
Department of Mathematics
TUM School of Computation, Information and Technology
Technical University of Munich

Learning Graphical Lyapunov Models
using Best-subset Selection Methods

Rahul Radhakrishnan

Thesis for the attainment of the academic degree

Master of Science

at the TUM School of Computation, Information and Technology of the Technical University of Munich

Supervisor:

Prof. Dr. Mathias Drton

Advisors:

Msc. Philipp Dettling

Submitted:

Munich, 01 Aug. 2023

I hereby declare that this thesis is entirely the result of my own work except where otherwise
indicated. I have only used the resources given in the list of references.

Munich, 01 Aug. 2023 Rahul Radhakrishnan

v

Acknowledgements

I would like to express my sincere gratitude to my thesis supervisor, Dr. Mathias Drton, for
providing me with an opportunity to work under his guidance. He gradually guided me into the
topics of this thesis by setting small milestones at every step along the way. This really helped me
to stay motivated throughout the journey. In addition, I am deeply grateful to my advisor, Philipp
Dettling, for helping me throughout this work with his ideas and suggestions. He was always
available to address any doubts that I had or guide me in case I ran into some difficulties. His
feedbacks helped me be on track and achieve my goals. I have learnt a lot working with both of
them.

I would also like to thank Johannes Albert-von der Gönna, Dr. Th. Frank, Martin and the entire
service desk team of the Leibniz-Rechenzentrum (LRZ) super computing facility. With absolutely
no prior experience in parallel computing, I ran into so many difficulties in running simulations
on the cluster. They were always there to help me overcome my problems. Without their support
and help, this work would not have been possible.

In addition, I would like to thank Ms. Anja Hoffmann from the Examination committee of the
Department of Mathematics. She was always there to clarify any doubts that I had throughout this
journey. With her help, all the organizational aspects of my studies were carried out smoothly.

Finally, words cannot express my gratitute towards my family and friends. First and foremost, I
would like to thank Mom, Dad and Kaushik for their constant love and support. They were always
there to cheer me up when I was not feeling good. Kaushik was always there to motivate me and
offer amazing advices. Many of his suggestions actually helped me with my thesis work. I always
look up to him. I’m extremely grateful to Ivanna Godoy Muñoz, Joseph Saroufim, Kunal Rustagi,
Nikhil Pingle, Kanika and Arjun Anish. They were always there for me when I needed them the
most and offered me with unyielding emotional support. Each one of them helped me become a
better person throughout this journey.

vi

Zusammenfassung

Ursache-Wirkungs-Verhältnisse zwischen Variablen, die an einem dynamischen Prozess beteiligt
sind, sind von großem Interesse. Bestehende grafische Modellansätze erlauben nur eine begrenzte
Erforschung der Beziehungen. Insbesondere zyklische Interaktionen zwischen verschiedenen
Komponenten, die Rückkopplungsschleifen darstellen, sind mit solchen Methoden im Allge-
meinen schwieriger zu erfassen und zu interpretieren. Vor diesem Hintergrund bieten grafis-
che Lyapunov-Modelle eine neue Perspektive für die Modellierung kausal-interpretierbarer Ab-
hängigkeitsstrukturen in multivariaten Daten, indem sie jede unabhängige Beobachtung als eine
einmalige Querschnittsschnappschuss eines multivariaten Ornstein-Uhlenbeck-Prozesses im Gle-
ichgewicht behandeln. Das Gaußsche Gleichgewicht existiert unter einer Stabilitätsannahme für
die Driftmatrix, und die Kovarianzmatrix des Gleichgewichts wird durch die kontinuierliche
Lyapunov-Gleichung bestimmt. Die Modelle gehen davon aus, dass die Driftmatrix spärlich ist
und ihre Unterstützung durch einen gerichteten Graphen bestimmt wird. Dieser gerichtete Graph
kann insbesondere gerichtete Zyklen enthalten und ist einer der Hauptvorteile dieses Ansatzes.
Frühere Arbeiten haben einen Ansatz zur Wiederherstellung dieser Unterstützung gezeigt, in-
dem ein 𝑙1− regularisierter Ansatz (Lasso) verwendet wurde, der darauf abzielt, eine spärliche
Näherungslösung für die kontinuierliche Lyapunov-Gleichung zu finden, wenn eine Stichproben-
Kovarianzmatrix gegeben ist, genannt Direct Lyapunov Lasso.

Diese Arbeit konzentriert sich auf die Wiederherstellung der Unterstützung der Driftmatrix aus
der Lyapunov-Gleichung unter Verwendung der Best-Subset-Auswahl (BS). Die klassischen Meth-
oden zur Lösung der Best-Subset-Auswahl, ein NP-hartes Problem, sind nicht auf große Problem-
größen skalierbar oder können keine globale Optimalität garantieren. Eine der jüngsten Arbeiten
konzentriert sich auf die Umwandlung der Best-Subset-Auswahl in ein gemischt-ganzzahliges
Optimierungsproblem (MIO). Mit den Fortschritten bei den Optimierungstechniken und dem
parallelen Rechnen ist die gemischt-ganzzahlige Programmierung sehr leistungsfähig geworden.
Ihre praktische Anwendbarkeit und Durchführbarkeit hängt von der Stärke der Formulierung,
den Warmstarts und ihrer Qualität ab. Von den beiden vorgestellten Formulierungen für die
Auswahl der besten Teilmenge wurde in dieser Studie die stärkere und rechnerisch effizientere
Formulierung gewählt. Außerdem wurden die Formulierungen angepasst, um stabile Driftma-
trizen wiederherzustellen. Die MIO-Formulierung wurde mit Gurobi auf seiner R-Schnittstelle
gelöst.

Für die Warmstarts wurden vier verschiedene Initialisierungen untersucht: drei Varianten von
projizierten Gradientenabstiegslösungen und direkte Lasso-Lösungen (BSlasso). Die projizierten
Gradientenlösungen erzielen eine 𝑘−sparse Lösung unter Verwendung von marginalen Regres-
sionskoeffizienten als Initialisierungen. Ihre Varianten unterscheiden sich durch die Strategie, mit
der diese marginalen Regressionskoeffizienten dem Algorithmus als Ausgangspunkt geliefert wer-
den. Insbesondere kann man direkt die 𝑘-Kanten mit den größten Koeffizienten wählen (BSreg),
nur 1 Kante wählen (BS1edge) und Kanten auf der Grundlage des Sparsamkeitsmusters aus der
Schätzung der inversen Kovarianzmatrix wählen (BSglasso).

Alle Initialisierungsstrategien werden miteinander und mit dem direkten Lyapunov-Lasso auf
synthetischen und realen Datensätzen verglichen. Informationskriterien werden verwendet, um
Driftmatrizen auszuwählen, die am besten zu den beobachteten Daten passen und gleichzeitig
die Sparsamkeit ausgleichen. Die Ergebnisse zeigen, dass Lasso besser abschneidet als BS, sofern
genügend Stichproben vorhanden sind. BS hat das Potenzial, bei geringer Stichprobengröße besser
abzuschneiden als Lasso, insbesondere bei großen Graphenstrukturen. In dieser Studie wird auch
festgestellt, dass Lasso-Lösungen im Vergleich zu projizierten Gradientenabstiegslösungen bessere
Grenzen für die MIO-Formulierung liefern. BSlasso schneidet also genauso gut oder besser ab als
die anderen BS-Methoden. Alle auf projiziertem Gradientenabstieg basierenden Methoden haben
eine ähnliche Leistung, wobei BS1edge und BSglasso geringfügig besser sind. Diese Vergleiche sind

vii

relativ. Es zeigt sich, dass alle Methoden ab einer bestimmten Problemgröße und unterhalb eines
bestimmten Wertes der Stichprobengröße sehr schlecht abschneiden. Wenn die Graphen weniger
dünn sind (mehr Kanten), wird die Wiederherstellung der Unterstützung schwieriger.

Abstract

Cause and effect relationships between variables involved in a dynamical process are of great inter-
est. Existing graphical model approaches allow limited exploration of relationships. In particular,
cyclic interactions between different components that represent feedback loops are generally harder
to capture and also to interpret using such methods. In this light, graphical Lyapunov models
offer a new perspective on modeling causally interpretable dependence structure in multivariate
data by treating each independent observation as a one-time cross-sectional snapshot of a mul-
tivariate Ornstein-Uhlenbeck processes in equilibrium. The Gaussian equilibrium exists under
a stability assumption on the drift matrix, and the equilibrium covariance matrix is determined
by the continuous Lyapunov equation. The models assume sparsity on the drift matrix and its
support is determined by a directed graph. This directed graph, in particular, can include directed
cycles and is one of the main advantage of this approach. Past works have shown one approach
to this support recovery by using an 𝑙1− regularized approach (lasso) that seeks to find sparse
approximate solution to the continuous Lyapunov equation, given a sample covariance matrix,
called the Direct Lyapunov Lasso.

This work focuses on recovering the support of the drift matrix from the Lyapunov equation
using best-subset selection (BS). The classical methods of solving best-subset selection, a NP-hard
problem, are not scalable to large problem sizes or cannot guarantee global optimality. One of the
recent works focuses on converting best-subset selection to a mixed integer optimization (MIO)
problem. With advancement in optimization techniques and parallel computing, mixed integer
programming has become very powerful. Its practical applicability and feasibility relies on the
strength of the formulation, warm starts and their quality. Out of the two formulations presented
for best-subset selection, the stronger and computationally more efficient formulation was chosen
in this study. Furthermore, the formulations were adapted to recover stable drift matrices. The
MIO formulation was solved using Gurobi on its R interface.

For the warm starts, four different initializations were explored: three variants of projected gradient
descent solutions and direct lasso solutions (BSlasso). The projected gradient solutions achieve a
𝑘−sparse solution using marginal regression coefficients as initializations. Its variants differ in
terms of the strategy used to supply these marginal regression coefficients to the algorithm as a
starting point. In particular, one can directly choose the 𝑘 edges with largest coefficients (BSreg),
choose only 1 edge (BS1edge), and choose edges based on sparsity pattern of the estimate of inverse
covariance matrix (BSglasso).

All the initialization strategies are compared against each other and to the Direct Lyapunov Lasso
on synthetic and real dataset. Information criterion are used to select drift matrices that are best
fitting to the observed data, while balancing the sparsity. The results show that lasso outperforms
BS, provided there are enough samples. BS has the potential to perform better than lasso for
low sample size, especially for large graph structures. One also finds in this study that lasso
solutions seem to provide better bounds to the MIO formulation compared to projected gradient
descent solutions. So BSlasso performs as good as or better than the other BS methods. All the
projected gradient descent based methods have similar performance, with BS1edge and BSglasso
being marginally better. These comparisons are relative. It is shown that all the methods perform
very poor beyond certain problem size and below a certain value of sample size. Furthermore, as
the graphs become less sparse (more number of edges), one finds that the task of support recovery
becomes harder.

ix

Contents

1 Introduction 1
1.1 Notations . 2
1.2 Graphical Continuous Lyapunov Models . 3
1.3 Brief overview on best-subset selection methods . 5
1.4 Background on Direct Lyapunov Lasso . 6
1.5 Background on Mixed Integer Optimization (MIO) . 7
1.6 Best Subset as a MIO Problem . 9

2 Structure Recovery 15
2.1 Initialization strategies . 15

2.1.1 Marginal Regression . 16
2.1.2 One Edge - Marginal Regression . 17
2.1.3 Graphical Lasso informed Marginal Regression 18
2.1.4 Direct Lasso Initialization . 19

2.2 Optimization Problem . 20
2.3 Model Selection . 22

2.3.1 Akaike’s Information Criterion (AIC) . 22
2.3.2 Bayesian Information Criterion (BIC) . 23
2.3.3 Extended Bayesian Information Criterion (eBIC) 24

2.4 Metrics . 25
2.5 Simulation Setup . 27

2.5.1 Synthetic Dataset . 27
2.5.2 Real Dataset . 28
2.5.3 Gurobi Settings . 28

3 Results and Discussion 29
3.1 Numerical simulations on Synthetic Dataset . 29

3.1.1 Results: Performance metrics across different hyper-parameter values 29
3.1.2 Plots and Summary: Performance metrics across different hyper-parameter

values . 32
3.1.3 Results: Model selection and prediction . 53
3.1.4 Plots and Summary: Model selection and prediction 54
3.1.5 Results: Computational Time . 54

3.2 Numerical simulations on the Arabidopsis thaliana dataset 62

4 Conclusion 67

A Appendix 69
A.1 Prediction with AIC when edge probability 5 %: Comparison along signal sizes . . . 69
A.2 Prediction with AIC when edge probability 25 %: Comparison along signal sizes . . 73
A.3 Prediction with AIC when edge probability 5 %: Comparison along sample size . . . 77
A.4 Prediction with AIC when edge probability 25 %: Comparison along sample sizes . 82
A.5 Prediction with BIC when edge probability 5 %: Comparison along signal sizes . . . 87
A.6 Prediction with BIC when edge probability 25 %: Comparison along signal sizes . . 91

Contents

x

A.7 Prediction with BIC when edge probability 5 %: Comparison along sample size . . . 95
A.8 Prediction with BIC when edge probability 25 %: Comparison along sample sizes . . 100
A.9 Prediction with eBIC when edge probability 5 %: Comparison along signal sizes . . 105
A.10 Prediction with eBIC when edge probability 25 %: Comparison along signal sizes . . 109
A.11 Prediction with eBIC when edge probability 5 %: Comparison along sample size . . 113
A.12 Prediction with eBIC when edge probability 25 %: Comparison along sample sizes . 118

Bibliography 133

1

1 Introduction

Natural processes are often too complex and cannot be fully understood without understanding
completely how underlying systems interact with each other. With high-throughput technologies
today, it is possible to get quality experimental data. To analyze these data and recover causal
relations between measured quantities is a challenging task. Causal graphical models allow one to
capture and explore dependencies induced by cause-effect relations. Causal relations among a set
of variables, 𝑉 , are represented by set of edges 𝐸 ⊆ (𝑉 ×𝑉) connecting nodes in the graph. These
relations are defined in terms of parametric functional relationships. If the underlying distribution
is Gaussian, there is a well known result that the entries of the inverse covariance matrix (Σ−1)
are considered as parameters that encode the variable dependencies (Lemma 7.2 [Gir21]). In
order to learn the dependencies, one aims to find Σ−1. The non-zero entries of this matrix would
correspond to edges of the graph. This approach is suitable for obtaining an undirected graph.
If one requires information on interaction between variables, inverse covariance estimation is
therefore not suitable.

Linear structural equation model is a statistical model that aims to determine underlying depen-
dencies between variables [Drt18]. In particular, the variables of a random vector 𝑋 = {𝑋𝑖 : 𝑖 ∈ 𝑉}
are considered linearly dependent to other variables via

𝑋 = Λ𝑇𝑋 + 𝜖 (1.1)

where Λ = (�𝑖 𝑗) ∈ ℝ𝑉×𝑉 is a matrix of unknown parameters that encode the relationships and 𝜖 is
independent random noise. Assume 𝜖 has a covariance matrix Ω, positive definite and unknown.
Then, provided 𝐼 −Λ is invertible, the standard parametrization of a linear causal model specifies
the covariance matrix Σ = Var[𝑋] as a solution to the equation

(𝐼 −Λ)𝑇Σ(𝐼 −Λ) = Ω (1.2)

where 𝐼 is the identity matrix. The associated mixed graph has directed edges and bidirected
edges determined by nonzero entries of Λ and Ω. If one fixes an acyclic graph, the framework
provides a parametrization (covariance structure) of the observables from a directed acyclic model
– potentially with latent variables. In the cyclic case, where one allow the graphs to have directed
cycles, the covariance structure can, moreover, be interpreted as an equillibrium distribution for a
deterministic process whenever the spectrum of Λ is inside the unit circle [HEH12]. But in general,
multiple complications were reported associated with usage of structural models on graph with
cycles ([Amé+20; DFW19; Ric13]).

Fitch [Fit19] and Varando and Hansen [VH20a] proposed an alternative approach on tackling this
problem by using graphical continuous Lyapunov models. In particular, they show that for certain
time stochastic processes, there exists an alternate parametrization for Σ based on the continuous
Lyapunov equation,

𝑀Σ + Σ𝑀𝑇 + 𝐶 = 0 (1.3)

1 Introduction

2

where 𝑀 ∈ ℝ𝑉×𝑉 and 𝐶 ∈ ℝ𝑉×𝑉 are unknown parameters. Knowing the support or the sparsity
pattern of 𝑀 can reveal information about interactions between different variables involved in the
process.

The objective of this thesis is to learn graphical structure that arise within such graphical continuous
Lyapunov models. This, in particular, is attempted by trying to recover the support of 𝑀 via mixed
integer optimization techniques.

This thesis is organized as follows: In the subsequent sections of this chapter, some basic back-
ground concepts are introduced that are required for this work. In chapter 2, the methods imple-
mented in this work are discussed in detail. In particular, contruction of initial guesses to solve
optimization problem, mathematical formulation, model selection techniques and simulation set-
tings are provided. Lastly in chapter 3, the results of this work are presented and discussed.

1.1 Notations

• Let 𝑝 ∈ ℕ. [𝑝] = {1, . . . , 𝑝}.

• The 𝑙𝑏 norm of 𝑣 ∈ ℝ𝑝 is ∥𝑣∥𝑏 = (∑𝑝

𝑖=1 |𝑣𝑖 |𝑏)1/𝑏 , with ∥𝑣∥∞=max1≤𝑖≤𝑛 |𝑣𝑖 |. Applying this on to a
matrix 𝐴 = (𝑎𝑖 𝑗) ∈ ℝ𝑝×𝑝 and obtain the norm ∥𝐴∥𝑏 = (∑𝑝

𝑖=1
∑𝑛
𝑗=1 |𝑎𝑖 𝑗 |𝑏)1/𝑏 . The operator norm

is denoted by |||𝐴|||𝑏 = max{∥𝐴𝑥∥𝑏 : ∥𝑥∥𝑏 = 1}. |||𝐴|||2 is called a spectral norm (maximum
singular value of 𝐴) and |||𝐴|||∞ = max1≤𝑖≤𝑝

∑𝑝

𝑗=1 |𝑎𝑖 𝑗 |.

• For an index set 𝑆, 𝑣𝑆 is a subvector that is obtained by selecting the indices present in 𝑆.
𝑣𝑆,𝑚 , where 𝑚 ∈ ℕ is the number of iterations of an algorithm, represent the subvector at
the 𝑚th iteration. When 𝑆 is all the indices of 𝑣, it is usually ignored and understood as 𝑣𝑚 .
When there are nested iterations, there exist another 𝑟 ∈ ℕ, the sequence would be denoted
as 𝑣𝑟𝑚 . Any other variation to this notation would either be obvious or explicitly stated when
required.

• The Kroneckor product of 𝐴 and another matrix 𝐵 = (𝑏𝑢𝑣) ∈ ℝ𝑝×𝑝 is denoted by 𝐴 ⊗ 𝐵. It is
a matrix in ℝ𝑝2×𝑝2 with the entries [𝐴 ⊗ 𝐵](𝑖−1)𝑝+𝑗 ,(𝑘−1)𝑝+𝑙 = 𝐴𝑖𝑘𝐵 𝑗𝑙 .

• In this study 𝑝2 and 𝑛2 for 𝑝, 𝑛 ∈ ℕ , are abbreviated as 𝑃 := 𝑝2 and 𝑁 := 𝑛2.

• In the performance metrics, TP - true positve, FP - false positive, FN - false negative, and TN
- true negative.

1.2 Graphical Continuous Lyapunov Models

3

1.2 Graphical Continuous Lyapunov Models

An i.i.d sample 𝑋1 , . . . , 𝑋𝑛 ∈ ℝ𝑝 is assumed to be drawn from a 𝑝− dimensional Ornstein-
Uhlenbeck process.

Theorem 1.2.1 (Arnold [L92]). The solution of the equation

𝑑x = (𝑀(𝑡) + 𝑎(𝑡))x𝑑𝑡 + 𝐷(𝑡)𝑑𝑊, x𝑡0 = 𝑐 (1.4)

is a stationary Gaussian process if 𝑀(𝑡) = 𝑀, 𝑎(𝑡) = 0, 𝐷(𝑡) = 𝐷, the eigenvalues of M have negative real
parts, and 𝑊(𝑡) is a standard brownian motion in ℝ𝑝 known as the Wiener process, where Σ, the steady
state covariance matrix, is

Σ =

∫ ∞

0
𝑒𝑀𝑡𝐷𝐷𝑇 𝑒𝑀

𝑇 𝑡𝑑𝑡,

or equaivalently the solution of the Lyapunov equation

𝑀Σ + Σ𝑀𝑇 + 𝐶 = 0 (1.5)

where 𝐶 := 𝐷𝐷𝑇 .

Now one needs the following concepts from graphical models.

Definition 1.2.2 (Directed graph). Let 𝐺 = (𝑉, 𝐸) be a graph, consisting of 𝑉 is the set of nodes and |𝐸 |
is the set of edges, then a directed graph is an ordered pair of elements of 𝑉 .

Definition 1.2.3. Let 𝐺 be a directed graph with vertex set 𝑉 = [𝑝] and an edge set 𝐸 that includes all
self-loops 𝑖 → 𝑖, 𝑖 ∈ [𝑝]. Given a choice of 𝐶 ∈ PD𝑝 , the graphical continuous Lyapunov model of G is the
set of covariance matrices

ℳ𝐺,𝐶 = {Σ ∈ PD𝑝 : 𝑀Σ + Σ𝑀𝑇 = −𝐶 with 𝑀 ∈ ℝ𝐸},

where PD𝑝 is the cone of positive definite matrices inℝ𝑝×𝑝 andℝ𝐸 is the space of matrices𝑀 = (𝑚𝑖 𝑗) ∈ ℝ𝑝×𝑝

with 𝑚 𝑗𝑖 = 0 whenever 𝑖 → 𝑗 ∉ 𝐸.

The drift matrix 𝑀, thus determines the relations between the coordinates of the Ornstein-
Uhlenbeck process 𝑋(𝑡). By assumption of Theorem 1.2.1, 𝑀 has negative eigenvalues and is
a stable matrix. 𝐺 will always contain self-loops 𝑖 → 𝑖 for every 𝑖 ∈ 𝑉 . Now, some concepts from
matrix theory are introduced ahead.

Definition 1.2.4. (Kronecker Product) If A ∈ ℝ𝑚×𝑛 matrix and B ∈ ℝ𝑝×𝑞 is a 𝑝 × 𝑞 matrix, then the
Kronecker product A ⊗ B is the block matrix

A ⊗ B =

𝑎11B · · · 𝑎1𝑛
...

. . .
...

𝑎𝑚1B · · · 𝑎𝑚𝑛B

 ∈ ℝ𝑝𝑚×𝑞𝑛

Definition 1.2.5. The vec-operator turns a matrix A ∈ ℝ𝑚×𝑛 into a vector in ℝ𝑚𝑛 by stacking its columns
on each other such that

vec(𝐴) = (𝑎11 , 𝑎21 , . . . , 𝑎𝑚1 , . . . , 𝑎1𝑛 , . . . , 𝑎𝑚𝑛)𝑇

1 Introduction

4

Definition 1.2.6 (Commutation matrix). The Commutation matrix, 𝐾𝑚𝑛 ∈ ℝ𝑚𝑛×𝑚𝑛 transforms vec(𝐴)
to vec(𝐴𝑇) for 𝐴 ∈ ℝ𝑚×𝑛 . It is given by,

𝐾(𝑚,𝑛) =
𝑚∑
𝑖=1

𝑛∑
𝑗=1

(𝑎𝑖𝑒𝑇𝑗) ⊗ (𝑒 𝑗𝑎𝑇𝑖),

where 𝑎𝑖 ∈ ℝ𝑚 and 𝑒 𝑗 ∈ ℝ𝑛 are the 𝑖th and 𝑗th column unit vector respectively. See [magnus&Neudecker].

Lemma 1.2.7. Let A ∈ ℂ𝑚×𝑛 ,X ∈ ℂ𝑛×𝑜 , and B ∈ ℂ𝑜×𝑝 , then the following statement holds true

vec(AXB) = (B𝑇 ⊗ A)vec(𝑋) (1.6)

Proof. Note that

(AXB)𝑖 𝑗 =
𝑜∑
𝑙=1

𝑛∑
𝑘=1

(A)𝑖𝑘(X)𝑘𝑙(B)𝑙 𝑗

Then the left hand side can be written as

vec(AXB) =

∑𝑜
𝑙=1

∑𝑛
𝑘=1(A)1𝑘(X)𝑘𝑙(B)𝑙1

...∑𝑜
𝑙=1

∑𝑛
𝑘=1(A)𝑚𝑘(X)𝑘𝑙(B)𝑙1

...∑𝑜
𝑙=1

∑𝑛
𝑘=1(A)1𝑘(X)𝑘𝑙(B)𝑙𝑝

...∑𝑜
𝑙=1

∑𝑛
𝑘=1(A)𝑚𝑘(X)𝑘𝑙(B)𝑙𝑝

=

(A)11(B)11 · · · (A)1𝑛(B)𝑙1 · · · (A)11(B)𝑜1 · · · (A)1𝑛(B)𝑜1
...

. . .
...

...
...

. . .
...

(A)𝑚1(B)11 · · · (A)𝑚𝑛(B)𝑙1 · · · (A)𝑚1(B)𝑜1 · · · (A)𝑚𝑛(B)𝑜1
...

. . .
...

...
...

. . .
...

(A)11(B)11 · · · (A)1𝑛(B)𝑙1 · · · (A)11(B)𝑜1 · · · (A)1𝑛(B)𝑜1
...

. . .
...

...
...

. . .
...

(A)𝑚1(B)11 · · · (A)𝑚𝑛(B)𝑙1 · · · (A)𝑚1(B)𝑜1 · · · (A)𝑚𝑛(B)𝑜1

(X)11
...

(X)𝑛1
...

(X)1𝑜
...

(X)𝑛𝑜

= (B𝑇 ⊗ 𝐴)vec(𝑋)

Theorem 1.2.8. For a given 𝑀 ∈ Stab(𝐸) and 𝐶 ∈ PD𝑝 , solving the Lyapunov equation (1.2.1) for Σ is
equivalent to solving its vectorized form

((𝐼𝑝 ⊗ 𝑀) + (𝑀 ⊗ 𝐼𝑝))vec(Σ) = −vec(𝐶) (1.7)

where 𝐼𝑝 ∈ ℝ𝑝×𝑝 is the identity matrix.

Proof. One can vectorize and rewrite the Lyapunov equation as

vec(𝑀Σ𝐼𝑝 + 𝐼𝑝Σ𝑀𝑇 + vec(𝐶)) = vec(𝑀Σ𝐼𝑝) + vec(𝐼𝑝Σ𝑀𝑇) + vec(𝐶)
= ((𝐼𝑝 ⊗ 𝑀) + (𝑀 ⊗ 𝐼𝑝))vec(Σ) + vec(𝐶) = 0

using Lemma 1.2.7

1.3 Brief overview on best-subset selection methods

5

Remark 1.2.9. One can similarly show that the Lyapunov equation could be rewritten alternatively in a
vectorized form to solve for 𝑀.

vec(𝐼𝑝𝑀Σ + Σ𝑀𝑇 𝐼𝑝 + vec(𝐶)) = vec(𝐼𝑝𝑀Σ) + vec(Σ𝑀𝑇 𝐼𝑝) + vec(𝐶)
= (Σ𝑇 ⊗ 𝐼𝑝)vec(𝑀) + (𝐼𝑝 ⊗ Σ)vec(𝑀𝑇) + vec(𝐶)

One can then use the commutation matrix defined in 1.2.6

𝐴(Σ)vec(𝑀) = −vec(𝐶) (1.8)

where 𝐴(Σ) :=
(
(Σ𝑇 ⊗ 𝐼𝑝) + (𝐼𝑝 ⊗ Σ)𝐾(𝑝2 ,𝑝2)

)
∈ ℝ𝑝2×𝑝2

Under the provided assumptions, once 𝑀 and 𝐶 are known, one can uniquely compute elements
of Σ by solving the linear equation 1.7. In particular, one requires the condition that no two
eigenvalues of 𝑀 sum to zero. However, given a covariance matrix, Σ, a corresponding pair of
(𝑀, 𝐶) is not uniquely determined. In other words, there can multiple pairs of (𝑀, 𝐶) that can
give the same covariance matrix. Since 𝑀 can be asymmetric, it cannot be recovered without any
additional assumptions on its structure, even when 𝐶 is assumed known. It was shown by Dettling
et al. [Det+22] that 𝑀 can be uniquely recovered, provided that the underlying graph does not
have cycles of length two for a diagonal volatility matrix. The problem of recovery of 𝑀 can be
viewed based on the solvability of equation (1.8). 𝑀 can be recoverable, if and only if det(𝐴(Σ)) ≠ 0
is satisfied for all Σ ∈ ℳ𝐺,𝐶 or if and only if there exists such a Σ ∈ ℳ𝐺,𝐶 that satisfies it. However,
when there are two-cycle, then this condition is not satisfied.

Provided this identifiability condition is satisfied, the following question arises then, how can one
recover the support of 𝑀 efficiently given covariance matrix, Σ and diagonal 𝐶 ∈ PD𝑝 . In the
following sections, a brief review of few popular methods for support recovery are discussed.

1.3 Brief overview on best-subset selection methods

A linear regression model consists of a response vector 𝑦 ∈ ℝ𝑁 , model matrix𝑋 ∈ ℝ𝑁×𝑃 , regression
coefficients 𝛽 ∈ ℝ𝑃 and errors 𝜖 ∈ ℝ𝑁 such that 𝑦 = 𝑋𝛽 + 𝜖. Throughout this study, it is assumed
that the columns of 𝑋 have zero mean and unit variance and if not, one standardizes them before.
The goal of the best-subset selection problem is to identify the best 𝑘 features 𝛽𝑖 , 𝑖 ∈ [𝑁] that fit the
data to the response vector 𝑦.

Definition 1.3.1. The best subset problem can be stated as

min
𝛽∈ℝ𝑃

1
2 ∥𝑋𝛽 − 𝑦∥2 subject to ∥𝛽∥0 ≤ 𝑘 (1.9)

The (pseudo) norm on the vector 𝛽 is referred to as 𝑙0 and it counts the number of non-zeroes in the
𝛽. It is formally defined as ∥𝛽∥0 =

∑𝑃
𝑖=1 𝕀(𝛽𝑖 ≠ 0), where 𝕀(·) denotes the indicator function. This

is a non-convex problem and it is one of the most significant NP-hard problems in Computational
Statistics [Wel82]. Classical method of best subset selection [BKM67; HL67] involves exploring
different possible combinations of regressions and comparing them using a suitable criterion to
obtain the optimal solution. This approach is often computationally expensive and is not scalable
to large problem size. Forward step selection [DS98; Efr66], on the other hand, uses a greedy
approach. The algorithm starts with an empty set 𝐴0 = 0, it iteratively selects a variable for
𝑘 = 1, . . . ,min{𝑁, 𝑃} by choosing the index 𝑗𝑘 such that 𝑋𝑗𝑘 achieves the maximum correlation
with 𝑦 after one removes the contributions from 𝑋𝐴𝑘−1 . However, the solution obtained may not
guaranteed to be globally optimum out of all possible subsets.

1 Introduction

6

There have been numerous efforts in solving this problem by weakening the underlying assump-
tions and obtaining an approximate solution. One could use traditional Ordinary Least Squares
(OLS) regression, for example, by not considering the constraint in (1.9). However, the solution
obtained is not interpretable as it does not really select features with the strongest effect, but instead
gives large number of predictors contributing small effects each. The more popular approach has
been to use convex optimization methods such as lasso [Tib96]. The problem uses an 𝑙1 penalty
instead of 𝑙0.

Definition 1.3.2. The lasso problem can be stated as

min
𝛽∈ℝ𝑃

1
2 ∥𝑋𝛽 − 𝑦∥2 + �∥𝛽∥1 (1.10)

When the underlying model is reasonably sparse, the solutions obtained by lasso are usually sparse
because it shrinks many predictor coefficients towards zero and thus are more interpretable. Fur-
thermore, it can handle high-dimensional data considerably well, which is frequently encountered
problem in statistical applications. Under certain regularity conditions on 𝑋, it is also shown to be
model selection consistent [ZY06], meaning that the probability of the lasso solution being equal
to the true predictors is 1. Since the problem is convex, it is computationally very efficient and
problems of huge size can be solved considerably well by very efficient solvers with good predic-
tive performance [Fri+07; Nes13]. Its performance seems to quickly degrades as a variable selector
when such regularity conditions are not met or if there is high noise in the data. In such cases, the
use of non-convex penalized regression have shown some potential [MFH11]. Nevertheless, even
with its shortcomings, lasso and its derivatives are still considered powerful and are widely used
for different variable selection applications [Guo+15; Moz+22; Pfe+22].

In the next section, attempts of support recovery of the drift matrices arising in graphical Lyapunov
models via lasso are discussed.

1.4 Background on Direct Lyapunov Lasso

Fitch [Fit19], Varando and Hansen [VH20a] and Dettling et al. [DDK22] approached support
recovery of the drift matrix via 𝑙1-regularization method. Given an i.i.d sample consisting of
centered observations 𝑋1 , . . . , 𝑋𝑛 ∈ ℝ𝑝 , its sample covariance matrix is given by

𝑆 = Σ(𝑛) =
1
𝑛
𝑋𝑇𝑋. (1.11)

The Direct Lyapunov Lasso converts the Lyapunov equation (1.8) as a lasso problem to find a sparse
estimate of 𝑀.

Definition 1.4.1. The Direct Lyapunov Lasso aims to solve the following convex optimization problem

min
vec(𝑀)∈ℝ𝑃

1
2 ∥𝐴(𝑆)vec(𝑀) + vec(𝐶)∥2

2 + �∥vec(𝑀)∥1 , (1.12)

where 𝑃 := 𝑝2 for convenience and � > 0 is a tuning parameter.

Definition 1.4.2. The Gram matrix is defined as

Γ(Σ) := 𝐴(Σ)𝑇𝐴(Σ) ∈ ℝ𝑁×𝑃 (1.13)

and the linear vector,
𝑔(Σ) := −𝐴(Σ)𝑇vec(𝐶) ∈ ℝ𝑃 (1.14)

1.5 Background on Mixed Integer Optimization (MIO)

7

Remark 1.4.3. The Direct Lyapunov Lasso problem (1.12) can be further reformulated as

min
vec(𝑀)∈ℝ𝑃

1
2vec(𝑀)𝑇Γ(𝑆)vec(𝑀) − 𝑔(𝑆)𝑇vec(𝑀) + �∥vec(𝑀)∥1. (1.15)

Dettling et al. [DDK22] show that, under some regularity assumptions on the gram matrix Γ(𝑆),
it is possible to recover the support of the true population drift matrix, 𝑀∗. In particular, the
following theorem plays the central role in providing a deterministic condition for the support
recovery from Direct Lyapunov Lasso.

Theorem 1.4.4 (Dettling et al. [DDK22]). Let 𝑀∗ ∈ Stab(𝐸) be the true drift matrix, and let 𝑆 be its
support. Assume that Γ∗

𝑆𝑆
is invertible and that the irrepresentable condition

∥Γ∗𝑆𝑐𝑆(Γ
∗
𝑆𝑆)

−1sign(vec(𝑀∗))𝑆∥∞ ≤ (1 − 𝛼) (1.16)

holds with parameter 𝛼 ∈ (0, 1]. Furthermore, assume that Γ̂ is a matrix such that

|||(ΔΓ)·𝑆 |||∞ < 𝜖1 , ∥Δ𝑔 ∥∞ < 𝜖2

with 𝜖1 ≤ 𝛼/(6𝑐Γ∗ . Then if

� >
3(2 − 𝛼)

𝛼
max{𝑐𝑀𝜖1 , 𝜖2}

then �̂� obtained as a solution to the Direct Lyapunov Lasso, has its supported included in the true support
(𝑆 ⊆ 𝑆), and satisfies

∥�̂� −𝑀∗∥ <
𝑐Γ∗

2 − 𝛼
�.

In addition, if
min

1≤ 𝑗<𝑘<𝑝,(𝑗 ,𝑘)∈𝑆
|𝑀∗

𝑗𝑘 | >
𝑐Γ∗

2 − 𝛼
�,

then 𝑆 = 𝑆 and sign(�̂� 𝑗𝑘) = sign(𝑀∗
𝑗𝑘
)∀(𝑗 , 𝑘) ∈ 𝑆.

Proof. See details in Appendix A.1 [DDK22].

Thus, the irrepresenatable condition becomes a necessary condition for support recovery. In
practice, it is not satisfied so frequently in non-simple graphs (graph with cycles). Even in simple
graphs (graph without cycles), the frequency of graphs actually satisfying this condition decreases
as the number of edges increases. It then becomes very challenging to recover the true support via
Direct Lyapunov Lasso. In the following sections, a new approach to support recovery via mixed
integer optimization is discussed, which will be the main theme of this study.

1.5 Background on Mixed Integer Optimization (MIO)

The general form of Mixed Integer Quadratic Problem (MIQP) with binary variables is given by

min 𝑥𝑇𝑄𝑥 + 𝑞𝑇𝑥
s.t 𝐴𝑥 ≤ 𝑏,

𝑐𝑙 ≤ 𝑥 ≤ 𝑐𝑢 ,

𝑥𝑖 ∈ {0, 1} 𝑖 ∈ ℐ

(1.17)

1 Introduction

8

where 𝑞 ∈ ℝ𝑚 , 𝐴 ∈ ℝ𝑘×𝑚 , 𝑏 ∈ ℝ𝑘 and 𝑄 ∈ ℝ𝑚×𝑚 are parameters of the given problem. The goal
is to optimize the objective function over 𝑥 ∈ ℝ𝑚 , containing binary (𝑥𝑖 , 𝑖 ∈ ℐ) and continuous
(𝑥𝑖 ∉ ℐ) variables, with ℐ ⊂ {1, . . . , 𝑚}. Typically, such problems are approached via branch and
bound method due to their remarkable performance [FL98]. It uses bounds on optimal cost to
avoid exploring the entire feasible set to find an optimal solution.

Definition 1.5.1. Given a mixed integer optimization problem like (1.17), its linear relaxation is defined as

min 𝑥𝑇𝑄𝑥 + 𝑞𝑇𝑥
s.t 𝐴𝑥 ≤ 𝑏,

𝑐𝑙 ≤ 𝑥 ≤ 𝑐𝑢 ,

0 ≤ 𝑥𝑖 ≤ 1 𝑖 ∈ ℐ

(1.18)

where the requirement that 𝑥𝑖 for 𝑖 ∈ ℐ to be binary variables is relaxed.

Let ℱ be the set of feasible solutions to the problem (1.17). A linear relaxation of this problem, (1.18)
is solved. If the optimal solution of this relaxation lies in ℱ , then the it is quite straightforward to
see that it is also an optimal solution to problem (1.17). If not, ℱ is divided into a finite collection
of subsets ℱ1 , . . . , ℱ𝑘 by partitioning on a variable that is fractional, 𝑥′

𝑗
for 𝑗 ∈ ℐ and not an integer.

This is done for a single variable 𝑥 𝑗 by dividing the feasible set into two parts, one with a constraint
𝑥 𝑗 ≤ ⌊𝑥′

𝑗
⌋ and one with 𝑥 ≥ ⌈𝑥′

𝑗
⌉. One then formulates 𝑘 such subproblems (for 𝑘/2 fractional

variables)

min 𝑥𝑇𝑄𝑥 + 𝑞𝑇𝑥
s.t 𝑥 ∈ 𝐹𝑖 , 𝑖 = 1, . . . , 𝑘

(1.19)

and solve each one separately following a similar procedure. Note that each subproblem can be
splitted into further subproblems. This step is called branching and it leads to a tree of subproblems
(see Figure 1.1) where each subproblem is represented as a node.

ℱ

ℱ1 ℱ2 ℱ𝑘

ℱ21 ℱ22

. . .

Figure 1.1 Branching: A tree of subproblems by partitioning the feasible set ℱ

If a particular node gives an infeasible solution or an integer feasible solution, it is designated
as being fathomed and it is excluded from further branching. In the latter case, if it is the best
integer solution obtained so far, it is further denoted as incumbent. The incumbent solution serves
as an upper bound 𝑈 to the optimal objective function of problem (1.17). At the beginning of the
algorithm, 𝑈 is taken as ∞ or a really large number and it is only updated when an incumbent
solution is found at a given node. The nodes are also assigned as fathomed if the optimal solution
found provides an objective greater than the current incumbent.

Furthermore, it is not always necessary to directly solve a subproblem at a given node to check
if it is to be fathomed. One can also assign a node as fathomed by first checking if the lower

1.6 Best Subset as a MIO Problem

9

bound 𝐿𝑖 (also called best bound) of that particular subproblem satisfies 𝐿𝑖 ≥ 𝑈 . Then that node
can be eliminated completely from further exploration. In many cases, computing a lower bound
might actually be easier than computing the optimal solution to the subproblem. There are several
ways of computing the lower bounds. The most straightforward method is to take 𝐿 as the
optimal objective of the linear relaxation of subproblem. Another more common approach is to
use concepts of Duality theory in integer optimization [BW05]. The optimal solution to the dual
problem provides a lower bound to the primal problem. If 𝐿 ≤ 𝑈 for a subproblem, an optimal
solution is obtained or the subproblem is partitioned into further subproblems based on the linear
relaxation solution. The difference between the current incumbent and the best bound serves as
an optimality certificate and is called as gap. The optimal solution is found when the gap becomes
zero. One of the biggest advantage of MIO solvers is that even though it stops before approaching
the global optimum, the lower bounds gives one the certificate of suboptimality.

MIO solvers have become very powerful in recent years due to integration of powerful techniques.
Cutting planes allows to use cuts while solving the subproblems. By introducing additional con-
straints (plane) that do not change the existing formulation, one can accelerate branch and bound
considerably. Addition of cutting planes is one of the biggest factor contributing to the speed
up of MIO solvers [Bix+04]. The second most biggest factor is Presolving [Ach+20; Bix+04]. Pre-
solving is a preprocessing technique where the problem size is reduced before actually solving
it. The reduction is done by identifying redundant information in the formulation, for example
constraints that are only satisfied for certain values of 𝑥 𝑗 for 𝑗 ∈ ℱ . There are several ways to
perform the branching. Two most extreme cases are "depth-first search" and "breadth-first search".
However, choosing a smart branching method has shown significant improvements in speed and
solvability of MIO problems [AW13]. There are many more ingredients that have contributed to
improvements in the solvers over the years and it is expected to get only more powerful in the
future.

Bertismas et al. [BKM16] presented a novel approach of solving the best-subset selection problem
(1.9) via mixed integer optimization. While the classical best-subset methods barely could manage
to recover problems of size 𝑝 = 30, they showed that highly optimized MIO solvers, like Gurobi
[Gur23a], could handle problems of size in thousands. Furthermore, it was observed that MIO
outperformed lasso with a good predictive performance. Tibshirani et al. [HTT17b] extended
the results to more realistic signal to noise ratio regimes and performed a detail comparison of
best-subset selection, lasso, Relaxed lasso and forward stepwise selection. It was observed that
at low signal to noise ratio regimes, lasso outperformed best-subset selection and relaxed lasso
consistently performed as well as, or better than, all the methods. This study aims to extend this
comparison, in particular with lasso and best-subset selection for support recovery of drift matrices
associated with graphical Lyapunov models.

1.6 Best Subset as a MIO Problem

Bertismas et al. [Bertismas] developed MIO formulations for the best-subset problem (1.9). It was
shown, in particular, that the formulations could provide optimum solutions atleast as strong as
lasso (1.3), if not better. The choice of a formulation is crucial in integer optimization.

Definition 1.6.1 (Convex hull). Consider a set 𝒜 = {x1 , . . . , x𝑚}, where x𝑖 represent points in ℝ𝑛 for
𝑖 = 1, . . . , 𝑚. The set 𝒜 is convex if for every x𝑖 , x𝑗 ∈ 𝒜, (1− 𝑡)𝑥𝑖 + 𝑡x𝑗 ∈ 𝒜 and 𝑡 ∈ [0, 1]. Furthermore,
the convex hull of the set 𝒜 is defined as

conv(𝒜) :=

{
𝑚∑
𝑖=1

�𝑖x𝑖
���� 𝑚∑
𝑖=1

�𝑖 = 1,�𝑖 ≥ 0

}
and it is the smallest convex set that contains all the points in 𝒜.

1 Introduction

10

Theorem 1.6.2. Let ℱ be feasible set to problem (1.17), bounded and, therefore, finite. Then one could solve
(1.17) by finding an extreme point solution to the following linear optimization problem

min 𝑥𝑇𝑄𝑥 + 𝑞𝑇𝑥
s.t 𝑥 ∈ conv(ℱ)

Proof. The proof follows from the definition of convex set. The set conv(ℱ) is a polyhedron that
contains all the integer feasible solutions in ℱ as its extreme points.

Remark 1.6.3. So it is usually desirable to have a formulation that has its linear relaxation to be the convex
hull conv(ℱ). However, this is often very difficult in practice. So one often tries to construct a polyhedron
that closely approximates conv(ℱ). If 𝑃 is the feasible set of linear relaxation, it satisfies conv(ℱ) ⊂ 𝑃. If
𝑍𝑃 and 𝑍𝐼𝑃 are the optimum cost of the linear relaxation and the integer optimization problem respectively,
then this would mean 𝑍𝑃 ≤ 𝑍𝐼𝑃 . Thus, the linear relaxation gives a lower bound to the optimum integer
solution objective. Closer 𝑃 is to the convex hull, better the lower bound.

Here, in this study, the following two formulations for solving the best-subset selection (1.9) are
considered from [BKM16].

Definition 1.6.4. Form-1 reformulation of the best-subset problem (1.9) is described as

𝑍𝐹1−𝐼𝑃 =min
𝛽,𝑧

1
2𝛽

𝑇(𝑋𝑇𝑋)𝛽 − ⟨𝑋𝑇𝑦, 𝛽⟩

s.t −𝑀𝑈 𝑧𝑖 ≤ 𝛽𝑖 ≤ 𝑀𝑈 𝑧𝑖 , 𝑖 = 1, . . . , 𝑃,
𝑧𝑖 ∈ {0, 1}, 𝑖 = 1, . . . , 𝑃,
𝑃∑
𝑖=1

𝑧𝑖 ≤ 𝑘,

(1.20)

where 𝛽 ∈ ℝ𝑃 , 𝑧 ∈ {0, 1}𝑃 are optimization variables. 𝑀𝑈 is a problem specific parameter that provides an
upper bound on the absolute value of the elements of 𝛽 : 𝑧 is a binary variable that defines the sparsity of the
solution 𝛽. So if 𝑧𝑖 = 1, then |𝛽𝑖 | ≤ 𝑀𝑈 and if 𝑧𝑖 = 0, then 𝛽𝑖 = 0.

Definition 1.6.5. Form-2 reformulation of the best-subset problem (1.9) is described as

𝑍𝐹2−𝐼𝑃 =min
�,𝛽,𝑧

1
2�

𝑇� − ⟨𝑋𝑇𝑦, 𝛽⟩

s.t � = 𝑋𝛽,

−𝑀𝑈 𝑧𝑖 ≤ 𝛽𝑖 ≤ 𝑀𝑈 𝑧𝑖 , 𝑖 = 1, . . . , 𝑃
𝑧𝑖 ∈ {0, 1}, 𝑖 = 1, . . . , 𝑃
𝑝∑
𝑖=1

𝑧𝑖 ≤ 𝑘, 𝑖 = 1, . . . , 𝑃

−𝑀�
𝑈
≤ �𝑖 ≤ 𝑀�

𝑈
𝑖 = 1, . . . , 𝑃,

(1.21)

where � ∈ ℝ𝑁 , 𝛽 ∈ ℝ𝑃 , 𝑧 ∈ {0, 1}𝑃 are optimization variables. 𝑀𝑈 and𝑀�
𝑈

are problem specific parameters
that provides an upper bound on the absolute value of the elements of 𝛽 and 𝑋𝛽 respectively : 𝑧 is a binary
variable that defines the sparsity of the solution 𝛽. So if 𝑧𝑖 = 1, then |𝛽𝑖 | ≤ 𝑀𝑈 and if 𝑧𝑖 = 0, then 𝛽𝑖 = 0.

Let ℱ𝐹1 and ℱ𝐹2 be the feasible sets, containing integer feasible solutions to Form-1 and Form-2
respectively. One can see that

1.6 Best Subset as a MIO Problem

11

conv(ℱ𝐹2) = {𝛽 : ∥𝛽∥∞ ≤ 𝑀𝑈 , ∥𝛽∥1 ≤ 𝑀𝑈 𝑘, ∥𝑋𝛽∥∞ ≤ 𝑀�
𝑈
}

⊆ conv(ℱ𝐹1)
= {𝛽 : ∥𝛽∥∞ ≤ 𝑀𝑈 , ∥𝛽∥1 ≤ 𝑀𝑈 𝑘} ⊆ {𝛽 : ∥𝛽∥1 ≤ 𝑀𝑈 𝑘}.

The formulation is constructed in such a way that the feasible sets of linear relaxation of both
formulations are equal to their respective convex hulls. Thus both formulations are strong. How-
ever, the convex hulls satisfy conv(ℱ𝐹2) ⊆ conv(ℱ𝐹1), indicating that Form-2 is atleast as strong as
Form-1. Let 𝑍𝐹1 and 𝑍𝐹2 be the optimum objective value of the linear relaxation of Form-1 and
Form-2 respectively. Then, the optimum objective value of Form-1 is a lower bound to that of
Form-2, i.e., 𝑍𝐹1 ≤ 𝑍𝐹2. Furthermore, one can note that the minimum of both the problems are
lower bounded by the optimum objective value of the following convex optimization problem:

𝑍𝐿 := min
𝛽

1
2 ∥𝑋𝛽 − 𝑦∥2

2 s.t ∥𝛽∥1 ≤ 𝑀𝑢𝑘 (1.22)

This is lasso in constrained form. Thus, we have 𝑍𝐿 ≤ 𝑍𝐹1 ≤ 𝑍𝐹1−𝐼𝑃 ≤ 𝑍𝐹2 ≤ 𝑍𝐹2−𝐼𝑃 . The MIO
solver begins by first solving the relaxation problem and lasso formulation is weaker than this
relaxation, irrespective of the formulation chosen.

Provided𝑀𝑈 and𝑀�
𝑈

are chosen appropriately, the solution to these formulations result in solution
to the best-subset problem (1.9). So the choice of these parameters are crucial in determining good
lower bounds in practice. Furthermore, it is often helpful if one provides the MIO solver an initial
guess. This serves as an upper bound to the optimum objective value of the integer optimization
problem and the more closer it is to the optimum solution, the faster MIO solver can find the global
optimum. If one has an initial guess that is closer to the optimum solution, then they can also
provide the MIO formulations with estimates for 𝑀𝑈 and 𝑀�

𝑈
. The discrete first-order methods,

presented by Bertismas et al. [BKM16], provide good upper bounds to the best-subset problem.

Definition 1.6.6 (Convex function). A function 𝑓 (𝑥) is convex on any interval 𝐼 = [𝑎, 𝑏], if and only if

𝑓 (𝑡𝑥 + (1 − 𝑡)𝑦) ≤ 𝑡 𝑓 (𝑥) + (1 − 𝑡) 𝑓 (𝑦) (1.23)

∀ 𝑥, 𝑦 ∈ 𝐼 and for any 𝑡 ∈ [0, 1]

Consider the following optimization problem

min
𝛽
𝑔(𝛽) s.t ∥𝛽∥0 ≤ 𝑘 (1.24)

where, 𝑔(𝛽) is convex and is Lipschitz continuous, meaning

∥∇𝑔(𝛽) − ∇𝑔(�̃�)∥ ≤ ℒ∥𝛽 − �̃�∥. (1.25)

with lipschitz constant ℒ.

Proposition 1.6.7 (Bertismas et al. [BKM16]). If �̂� is an optimal solution to the problem

min
∥𝛽∥0≤𝑘

∥𝛽 − 𝑐∥2
2 (1.26)

then,

𝛽𝑖 =

{
𝑐𝑖 , 𝑖 ∈ 𝒦 ,

0, otherwise,
(1.27)

1 Introduction

12

where, 𝛽𝑖 is the 𝑖th coordinate of �̂� and 𝒦 is an index set containing the 𝑘 largest (in absolute value) elements
of 𝑐. The set of solutions can be represented by H𝑘(𝑐), where H𝑘(·) projects 𝑐 such that �̂� retains the 𝑘 largest
elements (in absolute value) and assigns rest to zero (Hard thresholding [DJ94]).

Proposition 1.6.8 (Nesterov [Nes03]). For a convex function 𝑔(𝛽) satisfying condition (1.25) and for any
𝐿 > ℒ,

𝑔(�) ≤ 𝑄𝐿(�, 𝛽) := 𝑔(𝛽) + 𝐿

2 ∥� − 𝛽∥2
2 + ⟨∇𝑔(𝛽), � − 𝛽⟩ (1.28)

for all 𝛽, � with equality holding at 𝛽 = �.

Definition 1.6.9. A point � is called stationary point of the problem (1.24), if it satisfies a fixed point
equation

� ∈ H𝑘

(
� − 1

𝐿
∇𝑔(�)

)
(1.29)

The idea is to find a stationary point of the problem (1.24) when 𝑔(𝛽) = ∥𝑋𝛽 − 𝑦∥2
2 using discrete

first order algorithm based on projected gradient descent.

Algorithm 1: Discrete first-order algorithm to find stationary point
Input: 𝑋, 𝑦, 𝑘, defaults: max iterations 𝑁 = 1000, convergence tolerance 𝜖 = 1e-4
Output: 𝛽init

1 Initialize 𝛽0 ∈ ℝ𝑃 such that ∥𝛽0∥ ≤ 𝑘 ;
2 Assign 𝐿 as the largest eigenvalue of 𝑋𝑇𝑋 ;
3 for i = 1 to 𝑁 do
4 𝛽𝑖 = Hk (𝛽𝑖−1 − ∇𝑔(𝛽𝑖−1)/𝐿) ;
5 Break if ∥𝛽𝑖 − 𝛽𝑖−1∥2/max(∥𝛽𝑖 ∥2 , 1) < 𝜖

6 𝛽init = 𝛽𝑖

Once this algorithm finds a stationary point by selecting a support, then this solution is 𝑘-sparse
and can be supplied as initial guess to the MIO solver for further improvement. The following
theorem from Bertismas et al. [BKM16] guarantees that the algorithm is able to find a support that
stabilizes as the algorithm progress and eventually converges to a stationary point.

Theorem 1.6.10. Consider 𝑔(𝛽) and ℒ as defined in (1.25). Let 𝛽𝑚 , 𝑚 ≥ 1 be the sequence generated by
Algorithm 1. Then

a) For any 𝐿 ≥ ℒ, the sequence 𝑔(𝛽) is decreasing, converges and satisfies

𝑔(𝛽𝑚) − 𝑔(𝛽𝑚+1) ≥
𝐿 − ℒ

2 ∥𝛽𝑚+1 − 𝛽𝑚 ∥2
2. (1.30)

b) If 𝐿 > ℒ, then 𝛽𝑚+1 − 𝛽𝑚 → 0 as 𝑚 → ∞.

c) Let 1𝑚 represent the sparsity pattern of the support of 𝛽𝑚 , 𝛼𝑘,𝑚 = 𝛽(𝑘),𝑚 and 𝛼𝑘 := lim inf𝑚→∞ 𝛼𝑘,𝑚 .
If 𝐿 > ℒ and 𝛼𝑘 = 0, then the sequence 1𝑚 converges after finitely many iterations. Furthermore, the
sequence 𝛽𝑚 is bounded and converges to a first-order stationary point.

d) If 𝐿 > ℒ and 𝛼𝑘 = 0 then lim inf𝑚→∞ ∥∇𝑔(𝛽𝑚)∥ = 0.

e) Let 𝛼𝑘 := lim sup𝑚→∞ 𝛼𝑘,𝑚 𝐿 > ℒ , 𝛼𝑘 = 0 and suppose that the sequence 𝛽𝑚 has a limit point.
Then 𝑔(𝛽𝑚) → min𝛽 𝑔(𝛽).

Proof. For clarity, only proofs of the statements a), b) and c) are shown here. For d) and e), please
refer to [BKM15].

1.6 Best Subset as a MIO Problem

13

a) Let 𝛽 be a vector satisfying ∥𝛽∥0 ≤ 𝑘. Let �̂ ∈ H𝑘(𝛽 − 1
𝐿∇𝑔(𝛽)),

𝑔(𝛽) = 𝑄𝐿(𝛽, 𝛽)
≥ inf

∥�∥0≤𝑘
𝑄𝐿(�, 𝛽)

= inf
∥�∥0≤𝑘

(
𝐿

2 ∥� − 𝛽∥2
2 + ⟨∇𝑔(𝛽), � − 𝛽⟩ + 𝑔(𝛽)

)
= inf

∥�∥0≤𝑘

(
𝐿

2 ∥� −
(
𝛽 − 1

𝐿
∇𝑔(𝛽)

)
∥2

2 −
1

2𝐿 ∥∇𝑔(𝛽)∥
2
2 + 𝑔(𝛽)

)
=

(
𝐿

2 ∥�̂ −
(
𝛽 − 1

𝐿
∇𝑔(𝛽)

)
∥2

2 −
1

2𝐿 ∥∇𝑔(𝛽)∥
2
2 + 𝑔(𝛽)

)
(From proposition 1.6.7)

=

(
𝐿

2 ∥�̂ − 𝛽∥2
2 + ⟨∇𝑔(𝛽), �̂ − 𝛽⟩ + 𝑔(𝛽)

)
=

(
𝐿 − ℒ

2 ∥�̂ − 𝛽∥2
2 +

ℒ
2 ∥�̂ − 𝛽∥2

2 + ⟨∇𝑔(𝛽), �̂ − 𝛽⟩ + 𝑔(𝛽)
)

=
𝐿 − ℒ

2 ∥�̂ − 𝛽∥2
2 +𝑄ℒ(�̂, 𝛽)

≥ 𝐿 − ℒ
2 ∥�̂ − 𝛽∥2

2 + 𝑔(�̂). (From Proposition 1.6.8)

This leads to
𝑔(𝛽) − 𝑔(�̂) ≥ 𝐿 − ℒ

2 ∥� − 𝛽∥2
2 (1.31)

𝛽𝑚 = 𝛽 and 𝛽𝑚+1 = �̂ are two consecutive vectors of the sequence generated by Algorithm
1.Thus, for 𝐿 ≥ ℒ, 𝑔(𝛽𝑚) are decreasing and since 𝑔(𝛽) is bounded from below (𝑔(𝛽) ≥ 0), it
converges as 𝑚 → ∞.

b) Since 𝑔(𝛽𝑚) converges as 𝑚 → ∞, if 𝐿 > ℒ in (1.31), then ∥𝛽𝑚+1 − 𝛽𝑚 ∥ → 0.

c) 𝛼𝑘 > 0 means that ∥𝛽(𝑘),𝑚 ∥ = 𝑘 (all entries are bounded away from zero). Assume that the
support, 1𝑚 , does not converge as 𝑚 → ∞. Then there exists many values 𝑚′ such that
1𝑚′ ≠ 1𝑚′+1. For 𝑖 , 𝑗 such that 𝛽𝑖 ,𝑚′+1 = 𝛽 𝑗 ,𝑚′ = 0, one has

∥𝛽𝑚′ − 𝛽𝑚′+1∥2 ≥
√
𝛽2
𝑖 ,𝑚′ + 𝛽2

𝑗 ,𝑚′+1 ≥
|𝛽𝑖 ,𝑚′ | + |𝛽 𝑗 ,𝑚′+1 | |

2 . (1.32)

This contradicts the fact that ∥𝛽𝑚+1 − 𝛽𝑚 ∥ → 0 as shown in b). Thus 1𝑚 converges after
finitely many iterations 𝑀∗. Algorithm 1 is a standard gradient descent algorithm, restricted
to the space 1𝑚 for 𝑚 ≥ 𝑀∗. A gradient descent algorithm for minimizing a convex function
over a closed convex set leads to a sequence that converges [Nes13]. Thus 𝛽𝑚 converges to
𝛽∗, a first-order stationary point and its boundedness follows from the convergence of 𝛽𝑚 .

In practice, one runs Algorithm 1 multiple times by choosing different initial values and choose
the solution with minimum objective. As mentioned before, this objective value will serve as a
good upper bound to the MIO formulation and also gives a good estimate of the parameters 𝑀𝑈

and 𝑀�
𝑈

. If 𝛽init denotes an estimate obtained by Algorithm 1, then 𝑀𝑈 := 𝜏∥𝛽init∥∞ with 𝜏 being
a multiplier greater than 1, for e.g., 𝜏 = 2. For an estimate of 𝑀�

𝑈
, the following result taken from

Theorem 2.1 of [BKM16] is useful:

1 Introduction

14

Theorem 1.6.11 (Bertismas et al. [BKM16]). For any 𝑘 ≥ 1, any optimal solution, �̂�, to the best-subset
problem (1.9) satisfies

∥𝑋 �̂�∥∞ ≤
(

max
𝑖=1,...,𝑁

∥x𝑖 ∥1:𝑘

)
∥�̂�∥∞ , (1.33)

where x𝑖 , 𝑖 ∈ [𝑁] denote the rows of 𝑋 and ∥x𝑖 ∥1:𝑘 is the sum of the largest 𝑘 values in x𝑖 (in absolute value).

Proof.

∥𝑋 �̂�∥∞ ≤ max
𝑖∈[𝑁]

|⟨x𝑖 , �̂�⟩| ≤ max
𝑖∈[𝑁]

∥x𝑖 ∥1:𝑘 ∥�̂�∥∞

So a suitable estimate for the upper bound on 𝑋𝛽 would be, 𝑀�
𝑈

:= (max𝑖=1,...,𝑁 ∥x𝑖 ∥1:𝑘)𝑀𝑈 .

With this, one has all the ingredients to efficiently formulate and solve the best-subset problem. In
this study, these techniques are used to convert the problem of recovery of drift matrices.

Definition 1.6.12. The support recovery of the true drift matrix, 𝑀∗ of a graphical continuous Lyapunov
model of a directed graph, G can be written as the following best-subset selection problem:

min
vec(𝑀)∈ℝ𝑃

1
2 ∥𝐴(𝑆)vec(𝑀) + vec(𝐶)∥ s.t ∥vec(𝑀)∥0 ≤ 𝑘 (1.34)

where S is the sample covariance matrix of a given set of 𝑛 observations as described in (1.11), 𝐴(𝑆) is the
matrix defined in (1.8), 𝐶 is the volatility matrix (assumed known).

Remark 1.6.13. The best-subset problem (1.34) can be further reformulated as

min
vec(𝑀)∈ℝ𝑃

1
2vec(𝑀)𝑇Γ(𝑆)vec(𝑀) − 𝑔(𝑆)𝑇vec(𝑀) s.t ∥vec(𝑀)∥0 ≤ 𝑘 (1.35)

In the next chapter, the details of this approach’s implementation are elaborated. In particular,
different initialization strategies were explored for the discrete first-order algorithm and modifica-
tions were made to the formulations to make it more suitable for recovery of true graph structures
from graphical Lyapunov models. Furthermore, a detail comparison of this approach with Direct
Lyapunov Lasso is done using numerical studies on synthetic and real datasets.

15

2 Structure Recovery

2.1 Initialization strategies

As shown in Bertismas et al. [BKM16], solutions obtained from discrete first-order method can
serve as a good initial guess to MIO solver. Their combination with MIO result in better solutions
when compared to the solutions obtained from either of the methods, when used independently.
This approach was implemented by Hastie et al. [HTT17b] in the bestsubset R package. In
this package, the discrete first-order method introduced in previous chapter is considered for the
optimization problem (1.24). Algorithm 1 is initialized with fifty random values around least
squares regression coefficients (when 𝑃 < 𝑁) or marginal regression coefficients (when 𝑃 ≥ 𝑁).
The idea is to pass each of them on to the algorithm to obtain a first-order stationary point. These
initialiizations are not necessarily 𝑘-sparse as required by the algorithm, and one often needs a
subset selection method as a pre-processing step. In the bestsubset package, the largest 𝑘 values
are chosen from each of these initializations. Out of the fifty converged solutions, the one with
minimum objective value, 𝛽init, was passed as an initial guess to the MIO solver.

To begin, this section will focus on the modifications made to the initialization strategy originally
implemented by Hastie et al .[HTT17b]. Unlike their work, the aim is to not just recover the best-
subset of size 𝑘 of any vector. Here, one aims to recover drift matrices from graphical Lyapunov
models. One considers, 𝑔(𝛽) = ∥𝑋𝛽 − 𝑦∥2

2, 𝑋 = 𝐴(Σ), 𝑦 = −vec(𝐶) and 𝛽 = vec(𝑀). In particular,
these drift matrices are stable, meaning all the eigenvalues are negative and bounded away from
zero. Let 𝒟 represent an index set containing the indices of vec(𝑀) that correspond to the diagonal
position in the drift matrix, 𝑀. While Algorithm 1 is running, the hard thresholding operator,
H𝑘(·) can assign 𝛽𝑖 ,𝑚 to zero for 𝑖 ∈ 𝒟 and for some iteration 𝑚. This can happen if 𝛽𝑖 for 𝑖 ∈ 𝒟
does not belong to the set of largest 𝑘 elements (in absolute value). In order to handle this, the
following optimization problem is considered

min
𝛽
𝑔(𝛽) s.t ∥𝛽∥0 ≤ 𝑘, ∥𝛽𝒟 ∥0 ≤ |𝒟| (2.1)

where, 𝑔(𝛽) is convex and is Lipschitz continuous, meaning

∥∇𝑔(𝛽) − ∇𝑔(�̃�)∥ ≤ ℒ∥𝛽 − �̃�∥. (2.2)

with lipschitz constant ℒ. 𝒟 is a fixed index set containing specific indices, 𝑖 ∈ [𝑃], of the elements
of 𝛽 ∈ ℝ𝑃 .

Definition 2.1.1. The Selective Thresholding operator, P𝑘(·) : ℝ𝑃 → ℝ𝑃 is defined as

Pk(𝑐) =

𝑐𝑖 , 𝑖 ∈ 𝒦
𝑐 𝑗 , 𝑗 ∈ 𝒟
0, otherwise

(2.3)

where the set 𝒦 and 𝒟 are two disjoint index sets where 𝒦 contains the largest 𝑘 − |𝒟| elements of the
vector 𝑐 ∈ ℝ𝑃 and 𝒟 is fixed.

2 Structure Recovery

16

Lemma 2.1.2. The Selective Thresholding operator (2.3) applied to 𝑐 ∈ ℝ𝑃 gives the set of solutions to the
following optimization problem:

min ∥𝛽 − 𝑐∥2
2 s.t ∥𝛽∥0 ≤ 𝑘, ∥𝛽𝒟 ∥0 ≤ |𝒟| (2.4)

Proof. It is sufficient to consider the case |𝑐𝑖 | > 0 for all 𝑖 ∈ [𝑃]. If �̂� is an optimal solution and
𝑆 = {𝑖 : �̂�𝑖 ≠ 0}. The objective function is given by,

∑
𝑖∉𝑆 𝑐

2
𝑖
+∑

𝑖∈𝑆(𝛽𝑖 − 𝑐𝑖)2. By choosing �̂�𝑖 = 𝑐𝑖 for
𝑖 ∈ 𝑆, the second summation is zero. Since 𝒟 is fixed, choosing the indices of the largest 𝑘 − |𝒟|
elements of 𝑐 in 𝒦 is the only choice that will minimize

∑
𝑖∉𝑆 𝑐

2
𝑖
.

Definition 2.1.3. A point � is called stationary point of problem (2.1), if it satisfies a fixed point equation

� ∈ P𝑘
(
� − 1

𝐿
∇𝑔(�)

)
(2.5)

The goal is then to modify the algorithm such that it is able to find the stationary point of problem
(2.1). In the first subsection, this algorithm is described. In the subsequent subsections, other
initialization strategies that were explored in this study are described in detail. All of these
strategies aim to provide the MIO solver with initial guesses that are as close as possible to the
true solution.

2.1.1 Marginal Regression

The initialization approaches proposed by Bertismas et al. [BKM16] were poor for this problem
because the initial values were drawn completely random. Hastie et al. [HTT17b] implemented a
better initialization strategy. They draw all values around the least squares regression coefficients
(𝑃 < 𝑁) or marginal regression coefficients (𝑃 ≥ 𝑁). Thus the initial values contain some
information about the true problem. This approach was slightly modified for the current problem.
For convenience, this modified algorithm is stated below.

Algorithm 2: Projected Gradient with Marginal Regression
Input: 𝑋, 𝑦, 𝑘, defaults: number of initializations nruns = 50, max iterations 𝑁 = 1000,

convergence tolerance 𝜖 = 1e-4
Output: 𝛽init

1 if 𝑃 < 𝑁 then
2 𝛽0 is least squares coefficients
3 else
4 Entries of 𝛽0 obtained by marginal regression: 𝛽0𝑗 =

∑𝑛
𝑖=1 𝑋𝑖 𝑗 𝑦𝑖∑𝑛
𝑖=1 𝑋

2
𝑖 𝑗

for 𝑗 = 1, . . . , 𝑃 ;

5 𝛽0
0 = Pk(𝛽0) ;

6 Assign 𝐿 as the largest eigenvalue of 𝑋𝑇𝑋 ;
7 for r = 1 to nruns do
8 for i = 1 to N do
9 𝛽𝑟

𝑖
= Pk

(
𝛽𝑟
𝑖−1 − ∇𝑔(𝛽𝑟

𝑖−1)/𝐿
)

;
10 Break if ∥𝛽𝑟

𝑖
− 𝛽𝑟

𝑖−1∥2/max(∥𝛽𝑟
𝑖
∥2 , 1) < 𝜖

11 if 𝛽𝑟
𝑖

gives the best objective so far then
12 𝛽init = 𝛽𝑟

𝑖
;

13 Start the next run at a new location: 𝛽𝑟0 = 𝛽0
0 + 2 · runif(𝑝)max(|𝛽0

0 |, 1)

Since here one mainly deals with the case where 𝑃 = 𝑁 = 𝑝2, either of the methods in step 4 is an
appropriate choice. In marginal regression, each covariate 𝑋𝑗 is regressed individually on to 𝑌 to

2.1 Initialization strategies

17

Number of False positives (FP) for Algorithm 2

|FP|

F
re

qu
en

cy

1 2 3 4 5

0
5

10
15

Figure 2.1 Number of false positives generated across all the initializations for a graph with 𝑝 = 5 nodes
and 10 true edges (including self-loops) using Algorithm 2

obtain 𝛽 𝑗 for 𝑗 ∈ [𝑃]. It was observed that the marginal regression performs better in estimating the
strength of each predictor on the output variable without the influence of others and thus serves
as a good starting point to identify the true edges of the graph. Furthermore, it is also simple and
computationally efficient when compared to ordinary least squares regression.

Just like Algorithm 1, one can establish that Algorithm 2 finds a support that stabilizes and
eventually converges to a stationary point as defined in (2.5).

Theorem 2.1.4. Consider 𝑔(𝛽) and ℒ as defined in (2.2). Let 𝛽𝑚 , 𝑚 ≥ 1 be the sequence generated by
Algorithm 2. Then all the statements of Theorem 1.6.10 also hold for Algorithm 2.

Proof. Statements b), c), d) and e) are generic and follows if one proves that a) holds. For a), the
result follows by taking infimum over the set ∥�∥0 ≤ 𝑘, ∥�𝒟 ∥0 ≤ |𝒟| (instead of just ∥�∥0 ≤ 𝑘), and
using Lemma 2.1.2 and Proposition 1.6.8 in a similar way as proof of Theorem 1.6.10. For more
details see Bertismas et al. [BKM15]

2.1.2 One Edge - Marginal Regression

Algorithm 2 consistently provides the MIO solver with an initial guess that is near 𝑘−sparse.
However, it provides a solution with too many false positives (see Figure 2.1). This can be caused
due to dense initializations to the algorithm. The primary objective of the algorithm is to eliminate
any false positives while striving to identify the true positives. The proposed initialization strategy
explores the algorithm’s capability to reduce false positives by providing it with sparser initial
guesses. It is similar to Algorithm 2, except that the initializations for the algorithm are always
𝑝 + 1-sparse (𝑝 diagonal elements,i.e., self loops and 1 edge).

Definition 2.1.5. Given a vector 𝑐 ∈ ℝ𝑃 , the one edge projector map R𝑘(·) : ℝ𝑃 → ℝ𝑃 is defined as

R𝑘(𝑐) =

𝑐𝑖 , 𝑖 ∈ 𝒟
𝑐𝑖 , 𝑖 = 𝑗

0, otherwise
(2.6)

2 Structure Recovery

18

Number of False positives (FP) for Algorithm 3

|FP|

F
re

qu
en

cy

1 2 3 4 5

0
5

10
15

20

Figure 2.2 Number of false positives generated across all the initializations for a graph with 𝑝 = 5 nodes
and 10 true edges (including self-loops) using Algorithm 3

where 𝑗 is a random number drawn from the set { 𝑗 : 𝑗 ∈ [𝑃] and 𝑗 ∉ 𝒟}

Algorithm 3: Projected Gradient with Marginal Regression - One Edge Initialization
Input: 𝑋, 𝑦, 𝑘, defaults: Number of initializations nruns = 50, max iterations, 𝑁 = 1000,

convergence tolerance: 𝜖 = 1e-4
Output: 𝛽init

1 if 𝑃 < 𝑁 then
2 𝛽0 is least squares coefficients
3 else
4 Entries of 𝛽0 obtained by marginal regression: 𝛽0𝑗 =

∑𝑛
𝑖=1 𝑋𝑖 𝑗 𝑦𝑖∑𝑛
𝑖=1 𝑋

2
𝑖 𝑗

for 𝑗 = 1, . . . , 𝑃 ;

5 𝛽0
0 := R𝑝+1(𝛽0) ;

6 Assign 𝐿 as the largest eigenvalue of 𝑋𝑇𝑋 ;
7 for r = 1 to nruns do
8 for i = 1 to N do
9 𝛽𝑟

𝑖
= Pk

(
𝛽𝑟
𝑖−1 − ∇𝑔(𝛽𝑟

𝑖−1)/𝐿
)

;
10 Break if ∥𝛽𝑟

𝑖
− 𝛽𝑟

𝑖−1∥2/max(∥𝛽𝑟
𝑖
∥2 , 1) < 𝜖

11 if 𝛽𝑟
𝑖

gives the best objective so far then
12 𝛽init = 𝛽𝑟

𝑖
;

13 Start the next run at a new location by choosing another edge:
𝛽𝑟0 = Rp+1(𝛽0

0 + 2 · runif(𝑝)max(|𝛽0
0 |, 1))

For the sake of completeness, this algorithm’s performance in terms of TPs is shown in Figure 2.2.

2.1.3 Graphical Lasso informed Marginal Regression

The utilization of the graphical lasso model [FHT08] for inverse covariance estimation has gained
significant popularity. The glasso R package gives a sparse estimate of the inverse covariance
matrix by applying a lasso penalty on it. Given a data from a multivariate normal distribution of

2.1 Initialization strategies

19

dimension 𝑝, mean � and covariance Σ, let Θ = Σ−1 and 𝑆 be the empirical covariance matrix. The
problem is to given by,

max
Θ∈ℝ𝑝×𝑝

log detΘ − tr(𝑆Θ) − 𝜌∥Θ∥1; (2.7)

where tr denotes the trace. Using a coordinate descent procedure for lasso, the inverse covariance
matrix is estimated for a path of regularization parameter, 𝜌. The structure with a lowest Bayesian
Information Criterion (BIC) value (further details provided in a subsequent section) is selected.
The proposed initialization strategy uses the information obtained from this structure to construct
an initial guess for the MIO solver. As mentioned before, this can be useful as the inverse covariance
encodes relationships between variables.

Definition 2.1.6. Let Σ̂−1 represent an estimate of the inverse covariance matrix and 𝒢 as the index set
that contains the indices of the elements that are non-zero in vec(Σ̂−1). Given a vector 𝑐 ∈ ℝ𝑃 , the graphical
lasso projector map G𝑘(·) : ℝ𝑃 → ℝ𝑃 is defined as

G(𝑐) =
{
𝑐𝑖 , 𝑖 ∈ 𝒢
0, otherwise

(2.8)

Algorithm 4: Projected Gradient with Marginal Regression - Graphical Lasso Informed
Input: 𝑋, 𝑦, 𝑘, sample covariance 𝑆, number of observations 𝑛, defaults: Number of

initializations nruns = 50, max iterations, 𝑁 = 1000, convergence tolerance: 𝜖 = 1e-4
Output: 𝛽init

1 if 𝑃 < 𝑁 then
2 𝛽0 is least squares coefficients
3 else
4 Entries of 𝛽0 obtained by marginal regression: 𝛽0𝑗 =

∑𝑛
𝑖=1 𝑋𝑖 𝑗 𝑦𝑖∑𝑛
𝑖=1 𝑋

2
𝑖 𝑗

for 𝑗 = 1, . . . , 𝑃 ;

5 With glassopath(𝑆), Choose minimum 𝜌min = 𝜌 𝑗 , 𝑗 = 1, . . . , 10 such that Σ̂−1
𝑗

is diagonal. ;
6 Compute Σ̂−1 along a path containing 100 values uniformly spaced within [𝜌min/10, 𝜌min] ;
7 Choose Σ̂−1

𝑗
with best BIC score;

8 𝛽0
0 = P𝑘(G(𝛽0)) Assign 𝐿 as the largest eigenvalue of 𝑋𝑇𝑋 ;

9 for r = 1 to nruns do
10 for i = 1 to N do
11 𝛽𝑟

𝑖
= Pk

(
𝛽𝑟
𝑖−1 − ∇𝑔(𝛽𝑟

𝑖−1)/𝐿
)

;
12 Break if ∥𝛽𝑟

𝑖
− 𝛽𝑟

𝑖−1∥2/max(∥𝛽𝑟
𝑖
∥2 , 1) < 𝜖

13 if 𝛽𝑟
𝑖

gives the best objective so far then
14 𝛽init = 𝛽𝑟

𝑖
;

15 Start the next run at a new location: 𝛽𝑟0 = P𝑘(G(𝛽0
0 + 2 · runif(𝑝)max(|𝛽0

0 |, 1))).

2.1.4 Direct Lasso Initialization

The Direct Lyapunov lasso has demonstrated considerable potential for support recovery. Conse-
quently, it becomes intriguing to examine whether the solutions obtained through this method can
be enhanced when used as initial guesses for the Mixed-Integer Optimization (MIO) solver. Note
that solutions from lasso, despite weak, form still valid lower bounds to the best-subset problem.
The focus lies on minimizing the objective of Direct Lyapunov Lasso (1.12).

2 Structure Recovery

20

To compute solutions, glmnet package was employed along a path of values for the regularization
parameter, �. The regularization parameters are chosen similarly as proposed by Varando and
Hansen [VH20a]. The selection of � values ensures that the diagonal entries of the recovered drift
matrices are non-zero. Initially, a coarser grid of � values is employed to identify a suitable range
where this condition holds. Subsequently, the lasso method is applied over a finer grid of � values
within this determined region. In summary, the algorithm can be outlined as follows:

Algorithm 5: Direct Lasso initialization
Input: 𝑋, 𝑦, 𝑘
Output: 𝛽init

1 Construct grid𝑖 by taking 100 uniformly spaced values between 10 and 10−5.
2 Compute 𝛽lasso−𝑗 for � 𝑗 ∈ grid𝑖 and 𝑗 = 1, . . . , 100, with no penalty on diagonal using glmnet.
3 Choose � 𝑗 ∈ grid𝑖 such that 𝛽lasso−𝑗 is diagonal.
4 Construct grid 𝑓 by taking 100 uniformly spaced values between � 𝑗 and � 𝑗/104.
5 Compute 𝛽lasso−𝑙 for �𝑙 ∈ grid 𝑓 and 𝑙 = 1, . . . , 100 similar to step 3.
6 Choose 𝑙 such that 𝑔(Pk(𝛽lasso−𝑙)) is minimum for 𝑙 = 1, . . . , 100. 𝛽init = Pk(𝛽lasso−𝑙)

2.2 Optimization Problem

The mathematical framework proposed by Bertsimas et al. [BKM16] serves as a foundation for
all the modeling in this study. However, it was slightly adapted to address the problem at hand.
In particular, as described before, the recovery of the drift matrix was converted to a best-subset
problem (1.34). For convenience, it is rewritten below:

min
vec(𝑀)∈ℝ𝑃

1
2 ∥𝐴(𝑆)vec(𝑀) + vec(𝐶)∥ s.t ∥vec(𝑀)∥0 ≤ 𝑘 (2.9)

This problem is equivalent to (1.9) and can be solved by the MIO techniques introduced in section
1.6. However, it is important to address some challenges when using the formulations (1.20, 1.21)
in this work directly. In practical scenarios, it is common to lack knowledge of the true graph
structure and, therefore, one resorts to estimating the covariance structure for evaluating model
performance. This estimation is useful in computing likelihood or information criterion or other
similar model selection procedures. For unique estimation of Σ through (1.7), the sum of any two
eigenvalues of 𝑀 should be non-zero. Since all the problems to be considered in this study have
stable drift matrix , therefore the true edge set E will always contain all self-loops 𝑖 → 𝑖 and all
the diagonal entries will be negative. The assumption of stable drift matrix makes this estimation
possible. However, the formulations do not guarantee that the obtained solution correspond to
a stable drift matrix. There are two problems with the current formulations that could be of
hindrance to the estimation of Σ:

1. The constraint −𝑀𝑈 𝑧𝑖 ≤ 𝛽𝑖 ≤ 𝑀𝑈 𝑧𝑖 ensures that at most one of the variables (𝛽𝑖 or 𝑧𝑖) is non-
zero. So it does not exclude the case where both the variables can be zero simultaneously.
This case can be undesirable especially when 𝛽𝑖 = 𝑧𝑖 = 0 for 𝑖 ∈ 𝒟. In this scenario, unique
estimation of Σ from the MIO solution would no longer be possible.

2. Apart from the constraints, it is always a good practice to provide the bounds for each
optimization variable separately as it provides the MIO solver with search space. For 𝛽, the
bounds were defined as:

−𝑀𝑈 ≤ 𝛽𝑖 ≤ 𝑀𝑈 𝑖 ∈ [𝑃].
Note that the bounds on 𝛽 is inclusive of zero. This would mean that 𝛽𝑖 for 𝑖 ∈ 𝒟 are allowed
to possibly be zero (and 𝑧𝑖 = 1). Furthermore, even if such an element is non-zero, there is a

2.2 Optimization Problem

21

possibility that the solution is such that the eigenvalues of the solution are zero or close to
zero. This again leads to numerical issues while computing Σ.

To address the aforementioned issues, it was necessary to modify and make the formulations
problem-specific. The core reason to both the problems discussed above is that the upper bound
of the diagonal entries of the solution is too loose for this particular problem. One needs a tighter
upper bound for the diagonal elements to restrict their solution space.

−𝑀𝑈 𝑧𝑖 ≤ 𝛽𝑖 ≤ −𝑀𝑈−upper𝑧𝑖 𝑖 ∈ 𝒟 (2.10)

where 𝑀𝑈 is as defined in section 1.6 and 𝑀𝑈−upper is defined as

𝑀𝑈−upper := max (min(|𝛽init,𝒟 |), 𝜖) (2.11)

𝜖 is a small positive but bounded away from zero and 𝛽init,𝒟 ∈ ℝ𝑝 is a vector excluding the elements
present in diagonal position. Although all the initialization algorithms were designed to preserve
the diagonal elements as much as possible, this condition further ensures that the solution to the
diagonal elements does not include zero and are strictly away from zero along ℝ<0.

Furthermore, as discussed in Bertismas et al. [BKM16], the bounds on 𝛽 and � are not necessary,
but if provided, they improve the strength of the MIO formulation. This was also observed in
this study. The first formulation (1.20) has a quadratic form in 𝑃 variables. On the other hand,
the second formulation (1.21) has a quadratic form in 𝑁 variables. However, in this specific
problem, 𝑁 = 𝑃 indicating that both formulations can be potentially equally relevant in terms of
computational efficiency. But it was observed that the second formulation provided better lower
bounds to the problem within a given amount of time, thus reducing the overall computational
time.

In an effort to further reduce the computational effort, further possibilities to increase the strength
of the formulation were explored. It was observed that the magnitude of the absolute value of
diagonal elements and the non-diagonal elements of stable matrices in this study were different.
The reason for this is quite evident if one looks at how these stable matrices were generated
[VH20a]. In this scenario, one can tighten the bounds further by giving separate bounds for
diagonal and non-diagonal elements.

−𝑀𝑈−𝑑 ≤ 𝛽𝑖 ≤ −𝑀𝑈−upper 𝑖 ∈ 𝒟 (2.12)
−𝑀𝑈−𝑛𝑑 ≤ 𝛽𝑖 ≤ 𝑀𝑈−𝑛𝑑 𝑖 ∉ 𝒟 (2.13)

Here, 𝑀𝑈−𝑑 := 𝜏∥𝛽init,𝒟 ∥∞ and 𝑀𝑈−𝑛𝑑 := 𝜏∥𝛽init,𝒟𝑐 ∥∞.𝛽init,𝒟𝑐 ∈ ℝ(𝑃−𝑝) contains all those elements
of 𝛽init whose positions correspond to the non-diagonal position and 𝜏 is a multiplier greater than
1. It is important to note that these estimates, 𝑀𝑈−𝑑 and 𝑀𝑈−𝑛𝑑, provide lower bounds for 𝑀𝑈 .
They offer tighter estimates than 𝑀𝑈 and can be considered as good as, if not better than, the
existing formulation.

By making these modifications, one can further strengthen formulation (1.21).

2 Structure Recovery

22

min
�,𝛽,𝑧

1
2�

𝑇� − ⟨𝑋𝑇𝑦, 𝛽⟩

such that � = 𝑋𝛽,

−𝑀𝑈 𝑧𝑖 ≤ 𝛽𝑖 ≤ 𝑀𝑈−upper𝑧𝑖 , 𝑖 = 1, . . . , 𝑃
𝑧𝑖 ∈ {0, 1}, 𝑖 = 1, . . . , 𝑃
𝑝∑
𝑖=1

𝑧𝑖 ≤ 𝑘, 𝑖 = 1, . . . , 𝑃

−𝑀𝑈−𝑑 ≤ 𝛽𝑖 ≤ −𝑀𝑈−upper 𝑖 ∈ 𝒟
−𝑀𝑈−𝑛𝑑 ≤ 𝛽𝑖 ≤ 𝑀𝑈−𝑛𝑑 𝑖 ∉ 𝒟
−𝑀�

𝑈
≤ �𝑖 ≤ 𝑀�

𝑈
𝑖 = 1, . . . , 𝑃.

(2.14)

where 𝑋 = 𝐴(𝑆) ∈ ℝ𝑁×𝑃 , 𝑦 = −vec(𝐶) ∈ ℝ𝑁 , 𝛽 = vec(𝑀) ∈ ℝ𝑃 , and 𝑃 = 𝑁 = 𝑝2.

2.3 Model Selection

The size of the best subset, 𝑘, is a hyper-parameter that is used to determine the edge set 𝐸 of
the graph. In practice one may not know the true support of the graph. To choose an optimum
graph size, often a validation step needs to be employed using a grid with different values of 𝑘. By
systematically evaluating the performance of the model using various values of 𝑘, one can aim to
find the optimal graph from the space of recovered graphs. The choice and the number of values
for 𝑘 depends on the problem at hand. For a directed graph with 𝑝 nodes, the number of possible
directed edges including self-loops are 2 ·

(𝑝
2
)
+ 𝑝 = 𝑝2. So one can choose each value of 𝑘 to be

from the grid [0, 𝑝2]. However, with increasing graph size, this is computationally very expensive.
For a graph with 𝑝 = 10 and time limit of 180 seconds per 𝑘, this is already 5 hours of computation
time. For this reason, in this study, a fixed grid approach was followed. More details on the choice
of time limit for this study is elaborated in section 2.5.

In the fixed grid approach, 10 uniformly spaced values were taken from the interval [𝑝, 𝑝2]. The
lower limit on the choice of 𝑘 was set to neglect the case of a graph with no self loops. After this,
one then needs a systematic procedure to find the optimal graph from this space of recovered
graphs. Information criterion are very useful tools in this scenario. They provide an objective to
be minimized and help in choosing a suitable model. They are also shown to be asymptotically
equivalent to different variants of cross-validation [Sha97; Sto77]. Suppose the estimate for the
drift matrix, 𝑀, from the MIO solver is given by �̂�. Now, one can compute the resulting estimate
of the covariance matrixe, Σ̂, by solving eq. (1.7). The idea is to find out which one of the graphs
are likely to be the true graph. The Gaussian likelihood function can provide useful information
in such scenarios. However, this methodology does not impose any restrictions on the complexity
of the model. So with this method, one may get a very complex model. This implies overfitting
to the observed data. The true models, however, may lie in a lower dimensional space than the
selected model [Blu+87]. In order to tackle this, complexity of model is usually penalized. In this
study, three most well known information criterion were considered and will be briefly introduced
in the subsequent subsections.

2.3.1 Akaike’s Information Criterion (AIC)

Akaike [Aka73] proposed an extension of the maximum likelihood principle to choose models that
are closer to the true sparse models. Let 𝑋 ∈ ℝ𝑛×𝑝 be i.i.d observations, ℳ𝑖 , 𝑖 = 1, . . . , 𝑘 denote

2.3 Model Selection

23

the models (here, drift matrices) and Θℳ𝑖
, the parameters of model ℳ𝑖 . It measures the proximity

of the estimated models with the observed model. The proximity is usually defined in terms of
Kullback-Leibler Divergence. If the true density of the data is given by 𝑞(𝑋), the Kullback-Leibler
divergence between 𝑞(𝑋) and 𝑃(𝑋 |ℳ) is given by

𝐾𝐿(ℳ) =
∫

𝑞(𝑋) log
(

𝑞(𝑋)
𝑃(𝑋 |ℳ)

)
(2.15)

=

∫
𝑞(𝑋) log (𝑞(𝑋)𝑑𝑋)︸ ︷︷ ︸

Unknown, but constant

−
∫

𝑞(𝑋) log (𝑃(𝑋 |ℳ)𝑑𝑋)︸ ︷︷ ︸
Relative KL information

The relative KL information depends on the unknown true distribution, 𝑞(𝑋). But, Akaike shows
that, under appropriate conditions, the expected value of

𝐴𝐼𝐶 = −2 log (𝑃(𝑋 |ℳ𝑖)) + 2𝑃

approaches asymptotically to the expected value of
∫
𝑞(𝑋) log (𝑃(𝑋 |ℳ)𝑑𝑋). Here 𝑃 = dim(Θℳ).

Thus, under suitable settings, AIC provides an unbiased estimator of the expectation of the relative
KL information. So one can minimize the KL divergence between the estimated model and the
true model by minimizing AIC. For Gaussian graphical models, this could be written as

𝐴𝐼𝐶(Σ̂−1) = 𝑛(− log |Σ̂−1 | + tr(Σ̂−1𝑆)) + 2𝑝
Σ̂−1 (2.16)

where the first two terms arise from the Gaussian log-likelihood function, and

𝑝
Σ̂−1 = |{unique non- zeroes in Σ−1}|

2.3.2 Bayesian Information Criterion (BIC)

The BIC, introduced by Schwarz [Sch78], is an approximation to bayesian approach of model
selection by estimating posterior model probability [BK10]. It has a stronger penalty on the
number of parameters in the estimate of inverse covariance matrix in comparison to AIC, and thus
chooses sparser models. The criterion is derived by choosing an uninformative, flat prior on Θℳ
and estimating the posterior probability of model ℳ. Applying Bayes theorem to calculate this,

𝑃(ℳ|𝑋) ∝ 𝑃(𝑋 |ℳ)
𝑝(𝑋)

∝
∫
Θℳ

𝑒𝑛𝑙(�)𝜕�

≈ 𝑒 𝑙(�̂)
∫
Θℳ

𝑒
− 1

2 (�−�̂)𝑛
𝜕2
𝜕𝑘2

𝑙(�̂)(�−�̂)𝜕�

where 𝑙(�) is the likelihood for each observation, and 𝑙(�̂) = 𝑙(�̂)/𝑛. Ignoring terms independent
of 𝑛, we get

𝑃(ℳ|𝑋) ≈ 𝑒 𝐼(�̂)𝑛−𝑃/2

for large n.

2 Structure Recovery

24

By applying − log and ignoring constants,

𝐵𝐼𝐶(ℳ) = −2𝐼(�̂) + 𝑃 log(𝑛)

For a Gaussian graphical model,

𝐵𝐼𝐶(Σ̂−1) = 𝑛(− log |Σ̂−1 | + tr(Σ̂−1𝑆)) + 𝑝
Σ̂−1 log 𝑛 (2.17)

where the symbols take the usual definition.

2.3.3 Extended Bayesian Information Criterion (eBIC)

Since BIC assigns a uniform prior, it typically works well when the space of models under consid-
eration have uniform distribution of models of all size. Let ℳ(·, 𝑗) represents all the models with 𝑗

parameters, 𝑗 ∈ [𝑃]. BIC assigns equal probability to all of them irrespective of the number of mod-
elsℳ𝑖 having 𝑗 parameters. Suppose there exist a 𝑗′ ∈ [𝑃] for which |ℳ(·, 𝑗′) | >> |ℳ(·, 𝑗) |, then all the
models, ℳ(𝑖 , 𝑗′) , 𝑖 ∈ [|ℳ(·, 𝑗′) |] receive higher probabilities than the rest. J. Chen and Z. Chen [CC08]
showed that by choosing a different prior distribution, one can extend the BIC to work well in
such cases. This prior assigns equal probability for any model 𝑚 ∈ ℳ(·, 𝑗), 𝑃(𝑚 |ℳ(·, 𝑗)) = 1/|ℳ(·, 𝑗) |.
But for each ℳ(·, 𝑗) , 𝑗 ∈ [𝑃], the probability taken to be proportional to |ℳ(·, 𝑗) |� instead of |ℳ(·, 𝑗) |,
where � ∈ [0, 1]. Then the prior probability is given by

𝑃(𝑚) = 𝑃(𝑚 |ℳ(·, 𝑗))𝑃(ℳ(·, 𝑗)) ∝ |ℳ(·, 𝑗) |�−1 = |ℳ(·, 𝑗) |−𝛾 ,

where 𝛾 ∈ [0, 1]. In case of graphical models, this situation would be considered alike. As the
graph size increases, the number of models with same cardinality of edge set grows. Foygel and
Drton extended the above concept for Gaussian graphical models [FD10]

𝑒𝐵𝐼𝐶𝛾(Σ̂−1) = 𝑛(− log |Σ̂−1 | + tr(Σ̂−1𝑆)) + 𝑝
Σ̂−1 log 𝑛 + 4𝛾𝑝

Σ̂−1 log(𝑝) (2.18)

where the symbols take the usual definition, 𝑝 is the number of nodes, and 𝛾 is a tuning
parameter.𝛾 = 0 implies the ordinary BIC, whereas 𝛾 = 1 demands additional sparsity. 𝛾 = 0.5 is
a good trade-off.

The scores, 𝑠, obtained from these information criterion are evaluated from the results of each
value of subset size, 𝑘. Then the scores are converted to posterior model probability. Minimizing
the information criterion score is equivalent to maximizing the posterior model probability. The
model weights are defined as,

𝑊(ℳ) = 𝑒−𝑠/2

and the rescaled posterior model probability is given as

𝑝(ℳ𝑖 |𝑋) = 𝑊(ℳ𝑖)∑
𝑖𝑊(ℳ𝑖)

The 𝑘 corresponding to the graph with the maximum posterior model probability is then chosen
as the optimal hyperparameter.

2.4 Metrics

25

2.4 Metrics

The graph recovery problem was approached as a classification problem involving the off-diagonal
elements of matrix �̂�. Specifically, if 𝑀∗ denotes the true drift matrix, the elements from both
�̂� and 𝑀∗ were compared to determine the presence of edges, which corresponded to non-zero
entries in the off-diagonal. In order to measure the performance of selected model on unseen data,
six different metrics were evaluated on the test dataset. They are described below along with a
brief summary of how each one of them contributes towards the model performance evaluation.

1. Accuracy measures how well the binary classification correctly identifies or excludes an edge.
It is given by

Accuracy =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
Use of this metric can sometimes be quite misleading, especially in case of sparse graphs
where the total number of true edges are much smaller than the total number of non-edges.
A classifier can easily learn to produce a graph with no edges and still have good accuracy
even though the there are true edges in the problem. This is referred to as the class imbalance
and one might need other metrics to get a multifaceted viewpoint.

2. True Positive Rate (TPR or Recall) measures the classifier’s ability to detect true edges
among all edges actually present in the graph.

TPR or Recall = 𝑇𝑃

𝑇𝑃 + 𝐹𝑁

While this metric does give importance to the detection of true edges, it is completely blind
to the detection of false edges. It is important to note that the TPR is not defined when TP
= FN = 0. This scenario can occur if �̂� is a diagonal matrix. In such cases, it is common
practice to assign TPR the value of 1, indicating perfect detection of true positive edges, as
there are no false negatives to be considered [VH20b].

3. False Positive Rate (FPR) is the ratio of falsely detected edges to the total number of non-
edges.

FPR =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁

This metric, together with TPR, gives great insight on the classification performance.

4. F1 Score is the harmonic mean of precision and recall, both of which evaluates the perfor-
mance of the classifier in detecting true edges. While precision takes into account the false
positives, recall takes into account the the false negatives, thus giving a complete picture of
classification.

Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

F1 Score =
2 · Precision · Recall
Precision + Recall

Similar to TPR, the cases where TP = FP = 0 are handled by assigning Precision to the value
of 1. Similarly, when Precision and Recall are simultaneously zero, the F1 Score is assigned
a value of 1.

2 Structure Recovery

26

5. Area under the Receiver Operating Characteristics Curve (AUCROC). The ROC curve, in
general, is the plot between variation of TPR with FPR at different threshold probability of a
classifier that is used for labelling the class positive or negative. It conveys information on the
ability of a classifier in discriminating between positive and negative instances. However,
the MIO solver merely returns the entries of the drift matrix which do not correspond
to probabilities. So the absolute value of the diagonal entries of �̂� were converted to
probabilities using a sigmoid function, 𝜎(𝑥) = 1/(1+ exp(−|𝑥 |)). The sigmoid function maps
all the entries to a value between [0, 1]. The entry with the lowest non-zero value determines
the threshold probability of edge detection for that particular solution, as all the values
above it are detected as positive by the MIO solver. 10 values of uniformly spaced threshold
probabilities were taken from the interval [0, 1] and for each threshold, the entries of the
solution were labelled as positive or negative based on the selected threshold value. Then
the TPR and FPR were computed for each value of selected threshold and the area under the
resulting curve was computed. A perfect classifier would always detect all the true edges
irrespective of the chosen threshold resulting in an Area under the Curve (AUC) of 1. An AUC
value of 0.5 is also of interest. This means that, the discriminating potential (differentiating
between TP and TN) of classifier is no better than a random guessing classifier until one has
enough samples.

6. Area under the Precision-Recall Curve (AUCPR). As mentioned before, there is always the
problem of class imbalance when dealing with sparse graphs. A large increase in FP will only
result in a small increase in FPR due to the presence of large number of TN. So, the ROC curve
will always be over-optimistic when compared across all threshold values. In such cases, PR
curves can provide a different viewpoint. It conveys information on the ability of a classifier
in correctly detecting true edges. In general, by plotting Precision and Recall values, one can
view the classifier’s performance without the influence of large number negative class in a
dataset. Here, the PR curve is constructed following a similar procedure as ROC curve. A
perfect classifier should be precise, meaning it should detect, if not all, only the true edges
at different threshold values resulting in an Area under the Curve of 1. An AUC value of 0.5
means that that the classifier is no better than a random guessing classifier in choosing a TP.

To study the graph recovery performance across different hyper-parameter values, the following
metrics were considered:

• The maximum accuracy of edge recovery along a path of hyperparameter values.

• The maximum F1 score along the hyper-parameter path.

• The ROC curve along the hyper-parameter path can be useful in determining the diagnostic
capability of the graph recovery methods. Here, the variation in TPR with FPR as one varies
the hyper-parameter value, 𝑘, is plotted. For each value of 𝑘, the TPR and FPR values were
plotted. Then the area under this curve was computed using trapezoidal integration.

• The PR curve along the hyperparameter path, where the variation in Precision with Recall
as one varies the hyper-parameter value, 𝑘, is plotted. For each value of 𝑘, the Precision and
Recall values were computed. Then the area under the curve resulting from these values
was estimated using trapezoidal integration.

It may be possible that one might have insufficient data points to compute the area under both the
performance curves. In cases where the FPR axis in the ROC curve and the Recall axis in the PR
curve do not span the full range from 0 to 1, the curves were extrapolated by adding boundary
points. The True Positive Rate (TPR) and Precision values at these points were set to the maximum
values observed among the existing data points. If there were fewer than 5 data points between
0 and 1 on the FPR axis in the ROC curve or the Recall axis in the PR curve, nearest neighbour

2.5 Simulation Setup

27

interpolation was performed. This involved adding additional points between the existing data
points to ensure a more finely grained representation of the curve.

2.5 Simulation Setup

The MIO was setup in Gurobi [Gur23b] and it was run using its R interface. The formulation was
taken and adapted from the works of Tibshirani et al. [HTT17a; HTT17b] for this application. For
more details on implementation, see Radhakrishnan [Rad23]. Since performance of lasso on such
problems has been investigated before [DDK22; VH20a], it was considered as a suitable benchmark
for comparing the MIO results. The problem was solved using lasso following a similar strategy
as proposed in [VH20a] and also as described in Algorithm 5.

The MIO problems were initialized using the four discrete first order algorithms discussed in
section 2.1 and their results were compared to the solution obtained from lasso and to each other.
To facilitate this comparison, large sets of datasets were generated from custom-generated graphs of
varying sizes. These synthetic datasets allowed for a comprehensive evaluation of the performance
of both methods and different initialization strategies. A fixed grid containing 10 uniformly spaced
values within the interval [𝑝, 𝑝2] was considered for 𝑘 for model selection.

It was observed that standardizing the columns of the matrix 𝐴(Σ) to have zero mean and unit
variance significantly improved the structure recovering performance, especially at large sample
sizes. For this reason, 𝐴(Σ) was standardized for all the problems and methods adopted in this
study. The entries of the recovered drift matrices were then re-scaled back using the original
variances of the columns of 𝐴(Σ).

Lastly, the insights gained from this study were applied to a real-world dataset, enabling the
assessment of the practical applicability of the findings.

2.5.1 Synthetic Dataset

Graphs having 𝑝 = 5, 10, 15, 20 and 25 nodes were considered for this study. For each 𝑝, 100
signals (drift matrices, 𝑀∗, and volatility matrices, 𝐶∗) were generated. The entries of the drift
matrices and the volatility matrices were generated following the procedure described by Varando
and Hansen [VH20a]. All matrices were thus stable. The minimum value that the entries of the
volatility matrices can take was set be 0.2. This was done to avoid estimation of very small entries
in the recovered drift matrices, �̂�. For each signal, 𝑀∗

𝑖
, the corresponding population covariance

matrix, Σ∗
𝑖
, was computed by solving equation (1.7) for 𝑖 = 1, . . . , 100. Then samples of sizes

𝑛 = 100, 200, 500, 1000, 5000, 104 , 105 ,∞ were drawn from 𝑁(0,Σ∗
𝑖
) from each graph, 𝑖 = 1, . . . , 100.

Each of these set of samples were randomly split so that 80 % of it was assigned as training data
and the rest as test data. The sampled data for each sample size, 𝑗, was used to construct the
sample covariance matrices, 𝑆(𝑖 , 𝑗), for both training and test data. When 𝑗 = ∞, 𝑆(𝑖 ,∞) := Σ∗

𝑖
. The

goal is to try to recover 𝑀∗ from these sample covariance matrices, 𝑆(𝑖 , 𝑗), 𝑗 ∈ 𝑛.

In addition to comparing different initialization strategies, a parametric study was conducted
to compare the recovery of the graphs at different sparsity levels. For this purpose, the above
procedure was repeated twice to generate two sets of signals. The first set had an edge probability
of 5% (𝑑 = 0.05𝑝), while the second set had an edge probability of 25 % (0.25𝑝).

2 Structure Recovery

28

2.5.2 Real Dataset

In this study, isoprenoid biosynthesis in Arabidopsis thaliana is considered as an Ornstein-Uhlenbeck
process. Isoprenoids are important components of membranes, as photosynthetic pigments and as
hormones in plants. They are synthesized through condensation of the five-carbon intermediates:
isopentyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). In higher plants, there are
two distinct pathways for the formation of IPP and DMAPP: Cytosolic pathway (mevalonate or
MVA pathway) and plastidial (non-mevalonate or MEP) pathway.

To gain more insight into the interaction between both the pathways, Wille et al. [Wil+04] mon-
itored gene-expression patterns under different experimental conditions using 118 GeneChip
(Affymetrix) microarrays. The dataset comprises measurements of 39 genes, 15 of which were
assigned to the cytosolic pathway, 19 to the plastidal pathway and 5 encode proteins located in
mitochondrion. This dataset is made easily accessible by Drton et al. [Drt+23]. 80 % of the data
was considered for training and the rest was used to make predictions.

There is no ground truth to the actual cross talks between the pathways. However, Wille et
al. [Wil+04] constructed a gene regulatory network by applying a modified graphical Gaussian
modeling (GGM). The results from this approach can be considered as a benchmark for comparison
(relative ground truth). Furthermore, one does not have prior information on the true Volatility
matrix, C. In this study, it was assumed to be positive definite and known. So it was chosen to be
the identity. The potential implications of this choice on the results will be discussed.

2.5.3 Gurobi Settings

Bertismas et al. [BKM16] terminated the MIO model training either when optimality gap of 1 %
was reached or a time limit of 15 minutes was reached. However, as mentioned before, the time
limit is not practically feasible with increasing graph size. Hastie et. al [HTT17b] considered a time
limit of 180 seconds for this exact reason of scalability issues. In this study, the same approach was
followed, utilizing the 180-second time limit or reaching an optimality gap of 1 %. The simulations
performed in this study are almost as extensive as the ones considered in Hastie et al. [HTT17b].
They considered 5 settings, each setting having 4 different coefficient variants, each data generated
from these coefficients were using 10 different signal to noise ratios and the results were averaged
over 10 runs for every case. In addition, they performed a cross-validation for different values
of 𝑘: 10 values for the lowest setting and 50 values for the rest. This results in a total of 1,00,000
problems. In this study, there are 100 distinct signals for 5 different graph sizes, 8 sample sizes
used for training using 10 different values of 𝑘. In addition to this, parametric study is done
on 2 values of 𝑑. This results in a total of 80,000 problems. So maintaining a time limit of 180
seconds seemed like a reasonable choice. In general, it was noted, just like in [HTT17b], majority
of the problems closed the optimality gap before the time limit. Though it can differ based on
the considered problem, this time limit felt insufficient to close the optimality gap for graph sizes
greater than 15, with low to medium values of 𝑘 in general. For this reason, sub-optimal solutions
having optimality gap of less than or equal to 5 % were accepted for further evaluation.

The gram matrix Γ(Σ) is positive semidefinite [Det+22]. However Gurobi can show that this
condition is not fulfilled by a small margin in certain cases. This could be because of Gurobi’s
presolve phase, which can potentially convert a convex problem to non-convex [Tow22]. In order to
handle this, Gurobi’s inbuilt approaches to solve non-convex objective functions were used [bT20;
Gur23b]. This, in particular, includes performing bilinear transformation of the non-convex parts
and employing spatial branching technique [QG95].

29

3 Results and Discussion

3.1 Numerical simulations on Synthetic Dataset

Throughout this discussion, for convenience, best-subset selection using MIQP is denoted as BS
and its initialization with Algorithm 2 will be referred to as BSreg, with Algorithm 3 as BS1edge,
with Algorithm 4 as BSglasso and with Algorithm 5 as BSlasso.

3.1.1 Results: Performance metrics across different hyper-parameter values

The performance measures across different hyperparameters offer great insights on the structure
recovering potential of different methods. Figures 3.1 to 3.5 show the variation of these metrics
with graph size at different sample sizes and at edge probability of 5 % (𝑑 = 0.05𝑝). One can note
that it is hard to infer much from the accuracy plots apart from the fact that all the methods are quite
good and robust in terms of accuracy. However, as mentioned earlier, the class imbalance problem
becomes very prominent with sparse graphs and this metric may not reveal all information. For
𝑛 = 100, both lasso and BS along with its all four initialization strategies show similar performance
as seen in Figure 3.1. The performance is good, in general, for smaller graphs with 𝑝 = 5.
However, it quickly degrades with increasing signal size. AUC PR curve describes how lasso
starts performing slightly worse than BS beyond 𝑝 = 15 in terms of precision and recall trade-off.
This poor performance is largely attributed to the fact that lasso selects more FPs with decreasing
regularization parameter, �. BS seems to be much more robust in performance for 𝑝 ≥ 15.
However, this metric value is still below 0.5 beyond 𝑝 = 10 for all the methods. This means that
all the approaches are worse than a random guessing classifier in terms of detecting true edges.
The performance of BSlasso seems to be not affected by poor lasso performance in this region as it
eliminates many FPs generated by lasso initialization in the attempt of getting a 𝑘-sparse solution.
The AUC ROC values indicate that all the methods are as good as a random guessing classifier in
differentiating between the true edges and non-edges beyond 𝑝 = 10.

As the sample size 𝑛 increases, lasso clearly seems to outperform BS in terms of precision across
different values of � (see for e.g., Figure 3.3). There is still a gradual drop in performance as
the graph size increases. BS actually shows a steep drop relative to lasso, but beyond 𝑝 = 10
the drop is relatively steadier in comparison to that of lasso. The lower precision-recall trade-off
across different values of 𝑘 could be due to the fact that BS uses only 10 values of 𝑘 between
[𝑝, 𝑝2]. This becomes a very coarse choice as the graph size increases and as a result many
FP are selected. But somehow BSlasso seems to select large proportion of TP among all of the
positives as 𝑘 is varied (see AUC PR plot for e.g., Figure 3.3). Furthermore, one can infer from
the AUC ROC graphs that the discriminating power of lasso and BSlasso across different values of
hyper-parameters quickly decreases with increasing graph size (see Figures 3.2 to 3.5). For BSlasso,
this behaviour is attributed to the fact that lasso itself has low AUC ROC for larger graphs and
thus provides poor initializations to BS. The other initializations strategies lead to quite robust
performance, especially when 𝑛 ≥ 10, 000. Furthermore, the AUC PR values are still below 0.5 for
most cases. Only when 𝑛 ≥ 10, 000, lasso and BSlasso crosses the value of 0.5 for 𝑝 = 10. Though
discriminating power of all the methods improve for large sample sizes, none of them have a good
precision-recall trade-off for large graph sizes (𝑝 ≥ 15) across different values of hyper-parameters.
Among the variants of marginal regression initialization strategies, BS1edge clearly performs the

3 Results and Discussion

30

best in correctly differentiating between true edges and non-edges, and BSreg performs the worst.
However, in terms of precision they perform equally poor.

When the population covariance matrix,Σ∗, is used (𝑛 = ∞), the trend remains the same. However,
BSlasso dominates the AUC PR plot. Furthermore, it is the only BS method that consistently achieves
AUC PR and AUC ROC values above 0.5 across all graph size.

Figures 3.6 to 3.10 show the variation of these metrics with signal size at different sample sizes and
at edge probability of 25 % (𝑑 = 0.25𝑝). The situation is generally similar to that of 𝑑 = 0.05𝑝, but is
more magnified. Some key highlights are: Lasso’s performance in terms of precision, as observed
in AUC PR graphs, is worse than that of BS for graphs with 𝑝 ≥ 10, and it outperforms the others
completely in this aspect only when sample size exceeds 𝑛 = 1, 00, 000. This is slightly worse than
𝑑 = 0.05𝑝 case, where lasso was performing poor for graphs with 𝑝 ≥ 15 and outperformed all the
methods from 𝑛 = 10, 000. Like in 𝑑 = 0.05𝑝 case, BSlasso does not seem to be affected by this poor
performance of lasso. The accuracy of all the methods have dropped by almost 10 % as a result
of making the graphs less sparse. The AUC PR values are greater than 0.5 for 𝑝 = 5 only when
sample size exceeds 𝑛 = 1000, while it was possible for all sample sizes when 𝑑 = 0.05𝑝. While
this metric exceeded 0.5 mark for 𝑝 = 10 when 𝑛 ≥ 10, 000 at 𝑑 = 0.05𝑝 using lasso and BSlasso,
the same was not possible at 𝑑 = 0.25𝑝 until the sample size crossed 𝑛 = 1, 00, 000. So the general
observation is that the recovery of the graphs became harder when sparsity level was reduced.

For low sample size (𝑛 ≤ 1000), the performance of BS remains quite similar for all the initialization
strategies, except BSlasso. The TPR-FPR trade-off estimated across different hyperparameters are
relatively poor in comparison to 𝑑 = 0.05𝑝 case. The metrics are all close to 0.5 except for graphs
with 𝑝 = 5, indicating how poorly all of the methods distinguish a true edge from a non-edge.
The AUC PR values are below 0.5 across all signal sizes in general, indicating poor precision along
different values of hyperparameters.

As the sample size increases, the metrics improved. Again, lasso and BSlasso started to outperform
all the other methods. Just like in 𝑑 = 0.05𝑝 case, lasso and BSlasso are dominant in the AUC ROC
plots for 𝑝 ≤ 10, but quickly degrade in performance beyond that. All the other BS strategies seem
again robust in this aspect and they have a metric value above 0.5 across different signal sizes.
This, in particular, is noticeable when sample sizes exceed 𝑛 = 10, 000 (see Figure 3.8). Among
the variants of marginal regression initialization strategies, BS1edge seems to superior performer,
followed by BSglasso and then BSreg is the poorest performer. In the AUC PR plots, however, all
these methods seem to be performing similar in terms of precision across different values of 𝑘. This
is again similar to 𝑑 = 0.05𝑝 case. Lasso, BSlasso and BS1edge are the only three methods who cross
the 0.5 mark in the AUC PR plots for signals of size 𝑝 = 10 when 𝑛 = 1, 00, 000 (see Figure 3.9).

When the population covariance matrix, Σ∗, is used (𝑛 = ∞), lasso and BSlasso seem to be the
most dominant in terms of precision and discrimination power. BS1edge remains the second most
powerful method in this aspect. Compared to 𝑑 = 0.05𝑝 case, all the methods except BSreg have
relatively good precision-recall trade-off across different hyperparameter values for all graph sizes
(see AUC PR in Figure 3.10). Furthermore, the F1-Score shows that BS based on marginal regression
initialization strategies are slightly more robust in terms of precision and recall across different
signal sizes.

In order to view the results under different perspective, the variation of same performance metrics
with sample sizes at different graph size and at 𝑑 = 0.05𝑝 were plotted in Figures 3.11 to 3.15. Here
one can quite clearly see that, in general, lasso seems to be the most superior method out of all,
followed by BSlasso, BS1edge, BSglasso and BSreg.

AUC values are greater than 0.5 for small graphs with 𝑝 = 5 across all sample sizes and all methods
show good potential. All the projected gradient descent initialization based methods perform

3.1 Numerical simulations on Synthetic Dataset

31

similarly in terms of precision and maximum F1-Scores across different values of 𝑘. However, the
AUC ROC plot clearly shows the dominance of BS1edge and BSglasso (see Figure 3.11).

As graph size increases, the metric values become poorer in general. AUC ROC plots are typically
dominated by lasso, followed by BSlasso, BS1edge and BSglasso. The AUC ROC values tend towards
0.5 and do not increase until one has enough samples, which is 1000 or more for graphs with
𝑝 = 25 (see Figure 3.15). For AUC PR values to be above 0.5, one needs more than 1,00,000 samples
(for 𝑝 = 25). Even then, only lasso and BSlasso are able to achieve relatively good precision across
different hyper-parameter values (see for e.g., Figure 3.12). With good precision across different
𝑘, BSlasso still has an F1-Score similar to other BS strategies. This could indicate that recall rate is
poor for BSlasso in general. When 𝑝 ≥ 20, all the methods tend to perform similarly. But both,
BSlasso and lasso, perform poorer than other projected gradient descent BS methods when there
are not enough samples (see for e.g., Figure 3.14). BS1edge also has the potential to perform good.
However, it seems to be needing more samples (≥ 1, 00, 000).

For sake of completeness, similar results are shown for 𝑑 = 0.25𝑝 case (see Figures 3.16 to 3.20).
As noted before, one can now clearly see that AUC PR value is not greater than 0.5 across all
sample sizes when 𝑝 = 5 unlike 𝑑 = 0.05𝑝 case. It only crosses the mark when 𝑛 = 1000 for lasso
and BSlasso, and when 𝑛 = 5000 for all the other BS strategies. Both, lasso and BSlasso, seem to
dominate all the other methods in AUC plots. However, all of the methods have similar F1-score
(see Figure 3.11).

As graph size increases, the AUC ROC values do not show any improvement for small sample
sizes just like in 𝑑 = 0.05𝑝 case (but worse). For 𝑝 = 10, the average AUC ROC value does not cross
0.5 mark until one has 𝑛 = 1, 00, 000 samples for 𝑝 = 25 (see Figure 3.20). AUC PR values were in
general lower than 0.5. Even with enough samples, only lasso was able to cross the 0.5 mark for
sample size 𝑛 ≥ 1, 00, 000. The other methods only achieved a good AUC PR metric when the true
population covariance matrix was used.

3 Results and Discussion

32

3.1.2 Plots and Summary: Performance metrics across different hyper-parameter
values

Since the study was very extensive, the results are summarized as follows:

• Lasso gives better results than BS in general. However, lasso’s precision across different
values of tuning parameters as graph size increases is worse than BS when sample size is
low. BSlasso does not seem to be affected by this. In fact, at this region, BSlasso performs better
than lasso and other BS strategies in terms of having a good precision-recall trade-off.

• projected gradient descent BS approaches have similar performance in terms of precision-
recall trade-off across different values of 𝑘. However, TPR-FPR trade-offs are clearly better
for BS1edge among all the three methods. Lasso and BSlasso have poorer TPR-FPR trade-off
for large signal sizes in comparison.

• In most cases, the values of AUC PR barely make up to 0.5. This implies how poor the
methods are in comparison to a random guessing classifier in trying to detect true edges.
For low signal sizes (𝑝 = 5), all the methods generally perform well. However for medium
and large signals (𝑝 ≥ 10), it becomes harder to identify true edges without having high FP’s
(which results in lower precision). One typically needs more than 𝑛 = 1, 00, 000 samples
to get an average AUC PR value above 0.5. The methods are not even able to distinguish
between a TP and TN - the discriminating potential of all the methods quickly degrades with
increasing signal size and one often needs more samples (typically greater than 𝑛 = 1000) to
get an average AUC ROC value greater than 0.5.

• The situation is worse when the sparsity level of the graph is reduced. It needs more samples
to achieve similar performance like in 𝑑 = 0.05𝑝 case. Overall accuracy drops for all the
signal sizes for a given sample size.

• As graph size increases, the performance of all methods degrades. In general, projected
gradient descent BS approaches are very robust in terms of change in performance across
different signal size. Furthermore, their performance does not decay as much as the lasso
and BSlasso. This is certainly one of the biggest advantages of BS.

• Lastly, it is important to consider that the poor performance of BS in terms of precision can
be attributed to the fact that only 10 values of 𝑘 were used, which is quite coarse as graph
size increases. Due to this, it can select many FPs in this process. Furthermore, the time-limit
was set to 180 seconds due to practical restrictions, which may not have sufficient to close
the optimality gap. This, in particular, is true for large signal sizes and low sample size. Due
to this sub-optimal solutions having 5 % optimality gap were accepted. All of this plays an
important role in the performance of BS.

In the next section, different model selection criterion discussed in section 2.3 are applied to the
solution obtained through these methods.In particular, the optimum parameters selected (𝑘 or �)
and used to recover the drift matrix from the test data set. Only results from a total sample size of
𝑛 = 10000 are shown. All the other results will be attached as additional results in the Appendix
A.

3.1 Numerical simulations on Synthetic Dataset

33

AUC ROC AUC PR

Max. Acc Max. F1 Score

5 10 15 20 25 5 10 15 20 25

0.25

0.50

0.75

1.00

0.25

0.50

0.75

1.00

Signal Size

m
et

ric
s

Method

Lasso

MIP_reg

MIP_1edge

MIP_glasso

MIP_lasso

Performance measures for n = 100

Figure 3.1 Variation of performance metrics with graph size for a total sample size of 100 (training data
size of 80). The metrics were computed along the hyper-parameter path and are averaged over 100

different signals with edge probability of 5 %.

3 Results and Discussion

34

AUC ROC AUC PR

Max. Acc Max. F1 Score

5 10 15 20 25 5 10 15 20 25

0.25

0.50

0.75

1.00

0.25

0.50

0.75

1.00

Signal Size

m
et

ric
s

Method

Lasso

MIP_reg

MIP_1edge

MIP_glasso

MIP_lasso

Performance measures for n = 1000

Figure 3.2 Variation of performance metrics with graph size for a total sample size of 1000 (training data
size of 800). The metrics were computed along the hyper-parameter path and are averaged over 100

different signals with edge probability of 5 %.

3.1 Numerical simulations on Synthetic Dataset

35

AUC ROC AUC PR

Max. Acc Max. F1 Score

5 10 15 20 25 5 10 15 20 25

0.25

0.50

0.75

1.00

0.25

0.50

0.75

1.00

Signal Size

m
et

ric
s

Method

Lasso

MIP_reg

MIP_1edge

MIP_glasso

MIP_lasso

Performance measures for n = 10000

Figure 3.3 Variation of performance metrics with graph size for a total sample size of 10000 (training data
size of 8000). The metrics were computed along the hyper-parameter path and are averaged over 100

different signals with edge probability of 5 %.

3 Results and Discussion

36

AUC ROC AUC PR

Max. Acc Max. F1 Score

5 10 15 20 25 5 10 15 20 25

0.2

0.4

0.6

0.8

1.0

0.2

0.4

0.6

0.8

1.0

Signal Size

m
et

ric
s

Method

Lasso

MIP_reg

MIP_1edge

MIP_glasso

MIP_lasso

Performance measures for n = 1e+05

Figure 3.4 Variation of performance metrics with graph size for a total sample size of 100,000 (training data
size of 80,000). The metrics were computed along the hyper-parameter path and are averaged over 100

different signals with edge probability of 5 %.

3.1 Numerical simulations on Synthetic Dataset

37

AUC ROC AUC PR

Max. Acc Max. F1 Score

5 10 15 20 25 5 10 15 20 25

0.4

0.6

0.8

1.0

0.4

0.6

0.8

1.0

Signal Size

m
et

ric
s

Method

Lasso

MIP_reg

MIP_1edge

MIP_glasso

MIP_lasso

Performance measures for n = Inf

Figure 3.5 Variation of performance metrics with graph size directly using the population covariance
matrix. The metrics were computed along the hyper-parameter path and are averaged over 100 different

signals with edge probability of 5 %.

3 Results and Discussion

38

AUC ROC AUC PR

Max. Acc Max. F1 Score

5 10 15 20 25 5 10 15 20 25

0.4

0.6

0.8

0.4

0.6

0.8

Signal Size

m
et

ric
s

Method

Lasso

MIP_reg

MIP_1edge

MIP_glasso

MIP_lasso

Performance measures for n = 100

Figure 3.6 Variation of performance metrics with graph size for a total sample size of 100 (training data
size of 80). The metrics were computed along the hyper-parameter path and are averaged over 100

different signals with edge probability of 25 %.

3.1 Numerical simulations on Synthetic Dataset

39

AUC ROC AUC PR

Max. Acc Max. F1 Score

5 10 15 20 25 5 10 15 20 25

0.4

0.6

0.8

0.4

0.6

0.8

Signal Size

m
et

ric
s

Method

Lasso

MIP_reg

MIP_1edge

MIP_glasso

MIP_lasso

Performance measures for n = 1000

Figure 3.7 Variation of performance metrics with graph size for a total sample size of 1000 (training data
size of 800). The metrics were computed along the hyper-parameter path and are averaged over 100

different signals with edge probability of 25 %.

3 Results and Discussion

40

AUC ROC AUC PR

Max. Acc Max. F1 Score

5 10 15 20 25 5 10 15 20 25

0.4

0.6

0.8

0.4

0.6

0.8

Signal Size

m
et

ric
s

Method

Lasso

MIP_reg

MIP_1edge

MIP_glasso

MIP_lasso

Performance measures for n = 10000

Figure 3.8 Variation of performance metrics with graph size for a total sample size of 10000 (training data
size of 8000). The metrics were computed along the hyper-parameter path and are averaged over 100

different signals with edge probability of 25 %.

3.1 Numerical simulations on Synthetic Dataset

41

AUC ROC AUC PR

Max. Acc Max. F1 Score

5 10 15 20 25 5 10 15 20 25

0.4

0.5

0.6

0.7

0.8

0.4

0.5

0.6

0.7

0.8

Signal Size

m
et

ric
s

Method

Lasso

MIP_reg

MIP_1edge

MIP_glasso

MIP_lasso

Performance measures for n = 1e+05

Figure 3.9 Variation of performance metrics with graph size for a total sample size of 100,000 (training data
size of 80,000). The metrics were computed along the hyper-parameter path and are averaged over 100

different signals with edge probability of 25 %.

3 Results and Discussion

42

AUC ROC AUC PR

Max. Acc Max. F1 Score

5 10 15 20 25 5 10 15 20 25

0.5

0.6

0.7

0.8

0.5

0.6

0.7

0.8

Signal Size

m
et

ric
s

Method

Lasso

MIP_reg

MIP_1edge

MIP_glasso

MIP_lasso

Performance measures for n = Inf

Figure 3.10 Variation of performance metrics with graph size directly using the population covariance
matrix. The metrics were computed along the hyper-parameter path and are averaged over 100 different

signals with edge probability of 25 %.

3.1 Numerical simulations on Synthetic Dataset

43

AUC ROC AUC PR

Max. Acc Max. F1 Score

100 200 500 1000 5000 10000 1e+05 Inf 100 200 500 1000 5000 10000 1e+05 Inf

0.6

0.7

0.8

0.9

0.6

0.7

0.8

0.9

Sample size

m
et

ric
s

Method

Lasso

MIP_reg

MIP_1edge

MIP_glasso

MIP_lasso

Performance measures for p = 5

Figure 3.11 Variation of performance metrics with the total sample size (80 % training and 20 % test). The
metrics were computed using the results from training along the hyper-parameter path and are averaged

over 100 different signals with edge probability of 5 %.

3 Results and Discussion

44

AUC ROC AUC PR

Max. Acc Max. F1 Score

100 200 500 1000 5000 10000 1e+05 Inf 100 200 500 1000 5000 10000 1e+05 Inf

0.25

0.50

0.75

1.00

0.25

0.50

0.75

1.00

Sample size

m
et

ric
s

Method

Lasso

MIP_reg

MIP_1edge

MIP_glasso

MIP_lasso

Performance measures for p = 10

Figure 3.12 Variation of performance metrics with the total sample size (80 % training and 20 % test). The
metrics were computed using the results from training along the hyper-parameter path and are averaged

over 100 different signals with edge probability of 5 %.

3.1 Numerical simulations on Synthetic Dataset

45

AUC ROC AUC PR

Max. Acc Max. F1 Score

100 200 500 1000 5000 10000 1e+05 Inf 100 200 500 1000 5000 10000 1e+05 Inf

0.25

0.50

0.75

1.00

0.25

0.50

0.75

1.00

Sample size

m
et

ric
s

Method

Lasso

MIP_reg

MIP_1edge

MIP_glasso

MIP_lasso

Performance measures for p = 15

Figure 3.13 Variation of performance metrics with the total sample size (80 % training and 20 % test). The
metrics were computed using the results from training along the hyper-parameter path and are averaged

over 100 different signals with edge probability of 5 %.

3 Results and Discussion

46

AUC ROC AUC PR

Max. Acc Max. F1 Score

100 200 500 1000 5000 10000 1e+05 Inf 100 200 500 1000 5000 10000 1e+05 Inf

0.25

0.50

0.75

0.25

0.50

0.75

Sample size

m
et

ric
s

Method

Lasso

MIP_reg

MIP_1edge

MIP_glasso

MIP_lasso

Performance measures for p = 20

Figure 3.14 Variation of performance metrics with the total sample size (80 % training and 20 % test). The
metrics were computed using the results from training along the hyper-parameter path and are averaged

over 100 different signals with edge probability of 5 %.

3.1 Numerical simulations on Synthetic Dataset

47

AUC ROC AUC PR

Max. Acc Max. F1 Score

100 200 500 1000 5000 10000 1e+05 Inf 100 200 500 1000 5000 10000 1e+05 Inf

0.25

0.50

0.75

0.25

0.50

0.75

Sample size

m
et

ric
s

Method

Lasso

MIP_reg

MIP_1edge

MIP_glasso

MIP_lasso

Performance measures for p = 25

Figure 3.15 Variation of performance metrics with the total sample size (80 % training and 20 % test). The
metrics were computed using the results from training along the hyper-parameter path and are averaged

over 100 different signals with edge probability of 5 %.

3 Results and Discussion

48

AUC ROC AUC PR

Max. Acc Max. F1 Score

100 200 500 1000 5000 10000 1e+05 Inf 100 200 500 1000 5000 10000 1e+05 Inf

0.4

0.5

0.6

0.7

0.8

0.4

0.5

0.6

0.7

0.8

Sample size

m
et

ric
s

Method

Lasso

MIP_reg

MIP_1edge

MIP_glasso

MIP_lasso

Performance measures for p = 5

Figure 3.16 Variation of performance metrics with the total sample size (80 % training and 20 % test). The
metrics were computed using the results from training along the hyper-parameter path and are averaged

over 100 different signals with edge probability of 25 %.

3.1 Numerical simulations on Synthetic Dataset

49

AUC ROC AUC PR

Max. Acc Max. F1 Score

100 200 500 1000 5000 10000 1e+05 Inf 100 200 500 1000 5000 10000 1e+05 Inf

0.4

0.6

0.8

0.4

0.6

0.8

Sample size

m
et

ric
s

Method

Lasso

MIP_reg

MIP_1edge

MIP_glasso

MIP_lasso

Performance measures for p = 10

Figure 3.17 Variation of performance metrics with the total sample size (80 % training and 20 % test). The
metrics were computed using the results from training along the hyper-parameter path and are averaged

over 100 different signals with edge probability of 25 %.

3 Results and Discussion

50

AUC ROC AUC PR

Max. Acc Max. F1 Score

100 200 500 1000 5000 10000 1e+05 Inf 100 200 500 1000 5000 10000 1e+05 Inf

0.4

0.6

0.8

0.4

0.6

0.8

Sample size

m
et

ric
s

Method

Lasso

MIP_reg

MIP_1edge

MIP_glasso

MIP_lasso

Performance measures for p = 15

Figure 3.18 Variation of performance metrics with the total sample size (80 % training and 20 % test). The
metrics were computed using the results from training along the hyper-parameter path and are averaged

over 100 different signals with edge probability of 25 %.

3.1 Numerical simulations on Synthetic Dataset

51

AUC ROC AUC PR

Max. Acc Max. F1 Score

100 200 500 1000 5000 10000 1e+05 Inf 100 200 500 1000 5000 10000 1e+05 Inf

0.4

0.6

0.8

0.4

0.6

0.8

Sample size

m
et

ric
s

Method

Lasso

MIP_reg

MIP_1edge

MIP_glasso

MIP_lasso

Performance measures for p = 20

Figure 3.19 Variation of performance metrics with the total sample size (80 % training and 20 % test). The
metrics were computed using the results from training along the hyper-parameter path and are averaged

over 100 different signals with edge probability of 25 %.

3 Results and Discussion

52

AUC ROC AUC PR

Max. Acc Max. F1 Score

100 200 500 1000 5000 10000 1e+05 Inf 100 200 500 1000 5000 10000 1e+05 Inf

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

Sample size

m
et

ric
s

Method

Lasso

MIP_reg

MIP_1edge

MIP_glasso

MIP_lasso

Performance measures for p = 25

Figure 3.20 Variation of performance metrics with the total sample size (80 % training and 20 % test). The
metrics were computed using the results from training along the hyper-parameter path and are averaged

over 100 different signals with edge probability of 25 %.

3.1 Numerical simulations on Synthetic Dataset

53

3.1.3 Results: Model selection and prediction

Figures 3.21 to 3.23 show the performance metrics on test data after model selection using AIC,
BIC, and eBIC respectively at a sample size of 𝑛 = 10, 000 and at edge probability of 5 %.

For 𝑑 = 0.05𝑝, parameters selected by AIC for lasso and BSlasso give poor accuracy than other
methods. This behaviour is attributed to an increase in number of FPs for small graph size
(𝑝 ≤ 10). The projected gradient descent initialization based BS approaches produce relatively less
FPs in this region. But due to higher TPR of lasso and BSlasso, all the methods are relatively similar
in terms of F1-Score and AUC PR.

As the graph size increases, all the metrics decrease. Lasso dominates all the methods in terms
of F1-Score due to decrease in number of FPs (and thus, relatively higher precision and recall).
AUC PR values are less than or equal to 0.5 for all the methods when 𝑝 ≥ 10. AUC ROC values
too drop to 0.5 beyond 𝑝 ≥ 20. This highlights the difficulty in recovering signals beyond 𝑝 ≥ 20.
Lasso is slightly more superior in discriminating between true edges and non-edges as seen in the
AUC ROC plot. All the projected gradient descent initialization based BS methods perform alike.
BSreg is the only BS method that has a TPR value of greater than zero for 𝑝 ≥ 20. It is also slightly
superior than other projected gradient descent initialization based BS methods in the TPR plot in
general. However, both of this comes at the cost of having many FPs (see Figure 3.21). But FPR
rate of BSreg is very robust in comparison to others across different signal sizes.

All the methods give similar accuracy with BIC and eBIC (see Figures 3.22 and 3.23). In fact, The
results from BIC and eBIC are very similar. Lasso clearly dominates all the other methods in terms
of precision and recall. The TPR and FPR values are lower than in AIC. This is expected, as the AIC
has a weaker penalty on the sparsity compared to BIC and eBIC. However, this leads to no edge
detection beyond 𝑝 ≥ 20. The AUC PR plots show similar performance for all the models selected
by BIC and eBIC. Lasso’s performance in the AUC ROC plot seems to be similar to that when AIC
was used. But all of the methods except lasso degrade in performance quickly than when AIC was
used. Lasso has relatively slower decay rate due to its good TPR-FPR trade-off. Though BS drops
to an AUC ROC value of 0.5 at 𝑝 = 10, the same drop happens with lasso only beyond 𝑝 = 20.

When 𝑑 = 0.25𝑝, the results are similar but more prominent with AIC. Lasso and BSlasso perform
very poor in terms of accuracy (and precision) due to high number of FPs for signals with 𝑝 ≤ 15
(see Figure 3.24). Both of these methods dominate the TPR plot again. Among projected gradient
descent initialization based methods, BSreg is again the superior performer. But this is again
because it selects many FPs. However, the FPR is more robust for this method in comparison to
lasso or BSlasso across different signal sizes.

In general with increasing signal size, none of the methods detect any edges beyond 𝑝 ≥ 15. This
is worse than 𝑑 = 0.05𝑝 case. BSreg is the only method that has a positive TPR in this region.
While AUC ROC values dropped to 0.5 beyond 𝑝 = 10, AUC PR values are always greater than
or equal to 0.5 across all signal sizes. This indicates relatively good ability in detecting true
edges in comparison to 𝑑 = 0.05𝑝 case. But they do not differentiate between TP and TN that
well. Moreover, this is not very significant and could be treated as an interpolation error. The
performance of all the methods are still very poor and no better than a random classifier. It was
observed that the solutions were mostly diagonal matrix in many cases with no edges. For BS,
the poor performance could also be attributed to the accepted sub-optimal solutions due to the
time-limit.

With BIC and eBIC, the situation is less severe than with AIC, but more than 𝑑 = 0.05𝑝 case.
Lasso’s performance in terms of accuracy is not good in comparison to the rest. For small graph
size (𝑝 = 5), it still chooses high number of FPs. All the methods perform similar in terms of
F1-Score. None of the methods detect any edges beyond 𝑝 ≥ 15. Even BSreg is only marginally able
to detect something and its TPR value tends to zero. The AUC PR values are however, above 0.5

3 Results and Discussion

54

across all signal sizes. But this is only due to the fact that there are simply more true edges in the
graphs in general, so precision-recall trade-off is slightly better than in 𝑑 = 0.05𝑝 case. Of course,
since AUC PR values are only upper bound to the actual value due to approximations done by
interpolation, this seems reasonable. The AUC ROC values are similar for all methods and are 0.5
beyond 𝑝 = 10, which indicates that the methods are still not better in identifying true edges from
non-edges.

3.1.4 Plots and Summary: Model selection and prediction

In general, the results from the prediction can be summarized as follows:

• Lasso and BSlasso have poor performance in terms of accuracy and precision for 𝑝 ≤ 10 and
it is much more noticeable in graphs with 𝑑 = 0.25𝑝. Lasso has good TPR-FPR trade-off. As
signal size increases, it continues to have the highest recall rate among all methods while
having low FPR. Its AUC ROC value drops to 0.5 only when 𝑝 ≥ 20.

• All the BS methods have slightly lower AUC ROC values and drop to 0.5 at 𝑝 = 15. Further-
more, all the methods have similar performance in terms of precision-recall trade-off. Every
projected gradient based BS methods, except BSreg, have similar performance in general.
BSreg’s typically has high FPR than other BS methods. Beyond 𝑝 = 10, none of the methods
are actually very good in performance as seen in the AUC plots.

• BIC and EBIC give sparser solutions as expected in comparison to AIC. However, for large
signal sizes, the model chosen by them do not detect any edges beyond 𝑝 = 20. In this case,
AIC is better. Even then, only BSreg is able to detect some edges. But of course, it comes with
a cost of more FPs.

3.1.5 Results: Computational Time

All simulations were performed on CoolMUC-2 linux cluster with Intel Xeon E5-2690 v3 (Haswell
based nodes) having 28 core per node and 64 GB RAM per node at Leibniz-Rechenzentrum
(LRZ) super computing facility (www.lrz.de) in Technical University of Munich (TUM), Germany.
Signals with 𝑝 ≤ 15, were run using a single core on a shared memory node. Due to high memory
requirements, signals with 𝑝 > 15 were run as MPI jobs using inter-node parallelization [Lei23].

As seen in tables 3.1 and 3.2, the power of parallel computing has really made BS a practically
feasible alternative. In general, among all the BS methods, BSlasso clearly seems to be the fastest.
This indicates that the bounds provided by lasso solutions lead to quick closing of optimality gap,
and thus shorter MIO training time. BSreg seems to be relatively faster than all the other projected
gradient descent initialization based BS methods. BSglasso and BS1edge are slower in general.
However, for large signal sizes, it seems to be faster than (or similar to) BSreg. For 𝑑 = 0.05𝑝, this
effect is really noticeable. But when 𝑑 = 0.25𝑝, it is not so clear to see this. In general, 𝑑 = 0.05𝑝
computations are faster than 𝑑 = 0.05𝑝 case.

It is important to note the increase in computation time for large graph sizes (𝑝 ≥ 15) and low
sample sizes (𝑛 ≤ 1000). This increase is due to the fact that large proportion of problems within
this category cross the time-limit before fully closing the optimality gap. This is, in particular, true
for medium range of values of 𝑘 from the grid [𝑝, 𝑝2]. In such cases, only sub-optimal results are
returned by Gurobi.

Nevertheless, lasso is still the fastest among all. It is important to mention that while BS trains
over 10 different values of 𝑘, lasso trains over 100 different values of � (twice, with coarse and fine
grid - see Algorithm 5) within a time 10 times faster than BS, even with parallelization. For 𝑝 = 25,
one can see that lasso and BS are comparable. However, it is important to note that, signals with

www.lrz.de

3.1 Numerical simulations on Synthetic Dataset

55

AUC PR Avg. AUC ROC Avg.

TPR Avg. FPR Avg.

Acc Avg. F1 Score Avg.

5 10 15 20 25 5 10 15 20 25

0.00

0.25

0.50

0.75

0.00

0.25

0.50

0.75

0.00

0.25

0.50

0.75

Signal Size

m
et

ric
s

Method

Lasso

MIP_reg

MIP_1edge

MIP_glasso

MIP_lasso

Performance measures for n = 10000

Figure 3.21 Variation of performance metrics with graph size and at edge probability 5 % on unseen
dataset drawn from a sample size of 10,000 (test data size 20 %). The metrics are computed for graphs

selected via AIC and are averaged results over 100 different signals.

3 Results and Discussion

56

AUC PR Avg. AUC ROC Avg.

TPR Avg. FPR Avg.

Acc Avg. F1 Score Avg.

5 10 15 20 25 5 10 15 20 25

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Signal Size

m
et

ric
s

Method

Lasso

MIP_reg

MIP_1edge

MIP_glasso

MIP_lasso

Performance measures for n = 10000

Figure 3.22 Variation of performance metrics with graph size and at edge probability 5 % on unseen
dataset drawn from a sample size of 10,000 (test data size 20 %). The metrics are computed for graphs

selected via BIC and are averaged results over 100 different signals.

3.1 Numerical simulations on Synthetic Dataset

57

AUC PR Avg. AUC ROC Avg.

TPR Avg. FPR Avg.

Acc Avg. F1 Score Avg.

5 10 15 20 25 5 10 15 20 25

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Signal Size

m
et

ric
s

Method

Lasso

MIP_reg

MIP_1edge

MIP_glasso

MIP_lasso

Performance measures for n = 10000

Figure 3.23 Variation of performance metrics with graph size and at edge probability 5 % on unseen
dataset drawn from a sample size of 10,000 (test data size 20 %). The metrics are computed for graphs

selected via EBIC and are averaged results over 100 different signals.

3 Results and Discussion

58

AUC PR Avg. AUC ROC Avg.

TPR Avg. FPR Avg.

Acc Avg. F1 Score Avg.

5 10 15 20 25 5 10 15 20 25

0.00

0.25

0.50

0.75

0.00

0.25

0.50

0.75

0.00

0.25

0.50

0.75

Signal Size

m
et

ric
s

Method

Lasso

MIP_reg

MIP_1edge

MIP_glasso

MIP_lasso

Performance measures for n = 10000

Figure 3.24 Variation of performance metrics with graph size and at edge probability 25 % on unseen
dataset drawn from a sample size of 10,000 (test data size 20 %). The metrics are computed for graphs

selected via AIC and are averaged results over 100 different signals.

3.1 Numerical simulations on Synthetic Dataset

59

AUC PR Avg. AUC ROC Avg.

TPR Avg. FPR Avg.

Acc Avg. F1 Score Avg.

5 10 15 20 25 5 10 15 20 25

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

Signal Size

m
et

ric
s

Method

Lasso

MIP_reg

MIP_1edge

MIP_glasso

MIP_lasso

Performance measures for n = 10000

Figure 3.25 Variation of performance metrics with graph size and at edge probability 25 % on unseen
dataset drawn from a sample size of 10,000 (test data size 20 %). The metrics are computed for graphs

selected via BIC and are averaged results over 100 different signals.

3 Results and Discussion

60

AUC PR Avg. AUC ROC Avg.

TPR Avg. FPR Avg.

Acc Avg. F1 Score Avg.

5 10 15 20 25 5 10 15 20 25

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

Signal Size

m
et

ric
s

Method

Lasso

MIP_reg

MIP_1edge

MIP_glasso

MIP_lasso

Performance measures for n = 10000

Figure 3.26 Variation of performance metrics with graph size and at edge probability 25 % on unseen
dataset drawn from a sample size of 10,000 (test data size 20 %). The metrics are computed for graphs

selected via EBIC and are averaged results over 100 different signals.

3.1 Numerical simulations on Synthetic Dataset

61

𝑝 ≥ 20 were run using inter-node parallelization, where there is inter-node communication time
to be considered. This can be higher than the time taken by lasso in actually solving the problems.

𝑝 𝑛 lasso BS1edge BSglasso BSreg BSlasso

5

100 0.020 0.273 0.294 0.274 0.136
1000 0.020 0.149 0.171 0.150 0.091
10000 0.020 0.138 0.156 0.136 0.082
100000 0.020 0.135 0.152 0.133 0.082

∞ 0.020 0.183 0.202 0.185 0.116

15

100 0.300 26.442 27.005 9.120 8.823
1000 0.200 3.200 3.288 2.799 2.661
10000 0.200 3.211 3.280 2.738 2.651
100000 0.200 3.140 3.272 2.715 2.637

∞ 0.200 3.169 3.260 2.699 2.524

25

100 1.335 22.500 10.660 22.330 8.14
1000 1.319 11.270 7.550 11.510 5.730
10000 1.319 6.920 4.628 4.910 4.720
100000 1.318 4.740 3.855 4.560 3.570

∞ 1.318 4.090 3.708 3.870 2.968
Table 3.1 Training time (in seconds) along a path of hyper-parameters averaged across 100 different signals

with edge probability 5 % for each (𝑝, 𝑛) pair.

𝑝 𝑛 lasso BS1edge BSglasso BSreg BSlasso

5

100 0.025 0.259 0.279 0.255 0.132
1000 0.025 0.146 0.169 0.144 0.085
10000 0.028 0.143 0.159 0.142 0.084
100000 0.029 0.141 0.157 0.140 0.083

∞ 0.023 0.157 0.177 0.155 0.094

15

100 0.32 5.608 5.332 5.826 5.159
1000 0.202 2.936 2.685 2.963 2.601
10000 0.204 2.736 2.959 2.984 2.919
100000 0.210 2.902 2.933 2.663 2.900

∞ 0.197 2.557 2.939 2.816 2.879

25

100 2.618 12.510 11.640 11.650 5.316
1000 2.623 7.150 7.540 7.580 3.804
10000 2.625 4.450 4.033 3.929 3.359
100000 2.624 3.520 4.294 3.883 3.273

∞ 2.624 3.500 3.4 3.624 3.045
Table 3.2 Training time (in seconds) along a path of hyper-parameters averaged across 100 different signals

with edge probability 25 % for each (𝑝, 𝑛) pair.

3 Results and Discussion

62

3.2 Numerical simulations on the Arabidopsis thaliana dataset

From the results obtained so far, it is clear that it is quite ambitious to aim for a support recovery
with 𝑝 = 39 variables and only a sample size of 𝑛 = 118 using the methods presented in this study.
It was observed that none of the methods were able to detect any edges when all of the genes
were considered together. Due to this reason, problem of partial recovery of the gene regulatory
network was considered. In particular, the interaction between genes assigned to the cystolic
pathway and plastidal pathway, encoding proteins in mitochondrion were considered individually.
Figures 3.27a, 3.28a and 3.29a show the interaction within each of the three modules obtained by
the modified GGM approach applied by Wille et al [Wil+04]. The interactions recovered using this
approach served as a benchmark for comparison. With 15 genes part of the cystolic pathway, 19
in plastidal and 5 encoding proteins within mitochondrion, all range of signal sizes considered in
this study will be covered.

At a sample size of 𝑛 = 118, it was observed that there were no differences between the models
selected by different model selection criterion described in section 2.3. On closer analysis, it was
observed that the the likelihood term of the information criterion dominated the penalty terms by
a huge factor. This indicates that the models fit the observed data very well. Thus, a change in
penalty on the non-zero entries of the inverse covariance matrix had very little effect on the model
selection. In other words, drift matrices selected by AIC, BIC and eBIC were almost similar.

Figures 3.27 to 3.29 show the comparison of recovered connections by the BS methods that produced
the sparsest solution (and lasso) with the connections obtained by the GGM approach. The
recovered drift matrices in this study were very dense and complex, with a lot of non-zeroes. For
clarity, comparison is done only for the connections that were present in the GGM approach. A
summary of results obtained by all the methods are provided in tables 3.3 to 3.5, where a connection
is represented by the presence of directed edges between any two genes (either bi- or uni-directed).

In Figure 3.27, one can see that all the methods recovered almost all existing connections. One
can also gain additional information about the various interactions between genes. 𝐷𝑋𝑃𝑆2 ↔
𝐻𝐷𝑅, 𝐺𝑃𝑃𝑆 ↔ 𝑃𝑃𝐷𝑆2 and 𝑃𝑃𝐷𝑆1 ↔ 𝑃𝑃𝐷𝑆2 are some of the prominent interactions between
genes discovered across all methods. However, there were many FPs and the solutions are not
sparse (see table 3.3). This indicates a high recall rate, but poor performance in terms of precision in
general. The sparsest solution was provided by BSlasso, followed by lasso and then BSreg. However,
BSlasso did not detect connections that were present in the GGM (FN). This indicates a lower recall
value in comparison to other methods. BSreg detects everything while having same number of FPs
as BSlasso, thus having relatively higher precision.

Figure 3.28 shows the dependency between genes that are involved in encoding proteins in mito-
chondrion. Except BSglasso, all the methods are in agreement with the relationship established by
the GGM (see table 3.4). Given the size of the problem (𝑝 = 5), this is expected. All the methods,
generally, perform well for small graph sizes.

In Figure 3.29, all of the connections within the module were recovered. Here, in this module,
interactions 𝐴𝐴𝐶𝑇2 ↔ 𝑀𝐾, 𝐻𝑀𝐺𝑆 ↔ 𝐹𝑃𝑃𝑆1 and 𝐹𝑃𝑃𝑆1 ↔ 𝑀𝑃𝐷𝐶2 are always identified
across all methods. However, just like in cystolic pathway results, there were again too many
FPs. Lasso performs very poorly in terms of giving a sparse solution. BSlasso still remains to be
the only method that provides sparsest solution along with BSglasso and BS1edge. Among the BS
methods, BSglasso has relatively low FPs (thus high precision). With this gene module, BSlasso does
not agree with 2 existing connections (FN) between genes and identifies 2 additional connections
(FP), thus leading to a relatively lower precision. Furthermore, BSreg also performs poorly in terms
of precision, even though it detects all existing connections.

3.2 Numerical simulations on the Arabidopsis thaliana dataset

63

The high FPs with BS could be attributed to the fact that there were many solutions for medium
values of 𝑘, that were sub-optimal. To tackle this, a finer grid containing 20 values of 𝑘 withing
the interval [𝑝, 𝑝2] was considered for this dataset to obtain solutions of wide range of sparsity. It
was observed that the optimality gap did not go below 5 % for many solutions within the specified
time and hence, were not considered for further evaluation. However, this is an optimistic view.
Another reason could be that the choice of idenitity matrix as the volatility matrix, C. In reality, this
matrix is not the identity due to large correlations between variables. This is indeed true in this
case as well [Wil+04]. Gaïffas and Matulewicz [GM19] used the identity matrix for all analysis, but
for real application they calculate the squared variations to compute an estimate of the diagonal
entries of this matrix. However, they recommend to jointly estimate 𝑀 and a non-diagonal 𝐶 for
such cases, which is not a trivial task in general.

Overall, these results seem to agree with the results from simulations performed on synthetic
dataset. For large graph sizes and low sample size, lasso performs worse in terms of precision.
However, BS is more robust. Out of all BS methods, BSlasso performs the best in providing a sparse
solution.

lasso BS1edge BSglasso BSreg BSlasso
Total number of edges (including self-loops) 300 341 322 305 253

Existing connections (as bi-directed) 14 14 15 11 7
Existing connections (as uni-directed) 3 3 2 6 8

Existing connections (not present) 0 0 0 0 2
New connections (bi-direction) 100 138 117 99 76

New connections (uni-direction) 50 15 37 48 60
Table 3.3 Gene connections detected by each method in the Cystolic pathway in comparison to the

connections detected by the modified GGM approach by Wille et al. [Wil+04]

lasso BS1edge BSglasso BSreg BSlasso
Total number of edges (including self-loops) 5 5 16 5 5

Existing connections (as bi-directed) 0 0 0 0 0
Existing connections (as uni-directed) 0 0 0 0 0

Existing connections (not present) 0 0 0 0 0
New connections (bi-direction) 0 0 4 0 0

New connections (uni-direction) 0 0 7 0 0
Table 3.4 Gene connections detected by each method, that are responsible for protein sythesis within the
mitochondrion, in comparison to the connections detected by the modified GGM approach by Wille et al.

[Wil+04]

lasso BS1edge BSglasso BSreg BSlasso
Total number of edges (including self-loops) 221 186 157 225 156

Existing connections (as bi-directed) 12 11 7 12 5
Existing connections (as uni-directed) 0 1 4 0 5

Existing connections (not present) 0 0 1 0 2
New connections (bi-direction) 89 60 48 93 48

New connections (uni-direction) 4 28 28 0 30
Table 3.5 Gene connections detected by each method in the plastidal pathway in comparison to the

connections detected by the modified GGM approach by Wille et al. [Wil+04]. Dotted directed edges mark
the metabolic network, and were not part of the GGM and not part of comparison.

3 Results and Discussion

64

DXPS2DXPS1 DXPS3

DXR

MCT

CMK

MECPS

HDS

HDR

IPPI1

GPPS

GGPPS
2,6,8,10,11,12 PPDS1 PPDS2

(a)

DXPS2DXPS1 DXPS3

DXR

MCT

CMK

MECPS

HDS

HDR

IPPI1

GPPS

GGPPS
2,6,8,10,11,12 PPDS1 PPDS2

(b)

DXPS2DXPS1 DXPS3

DXR

MCT

CMK

MECPS

HDS

HDR

IPPI1

GPPS

GGPPS
2,6,8,10,11,12 PPDS1 PPDS2

(c)

DXPS2DXPS1 DXPS3

DXR

MCT

CMK

MECPS

HDS

HDR

IPPI1

GPPS

GGPPS
2,6,8,10,11,12 PPDS1 PPDS2

n.
c

G
G

PS
2,

8

(d)

3.2 Numerical simulations on the Arabidopsis thaliana dataset

65

Figure 3.27 Dependencies between genes in the cystolic pathway module. (a) by the modified GGM
approach (Wille et al.); (b) by lasso ; (c) by BSreg and (d) by BSlasso. The solid undirected lines in the GGM

approach represent the connections, whereas the undirected edge between MECPS and GGPPS in the other
methods represent a bundle of directed edges (both bi- and uni-directed). n.c refers to "no connection" and

it is followed by gene names for which there is no connection among a bundle of directed edges. Dotted
directed edges mark the metabolic network, and were not part of the GGM and not part of comparison.

UPPS1

DPPS2

GGPPS5, 9, 11

(a) Modified GGM

UPPS1

DPPS2

GGPPS1,5,9

(b)

UPPS1

DPPS2

GGPPS1,5,9

(c)

UPPS1

DPPS2

GGPPS1,5,9

(d)

Figure 3.28 Dependencies between genes responsible for protein sythiesis within mitochondrion. (a) by
the modified GGM approach (Wille et al.); (b) by lasso ; (c) by BSreg and (d) by BSlasso. The solid undirected

lines in the GGM approach represent the connections.

AACT1 AACT2

HMGS

HMGR1 HMGR2

MK

MPDC1 MPDC2

IPPI2

FPPS1 FPPS2

DPPS1,3 GGPPS3,4

(a) Modified GGM

AACT1 AACT2

HMGS

HMGR1 HMGR2

MK

MPDC1 MPDC2

IPPI2

FPPS1 FPPS2

DPPS1,2 GGPPS3,4

(b)

3 Results and Discussion

66

AACT1 AACT2

HMGS

HMGR1 HMGR2

MK

MPDC1 MPDC2

IPPI2

FPPS1 FPPS2

DPPS1,2 GGPPS3,4

(c)

AACT1 AACT2

HMGS

HMGR1 HMGR2

MK

MPDC1 MPDC2

IPPI2

FPPS1 FPPS2

DPPS1,2 GGPPS3,4

(d)

Figure 3.29 Dependencies between genes in the plastidal pathway module. (a) by the modified GGM
approach (Wille et al.); (b) by lasso ; (c) by BSglasso and (d) by BSlasso. The solid undirected lines in (a)

connecting genes represent the GGM. Dotted directed edges mark the metabolic network, and were not
part of the GGM and not part of comparison.

67

4 Conclusion

This study focused on using mixed integer programming technique to recover drift matrices, 𝑀,
from graphical lyapunov models. In particular, the problem of support recovery of the drift
matrix was treated as a best-subset selection problem and converted into a MIO problem. Parallel
computing has made solving MIO problems practical and feasible for large scale applications.
Moreover, they have the advantage of always providing an optimality certificate to the obtained
solution and this can be very useful in analyzing results.

For graphs with 𝑝 < 10, the differences between BS and lasso are not so significant. However, as the
problem size increases, lasso clearly outperforms BS provided one has sufficiently large samples.
With low sample size, BS tends to perform better. This effect becomes more and more prominent
with increasing graph size because the performance of lasso degrades for larger signals with low
sample size. This degradation rate is typically faster than degradation rate of BS beyond certain
value of 𝑝. The drop in performance of BS could be attributed to insufficient time for closing the
optimality gap or the coarse grid chosen for model selection. It was observed that the choices of
the initializations provided to MIO formulations are very crucial. BSlasso consistently performs
as good as lasso in giving a sparse solution. However its performance is sensitive to the quality
of lasso solutions. So when lasso performs poor, it tends to perform poor. But with low sample
size, BSlasso is not affected by poor lasso performance. For low sample sizes, BSlasso is as good as,
or better than, other BS methods. Among the projected gradient initialization based BS, BS1edge
and BSglasso showed relatively good potential in general. However, in comparison to BSlasso, they
are still inferior. This implies that lasso provides better lower bounds to the MIO than projected
gradient descent. Beyond certain graph size and/or below certain sample size, all the methods
perform very poor and are worse than a random guessing classifier. In addition, when the graphs’
sparsity level is reduced, the support recovery becomes harder. At the end, everything boils down
to choosing a method that is least bad.

In general, one needs to be cautious with model selection. Their usage may depend on the type
of dataset and its size. The choice of a specific model selection method could have a significant
impact on the performance and generalizability of the final model. Different datasets may have
varying degrees of complexity, noise, or underlying patterns, and these factors can influence which
model selection approach is most appropriate. AIC, BIC and eBIC were able to choose distinct
sparse solutions with the synthetic dataset. However, model selection with the results from the
simulation of the Arabidopsis thaliana dataset resulted in dense estimates of drift matrices. This
implies that these selection methods may not be the best for this dataset at such a low sample
size. One often needs additional domain expertise to filter the entries and derive meaningful
relationships.

69

A Appendix

A.1 Prediction with AIC when edge probability 5 %: Comparison along
signal sizes

AUC PR Avg. AUC ROC Avg.

TPR Avg. FPR Avg.

Acc Avg. F1 Score Avg.

5 10 15 20 25 5 10 15 20 25

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Signal Size

m
et

ric
s

Method

Lasso

MIP_reg

MIP_1edge

MIP_glasso

MIP_lasso

Performance measures for n = 100

Figure A.1 Variation of performance metrics with graph size and at edge probability 5 % on unseen dataset
drawn from a sample size of 100 (test data size 20 %). The metrics are computed for graphs selected via

AIC and are averaged results over 100 different signals.

A Appendix

70

AUC PR Avg. AUC ROC Avg.

TPR Avg. FPR Avg.

Acc Avg. F1 Score Avg.

5 10 15 20 25 5 10 15 20 25

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Signal Size

m
et

ric
s

Method

Lasso

MIP_reg

MIP_1edge

MIP_glasso

MIP_lasso

Performance measures for n = 1000

Figure A.2 Variation of performance metrics with graph size and at edge probability 5 % on unseen dataset
drawn from a sample size of 1000 (test data size 20 %). The metrics are computed for graphs selected via

AIC and are averaged results over 100 different signals.

A.1 Prediction with AIC when edge probability 5 %: Comparison along signal sizes

71

AUC PR Avg. AUC ROC Avg.

TPR Avg. FPR Avg.

Acc Avg. F1 Score Avg.

5 10 15 20 25 5 10 15 20 25

0.25

0.50

0.75

0.25

0.50

0.75

0.25

0.50

0.75

Signal Size

m
et

ric
s

Method

Lasso

MIP_reg

MIP_1edge

MIP_glasso

MIP_lasso

Performance measures for n = 1e+05

Figure A.3 Variation of performance metrics with graph size and at edge probability 5 % on unseen dataset
drawn from a sample size of 100,000 (test data size 20 %). The metrics are computed for graphs selected

via AIC and are averaged results over 100 different signals.

A Appendix

72

AUC PR Avg. AUC ROC Avg.

TPR Avg. FPR Avg.

Acc Avg. F1 Score Avg.

5 10 15 20 25 5 10 15 20 25

0.25

0.50

0.75

1.00

0.25

0.50

0.75

1.00

0.25

0.50

0.75

1.00

Signal Size

m
et

ric
s

Method

Lasso

MIP_reg

MIP_1edge

MIP_glasso

MIP_lasso

Performance measures for n = Inf

Figure A.4 Variation of performance metrics with graph size and at edge probability 5 % on unseen dataset
drawn from population covariance matrix (test data size 20 %). The metrics are computed for graphs

selected via AIC and are averaged results over 100 different signals.

A.2 Prediction with AIC when edge probability 25 %: Comparison along signal sizes

73

A.2 Prediction with AIC when edge probability 25 %: Comparison along
signal sizes

AUC PR Avg. AUC ROC Avg.

TPR Avg. FPR Avg.

Acc Avg. F1 Score Avg.

5 10 15 20 25 5 10 15 20 25

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

Signal Size

m
et

ric
s

Method

Lasso

MIP_reg

MIP_1edge

MIP_glasso

MIP_lasso

Performance measures for n = 100

Figure A.5 Variation of performance metrics with graph size and at edge probability 25 % on unseen
dataset drawn from a sample size of 100 (test data size 20 %). The metrics are computed for graphs

selected via AIC and are averaged results over 100 different signals.

A Appendix

74

AUC PR Avg. AUC ROC Avg.

TPR Avg. FPR Avg.

Acc Avg. F1 Score Avg.

5 10 15 20 25 5 10 15 20 25

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

Signal Size

m
et

ric
s

Method

Lasso

MIP_reg

MIP_1edge

MIP_glasso

MIP_lasso

Performance measures for n = 1000

Figure A.6 Variation of performance metrics with graph size and at edge probability 25 % on unseen
dataset drawn from a sample size of 1000 (test data size 20 %). The metrics are computed for graphs

selected via AIC and are averaged results over 100 different signals.

A.2 Prediction with AIC when edge probability 25 %: Comparison along signal sizes

75

AUC PR Avg. AUC ROC Avg.

TPR Avg. FPR Avg.

Acc Avg. F1 Score Avg.

5 10 15 20 25 5 10 15 20 25

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Signal Size

m
et

ric
s

Method

Lasso

MIP_reg

MIP_1edge

MIP_glasso

MIP_lasso

Performance measures for n = 1e+05

Figure A.7 Variation of performance metrics with graph size and at edge probability 25 % on unseen
dataset drawn from a sample size of 100,000 (test data size 20 %). The metrics are computed for graphs

selected via AIC and are averaged results over 100 different signals.

A Appendix

76

AUC PR Avg. AUC ROC Avg.

TPR Avg. FPR Avg.

Acc Avg. F1 Score Avg.

5 10 15 20 25 5 10 15 20 25

0.25

0.50

0.75

0.25

0.50

0.75

0.25

0.50

0.75

Signal Size

m
et

ric
s

Method

Lasso

MIP_reg

MIP_1edge

MIP_glasso

MIP_lasso

Performance measures for n = Inf

Figure A.8 Variation of performance metrics with graph size and at edge probability 25 % on unseen
dataset drawn from population covariance matrix (test data size 20 %). The metrics are computed for

graphs selected via AIC and are averaged results over 100 different signals.

A.3 Prediction with AIC when edge probability 5 %: Comparison along sample size

77

A.3 Prediction with AIC when edge probability 5 %: Comparison along
sample size

AUC PR Avg. AUC ROC Avg.

TPR Avg. FPR Avg.

Acc Avg. F1 Score Avg.

100 200 500 1000 5000 10000 1e+05 Inf 100 200 500 1000 5000 10000 1e+05 Inf

0.00

0.25

0.50

0.75

0.00

0.25

0.50

0.75

0.00

0.25

0.50

0.75

Sample size

m
et

ric
s

Method

Lasso

MIP_reg

MIP_1edge

MIP_glasso

MIP_lasso

Performance measures for p = 5

Figure A.9 Variation of performance metrics with sample size and at edge probability 5 % on unseen
dataset drawn from a graph size 𝑝 = 5 (test data size 20 %). The metrics are computed for graphs selected

via AIC and are averaged results over 100 different signals.

A Appendix

78

AUC PR Avg. AUC ROC Avg.

TPR Avg. FPR Avg.

Acc Avg. F1 Score Avg.

100 200 500 1000 5000 10000 1e+05 Inf 100 200 500 1000 5000 10000 1e+05 Inf

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Sample size

m
et

ric
s

Method

Lasso

MIP_reg

MIP_1edge

MIP_glasso

MIP_lasso

Performance measures for p = 10

Figure A.10 Variation of performance metrics with graph size and at edge probability 5 % on unseen
dataset drawn from a graph size 𝑝 = 10 (test data size 20 %). The metrics are computed for graphs selected

via AIC and are averaged results over 100 different signals.

A.3 Prediction with AIC when edge probability 5 %: Comparison along sample size

79

AUC PR Avg. AUC ROC Avg.

TPR Avg. FPR Avg.

Acc Avg. F1 Score Avg.

100 200 500 1000 5000 10000 1e+05 Inf 100 200 500 1000 5000 10000 1e+05 Inf

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Sample size

m
et

ric
s

Method

Lasso

MIP_reg

MIP_1edge

MIP_glasso

MIP_lasso

Performance measures for p = 15

Figure A.11 Variation of performance metrics with graph size and at edge probability 5 % on unseen
dataset drawn from a graph size 𝑝 = 15 (test data size 20 %). The metrics are computed for graphs selected

via AIC and are averaged results over 100 different signals.

A Appendix

80

AUC PR Avg. AUC ROC Avg.

TPR Avg. FPR Avg.

Acc Avg. F1 Score Avg.

100 200 500 1000 5000 10000 1e+05 Inf 100 200 500 1000 5000 10000 1e+05 Inf

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Sample size

m
et

ric
s

Method

Lasso

MIP_reg

MIP_1edge

MIP_glasso

MIP_lasso

Performance measures for p = 20

Figure A.12 Variation of performance metrics with graph size and at edge probability 5 % on unseen
dataset drawn from a graph size 𝑝 = 20 (test data size 20 %). The metrics are computed for graphs selected

via AIC and are averaged results over 100 different signals.

A.3 Prediction with AIC when edge probability 5 %: Comparison along sample size

81

AUC PR Avg. AUC ROC Avg.

TPR Avg. FPR Avg.

Acc Avg. F1 Score Avg.

100 200 500 1000 5000 10000 1e+05 Inf 100 200 500 1000 5000 10000 1e+05 Inf

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Sample size

m
et

ric
s

Method

Lasso

MIP_reg

MIP_1edge

MIP_glasso

MIP_lasso

Performance measures for p = 25

Figure A.13 Variation of performance metrics with graph size and at edge probability 5 % on unseen
dataset drawn from a graph size 𝑝 = 25 (test data size 20 %). The metrics are computed for graphs selected

via AIC and are averaged results over 100 different signals.

A Appendix

82

A.4 Prediction with AIC when edge probability 25 %: Comparison along
sample sizes

AUC PR Avg. AUC ROC Avg.

TPR Avg. FPR Avg.

Acc Avg. F1 Score Avg.

100 200 500 1000 5000 10000 1e+05 Inf 100 200 500 1000 5000 10000 1e+05 Inf

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Sample size

m
et

ric
s

Method

Lasso

MIP_reg

MIP_1edge

MIP_glasso

MIP_lasso

Performance measures for p = 5

Figure A.14 Variation of performance metrics with graph size and at edge probability 25 % on unseen
dataset drawn from a graph size 𝑝 = 5 (test data size 20 %). The metrics are computed for graphs selected

via AIC and are averaged results over 100 different signals.

A.4 Prediction with AIC when edge probability 25 %: Comparison along sample sizes

83

AUC PR Avg. AUC ROC Avg.

TPR Avg. FPR Avg.

Acc Avg. F1 Score Avg.

100 200 500 1000 5000 10000 1e+05 Inf 100 200 500 1000 5000 10000 1e+05 Inf

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Sample size

m
et

ric
s

Method

Lasso

MIP_reg

MIP_1edge

MIP_glasso

MIP_lasso

Performance measures for p = 10

Figure A.15 Variation of performance metrics with graph size and at edge probability 25 % on unseen
dataset drawn from a graph size 𝑝 = 10 (test data size 20 %). The metrics are computed for graphs selected

via AIC and are averaged results over 100 different signals.

A Appendix

84

AUC PR Avg. AUC ROC Avg.

TPR Avg. FPR Avg.

Acc Avg. F1 Score Avg.

100 200 500 1000 5000 10000 1e+05 Inf 100 200 500 1000 5000 10000 1e+05 Inf

0.00

0.25

0.50

0.75

0.00

0.25

0.50

0.75

0.00

0.25

0.50

0.75

Sample size

m
et

ric
s

Method

Lasso

MIP_reg

MIP_1edge

MIP_glasso

MIP_lasso

Performance measures for p = 15

Figure A.16 Variation of performance metrics with graph size and at edge probability 25 % on unseen
dataset drawn from a graph size 𝑝 = 15 (test data size 20 %). The metrics are computed for graphs selected

via AIC and are averaged results over 100 different signals.

A.4 Prediction with AIC when edge probability 25 %: Comparison along sample sizes

85

AUC PR Avg. AUC ROC Avg.

TPR Avg. FPR Avg.

Acc Avg. F1 Score Avg.

100 200 500 1000 5000 10000 1e+05 Inf 100 200 500 1000 5000 10000 1e+05 Inf

0.00

0.25

0.50

0.75

0.00

0.25

0.50

0.75

0.00

0.25

0.50

0.75

Sample size

m
et

ric
s

Method

Lasso

MIP_reg

MIP_1edge

MIP_glasso

MIP_lasso

Performance measures for p = 20

Figure A.17 Variation of performance metrics with graph size and at edge probability 25 % on unseen
dataset drawn from a graph size 𝑝 = 20 (test data size 20 %). The metrics are computed for graphs selected

via AIC and are averaged results over 100 different signals.

A Appendix

86

AUC PR Avg. AUC ROC Avg.

TPR Avg. FPR Avg.

Acc Avg. F1 Score Avg.

100 200 500 1000 5000 10000 1e+05 Inf 100 200 500 1000 5000 10000 1e+05 Inf

0.0

0.2

0.4

0.6

0.8

0.0

0.2

0.4

0.6

0.8

0.0

0.2

0.4

0.6

0.8

Sample size

m
et

ric
s

Method

Lasso

MIP_reg

MIP_1edge

MIP_glasso

MIP_lasso

Performance measures for p = 25

Figure A.18 Variation of performance metrics with graph size and at edge probability 25 % on unseen
dataset drawn from a graph size 𝑝 = 25 (test data size 20 %). The metrics are computed for graphs selected

via AIC and are averaged results over 100 different signals.

A.5 Prediction with BIC when edge probability 5 %: Comparison along signal sizes

87

A.5 Prediction with BIC when edge probability 5 %: Comparison along
signal sizes

AUC PR Avg. AUC ROC Avg.

TPR Avg. FPR Avg.

Acc Avg. F1 Score Avg.

5 10 15 20 25 5 10 15 20 25

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Signal Size

m
et

ric
s

Method

Lasso

MIP_reg

MIP_1edge

MIP_glasso

MIP_lasso

Performance measures for n = 100

Figure A.19 Variation of performance metrics with graph size and at edge probability 5 % on unseen
dataset drawn from a sample size of 100 (test data size 20 %). The metrics are computed for graphs

selected via BIC and are averaged results over 100 different signals.

A Appendix

88

AUC PR Avg. AUC ROC Avg.

TPR Avg. FPR Avg.

Acc Avg. F1 Score Avg.

5 10 15 20 25 5 10 15 20 25

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Signal Size

m
et

ric
s

Method

Lasso

MIP_reg

MIP_1edge

MIP_glasso

MIP_lasso

Performance measures for n = 1000

Figure A.20 Variation of performance metrics with graph size and at edge probability 5 % on unseen
dataset drawn from a sample size of 1000 (test data size 20 %). The metrics are computed for graphs

selected via BIC and are averaged results over 100 different signals.

A.5 Prediction with BIC when edge probability 5 %: Comparison along signal sizes

89

AUC PR Avg. AUC ROC Avg.

TPR Avg. FPR Avg.

Acc Avg. F1 Score Avg.

5 10 15 20 25 5 10 15 20 25

0.00

0.25

0.50

0.75

0.00

0.25

0.50

0.75

0.00

0.25

0.50

0.75

Signal Size

m
et

ric
s

Method

Lasso

MIP_reg

MIP_1edge

MIP_glasso

MIP_lasso

Performance measures for n = 1e+05

Figure A.21 Variation of performance metrics with graph size and at edge probability 5 % on unseen
dataset drawn from a sample size of 100,000 (test data size 20 %). The metrics are computed for graphs

selected via BIC and are averaged results over 100 different signals.

A Appendix

90

AUC PR Avg. AUC ROC Avg.

TPR Avg. FPR Avg.

Acc Avg. F1 Score Avg.

5 10 15 20 25 5 10 15 20 25

0.25

0.50

0.75

1.00

0.25

0.50

0.75

1.00

0.25

0.50

0.75

1.00

Signal Size

m
et

ric
s

Method

Lasso

MIP_reg

MIP_1edge

MIP_glasso

MIP_lasso

Performance measures for n = Inf

Figure A.22 Variation of performance metrics with graph size and at edge probability 5 % on unseen
dataset drawn from population covariance matrix (test data size 20 %). The metrics are computed for

graphs selected via BIC and are averaged results over 100 different signals.

A.6 Prediction with BIC when edge probability 25 %: Comparison along signal sizes

91

A.6 Prediction with BIC when edge probability 25 %: Comparison along
signal sizes

AUC PR Avg. AUC ROC Avg.

TPR Avg. FPR Avg.

Acc Avg. F1 Score Avg.

5 10 15 20 25 5 10 15 20 25

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

Signal Size

m
et

ric
s

Method

Lasso

MIP_reg

MIP_1edge

MIP_glasso

MIP_lasso

Performance measures for n = 100

Figure A.23 Variation of performance metrics with graph size and at edge probability 25 % on unseen
dataset drawn from a sample size of 100 (test data size 20 %). The metrics are computed for graphs

selected via BIC and are averaged results over 100 different signals.

A Appendix

92

AUC PR Avg. AUC ROC Avg.

TPR Avg. FPR Avg.

Acc Avg. F1 Score Avg.

5 10 15 20 25 5 10 15 20 25

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

Signal Size

m
et

ric
s

Method

Lasso

MIP_reg

MIP_1edge

MIP_glasso

MIP_lasso

Performance measures for n = 1000

Figure A.24 Variation of performance metrics with graph size and at edge probability 25 % on unseen
dataset drawn from a sample size of 1000 (test data size 20 %). The metrics are computed for graphs

selected via BIC and are averaged results over 100 different signals.

A.6 Prediction with BIC when edge probability 25 %: Comparison along signal sizes

93

AUC PR Avg. AUC ROC Avg.

TPR Avg. FPR Avg.

Acc Avg. F1 Score Avg.

5 10 15 20 25 5 10 15 20 25

0.00

0.25

0.50

0.75

0.00

0.25

0.50

0.75

0.00

0.25

0.50

0.75

Signal Size

m
et

ric
s

Method

Lasso

MIP_reg

MIP_1edge

MIP_glasso

MIP_lasso

Performance measures for n = 1e+05

Figure A.25 Variation of performance metrics with graph size and at edge probability 25 % on unseen
dataset drawn from a sample size of 100,000 (test data size 20 %). The metrics are computed for graphs

selected via BIC and are averaged results over 100 different signals.

A Appendix

94

AUC PR Avg. AUC ROC Avg.

TPR Avg. FPR Avg.

Acc Avg. F1 Score Avg.

5 10 15 20 25 5 10 15 20 25

0.25

0.50

0.75

0.25

0.50

0.75

0.25

0.50

0.75

Signal Size

m
et

ric
s

Method

Lasso

MIP_reg

MIP_1edge

MIP_glasso

MIP_lasso

Performance measures for n = Inf

Figure A.26 Variation of performance metrics with graph size and at edge probability 25 % on unseen
dataset drawn from population covariance matrix (test data size 20 %). The metrics are computed for

graphs selected via BIC and are averaged results over 100 different signals.

A.7 Prediction with BIC when edge probability 5 %: Comparison along sample size

95

A.7 Prediction with BIC when edge probability 5 %: Comparison along
sample size

AUC PR Avg. AUC ROC Avg.

TPR Avg. FPR Avg.

Acc Avg. F1 Score Avg.

100 200 500 1000 5000 10000 1e+05 Inf 100 200 500 1000 5000 10000 1e+05 Inf

0.00

0.25

0.50

0.75

0.00

0.25

0.50

0.75

0.00

0.25

0.50

0.75

Sample size

m
et

ric
s

Method

Lasso

MIP_reg

MIP_1edge

MIP_glasso

MIP_lasso

Performance measures for p = 5

Figure A.27 Variation of performance metrics with sample size and at edge probability 5 % on unseen
dataset drawn from a graph size 𝑝 = 5 (test data size 20 %). The metrics are computed for graphs selected

via BIC and are averaged results over 100 different signals.

A Appendix

96

AUC PR Avg. AUC ROC Avg.

TPR Avg. FPR Avg.

Acc Avg. F1 Score Avg.

100 200 500 1000 5000 10000 1e+05 Inf 100 200 500 1000 5000 10000 1e+05 Inf

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Sample size

m
et

ric
s

Method

Lasso

MIP_reg

MIP_1edge

MIP_glasso

MIP_lasso

Performance measures for p = 10

Figure A.28 Variation of performance metrics with graph size and at edge probability 5 % on unseen
dataset drawn from a graph size 𝑝 = 10 (test data size 20 %). The metrics are computed for graphs selected

via BIC and are averaged results over 100 different signals.

A.7 Prediction with BIC when edge probability 5 %: Comparison along sample size

97

AUC PR Avg. AUC ROC Avg.

TPR Avg. FPR Avg.

Acc Avg. F1 Score Avg.

100 200 500 1000 5000 10000 1e+05 Inf 100 200 500 1000 5000 10000 1e+05 Inf

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Sample size

m
et

ric
s

Method

Lasso

MIP_reg

MIP_1edge

MIP_glasso

MIP_lasso

Performance measures for p = 15

Figure A.29 Variation of performance metrics with graph size and at edge probability 5 % on unseen
dataset drawn from a graph size 𝑝 = 15 (test data size 20 %). The metrics are computed for graphs selected

via BIC and are averaged results over 100 different signals.

A Appendix

98

AUC PR Avg. AUC ROC Avg.

TPR Avg. FPR Avg.

Acc Avg. F1 Score Avg.

100 200 500 1000 5000 10000 1e+05 Inf 100 200 500 1000 5000 10000 1e+05 Inf

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Sample size

m
et

ric
s

Method

Lasso

MIP_reg

MIP_1edge

MIP_glasso

MIP_lasso

Performance measures for p = 20

Figure A.30 Variation of performance metrics with graph size and at edge probability 5 % on unseen
dataset drawn from a graph size 𝑝 = 20 (test data size 20 %). The metrics are computed for graphs selected

via BIC and are averaged results over 100 different signals.

A.7 Prediction with BIC when edge probability 5 %: Comparison along sample size

99

AUC PR Avg. AUC ROC Avg.

TPR Avg. FPR Avg.

Acc Avg. F1 Score Avg.

100 200 500 1000 5000 10000 1e+05 Inf 100 200 500 1000 5000 10000 1e+05 Inf

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Sample size

m
et

ric
s

Method

Lasso

MIP_reg

MIP_1edge

MIP_glasso

MIP_lasso

Performance measures for p = 25

Figure A.31 Variation of performance metrics with graph size and at edge probability 5 % on unseen
dataset drawn from a graph size 𝑝 = 25 (test data size 20 %). The metrics are computed for graphs selected

via BIC and are averaged results over 100 different signals.

A Appendix

100

A.8 Prediction with BIC when edge probability 25 %: Comparison along
sample sizes

AUC PR Avg. AUC ROC Avg.

TPR Avg. FPR Avg.

Acc Avg. F1 Score Avg.

100 200 500 1000 5000 10000 1e+05 Inf 100 200 500 1000 5000 10000 1e+05 Inf

0.00

0.25

0.50

0.75

0.00

0.25

0.50

0.75

0.00

0.25

0.50

0.75

Sample size

m
et

ric
s

Method

Lasso

MIP_reg

MIP_1edge

MIP_glasso

MIP_lasso

Performance measures for p = 5

Figure A.32 Variation of performance metrics with graph size and at edge probability 25 % on unseen
dataset drawn from a graph size 𝑝 = 5 (test data size 20 %). The metrics are computed for graphs selected

via BIC and are averaged results over 100 different signals.

A.8 Prediction with BIC when edge probability 25 %: Comparison along sample sizes

101

AUC PR Avg. AUC ROC Avg.

TPR Avg. FPR Avg.

Acc Avg. F1 Score Avg.

100 200 500 1000 5000 10000 1e+05 Inf 100 200 500 1000 5000 10000 1e+05 Inf

0.00

0.25

0.50

0.75

0.00

0.25

0.50

0.75

0.00

0.25

0.50

0.75

Sample size

m
et

ric
s

Method

Lasso

MIP_reg

MIP_1edge

MIP_glasso

MIP_lasso

Performance measures for p = 10

Figure A.33 Variation of performance metrics with graph size and at edge probability 25 % on unseen
dataset drawn from a graph size 𝑝 = 10 (test data size 20 %). The metrics are computed for graphs selected

via BIC and are averaged results over 100 different signals.

A Appendix

102

AUC PR Avg. AUC ROC Avg.

TPR Avg. FPR Avg.

Acc Avg. F1 Score Avg.

100 200 500 1000 5000 10000 1e+05 Inf 100 200 500 1000 5000 10000 1e+05 Inf

0.00

0.25

0.50

0.75

0.00

0.25

0.50

0.75

0.00

0.25

0.50

0.75

Sample size

m
et

ric
s

Method

Lasso

MIP_reg

MIP_1edge

MIP_glasso

MIP_lasso

Performance measures for p = 15

Figure A.34 Variation of performance metrics with graph size and at edge probability 25 % on unseen
dataset drawn from a graph size 𝑝 = 15 (test data size 20 %). The metrics are computed for graphs selected

via BIC and are averaged results over 100 different signals.

A.8 Prediction with BIC when edge probability 25 %: Comparison along sample sizes

103

AUC PR Avg. AUC ROC Avg.

TPR Avg. FPR Avg.

Acc Avg. F1 Score Avg.

100 200 500 1000 5000 10000 1e+05 Inf 100 200 500 1000 5000 10000 1e+05 Inf

0.00

0.25

0.50

0.75

0.00

0.25

0.50

0.75

0.00

0.25

0.50

0.75

Sample size

m
et

ric
s

Method

Lasso

MIP_reg

MIP_1edge

MIP_glasso

MIP_lasso

Performance measures for p = 20

Figure A.35 Variation of performance metrics with graph size and at edge probability 25 % on unseen
dataset drawn from a graph size 𝑝 = 20 (test data size 20 %). The metrics are computed for graphs selected

via BIC and are averaged results over 100 different signals.

A Appendix

104

AUC PR Avg. AUC ROC Avg.

TPR Avg. FPR Avg.

Acc Avg. F1 Score Avg.

100 200 500 1000 5000 10000 1e+05 Inf 100 200 500 1000 5000 10000 1e+05 Inf

0.0

0.2

0.4

0.6

0.8

0.0

0.2

0.4

0.6

0.8

0.0

0.2

0.4

0.6

0.8

Sample size

m
et

ric
s

Method

Lasso

MIP_reg

MIP_1edge

MIP_glasso

MIP_lasso

Performance measures for p = 25

Figure A.36 Variation of performance metrics with graph size and at edge probability 25 % on unseen
dataset drawn from a graph size 𝑝 = 25 (test data size 20 %). The metrics are computed for graphs selected

via BIC and are averaged results over 100 different signals.

A.9 Prediction with eBIC when edge probability 5 %: Comparison along signal sizes

105

A.9 Prediction with eBIC when edge probability 5 %: Comparison along
signal sizes

AUC PR Avg. AUC ROC Avg.

TPR Avg. FPR Avg.

Acc Avg. F1 Score Avg.

5 10 15 20 25 5 10 15 20 25

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Signal Size

m
et

ric
s

Method

Lasso

MIP_reg

MIP_1edge

MIP_glasso

MIP_lasso

Performance measures for n = 100

Figure A.37 Variation of performance metrics with graph size and at edge probability 5 % on unseen
dataset drawn from a sample size of 100 (test data size 20 %). The metrics are computed for graphs

selected via eBIC and are averaged results over 100 different signals.

A Appendix

106

AUC PR Avg. AUC ROC Avg.

TPR Avg. FPR Avg.

Acc Avg. F1 Score Avg.

5 10 15 20 25 5 10 15 20 25

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Signal Size

m
et

ric
s

Method

Lasso

MIP_reg

MIP_1edge

MIP_glasso

MIP_lasso

Performance measures for n = 1000

Figure A.38 Variation of performance metrics with graph size and at edge probability 5 % on unseen
dataset drawn from a sample size of 1000 (test data size 20 %). The metrics are computed for graphs

selected via eBIC and are averaged results over 100 different signals.

A.9 Prediction with eBIC when edge probability 5 %: Comparison along signal sizes

107

AUC PR Avg. AUC ROC Avg.

TPR Avg. FPR Avg.

Acc Avg. F1 Score Avg.

5 10 15 20 25 5 10 15 20 25

0.00

0.25

0.50

0.75

0.00

0.25

0.50

0.75

0.00

0.25

0.50

0.75

Signal Size

m
et

ric
s

Method

Lasso

MIP_reg

MIP_1edge

MIP_glasso

MIP_lasso

Performance measures for n = 1e+05

Figure A.39 Variation of performance metrics with graph size and at edge probability 5 % on unseen
dataset drawn from a sample size of 100,000 (test data size 20 %). The metrics are computed for graphs

selected via eBIC and are averaged results over 100 different signals.

A Appendix

108

AUC PR Avg. AUC ROC Avg.

TPR Avg. FPR Avg.

Acc Avg. F1 Score Avg.

5 10 15 20 25 5 10 15 20 25

0.25

0.50

0.75

1.00

0.25

0.50

0.75

1.00

0.25

0.50

0.75

1.00

Signal Size

m
et

ric
s

Method

Lasso

MIP_reg

MIP_1edge

MIP_glasso

MIP_lasso

Performance measures for n = Inf

Figure A.40 Variation of performance metrics with graph size and at edge probability 5 % on unseen
dataset drawn from population covariance matrix (test data size 20 %). The metrics are computed for

graphs selected via eBIC and are averaged results over 100 different signals.

A.10 Prediction with eBIC when edge probability 25 %: Comparison along signal sizes

109

A.10 Prediction with eBIC when edge probability 25 %: Comparison
along signal sizes

AUC PR Avg. AUC ROC Avg.

TPR Avg. FPR Avg.

Acc Avg. F1 Score Avg.

5 10 15 20 25 5 10 15 20 25

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

Signal Size

m
et

ric
s

Method

Lasso

MIP_reg

MIP_1edge

MIP_glasso

MIP_lasso

Performance measures for n = 100

Figure A.41 Variation of performance metrics with graph size and at edge probability 25 % on unseen
dataset drawn from a sample size of 100 (test data size 20 %). The metrics are computed for graphs

selected via eBIC and are averaged results over 100 different signals.

A Appendix

110

AUC PR Avg. AUC ROC Avg.

TPR Avg. FPR Avg.

Acc Avg. F1 Score Avg.

5 10 15 20 25 5 10 15 20 25

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

Signal Size

m
et

ric
s

Method

Lasso

MIP_reg

MIP_1edge

MIP_glasso

MIP_lasso

Performance measures for n = 1000

Figure A.42 Variation of performance metrics with graph size and at edge probability 25 % on unseen
dataset drawn from a sample size of 1000 (test data size 20 %). The metrics are computed for graphs

selected via eBIC and are averaged results over 100 different signals.

A.10 Prediction with eBIC when edge probability 25 %: Comparison along signal sizes

111

AUC PR Avg. AUC ROC Avg.

TPR Avg. FPR Avg.

Acc Avg. F1 Score Avg.

5 10 15 20 25 5 10 15 20 25

0.00

0.25

0.50

0.75

0.00

0.25

0.50

0.75

0.00

0.25

0.50

0.75

Signal Size

m
et

ric
s

Method

Lasso

MIP_reg

MIP_1edge

MIP_glasso

MIP_lasso

Performance measures for n = 1e+05

Figure A.43 Variation of performance metrics with graph size and at edge probability 25 % on unseen
dataset drawn from a sample size of 100,000 (test data size 20 %). The metrics are computed for graphs

selected via eBIC and are averaged results over 100 different signals.

A Appendix

112

AUC PR Avg. AUC ROC Avg.

TPR Avg. FPR Avg.

Acc Avg. F1 Score Avg.

5 10 15 20 25 5 10 15 20 25

0.25

0.50

0.75

0.25

0.50

0.75

0.25

0.50

0.75

Signal Size

m
et

ric
s

Method

Lasso

MIP_reg

MIP_1edge

MIP_glasso

MIP_lasso

Performance measures for n = Inf

Figure A.44 Variation of performance metrics with graph size and at edge probability 25 % on unseen
dataset drawn from population covariance matrix (test data size 20 %). The metrics are computed for

graphs selected via eBIC and are averaged results over 100 different signals.

A.11 Prediction with eBIC when edge probability 5 %: Comparison along sample size

113

A.11 Prediction with eBIC when edge probability 5 %: Comparison along
sample size

AUC PR Avg. AUC ROC Avg.

TPR Avg. FPR Avg.

Acc Avg. F1 Score Avg.

100 200 500 1000 5000 10000 1e+05 Inf 100 200 500 1000 5000 10000 1e+05 Inf

0.00

0.25

0.50

0.75

0.00

0.25

0.50

0.75

0.00

0.25

0.50

0.75

Sample size

m
et

ric
s

Method

Lasso

MIP_reg

MIP_1edge

MIP_glasso

MIP_lasso

Performance measures for p = 5

Figure A.45 Variation of performance metrics with sample size and at edge probability 5 % on unseen
dataset drawn from a graph size 𝑝 = 5 (test data size 20 %). The metrics are computed for graphs selected

via eBIC and are averaged results over 100 different signals.

A Appendix

114

AUC PR Avg. AUC ROC Avg.

TPR Avg. FPR Avg.

Acc Avg. F1 Score Avg.

100 200 500 1000 5000 10000 1e+05 Inf 100 200 500 1000 5000 10000 1e+05 Inf

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Sample size

m
et

ric
s

Method

Lasso

MIP_reg

MIP_1edge

MIP_glasso

MIP_lasso

Performance measures for p = 10

Figure A.46 Variation of performance metrics with graph size and at edge probability 5 % on unseen
dataset drawn from a graph size 𝑝 = 10 (test data size 20 %). The metrics are computed for graphs selected

via eBIC and are averaged results over 100 different signals.

A.11 Prediction with eBIC when edge probability 5 %: Comparison along sample size

115

AUC PR Avg. AUC ROC Avg.

TPR Avg. FPR Avg.

Acc Avg. F1 Score Avg.

100 200 500 1000 5000 10000 1e+05 Inf 100 200 500 1000 5000 10000 1e+05 Inf

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Sample size

m
et

ric
s

Method

Lasso

MIP_reg

MIP_1edge

MIP_glasso

MIP_lasso

Performance measures for p = 15

Figure A.47 Variation of performance metrics with graph size and at edge probability 5 % on unseen
dataset drawn from a graph size 𝑝 = 15 (test data size 20 %). The metrics are computed for graphs selected

via eBIC and are averaged results over 100 different signals.

A Appendix

116

AUC PR Avg. AUC ROC Avg.

TPR Avg. FPR Avg.

Acc Avg. F1 Score Avg.

100 200 500 1000 5000 10000 1e+05 Inf 100 200 500 1000 5000 10000 1e+05 Inf

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Sample size

m
et

ric
s

Method

Lasso

MIP_reg

MIP_1edge

MIP_glasso

MIP_lasso

Performance measures for p = 20

Figure A.48 Variation of performance metrics with graph size and at edge probability 5 % on unseen
dataset drawn from a graph size 𝑝 = 20 (test data size 20 %). The metrics are computed for graphs selected

via eBIC and are averaged results over 100 different signals.

A.11 Prediction with eBIC when edge probability 5 %: Comparison along sample size

117

AUC PR Avg. AUC ROC Avg.

TPR Avg. FPR Avg.

Acc Avg. F1 Score Avg.

100 200 500 1000 5000 10000 1e+05 Inf 100 200 500 1000 5000 10000 1e+05 Inf

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Sample size

m
et

ric
s

Method

Lasso

MIP_reg

MIP_1edge

MIP_glasso

MIP_lasso

Performance measures for p = 25

Figure A.49 Variation of performance metrics with graph size and at edge probability 5 % on unseen
dataset drawn from a graph size 𝑝 = 25 (test data size 20 %). The metrics are computed for graphs selected

via eBIC and are averaged results over 100 different signals.

A Appendix

118

A.12 Prediction with eBIC when edge probability 25 %: Comparison
along sample sizes

AUC PR Avg. AUC ROC Avg.

TPR Avg. FPR Avg.

Acc Avg. F1 Score Avg.

100 200 500 1000 5000 10000 1e+05 Inf 100 200 500 1000 5000 10000 1e+05 Inf

0.00

0.25

0.50

0.75

0.00

0.25

0.50

0.75

0.00

0.25

0.50

0.75

Sample size

m
et

ric
s

Method

Lasso

MIP_reg

MIP_1edge

MIP_glasso

MIP_lasso

Performance measures for p = 5

Figure A.50 Variation of performance metrics with graph size and at edge probability 25 % on unseen
dataset drawn from a graph size 𝑝 = 5 (test data size 20 %). The metrics are computed for graphs selected

via eBIC and are averaged results over 100 different signals.

A.12 Prediction with eBIC when edge probability 25 %: Comparison along sample sizes

119

AUC PR Avg. AUC ROC Avg.

TPR Avg. FPR Avg.

Acc Avg. F1 Score Avg.

100 200 500 1000 5000 10000 1e+05 Inf 100 200 500 1000 5000 10000 1e+05 Inf

0.00

0.25

0.50

0.75

0.00

0.25

0.50

0.75

0.00

0.25

0.50

0.75

Sample size

m
et

ric
s

Method

Lasso

MIP_reg

MIP_1edge

MIP_glasso

MIP_lasso

Performance measures for p = 10

Figure A.51 Variation of performance metrics with graph size and at edge probability 25 % on unseen
dataset drawn from a graph size 𝑝 = 10 (test data size 20 %). The metrics are computed for graphs selected

via eBIC and are averaged results over 100 different signals.

A Appendix

120

AUC PR Avg. AUC ROC Avg.

TPR Avg. FPR Avg.

Acc Avg. F1 Score Avg.

100 200 500 1000 5000 10000 1e+05 Inf 100 200 500 1000 5000 10000 1e+05 Inf

0.00

0.25

0.50

0.75

0.00

0.25

0.50

0.75

0.00

0.25

0.50

0.75

Sample size

m
et

ric
s

Method

Lasso

MIP_reg

MIP_1edge

MIP_glasso

MIP_lasso

Performance measures for p = 15

Figure A.52 Variation of performance metrics with graph size and at edge probability 25 % on unseen
dataset drawn from a graph size 𝑝 = 15 (test data size 20 %). The metrics are computed for graphs selected

via eBIC and are averaged results over 100 different signals.

A.12 Prediction with eBIC when edge probability 25 %: Comparison along sample sizes

121

AUC PR Avg. AUC ROC Avg.

TPR Avg. FPR Avg.

Acc Avg. F1 Score Avg.

100 200 500 1000 5000 10000 1e+05 Inf 100 200 500 1000 5000 10000 1e+05 Inf

0.00

0.25

0.50

0.75

0.00

0.25

0.50

0.75

0.00

0.25

0.50

0.75

Sample size

m
et

ric
s

Method

Lasso

MIP_reg

MIP_1edge

MIP_glasso

MIP_lasso

Performance measures for p = 20

Figure A.53 Variation of performance metrics with graph size and at edge probability 25 % on unseen
dataset drawn from a graph size 𝑝 = 20 (test data size 20 %). The metrics are computed for graphs selected

via eBIC and are averaged results over 100 different signals.

A Appendix

122

AUC PR Avg. AUC ROC Avg.

TPR Avg. FPR Avg.

Acc Avg. F1 Score Avg.

100 200 500 1000 5000 10000 1e+05 Inf 100 200 500 1000 5000 10000 1e+05 Inf

0.0

0.2

0.4

0.6

0.8

0.0

0.2

0.4

0.6

0.8

0.0

0.2

0.4

0.6

0.8

Sample size

m
et

ric
s

Method

Lasso

MIP_reg

MIP_1edge

MIP_glasso

MIP_lasso

Performance measures for p = 25

Figure A.54 Variation of performance metrics with graph size and at edge probability 25 % on unseen
dataset drawn from a graph size 𝑝 = 25 (test data size 20 %). The metrics are computed for graphs selected

via eBIC and are averaged results over 100 different signals.

123

List of Figures

1.1 Branching: A tree of subproblems by partitioning the feasible set ℱ 8

2.1 Number of false positives generated across all the initializations for a graph with
𝑝 = 5 nodes and 10 true edges (including self-loops) using Algorithm 2 17

2.2 Number of false positives generated across all the initializations for a graph with
𝑝 = 5 nodes and 10 true edges (including self-loops) using Algorithm 3 18

3.1 Variation of performance metrics with graph size for a total sample size of 100
(training data size of 80). The metrics were computed along the hyper-parameter
path and are averaged over 100 different signals with edge probability of 5 %. 33

3.2 Variation of performance metrics with graph size for a total sample size of 1000
(training data size of 800). The metrics were computed along the hyper-parameter
path and are averaged over 100 different signals with edge probability of 5 %. 34

3.3 Variation of performance metrics with graph size for a total sample size of 10000
(training data size of 8000). The metrics were computed along the hyper-parameter
path and are averaged over 100 different signals with edge probability of 5 %. 35

3.4 Variation of performance metrics with graph size for a total sample size of 100,000
(training data size of 80,000). The metrics were computed along the hyper-parameter
path and are averaged over 100 different signals with edge probability of 5 %. 36

3.5 Variation of performance metrics with graph size directly using the population
covariance matrix. The metrics were computed along the hyper-parameter path
and are averaged over 100 different signals with edge probability of 5 %. 37

3.6 Variation of performance metrics with graph size for a total sample size of 100
(training data size of 80). The metrics were computed along the hyper-parameter
path and are averaged over 100 different signals with edge probability of 25 %. . . . 38

3.7 Variation of performance metrics with graph size for a total sample size of 1000
(training data size of 800). The metrics were computed along the hyper-parameter
path and are averaged over 100 different signals with edge probability of 25 %. . . . 39

3.8 Variation of performance metrics with graph size for a total sample size of 10000
(training data size of 8000). The metrics were computed along the hyper-parameter
path and are averaged over 100 different signals with edge probability of 25 %. . . . 40

3.9 Variation of performance metrics with graph size for a total sample size of 100,000
(training data size of 80,000). The metrics were computed along the hyper-parameter
path and are averaged over 100 different signals with edge probability of 25 %. . . . 41

3.10 Variation of performance metrics with graph size directly using the population
covariance matrix. The metrics were computed along the hyper-parameter path
and are averaged over 100 different signals with edge probability of 25 %. 42

3.11 Variation of performance metrics with the total sample size (80 % training and 20 %
test). The metrics were computed using the results from training along the hyper-
parameter path and are averaged over 100 different signals with edge probability of
5 %. 43

List of Figures

124

3.12 Variation of performance metrics with the total sample size (80 % training and 20 %
test). The metrics were computed using the results from training along the hyper-
parameter path and are averaged over 100 different signals with edge probability of
5 %. 44

3.13 Variation of performance metrics with the total sample size (80 % training and 20 %
test). The metrics were computed using the results from training along the hyper-
parameter path and are averaged over 100 different signals with edge probability of
5 %. 45

3.14 Variation of performance metrics with the total sample size (80 % training and 20 %
test). The metrics were computed using the results from training along the hyper-
parameter path and are averaged over 100 different signals with edge probability of
5 %. 46

3.15 Variation of performance metrics with the total sample size (80 % training and 20 %
test). The metrics were computed using the results from training along the hyper-
parameter path and are averaged over 100 different signals with edge probability of
5 %. 47

3.16 Variation of performance metrics with the total sample size (80 % training and 20 %
test). The metrics were computed using the results from training along the hyper-
parameter path and are averaged over 100 different signals with edge probability of
25 %. 48

3.17 Variation of performance metrics with the total sample size (80 % training and 20 %
test). The metrics were computed using the results from training along the hyper-
parameter path and are averaged over 100 different signals with edge probability of
25 %. 49

3.18 Variation of performance metrics with the total sample size (80 % training and 20 %
test). The metrics were computed using the results from training along the hyper-
parameter path and are averaged over 100 different signals with edge probability of
25 %. 50

3.19 Variation of performance metrics with the total sample size (80 % training and 20 %
test). The metrics were computed using the results from training along the hyper-
parameter path and are averaged over 100 different signals with edge probability of
25 %. 51

3.20 Variation of performance metrics with the total sample size (80 % training and 20 %
test). The metrics were computed using the results from training along the hyper-
parameter path and are averaged over 100 different signals with edge probability of
25 %. 52

3.21 Variation of performance metrics with graph size and at edge probability 5 % on
unseen dataset drawn from a sample size of 10,000 (test data size 20 %). The metrics
are computed for graphs selected via AIC and are averaged results over 100 different
signals. 55

3.22 Variation of performance metrics with graph size and at edge probability 5 % on
unseen dataset drawn from a sample size of 10,000 (test data size 20 %). The metrics
are computed for graphs selected via BIC and are averaged results over 100 different
signals. 56

3.23 Variation of performance metrics with graph size and at edge probability 5 % on
unseen dataset drawn from a sample size of 10,000 (test data size 20 %). The
metrics are computed for graphs selected via EBIC and are averaged results over
100 different signals. 57

List of Figures

125

3.24 Variation of performance metrics with graph size and at edge probability 25 % on
unseen dataset drawn from a sample size of 10,000 (test data size 20 %). The metrics
are computed for graphs selected via AIC and are averaged results over 100 different
signals. 58

3.25 Variation of performance metrics with graph size and at edge probability 25 % on
unseen dataset drawn from a sample size of 10,000 (test data size 20 %). The metrics
are computed for graphs selected via BIC and are averaged results over 100 different
signals. 59

3.26 Variation of performance metrics with graph size and at edge probability 25 %
on unseen dataset drawn from a sample size of 10,000 (test data size 20 %). The
metrics are computed for graphs selected via EBIC and are averaged results over
100 different signals. 60

3.27 Dependencies between genes in the cystolic pathway module. (a) by the modified
GGM approach (Wille et al.); (b) by lasso ; (c) by BSreg and (d) by BSlasso. The
solid undirected lines in the GGM approach represent the connections, whereas
the undirected edge between MECPS and GGPPS in the other methods represent a
bundle of directed edges (both bi- and uni-directed). n.c refers to "no connection"
and it is followed by gene names for which there is no connection among a bundle
of directed edges. Dotted directed edges mark the metabolic network, and were not
part of the GGM and not part of comparison. 65

3.28 Dependencies between genes responsible for protein sythiesis within mitochon-
drion. (a) by the modified GGM approach (Wille et al.); (b) by lasso ; (c) by BSreg
and (d) by BSlasso. The solid undirected lines in the GGM approach represent the
connections. 65

3.29 Dependencies between genes in the plastidal pathway module. (a) by the modified
GGM approach (Wille et al.); (b) by lasso ; (c) by BSglasso and (d) by BSlasso. The
solid undirected lines in (a) connecting genes represent the GGM. Dotted directed
edges mark the metabolic network, and were not part of the GGM and not part of
comparison. 66

A.1 Variation of performance metrics with graph size and at edge probability 5 % on
unseen dataset drawn from a sample size of 100 (test data size 20 %). The metrics are
computed for graphs selected via AIC and are averaged results over 100 different
signals. 69

A.2 Variation of performance metrics with graph size and at edge probability 5 % on
unseen dataset drawn from a sample size of 1000 (test data size 20 %). The metrics
are computed for graphs selected via AIC and are averaged results over 100 different
signals. 70

A.3 Variation of performance metrics with graph size and at edge probability 5 % on
unseen dataset drawn from a sample size of 100,000 (test data size 20 %). The metrics
are computed for graphs selected via AIC and are averaged results over 100 different
signals. 71

A.4 Variation of performance metrics with graph size and at edge probability 5 % on
unseen dataset drawn from population covariance matrix (test data size 20 %). The
metrics are computed for graphs selected via AIC and are averaged results over 100
different signals. 72

A.5 Variation of performance metrics with graph size and at edge probability 25 % on
unseen dataset drawn from a sample size of 100 (test data size 20 %). The metrics are
computed for graphs selected via AIC and are averaged results over 100 different
signals. 73

List of Figures

126

A.6 Variation of performance metrics with graph size and at edge probability 25 % on
unseen dataset drawn from a sample size of 1000 (test data size 20 %). The metrics
are computed for graphs selected via AIC and are averaged results over 100 different
signals. 74

A.7 Variation of performance metrics with graph size and at edge probability 25 % on
unseen dataset drawn from a sample size of 100,000 (test data size 20 %). The metrics
are computed for graphs selected via AIC and are averaged results over 100 different
signals. 75

A.8 Variation of performance metrics with graph size and at edge probability 25 % on
unseen dataset drawn from population covariance matrix (test data size 20 %). The
metrics are computed for graphs selected via AIC and are averaged results over 100
different signals. 76

A.9 Variation of performance metrics with sample size and at edge probability 5 % on
unseen dataset drawn from a graph size 𝑝 = 5 (test data size 20 %). The metrics are
computed for graphs selected via AIC and are averaged results over 100 different
signals. 77

A.10 Variation of performance metrics with graph size and at edge probability 5 % on
unseen dataset drawn from a graph size 𝑝 = 10 (test data size 20 %). The metrics are
computed for graphs selected via AIC and are averaged results over 100 different
signals. 78

A.11 Variation of performance metrics with graph size and at edge probability 5 % on
unseen dataset drawn from a graph size 𝑝 = 15 (test data size 20 %). The metrics are
computed for graphs selected via AIC and are averaged results over 100 different
signals. 79

A.12 Variation of performance metrics with graph size and at edge probability 5 % on
unseen dataset drawn from a graph size 𝑝 = 20 (test data size 20 %). The metrics are
computed for graphs selected via AIC and are averaged results over 100 different
signals. 80

A.13 Variation of performance metrics with graph size and at edge probability 5 % on
unseen dataset drawn from a graph size 𝑝 = 25 (test data size 20 %). The metrics are
computed for graphs selected via AIC and are averaged results over 100 different
signals. 81

A.14 Variation of performance metrics with graph size and at edge probability 25 % on
unseen dataset drawn from a graph size 𝑝 = 5 (test data size 20 %). The metrics are
computed for graphs selected via AIC and are averaged results over 100 different
signals. 82

A.15 Variation of performance metrics with graph size and at edge probability 25 % on
unseen dataset drawn from a graph size 𝑝 = 10 (test data size 20 %). The metrics are
computed for graphs selected via AIC and are averaged results over 100 different
signals. 83

A.16 Variation of performance metrics with graph size and at edge probability 25 % on
unseen dataset drawn from a graph size 𝑝 = 15 (test data size 20 %). The metrics are
computed for graphs selected via AIC and are averaged results over 100 different
signals. 84

A.17 Variation of performance metrics with graph size and at edge probability 25 % on
unseen dataset drawn from a graph size 𝑝 = 20 (test data size 20 %). The metrics are
computed for graphs selected via AIC and are averaged results over 100 different
signals. 85

List of Figures

127

A.18 Variation of performance metrics with graph size and at edge probability 25 % on
unseen dataset drawn from a graph size 𝑝 = 25 (test data size 20 %). The metrics are
computed for graphs selected via AIC and are averaged results over 100 different
signals. 86

A.19 Variation of performance metrics with graph size and at edge probability 5 % on
unseen dataset drawn from a sample size of 100 (test data size 20 %). The metrics
are computed for graphs selected via BIC and are averaged results over 100 different
signals. 87

A.20 Variation of performance metrics with graph size and at edge probability 5 % on
unseen dataset drawn from a sample size of 1000 (test data size 20 %). The metrics
are computed for graphs selected via BIC and are averaged results over 100 different
signals. 88

A.21 Variation of performance metrics with graph size and at edge probability 5 % on
unseen dataset drawn from a sample size of 100,000 (test data size 20 %). The metrics
are computed for graphs selected via BIC and are averaged results over 100 different
signals. 89

A.22 Variation of performance metrics with graph size and at edge probability 5 % on
unseen dataset drawn from population covariance matrix (test data size 20 %). The
metrics are computed for graphs selected via BIC and are averaged results over 100
different signals. 90

A.23 Variation of performance metrics with graph size and at edge probability 25 % on
unseen dataset drawn from a sample size of 100 (test data size 20 %). The metrics
are computed for graphs selected via BIC and are averaged results over 100 different
signals. 91

A.24 Variation of performance metrics with graph size and at edge probability 25 % on
unseen dataset drawn from a sample size of 1000 (test data size 20 %). The metrics
are computed for graphs selected via BIC and are averaged results over 100 different
signals. 92

A.25 Variation of performance metrics with graph size and at edge probability 25 % on
unseen dataset drawn from a sample size of 100,000 (test data size 20 %). The metrics
are computed for graphs selected via BIC and are averaged results over 100 different
signals. 93

A.26 Variation of performance metrics with graph size and at edge probability 25 % on
unseen dataset drawn from population covariance matrix (test data size 20 %). The
metrics are computed for graphs selected via BIC and are averaged results over 100
different signals. 94

A.27 Variation of performance metrics with sample size and at edge probability 5 % on
unseen dataset drawn from a graph size 𝑝 = 5 (test data size 20 %). The metrics are
computed for graphs selected via BIC and are averaged results over 100 different
signals. 95

A.28 Variation of performance metrics with graph size and at edge probability 5 % on
unseen dataset drawn from a graph size 𝑝 = 10 (test data size 20 %). The metrics are
computed for graphs selected via BIC and are averaged results over 100 different
signals. 96

A.29 Variation of performance metrics with graph size and at edge probability 5 % on
unseen dataset drawn from a graph size 𝑝 = 15 (test data size 20 %). The metrics are
computed for graphs selected via BIC and are averaged results over 100 different
signals. 97

List of Figures

128

A.30 Variation of performance metrics with graph size and at edge probability 5 % on
unseen dataset drawn from a graph size 𝑝 = 20 (test data size 20 %). The metrics are
computed for graphs selected via BIC and are averaged results over 100 different
signals. 98

A.31 Variation of performance metrics with graph size and at edge probability 5 % on
unseen dataset drawn from a graph size 𝑝 = 25 (test data size 20 %). The metrics are
computed for graphs selected via BIC and are averaged results over 100 different
signals. 99

A.32 Variation of performance metrics with graph size and at edge probability 25 % on
unseen dataset drawn from a graph size 𝑝 = 5 (test data size 20 %). The metrics are
computed for graphs selected via BIC and are averaged results over 100 different
signals. 100

A.33 Variation of performance metrics with graph size and at edge probability 25 % on
unseen dataset drawn from a graph size 𝑝 = 10 (test data size 20 %). The metrics are
computed for graphs selected via BIC and are averaged results over 100 different
signals. 101

A.34 Variation of performance metrics with graph size and at edge probability 25 % on
unseen dataset drawn from a graph size 𝑝 = 15 (test data size 20 %). The metrics are
computed for graphs selected via BIC and are averaged results over 100 different
signals. 102

A.35 Variation of performance metrics with graph size and at edge probability 25 % on
unseen dataset drawn from a graph size 𝑝 = 20 (test data size 20 %). The metrics are
computed for graphs selected via BIC and are averaged results over 100 different
signals. 103

A.36 Variation of performance metrics with graph size and at edge probability 25 % on
unseen dataset drawn from a graph size 𝑝 = 25 (test data size 20 %). The metrics are
computed for graphs selected via BIC and are averaged results over 100 different
signals. 104

A.37 Variation of performance metrics with graph size and at edge probability 5 % on
unseen dataset drawn from a sample size of 100 (test data size 20 %). The metrics are
computed for graphs selected via eBIC and are averaged results over 100 different
signals. 105

A.38 Variation of performance metrics with graph size and at edge probability 5 % on
unseen dataset drawn from a sample size of 1000 (test data size 20 %). The metrics
are computed for graphs selected via eBIC and are averaged results over 100 different
signals. 106

A.39 Variation of performance metrics with graph size and at edge probability 5 % on
unseen dataset drawn from a sample size of 100,000 (test data size 20 %). The
metrics are computed for graphs selected via eBIC and are averaged results over 100
different signals. 107

A.40 Variation of performance metrics with graph size and at edge probability 5 % on
unseen dataset drawn from population covariance matrix (test data size 20 %). The
metrics are computed for graphs selected via eBIC and are averaged results over 100
different signals. 108

A.41 Variation of performance metrics with graph size and at edge probability 25 % on
unseen dataset drawn from a sample size of 100 (test data size 20 %). The metrics are
computed for graphs selected via eBIC and are averaged results over 100 different
signals. 109

List of Figures

129

A.42 Variation of performance metrics with graph size and at edge probability 25 % on
unseen dataset drawn from a sample size of 1000 (test data size 20 %). The metrics
are computed for graphs selected via eBIC and are averaged results over 100 different
signals. 110

A.43 Variation of performance metrics with graph size and at edge probability 25 % on
unseen dataset drawn from a sample size of 100,000 (test data size 20 %). The
metrics are computed for graphs selected via eBIC and are averaged results over 100
different signals. 111

A.44 Variation of performance metrics with graph size and at edge probability 25 % on
unseen dataset drawn from population covariance matrix (test data size 20 %). The
metrics are computed for graphs selected via eBIC and are averaged results over 100
different signals. 112

A.45 Variation of performance metrics with sample size and at edge probability 5 % on
unseen dataset drawn from a graph size 𝑝 = 5 (test data size 20 %). The metrics are
computed for graphs selected via eBIC and are averaged results over 100 different
signals. 113

A.46 Variation of performance metrics with graph size and at edge probability 5 % on
unseen dataset drawn from a graph size 𝑝 = 10 (test data size 20 %). The metrics are
computed for graphs selected via eBIC and are averaged results over 100 different
signals. 114

A.47 Variation of performance metrics with graph size and at edge probability 5 % on
unseen dataset drawn from a graph size 𝑝 = 15 (test data size 20 %). The metrics are
computed for graphs selected via eBIC and are averaged results over 100 different
signals. 115

A.48 Variation of performance metrics with graph size and at edge probability 5 % on
unseen dataset drawn from a graph size 𝑝 = 20 (test data size 20 %). The metrics are
computed for graphs selected via eBIC and are averaged results over 100 different
signals. 116

A.49 Variation of performance metrics with graph size and at edge probability 5 % on
unseen dataset drawn from a graph size 𝑝 = 25 (test data size 20 %). The metrics are
computed for graphs selected via eBIC and are averaged results over 100 different
signals. 117

A.50 Variation of performance metrics with graph size and at edge probability 25 % on
unseen dataset drawn from a graph size 𝑝 = 5 (test data size 20 %). The metrics are
computed for graphs selected via eBIC and are averaged results over 100 different
signals. 118

A.51 Variation of performance metrics with graph size and at edge probability 25 % on
unseen dataset drawn from a graph size 𝑝 = 10 (test data size 20 %). The metrics are
computed for graphs selected via eBIC and are averaged results over 100 different
signals. 119

A.52 Variation of performance metrics with graph size and at edge probability 25 % on
unseen dataset drawn from a graph size 𝑝 = 15 (test data size 20 %). The metrics are
computed for graphs selected via eBIC and are averaged results over 100 different
signals. 120

A.53 Variation of performance metrics with graph size and at edge probability 25 % on
unseen dataset drawn from a graph size 𝑝 = 20 (test data size 20 %). The metrics are
computed for graphs selected via eBIC and are averaged results over 100 different
signals. 121

List of Figures

130

A.54 Variation of performance metrics with graph size and at edge probability 25 % on
unseen dataset drawn from a graph size 𝑝 = 25 (test data size 20 %). The metrics are
computed for graphs selected via eBIC and are averaged results over 100 different
signals. 122

131

List of Tables

3.1 Training time (in seconds) along a path of hyper-parameters averaged across 100
different signals with edge probability 5 % for each (𝑝, 𝑛) pair. 61

3.2 Training time (in seconds) along a path of hyper-parameters averaged across 100
different signals with edge probability 25 % for each (𝑝, 𝑛) pair. 61

3.3 Gene connections detected by each method in the Cystolic pathway in comparison
to the connections detected by the modified GGM approach by Wille et al. [Wil+04] 63

3.4 Gene connections detected by each method, that are responsible for protein sythe-
sis within the mitochondrion, in comparison to the connections detected by the
modified GGM approach by Wille et al. [Wil+04] . 63

3.5 Gene connections detected by each method in the plastidal pathway in comparison
to the connections detected by the modified GGM approach by Wille et al. [Wil+04].
Dotted directed edges mark the metabolic network, and were not part of the GGM
and not part of comparison. 63

133

Bibliography

[AW13] T. Achterberg and R. Wunderling. “Mixed integer programming: Analyzing 12 years of
progress”. In: Facets of combinatorial optimization: Festschrift for martin grötschel. Springer,
2013, pp. 449–481.

[Ach+20] T. Achterberg et al. “Presolve reductions in mixed integer programming”. In: IN-
FORMS Journal on Computing 32.2 (2020), pp. 473–506.

[Aka73] H Akaike. “Information theory and an extension of the maximum likelihood prin-
ciple”. In: Second International Symposium on Information Theory. Akademia Kiadom.
1973, pp. 267–281.

[Amé+20] C. Améndola et al. “Structure learning for cyclic linear causal models”. In: Conference
on Uncertainty in Artificial Intelligence. PMLR. 2020, pp. 999–1008.

[BKM67] E. M. L. Beale, M. G. Kendall, and D. Mann. “The discarding of variables in multivariate
analysis”. In: Biometrika 54.3-4 (1967), pp. 357–366.

[bT20] T. berg and E. Towle. Non-Convex Quadratic Optimization. 2020.
[BKM16] D. Bertsimas, A. King, and R. Mazumder. “Best subset selection via a modern opti-

mization lens”. In: (2016).
[BKM15] D. Bertsimas, A. King, and R. Mazumder. “Supplement to “Best subset selection via a

modern optimization lens.”” In: (2015).
[BW05] D. Bertsimas and R. Weismantel. “Optimization over integers”. In: (No Title) (2005).
[BK10] H. S. Bhat and N. Kumar. “On the derivation of the bayesian information criterion”.

In: School of Natural Sciences, University of California 99 (2010).
[Bix+04] R. E. Bixby et al. “Mixed-integer programming: A progress report”. In: The sharpest

cut: the impact of Manfred Padberg and his work. SIAM, 2004, pp. 309–325.
[Blu+87] A. Blumer et al. “Occam’s razor”. In: Information processing letters 24.6 (1987), pp. 377–

380.
[CC08] J. Chen and Z. Chen. “Extended Bayesian information criteria for model selection with

large model spaces”. In: Biometrika 95.3 (2008), pp. 759–771.
[DDK22] P. Dettling, M. Drton, and M. Kolar. “On the Lasso for Graphical Continuous Lyapunov

Models”. In: arXiv preprint arXiv:2208.13572 (2022).
[Det+22] P. Dettling et al. “Identifiability in Continuous Lyapunov Models”. In: arXiv preprint

arXiv:2209.03835 (2022).
[DJ94] D. L. Donoho and I. M. Johnstone. “Ideal spatial adaptation by wavelet shrinkage”. In:

biometrika 81.3 (1994), pp. 425–455.
[DS98] N. R. Draper and H. Smith. Applied regression analysis. Vol. 326. John Wiley & Sons,

1998.
[Drt18] M. Drton. “Algebraic problems in structural equation modeling”. In: The 50th anniver-

sary of Gröbner bases. Vol. 77. Mathematical Society of Japan, 2018, pp. 35–87.
[DFW19] M. Drton, C. Fox, and Y. S. Wang. “Computation of maximum likelihood estimates in

cyclic structural equation models”. In: (2019).
[Drt+23] M. Drton et al. Isoprenoid gene network in Arabidopsis thaliana. 2023.
[Efr66] M Efroymson. “Stepwise regression–a backward and forward look”. In: Eastern Re-

gional Meetings of the Institute of Mathematical Statistics. 1966, pp. 27–29.
[Fit19] K. Fitch. “Learning directed graphical models from Gaussian data”. In: arXiv preprint

arXiv:1906.08050 (2019).

Bibliography

134

[FL98] R. Fletcher and S. Leyffer. “Numerical experience with lower bounds for MIQP branch-
and-bound”. In: SIAM Journal on Optimization 8.2 (1998), pp. 604–616.

[FD10] R. Foygel and M. Drton. “Extended Bayesian information criteria for Gaussian graph-
ical models”. In: Advances in neural information processing systems 23 (2010).

[FHT08] J. Friedman, T. Hastie, and R. Tibshirani. “Sparse inverse covariance estimation with
the graphical lasso”. In: Biostatistics 9.3 (2008), pp. 432–441.

[Fri+07] J. Friedman et al. “Pathwise coordinate optimization”. In: (2007).
[GM19] S. Gaïffas and G. Matulewicz. “Sparse inference of the drift of a high-dimensional

Ornstein–Uhlenbeck process”. In: Journal of Multivariate Analysis 169 (2019), pp. 1–20.
[Gir21] C. Giraud. Introduction to high-dimensional statistics. CRC Press, 2021.
[Guo+15] P. Guo et al. “Improved variable selection algorithm using a LASSO-type penalty,

with an application to assessing hepatitis B infection relevant factors in community
residents”. In: PloS one 10.7 (2015), e0134151.

[Gur23a] Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual. 2023.
[Gur23b] Gurobi Optimization, LLC. Gurobi optimizer reference manual. 2023.
[HTT17a] T. Hastie, R. Tibshirani, and R. J. Tibshirani. Best Subset Selection and Related Tools.

https://github.com/ryantibs/best-subset. 2017.
[HTT17b] T. Hastie, R. Tibshirani, and R. J. Tibshirani. “Extended comparisons of best subset

selection, forward stepwise selection, and the lasso”. In: arXiv preprint arXiv:1707.08692
(2017).

[HL67] R. R. Hocking and R. Leslie. “Selection of the best subset in regression analysis”. In:
Technometrics 9.4 (1967), pp. 531–540.

[HEH12] A. Hyttinen, F. Eberhardt, and P. O. Hoyer. “Learning linear cyclic causal models with
latent variables”. In: The Journal of Machine Learning Research 13.1 (2012), pp. 3387–3439.

[L92] A. L. Stochastic Differential Equations: Theory and Applications. Kreiger Publishing Com-
pany, 1992.

[Lei23] Leibniz-Rechenzentrum (LRZ). Parallelization using R: LRZ Documentation. 2023.
[MFH11] R. Mazumder, J. H. Friedman, and T. Hastie. “Sparsenet: Coordinate descent with

nonconvex penalties”. In: Journal of the American Statistical Association 106.495 (2011),
pp. 1125–1138.

[Moz+22] Z. Mozafari et al. “Application of the LAD-LASSO as a dimensional reduction tech-
nique in the ANN-based QSAR study: Discovery of potent inhibitors using molecular
docking simulation”. In: Chemometrics and Intelligent Laboratory Systems 222 (2022),
p. 104510.

[Nes13] Y. Nesterov. “Gradient methods for minimizing composite functions”. In: Mathematical
programming 140.1 (2013), pp. 125–161.

[Nes03] Y. Nesterov. Introductory lectures on convex optimization: A basic course. Vol. 87. Springer
Science & Business Media, 2003.

[Pfe+22] P. Pfeiffer et al. “Weighted LASSO variable selection for the analysis of FTIR spectra
applied to the prediction of engine oil degradation”. In: Chemometrics and Intelligent
Laboratory Systems 228 (2022), p. 104617.

[QG95] I. Quesada and I. E. Grossmann. “A global optimization algorithm for linear fractional
and bilinear programs”. In: Journal of Global Optimization 6 (1995), pp. 39–76.

[Rad23] R. Radhakrishnan. Learning Graphical Lyapunov models using best-subset selection methods.
https://github.com/bluearrow98/Master-Thesis. 2023.

[Ric13] T. S. Richardson. “A discovery algorithm for directed cyclic graphs”. In: arXiv preprint
arXiv:1302.3599 (2013).

[Sch78] G. Schwarz. “Estimating the dimension of a model”. In: The annals of statistics (1978),
pp. 461–464.

[Sha97] J. Shao. “An asymptotic theory for linear model selection”. In: Statistica sinica (1997),
pp. 221–242.

https://github.com/ryantibs/best-subset
https://github.com/bluearrow98/Master-Thesis

Bibliography

135

[Sto77] M. Stone. “An asymptotic equivalence of choice of model by cross-validation and
Akaike’s criterion”. In: Journal of the Royal Statistical Society: Series B (Methodological)
39.1 (1977), pp. 44–47.

[Tib96] R. Tibshirani. “Regression shrinkage and selection via the lasso”. In: Journal of the Royal
Statistical Society Series B: Statistical Methodology 58.1 (1996), pp. 267–288.

[Tow22] E. Towle. Why does Gurobi report that my convex model is non-convex? 2022.
[VH20a] G. Varando and N. R. Hansen. “Graphical continuous Lyapunov models”. In: Confer-

ence on Uncertainty in Artificial Intelligence. PMLR. 2020, pp. 989–998.
[VH20b] G. Varando and N. R. Hansen. Simulations and Experiments for Graphical Continuous

Lyapunov Models. https://github.com/gherardovarando/gclm_experiments.
2020.

[Wel82] W. J. Welch. “Algorithmic complexity: three NP-hard problems in computational statis-
tics”. In: Journal of Statistical Computation and Simulation 15.1 (1982), pp. 17–25.

[Wil+04] A. Wille et al. “Sparse graphical Gaussian modeling of the isoprenoid gene network
in Arabidopsis thaliana”. In: Genome biology 5.11 (2004), pp. 1–13.

[ZY06] P. Zhao and B. Yu. “On model selection consistency of Lasso”. In: The Journal of Machine
Learning Research 7 (2006), pp. 2541–2563.

https://github.com/gherardovarando/gclm_experiments

	1 Introduction
	1.1 Notations
	1.2 Graphical Continuous Lyapunov Models
	1.3 Brief overview on best-subset selection methods
	1.4 Background on Direct Lyapunov Lasso
	1.5 Background on Mixed Integer Optimization (MIO)
	1.6 Best Subset as a MIO Problem

	2 Structure Recovery
	2.1 Initialization strategies
	2.1.1 Marginal Regression
	2.1.2 One Edge - Marginal Regression
	2.1.3 Graphical Lasso informed Marginal Regression
	2.1.4 Direct Lasso Initialization

	2.2 Optimization Problem
	2.3 Model Selection
	2.3.1 Akaike's Information Criterion (AIC)
	2.3.2 Bayesian Information Criterion (BIC)
	2.3.3 Extended Bayesian Information Criterion (eBIC)

	2.4 Metrics
	2.5 Simulation Setup
	2.5.1 Synthetic Dataset
	2.5.2 Real Dataset
	2.5.3 Gurobi Settings

	3 Results and Discussion
	3.1 Numerical simulations on Synthetic Dataset
	3.1.1 Results: Performance metrics across different hyper-parameter values
	3.1.2 Plots and Summary: Performance metrics across different hyper-parameter values
	3.1.3 Results: Model selection and prediction
	3.1.4 Plots and Summary: Model selection and prediction
	3.1.5 Results: Computational Time

	3.2 Numerical simulations on the Arabidopsis thaliana dataset

	4 Conclusion
	A Appendix
	A.1 Prediction with AIC when edge probability 5 %: Comparison along signal sizes
	A.2 Prediction with AIC when edge probability 25 %: Comparison along signal sizes
	A.3 Prediction with AIC when edge probability 5 %: Comparison along sample size
	A.4 Prediction with AIC when edge probability 25 %: Comparison along sample sizes
	A.5 Prediction with BIC when edge probability 5 %: Comparison along signal sizes
	A.6 Prediction with BIC when edge probability 25 %: Comparison along signal sizes
	A.7 Prediction with BIC when edge probability 5 %: Comparison along sample size
	A.8 Prediction with BIC when edge probability 25 %: Comparison along sample sizes
	A.9 Prediction with eBIC when edge probability 5 %: Comparison along signal sizes
	A.10 Prediction with eBIC when edge probability 25 %: Comparison along signal sizes
	A.11 Prediction with eBIC when edge probability 5 %: Comparison along sample size
	A.12 Prediction with eBIC when edge probability 25 %: Comparison along sample sizes

	Bibliography

