus NEV 575

Diag Melanoma MEL 252
Miscellanoeous MISC 97

Seborrheic Keratosis SK 45

Absent, ABS 400

PN Typical TYP 381

Atypical ATP 230

Absent ABS 653

STR Regular REG 107
Irregular IR 251

Absent ABS 588

PIG Regular REG 118
Irregular IR 305

RS Absent ABS 758
Present PRS 253

Absent ABS 229

DaG Regular REG 334
Irregular IR 448

Absent, ABS 816

BWV Present PRS 195
Absent, ABS 833

VS Regular REG 117
Irregular IR 71

5.3.4.2 Dataset and Metrics

The effectiveness of our AMMFEM is evaluated on the well-recognized seven-point
checklist (SPC) dataset [60], which contains 1011 patients’ cases. Each case includes
a pair of dermoscopy and clinical images, a diagnosis (Diag) label, and labels of
seven-point checklist (SPC) features. As shown in Table 5.1, Diag has five categories:
BCC, NEV, MEL, MISC, and SK, and the SPC labels include Pigment Network
(PN), Streaks (STR), Pigmentation (PIG), Regression Structures (RS), Dots and
Globules (DaG), Blue Whitish Veil (BWV), and Vascular Structures (VS), which are
divided into the following categories: ABS, PRS, TYP, ATP, REG, and IR.

Building on previous works [60, 36, 110, 46, 136], metrics including accuracy (ACC),
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Table 5.2: The comparison between our method and other currently advanced
methods is based on averaged AUC values. The highest and second highest values in

each column are bolded and italicized, respectively. Incep-com: Inception-combined,
FM-FS: FusionM4Net-FS, AVG: Averaged (&)

Method Diag PN STR PIG RS DAG BWV VS AVG
lethods AVG
BCC NEV MEL MISC SK TYP ATP REG IR REG IR PRS REG IR PRS REG IR

Incep-com | 92.9 89.7 86.3 883 91 842 79.9 87 789 749 79 829 765 799 89.2 855 76.1|83.7
HcCNN | 944 87.7 856 883 804 8.9 783 87.8 77.6 83.6 81.3 81.9 77.7 826 89.8 87 §82.7|84.3
FM-FS 953 926 89 94 89.2 859 839 879 814 80.9 835 81.7 79.1 80.1 90.6 87.8 78 | 86
GIIN 92.8 86.8 87.6 88.8 79.8 80.1 87.5 84.9 81.2 81.1 836 79 786 83.1 90.8 80.7 75.4|83.6
CAFNet |97.1 92.7 92.2 925 91 819 753 874 85.4 76.1 85 85.4 752 78.7 94.7 84.8 83.5|85.8

AMMFM| 95.8 924 89.3 93.7 91.7 87.1 86.7 91.5 85.2 82.5 86.2 83.6 79.8 86.0 94.1 90.2 82.4|88.1

Table 5.3: The comparison between our method and other currently advanced
methods based on averaged ACC values. The highest and second highest values in
each column are bolden and italicized respectively. Incep-com: Inception-combined,
FM-FS: FusionM4Net-FS, AVG: Averaged (&)

Methods | PN BWV VS PIG STR DaG RS Diag|AVG
Incep-com | 70.9 87.1 79.7 66.1 74.2 60 77.2 T4.2]|73.7
HcCNN [ 70.6 87.1 84.8 68.6 71.6 65.6 80.8 69.9|74.9
FM4-FS [70.9 86.8 81.8 72.4 744 61 83 74.9|75.7
CAFNet |70.1 87.8 84.3 73.4 77 615 81.8 78.2|76.8
TFormer |70.9 86.4 83.5 68.8 74 649 81.3 73 |75.3
AMMEFEM |72.7 89.1 823 72.4 78.7 65.8 81 75.2|77.2

area under the curve (AUC), precision (Prec), specificity (SPE), and sensitivity (SEN)
are used for the evaluation of our method.

5.3.4.3 Comparisons with Currently Existing Methods

In Tables 5.2 and 5.3, a comparative analysis was conducted to assess the perfor-
mance of the proposed (AMMFM) against contemporary classification methodologies
utilizing clinical and dermoscopy images. The evaluated methods encompass Inception-
combined [60], HcCNN [11], FusionM4Net-FS [110], GIIN [36], CAFNet [46], and
TFormer [136].

In Table 5.2, a comparison followed by [11, 36] was adopted to compare selected
features, gauged by the AUC for each method. Table 5.3 presents a comprehensive
comparison of all methods regarding accuracy. Note that results for all other methods
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Table 5.4: The comparisons between our AMMFEM and other methods in melanoma-
related features (%).

DIAG PN STRPIG RS DaG BWV VS
MEL ATP IR IR PRS IR PRS IR
86.3 79.9 789 79 82.9 79.9 89.2 76.1
85.6 78.3 77.6 81.3 81.9 82.6 89.8 82.7
89 83.9 81.4 83.5 81.7 80.1 90.6 78.9
87.6 87.5 81.283.6 79 83.1 90.8 754
92.2 753 854 85 854 78.7 94.6 834
89.3 86.7 85.2 86.2 83.6 86.0 94.1 824
65.3 61.6 52.7 57.8 56.5 70.5 63 30.8
62.8 62.3 52.4 65.1 81.6 69.6 91.9 50
65.7 82.2 56.2 67.6 82 67.2 64.9 42.9
65.6 48.4 50.4 82.3 73.5 74.9 67.4 100
779 50.8 54.8 70.1 76.7 67.8 75.4 58.3
59.4 57.0 56.4 63.7 51.9 77.4 66.7 16.7
61.4 48.4 51.1 59.7 66 62.1 77.3 13.3
58.4 40.9 35.1 55.7 95.2 80.2 92.2 20
62.4 49.5 47.9 58.9 47.1 68.4 66.7 20
29 775 67 39.2219 70.1 699 3.6
75.3 65.9 67.1 60.3 42.7 74.1 68.8 45
71.4 63.1 64.6 71.8 69.6 74.9 73.5 31.3
88.8 90.7 85.7 80.1 81.3 78.9 89.4 97.5
88.1 924 90 86.3 41.5 71.6 65.3 98.4
88.8 90.1 88.4 88.1 96.2 72.9 91.6 97.8

Metric| Method AVG

81.5
82.5
83.7
83.5
85
86.7
57.3
67
68.5
70.3
66.5
56.1
54.9
59.7
52.6
51
62.4
65
86.6
79.2
89.2

Incep-com
HcCNN
FM-FS

GIIN
CAFNet

AMMFM

Incep-com
HcCNN
FM-FS

GIIN
CAFNet

AMMFM

Incep-com
HcCNN
FM-FS

GIIN
CAFNet

AMMFM

Incep-com
HcCNN
FM-FS

AUC

PRE

SEN

SPE

GIIN
CAFNet
AMMFM

89.5
93.6
86.8

79
90.2
87.1

80.3 95.8 96.8
91.2 89.1 96.5
86.9 84.2 83.9

78.8 91 100
74 95.1 98.7
81.1 92.4 934

88.9
91.1
87.0

were quoted from their respective publications or sourced from [46]. These results
are assumed to represent the best performance, except for TFormer, where mean
values and standard deviation were reported. Consequently, the comparison between
AMMFM and TFormer is based on mean values, while comparisons with other
methods are grounded on the highest value.

As shown in Table 5.2, AMMFM attains the highest performance, boasting an
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Table 5.5: The comprehensive comparison between our AMMFEM and other methods
in terms of model’s parameters. > : slightly more, > >: much more

Method |AVG AUC AVG ACC|Parameters (Mb)
Incep-com 83.7 73.7 > 57,4
HcCNN 84.3 74.9 > > 51.2
FM-FS 86 75.7 04.45
GIIN 83.6 - >51.2
CAFNet 85.8 76.8 > > 51.2
TFormer - 75.3 77.76
AMMFM 88.1 77.2 33.06

averaged (AVG) AUC of 88.1%. This outperforms the second-best method, FM-FS,
with 86%, and the third-based method, CAFNet, with 85.8%, by 2.1% and 2.3%
respectively. AMMFEM demonstrates superiority by achieving the highest values in
seven categories and the second-highest in eight categories, showcasing its excellence
across all eight classification tasks. AMMFM outperforms FM-FS in the Diag task
and most Seven-Point features tasks. In comparison to CAFNet, AMMFM achieves
comparable performance in the Diag task (AVG AUC: CAFNet: 93.1%, AMMFM:
92.6%) and significantly better performance in other Seven-Point feature tasks (AVG
AUC: CAFNet: 83.0%, AMMFM: 86.4%), establishing its overall superiority over
CAFNet.

Similarly, in Table 5.3, AMMEFM secures the highest averaged accuracy (AVG
Acc) value of 77.2%, outperforming all other methods. It attains the highest values in
four classification tasks (PN, BWV, STR, DaG) and the second-highest values in two
tasks (PIG, Diag). CAFNet and FM-FS secure the second-best and third-best AVG
Acc in Table 5.3. These results underscore the superior performance of AMMFEFM and
the efficacy of the cross-attention modules in CAFNet and the late fusion scheme in
FM-FS. For further insights, Table 5.4 details that AMMFM achieves the highest AUC
and sensitivity values in melanoma-related features, substantiating its proficiency
in melanoma detection. However, our AMMFM achieves the lowest precision value
because of the bad performance in the categories oF RS-PRE (51.9 %) and VS-IR
(16.7%). In particular, VS-IR is hugely lower than other methods. We attribute this
to the unbalanced categories in RS-PR, (ABS: 758 PRE: 253) and VS-IR (ABS: 833,
REG: 117 and IR: 91, see Table 5.1).

In Table 5.5, we compare all the methods mainly based on the model’s parameters,
and for convenience, we also present the AVG AUC and AVG ACC in this table.
Since only the source codes for FM-FS and TFormer were available, we estimated
the model parameters for Incep-com, HcCNN, GIIN, and CAFNet, albeit with
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Table 5.6: Ablation studies of our AMMFEM in terms of AVG AUC, AVG ACC, and
model parameters. (%)

AFF AAB|AVG AUC AVG ACC |Parameters(Mb)
Baseline | 87.3£0.4 76.6£0.5 58.49

v 87.3£0.4 76.5+0.4 32.48

v o v | 87604 76.7+04 33.06

some approximations. In our estimation, we calculated the parameters based on
the employed backbones, specifically, two InceptionV3 (57.4Mb) for Incep-com and
two ResNet-50 (51.2Mb) for GIIN, HcCNN, and CAFNet. However, concerning
Incep-com and GIIN, the model parameters are marginally higher than those of
their utilized backbones, attributed to the absence of multiple blocks employed in
constructing the third branch. Concerning HcCNN and CAFnet, which construct
a third branch utilizing attention and ResNet blocks, the model parameters are
expected to significantly exceed those of their backbones. As shown in the table. 5.5,
our AMMFM achieves the highest values in both AVG AUC and AVG ACC with the
least model’s parameters (33.06Mb), demonstrating the great accuracy/parameter
trade-off of our AMMEM.

5.3.4.4 Ablation Studies

In the following experiments, all the models are trained and tested ten times to obtain
the mean value and standard deviation for a fair comparison.

In Table 5.6, ablation studies are conducted to analyze the two primary components
of our AMMFM: the asymmetrical fusion framework (AFF) and the asymmetrical
attention block (AAB). For comparative purposes, we establish a baseline utilizing a
commonly used symmetrical fusion framework (SFF) based on two Swin-Transformer
(ST) models and a concatenation operation, serving as a reference point in the ablation
studies.

Compared to the baseline model(second row), the proposed AFF with concatena-
tion operation (third row) can significantly reduce the parameters from 58.49M to
32.48M without compromising the performance metrics, as evidenced by the main-
tained the AVG AUC (Baseline: 87.3%, AFF: 87.3%) and AVG ACC (Baseline:76.6%,
AFF: 76.5%). These outcomes substantiate our initial hypothesis that substituting
an advanced model (ST) with a more lightweight model, MobileNetV3 (MN), for
information extraction from clinical images would have a subtle or negligible impact
on overall performance. This observation underscores the supplementary nature of
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clinical images in the context of multi-label skin lesion classification tasks, where
dermoscopy images remain the primary source of information. Subsequently, ABB
contributes to further enhancements in AFF’s performance. This improvement is
observed across both metrics, with AVG AUC increasing from 87.3% for AFF to
87.6% for AFF+AAB and AVG ACC from 76.5% to 76.7%. Remarkably, this per-
formance boost is achieved with only a marginal increase in model size, rising from
32.48Mb for AFF to 32.06Mb for AFF+AAB, denoting the effectiveness of our AAB
in accuracy/parameters trade-off.

Table 5.7: Comparison between single-modal, baseline multi-modal, and our pro-
posed multi-modal methods. Clic: Clinical Images, Derm: Dermoscopy Images, MN:
MobilenetV3, ST: Swin-Transformer, Param: Parameters and - indicates no model
for extracting the information from dermoscopy and clinical images, i.e., single-modal
methods. (%)

Method  |Clic Derm |AVG AUC AVG ACC |Params(Mb)
st . | mss saser| B9
Single-Modal ) ' ' ' '
- MN | 83.5+0.3 72.6+0.3 991
MN - | 75.8404 67.640.5 '
. ST ST | 87.3+0.4 76.64+0.5 58.49
Baseline
MN MN | 84.94+0.3 73.4+0.2 6.48
AMMEM ST MN | 85.0+£0.3 73.840.3 32.62
MN ST | 87.64+0.4 76.74+0.4 33.06

5.3.4.5 Comparison between single-modal, baseline multi-modal and our
proposed multi-modal methods

In Table 5.7, we conduct a comprehensive comparison among single-modal, baseline
multi-modal (SFF with concatenation), and our proposed multi-modal approach
(AFF with AAB). Compared to clinical images, the results reveal a substantial
performance improvement when utilizing dermoscopy images, regardless of whether
they are based on MN or ST. Specifically, there is an increase of over 7% in AVG
AUC and 5% in AVG ACC values, underscoring the pronounced significance of
dermoscopy images in multi-label classification tasks. Furthermore, the baseline
multi-modal methods exhibit an additional increase in accuracy compared to their
Derm-based counterparts. This emphasizes the complementary nature of clinical
images, which provide supplementary information to dermoscopy images. In the
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single-modal approaches, we are substituting ST with MN for dermoscopy image
processing, resulting in a 3.6% reduction in both metrics. Conversely, replacing
ST with MN for clinical image processing shows a more modest 1.1% AVG ACC.
Also, compared to another counterpart in AMMFM approaches, employing ST for
the dermoscopy branch and MN for the clinical branch enhances both metrics by
approximately 3%. These results demonstrate and support our AFF’s effectiveness
and affirm the chosen architecture’s suitability for efficiently optimizing performance
in multi-modal classification tasks.

In Table 5.8, we present detailed information about ST-based single-modal and
multi-modal methods, facilitating a nuanced analysis of their impact on individual
classification tasks. Examining the table reveals that Derm-based ST consistently
outperforms Clic-based ST across all categories (CTs), a result aligned with expecta-
tions given that the seven-point checklist criteria are formulated based on observed
features under dermoscopy [60]. Moreover, compared to Derm-based ST, the baseline
and our AMMFEM demonstrate performance improvements across nearly all CTs.
This observation illustrates the complementary role of clinical images in enhancing
the overall performance when combined with dermoscopy images.

5.3.4.6 Comparison between bidirectional attention block (BAB) and
asymmetrical attention block (AAB)

To delve deeper into the impact of the proposed asymmetrical attention block (AAB),
a comparative analysis is conducted with other fusion blocks within different fusion
frameworks, namely the symmetrical fusion framework (SFF) and the asymmetrical
fusion framework (AFF). As illustrated in Table 5.9, the block attention block (BAB)
demonstrates performance improvement over concatenation (CAT) for both fusion
frameworks, highlighting the effectiveness of multi-modal interactions. Notably, our
proposed AAB further enhances the accuracy achieved by BAB within both SFF and
AFF. This observation supports our assumption that over-augmenting the importance
of clinical supplementary information in the multi-modal pipeline may impact the
classification task. At the same time, ABB also shows superiority in the model’s
parameters compared to BAB.

5.3.4.7 Generalization ability of AMMFM using different backbones

To assess the generalization capability of our AMMFEM across various backbones, we
employ ResNet-50, ConvnextTiny, and Swin-Transformer as backbone architectures
for comparative analysis. As depicted in Table 5.10, our AMMFM consistently outper-
forms the baseline multi-modal method across all three backbones while maintaining
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Table 5.8: A detailed comparison between ST-based single-modal and multi-modal
in terms of AVG AUC is needed. CT: classification task, CG: category, Clic: clinical
images, Derm: Dermoscopy Images. (%)

AMMFM

Clic Derm  Baseline
CT CG (Clic: MN
(ST) (ST)  (two STs) Derm: ST)

BCC |85.5+£3.8 94.5+£1.3 95.0+0.9 95.0+0.8

NEV [85.840.7 91.8+£0.5 92.4£0.4 92.4+0.4

Diag MEL |79.54+1.1 89.1+0.6 89.3+0.8 89.5+0.7
MISC|86.5+£1.8 93.7£0.8 93.9+0.9 94.7+0.7

SK |74.54+4.2 87.54+3.2 88.3£2.0 90.4+1.4

TYP [80.4+1.1 87.5+£0.6 88.1£0.7 87.7+0.8

ATP [73.441.6 85.1+0.7 85.7+0.7 86.2+0.8

REG |79.9£2.2 89.3£1.1 88.6£1.3 89.4+1.8

IR |71.0£1.6 83.9£1.0 84.2+0.9 84.6+1.1

REG |68.3£2.1 82.2+1.5 81.4+1.4 83.5+1.1

IR |73.6£1.7 85.5£1.3 85.5£0.9 85.4%1.1

RS PRS |72.9£1.3 82.54+0.9 83.5+0.9 83.4+0.8

REG |72.6£1.4 79.3£1.0 80.2+0.9 80.3+0.6

IR |73.8£0.9 84.1£0.8 84.1+0.9 84.4+0.7

BWV PRS [83.9£1.2 92.7£0.7 93.840.5 93.8£0.8
REG |81.7£2.0 86.2+1.1 88.3+0.8 87.9+1.3

IR |77.0£2.2 80.4£1.7 82.2+£1.5 81.3+2.3

AVG 77.7£0.5 86.8+0.3 87.3£0.4 87.6+0.4

PN

STR

PIG

DaG

VS

significantly fewer parameters. This substantiates the robustness of our AMMEM,
showcasing its ability to deliver superior performance across diverse deep-learning
backbones.

5.3.5 Conclusion

In this section, we introduced a novel Asymmetrical Multi-Modal Fusion Method
(AMMFM) for efficient multi-label skin lesion classification, driven by the observation
that dermoscopy images provide more crucial information than clinical images. Our
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Table 5.9: The comparison between our proposed asymmetrical attention block
(AAB) and other fusion blocks (FBs), including concatenation (CAT) and bidirectional
attention block (BAN), in different fusion frameworks (FS). SFF: symmetrical fusion
framework, AFF: asymmetrical fusion framework (%).

FS B AVG AUC AVG ACC |Params(Mb)
CAT BAB AAB

v 87.3£0.4 76.6£0.5 58.49M
SFF v 87.4+0.3 76.5+0.4 60.45M
v | 87.7£0.7 77.1+£0.4 59.09M
v 87.3+£0.4 76.5+0.4 32.48M
AFF v 87.6+0.3 76.6+0.3 33.88M
v | 87.6£0.4 76.7+0.4 33.06M

AMMFM comprises two key components: the asymmetrical fusion framework (AFF)
and the asymmetrical attention block (AAB). To optimize efficiency by reducing pa-
rameters, AFF integrates one advanced model for feature extraction from dermoscopy
images and one lightweight model for clinical images. This design is grounded in
the assumption that affecting the ability to capture supplementary information from
clinical images will subtly or not impact the overall multi-modal pipeline’s perfor-
mance. In contrast to the bidirectional attention block (BAB), AAB focuses solely
on enhancing dermoscopy features while excluding attention to clinical images due
to our belief that directing attention to supplementary information may adversely
impact the final classification performance. Extensive results demonstrate that, in
comparison to the previous symmetrical fusion framework, AFF significantly reduces
model parameters while maintaining accuracy. Additionally, AAB enhances the
performance of BAB with fewer parameters, showcasing its efficacy in improving the
overall classification task. Lastly, our AMMFM attains state-of-the-art performance
with the fewest model parameters.
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Table 5.10: Comparisons between single-modal, baseline multi-modal, and our
AMMFM methods based on different backbones. ST: Swin-Transformer, Params:
Parameters (%).

Backbone| Modal |AVG AUC AVG ACC |Params(Mb)
D 4.340. 4.04+0.4
elim 84.3+0.5 74.0+0 96.68
Clic 76.8+£0.5 67.5+04
ResNet
Baseline | 85.54+0.2 74.6+0.4 55.52
AMMFM | 85.94+0.2 74.9+0.3 36.36
Derm 86.7+0.4 75.940.3 99 05
Clic 77.940.3  69.04£0.3 '
ConvNext
Baseline | 87.24+0.3 76.540.3 58.96
AMMEFM | 87.4+0.5 76.7£0.4 33.29
Derm 86.8+0.3 76.240.6 93 89
ST Clic 77.7£0.5 68.7£0.7 '
Baseline | 87.24+0.4 76.64+0.5 58.49
AMMFM | 87.6+0.4 76.7+0.4 33.06

5.4 Single Shared Network with Prior-Inspired
Loss for Efficient Multi-Modal Skin Lesion

Classification

In this section, we propose a novel parameter-efficient multimodal (PEMM) frame-
work for skin lesion classification, achieving state-of-the-art classification performance
while using fewer parameters compared to current advanced methods. There are four
differences between the previous methods and our method. Firstly, unlike previous
approaches that commonly employed ResNet as feature encoder, we conduct a com-
prehensive comparison between ResNet and more advanced backbones, i.e., DenseNet
[52], ConvNext (CXT) [72], and SwinTransformer (ST) [70], which demonstrate
that the latter three backbones can achieve higher accuracy with fewer parameters
compared to ResNet. Secondly, given that the encoder accounts for the majority of
the model’s parameters, we naturally consider the idea of fusing multimodal features
within a single network rather than using two individual encoders (See Fig. 5.4).
Therefore, we explore and verify that multimodal features can be efficiently learned
in a single-shared network with strong capacity by merely maintaining the modal-
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Figure 5.4: The overview structure of former methods and our PEMM framework.

specific classifiers, such as CXT and ST, resulting in significant parameter reduction
while maintaining or subtly affecting accuracy. Thirdly, building on the concept of
a ’shared network,” we extend it to the fusion module and introduce a new shared
cross-attention mechanism to efficiently conduct modality interaction on multi-scale
multimodal features. Finally, inspired by the prior knowledge that dermoscopy images
provide more helpful information for diagnosis than clinical images, we introduce
a new biased loss function. This function enables the model to focus more on the
dermoscopy branch and less on the clinical branch, learning a better joint feature
representation for the modal-specific classification task. Evaluations were conducted
on two public datasets, and the results demonstrate the superiority of the proposed
PEMM framework in both accuracy and model parameter efficiency compared to
current state-of-the-art methods. Extensive experiments validate the effectiveness of
our method across both CNN and Transformer structures. The main contributions of
our method can be summarized as follows:

1. We validated that both clinical and dermoscopy modalities can be input into
a single-shared network with strong capacity, achieving similar performance
while reducing a large number of parameters compared to commonly used two
individual networks.

2. We introduced a new shared cross-attention module to efficiently integrate
multimodal features at different layers.
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3. We propose a novel prior-biased loss that guides the single-shared network to
learn more meaningful information for accurate diagnosis.

4. Our fusion method significantly outperforms state-of-the-art fusion methods,
with only a few additional parameter increases on single-modal-based networks.

5.4.1 Related works about parameter-sharing network

Parameter-sharing networks (PSNs) or weight-sharing networks (WSNs) are commonly
employed in self-supervised learning as siamese networks. They are fed with multiple
variants from the same source and then minimize the loss between their corresponding
outputs to obtain task-related feature representations [53, 96, 112]. Additionally, some
works utilize PSN to improve performance while achieving lower memory consumption
2, 118, 120]. For instance, [118] presented a parameter-sharing transformer block that
captures scale-invariant information for 3D medical image segmentation. Similarly,
[120] introduced a WSN that efficiently fuses RGB images and depth input for semantic
segmentation tasks. However, there is a significant gap between the application
scenarios due to the different types of data and tasks. Therefore, these methods
cannot be directly applied to our task.

In the multi-modal skin lesion classification, TFormer [136] employed a weight-
sharing scheme to alleviate the overfitting problem. However, they needed to thor-
oughly explore the impact of weight-sharing schemes on reducing parameters, leading
to a more precise conclusion. For instance, in their configuration, the parameters
of the introduced fusion branch are nearly identical to those of the feature encoder.
The weight-sharing scheme is likely achieved through the fusion branch rather than
the encoder’s capacity. In this paper, we verified that the single-shared network for
parameter reduction is achieved based on the encoder’s capacity and maintaining
individual classifiers. We further explored its generalization ability across different
backbones by conducting extensive experiments. Moreover, compared to TFormer,
we propose a new shared cross-attention module to efficiently reduce parameters on
the fusion branch. Additionally, we introduce a novel biased loss mechanism that
guides the single-shared network to be better optimized for the classification task.

5.4.2 Method: Parameter-Efficient Multi-Modal (PEMM)
framework

The first step of our work is to explore utilizing different backbones as feature encoders
instead of directly using ResNet for our classification task since many advanced
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backbones have been proposed and achieved better performance than ResNet for
natural image recognition, such as DenseNet, ConvNext, and SwinTransformer. The
results in Table 5.18 demonstrate the superiority of advanced backbones in improving
classification accuracy and parameter reduction compared to the commonly used
ResNet. After that, we gradually introduce three main components, namely a single-
shared network, shared cross-attention modules, and a biased loss function, as shown
in Figure 5.5, into our Parameter-Efficient Multi-Modal (PEMM) framework.
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Figure 5.5: The detailed pipeline of our PEMM framework.

5.4.2.1 Single-Shared Network

Following [110, 36, 46], we also adopt two extra classifiers that can predict on clinical
Cc and dermoscopy Cp branches and then conduct the late fusion on the prediction-
level for more accurate results. Therefore, our baseline model contains two individual
encoders and three individual classifiers.

In deep learning-based multi-modal methods, feature encoders are indispensable
as they extract individual features from different modalities, often occupying the
majority of parameters in the entire model. Therefore, to build a parameter-efficient
multi-modal method, we explore the extraction of modality-specific features from
both clinical and dermoscopy images using a single-shared encoder (as illustratead
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in Fig.5.4(b)), rather than using two individual encoders as commonly done in
previous methods (See Fig.4.1(a)). More specifically, as depicted in Fig. 4.2, the
Single-Shared Network (SSN) adopts weight-sharing encoders to extract multi-modal
features. At the same time, individual classifiers are built upon fully connected
layers to predict the extracted modality-specific features. We also attempted to
share the parameters of the classifiers of dermoscopy and clinical branches, denoted
as C'p and C¢, respectively. However, the results were unsatisfactory, attributed
to the robustness of convolution layers and the sensitivity of fully connected layers
(More details can be found in Table 5.16). While this parameter-sharing scheme
significantly compresses the parameters of our multi-modal fusion model, it is only
effective with the ConvNext and SwinTransformer backbones. It fails to maintain
accuracy compared to the corresponding non-parameter-sharing fusion model when
ResNet and DenseNet are used as encoders.
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Figure 5.6: The detailed pipeline of shared cross-attention module.

5.4.2.2 Shared Cross-Attention Module

Following [110, 36, 46], we also see the effectiveness of the current advanced fusion
module, i.e., cross-attention (CA) for multi-modal skin image fusion, has been
demonstrated in [46]. As illustrated in Fig. 5.6, the CA module employs three
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individual convolutions to project the input clinical feature C' into three feature
vectors: Cy, C,, and C,. Subsequently, C, and C, are utilized to generate the
attention map M, through feature transformation and matrix multiplication. A dot
product operation is then applied to C, and M, to obtain the attentive features A..
Finally, the refined clinical feature Cyefineq is obtained through matrix summation
between the input feature C' and A.. Additional three convolutions are necessary to
refine the dermoscopy feature D, fined.

Following the concept of ”parameter-sharing,” we further refined the CA modules
by sharing the parameters of the three convolutions for the projections of input
features from both modalities (refer to Fig. 5.6). Consequently, we can save half of
the parameters of each CA module.

5.4.2.3 Biased Loss Function

In the training of previous methods, three branches are equally optimized, so their
loss function can be formulated as Eq. 5.5:

Livtar = (LC + Lp+ LF)/3 (55)

where L;q; represents the total loss function and Lo, Lp, and Ly are the loss function
for clinical, dermoscopy, and fusion branches, respectively (See Fig. 5.6).

However, optimizing these three branches equally seems unreasonable based
on prior knowledge, which demonstrated that the dermoscopy image-based model
outperforms the clinical image-based model [29]. Inspired by the prior knowledge, we
can have a hypothesis that dermoscopy information is more valuable than clinical
one in the multi-modal task and thus proposed a new biased loss function, which
is achieved by adjusting the corresponding weights of loss functions for different
branches, as shown in Eq. 5.6.

Liotat = We - Lc + Wp - Lp +Wp - Ly (5.6)

where We, Wp and Wr are the corresponding weights of Lo, Lp and Lg, respectively.
Specifically, in this function, Wp is set to bigger than W, and Wr is the sum of
We and Wp as the fusion information is the combination of clinical and dermoscopy
information. So, Eq. 5.6 can be simplified into Eq. 5.7

Lo =W - Le+ (05— W) - Lp+0.5- Lp (5.7)

where W is the weight factor and W € [0,0.1,0.2,0.3,0.4]. With using this loss
function, more backward gradient flows will pass the dermoscopy and branches and
explicitly enforce the multi-modal model to concentrate more on the information
from these two branches than the clinical branch.
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5.4.3 Experiments and Discussion
5.4.3.1 Implementation Details

During training, the Adam optimizer [62] is employed with a batch size of 24.
The initial learning rate is set to 3e-5 and is adjusted every epoch following the
CosineAnnealing learning schedule. Random transformations such as vertical and
horizontal flipping, rotation, shifting, and enhancing brightness and contrast are
applied during training. Stochastic weight averaging [56] is utilized to generate the
final weight used for testing. All images are resized to 224 x 224 x 3 for both training
and testing. During the testing, we followed [110] that searches the weights on the
validation set and then forms the final predictions by a weighted averaging scheme.
All the experiments are based on the backbone of SwinTransformer and are on the
SPC dataset unless specified. The weight factor in Eq. 5.7 is set to 0.1, as it yields
the best performance (See Table 5.17).

5.4.3.2 Datasets and Metrics

The dataset and evaluation metrics are the same as that in Sec.5.3.4.2 and Table 5.1.

5.4.3.3 Comparison with state-of-the-art methods

We undertake a comparative analysis of our PEMM model with several existing
methodologies, including TFormer [136], GIIN [36], FusionM4Net-FS [110], AMFAM
[119], HcCNN [11], and Inception-combination [60], on the SPC dataset. The com-
parative results concerning Averaged AUC and accuracy are presented in Tables 5.11
and 5.12, respectively. Notably, all reported results are extracted from the respective
literature and are presumed to represent the optimal performance of each model,
except for TFormer, which reported an averaged accuracy value. Therefore, for the
comparison, we also opt for the model’s weights demonstrating the best performance
in terms of Avg AUC. Our model underwent training five times for the ensuing
experiments, and the mean values alongside the standard deviation from these five
iterations were employed for a more robust analysis of our model.

As demonstrated in Table 5.11, CAFNet, FM-FS, and AMFAM notably outper-
form Incep-com, HcCNN, and GIIN, highlighting the effectiveness of cross-attention
modules, weighted late fusion schemes, and adversarial learning schemes, respectively.
Moreover, our PEMM model attains the highest performance in terms of Avg AUC
value (87.6%), surpassing significantly the following three methods (FM-FS: 76.0%,
CAFNet: 75.7%, and AMFAM: 75.7%), underscoring the superiority of our approach.
Our PEMM model achieves the top-3 highest values across almost all categories except
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Table 5.11: The comparison between our PEMM and currently advanced methods
on the SPC dataset in terms of AUC. The highest and second highest values in
each column are bolded and italicized, respectively. Incep-com: Inception-combined,
FM-FS: FusionM4Net-FS, Avg: Averaged (%)

Diag PN STR PIG RS DAG BWV VS

BCC NEV MEL MISC SK TYP ATP REG IR REG IR PRS REG IR PRS REG IR
Inception-com | 92.9 89.7 86.3 88.3 91 842 79.9 87 789 749 79 829 765 79.9 89.2 8.5 76.1 | 83.7
HcCNN 944 87.7 85.6 883 804 859 783 87.8 77.6 83.6 81.3 81.9 77.7 82.6 89.8 87 82.7| 843
AMFAM 94.1 89.7 89.1 90.6 81.7 84.5 82.0 89.5 80.7 85.1 83.4 86.7 77.7 81.9 91.1 88.8 80.9 | 8.7
FM-FS 95.3 926 89 94 89.2 85.9 83.9 879 814 80.9 83.5 81.7 79.1 80.1 90.6 87.8 78 86
GIIN 92.8 86.8 87.6 888 79.8 80.1 87.5 849 81.2 81.1 8.6 79 786 83.1 90.8 80.7 754 | 83.6
CAFNet 97.1 92.7 92.2 925 91 819 753 874 85.4 76.1 &85 85.4 752 787 94.7 848 83.5| 8.8
PEMM (Ours)| 94.7 93.0 90.8 94.9 91.7 86.7 83.8 90.1 8/.4 79.4 86.1 84.9 80.7 84.0 93.9 88.5 85.4|87.6

Methods AVG

PIG-REG, with the highest values in nine categories and the second-highest values in
four categories, showing the robustness of our method across eight classification tasks.
In Table 5.12, similar phenomena are observable. The proposed PEMM method
attains the highest values in five label tasks (PN, BWV, PIG, DaG, and RS) out of
eight label tasks, with CAFNet, AMFAM, and FM-SM ranking in the 2nd to 4th
positions in terms of Avg ACC. Specificallyy, PEMM achieves the highest value of
77.4 % to improve the Avg ACC values of CAFNet (76.8%), AMFAM (76.0%), and
FM-FS (75.7%) by 0.7%, 1.3% and 1.6 %, respectively.

Table 5.12: The comparison between our PEMM and currently advanced methods
on the SPC dataset in terms of accuracy. The highest and second highest values in
each column are bolded and italicized, respectively. Incep-com: Inception-combined,
FM-FS: FusionM4Net-FS, Avg: Averaged (%)

Methods PN BWV VS PIG STR DaG RS Diag|AVG
Incep-com |70.9 87.1 79.7 66.1 74.2 60.0 77.2 74.2|73.7
HcCNN 70.6 87.1 84.8 68.6 71.6 65.6 80.8 69.9|74.9
AMFAM 70.6 88.1 83.3 709 74.7 63.8 82.83 75.4] 76,0
FM-FS 70.9 86.8 81.8 72.4 744 61.0 83.0 74.9| 75.7
CAFNet 70.1 87.8 84.8 73.4 77.0 61.5 81.8 78.2|76.8
TFormer 70.9 86.4 83.5 68.8 74.0 64.9 81.3 73 |75.3
PEMM (ours)|73.7 88.9 825 71.9 76.0 65.6 83.0 77.7|77.4

For further analysis, we adhere to the methodology outlined in [11, 36] to present
the results of melanoma-related features in Table 5.14. From this table, it is evident
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Table 5.13: The comprehensive comparison between our AMMFM and other
methods in terms of model’s parameters. > : slightly more, > >: much more

Method  |Avg AUC (%) Avg ACC (%) | Parameters
Incep-com 83.7 73.7 >57.4M
HcCNN 84.3 74.9 >65.0M
AMFAM 85.7 76 >51.2M
FM-FS 86 75.7 54.5M
GIIN 83.6 - >51.2M

CAFNet 85.8 76.8 >>51.2M
TFormer - 75.3 77.76M
PEMM(Ours) 87.6 77.4 31.12M

that our PEMM model attains the highest performance in terms of Avg AUC at 86.7%
and Avg SEN at 64.1%, thereby affirming the efficacy of our method in detecting
melanoma-related features. Regarding the Avg PRE value, GIIN attains the highest
value of 70.3%, surpassing all other methods. We attribute this to the unbalanced
distribution of VS-IR (irregular vascular structure), which comprises only 71 positive
samples compared to 950 negative samples. This imbalance tends to lead GIIN to
over-fit the negative samples of VS-IR, resulting in 100% values for SPE and PRE
but only 3.6% for SEN. This indicates its effectiveness in detecting negative samples
but its limited ability to identify positive ones. Conversely, our PEMM achieves the
second-highest value (33.3%) in SEN for VS-IR, showcasing its superior performance
in detecting positive VS-IR samples even within an extremely unbalanced distribution.

The comparison of model parameters is illustrated in Table 5.13. Since there
were no descriptions of the parameters for the compared methods in their respective
papers, and only the source codes of TFormer and FM-FS are publicly available, we
conducted a rough estimation of the parameters for other methods. Considering that
Incep-com, AMFAM, and GIIN do not incorporate an additional third branch and
solely utilize two InceptionV3 (57.4Mb) or two ResNet-50 (51.2Mb) as encoders along
with fully connected layers as classifiers, we estimate the parameters of Incep-com
to be slightly more than 57.4Mb, and the parameters of AMFAM and GIIN to be
slightly more than 51.2Mb. Regarding HcCCNN and CAFNet, which incorporate an
additional branch, we estimate that their model parameters exceed those of their
two encoders (ResNet-50: 51.2Mb). From the presented table, it is evident that our
PEMM model achieves the highest Avg AUC and Avg ACC values while utilizing
approximately 60% fewer parameters compared to the second-best methods, FM-FS
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Table 5.14: Further comparison in melanoma-related features (%).

. DIAG PN STR PIG RS DaG BWV VS
Metric| Method Avg
MEL ATP IR IR PRS IR PRS IR
Incep-com| 86.3 79.9 789 79 829 79.9 89.2 76.1|81.5
HcCNN | 85.6 783 77.6 81.3 81.9 82.6 89.8 82.7|825
AMFAM | 89.1 82.0 80.7 83.4 86.7 81.9 91.1 80.9|84.5
AUC | FM-FS | 89.0 83.9 81.4 83.5 81.7 80.1 90.6 78.9|83.7
GIIN 87.6 87.5 81.2 83.6 79 83.1 90.8 75.4|835
CAFNet | 922 75.3 85.4 85.0 85.4 78.7 94.6 83.4|85.0
PEMM | 90.9 83.8 84.4 86.1 84.9 84.0 93.9 85.4|86.7
Incep-com| 65.3 61.6 52.7 57.8 56.5 70.5 63.0 30.8|57.3
HcCNN | 62.8 62.3 524 65.1 81.6 69.6 91.9 50.0|67.0
AMFAM | 76.2 51.6 54.3 61.3 46.2 82.5 56.0 0.0 |53.5
PRE | FM-FS | 65.7 822 56.2 67.6 82.0 67.2 64.9 42.9|68.5
GIIN 65.6 48.4 50.4 82.3 73.5 749 67.4 100|70.3
CAFNet | 779 50.8 54.8 70.1 76.7 67.8 75.4 58.3|66.5
PEMM | 65.4 57.0 52.1 64.5 52.8 78.0 73.3 16.7|57.5
Incep-com| 61.4 484 51.1 59.7 66 62.1 77.3 13.3|54.9
HcCNN | 584 409 35.1 55.7 95.2 80.2 92.2 20.0|59.7
AMFAM | 65.8 585 57.3 67.9 72.1 66.7 75.0 0.0 |57.9
SEN | FM-FS | 624 49.5 47.9 589 47.1 68.4 66.7 20.0|52.6
GIIN 59.0 77.5 67.0 39.2 21.9 70.1 69.9 3.6 |51.0
CAFNet | 75.3 65.9 67.1 60.3 42.7 74.1 68.8 45.0|62.4
PEMM | 73.3 624 57.7 684 76.7 71.1 69.6 33.3|64.1
Incep-com| 88.8 90.7 85.7 80.1 81.3 78.9 89.4 97.5|86.6
HcCNN | 88.1 924 90.0 86.3 41.5 71.6 65.3 98.4|79.2
AMFAM | 91.4 85.6 85.9 83.0 82.6 824 90.3 92.4|86.7
SPE | FM-FS | 83.8 90.1 88.4 83.1 96.2 72.9 91.6 97.8|89.2
GIIN 89.5 79.0 80.3 95.8 96.8 78.8 91.0 100 |88.9
CAFNet | 93.6 90.2 91.2 89.1 96.5 74.0 95.1 98.7(91.1
PEMM | 83.5 87.1 85.5 84.2 84.5 80.6 93.7 93.4|87.2

(in terms of Avg AUC) and CAFNet (in terms of Avg ACC). This result substantiates
the effectiveness of our method.

5.4.3.4 Ablation studies

The ablation studies of our PEMM are shown in Table 5.15 to analyze the effect
of three components, i.e., parameter-sharing (PS) encoder, shared cross-attention
modules (SCA), and biased loss (BL). The baseline model is a commonly-built multi-
modal skin lesion classification model that adopts two individual encoders with a
concatenation operation to fuse the features of the final layer of boto modalities and
trained by equal optimization (See Eq. 5.5). From the data presented in the table,
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Table 5.15: Ablation studies of our PEMM in terms of AVG AUC, AVG ACC
and model’s parameters. FM: Fusion Module, PS: Parameter-Sharing, CA: Cross-
Attention, SCA: Shared Cross-Attention, BL: Biased Loss (%).

Encoder% BL|IAVG AUC AVG ACC/|Parameters

Non-PS| Baseline 87.0+0.3 76.5+0.6 58.49M
86.9+0.4 76.4+0.4 | 30.14M
v 86.9+0.4 75.94+04 | 32.10M
v 87.2+£0.1 76.6£0.3 31.12M
v v | 87.3£0.3 76.8+0.7 | 31.12M

PS

it is apparent that by implementing parameter sharing among encoders, the total
parameters of the baseline model experience a significant reduction from 58.49M to
30.14M. Despite this reduction, the decrease in diagnostic performance is negligible,
with only a 0.1% decrease in both metrics (as observed in the 1st and 2nd columns).
Furthermore, with the incorporation of shared cross-attention (SCA) modules into
the PS encoder, there is an improvement in performance from 86.9% to 87.2% in AUC
value and from 76.4% to 76.6% in ACC value, respectively, with only a subtle increase
of 0.98M parameters (as shown in the 2nd and 4th columns). Moreover, implementing
biased loss (BL) further enhances the performance of the PS-SCA model to 87.3% in
AUC and 76.8% in ACC values without incurring any increase in computational cost
(as shown in the 4th and 5th columns). These results illustrate the effectiveness of
parameter-sharing networks in parameter reduction and the efficiency of SCA and
BL in enhancing diagnostic accuracy with minimal or no increase in the model’s
parameters. In our comparison between CA [46] and our shared CA, we observed that
CA does not outperform our SCA and even performs worse than simple concatenation
operations (See 2nd-4th columns). This discrepancy may arise from the attention
mechanism, making the PS network more susceptible to overfitting and resulting in
poorer performance than concatenations, especially in smaller datasets. However,
this issue can be mitigated by employing the PS scheme, akin to the phenomenon
observed in [136].

5.4.3.5 Other experiments

The effect of individual classifiers We also investigated the possibility of sharing
parameters between the classifiers for the clinical and dermoscopy branches, denoted
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as Co and Cp, respectively. However, as depicted in Table 5.16, compared to the
Non-PS classifiers, the PS classifiers exhibit a significant reduction in AUC from
87.3% to 86.8% and ACC from 76.8% to 76.4%. This could be attributed to the
sensitivity of fully connected layers to the input.

Table 5.16: Comparison between our model using parameter-sharing (PS) and
non-PS classifiers. (%)

classifiers | AVG AUC AVG ACC | Parameters(Mb)
PS 86.8£0.5 76.4+0.4 30.65
Non-PS 87.3+0.3 76.8+£0.4 31.12

Comparison of different weight factor W We conducted an experiment to
explore the effect of different weight factors, denoted as W, in our biased loss function
(Eq. 5.7). It is important to note that the weight factor W is assigned to L¢, while
0.5—W is allocated to Lp. Asillustrated in Table 5.17, we observed that the best and
second-best overall performances are achieved by setting W to 0.1 and 0.2, respectively,
surpassing the method trained using commonly used equally optimized loss and
other settings. This outcome supports our hypothesis that improving classification
performance is feasible by leveraging more information from the dermoscopy branch
in multi-modal skin lesion classification. Furthermore, the best overall performance is
attained when W is set to 0.1, indicating that specific clinical information can serve as
supplementary data to enhance classification performance rather than disregarding it
(W=0). Conversely, when W is set between 0.3 and 0.5, the corresponding diagnostic
performances consistently deteriorate, with the worst performance observed at W =0.5.
This underscores the significance of incorporating dermoscopy information in the
classification process.

The effectiveness our method on different backbones In addition to the
SwinTransformer (Tiny), we further assessed the effectiveness of our method on
different backbones, including ResNet50, DenseNet201, and Convnext (Tiny). As
shown in Table 5.18, the proposed PEMM decreases diagnostic performance compared
to the Baseline model when utilizing ResNet50 and DenseNet201 as the parameter-
sharing encoder, specifically for ResNet50 and DenseNet201, the AUC and ACC
metrics of PEMM decrease by over 0.5% compared to the corresponding baseline
models. Notably, the AVG ACC value of both backbones even falls below the
corresponding single-modality model trained using dermoscopy images (PEMM: 73.3%
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Table 5.17: The effect of different weight factor W in Eq. 4.3. EQ: Equally
optimization that indicates the model is optimized by the loss function as shwon in
Eq. 5.5. (%)

W | AVG AUC AVG ACC
0 | 87.4+£0.4  76.6£0.5
0.1 | 87.3£0.3 76.84+0.4
0.2 | 87.3£04  76.78%+0.1
0.3 | 87.2£0.2 76.3+0.4
0.4 | 86.7£0.2 76.1£0.3
0.5 | 84.6£0.2 73.9£0.4
EQ | 87.24+0.2 76.6+0.3

vs. Derm: 74.3% for ResNet50; PEMM: 74.6% vs. Derm: 75.1% for DenseNet201).
Conversely, when our PEMM is applied to the Convnext and SwinTransformer
backbones, the model’s parameters can be significantly compressed (nearly 50%)
while maintaining diagnostic accuracy compared to the baseline models and in the
case of SwinTransformer, even performing better. This discrepancy may be attributed
to differences in the capacity of the backbones. More advanced backbones possess
parameter-sharing capacity, while traditional backbones may lack this capability.

5.4.4 Conclusion

In this paper, we introduce a novel Parameter-Efficient Multi-Modal (PEMM) method
for skin lesion classification. Our approach offers several key contributions: Firstly,
by sharing the parameters of encoders with strong capacity while retaining individual
classifiers, PEMM achieves approximately 50% compression in model parameters
while preserving classification accuracy compared to models employing two separate
encoders. Secondly, our proposed shared cross-attention module enhances modality
interactions within the parameter-sharing network (PSN) with fewer parameters
compared to commonly used cross-attention mechanisms. Finally, we introduce a
biased loss function, which leverages the prior knowledge that dermoscopy information
is more critical than clinical images. This biased loss guides the PSN to prioritize
learning from dermoscopy images, leading to improved optimization and classifi-
cation. Extensive experiments validate the effectiveness of our PEMM method in
compressing model parameters while maintaining accuracy. Furthermore, compared
to current state-of-the-art methods, the results demonstrate that PEMM significantly
outperforms them while utilizing fewer parameters on the SPC dataset.
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Table 5.18: Comparisons between single-modal, baseline multi-modal and our
PEMM methods based on different backbone. Params: Parameters (%).

Backbone | Model AVG AUC AVG ACC |Params(Mb)
Derm  84.7£0.3 74.34+0.4 96,68
i .9+0. .6+0. '
ResNet50 Clic 76.9+0.3 67.6+0.3
Baseline 85.440.1 74.3+0.2 55.52
PEMM 84.740.1 73.34+0.6 36.93
i mmasen assod| 207
DenseNet201 1(.: ' ' ’ ’
Baseline 86.5+0.4 75.7+0.5 4417
PEMM 86.04+0.2 74.64+0.4 29.88
Derm  86.6£0.5 75.940.2 99 05
Clic 78.1+0.2 69.1+0.2
Convnext
Baseline 87.24+0.3 76.64+0.5 58.96
PEMM 87.240.2 76.440.5 31.35
Derm  86.94+0.3 76.3+0.4 98,89
ST Clic  77.740.5 69.040.7 '
Baseline &87.2+0.3 76.5+0.6 58.49
PEMM 87.340.2 76.84+0.4 31.12
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Fusing clinical images, dermoscopy
images and patient’s metadata for
skin lesion classification

6.1 Introduction

Clinical Image Dermoscopy Image Patient’s Meta-Data
. W Diagnostic Low
Difficulty
Elevation Palpable
Sex Male
NN Management | Excision
ID:NELO35 ID:NEL034 Location Lower Limbs
Pigment Network Absent

]

E Streak Absent

]

% Pigment Absent

[

S Regression Structures Present

=

=

E Dots and Globules Irregular

§ Vascular Structures Present

]

? | Blue whitish veil Present

Diagnosis Label Melanoma

Figure 6.1: Example of one patient’s case, including the clinical image, dermoscopy
image, meta-data, seven-points checklist criteria label, and diagnostic label.

In the last two chapters, we introduced a single image-meta fusion method and
a clinical-dermoscopy fusion method, respectively. The experiments in these two
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chapters demonstrate the superiority of two modal-based methods compared to
a single modal-based one. However, how to efficiently fuse them for Skin Lesion
Classification (SLC)? When we get all of these three modalities. In this chapter, we
will answer the question. Before delving into our proposed fusion methods, let’s review
the previous works on the fusion of three modalities for skin lesion classification. The
literature on three-modalities-based SLC is limited; most existing works [36, 119, 11,
46] focus only on the fusion of two modality images. Therefore, we include this review
in this section rather than creating a separate section.

Prior to the release of the Seven-Point Checklist (SPC) dataset by [60], there was
only one study [129] that proposed the use of ResNet-50 [45] to extract semantic
features from clinical and dermoscopy images, respectively. These features were then
integrated with metadata encoded in a one-hot manner for skin disease diagnosis.
[60] introduced the first publicly available multi-modal dataset for multi-label SLC.
They proposed a unified framework that utilized two InceptionV3 [106] models to
process multi-modality data for multi-label SLC (SPC criteria label and diagnosis
label).

There are two main limitations to the methods mentioned above. Firstly, learning
both shareable and individual representations has been proven to be important in
many multi-modal fusion applications [50, 133]. Additionally, decision-level fusion
approaches have also been shown to be preferable to avoid the overfitting problem
of machine learning models when the training dataset is not large [88, 54, 103].
However, the above-mentioned methods only focus on training a shareable feature
representation and ignore decision-level fusion.

Secondly, the patient’s meta-data (non-image modality data) is typically only
embedded into the fully connected layer and is used to co-train the whole deep learning
model with two-modality images at one stage, as shown in Fig. 6.2(a). Consequently,
the entire model’s weight is heavily biased towards feature vectors extracted from
multi-modality images. The impact of non-image modality data on the final prediction
is minimal or even ignored.

6.1.1 Owur Works: FusionM4Net

To address the limitations mentioned above, in this work, we propose a multi-stage,
multi-modal learning algorithm (FusionM4Net), which gradually fuses two-modality
images and patient’s meta-data information at different levels. FusionM4Net consists
of two stages, as illustrated in Fig. 4.3.

In the first stage, our proposed algorithm utilizes a FusionNet model as the
feature extractor, which employs two convolutional neural networks to learn both
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Figure 6.2: The overview of different multi-modal CNN architectures for skin disease
recognition. (a) one-stage multi-modal CNN; (b) our proposed Fusion-M4Net. In
this figure, F is used to fuse information from two-modality images at the decision
level in the first stage. F; is adopted to integrate non-image modality data and image
modality data in the second stage. (Abbreviations: Clin image: clinical image; Derm
image: dermoscopy image).

single-modality specific representation and cross-modality common representation at
the feature level. Subsequently, our algorithm employs Fusion Scheme 1 to fuse the
predictions from the two CNN models at the decision level.

In the second stage, we introduce Fusion Scheme 2 to incorporate the patient’s
meta-data information. With the decision information from the first stage, the
patient’s meta-data information is first utilized to co-optimize an SVM cluster. Then,
the decision from the SVM cluster and from the first stage is integrated into the
final multi-label SLC result. We evaluate our multi-modal learning algorithm for a
multi-label SLC task on a publicly available dataset [60]. In summary, the proposed
FusionM4Net achieves significant improvements compared to single-modal algorithms
and outperforms other multi-modal, multi-label SLC methods, as we will demonstrate
in this work.

The contributions of this work are summarized into three points:

1. We build a FusionNet model and Fusion Scheme 1 to effectively learn and fuse
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the representation of two-modality images at both the feature level and decision

level.

2. We propose a new two-stage multi-modal learning algorithm named FusionM4Net,
which gradually integrates the discriminative information from this three-
modality data in a hierarchical manner.

3. We conduct extensive experiments to evaluate our algorithm, the results of
which show the advantage of our proposed method.

The code of our algorithm is publicly available at *

78

Thttps://github.com /pixixiaonaogou/MLSDR

\,

N

N



Table 6.1: The detailed data structure of the final prediction P3 in FusionM4Net,
see Fig.3. P} indicates ith prediction in P3. pred type: the prediction for the type of
label.

pred type | shape
P} Diag (5)
P; Buwv (2)
P} Str (3)
Py | Pig (3)
Py Rs (2)
Py | Dag (3)
P/ Pn (3)
Py Vs (3)

6.2 Methods

6.2.1 Overall Structure of FusionM4Net

Fig. 6.3 shows the flowchart of our proposed FusionM4Net, which consists of two main
stages and gradually fuses clinical images, dermoscopy images, and patient’s meta-data
for multi-label SLC. In this flowchart, we input zgi, € RV*H*C ) 240rm € RWXHXC
and Zpera € RY into our FusionM4Net, and obtain the final output P;. Here, W, H,
and C' indicate the image’s width, height, and channel number, respectively. L is the
length of one-hot encoded features of the patient’s metadata. Pj is a list type and
consists of eight predictions, as shown in Table 6.1. Other predictions in Fig. 6.3,
including Pyeym, Pein, Prusion, P1, and P, and the ground truth y have the same
data structure as Ps.

In the following sub-sections, we will introduce the three main parts of our method,
FusionNet, Fusion Scheme 1, and Fusion Scheme 2, sequentially. FusionNet and
Fusion Scheme 1 belong to the first stage of FusionM4Net and are used to fuse the
two-modality images. Fusion Scheme 2 belongs to the second stage of FusionM4Net
and is adopted to integrate the patient’s metadata.

6.2.2 FusionNet

FusionNet is employed to integrate and learn the information from two-modality
images at the feature level. The proposed FusionNet contains two ResNet-50 back-
bones and three branches. The two ResNet-50 backbones are adopted to extract
features from clinical images and dermoscopy images. We denote these two ResNet-50
backbones as C;r, and Cgerpy, and the three branches Bejin, Baerm and B pysion, Which
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Table 6.2: The detailed structure of branch B, in FusionNet (which is also
indicated to Berm and Bpusion), see Fig. 3. BY,. indicates ith multi-layer FCL in

clin

Bein. FCL type: the FCL for the corresponding label of the prediction.

FCL type configuration
Bl Diag (input_size=2048 output_size=>5)
B2, Buw (input_size=2048,output_size=2)
B3, Str (input_size=2048,output_size=3)
B, Pig (input_size=2048,output_size=3)
B3, Rs (input_size=2048,output_size=2)
BS., Dag (input_size=2048,output_size=3)
BT, Pn (input_size=2048,output _size=3)
B, Vs (input_size=2048 output_size=3)

are adopted for optimizing Py, and Pyeym, Prusion, respectively. The detail of the
ResNet-50 structure can be seen in [he2016], and the structure of Byin, Baerm and
Bysion are the same, so we only use By, for descriptions. B, contains eight fully
connected layers (FCL) for obtaining eight predictions, and its structure is as shown
in Table 6.2.

During the training, ., and x e, are fed into the RestNet-50s Cy;,, and Cyepp, to
get Flyim € RY and Fj.m € RY, respectively. Then, F;, and Fje., are combined by
element-wise addition to constructing a shared feature vector Fyysion € RY, where N
is the length of the feature vector. Next, three feature vectors Fin, Fierm and Frysion
are input into the FCLs B, Bierm and Bysion to obtain Puin, Pierm and Prysion,
respectively, in which By, and Bye,,n, are employed for learning single-modality feature
representation, while B0, 15 used for learning cross-modality feature representation.
Our FusionNet is co-trained by two-modality images and their corresponding labels
in pairs to minimize the overall cross-entropy loss between multi-label predictions
and ground truths. The loss function that is used to optimize the three predictions
Pierms Pein, and Ppygio, simultaneously can be defined as follows:

N
i=1
N

Lderm = Z CE(Péernw yl) (62)
=1
N

qusion = Z CE(P}usionv yl) (63)
i=1

80



Love’/‘all - Lclin + Lderm + qusion (64)

where Lein, Laerm and L ysion indicate the loss function of Py, Pierm, and Prysion,
respectively. g is the multi-label ground truth and has the same data structure
as P3, as shown in Table 6.1. 3" is the ith label in y. CE() is the cross-entropy
loss function. During our training process, the above three loss functions combine
to an overall loss function L,,erqn to train the clinical branch, dermoscopy branch,
and fusion branch together. With the co-optimization scheme, our FusionNet can
capture single-modality information and learn cross-modality feature representation
concurrently.

Algorithm 1 3-predictions weights searching algorithm
Input: The predictions FPyerm, Peiin,Pfusion and corresponding ground truth y on
validation dataset
Output: The weights (Wein, Waerm and Wiygion ) with best accuracy on validation
dataset
1: Initialize ACClesy = 0 and array By (50 equally spaced entries).
2: for (i,7,2) € By x By X By do

; _ ) ; _ 3 _ )
3: Ynorm = H_j_‘_z?]norm T itz “norm = itttz

4: for each i € [1,2,3,4,5,6,7,8] do

5: Ptiemp = inorm X Pc%erm + jnorm X cilin + Znorm X P}usion
6: end for

T Pt@mp = [Ptlempv Pl?emp? Ptgempv Pt%zmp’ Pt?amp? Ptimp’ Pt7emp7 Ptgemp]
8: ACCiemp = Compare(Premp, ¥)

9: if ACCiemp > ACChest then

10: ACCbeSt < ACCtemp

11: Waerm < ©.

12: Weiin < jv

13: qusion —1—1- ]7

14: end if

15: end for

return Wderma Wclirm qusion

6.2.3 Fusion Scheme 1

Fusion Scheme 1 effectively fuses the output information from the three branches of
FusionNet at the decision level, as shown in Fig. 6.3. Specifically, Fusion Scheme 1 is
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a 3-predictions weighted average scheme, which integrates Pierm, Pein and Ppysion to
form P;. It mainly comprises two steps: weights searching and prediction fusing.
First, a 3-predictions weights searching algorithm is employed to search for the
weights, making the fused prediction P; get the best average accuracy on the validation
dataset. The pseudo-code of the 3-predictions weights searching algorithm is shown
in Algorithm 1.
Secondly, according to eq. 4.5, we can calculate P, = [P}, P2, P2, P}, PP, P¢, P/, Pf]
as follows:
P} = W * P

clin

+ Wderm * Pg’éerm + qusion * P}usion7 Z e [17 27 37 47 57 67 77 8]7 (65)

where Wein, Wierm and Wiysion are the search weights from Algorithm 1.

6.2.4 Fusion Scheme 2

Fusion Scheme 2 further incorporates patient’s meta-data with decision information
from two-modality image data. There is only one main component in the second
stage: Fusion Scheme 2, which consists of two key steps.

Step 1: First, we use the one-hot function from Keras [23] to encode the patient’s
meta-data into a feature vector F,, € RYm<te  as shown in Fig. 4.4. Next, we
concatenate the meta-data vector and the flattened normalized multi-label predictive
vector F; € RM to construct a combined feature vector Fl,m, € RMeomv  which is
subsequently fed into the SVM cluster. Here Ny,eq, N1 and Neomp equals 20, 24, and
44, which are the lengths of F),.q, F1, and F,,, respectively.

The SVM cluster is comprised of eight SVMs, which are trained for eight-label
classification respectively. The eight predictions generated by all the SVMs are denoted
as P,. Note that we do a performance comparison using different classifier-based
clusters in Table 6.7, including logistic regression, SVM, and multi-layer perceptron,
and the SVM cluster performs best.

Step 2: We adopt a decision-level fusion based on eq. (6.6), which uses a 2-
predictions weighted average scheme to fuse the prediction P; at the first stage
and the prediction P, of step 1 at the second stage to form the final prediction
P3 = [P;,P??,Pg,Pél,P35,P:?,P37,P§] :

Py =P}« W+ Py W, i€[1,2,3,4,5,6,7,8], (6.6)

where W, and W, are the search weights in Algorithm 2. The pseudo-code of the
2-predictions weights searching algorithm is shown in Algorithm 2.
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Figure 6.4: The description of the second stage of Fusion-M4Net.

6.3 Experiments and Results

In this section, we will first introduce the seven-point checklist dataset [60], which is
composed of multi-modality data and eight labels.

Then, to investigate the performance of our FusionM4Net, we will display the
performance comparison between single- and cross-modality in Table 6.3, performance
comparison of all the predictions of FusionM4Net in Table 6.4. To explore how
to select weights, clusters and meta-fusion schemes, we will show the classification
results of the 2-predictions weighted average in Table 6.5, the classification results
of 3-predictions weighted average in Table 4.8, the classification results with the
different classifier-based clusters in Table 6.7, and the classification results with
different meta-fusion schemes in Table 6.8.

Finally, the performance comparison with other current advanced multi-label SDR
algorithms is shown in Table 6.9 and Table 6.10.

6.3.1 Dataset

Our method was evaluated on the Seven-Point Checklist (SPC') dataset [60]. The
SPC dataset contains 413 training cases, 203 validation cases, and 395 testing cases.
Each case comprises a dermoscopy image, a clinical image, the SPC labels, and a
diagnostic label, as seen in Fig. 6.1. The SPC labels are (I) Pigment Network (Pn),
(IT) Streak (Str), (III) Pigment (Pig), (IV) Regression Structures (Rs), (V) Dots and
Globules (Dag), (VI) Vascular Structures (VII) and (7) black whitish Veil (Bwv).
Each label has different types, including (1) Present (Pre), (2) Absent (Asb), (3)
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Algorithm 2 2-predictions weights searching algorithm

Input: The predictions P} and P; and corresponding ground truth y on validation
dataset
Output: The weights (W, and W) with best accuracy on validation dataset
1: Initialize ACCles <— 0 and the array By (100 equally spaced entries).
2: for each 7 € By do
3: for each i € [1,2,3,4,5,6,7,8] do
P =ix P+ (1—1i)xPj

4: temp

5: end for

6: -Ptemp = [Ptlempv PtZemp’ Ptgem;ﬂ Pt46mp7 Ptimp? ‘PtGemp’ Pt7emp7 ‘Ptsemp]
7 ACCtemp = Compare(Ptempa GT)

8: if ACCiemp > ACChest then

9: ACCbeSt — ACCtemp

10: Wi .

11: Wy« 1-7;

12: end if

13: end for

return Wy, W,

Typical (Typ), (4) Atypical (Atp), (5) Regular (Reg), and (6) Irregular (Irg). The
diagnosis (Diag) label is divided into five types: (1) Melanoma (Mel), (2) Nevus (Nev),
(3) Seborrheic Keratosis (SK), (4) Basal Cell Carcinoma (Bcc), and (5) Miscellaneous
(Misc). The author of [60] defined the dividing standard of SPC and diagnosis types.
For example, arborizing, comma, hairpin, within regression, and wreath are divided
into the type of Reg in the label of Vs. More details of the dividing standard can be
seen in the Table I of [58].

6.3.2 FEvaluated Metrics

Following several publications [60, 136], the evaluation metrics include average
accuracy, the area under the receiver operating characteristic curve (AUC), sensitivity
(SEN), specificity (SPE), and precision (PRE), to compare the performance of our
FusionM4Net with other multi-modal learning methods. The average accuracy (AVG)
is the main metric for the comparison.

6.3.3 Implementation Details

In our FusionM4Net, the FusionNet and the SVM cluster are independently trained.
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The FusionNet is co-trained by 2., and 4., images in pairs and corresponding
ground truth y. During the training of FusionNet, the batch size is 32, and the
optimizer is Adam [62] with the initial learning rate (LR) 3e-5. The size of the input
image is 224 x 224 x 3, which are the values of W, H, and C respectively. The length
L of the encoded patient’s metadata feature equals 20.

The total epochs of training are 250, and the LR changes with a CosineAnneal-
inglLR schedule in PyTorch. The training stops after 250 epochs and the weight
with the best accuracy on the validation dataset is saved for testing. The two CNN
backbones are initialized by the pre-trained weights of ImageNet [30]. Data augmen-
tations, including random vertical and horizontal flips, shifts, and distortions, are
conducted to expand the dataset. Before training and testing, all images are resized
to 224 x 224 x 3, which is the default image size of ResNet-50. Since the dataset has
been divided into the training images and validation images by the creator, we do
not need to divide them again.

In the second stage, we divide the training dataset into two equally sized parts:
sub-training and sub-testing dataset. During the SVM cluster training, the FusionNet
is first trained by a sub-training dataset and then adopted to obtain the P, from a
sub-testing dataset. Next, the encoded F} and F,., from the sub-testing dataset
are concatenated to form Fi,,;, which is used with the corresponding label y to
optimize the weights of the SVM-cluster. The parameters and configuration of the
SVM cluster’s training are the default ones in Sklearn, except the kernel, which is set
to rbf. In Algorithm 1, we didn’t use an array with 100 components because it needs
to take about 120 hours to search for the weights per model. In this case, we used
the array B; with 50 components as the candidate weight list; it just needs to take
about 1 hour for searching. All the models are trained five times independently to
get the mean value and standard deviation in our experiments, except for the results
of Table 6.9, Table 6.10 and Fig. 6.7, which are from a single training run.

The workflow of model building, training, testing, result analysis, and plotting
is constructed using several python libraries, mainly including Keras [23] (one-hot
encoding), PyTorch [85] (building the FusionNet), Numpy [44] (array computation),
Sklearn [86] (building the SVM-cluster and providing the metric functions), and
albumentation [18] (data augmentation).

6.4 Experiments and Results

In this section, we will first introduce the seven-point checklist dataset [60], which is
composed of multi-modality data and eight labels.
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Table 6.3: The classification results of single-modality and multi-modality (average
accuracy (AVG) in %), see Sec. 3.4.1 and Sec. 4.1.1. C, D, and M are the predictions
of the models trained by clinical images, dermoscopy images, and patient meta-data,
respectively. C-D is the prediction of the model, as shown in Fig.2(a), trained by
clinical and dermoscopy images. C-M is the prediction of the model trained by
clinical images and patient metadata. D-M is the prediction of the model trained
by dermoscopy images and patient metadata. C-D-M is the prediction of the model
trained by clinical and dermoscopy images and patient meta-data at one stage, as
shown in Fig. 2(a). For more details, you can see Fig. 3 of the supplementary
material. P; and P are the predictions from our method. P; is the counterpart of
C-D and Pj is the counterpart of C-D-M. The flowcharts of all the models in this
table are shown in the supplementary material to clarify the difference. The bold
black number highlights the highest AVG accuracy in each column. average is the
average value of all the labels in the other column.

Model Buv Dag Pig Pn Rs Str Vs Diag average

C 83.7£0.8 | 53.3+£2.0 | 59.3+1.4 | 57.54+1.9 | 74.5£1.0 | 66.3£1.0 | 80.8+0.2 | 67.0+1.5 | 67.840.5

Single-Modality D 87.2+£0.4 | 60.0£1.5 | 68.3£1.0 | 69.0£1.0 | 80.1£1.6 | 73.7£0.9 | 81.4+0.3 | 74.7£1.2 | 74.3£0.5
M 84.6£0.0 | 59.9+0.1 | 59.2+0.2 | 61.14+0.2 | 72.5£0.2 | 73.1£0.1 | 79.2+0.0 | 72.4+0.8 | 70.2+0.1

C-D 86.9£0.7 | 60.8£1.9 | 69.6+0.6 | 67.5+1.1 | 78.8£1.0 | 72.6£1.0 | 81.2+0.7 | 75.4+1.0 | 74.1£0.2

Multi-Modality C-M 84.1+0.1 | 59.1£0.8 | 59.0+0.9 | 62.94+0.8 | 74.4£0.9 | 69.8+£0.8 | 79.4+0.8 | 72.7+0.8 | 70.240.3
(One-stage) D-M 87.7£1.0 | 63.2+£0.7 | 69.9+1.0 | 69.4+1.0 | 80.8+£0.7 | 74.2+£0.8 | 81.5+1.1 | 76.2+1.5 | 75.4+0.4

C-D-M 87.1£0.5 | 62.3£1.2 | 69.940.5 | 69.0+£1.3 | 78.9+1.3 | 73.1£1.0 | 80.6£0.9 | 76.6£1.7 | 74.7£0.6

P1 (C-D) 87.940.7 | 60.240.5 | 71.5+£0.7 | 67.6+1.8 | 81.9+£1.0 | 73.840.6 | 82.1+0.5 | 75.6£1.2 | 75.1£0.4

Multi-Modality (C-M) 84.840.6 | 62.14£0.6 | 60.2+1.0 | 64.7+1.3 | 73.9+0.3 | 71.9£0.7 | 79.3£0.1 | 70.5£0.8 | 70.9£0.3
(Ours, Two-stage) (D-M) 87.6+0.4 | 66.2+1.9 | 69.7+1.8 | 69.3+£1.5 | 80.2+0.6 | 75.0+£0.8 | 80.6+£0.4 | 76.6£1.6 | 75.6£0.5
P3 (C-D-M) | 88.5+£0.4 | 64.4+1.3 | 71.3+1.3 | 69.2+1.5 | 81.4+0.8 | 76.1£1.1 | 81.6+£0.5 | 77.6+1.5 | 76.34+0.7

Then, to investigate the performance of our FusionM4Net, we will display the
performance comparison between single- and cross-modality in Table 6.3, performance
comparison of all the predictions of FusionM4Net in Table 6.4. To explore how
to select weights, clusters and meta-fusion schemes, we will show the classification
results of the 2-predictions weighted average in Table 6.5, the classification results
of 3-predictions weighted average in Table 6.6, the classification results with the
different classifier-based clusters in Table 6.7, and the classification results with
different meta-fusion schemes in Table 6.8.

Finally, the performance comparison with other current advanced multi-label SDR
algorithms is shown in Table 6.9 and Table 6.10.
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Figure 6.5: The detailed metrics of Diag labels of the results in Table. 6.3.

6.4.1 FEvaluation of FusionM4Net

6.4.1.1 Comparisons between single- and multi-modality learning

In Table 6.3, we show the classification results of different models that are trained
by single-modality (clinical images, dermoscopy images, or patient’s meta-data) or
multi-modality data. Fig. 6.5 displays the detailed metric of Diag label of the
results in Table 6.3. These results are to illustrate the improvement of multi-modal
learning (MML) for SLC compared with single-modal learning and our two-stage
MML algorithm’s advantage compared with the one-stage MML algorithm.

In this experiment, we first adopt ResNet-50 as the model for the training of
clinical images and dermoscopy images to get the predictions C and D, respectively,
and the SVM cluster for the training of patient metadata to obtain the prediction M.
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Table 6.4: The classification results comparison of the stage of our FusionM4Net
(AV @G accuracy in %). The black bold number is the highest value for each column.
average is the average value of all the labels in the other column.

Buw Dag Pig Pn Rs Str Vs Diag average
Pyin | 84.8+0.7 | 53.3£1.5 | 56.9+2.8 | 57.840.6 | 73.840.7 | 67.7£1.1 | 78.840.6 | 68.2+£0.6 | 67.74+0.3
Pierm | 87.6£0.7 | 59.4£1.6 | 70.8+£0.6 | 66.6+1.6 | 80.9£1.0 | 74.0£0.7 | 81.1£0.7 | 74.6+0.7 | 74.44+0.4

Prusion | 87.0£0.6 | 60.4£1.2 | 70.2£0.9 | 67.0+1.6 | 80.5+1.6 | 74.0£0.6 | 81.8+£0.5 | 75.7+1.1 | 74.6+0.5

P 87.9£0.7 | 60.2+0.5 | 71.5+0.7 | 67.6+1.8 | 81.9+1.0 | 73.8+£0.6 | 82.1+0.5 | 75.6£1.2 | 75.1+0.4

P, 86.7+0.6 | 65.4+0.4 | 65.7+1.1 | 70.4£1.2 | 79.0£0.9 | 75.8+£0.3 | 79.2£0.0 | 75.4+0.7 | 74.7+0.2
Py 88.5+0.4 | 64.4+1.3 | 71.3£1.3 | 69.2£1.5 | 81.4+0.8 | 76.1+1.1 | 81.6+0.5 | 77.6£1.5 | 76.3+0.7

Table 6.5: The classification results of 3-predictions weighted average scheme (AV G
accuracy in %), P; (averaged) is the prediction that is obtained by averaging the
Peiin, Pierm and Ppysion, while Py (ours) is obtained by our Fusion Scheme 1. average
is the average value of all the labels in the other column. The black bold number is
the highest value for each column.

Wetin Weerm Wtusion Buwv Dag Pig Pn Rs Str Vs Diag average

Pain 100 0 0 84.840.7 | 53.3+1.5 | 56.9£2.8 | 57.84+0.6 | 73.8+0.7 | 67.7+1.1 | 78.8+0.6 | 68.2+0.6 | 67.7+0.3
Pierm 0 100 0 87.64+0.7 | 59.4+1.6 | 70.84£0.6 | 66.6+1.6 | 80.9+1.0 | 74.04+0.7 | 81.1+0.7 | 74.6+£0.7 | 74.44+0.4
Pjusion 0 0 100 87.040.6 | 60.4+1.2 | 70.240.9 | 67.0+£1.6 | 80.5+1.6 | 74.0+0.6 | 81.84+0.5 | 75.7+1.1 | 74.6+0.5
P, (averaged) 33.3 33.3 33.3 87.540.5 | 60.3+1.0 | 69.5£0.8 | 66.8+1.6 | 81.0£0.6 | 74.240.9 | 81.7+0.5 | 75.4£1.5 | 74.6+0.4
Py (ours) 9.63+3.43 | 60.9420.3 | 29.5+20.2 | 87.940.7 | 60.2+£0.5 | 71.54+0.7 | 67.6+-1.8 | 81.9+1.0 | 73.84+0.6 | 82.1+0.5 | 75.6+£1.2 | 75.1+0.4

Table 6.6: The classification results of 2-predictions weighted average scheme (AV G
accuracy in %), Ps (averaged) is the prediction obtained by averaging the P, and P,
while P3 (ours) is obtained by our Fusion Scheme 2. average is the average value of
all the labels in the other column. The black bold number is the highest value for
each column.

Wy Wy Buw Dag Pig Pn Rs Str Vs Diag average
P, 100 0 87.94+0.7 | 60.240.5 | 71.54+0.7 | 67.6£1.8 | 81.941.0 | 73.840.6 | 82.1+0.5 | 75.6+1.2 | 75.140.4
Py 0 100 86.7+0.6 | 65.440.4 | 65.7£1.1 | 70.441.2 | 79.04£0.9 | 75.840.3 | 79.240.0 | 75.440.7 | 74.74£0.2
P (averaged) 50 50 88.2+0.5 | 66.3+0.6 | 69.5+1.5 | 70.2+£0.8 | 80.9+£0.9 | 76.7+0.9 | 80.3+£0.2 | 75.94+0.9 | 76.0+0.3
Py (ours) 73.5£6.43 | 26.5+6.43 | 88.5+0.4 | 64.4+1.3 | 71.3£1.3 | 69.24+1.5 | 81.4+0.8 | 76.1+£1.1 | 81.6+£0.5 | 77.6+1.5 | 76.3+0.7

Then, we follow the structure in Fig. 4.2(a), where ResNet-50 is selected as CNN,
to get C-D-M and remove the concatenation of the non-image modality to obtain
C-D. Training of the models for C, D, C-D, and C-D-M is the same as that of our
FusionNet. Training of the model for M is the same as that of the SVM cluster except
that the input is F},c. Finally, P, and P are from our proposed FusionM4Net.
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Figure 6.6: The detailed metrics of Diag labels of the results in Table. 6.4.

6.4.1.2 Performance of the predictions at different stages in our
algorithm

To explore the effectiveness of different stages in our algorithm, we display the
classification results of all the predictions at the two stages in FusionM4Net in
Table 6.4. Fig. 6.6 displays the detailed metric of Diag label of the results in
Table 6.3. All the predictions in Table 6.4 are from our FusionM4Net. P, Pierm
and Ppygion are the predictions from three FCL branches Bin, Bierm and Bysion,
respectively. P; is obtained by fusing the above-mentioned three predictions in the
3-Predictions Weighted Average scheme. P, is the prediction from the SVM clusters
that are trained by the patient’s metadata and P;. Pj is obtained by integrating P,
and P in the 2-Predictions Weighted Average scheme.
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Table 6.7: The classification results with different classifier-based clusters in the
second stage of FusionM4Net (AV G accuracy in %). LR is the logistic regression,
MLP is the multi-layer perceptron, and SVM is our chosen SVM cluster. average is
the averaged value of all the labels in the other column. The black bold number is
the highest value for each column.

Clusters Buwv Dag Pig Pn Rs Str Vs Diag average

Py LR 87.0+0.8 | 64.8+£1.0 | 70.8+£0.6 | 70.9+1.7 | 81.7+0.7 | 74.2+£0.6 | 81.5+0.4 | 76.1+£0.5 | 75.9+0.4
Py | MLP |89.1+0.7 | 64.1+1.3 | 71.0+£0.7 | 70.0+1.6 | 81.5+0.9 | 75.1£0.8 | 81.1+0.3 | 77.2+£1.5 | 76.1+0.4
Py | SVM 88.5+0.4 | 64.4+1.3 | 71.3+1.3 | 69.2+1.5 | 81.4+0.8 | 76.1£1.1 | 81.6+0.5 | 77.6+1.5 | 76.3+0.7

Table 6.8: The classification results with different meta-fusion schemes in the ISIC
2019 challenge, including Concat, Metanet [69] and Metablock [82], in the second
stage of FusionM4Net (AV G accuracy in %). average is the average value of all the
labels in the other column. The black bold number is the highest value for each
column.

Fusion stage Buv Dag Pig Pn Rs Str Vs Diag average

Concat 87.1£0.5 | 62.3+1.2 | 69.9+£0.5 | 69.0+1.3 | 78.9+1.3 | 73.1£1.0 | 80.64+0.9 | 76.6+1.7 | 74.7£0.6
Metablock | One-Stage | 86.241.0 | 60.6+1.1 | 59.941.4 | 64.64+1.2 | 73.64£1.4 | 71.840.8 | 77.741.2 | 75.041.0 | 71.240.4
Metanet 87.1£0.8 | 61.7+0.7 | 70.6+£0.8 | 68.0£0.9 | 79.6+0.7 | 72.4+0.8 | 81.9+0.9 | 75.0+0.7 | 74.6+0.2
Ours Two-Stage | 88.5+0.4 | 64.4+1.3 | 71.3+1.3 | 69.2+1.5 | 81.4+0.8 | 76.1+1.1 | 81.6+0.5 | 77.6+1.5 | 76.3+0.7

6.4.1.3 Effectiveness of the 3- and 2-predictions weighted average
schemes

To show the effectiveness of the 3-predictions and 2-predictions weighted average
schemes, we compared our proposed weighted average schemes with the normal
average scheme in Tables 6.5 and 6.6. In Table 4.7, Wiy, Waerm and Wiygion are the
weights of Puin, Pierm, and Ppysion, respectively, and obtained by the 3-predictions
weights searching scheme, as written in Algorithm 1. In Table 4.8, Wy, Wy =1 — W,
are the corresponding weighted average of P; and P, and obtained by Algorithm 2.

6.4.1.4 Comparison between different clusters at the second stage

To explain why we select a SVM cluster for the training at the second stage of our
algorithm, we compare different clusters at the second stage, including logistic regres-
sion (LR), multi-layer perceptron (MLP) and SVM. The performance comparisons
are shown in Table 6.7.
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Table 6.9: Performance comparison between our algorithm and other state-of-the-
art methods (AV G accuracy in %). The inception-based methods [60], Mma [81],
TripleNet [39], EmbeddingNet [129], HcCNN [11] are compared with our methods..
All the results of the methods mentioned above, except our proposed method, are
obtained from the papers of [60] and [11]. average is the average value of all the labels
in the other column. The black bold number is the highest value for each column.

Bwv | Dag | Pig | Pn Rs Str Vs | Diag | average

Inception-unbalanced | 87.6 | 56.7 | 65.6 | 68.1 | 78.2 | 75.9 | 81.3 | 68.4 2.7

Inception-balanced 87.3 | 60.3 | 64.8 | 68.9 | 78.2 | 75.7 | 81.5 | 70.8 734
Inception-combine 87.1| 60 | 66.1 | 70.9 | 77.2 | 74.2 | 79.7 | 74.2 73.7

MmA 83 592 | 613|656 | 73.9 | 694 | 75.7 | 70.6 69.8
EmbeddingNet 84.3 | 57.5 | 64.3 | 65.1 | 78.0 | 73.4 | 82.5 | 68.6 7.7
TripleNet 879 | 61.3 | 67.3 | 63.3 | 76.0 | 74.4 | 83.0 | 68.6 2.7
HcCNN 87.1 | 65.6 | 68.6 | 70.6 | 80.8 | 71.6 | 84.8 | 69.9 74.9
FusionM4Net-FS 86.8 | 61.0 | 72.4| 70.9 | 83.0 | 74.4 | 81.8 | 74.9 5.7
FusionM4Net-SS 88.1|66.1| 70.1 | 71.1| 81.5 | 78.0 | 81.8 | 78.5 | 77.0

Vs_Irg Diag_Mel
W incep-un [ incep-ba [ incep-co [1 FM4-FS W FM4-SS W incep-un [ incep-ba [ incep-co [1 FM4-FS W FM4-SS

0:2 U:Z
01 01
0 ’—L;\II—L SPE PREC AUC 0 SEN SPE PREC AUC
(a) Vs (Irg) (b) Diag (Mel)
Figure 6.7: The detailed metrics of Diag labels in Table. 6.10.

6.4.1.5 Comparison between different meta-fusion schemes at the second
stage

To show the effectiveness of our meta-fusion scheme, we compared our proposed
Fusion Scheme 2 with other currently advanced meta-fusion methods, including
C-D-M (concatenation), Metanet[69] and Metablock [82], which have been evaluated
by [82] on the classification dataset of the International Skin Imaging Collaboration
(ISIC) 2019 challenge [26, 115, 27]. The whole structure of C-D-M is the same as
that of Metanet and Metablock, except for the fusion operation. C-D-M uses a
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Table 6.10: The detailed seven-point checklist label and diagnosis label classification
results of the Top 5 methods are in Table 6.9 (AV G accuracy in %). The HcCNN did
not give detailed results, and the highlighted number is the highest values of SEN,
SPE, PRE, and AUC for each column. Incep-un: Inception-unbalanced, Incep-ba:
Inception-balanced, Incep-co: Inception-combined, FM4-FS: the prediction of the
first stage in FusionM4Net, FM4-SS: the prediction of the first stage in FusionM4Net.
The highest values OF SEN, SPE, PRE, and AUC are highlighted in black, black,
green, and black, respectively. The results of Inception-based methods are from the
corresponding paper [60].

Pn Str Pig Rs Vs Buwv Dag Diag
Model | Met

Asb | Typ | Aty | Asb | Reg | Irg | Asb | Reg | Irg | Asb | Prs | Asb | Reg | Irg | Asb | Prs | Asb | Reg | Irg | Nev | Bee | Mel | Misc| Sk

35.5198.1136.4| 34 | 83 | 6.2 |57.3|95.5|31.1(98.7|23.1| 0 [96.6(49.3| 34 |59.3|67.8|94.1|25.044.6|35.0| 5.3
SPE | 80.8 | 75.5(93.7[47.8 98.6| 94 |53.5
PRE|72.8164.9(63.5|77.8|76.2| 64 |69.8| 60 |56.8|79.1|71.7|82.8|54.3| 0 89 |77.1159.6 |47.6|62.8|70.3|40.0|66.2 | 66.7 | 33.0
AUC|87.8183.6|78.6|84.2|87.8 783|774

Incep-un| SEN |78.8| 7

LR |

99.4180.1|31.1|95.5| 22 [97.1] 100 |49.3|96.6|92.2 | 72.2|67.4|50.6 |98.4|92.2| 98.0 | 99.5

67.2(78.1]79.9]79.9|82.1|81.8|73.4| 87 | 87 |72.3|72.6|76.4|87.7]92.2|83.2|86.6 | 88.4

Incep-ba | SEN | 78.2 | 76.0 | 41.9 1 90.7 | 43.2 | 50 | 73.5|16.7 |67.7|84.1|62.3|86.8 |30.8| 10 |72.5|65.3| 43 |66.1|66.1|91.3|25.0|55.4|42.5|15.8
SPE | 81.6 | 77.992.1 | 63.8 | 97.4 | 87.7 | 64.5 | 98.3 | 73.4 | 62.3 | 84.1 | 31.7]95.6 | 99.5 | 65.3 | 92.5 | 89.8 | 75.1 | 73.4 | 62.5| 98.9 | 88.4 | 97.2 | 99.7
PRE|73.5(66.9|61.9|82.3|67.9| 56 [72.9|57.1|53.8|58.8|58.9|84.4|51.6| 60 |91.9|6
AUC| 88.6|83.6|78.9|84.9|87.1|78.7|78.8|75.2|79.4|83.583.5{85.0 [84.0|76.1|87.5|8
Incep-co | SEN | 77.6 | 78.1 | 48.4 [ 86.0 |54.5|51.1 | 77.6 | 29.2 | 59.7 | 81.3 | 66 |92.3 |42.3|13.3|89.4 |77.3| 47 |67.8{62.1|88.6(62.5|61.4 |4
SPE |85.8| 78.7|90.7 | 67.4| 85.7 | 85.

1158.953.1166.9|75.2]50.062.2{63.0|75.0
5| 73 | 76.5|78.0|88.1189.2]84.2]86.8]90.4

5(42.1

5.7165.1]194.2]80.1|66.0|81.3 |45.1|92.4|97.5 |77.:
PRE|78.1|68.3|61.6 |83.1|52.7|52.7|74.2|41.2|57.8|86.7|56.5 | 86.5|45.8|30.8 |94.
AUC|89.9|84.2(79.9|86.1 | 78.9 | 7

89.4|87.8]72.6 |78.9|71.697.9|88.8|9 99.5

5
5
9180.0
3

SIS BN

3 .
4163.0 [56.6 | 51.3|70.5|79.5|55.6|65.3 | 67.
78.9179.074.9]79.0]82.9|82.9|86.2|85.5|76.1|89.2

89.2|74.1|76.5 | 79.0 | 89.792.9{86.3 | 88.3 | 91.0

FM4-FS | SEN | 76.3 | 78.8 |49.5|87.9 | 52.3 | 47.9 | 87.0 |39.6 | 58.9 | 96.2 | 47.1 | 95.5 | 34.6 | 20 | 91,6 | 66.7|41.0|66.9 | 68.4|90.0 | 56.2 | 62.4|57.5|21.1
SPE | 83.3|81.9|90.1 | 64.5]95.2 [ 88.4|62.8 | 97.1 | 87.1 | 47.296.2 |48.8|93.6 | 97.8 | 66.7 | 91.6 | 89.5 | 76.9 | 72.9 | 79.5| 94.5 | 88.8 | 98.3 | 99.2
PRE| 74.8|71.9] 60.5 | 82.2 | 57.5 | 56.2 | 75.2| 65.5 | 67.6 | 83.2 | 82.0 |87.7| 45 |42.9|92.1|64.9|56.9|55.2|67.2|84.5(30.0 | 65.6 | 79.3 | 57.1
AUC|86.9(85.9(83.9|85.8|87.9(81.4(83.1{80.9|83.5|81.7|81.7|89.4|87.8|78.9]90.6|90.6 [ 73.9|79.1|80.1{92.6|95.3|89.0|94.1|89.2
FM4-SS | SEN | 76.3 |79.5|49.5|91.4 | 47.7
SPE | 83.3]81.5(90.7 | 66.7 | 97.2 | 89.7 | 50.0 | 98.8 |89.7| 44.3 | 95.2 | 29.3 | 96.2 | 99.7 | 64.0 | 94.4 |92.5|78.0| 76.6 | 73.3 | 97.9 | 91.5 |98.9|99.7
PRE|74.871.6 | 62.2 |83.6| 67.
9

55.3(89.7|18.854.8|95.244.3|98.1(28.8| 0.3 |94.4|64.0(40.0|76.3(76.3|95.0|43.8|71.3|52.5|10.5

62.7169.9|69.2|70.8|82.3 |77.0| 84.1|53.6 | 50.0 | 91.8 | 72.7 |64.5|58.5|72.6| 81.6 | 46.7 | 74.2|84.0|66.7

7
AUC| 88.1 |87.3|85.7|87.2|89.6|84.6|83.1|82.5|84.9| 83.0 | 83.0 |89.5|87.9|81.3|92.5|92.5|78.2|82.5|84.5|94.6|95.4|92.6|95.091.5

concatenation operation to combine the encoded metadata vector with the image
vector extracted from the CNNs (see Fig. 2(a)). Metanet and Metablock employed
metadata information as attention maps to highlight the most relevant features of
image vectors. We follow the released code from [82] to build these three models.
The performance comparisons are shown in Table 6.8.

6.4.2 Comparison between our algorithm and other
state-of-the-art methods

To show the advantage of the proposed algorithm, in Table 6.9, we compare our
FusionM4NET with current state-of-the-art methods, including the inception-based
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methods [60], Mma [81], TripleNet [39], EmbeddingNet [129], HcCNN [11] based on
the value of average accuracy. All the results of the methods mentioned above, except
our proposed method, are obtained from the respective paper and from [11]. Note
that all of the cited results are from a single experiment, so they are presumed to
be the result with the highest average accuracy value. We show FusionM4Net-FS
and FusionM4Net-SS, the first and second stage of FusionM4Net, the corresponding
outputs of which are P; and P3. Table 6.10 presents the full detailed results of the

top-performing multi-modal skin lesion classification methods, including the value of
SEN, SPE, PRE, and AUC.

6.5 Discussion

6.5.1 Evaluation of FusionM4Net
6.5.1.1 Comparisons between single- and multi-modality learning

Table 6.3 displays that in the comparisons with single-modality models, the model
trained by dermoscopy images outperforms that trained by clinical images and patient
metadata. This corresponds with medical doctor’s diagnosis, as in dermatologists’
actual diagnosis, the results according to dermoscopy images are more accurate than
that by naked eyes and patient’s metadata.

In the comparisons between our two-stage multi-modality models and common
one-stage multi-modality (COSMM) models, all the models trained by our method
have higher averaged accuracy than their counterparts trained by COSMM learning.
These results reflected that the proposed two-stage method is more suitable than the
one-stage method to fuse multi-modality data for multi-label skin lesion classification
tasks.

It can also be seen that the C-D model trained by the COSMM method has a
lower value in AV G accuracy but a higher value in Diag accuracy compared to the
single-modality model of D. A similar situation happened in the comparison between
C-D-M and D-M models trained by the COSMM method.

We attribute this to the initial design of a seven-point checklist, which is used to
find visible features under dermoscopy images [60]. Therefore, integrating clinical
images may not improve the accuracy of SPC labels and even negatively affect the
co-training of multi-label classification.

Furthermore, we observed that our Pz is only about 2% higher than the single-
modality model D but over 6% higher than single-modality models C and M. The
similar phenomenon also happened in the multi-modality model comparison. For
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example, in comparing our two-stage multi-modality models, the P; only gets 0.7% —
1.2% higher Avg accuracy than the models P;(C-D) and D-M that consist of the
modality of dermoscopy image, and get over about 6% higher Avg accuracy than the
model C-M. These results also reflect that dermoscopy image is the most important
modality for the multi-label skin lesion classification task, and clinical images and
patient metadata play a supplementary role.

6.5.1.2 Performance of the predictions at different stages in our
algorithm

From Table 6.3 and Table 6.4, we can observe that P.;, and P, obtained by our
multi-modality learning method achieve similar average accuracy to the predictions
from model C and D obtained by single modality training. These results demonstrate
our method can learn similar single-modality-specific feature representations. However,
the prediction from fusion branch Pryse, gets a 0.5% higher average accuracy than
the prediction from model C-D, which only focuses on the optimization of cross-
modality common representations from two-modality images. It proves that while
optimizing cross-modality feature representations, optimizing single-modality feature
representations can get a better common feature from these two-modality images for
the multi-label classification task (see Fig. 6.3 as well as Fig. 3 in our supplementary
materials to see the difference between our method and models C, D and C-D).

Table 6.4 also shows that, fusing the prediction P, from SVM clusters and P,
into P3 can boost the average accuracy from 75.1% to 76.3% and the Diag accuracy
from 75.6% to 77.6%, compared to P;. These results show P,, which is trained
by patient’s metadata and multi-label predictive information can provide useful
supplementary information to P;, which is trained by clinical and dermoscopy images
for the multi-label classification task.

6.5.1.3 Effectiveness of 3- and 2- predictions weighted average scheme

Table 6.5 shows that P; (ours) gets the best average accuracy 75.1%, while P
(averaged) has a same value in average accuracy 74.6% , compared to the 74.6%
of Pfysion.- These results demonstrate that the normal average scheme can not get
higher accuracy and may even yield a worse multi-label classification result than
Prysion, while our Fusion Scheme 1 obtains an increase of about 0.5%. These results,
in turn, show the importance of information fusion at the decision level. It also can
be seen that the 3-predictions weighted average scheme reaches the best accuracy
on the validation dataset when W, = 9.6% £ 3.4%, Waerm = 60.9% =+ 20.3%, and
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Wusion = 29.5% £ 20.2%, which illustrates that the integrated results P, is mainly
formed by dermoscopy Pjern and fusion branch Ppysion.

From Table 6.6, we can see that no matter which fusion scheme is based on, the Pss,
including Ps (ours) at 76.3% and P; (averaged) at 76.0%, are about 1% higher than
either P, at 75.1% or P, at 74.7%. We attribute this to the complementarity between
P, obtained from the patient’s metadata and multi-label predictive information
and P, obtained from two-modality images. Furthermore, P; (ours) outperforms
P3 (averaged) in both AV G accuracy and Diag accuracy, which illustrates the 2-
predictions weight average scheme can more effectively integrate the P, and P, than
the normal averaging scheme. Furthermore, Table 6.6 presents that the 2-predictions
weighted average scheme achieves the best accuracy on the validation dataset when
Wi = 73.5% 4 6.43% and Wy = 26.5% =+ 6.4%. These results reflect that the captured
information from the image-modalities play the key role in the final classification,
and that the patient’s metadata are the supplementary materials. What’s more, in
Table 6.5, we can see that the improvement from Py, and Prysion to Py (averaged)
and Py (ours) is about 0.5%, which is not significant. We also attribute this to the
above-mentioned reason that the dermoscopy image plays the most crucial role in the
multi-label skin lesion classification task. Therefore, the performance gap between
all the models trained with dermoscopy images or their combination will not be
significant. We think the weighted fusion scheme can only make the clinical image
and patient’s metadata play a better supplementary role than the common averaged
scheme. So, the performance gaps between P; (ours) and P; (averaged) (and P3
(ours) and P3 (averaged) in Table 6.5 ) is not too obvious.

6.5.1.4 Comparison between different clusters at the second stage

The classification results of the different clusters at the second stage are presented in
Table 6.7. From this table, it can be seen that all the clusters boost the classification
performance based on P;. P3 obtained by MLP and SVM has a comparable classifi-
cation performance and outperforms that obtained by LR. The prediction based on
LR has a slight decrease in average accuracy compared with that based on MLP and
SVM in Table 6.7. We believe this is because the clusters based on a more advanced
classifier can extract more useful information from the multi-label predictive vector
and the patient’s meta-data vector.

Also, in Table 6.7, we can see that no matter which classifier is based on, the
P3 can get about 1% higher Avg accuracy than P;. These results illustrate the
improvement is from the benefits of our two-stage fusion scheme and not from the
classifiers. Furthermore, in our experiments, the SVM gets the highest Avg accuracy
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of 76.3%, so we chose it as the classifier cluster in the second stage of our method.
However, the MLP also achieves comparable performance compared with the SVM,
so it is also recommended that the MLP be tested in other cases.

6.5.1.5 Comparison between different meta-fusion scheme at the second
stage

It can be observed in Table 6.8 that our proposed FusionM4Net achieves the best
AV G accuracy of 76.4%, which is about 1.5% higher than that of C-D-M and Metanet
and significantly higher than that of Metablock. We attribute the improvement of
our method to the effectiveness of our two-stage fusion method, which makes full use
of patient metadata and the correlation of multi-label predictive information.

Also, we can see that C-D-M and Metanet outperform Metablock by a large
margin in terms of the value of AV G accuracy. Actually, according to the results
reported by [82], Metablock can achieve better performance than C-D-M and Metanet
on a single skin disease recognition task.

6.5.2 Comparison between our algorithm and other
state-of-the-art methods

According to the experimental results in Table 6.9, MmA obtains the lowest value
among all the methods. The explanation is that MmA learns the feature from a single
shared layer, which is not capable of capturing the essential spatial information from
the image. TripleNet gets a 1% higher average accuracy than EmbeddingNet, which
is attributed to the effectiveness of the extra subnetwork and the co-optimization of
single- and cross-modality in TripleNet. Also, the inception-balanced method obtains
a 0.7% increase in average accuracy compared with the inception-unbalanced method
because it makes the less-frequent labels be trained by the model more times. It
should also be noted that the Inception-combined method has higher accuracy than
that of HcCNN on the Diag label classification but lower accuracy in other label
classifications, including Bwv, Pig, Vs and Rs. Therefore, the Inception-combined
method finally gets a 1.2% lower average accuracy in comparison with HcCNN, which
resulted from HcCNN'’s extra multi-scale network; the hybrid network can fuse feature
information from early-stage to late-stage of the CNN backbone.

Our FusionM4Net achieves the highest average accuracy and diagnosis accuracy
on the multi-modal multi-label SLC dataset, of which the average accuracy is 1.6%
- 3.8% higher than Inception-based methods and HcCNN (see Table 6.9). First,
in comparison with the HcCNN in Table 6.9, the first stage of our FusionM4Net
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(FusionM4Net-FS) gets an increase of 1% in average accuracy and about 5% accuracy
on Diag label compared to HcCNN, under the training of only two-modality images.
This is because our FusionM4Net-FS not only focuses on feature-level fusion by single-
modality and cross-modality optimization together but also decision-level fusion via
the 3-predictions weighted average scheme.

Second, compared with the Inception-combined method, our FusionM4Net has a
higher value in all the label classification tasks (see Table 6.9) and a significant increase
of 2.8% in average accuracy, under the training of three-modality data (clinical image,
dermoscopy image, and patient’s metadata). These results are attributed to the
superiority of our two-stage multi-modal learning algorithm, which effectively extracts
and fuses information from two-modality images at the first stage and takes full use
of the information from the patient’s meta-data at the second stage.

Table 6.10 gives detailed information on the top-performing methods, including
the Inception-based methods and our algorithm. The second stage of FusionM4NEet
(FusionM4Net-SS) get the highest AUC value in all the label types except the Pn
(Asb) and Str (Irg). These results correspond to the result in Table 6.9 that the second
stage of FusionM4Net (FusionNet-SS) outperforms the inception-based methods in
all labels regarding the AV G accuracy. In the SPC label, it can be observed that
FusionM4Net-SS gets the value of 0 in sensitivity of Vs Irg, while Inception-balanced
and Inception-combined methods obtain 10% and 13.3%, respectively (see Fig. 6.7 (a)).
This increase in the Inception-combined method is attributed to the effectiveness of
balanced-sampling techniques of Inception-balanced and Inception-combined methods.
However, regarding the precision PRE and AUC, FusionM4Net-SS obtains the highest
value in most of the labels. In the Diag label, the Inception-combined method
gets the highest AUC value in Diag Sk, while our FusionM4net achieves the best
AUC value in the remaining four Diag labels. Notably, in the classification of the
skin cancer melanoma, the FusionM4Net-SS improves all the metrics compared with
inception-combined methods, from SEN 61.4%, SPE 88.8%, PRE 65.3% and AUC
86.3% to 71.3%, 91.5%, 74.2%, and 92.6%, respectively (see Fig. 6.7 (b)).

6.5.3 Potential future work

In this work, we only focus on the better fusion scheme to combine clinical image,
dermoscopy image, and patient’s metadata for multi-label SLC and ignore making
use of the label dependencies, which is important for multi-label SLC task. Therefore,
in the future, we will employ the currently advanced graph convolutional network
(GCN) [22] to capture and explore the useful label dependencies to further improve
the performance of multi-label SLC tasks.
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6.6 Conclusion

We propose a multi-stage multi-modal learning algorithm for multi-label skin diseases
classification, named FusionM4Net, which involves two stages: first learning feature
information from clinical and dermoscopy, and second further integrating patient’s
meta-data and decision information from the two-modality images. Extensive experi-
ments and comparisons on a publicly available dataset show that FusionM4Net has
higher accuracy than any other current state-of-the-art methods.
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Concluding Remarks

This dissertation bridges the gap in multi-modal-based skin lesion classification
by exploring the application of multi-modal fusion methods in various scenarios,
including clinical-dermoscopy images, single images, and patient metadata. The
primary objective of this doctoral project is to enhance the efficiency of dermatologists,
and it was conducted in collaboration with medical professionals in dermatology.

After showcasing the advantages of multi-modal deep learning for dermatologist’s
diagnosis in Chapter 1, the subsequent chapters delve into the background of deep
learning and the application of single-modal skin lesion classification in Chapters 2
and 3, respectively. Following this, four innovative fusion methods were proposed to
enhance classification performance, which includes accuracy, computational cost, or
both, in different scenarios. These methods are one for single image and metadata
fusion (Chapter 4), two for clinical-dermoscopy image fusion (Chapter 5), and one
for the fusion of all three modalities (Chapter 6).

As discussed in the previous chapter, current deep-learning models have the
potential to alleviate doctors’ burdens and enhance the efficiency of dermatologists.
The results of this dissertation highlight the potential of designing a more accurate
and parameter-efficient decision support system based on multi-modal data. I hope
that my work can inspire future research in the field of multi-modal-based skin lesion
analysis, and some parts of this work can be used in clinics or teledermatology.

7.1 Outlook

Despite the progress made, there are areas for further improvements in the field of
skin lesion classification, such as the lack of high-quality, large-scale datasets, the
need to process dermatologists’ clinical reports, and the integration of large language
models (LLMs) into the patient care pipeline.
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7.1.1 Large Scale Dataset

In the field of skin lesion classification, high-quality public datasets are limited in
terms of the number of cases. For example, the PH2 dataset [76] includes dermoscopic
images, corresponding diagnosis labels, segmentation masks, and annotations of
dermoscopic features, but it only has two samples. Similarly, the SPC dataset [60]
consists of data from three modalities, diagnosis labels, and seven-point checklist
features, but it only contains about 1,000 cases. Large-scale and high-quality datasets
are not only used for more robust evaluation of algorithms. More important is that
it is the basis for building General AT for skin lesion analysis like ChatGpt [89, 90,
17, 1]. Semi-supervised methods could be utilized to reduce the annotation of the
dataset.

7.1.2 Extracting information from clinical report

In the clinic, the patient’s information and diagnosis are not well-structured and
suitable for direct training in deep learning methods. They are usually included
in a report. So, to reduce the amount of time needed for data annotation, natural
language process- ing systems are required to extract structured labels and patient
metadata from free-text dermatology reports.

7.1.3 Large Language Models

In the clinic, it takes lots of time for the dermatologist to explain the skin disease
and give suggestions to the patients. Especially in rural areas, there is a shortage of
dermatologists. With the success of ChapGpt, [89, 90, 17, 1]., the interactive skin
diseases analysis platform based on LLMs has the potential to address this issue.
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e Tang, P., Yan, X., Nan, Y., Xiang, S., Krammer, S., and Lasser, T. (2022).
FusionM4Net: A multi-stage multi-modal learning algorithm for multi-label
skin lesion classification. Medical Image Analysis, 76, 102307.
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