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Abstract

In clinical decision-making, medical doctors rely not only on a multitude of information
about a patient, including patient history, vital signs, blood markers, and imaging data, but
also on their extensive knowledge gained through formal education and experience with
previously treated patients. To effectively support this complex process, clinical decision
support systems should be able to integrate these different data modalities and incorporate
relevant medical knowledge to make accurate diagnostic predictions. Furthermore, if these
systems could provide insights into their reasoning process, they would not only support
healthcare professionals more effectively in reasoning but also help build trust in the system’s
outputs, detect flaws in its reasoning process, and thereby enable continuous improvement.
This thesis explores clinical decision support systems based on deep learning that integrate
multimodal knowledge about a patient with formal and exemplar clinical knowledge while
providing insight into their reasoning.

To learn from and adapt to the clinical decision-making process of medical doctors, we first
detail the clinical reasoning process from a medical education and cognitive psychology
perspective. We then give an overview of multimodal deep learning and how the hetero-
geneous modalities involved in the clinical decision-making process can be integrated into
such models. The second part demonstrates how the exemplar knowledge about previously
treated patients can be modeled with a population graph. Using multimodal patient data,
we model the inter-patient relationships and the underlying patient characteristics. We lever-
age this advanced approach for toxin prediction at a poison control center, demonstrating
that the system achieves superior performance compared to clinicians by additional fusion
with textbook knowledge about symptoms. Next, we extend this approach with features
extracted from computer tomography images and propose a novel method for multimodal
population graph construction. We apply this to the outcome prediction of COVID-19 and
show that the attention on relevant patients in the graph can be interpreted as mimicking the
memory-retrieval reasoning of clinicians. In the third part, we explore how self-supervised
pretraining on large amounts of unlabelled data can be used to extract structured knowledge
from images and subsequently be used for transparent reasoning. In the first work, we predict
structured radiology reporting elements for chest X-rays using only few annotated samples.
We then introduce a novel zero-shot method, where instead of training, we make use of
prior knowledge about disease manifestations and use this for transparent reasoning. Finally,
we investigate extracting fine-grained semantic concepts from the neural activations of a
deep learning model only trained on detecting vertebral fractures, assessing their radiological
meaningfulness for potential utility in decision support. We conclude by providing an outlook
on how the findings in this thesis could impact the rapidly growing field of multimodal large
language models.
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Zusammenfassung

Bei der klinischen Entscheidungsfindung stützen sich Ärzte nicht nur auf eine Vielzahl von
Informationen über einen Patienten, wie Anamnese, Vitalwerte, Blutmarker und medizinische
Bildgebung, sondern auch auf ihr umfangreiches Wissen, das sie durch formale Ausbildung
und Erfahrung mit zuvor behandelten Patienten erworben haben. Um diesen komplexen
Prozess wirksam zu unterstützen, sollten klinische Entscheidungshilfesysteme in der Lage sein,
diese verschiedenen Datenmodalitäten zu integrieren und relevantes medizinisches Wissen
einzubeziehen, um genaue diagnostische Vorhersagen zu treffen. Wenn diese Systeme darüber
hinaus Einblicke in ihren Entscheidungsfindungsprozess gewähren könnten, würden sie nicht
nur Mediziner gezielter bei der Entscheidungsfindung unterstützen, sondern auch dazu
beitragen, Vertrauen in die Ergebnisse die Systeme aufzubauen, Fehlerquellen zu verstehen
und so eine kontinuierliche Verbesserung zu ermöglichen. In dieser Arbeit werden klinische
Entscheidungsunterstützungssysteme auf der Grundlage von Deep Learning erforscht, die
multimodales Wissen über einen Patienten mit formalem und exemplarischem klinischem
Wissen integrieren und gleichzeitig einen Einblick in ihre Entscheidungsfindung geben.

Um vom klinischen Entscheidungsprozess von Ärzten zu lernen und sich an diesen anzupassen,
wird dieser zunächst aus der Perspektive der medizinischen Ausbildung und der kognitiven
Psychologie beschrieben. Anschließend geben wir einen Überblick über multimodales Deep
Learning und wie die heterogenen Modalitäten, die den klinischen Entscheidungsprozess
beeinflussen, integriert werden können. Im zweiten Teil wird gezeigt, wie das exemplarische
Wissen über bereits behandelte Patienten mit einem Populationsgraphen modelliert werden
kann. Anhand multimodaler Patientendaten modellieren wir die Beziehungen zwischen den
Patienten und ihre Merkmale. Wir setzen diesen Ansatz für die Toxinerkennung in einem
Giftnotrufzentrum ein und zeigen, dass das System durch die zusätzliche Integration von
Fachwissen über Symptome bessere Ergebnisse als Kliniker erzielt. Als Nächstes erweitern wir
diesen Ansatz mit Merkmalen, die aus Computertomographie-Bildern extrahiert wurden. Wir
wenden diese Methode auf die Vorhersage des Verlaufs von COVID-19 an und zeigen, dass die
Aufmerksamkeit auf relevante Patienten im Graphen der Erinnerung eines Arztes an relevante
Patienten entspricht. Im dritten Teil untersuchen wir, wie selbstüberwachtes Vortraining auf
großen Mengen unstrukturierter Daten verwendet werden kann, um strukturiertes Wissen
aus Bildern zu extrahieren und anschließend für nachvollziehbare Schlussfolgerungen zu
nutzen. In unserer ersten Arbeit dazu bestimmen wir strukturierte radiologische Befundungs-
elemente für Röntgenbilder der Lunge, indem wir nur wenige annotierte Datenpunkte nutzen.
Anschließend stellen wir eine neuartige Zero-Shot-Methode vor, bei der wir Vorwissen über
Manifestationen von Krankheiten in Radiologiebildern nutzen anstatt mit Daten zu trainieren.
Im letzten Teil der Arbeit untersuchen wir die Extraktion feinkörniger semantischer Konzepte
aus den neuronalen Aktivierungen eines Deep-Learning-Modells, das nur auf die Erkennung
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von Wirbelkörperbrüchen trainiert wurde, und bewerten ihre radiologische Aussagekraft und
ihren potenziellen Nutzen für die Entscheidungsunterstützung. Abschließend geben wir einen
Ausblick darauf, wie sich die Ergebnisse dieser Arbeit auf das schnell wachsende Feld der
multimodalen Large-Language-Modelle auswirken könnten.
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Part I

Fundamentals of Multimodal Clinical
Decision Support





1Towards Clinical Reasoning
Support Systems

What if we could tap into the collective knowledge and experience of clinicians worldwide to
provide the best care for every patient? As we see the world being transformed by advances in
machine intelligence, the potential for the democratization and personalization of healthcare
has never been greater. Imagine a future where an intelligent system analyzes all available
patient characteristics in an instant and compares them against millions of previously examined
patients and humankind’s accumulated clinical knowledge, achieving higher scores than most
clinicians. However, what if it cannot give us any insight into how it came to a diagnostic
conclusion? Would we trust such a system? One of the reasons we trust medical doctors is
because they involve us in the decision-making process and are able to explain their reasoning
to us. But how does a clinical decision support system (CDSS) reason? Can it reason?
To understand the reasoning process of these systems, we must first understand how clinicians
reason. Clinical decisions are complex and require not only clinical education and training of
years but also hands-on experience with patients. Furthermore, clinicians need to integrate
knowledge about a patient from many sources, including the patient’s history, described
symptoms, medical imaging, lab results, and more. How can we design models that form the
foundation of such intelligent systems, enabling them to process and reason over this complex,
multimodal data?

This thesis is built on the belief that intelligent systems will not replace physicians but rather
support them in aggregating relevant information from complex heterogeneous data and help
them reason over these findings. Therefore, beyond making predictions, clinical decision
support systems should provide insights into their reasoning. This will support clinicians’
reasoning, build trust, and make the systems’ potential faults and biases more transparent.
Ultimately, such clinical reasoning support systems will allow clinicians to pay more attention
to patients and provide better personalization of medicine.
The objective of this thesis is to understand the clinical reasoning process and, based on this,
investigate how decision support systems can be designed to integrate multimodal knowledge
about individual patients with previous patients and formal textbook knowledge while giving
insights into their reasoning.

In the first part of this thesis, we first lay the theoretical foundations of the medical decision-
making process (Chapter 2) from both a cognitive and medical education perspective to
understand the reasoning and the type of clinical knowledge involved. Next, we discuss
existing clinical decision-support systems that can facilitate this process. Finally, we give an
overview of multimodal deep learning (Chapter 3) and how heterogeneous modalities used in
clinical decision-making can be integrated into deep learning models.
The next part investigates how experiential knowledge (Chapter 4) about previous patients
can be modeled with multimodal patient population graphs. For the prediction of intoxication
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Classification-
by-description
(Chapter 9)

Fig. 1.1. Overview of the contributions of this thesis.

at a poison control center (Chapter 5), we integrate this exemplar knowledge with literature
knowledge about occurring symptoms. Building on this work, we investigate further how
images can be integrated with other clinical information about the patient and put into per-
spective with other patients in the graph for the outcome prediction of COVID-19 (Chapter 6).
In the third part of the thesis, we investigate how we can extract patient-specific radiological
knowledge using large amounts of unlabelled pairs of radiology reports and images. First, we
use these multimodal patient representations to predict structured reports for a given chest
X-ray using only a small number of annotated samples (Chapter 8). To give more insight
into the reasoning process of this method, we then extend it to a classification-by-description
approach (Chapter 9). Here, we first compile descriptions of the manifestations of suspected
diseases and then match them against a given image, mimicking the deductive reasoning
process.
The final part is dedicated to exploring the interpretation of deep learning models with no
intrinsic interpretability. It tries to answer the question of whether we can retrospectively
shed light on the reasoning behind the automatic detection of vertebral body fractures in CT
images (Chapter 11).

Figure 1.1 provides an overview of the three pillars of contributions in this thesis. We
investigate the similarities between the cognitive process of clinicians and deep learning models
and introduce distinct reasoning concepts that correspond both to the intuitive inductive being
a natural fit to data-driven models and deductive reasoning. Towards the holistic integration
of heterogeneous patient data in deep learning, we propose fusion strategies on different
levels of abstraction and explore the extraction of patient-specific knowledge across modalities.
Taking further inspiration from the clinical mind, we then propose methods integrating both
the knowledge about individual patients that reflect the experience of medical doctors and the
formal knowledge they acquire in their education.

4 Chapter 1 Towards Clinical Reasoning Support Systems



2Principals of Clinical
Decision-Making

Contents

2.1 Clinical Decision-Making . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 The Differential Diagnosis Process . . . . . . . . . . . . . . . . . . 6

2.1.2 Uncertainty and Integrated Diagnostics . . . . . . . . . . . . . . . 7

2.1.3 Clinical Reasoning . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.4 Clinical Education and Knowledge . . . . . . . . . . . . . . . . . . 10

2.2 Clinical Decision Support Systems . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 Knowledge Base vs. Machine Learning . . . . . . . . . . . . . . . . 11

2.2.2 Data Integration and Reasoning Support . . . . . . . . . . . . . . 11

2.2.3 The Need for Interpretability . . . . . . . . . . . . . . . . . . . . . 12

Making clinical decisions is hard and requires a lifetime to master. Clinicians often face
high-stakes decisions with limited time and resources, making choices that can impact life or
death based on only a fraction of the necessary information for well-informed decision-making.
To deal with this uncertainty, they run through years of formal education only to be able
to start practical training in a specialized field that takes many years to complete. The first
part of this chapter gives an overview of the theoretical foundation and research on the
clinical decision-making process and reasoning as well as the knowledge and education of
this knowledge that is required to perform these with the best outcome for the patient. The
second part discusses how decision-support systems can aid clinicians and what systems have
been developed and used in the past.

2.1 Clinical Decision-Making

To effectively model clinical decision support systems, it is crucial to understand how clinicians
arrive at their diagnostic and treatment decisions. The clinical decision-making process can
be defined as the process of analyzing a patient’s status to decide on the ideal treatment and,
therefore, optimal patient outcome [212]. The initial step in the clinical decision-making
process is accurately diagnosing the underlying disease causing the patient’s symptoms. This
is essential to determine the most effective treatment to address the root cause of a patient’s
health issues rather than merely alleviating the symptoms.
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Fig. 2.1. The clinical decision-making process. The process begins when a patient presents with a chief concern.
The clinician generates a differential diagnosis based on the patient’s symptoms and available data. Next,
the differential is narrowed to the most likely diagnosis through an iterative clinical reasoning process.
This diagnosis is then communicated to the patient, and a treatment plan is established. The clinician
relies on formal and experiential knowledge throughout this process, continuously improving through
practice and education. This process is adapted from the diagnostic process outlined by Balogh et al.
[53] incorporating the cyclic reasoning process of differential diagnosis described by Sox et al. [219].

2.1.1 The Differential Diagnosis Process

The diagnostic decision-making process (Figure 2.1), as described by Balogh et al. [53],
is typically initiated when a patient experiences a health problem and presents their chief
complaint to a healthcare professional. Based on this self-reported description of symptoms
and health concerns, the clinician forms an initial set of hypotheses regarding potential
diagnoses, known as differential diagnosis [219].
At the heart of the process is the iterative clinical reasoning process, which narrows the
list of possible diagnoses by testing and refining hypotheses with newly gathered patient
information. This patient data is acquired based on the hypothesis to be tested and includes
patient interviews, physical exams, patient records, and diagnostic tests like blood tests or
diagnostic imaging [219]. The clinician analyzes and integrates each new piece of information
to determine whether it supports or contradicts the different hypothesized diagnoses until
a most likely diagnosis or set thereof is identified with sufficient evidence. Once a working
diagnosis has been established, the clinician communicates the findings to the patient and
discusses the available treatment options. The patient’s response to the selected treatment
can provide further information to refine or modify the differential diagnosis, triggering the
clinical reasoning process again, if required. Throughout the diagnostic process, clinicians rely
on a combination of formal knowledge acquired through medical education and experiential
knowledge gained from previous clinical experiences that are further discussed in Section 2.1.4
[174]. In addition to the subconscious building of clinical expertise, systematic capturing and
analysis of patient outcomes is essential for improving evidence-based medicine and refining
diagnostic and treatment guidelines [24, 64].
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Fig. 2.2. Integrated diagnostics. To find the best treatment for a patient, clinicians need to form a holistic
representation of the patient to confirm or rule out hypotheses in the differential diagnosis. Adapted
from [1, 16, 53, 161]

2.1.2 Uncertainty and Integrated Diagnostics

In an ideal world, each diagnosis would be associated with a fixed set of clinical findings,
where their presence or absence would provide clear evidence of a specific disease, making the
diagnostic process straightforward and eliminating the need for complex reasoning. However,
the reality of clinical practice is far from this idealized scenario [219].

Every clinical finding merely indicates a probability of various diseases, and symptoms mani-
fest differently in each patient. Moreover, each finding and diagnostic test is associated with
inherent uncertainty, as well as the potential for diagnostic and human error [162]. Therefore,
clinicians must consider the sensitivity and specificity of a given diagnostic test when inter-
preting results. The clinical decision-making process can be modeled as reducing uncertainty
in the differential diagnosis, aiming to identify the diagnosis with the highest probability for a
given patient [206] (see Figure 2.3). Clinicians naturally think in probabilities, and the impact
of a diagnostic test on the probability of a hypothesized diagnosis can be formalized using
Bayes’ Theorem, as shown in Equation 2.1 [219]. Given a disease probability prior to the test
P (D), the posterior probability after testing P (D|T ) can be calculated using the probability of
a given test result with the disease present P (T |D) and the general probability of said test
result P (T ).

P (D|T ) = P (T |D)× P (D)
P (T ) (2.1)

2.1 Clinical Decision-Making 7
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Fig. 2.3. Uncertainty reduction during the differential diagnosis process. Adapted from Sox et al. [219]

A more practical variation of this equation for the probability of a disease being present (D+)
given a positive test result (T+) using the sensitivity (P (T+|D+)) and specificity (P (T−|D−))
of a diagnostic test can be represented as [219]:

P (D+|T+) = P (D+)× Sensitivity
P (D+)× Sensitivity + (1− P (D+))× (1− Specificity) (2.2)

This equation highlights the complexity of integrating a diagnostic test in the differential
diagnosis process, as clinicians must consider the test’s sensitivity, specificity, and the pre-
test probability of the disease to accurately interpret the results and update their diagnostic
hypotheses. As shown in Figure 2.3 a doctor might form an initial set of hypotheses based
on his formal knowledge and experience and assign each considered diagnosis a probability
based on the known characteristics of the patient’s health status. By adding more information
like diagnostic testing, the doctor can rule out diagnoses and reduce the overall uncertainty of
his differential.

In theory, doctors should consider all relevant information when making diagnostic decisions.
However, they may not have access to all necessary data or must weigh the cost-benefit of a
diagnostic test in the context of treatment urgency and healthcare system costs.

To effectively diagnose and treat patients, clinicians must integrate information from various
sources, as illustrated in Figure 2.2. To gather important information about a patient’s health,
medical professionals start with basic data found in the patient’s medical records. This data
includes the patient’s demographics, medical history, treatment history, and medication. They
may also conduct patient interviews to gather more information about their medical history,
including their family history, and perform physical examinations and measurements like
blood pressure to get a complete picture of their health. Diagnostic tests can be carried out to
determine the cause of a medical condition. These include blood tests to measure hormones
and inflammation markers, viral PCR tests, and genomic analyses. [1, 16, 53, 161]

Diagnostic radiology and nuclear medicine is an essential part of the diagnosis process. It
involves obtaining and interpreting medical images to confirm or rule out suspected diseases
or clinical findings. It also provides consultative information to help with clinical decision-
making within the broader context of patient care [136]. Radiological imaging techniques
such as X-ray, CT, MRI, and ultrasound can also be used to identify anatomical abnormalities.
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Furthermore, functional and nuclear imaging techniques like scintigraphy, PET, and SPECT
can provide additional physiological information. Other diagnostic tests, including ECG, EEG,
and endoscopy, can help diagnose medical conditions. Histopathology results from histology
slides, biopsy findings, and bacterial growth assessments can provide further insights into the
cause of a condition. [1, 16, 161]

Diagnosis and outcome prediction is particularly challenging in oncology [161], where a
multi-disciplinary approach involving a tumor board is required to integrate all available
patient information and expert opinions from various clinical fields, such as pathology and
radiology.

2.1.3 Clinical Reasoning

How do clinicians form a diagnosis for a given patient to be able to assess the best treatment?
In the literature, the cognitive task of clinical reasoning has been studied from various
academic perspectives, such as medical education and cognitive psychology. The most widely
accepted mental model is that clinicians employ both intuitive and analytical thinking in their
decision-making processes [133, 212]. While experienced clinicians can quickly recognize a
familiar pattern of symptoms in a new patient based on previous encounters, novices rely on a
more systematic way of building a hypothesis using factual knowledge and then looking for
supporting data in their mental patient model [212].

Dual Process Theory

This model is formalized in the dual process theory, popularized by "Thinking, Fast and Slow"
by Daniel Kahneman [119]. It classifies decision-making into two types of cognitive processes:
System 1, the intuitive approach, and System 2, the analytical mind. System 1 corresponds to
effortless and fast decision-making based on heuristics and intuition formed by experience.
While this subconscious, "gut-feeling"-based decision-making is highly efficient in detecting
well-known symptom patterns and dealing with uncertainty, it can be prone to cognitive bias,
like sticking with an initial diagnosis even though contradicting evidence may arise. [55]
In contrast, System 2 represents slow and thorough decision-making involving systematic
analysis, resulting in a low error rate if correct knowledge is used and all required patient
information is available. It is important to note that these two modes of thinking are not
exclusive but rather the two extremes of a continuum that a practitioner can jump between
at any time. An experienced doctor might divert from intuitive to analytical thinking when
faced with a rare disease or unusual combination of symptoms. At the same time, a novice
requires intuition to develop an initial hypothesis for a differential diagnosis. Through the lens
of cognitive psychology, System 1 is associated with inductive reasoning, which uses pattern
recognition to generate hypotheses in a bottom-up manner. On the contrary, System 2 aligns
with deductive reasoning, which systematically tests hypotheses against data in a top-down
approach. [55, 133]

Memory-based Pattern Recognition

Memory-based theories for reasoning provide a different perspective on decision-making at
the intuitive end of the spectrum (System 1) by not focusing on the cognitive process but on
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what knowledge is retrieved from memory to recognize patterns instead. Two main types of
mental models for categorizing diseases by retrieving experiential knowledge from memory
are exemplar and prototype knowledge. Exemplar models suggest that the most relevant and
similar individual experiences about specific patients are retrieved from memory to match
patterns when diagnosing a new case. In prototype models, on the other hand, the memory
retrieves an abstract, average representation of past experiences associated with a particular
disease or finding. Both of these models use experiential knowledge, which is mainly formed
by experiences of past patient encounters, diagnoses, and treatments. [133, 165]
There is also evidence for highly effective knowledge structures of information about diseases
in the memory of doctors: illness scripts and semantic qualifiers. Illness scripts are mental
templates that link relevant information about a disease, such as enabling conditions, causes,
and consequences, into a coherent narrative representation. They allow physicians to effi-
ciently activate diagnostic hypotheses based on the patient’s presenting signs and symptoms.
A simpler yet effective knowledge representation is semantic qualifiers, which are abstract,
dichotomous descriptors that help to quickly decide between competing diagnostic hypotheses,
e.g., acute vs. chronic, progressive vs. improving, and unilateral vs. bilateral. [97, 133]

2.1.4 Clinical Education and Knowledge

An impactful application of clinical reasoning theory is understanding where diagnostic errors
originate from and how clinical education can be improved with these insights. Norman et
al. [175] explore whether diagnostic errors primarily originate from System 1 or System 2
thinking. The authors conclude that although mistakes can stem from both systems, the most
significant potential for reducing diagnostic errors lies in enhancing clinicians’ knowledge.

Formal Knowledge

In the early stages of their studies, medical students primarily acquire basic science knowledge,
which provides the foundation for understanding human anatomy and physiology. After
understanding the mechanisms underlying various diseases (etiology), they finally learn how
diseases can be treated. Therefore, the formal network of knowledge required to make clinical
decisions can be categorized into diagnostic knowledge, etiological knowledge, and treatment
knowledge. At this stage, clinicians have limited practical experience and rely on deductive
reasoning to confirm a differential diagnosis by analyzing the patient’s characteristics involving
detailed biomedical concepts, which are organized in knowledge networks. [97, 212]
The acquisition of formal knowledge does not end with the completion of a clinician’s formal
education; rather, it is an ongoing process that is particularly important when new insights
into diseases are gained or when evidence-based guidelines are updated based on the latest
research and expert consensus [64].

Experiential Knowledge

By applying this formal knowledge in clinical practice, students begin to encapsulate biomed-
ical concepts into clinical knowledge, enabling them to draw direct conclusions without
explicitly referring to the fundamentals. This process, known as knowledge encapsulation,
involves clustering related concepts together, allowing students to directly connect patient
findings and clinical hypotheses or diagnoses [97]. With more experience, the knowledge
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organization transitions from a network-like structure to a more efficient and integrated format
known as illness scripts as described in Section 2.1.3. As clinicians gain more experience and
refine their illness scripts, they become increasingly adept at pattern recognition and intuitive
decision-making, relying more on System 1 thinking. However, when faced with complex
or unfamiliar cases, experienced clinicians can still unfold their encapsulated biomedical
knowledge and employ System 2 to resort to analytical problem solving [97, 212].
Monteiro et al. [165] argue that only learning and applying knowledge - making mistakes on
the way - can turn novices into experts excelling at clinical decision-making. They propose
that experiential knowledge is so crucial that medical education should use more simulation-
based learning environments to compensate for a lack of experience in particular with rare
diseases.

2.2 Clinical Decision Support Systems

Clinical decision support systems (CDSS) are designed to assist clinicians in the decision-
making process, as explained in the previous chapter. These computer-aided systems aim
to support clinicians in making accurate and cost-effective decisions, ultimately improving
patient outcomes by assisting in cognitively demanding tasks such as probabilistic reasoning
and pattern recognition in complex data [234].

2.2.1 Knowledge Base vs. Machine Learning

There are two main types of CDSS: knowledge-based and machine learning-based [221].
Knowledge-based systems, which reflect the analytic (System 2) decision-making process, rely
on a comprehensive knowledge base that encapsulates formal domain knowledge, such as
clinical guidelines, evidence-based medical insights, and research findings. This knowledge is
structured in decision trees or knowledge graphs, enabling the system to imitate the analytical
reasoning process of human experts by following decision rules. In contrast, machine learning-
based CDSSs align with medical doctors’ intuitive (System 1) reasoning and are data-driven
and learn decision-making rather than being programmed with expert knowledge. While
machine learning-based systems have shown impressive performance, particularly in medical
image analysis [196], they often lack inherent interpretability, which limits trust in the systems
and insights into the reasoning of these models, in contrast to knowledge-based systems.

2.2.2 Data Integration and Reasoning Support

A significant benefit of CDSS is their ability to integrate various data sources, including
electronic health records (EHRs) and biometric monitoring, to provide comprehensive support
and highlight relevant characteristics [221]. In the future, interactive decision support systems
could retrieve all relevant information to support diagnosis from the various distributed data
sources within a hospital’s electronic information system and even personal wearables and
other smart sensors [16]. By integrating these diverse data sources and leveraging advanced
analytical techniques, such systems have the potential to enhance diagnostic accuracy and
support clinicians in providing optimal patient care.
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Recent advancements in Language Models (LLMs) and other foundation models suggest that
future CDSS will be capable of dealing with both structured and unstructured health data,
providing both knowledge-driven and learned decision support [166]. This development
could revolutionize the way CDSS operates, allowing for more comprehensive and intuitive
support for clinicians. Following the vision of van Baalen et al. [234], future CDSS could act
as clinical reasoning support systems that support the reasoning process of clinicians rather
than making decisions for them. By augmenting the clinician’s decision-making process and
providing relevant insights and recommendations, CRSS could enhance the overall quality of
care while maintaining the clinician’s autonomy and expertise.

2.2.3 The Need for Interpretability

Do we need clinical decision-support systems to be interpretable? Rule-based systems offer
high levels of interpretability but are often outperformed by data-driven models that lack
inherent transparency in their decision-making processes. This raises the question of whether
predictive performance should always be prioritized over interpretability, assuming there is a
trade-off between the two. As illustrated in the clinical decision-making process (Figure 2.1),
communicating and explaining reasoning to patients is essential since actively involving them
can improve clinical outcomes [181]. Experienced clinicians are expected to provide well-
reasoned, analytical explanations of their assessments to patients, even when making decisions
based on intuition and heuristics alone. The potential trade-off between interpretability and
performance in decision support systems is an active area of research and discussion within
the scientific community. However, there is a growing consensus that offering transparency
in the decision-making can build trust in (semi-)automated systems and help to detect and
correct systematic errors during their development [205].

� • Expert clinicians excel at intuitive decision-making, while novices rely on
analytical thinking.

• Experts revert to analytical thinking for difficult or rare cases, considering
all available patient data.

• Clinical reasoning involves different knowledge types (formal vs. experien-
tial) and structures (knowledge networks vs. illness scripts).

• Machine learning mimics intuitive decision-making and excels with enough
data, but analytical models like decision trees offer higher interpretability.
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In the previous chapter, we discussed the importance of integrating all available patient data
to construct a comprehensive patient model in diagnostic and prognostic decision-making.
Unlike rule-based systems, as outlined in Section 2.2, deep learning models learn to solve tasks
directly from data rather than relying on feature engineering and pre-programmed instructions
based on existing knowledge. A fundamental aspect of deep learning is representation learning
[19], which involves learning the most informative features or representations from input
data to optimize performance on one or more downstream tasks, such as classifying diseases
or segmenting tumors. These representations can be learned with or without a task-specific
supervision signal, known as supervised and unsupervised learning [19]. Additionally, self-
supervised learning, where the supervision signal is derived from the input data itself, is
another approach that will be further explored in Section 3.3.3. Multimodal deep learning is
concerned with integrating representations from multiple modalities and has been extensively
researched for various applications, including sensor fusion in autonomous vehicles, human
activity recognition, video classification, and medicine [105, 197]. This chapter will delve into
various clinical data modalities that can be processed with deep learning (Section 3.1), the
methods for encoding these modalities for downstream tasks (Section 3.2), and the integration
of multiple modalities to generate multimodal patient representations (Section 3.3).

3.1 Medical Modalities

The need for integrating different modalities (Section 2.1.2) for clinical decision-making can
be highlighted by the examples of detecting hyperthyroidism or pancreatic cancer. To diagnose
hyperthyroidism a medical doctor needs to consider patient-reported symptoms (fatigue,
overweight, low activity, depression, etc.), vital signs (blood pressure and heart rate, etc.),
thyroid ultrasound imaging, and thyroid-related blood tests [16]. Similarly, patient-reported
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Tab. 3.1. Overview of data modalities, data types, and common deep learning architectures used in clinical
decision support.

Data Modality Data Type Deep Learning Models

Text Data
(Section 3.2.1)

Medical history
Treatment history
Patient medical records
Patient interviews
Family history
Physical examination notes
Radiology reports
Histopathology reports

Transformer-based models
(BERT, GPT)
Sequential models

Imaging Data
(Section 3.2.2)

Radiological imaging
(X-ray, CT, MRI, Ultrasound)
Functional and nuclear imaging
(Scintigraphy, PET, SPECT)
Optical coherence tomography
(OCT)
Fundus imaging Histopathol-
ogy slides

Convolutional Neural Networks (CNNs)
Vision Transformers (ViTs)

Time-Series and
Sequential Data
(Section 3.2.3)

Electrocardiogram (ECG)
Electroencephalogram (EEG)
Sound recordings
Surgical videos
Genome sequences

Recurrent Neural Networks (RNNs)
Long Short-Term Memory (LSTM)
Gated Recurrent Units (GRUs)
Temporal Convolutional Networks (TCNs)
Transformer-based models
Hybrid models (CNN+TCN)

Tabular Data and
Structured Data
(Section 3.2.4)

Treatment codes (ICPM)
Diagnosis codes (ICD)
Patient demographics
Vital signs
Blood test results
Viral PCR test results
Genomic analyses
Standardized Reports

Multilayer Perceptrons (MLPs)
Convolutional Neural Networks (CNNs)
Transformer-based models

symptoms may trigger the suspicion of pancreatic cancer, and subsequently, the diagnosis
needs to be confirmed through various imaging modalities (e.g., ultrasound and PET/MR)
and laboratory results like PSA levels [16].

In addition to the typical challenges associated with curating biomedical data for deep
learning, such as data privacy concerns and data imbalance, multimodal medical data brings
an additional set of challenges, like data heterogeneity [1]. The dimensionality of the data
can vary greatly, and dense data, e.g., CT images, may need to be integrated with sparse data,
e.g., EHR data. Furthermore, missing information, such as unavailable laboratory test results
for some patients, can complicate the fusion of data and necessitate the use of methods like
mean imputation to handle the missing values.

Table 3.1 summarizes the wide range of modalities employed in clinical decision-making and
their corresponding deep learning methods. Most modalities can be categorized or converted
into text data (Section 3.2.1), imaging data (Section 3.2.2), sequential data (Section 3.2.3),
or tabular data (Section 3.2.4).
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Given the prevalence and large-scale availability of chest X-rays, a significant portion of
research on multimodal deep learning, particularly vision-language models, has focused on
chest X-ray datasets such as MIMIC-CXR [117] and CheXpert [108]. Several large-scale
multimodal datasets featuring paired CT images and radiology reports have recently been
released, which will also allow the training of foundational multimodal models for this imaging
modality in the future [89, 104, 225]. Table 3.2 includes a selection of multimodal datasets
for research purposes. Furthermore, research databases like the UK Biobank and The Cancer
Imaging Archive offer extensive collections of multimodal patient data to support advancing
the field of multimodal deep learning in healthcare.

3.2 Unimodal Representation Learning

To lay the foundation for understanding multimodal representation learning, it is essential
to first examine how deep learning models learn representations from individual modalities.
In the following sections, we will explore the key approaches and architectures employed in
learning representations from text (Section 3.2.1), images and spatial data (Section 3.2.2),
time-series and sequential data (Section 3.2.3), and tabular data (Section 3.2.4).

3.2.1 Natural Language Processing

Natural language processing (NLP) plays a crucial role in clinical decision-making, as text and
speech are the primary means of documenting and communicating knowledge in healthcare.
NLP models can extract relevant information from unstructured medical records, such as
patient history, physical examination notes, and discharge summaries. The learned repre-
sentations can also be applied to various tasks, including classifying structured information
like diagnosis and treatment codes and selecting cohorts from clinical notes. Additionally,
generative models can produce human-like text for applications such as automated report
generation and question-answering systems.

For processing with deep learning models, text is modeled as sequential data by tokenizing
words and subwords to a series of discrete token embeddings, which are dense vector represen-
tations of each token based on a fixed vocabulary. based on a fixed vocabulary. Therefore, the
methods described for time-series analysis in Section 3.2.3, such as Recurrent Neural Networks
(RNNs), have been applied extensively for NLP. However, the introduction of Transformer
[236], and its self-attention mechanism has revolutionized the NLP field. Proposed initially
for machine translation, self-attention allows models to attend to different parts of the input
sequence when encoding each element, effectively weighing the importance of words based
on their relevance to the task. This enables Transformers to capture long-range dependencies
and contextual relationships more effectively than RNNs, while also allowing for parallel com-
putation. In contrast, RNNs have to keep internal representations while processing the tokens
sequentially. Positional embeddings are also added to each token to provide the Transformer
with information about its position within the sequence.

Two of the most impactful architectures built on Transformers are the Generative Pre-trained
Transformer (GPT) [195] and Bidirectional Encoder Representations from Transformers
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Tab. 3.2. Overview of multimodal datasets for various clinical applications.

Dataset Modalities Description Samples

ABIDE [63] R-fMRI
Structural MRI
Phenotypic data

fMRI datasets from individuals with
Autism spectrum disorders (ASDs) and
age-matched control group. Includes data
from 17 international sites.

1112 total
533 ASD
579 controls

TADPOLE
(ADNI)
[188]

PET-MR images
Radiomics
CSF biomarkers
Genetic markers
Demographics

The TADPOLE challenge, a subset of the
ADNI (Alzheimer’s Disease Neuroimaging
Initiative) dataset, includes data aimed at
predicting the progression of Alzheimer’s
Disease.

229 normal
398 with MCI
192 with AD
819 patients

MIMIC-CXR
[117]

Chest X-rays
Radiology reports

A comprehensive dataset of radiographic
studies of 65,379 patients collected at
Beth Israel Deaconess Medical Center.
Includes multiple views, accompanied
by semi-structured free-text radiology re-
ports.

377,110 images
227,835 studies
65,379 patients

IU X-ray [60] Chest X-rays
Radiology reports
Structured findings

Open-i collection of chest X-rays with cor-
responding reports from the Indiana Uni-
versity hospital network. Radiological
findings and diagnoses are also encoded
with Medical Subject Heading (MeSH)
and RadLex encodings.

7,470 studies

CheXpert
[108]

Chest X-rays
Radiology reports
Structured findings

The CheXpert dataset is a large public
dataset containing chest radiographs from
65,240 patients. It includes labels for 14
common thoracic pathologies and obser-
vations extracted from radiology reports
considering uncertainty.

224,316 X-rays
65,240 patients

RadFusion
[273]

CT images
Structured EHRs

A multimodal pulmonary embolism
database with high-quality CT images and
longitudinal patient EHR data, including
demographics, vitals, medications, ICD
codes, and lab tests.

1,837 studies
1,794 patients

CTRG-Brain-
263K [225]

Brain CT
Radiology reports

A dataset containing 263,670 brain CT
scans with diagnostic reports. Aimed at
generating medical reports for a series of
radiological images of the brain.

263,670 studies

CTRG-Chest-
548K [225]

Chest CT
Radiology reports

Similar to the CTRG-Brain-263K dataset
but focused on the chest area for de-
tailed pathology assessment. It consists of
548,696 chest CT scans with diagnostic
reports.

548,696 studies

iCTCF [170] Chest CT
Clinical features

The iCTCF (integrative CT images and
Clinical Features for COVID-19) dataset
comprises data from 1,521 patients. It
includes chest CT images and 130 clini-
cal features from biochemical and cellular
analyses of blood and urine samples.

19,685 CT slices
1,521 patients

CT-RATE
[89]

Chest CT
Radiology reports
Structured findings

The CT-RATE dataset comprises 3D chest
CT volumes from 21,304 patients, paired
with corresponding radiology reports.

50,188 volumes
25,692 patients

INSPECT
[104]

CTPA images
Radiology reports
Structured EHRs

CTPA studies from 19,402 patients at risk
for pulmonary embolism. Includes de-
identified CT images, report impressions,
and longitudinal EHRs (diagnoses, proce-
dures, vitals, meds).

23,248 studies
19,402 patients
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(BERT) [61]. Both models have demonstrated that pre-training on large amounts of unlabeled
data allows Transformers to learn rich representations and powerful generative capabilities.
GPT employs an autoregressive language modeling objective, predicting the next word in a
sequence to develop complex language understanding and generation abilities when trained
at scale. In contrast, BERT utilizes a masked language modeling objective, where the model
predicts randomly masked words in a sequence, enabling it to learn bidirectional contexts
and create robust representations suitable for various downstream tasks. As the pre-training
corpus defines the knowledge embedded in these language models, a series of domain-specific
models have been proposed for biomedical applications, such as BioGPT [154] and CXR-BERT
[25]. The global embeddings of the input text, i.e., the whole token sequence, can be extracted
from a dedicated classification token or by averaging the embedding of the individual tokens
in the sequence. This representation can then be combined with representations from other
modalities, as discussed in Section 3.3.1, to support multimodal clinical decision support
systems.

3.2.2 Spatial Data

Understanding the content of medical images is crucial for incorporating radiological findings
into the clinical decision-support process. Deep learning has been applied to various medical
imaging modalities, such as radiology, histopathology, dermatology, and ophthalmology
[72]. The supervision signal for these models can originate from either image-level tasks,
like classifying or regressing clinical metrics, or pixel-level objectives, such as semantically
segmenting tissue types in radiology images or detecting cancerous tissue in pathology slides
using bounding boxes [139, 196]. At the heart of these architectures lies an image encoder
that transforms the input into an abstracted latent representation, typically with a reduced
spatial resolution [19].

Convolutional Neural Networks
Convolutional Neural Networks (CNNs) achieve this by applying learned filters to local
image patches, enabling pattern detection across different spatial locations, as illustrated
in Figure 3.1. Pooling layers in CNNs merge semantically similar features through local
maximum or average operations, introducing invariance to minor shifts and distortions while
reducing the representation’s spatial dimensions. By iteratively applying convolutional and
pooling operations, CNNs learn multi-level representations, composing lower-level features
into higher-level ones. This process mimics the hierarchical processing in the human visual
cortex system, where information progresses from edges to motifs, parts, and ultimately,
objects, forming a hierarchy of increasingly abstract features [139]. For classification tasks, the
resulting feature map is typically pooled into a latent vector, removing its spatial resolution,
and then forwarded to a single-layer neural network with the latent dimension as input and
the number of classes as output, as shown in Figure 3.1. This representation can also be
a useful image representation for joint fusion approaches, as described in Section 3.3.1, to
integrate with other modalities at the same abstraction level for further processing.

Well-established CNN architectures include ResNet [92] and DenseNet [102]. For pixel-wise
predictions, the encoder is followed by an upsampling decoder path involving upscaling or
deconvolutions. The de facto standard architecture for pixel-wise predictions is based on
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Fig. 3.1. ResNet50 is a well-known Convolutional Neural Network commonly used for encoding and classifying
medical images proposed by He et al. [92]. Here, the classification of 14 findings is visualized with a
synthetic X-ray.

U-Net [199] and its optimized variants [109], which utilize skip connections in the decoder
to integrate input features at the relevant abstraction level for upsampling. CNNs are not
limited to two dimensions but can be adapted to one dimension (see Section 3.2.3) or three
dimensions for volumetric images like MRI [163] and even four dimensions for dynamic
volumetric imaging.

Vision Transformer

Inspired by the success of Transformers in Natural Language Processing (NLP), Dosovitskiy et
al. [65] introduced Vision Transformers (ViTs) that treat image patches as a sequence of tokens,
similar to word embeddings in a sentence. In the original ViT, patches are embedded using
a non-convolutional neural network and encoded with two-dimensional spatial positional
encoding to preserve their spatial relationships. A Transformer Encoder then processes the
patch embeddings, and the global image representation can be extracted using a classification
token like BERT or by averaging the resulting patch embeddings.

For multimodal data fusion, either the global image embedding or the sequence of individual
image patch tokens can be utilized for localized representations, as discussed in Section 3.3.1.
Since ViTs need vast amounts of training data, they usually rely on transfer learning from
large-scale 2D pretraining, which limits their effective use on small 3D datasets commonly
found in the medical domain. To address this, our work Video-CT-MAE [28] demonstrates that
ViTs can also be initialized with weights from models pretrained on natural videos. Despite
efforts to facilitate ViT training in low data regimes [34], CNNs remain a robust choice for
vision encoders in medical image analysis.
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3.2.3 Sequential Data

Time-series and sequential data play a vital role in clinical decision-making and have been
researched with deep learning methods, with applications such as activity monitoring using
Electrocardiography (ECG) [148] and epileptic seizure prediction using Electroencephalogra-
phy (EEG) [112]. Genome sequences can also be modeled as sequential data and processed
with Transformer-based models like DNABERT [113], showcasing their effectiveness in analyz-
ing DNA. Moreover, the temporal changes of static patient data, such as blood test results or
sequential imaging data, as demonstrated in our work on longitudinal COVID-19 progression
[128], can be modeled as a sequence and provide valuable insights into disease progression.

Modeling sequential data presents challenges due to variations in sequence length and the
need to capture both short-term and long-term dependencies. Deep learning approaches
for time series analysis primarily include Recurrent Neural Networks (RNNs), Convolutional
Neural Networks (CNNs), and Transformers. RNNs, such as Long Short-Term Memory (LSTM)
and Gated Recurrent Units (GRU), maintain hidden states that propagate information from
previous time steps [207]. Convolutional architectures, like Temporal Convolutional Networks
(TCNs) [138], leverage hierarchical convolutions to capture temporal patterns. More recently,
Transformer-based methods have emerged as a powerful alternative for modeling sequential
data points [245]. Some signals can also be converted to images and then processed by CNNs.
This has been applied to audio signals from surgery by modeling them as spectrogram images
[210]. Hybrid approaches combine the strengths of different architectures by first encoding
complex data modalities before feeding the encodings into a sequential model. For instance,
Czempiel et al. [56] employed a CNN to encode individual frames of endoscopic videos and
then passed the resulting embeddings to a TCN for further processing [56].

3.2.4 Tabular Data

Tabular data is one of the most prevalent forms of data across various domains, including
finance, manufacturing, climate science, and healthcare [214]. In medicine, tabular data
encompasses a wide range of information, such as categorical variables like encoded diseases
and gender, continuous variables like body temperature, and ordinal variables like cancer
staging. However, applying deep neural networks to tabular data poses several challenges due
to the lack of inherent spatial or temporal relationships between features, the high prevalence
of missing values, sparsity, and the heterogeneity of feature types [214].

Traditional machine learning techniques that do not rely on deep learning, such as Random
Forests [26] and gradient-boosted decision trees (GBDT) like XGBoost [48], have demon-
strated remarkable performance on tabular data. These methods often outperform deep
learning approaches in various benchmarks while requiring significantly less training time and
computational resources [155].
Despite the aforementioned challenges, researchers have proposed several deep learning ar-
chitectures for tabular data, including Multi-Layer Perceptrons (MLPs), Convolutional Neural
Networks (CNNs), and Transformer-based approaches like FT-Transformer [84]. Additionally,
methods that leverage self-supervised pretraining, such as SAINT [217] and SCARF [9], have
been introduced, claiming to achieve performance comparable to GBDT on certain datasets.
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Fig. 3.2. There are three primary types of multimodal deep learning: First, the fusion of modalities (Section 3.3.1)
to solve a downstream task, such as classifying findings in a chest X-ray by using both the image and the
clinical history written as text. Second, the translation (Section 3.3.2) from one modality to another,
like generating a report for a given chest X-ray image. Third, learning multimodal representations
(Section 3.3.3) without explicit supervision, such as using contrastive learning.

The intrinsic difficulties associated with deep learning methods for tabular data also pose
challenges for fusion techniques based on deep learning. Consequently, alternative approaches
have been explored, such as extracting relevant image features as tabular data and processing
them alongside other patient data using classical machine learning methods, which will further
be discussed in Section 3.3.1.

In summary, while substantial efforts have been made to adapt neural networks for tabular
data, classical machine learning methods like GBDT continue to excel in this domain, par-
ticularly given the challenges inherent in medical data, such as incompleteness, long-tail
distributions, and limited dataset sizes [155]. Nevertheless, deep learning-based models
remain highly relevant for multimodal approaches to enable joint optimization and modality
interaction, as discussed in the following sections.

3.3 Multimodal Representation Learning

In the previous sections, we explored the most relevant data modalities for clinical decision-
making and how deep learning models can be independently trained on these modalities.
This section will provide an overview of how multiple modalities can be integrated into deep
learning approaches to either improve upon tasks similar to those described for unimodal
methods, such as classifying diseases in a patient or to tackle uniquely multimodal tasks like
generating radiology reports conditioned by images. Multimodal large language models like
our work RaDialog [186], a conversational assistant for radiology report generation, combine
many of the aspects of this chapter and will be further discussed in the outlook of this thesis
(Chapter 13).

Multimodal deep learning can be broadly categorized into three main paradigms, each
addressing different aspects of integrating and leveraging information from multiple data
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sources. The first paradigm, modality fusion (Section 3.3.1), combines representations
from different modalities to enhance performance on downstream tasks. For instance, the
accuracy of classifying findings in a chest X-ray can be improved by considering the image
and the patient’s clinical history in text form. The second paradigm, cross-modal translation
(Section 3.3.2), aims to convert information from one modality to another, enabling tasks
such as generating a radiology report for a given chest X-ray image. The third paradigm,
multimodal representation learning (Section 3.3.3), focuses on learning joint representations
from multiple modalities during a pre-training phase, often without explicit supervision. This
is typically achieved through techniques like contrastive learning, which encourages the model
to learn meaningful connections between different modalities. This multimodal representation
can then be used for cross-modal retrieval, such as finding similar reports for a given report,
or can serve as an initialization for the supervised training of downstream tasks.

3.3.1 Modality Fusion

As discussed in Section 2.1.2 and Section 3.1, integrating heterogenous data sources is essential
in the medical decision process and, consequently, in decision support systems based on deep
learning. Following Huang et al. [105], modality fusion strategies can be categorized into
three main categories: early fusion, joint fusion, and late fusion, as illustrated in Figure 3.3.
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Fig. 3.3. There are three main ways to fuse different modalities of data: early fusion, joint fusion, and late fusion.

Early fusion, or data-level fusion, refers to combining two or more input features of the
same dimension into a joint representation, which is then fed to a machine-learning model.
The input features can consist of data-level features or features extracted by another model,
referred to as feature-level fusion. While logit, probability, or category-level predictions could
also be interpreted as feature vectors, we consider this approach late fusion. For effective early
fusion, the input features should be on a similar level of abstraction. For instance, to perform
early fusion on radiological images and tabular clinical data, the images can be converted
to tabular data by extracting radiomics or encoding the presence of radiological findings in
a binary vector, as has successfully been demonstrated for COVID-19 by Burian et al. [29].
Another approach for early fusion of multimodal patient data is describing both tabular patient
data and extracted radiological findings with text and then processing this text along with
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other written patient information like reports and patient history in a language model similar
to RaDialog [186] and LENS [20]. Although straightforward, early fusion may not capture the
interaction between modalities. In the case of feature-level fusion, the loss of the predictive
model is not backpropagated to the feature extraction stage. [105, 197]

Late fusion, also known as decision-level fusion, involves aggregating predictions from
individual models trained separately on each modality. Aggregation can be performed using
techniques such as averaging, majority voting, or machine learning models like logistic
regression, naïve Bayes, or multilayer perceptrons (MLPs). The main advantage of late fusion
is that it is flexible, and existing models can be easily combined. However, this approach might
not capture low-level interactions between modalities. [105, 146]

Joint fusion, also referred to as deep fusion or intermediate fusion, involves fusing latent
representations of neural networks from different modality encoders and processing them
together. The key difference between joint fusion and early fusion is that the latent repre-
sentations on which the fusion happens can be optimized for. Depending on the task and
modalities, this fusion can occur at various stages of the model. In Chapter 6, we propose a
novel joint feature fusion method for predicting clinical outcomes of COVID-19 patients by
leveraging both imaging and clinical data. While joint fusion introduces added complexity, its
main benefit is that the feature extraction can be end-to-end optimized for the feature fusion
and the downstream task at hand. This allows the model to learn and exploit cross-modal
interactions more effectively. [105, 146]

Within the category of joint fusion, two dominant paradigms have emerged: feature-based
fusion and token-based fusion. These approaches differ in how they represent and combine
information from multiple modalities to learn a unified multimodal representation.

Feature-based Fusion with Pooling
Feature-based fusion involves encoding each modality into dense latent representations using
modality-specific encoders, such as convolutional neural networks for images or recurrent
neural networks for text. These latent representations globally capture each modality and
are then aggregated into a multimodal representation. If the latent vectors have different
dimensionalities, they can be projected to the same dimensionality using a simple linear
layer before fusion. The actual fusion step merges two or more latent representations into a
single representation. This is commonly accomplished using techniques such as element-wise
max-pooling, average-pooling (which is equivalent to additive-pooling), or more sophisticated
aggregation methods like weighted pooling, attention gates, or bilinear (gated) models
[126]. Feature-based fusion allows for modality-specific processing and can effectively capture
interactions between modalities at an intermediate level of abstraction.

Token-based Fusion with Transformers
In contrast, token-based fusion approaches, inspired by the success of Transformer [236]
and BERT [61] in natural language processing, treat different modalities as a sequence
of tokens and apply transformer-based attention mechanisms like self- or cross-attention
to these sequences [255]. Architectures like MMBT [125] represent an image as multiple
tokens using patch embeddings, similar to Vision Transformers [65], and add these tokens
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to the sequence of text or other modalities encoded as tokens. Similarly, LLaVa [147], a
recently proposed multimodal LLM, uses a simple yet surprisingly effective projection of
image patch embeddings to the language token domain. In RaDialog [186], we use BLIP-2 to
project CNN patch embeddings to the language domain and feed them to an autoregressive
Transformer decoder. In all these approaches, the transformer encoder learns to attend to
and fuse information from the multimodal token sequence. Instead of pooling the features
of each modality to global embeddings like in feature-based fusion, the individual tokens
preserve the locality of features that can represent words or individual patches of an image.
Token-based fusion enables the model to capture complex relationships and dependencies
between modalities at a fine-grained level, leveraging the power of self-attention mechanisms.
Recently, this approach has been adapted to integrate multimodal medical data into the token
sequence of large language models [18].

3.3.2 Cross-Modal Translation

Cross-modal translation involves converting data from one or more modalities to another while
preserving task-relevant semantic content and modality-invariant information. In radiology
and the clinical domain, this has been applied to report generation, image synthesis, and
visual question answering (VQA) [94].

Report generation focuses on producing a clinically accurate and meaningful report based on
a given medical image. However, assessing the clinical correctness of generated reports can be
challenging, as the text is often unstructured, which is further discussed in Chapter 7.
Cross-modal image synthesis involves generating a corresponding image in a different
modality. For instance, a CT image can be generated from an MRI to facilitate registration with
other CT images, or contrast enhancement can be applied to stained histology images. In our
work U-PET [131], we generate a corresponding FDG-PET image from a given MRI to improve
Alzheimer’s disease detection and interpretability. Generating images from a radiology report
can be valuable for data augmentation, particularly for underrepresented data distributions.
Chambon et al. [39] investigated this approach by conditioning a latent diffusion model with
radiology reports to synthesize high-fidelity, diverse X-ray images.
Visual question answering (VQA) involves answering questions about a given image through
classification or open-ended responses. Effective VQA relies on the fusion of text (the ques-
tion) and image information, as discussed in the previous section on multimodal fusion
(Section 3.3.1). In our work on Rad-ReStruct [185], we propose modeling the structured
reporting task as a sequence of questions following a hierarchy of granularity in the report
aligned with the clinical workflow (see Chapter 7).

Current state-of-the-art cross-modal translation models for VQA and report generation, such
as RaDialog [186], employ modality fusion techniques, as discussed in Section 3.3.1, followed
by text generation using an autoregressive transformer decoder, as described in Section 3.2.1.
For image synthesis tasks, diffusion-based denoising models have emerged as the predominant
approach, as exemplified by Chambon et al. [39]
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3.3.3 Self-supervised Representation Learning

Self-supervised learning is a promising approach to overcome the limitations of supervised
methods, which require labeled data for each task. In the medical domain, where high-quality
annotations are scarce and expensive, self-supervised techniques can leverage unlabeled
multimodal data that is more readily available at large scale [25, 49, 224]. The supervision
signal for self-supervised learning comes from the inherent structure and relationships within
the data itself. For example, in a hospital database, different data modalities, such as medical
images, clinical notes, and laboratory results, are associated with specific patients. A self-
supervised system can learn meaningful representations by trying to find similarities and
matching pairs across modalities. This provides a strong supervision signal inherent in the data,
as their semantic consistency can be exploited. Besides cross-modal retrieval with similarity
metrics, it can be used as pre-training, where it serves as an initialization to fine-tune on
downstream tasks. These representations can also be used for zero-shot approaches like
Xplainer presented in Chapter 9 without further training. Unlike fusion and translational
models that optimize for specific downstream tasks, self-supervised models aim to learn
task-agnostic multimodal representations broadly applicable to various problems. Inspired
by the success of large-scale pre-training in natural language processing with BERT [61],
vision-language with CLIP [194], and language generation with GPT-3 [27], there remains
significant untapped potential for multimodal foundation models in medicine.

Most self-supervised methods can broadly be categorized into two main pretext tasks: genera-
tive and discriminative. Generative approaches obtain a supervision signal by reconstructing
or predicting altered input data, such as masked or noise-corrupted samples. Discrimina-
tive pretext tasks, on the other hand, involve matching instances in contrastive models like
CLIP or employing self-supervised knowledge distillation methods that enforce consistency of
representations across augmented views, as used in DINO [35] for images and data2vec [8]
for multimodal data. Recent efforts, such as BLIP-2 [142], have combined contrastive and
generative cross-modal supervision to adapt vision encoders for image understanding in LLMs,
bridging the gap between foundation models trained on separate domains.

Generative and Predictive Self-supervision

Lu et al. [151] extended BERT-style pre-training to vision-language tasks in ViLBERT using
separate transformer encoders, while subsequent approaches employed a unified multimodal
transformer encoder [241]. This approach has been applied to radiology in MMBERT [124],
where masked X-ray images and reports are used to predict the masked tokens of the radiology
report. Similarly, Chen et al. [49] adapted the self-supervised BERT pre-training of Vision
Transformers in the Masked Autoencoder (MAE) framework to multimodal radiology pre-
training by predicting both image patches and masked text tokens, showing a significant
increase in performance in VQA and retrieval tasks. Another self-supervision signal can be
reconstructing corrupted input images, such as removing added noise, as in our work on
counterfactual explanations using diffusion autoencoders [120]. This self-supervision has also
been applied to multimodal data in CoDi [227]. Notably, self-supervised generative models
can be useful without further fine-tuning.
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Learning Image Concepts with Natural Language Supervision
Contrastive language-image pre-training (CLIP) was initially introduced by Zhang et al. [271]
for radiology images and was later adapted to large-scale training by Radford et al. [194]. CLIP
employs an InfoNCE loss to align the representations of paired images and text descriptions.
It has emerged as a powerful technique for generating multimodal text-image representations
that have demonstrated significant utility in various downstream tasks, such as classification
in a zero- and few-shot setting, captioning, and cross-modal retrieval. While CLIP by Radford
et al. [194] was initially trained on general data sourced from the internet, recent efforts have
focused on further adapting and applying this approach to enhancing retrieval-based radiology
report generation [70]. Building upon these foundations, Boecking et al. [25] further refined
the pre-training process by incorporating semantic concepts and discourse characteristics
specific to the radiology domain. Similarly, Wang et al. [244] extended the CLIP framework
by introducing pre-training on unpaired datasets and incorporating a semantic matching loss.
Similar to our work in Chapter 8, Wu et al. [250] introduces a fully supervised contrastive
vision-language framework using triplets describing clinical findings in radiology reports.

The success of CLIP and its application in radiology has inspired contrastive pre-training with
other modalities, such as retinal fundus images paired with genetic information [223], cardiac
MR images paired with tabular data [87], kidney MR images paired with sparse tabular data
described with text [13] and electrocardiogram paired with reports [141]. In BioCLIP [267] a
large-scale foundational CLIP model was trained on 15 million figure-caption pairs extracted
from biomedical literature.

� • Most medical data can be represented as text, image, sequential, and
tabular data.

• The integration of multimodal medical data is challenging due to hetero-
geneity, varying dimensionality, missing values, and the combination of
dense with sparse data.

• Multimodal data can be fused, translated, or used for self-supervised
learning of multimodal patient representations.

• There are fusion strategies on different levels of abstraction: early, joint,
and late fusion.
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4Explicit Integration of Exemplar
Knowledge in Deep Learning

In Section 2.1.4, we discussed the two primary forms of knowledge that influenced clinical
decision-making: formal and experiential. Formal knowledge encompasses the explicit in-
formation acquired through medical education, scientific literature, and clinical guidelines,
primarily used in analytical decision-making. In contrast, experiential knowledge is gained
through hands-on experience in diagnosing and treating patients and is predominantly em-
ployed in intuitive decision-making. As we have discovered in Section 2.2, many similarities
exist between the cognitive modeling of a clinician’s mind and the approaches explored
for decision-support systems. Beyond the implicit incorporation of experiential knowledge
through training datasets used for optimization, various deep learning methods have been
investigated to explicitly utilize this data during inference, similar to a physician recalling
relevant past patient cases. Unsurprisingly, the two types of experiential knowledge observed
in human cognition, exemplar and prototypical (see Section 2.1.3), have also been explored
in the context of deep learning.

This part will first give an overview of the explicit modeling of exemplar knowledge in deep
learning and then present two of our methods incorporating this strategy.
Chapter 5 introduces a decision-support system for intoxication prediction based on the limited
information a caller provides to a poison control center (PCC) during an emergency. In this
system, exemplar knowledge about previous patients in the PCC database is modeled as
a population graph and processed by a graph attention network. Furthermore, our model
incorporates formal knowledge about symptoms typically associated with the most common
intoxications based on etiology, combining this with predictions drawn from exemplar knowl-
edge.
In Chapter 6, we present a method for predicting the outcomes of COVID-19 patients using
a population graph to explicitly model the experiential knowledge about previously treated
patients. We employ multimodal information about the patients to model their relevance
within the graph for new patients at inference, considering all clinically available modalities
such as CT images, clinical data, and radiomics for outcome prediction.

4.1 Prototypical Networks

The prototypical knowledge model in cognitive psychology (Section 2.1.3) is reminiscent
of the k-means clustering technique in traditional machine learning. A similar concept has
recently been incorporated into deep learning, with the ProtoPNet model by Chen et al. [45]
drawing inspiration from how clinicians explain their reasoning process. Their explanatory
approach follows the "this looks like that" intuition, suggesting that experts identify parts of an
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image that resemble typical patterns associated with a particular finding. This aligns with the
cognitive model of prototype-based experiential knowledge retrieval in intuitive reasoning.

Since the introduction of ProtoPNet, researchers have explored similar methods for various
medical applications, such as aortic stenosis classification [235], X-ray classification [127],
and diabetic retinopathy detection [96]. Unlike post-hoc interpretation methods, which will
be discussed in more detail in Chapter 10, these prototype-based approaches aim to make
the intrinsic reasoning process transparent by assigning semantic concepts to the identified
prototypes. Recently, Wolf et al. [247] introduced Shapley values of the similarity metrics to
ProtoPNet, to improve the faithfulness of the provided visual explanations.

4.2 Retrieval of Exemplar Knowledge

Long et al. [149] proposed a retrieval augmented classification (RAC) approach that models
the exemplar retrieval process in intuitive reasoning (Section 2.1.3). This method incorporates
an explicit retrieval module that selects relevant training samples during inference, leading to
improved performance on long-tail data distributions. Drawing inspiration from the success
of retrieval augmented generation (RAG) in natural language processing [140], Blattmann
et al. [22] introduced the concept of sample retrieval for enhancing image generation using
diffusion models, resulting in higher quality outputs with reduced memory and computational
requirements. In the context of cross-modal retrieval, Endo et al. [69] explored retrieving the
most similar report for a given chest X-ray. Their findings suggest that generating a report by
sampling the most similar report sentences from multiple similar patients yields competitive
results in report generation.

4.3 Modelling Exemplar Knowledge with Graphs

An alternative approach to modeling exemplar knowledge involves representing data samples
in a graph structure. Instead of performing a simple similarity-based retrieval of k nearest
samples, the retrieval and processing tasks are carried out on the graph. Graph Convolutional
Networks (GCNs) have shown great promise in medical applications, especially in optimizing
medical image information processing.

Parisot et al. [179] were the first to employ GCNs on population graphs for enhancing the
prediction of autism and Alzheimer’s disease. They also found that the type of patient
information used for graph construction significantly impacted results [177]. Subsequent
research aimed to reduce the dependence on graph construction methods, with Anirudh
and Thiagarajan [6] proposing a bootstrapping method and ensemble learning for GCNs.
Cosmo et al. [54] introduced a graph learning method that integrated both tabular and
imaging information to optimize GCN training. Besides population graphs, GCNs have also
been applied to medical image segmentation tasks [159, 216, 229, 249]. While the studies
mentioned above mainly used pre-extracted image features, Burwinkel et al. [30] proposed
a method that directly applied GCNs to image data. They demonstrated that end-to-end
optimization within a GCN can improve performance due to optimized feature extraction from
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images and clinical patient information. Moreover, their approach enabled more effective
modeling of inter-class relationships within the graph. This concept will be further expanded,
and its implications will be discussed in detail in Section 6.3.
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5.1 Introduction

Intoxication is a significant global health concern, causing millions of deaths and disability-
adjusted life-years (DALYs) annually. In 2016, alcohol abuse resulted in 2.8 million deaths
and 99.2 million DALYs, accounting for 4.2% of all DALYs. Other intoxications contributed
an additional 31.8 million DALYs and 451,800 deaths worldwide [59]. Rapid detection of
the underlying toxin and appropriate treatment are critical to prevent severe damage to
organs or fatalities in cases of intoxication [134]. Poison control centers (PCCs), like the PCC
at the toxicology department of the university hospital Klinikum rechts der Isar in Munich,
were established to assist medical professionals and the public in classifying and managing
intoxications. When the substance causing the patient’s condition is unknown, the medical
doctor (MD) at the emergency hotline of the PCC must diagnose the patient based solely on
reported symptoms, without direct patient contact. This task is challenging for inexperienced
MDs due to variations in symptom descriptions, individual patient responses, and confounding
factors from comorbidities. Current clinical decision support systems (CDSS) in toxicology,
primarily rule-based expert systems [14, 57, 150], are sensitive to input variations and do
not consider demographics like age, gender, weight, or area of living, which are crucial for
accurate diagnosis, as discussed in Section 2.2.

To this end, we propose a novel method [31, 266] that leverages Graph Convolutional
Networks (GCNs) [58, 129] to incorporate clinical and demographic information into the
diagnostic process. Analogous to the exemplar memory in clinical reasoning (Section 2.1.3),
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our graph-based approach explicitly models patients and their similarities in a patient popula-
tion graph, where each patient is represented as a node, and patients are connected based on
how similar their tabular metadata is [178]. GCNs perform local filtering of data structured
in a graph, in a similar way as Convolutional Neural Networks (CNNs) process grid data
(see Section 3.2.2). They have demonstrated success in various medical applications, as
discussed in Section 4.3. We base our model on Graph Attention Networks (GATs) [237],
which employ an attention mechanism for feature aggregation compensating for imperfect
graph neighborhoods.

In addition to considering previously diagnosed patients, our approach integrates formal
knowledge (see Section 2.1.4) about toxins and their symptom manifestations from medical
textbooks. For this, we employ a literature-matching network that learns a mapping of reported
patient symptoms to typical symptoms described in medical literature. This combination of
experiential knowledge, represented by the patient population graph, and formal knowledge,
incorporated through the literature-matching network, aims to model the complementary
way of thinking employed by experienced clinicians in the diagnostic process as described in
Section 2.1.3.

�
Contributions:

• We propose ToxNet, a novel graph-based architecture for improved toxin
prediction integrating patient symptoms, demographics, and formal knowl-
edge.

• We develop a conceptual mapping of ambiguous symptoms reported to well-
defined textbook symptoms, incorporating medical literature knowledge
into the model.

• We evaluate ToxNet on a large PCC dataset and compare its performance
against medical experts on a real-life test set.

5.2 Methodology

ToxNet performs toxin classification using patient symptom vectors P, non-symptom metadata
Q, and literature symptom vectors H in a graph-based approach. The objective function
f(P, G(P,Q,E),H) : P→ Y is optimized, where G(P,Q,E) is a graph with vertices containing
symptoms P and metadata Q, edges E represent connections between vertices, and Y is the
set of toxin classes. Each patient has a binary symptom vector p⃗i. Each toxin has a literature
symptom vector h⃗i, forming the sets: P = p⃗1, p⃗2, ..., p⃗M , p⃗i ∈ 0, 1FP , H = h⃗1, h⃗2, ..., h⃗C , h⃗i ∈
0, 1FH , where M is the number of patients, C is the number of toxin classes, and FP and FH

are the dimensions of the patient and literature symptom vectors, respectively. The patient
metadata is contained in Q = q⃗1, q⃗2, ..., q⃗M . For each graph vertex, the patient symptom
vector p⃗i is concatenated with the corresponding metadata q⃗i to form X with vectors x⃗i of
dimension F . Edges E are constructed based on the similarity of metadata between nodes.
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Fig. 5.1. The patient symptom vectors are processed in parallel by a population Graph Convolutional Network
(GCN) and a symptom-matching network. The population GCN, based on Graph Attention Network (GAT)
layers, considers both reported symptoms and patient demographics to refine patient representations by
considering features of similar patients. Simultaneously, the symptom-matching branch maps patient-
reported symptoms to textbook descriptions, integrating formal knowledge into the model. The resulting
outputs from both branches are then combined to classify the toxin. [31] Reproduced with permission
from Springer Nature.

The model processes reported symptoms through three graph attentional layers and a parallel
literature-matching module. Finally, the outputs from both branches are fused, and using this
joint representation the toxin is classified.

Symptom Vectors

Each symptom vector is a binary encoding of the presence or absence of all considered
symptoms. The dimensions FP and FH represent the total number of unique symptoms SP

and SH found in all cases in the PCC database and the intoxication literature, respectively.
Since reported symptoms may not mentioned in the literature, FH < FP and SH ⊆ SP .
In each patient symptom vector p⃗i the first FH entries correspond to the symptoms in SH ,
ensuring that the literature symptoms are consistently represented across all patient vectors.

5.2.1 Population Graph Processing

Graph Construction

The edges E define the neighborhood of each vertex x⃗i, which is formed by concatenating
the patient symptom vector p⃗i and the corresponding metadata q⃗i. The neighborhood Ni of
x⃗i consists of all vertices x⃗j connected to x⃗i by an edge eij ∈ E. These neighboring vertices
x⃗j ∈ Ni are aggregated refining the representation of x⃗i within each graph attentional layer.
An edge eij is established between vertices x⃗i and x⃗j when their respective metadata is
consistent, ensuring that the graph captures meaningful connections between patients with
similar characteristics.
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Graph Processing

Following Veličković et al. [237], the GAT layer updates the representation of each vertex
x⃗i in X by applying a shared learnable linear transformation W ∈ RF ′×F , resulting in a new
representation with dimension F ′. For each neighbor x⃗j ∈ Ni, an attention coefficient α is
computed using a shared attention mechanism a, which represents the importance of x⃗j in
updating x⃗i. The attention coefficient is calculated as a(Wx⃗i,Wx⃗j) = a⃗T [Wx⃗i||Wx⃗j ], where
[||] denotes concatenation and a⃗ ∈ R2F ′

represents a single feed-forward layer. To normalize
the attention coefficients and facilitate comparability, a leakyReLU activation σ is applied,
followed by a softmax function over all coefficients corresponding to the neighbors in Ni for
each x⃗i.

αij = exp(σ(⃗aT ([Wx⃗i||Wx⃗j ])))∑
r∈Ni

exp(σ(⃗aT [Wx⃗i||Wx⃗r])) (5.1)

To update x⃗i, the transformed feature representations Wx⃗j of its neighbors are weighted by
their corresponding attention coefficients αij and aggregated through summation to obtain
the new representation x⃗′

i. The graph attentional layer repeats this process K times using
independently learned transformations Wk, referred to as heads, to stabilize the predictions
and capture different attention patterns via head-specific attention coefficients αk. The
resulting representations x⃗′

i from each head are concatenated (denoted by ∥) to form the final
updated representation:

x⃗′
i = ∥K

k=1σ

∑
j∈Ni

αk
ijWkx⃗j

 (5.2)

In this equation, K represents the number of attention heads employed, and αk
ij denotes the

attention coefficient computed by head k for vertices x⃗i and x⃗j [237]. Using multiple attention
heads allows the graph attentional layer to capture diverse aspects of the neighborhood
structure and improve the stability of the learned representations.

5.2.2 Integration of Formal Knowledge

Literature Symptom Matching

For each toxin class ci in the set of all toxins C, the literature provides a list of frequently
observed symptoms, which are encoded in a binary symptom vector h⃗i for every toxin. To map
the patient symptom vectors P to the literature symptoms, we introduce a dedicated symptom
matching layer Wsymp ∈ RFH ×FP . This layer learns an interpretable transfer function that
offers insights into symptom correlations and explicitly incorporates formal knowledge from
the literature. Given the structure of the symptom vectors, the first FH entries of each patient
symptom vector p⃗i correspond to the literature symptoms. To preserve these entries during the
matching process, we initialize the first FH learnable parameters of Wsymp with the identity
matrix IFH

and freeze the diagonal elements during training. This ensures that each symptom
s in SH is mapped to itself. The remaining symptoms, which are only reported by patients but
not found in the literature, are transformed into a representation with a dimension consistent
with the symptoms in the literature. As a second transformation, we define a literature layer
Wlit ∈ RC×FH , where the i-th row is initialized with h⃗i for all classes C and remains fixed
during training. The resulting transformation y⃗i,lit = Wlit · σ(Wsymp p⃗i) maps the patient
symptoms onto the toxin classes by explicitly leveraging the literature information.
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Branch fusion

The output of the final GAT layer is passed through a fully connected (FC) layer to obtain
y⃗i, GAT , a representation with dimension C corresponding to the number of toxin classes.
The GAT representation y⃗i, GAT and the literature representation y⃗i,lit are then concatenated,
activated, and passed to a final linear layer for classification. y⃗i represents the final softmax
probability of each toxin class for the given patient symptoms and metadata.

5.3 Experimental setup

Poison Control Center Dataset

The dataset, extracted from the PCC database spanning the years 2001-2019, consists of 8,995
patients with confirmed mono-intoxications, where only one known toxin was present. We se-
lected ten toxin groups: ACE inhibitors (n=119), acetaminophen (n=1,376), antidepressants
(selective serotonin reuptake inhibitors, n=1,073), benzodiazepines (n=577), beta-blockers
(n=288), calcium channel antagonists (n=75), cocaine (n=256), ethanol (n=2,890), NSAIDs
(excluding acetaminophen, n=1,462), and opiates (n=879). In addition to having similar
actionable treatment implications, these toxin groups were chosen based on their frequency,
clinical distinctiveness, severity, and the importance of accurate identification. The classes are
imbalanced, reflecting the varying prevalence of different intoxications in real-world scenarios
(e.g., the high frequency of alcohol intoxication). In addition to patient symptoms, metadata
such as age group (child, adult, elder), gender, etiology, point of entry, weekday, and year of
intoxication is available for each case. These meta-features were selected to construct the
patient population graph based on their contribution to the best performance.

Population Graph Construction

The patient population graph is constructed based on the selected metadata for each patient.
An edge eij is established between patients x⃗i and x⃗j when their metadata is consistent across
the medically relevant parameters mentioned above. This approach results in a sparse graph
with meaningful edges, increasing the likelihood of connecting patients with the same type
of poisoning. To ensure proper evaluation and prevent information leakage, samples in the
training set are only connected to other training samples. In contrast, validation and test
samples are connected to training samples through directed edges. This setup allows the
validation and test samples to be considered only during their respective phases and not during
training. Consequently, the inductive GAT network can perform inference on new, unseen
patients while leveraging the graph structure provided by the training set during inference.

Implementation Details

We chose the Adam optimizer with a learning rate of 1e-3 and a weight decay of 5e-4 for
training the network and cross-entropy loss. No dropout regularization was applied, and the
Exponential Linear Unit (ELU) was utilized as the activation function throughout the network.
Each graph attentional layer in ToxNet is equipped with 5 attention heads.
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Tab. 5.1. Evaluation of different methods for toxin prediction. The methods are detailed in Section 5.3 (p-value:
<0.01 ∗, <0.005 ∗∗). [31] Reproduced with permission from Springer Nature.

Method F1 micro F1 macro p micro p macro

Naive Matching 0.20 ± 0.01 0.13 ± 0.01 ∗∗ ∗∗

Decision Tree 0.25 ± 0.02 0.23 ± 0.02 ∗∗ ∗∗

LitMatch 0.47 ± 0.01 0.34 ± 0.02 ∗∗ ∗∗

MLP with meta 0.54 ± 0.02 0.43 ± 0.02 ∗∗ ∗∗

GAT 0.63 ± 0.01 0.46 ± 0.02 ∗∗ ∗∗

ToxNet(S) 0.64 ± 0.01 0.48 ± 0.02 ∗∗ ∗∗

ToxNet 0.66 ± 0.01 0.53 ± 0.04 - -

Model Evaluation

We evaluate ToxNet against various benchmark approaches and conduct an ablation study
to assess the contributions of different network components. We disable specific network
components in the ablation study to evaluate their impact. ’GAT’ refers to using only the
GAT pipeline of ToxNet, ’LitMatch’ refers to using only the literature-matching branch, and
’MLP with meta’ represents a standard MLP. Both ’GAT’ and ’MLP with meta’ receive symptom
vectors and metadata as input. At the same time ’LitMatch’ uses symptom vectors and explicitly
encodes the literature vectors (Section 5.2). We also test a sequential setting (ToxNet(S))
where literature matching is performed first, and the learned features are then passed to the
GAT. All experiments use 10-fold cross-validation, each containing 10% of the data as the test
set. The remaining 90% is further divided into 80% for training and 20% for validation. In
addition, we compare ToxNet with 10 MDs on the same unseen subset of the full test data.
This subset consists of 25 individual cases for each MD and an additional 25 identical cases
for all MDs, totaling 275 cases (250 + 25). This setup allows for statistical analysis of a larger
case set and an assessment of inter-variability among MDs to differentiate between easy and
challenging cases.

5.4 Results and Discussion

5.4.1 Ablative Testing and Baselines Comparison

Table 5.1 presents a comparison of the F1 micro and macro scores achieved by various bench-
mark approaches and our proposed method, ToxNet, for the task of toxin classification. As a
lower baseline, the Naive Matching approach simply selects the toxin with the highest overlap
between the symptoms described in the literature and the patient’s symptoms. Additionally, a
decision tree model was trained using the literature symptoms and then applied to the patient’s
symptoms for classification. The suboptimal performance of both the Naive Matching and
decision tree models indicates that relying solely on the available literature is insufficient for
accurate toxin classification. In contrast, the LitMatch neural network branch of our approach,

38 Chapter 5 Intoxication Prediction with Population Graphs and Medical Knowledge



GAT ToxNet(S) ToxNet

0.
62

0.
63

0.
64

0.
65

0.
66

0.
67

0.
68

MDs GAT ToxNet(S) ToxNet

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Fig. 5.2. Left: Evaluation of ToxNet and various baseline approaches using 10-fold cross-validation. Right:
Assessment of ToxNet and baseline methods compared to the performance of MDs across 10 distinct
datasets, each assessed by a single MD. [31] Reproduced with permission from Springer Nature.

which explicitly incorporates literature knowledge, achieves better results while maintaining
the ability to leverage this information.

To provide a fair comparison, we trained a Multi-Layer Perceptron (MLP) with three hidden
layers (5 × 128, 5 × 64, and 64 hidden units, respectively) on the patient data for prediction,
matching the architecture of the Graph Attention Network (GAT) used in our approach. The
patient’s metadata was concatenated to their symptom vector, ensuring that both the MLP
and GAT had access to the same information. Comparing the performance of the MLP to a
standard GAT network demonstrates that utilizing metadata within our graph-based method
leads to a substantial improvement in classification performance, emphasizing the value added
by the graph structure.

Furthermore, the incorporation of literature information through our proposed ToxNet method
enhances performance even further, despite the literature data alone being relatively unin-
formative for the task when used in isolation. This improvement suggests a synergistic effect
between the patient data and the literature information, and refining the literature might lead
to an even greater performance boost. We conducted separate evaluations of both pipelines
within ToxNet (GAT and LitMatch) to identify their individual contributions, as described
above. Our experiments revealed that the parallel setting of ToxNet slightly outperforms
the sequential setting (ToxNet(S)). These results are visually represented in the boxplot in
Figure 5.2 (left).

5.4.2 Comparison with Clinicians

To assess the performance of our method in comparison to medical experts, we conducted
a survey involving ten MDs from the toxicology department of the Klinikum rechts der Isar
in Munich. Each MD was tasked with classifying 50 intoxication cases that were divided
as described previously. Among the participating doctors, six were assistant doctors in
the toxicology department, while the remaining four were specialists in pharmacology and
toxicology. Figure 5.2 (right) presents a box plot comparing the performance of the 10 MDs
with various benchmark methods and our proposed ToxNet method on ten individual sets
of 25 cases each, totaling 250 cases. The results demonstrate that all three graph-based
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approaches outperform the MDs, which can be attributed to the optimized utilization of
metadata. Although the performance improvement of ToxNet compared to GAT is not as
substantial for this small subset of the full test set, the overall performance exhibits greater
stability, as evidenced by the smaller margins.

To further investigate the inter-variability among the MDs, we conducted a detailed study on
the 25 cases evaluated by all doctors, as shown in Figure 5.3. Except for one case, our method
predicted every toxin correctly, which was also identified by a majority of MDs. Moreover,
our method successfully classified eight cases where only half or fewer MDs made correct
predictions. These findings highlight the ability of our proposed ToxNet architecture to reliably
predict common cases at an expert-level performance while also demonstrating high prediction
stability on cases that prove challenging for most doctors. Even when compared to the two
best-performing MDs, who correctly classified 12 cases, our method achieved a total of 15
correct toxin predictions. It is worth noting that all doctors and our method misclassified six
cases, which can be attributed to inconsistent documentation and incompleteness in the data
samples, highlighting the intrinsic challenges associated with real-world medical data.

5.5 Conclusion

In this study, we introduced ToxNet, a novel method to enhance toxin prediction by in-
corporating patient symptoms and demographics with domain-specific formal knowledge
from literature. Our experimental results demonstrate that leveraging metadata within the
graph structure of ToxNet leads to significantly higher scores than the compared methods.
Through our evaluation, we showed that simply concatenating the metadata to the patient
symptom vector for early fusion is insufficient and that the increase in performance can be
attributed to the employment of a patient population graph. Furthermore, we introduced
a symptom-matching branch that enables the explicit incorporation of textbook knowledge
and integrated it, resulting in further improvements to the overall network performance.
Integrating experiential knowledge from patient cases with formal knowledge from literature
aligns with the combination of exemplar and formal knowledge described in Section 2.1.4.
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Although textbook knowledge alone was not informative enough for satisfactory classification,
we demonstrated that its parallel integration with our graph network led to synergistic effects
and enhanced classification accuracy.

To validate the performance of ToxNet, we conducted an evaluation against ten medical doctors
(MDs) with varying levels of experience. Considering the high inter-rater variability among
experts, our method exhibited more robust predictions on both common and challenging
intoxication cases. These findings underscore the potential of ToxNet as a CDSS in the
time-critical and high-stake use case of toxin prediction, where such a CDSS can support the
clinician in finding relevant cases from the past and integrating them in the decision-making
process. In the next chapter, we will show that the retrieved patients and the attention of the
graph network on them can be visualized, making this reasoning more transparent.
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6.1 Introduction

The first wave of the COVID-19 pandemic posed unparalleled difficulties for healthcare in-
frastructures, with an exponential surge in cases overwhelming intensive care units (ICUs)
and presenting scenes unwitnessed in modern medicine [198, 203]. Optimizing hospital
resource planning, such as ICU beds, ventilators, and medical staff, becomes critical during
such emergencies. Therefore, correctly anticipating treatment necessity and potential out-
comes is essential for effective patient management. However, predicting this is challenging
when faced with a novel disease, limited understanding, and highly heterogeneous data. This
overload on healthcare facilities, paired with the complexity of the data, highlighted the need
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for decision support systems that can predict patient outcomes and help triage by making use
of all available patient data.

At the onset of the COVID-19 pandemic, numerous parameters were obtained and documented
upon a patient’s hospital admission, including sex, age, body weight, symptoms, co-morbidities,
blood cell counts, inflammatory markers, biochemical values, and cytokine profiles [29].
This tabular data (see Section 3.2.4), along with radiological images such as radiographs
or computed tomography (CT) scans, was available within the first hours of a patient’s
arrival, making them ideal for early triaging and outcome prediction. Given the inherent
uncertainty in clinical findings and diagnostic tests, as highlighted in Section 2.1.2, it is crucial
to integrate all available patient information from various sources to effectively diagnose and
treat patients. Furthermore, as discussed in Section 2.1.3, clinicians often rely on exemplar
knowledge, which refers to experience with similar patients who have been previously treated,
to diagnose disease outcomes. As discussed in Section 4.3, structuring and retrieving these
patients’ representations can explicitly be modeled using a patient population graph [177],
representing relationships between patients with similar characteristics and outcomes.

Drawing inspiration from these clinical reasoning methods and the need for integrated
diagnostic support, we propose a decision support system that performs multimodal data
analysis to create a patient population graph, which is then utilized in a graph attention
network to refine patient outcome predictions by considering similar patients [121]. The
similarity metric, attention mechanism, and generated pathology segmentations offer added
insight into the decision-making process by enabling direct observation of the weighting of
clinical features and the most influential patients in the prediction process.

�
Contributions:

• We introduce U-GAT: an end-to-end, graph-based method leveraging multi-
modal data for patient outcome prediction in COVID-19.

• We employ a multitasking approach with simultaneous segmentation and
classification using U-Net and Graph Attention Network (GAT).

• We propose an interpretable, multimodal patient similarity metric for
population graph construction and effective batch selection.

• We develop a novel equidistant image sampling method for end-to-end
training of volumetric image feature extraction in a graph convolutional
setting.

• We evaluate the approach on a private dataset acquired at Klinikum rechts
der Isar and an external, publicly available dataset.

6.2 Related Work

44 Chapter 6 COVID-19 Outcome Prediction with Multimodal Population Graphs and Joint Pathology

Segmentation



Clinical data

Input

CT images

Input

Age, sex,
vital signs,
blood levels

U-Net

Data processing

R
ad
io
m
ic
s

ex
tra

ct
io

n

Im
ag
e
fe
at
ur
e

ex
tra

ct
io

n

Output

BCE loss
+

Dice loss

ICU

Ventilation

Mortality

Graph network processing

Graph construction using similarity
of radiomics and clinical data

GAT networkPatient population graphAggregated
feature input

ICU
Not ICU

Fig. 6.1. U-GAT is a multitasking model that segments pathologies and uses this information to predict various
patient outcomes. It integrates image features (ZI), radiomic features (R), and clinical metadata (XC)
and is end-to-end optimized to extract the most relevant features for disease prognosis. The clinical
metadata includes information such as age, sex, vital signs, and blood levels. The model segments
disease-affected areas (YSeg) in CT images (XI), which helps in extracting radiomic features (R) and
regularizes the extraction of image features (ZI). These features are fused into a multimodal vector
representation using a function Ψ. Test patients are clustered with training patients in a graph based
on the similarity between their radiomic and clinical data features defined by ω. A Graph Attention
Network (GAT) then refines the features to predict the most probable outcome (Y ) using a learned
linear transformation Θ and patient attention coefficients αij . Outcome classification is supervised using
binary cross-entropy (BCE) loss, while the Dice loss is used for the auxiliary segmentation task. Applied
to COVID-19, U-GAT segments pathologies in the lung CT image and predicts outcomes such as ICU
admission, ventilation needs, survival, or severity. [121]

6.2.1 Integrating Imaging and Tabular Data

This section reviews methods used for integrating imaging and non-imaging data to support
clinical decision-making, as discussed in the Section 3.3.1, and gives an overview of the
different data fusion strategies that have been proposed for COVID-19 in particular.

One early approach to connecting features from multiple modalities was introduced by Perez
et al. for visual reasoning tasks [187]. A Feature-wise Linear Modulation (FiLM) layer affinely
transformed the output of a Convolutional Neural Network (CNN) with a learned scaling
and shifting factor using the text of the input question. Similarly, Dynamic Affine Feature
Map Transform (DAFT) [248] combines the features of 3D brain T1-weighted MRI scans and
non-imaging biomarkers for Alzheimer’s prediction. DAFT affinely transformed the imaging
features extracted by a 3D Fully CNN by a learned scaling and shifting factor using nine
non-imaging features, such as age, sex, and genetic factors. A multi-headed cross-attention
block has been recently proposed to fuse imaging and tabular data for skin lesion classification
using a transformer architecture [32]. Moreover, Duanmu et al. [67] combined breast MRI
scans and clinical biomarkers to predict chemotherapy response.

Following the categorization of fusion strategies for multimodal data presented in Sec-
tion 3.3.1), our approach employs joint fusion. Unlike early and late fusion methods, this
allows us to optimize the latent representation of each modality for fusion. Due to the urgent
need to integrate multimodal data in CDSSs during the COVID-19 pandemic, several of these
strategies have been explored for COVID-19.
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Early Fusion
Early fusion of features has been widely applied in methods integrating imaging and non-
imaging data for COVID-19 detection and patient outcome prediction [29, 33, 40, 99, 115,
226, 256]. Chassagnon et al.[41] showed the effectiveness of non-imaging and extracted
imaging features in an ensemble of machine-learning models for the outcome prediction
of COVID-19. This is confirmed by the findings of Shiri et al.[213] on COVID-19 survival
prediction by combining lesion radiomics and clinical data. Gong et al. [83] also demonstrated
improved prediction of severe COVID-19 outcomes by adding blood test results to other
clinical features and extracted radiomics.

Late Fusion
Ning et al.[170] applied late fusion with penalized logistic regression and reported an improve-
ment in both COVID-19 severity and mortality prediction compared to CNN and non-imaging
Multilayer Perceptron (MLP) models alone. Tariq et al.[228] investigated different fusion meth-
ods to predict hospitalization of COVID-19 patients and found the early fusion of electronic
medical record features to be the most effective strategy for this task.

Joint Fusion
To the best of our knowledge, at the time of publishing this work [121], we were the first
to propose a joint fusion method combining imaging and non-imaging data to predict ICU
admission, ventilation, mortality, or severity for COVID-19.

6.2.2 Graph Convolutional Networks

Graph Convolutional Networks (GCNs) have been adapted for COVID-19 diagnosis, primarily
focusing on disease detection. Wang et al.[240] and Yu et al.[265] constructed graphs based on
the similarity of extracted CT image features and classified nodes for the detection of infiltrates.
Song et al.[218] and Liang et al.[144] incorporated additional features, such as an acquisition
site, to improve COVID-19 detection. Saha et al.[204] did not use GCN for population graph
processing but instead converted edges detected in chest CT and X-ray images to graphs
for COVID-19 detection. Huang et al.[103] used GCNs to refine COVID-19 segmentations.
Di et al. [62] employed an uncertainty-vertex hypergraph to classify community-acquired
pneumonia and COVID-19. Our work is the first to propose a graph-based patient outcome
prediction method by leveraging a population graph combining end-to-end chest CT feature
extraction and tabular patient data.

6.2.3 Multitask Learning

Radiological studies [29, 52, 213, 239] on the prognosis of COVID-19 patients have demon-
strated a strong link between disease burden and patient outcomes, such as the proba-
bility of ICU admission. Different deep learning methods have investigated multitasking
approaches [137, 157, 260] to use the correlation between pathological tissue presence and
patient health status. However, most of the proposed multitask methods focus on the joint
detection of COVID-19 infection and binary segmentation of related pathologies in lung CT
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images [4, 5, 10, 77, 251]. They are not concerned with outcome prediction or segmentation
of different types of COVID-19 pathologies. In a similar direction, some works [82, 93]
applied multitask learning to jointly estimate the severity of COVID-19 and solve related
classification and segmentation tasks. Most comparable to our approach, Näppi et al. [168]
used extracted bottleneck features of a pretrained U-Net to predict COVID-19 progression
and mortality. However, their method differs from our proposed approach in several key
aspects. Firstly, they did not optimize the image feature extraction end-to-end, which is a
crucial component of our method. Secondly, they did not incorporate clinical patient data,
which we believe is essential for accurate patient outcome prediction. Lastly, they did not
employ a population graph to model previous patients, a core feature of our method that
contributes to its novelty and effectiveness in predicting patient outcomes.

6.3 Method

We propose U-GAT, illustrated in Figure 6.1, that offers a multimodal approach to outcome
prediction by forming a holistic patient representation including all relevant data, such as CT
images (XI), radiomics (R) and clinical information (XC). In the context of COVID-19, we
focus on predicting three key outcomes for patients admitted to the hospital: the need for ICU
admission, the need for mechanical ventilation, and patient survival (for our in-house dataset).
For the iCTCF dataset, we predict COVID-19 severity. As an auxiliary task, we incorporate the
segmentation of COVID-19 pathologies for regularization and localized supervision signal.
From the segmentation output, we also derive radiomic features (R) that quantify the relative
burden of each pathology class on the lungs. To exploit the synergies between image segmen-
tation and outcome prediction tasks, we combine the image understanding capabilities of
U-Net with the analytical strengths of Graph Convolutional Networks (GCNs). We use graph
processing to not only consider an isolated patient at test time but also use similar patients for
feature refinement. This population graph is constructed based on the similarity of clinical
patient data (XC) and radiomic features (R). The model is trained end-to-end, enabling
the joint optimization of image feature representation learning, U-Net image segmentation,
and graph data processing. Before training, the graph is pre-computed, while at test time,
new patients are dynamically attached to the existing graph using the inferred radiomics and
patient information.

6.3.1 Graph-based Image Processing

We use spatial graph convolutions to enable inference on unseen data samples without the
need for retraining the entire network, like in spectral methods. As discussed in Section 3.3.1,
integrating image data (XI) with other modalities is crucial for comprehensive patient outcome
prediction. When using GCNs, image-based features are typically extracted in a separate step,
either manually or using a pretrained CNN. These features are then processed within the graph
network. Although this approach reduces the memory requirements for imaging data, it limits
the potential for end-to-end optimization, a key aspect of our proposed method. Burwinkel
et al. [30] demonstrated that the end-to-end image feature extraction can be improved by
processing neighboring images using a graph structure and geometric learning. Using our
proposed method, we apply this concept to process the provided CT image information. Each
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Fig. 6.2. Visualization of the patient population graph for ICU, ventilation, and survival prediction tasks on
the KRI dataset. In the top row, each node is connected to its seven nearest neighbors, determined
by calculating the Euclidean distance between feature vectors formed by both clinical and radiomic
features. We introduce feature weighting in the distance calculation to optimize the graph structure
for a specific task without using prior knowledge about the disease. This weighting is based on the
mutual information [200] between features and the task at hand, as shown in the bottom row. This gives
features relevant to the task a higher priority in forming patient neighborhoods, encouraging aggregation
of features from relevant patients. [121]

CT image xI,i is fed into a U-Net architecture to perform segmentation on the individual image
slices. The bottleneck features generated by the U-Net (see Section 6.3.2) are then further
processed to obtain an image representation zI,i, which can be effectively fused with the other
modalities and propagated through the graph network.

Equidistant Subsampling of CT Volumes

We propose a simple yet effective approach to address the challenge of high memory demands
when utilizing GCNs for end-to-end feature extraction from high-resolution 3D images. This
is necessary because GCNs need batch diversity to facilitate feature aggregation within a
significant portion of the graph. However, processing the entire CT volume would limit the
number of patient instances per batch. Our solution involves equidistant subsampling of S
slices per volume along the axial view during the training phase. Given a main axis length of Z,
each volume is partitioned into ⌊Z/S⌋ stacks of S slices while discarding (Z mod S)/2 slices
on both ends. This approach offers two key benefits: it increases the probability of capturing
disease-affected regions and reduces overfitting by distributing limited 3D volume data across
multiple patient samples. The entire stack of slices is utilized during testing, covering the
complete 3D volume to ensure no pathologies are missing.
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Graph Construction Method

We construct a binary, directed graph G(V,E) with a set of vertices V and connecting edges
E. Each vertex vi ∈ V represents a patient with the information of a stack of CT slices
xI,i ∈ XI (obtained through the sampling process described in Section 6.3.1), a vector of
radiomics features ri ∈ R (extracted using the method detailed in Section 6.3.2), and clinical
data xC,i ∈ XC . To build the graph, we first concatenate the clinical data XC and radiomics
features R into a single tabular feature vector. We then calculate the distance ω between pairs
of vertices based on these combined features. Finally, each vertex vi is connected to its k
nearest neighbors determined by the calculated distances.

Instead of manually selecting features, we propose a feature weighting approach based on
statistical training data analysis. The idea is to assign greater importance to statistically
significant features in the distance and, therefore, similarity calculations. Possible weighting
schemes include correlation coefficients, such as the Pearson correlation for continuous
features, or estimated mutual information [200] between the input features and target labels
like YICU computed on the training set. The motivation behind using mutual information is
to capture both linear and non-linear associations between the features and predicted labels.
To mitigate the impact of varying scales across different features, we standardize all features
using z-score normalization before calculating the distances between vertices. An alternative
approach would be to use another distance metric, like cosine similarity [135], which was
not explored in this work. Figure 6.2 illustrates the k-nearest neighbors (KNN) graphs for a
training set, both with and without weighting the distance using mutual information.

6.3.2 Segmentation, Image Features, and Radiomics

A segmentation backbone is utilized as both a high-level image feature extractor and a pixel-
wise prediction to visually inspect healthy and pathological tissue and calculate radiomics
at inference. This backbone can be implemented using any encoder-decoder architecture
that generates a compressed bottleneck representation and a segmentation output. In our
experiments (see Section 6.4), we employ a modified version of the original 2D U-Net
architecture introduced by Ronneberger et al. [199]. The imaging data is processed by
sampling S equidistant slices from each input image xI,i (see Section 6.3.1 for slice selection
details) and forwarded by the segmentation backbone independently. This results in a 2D
segmentation of healthy lung tissue and pathological regions for each slice. The image
features for the classification task are obtained by applying global average pooling to the
bottleneck features of each slice, reducing the size from c× d1 × d2, where c is the number
of channels and d1, and d2 are the spatial dimensions, to a vector of length c per slice. To
create a patient-wise representation, the slice-wise image feature vectors are aggregated by
computing the element-wise maximum along the stacking dimension. The resulting vector of
size c is then passed through a fully connected layer and a leaky ReLU activation function to
obtain the latent image representation zI,i ∈ ZI . Although Goncharov et al. [82] reported
improved performance using the U-Net’s final feature map instead of the bottleneck, our initial
experiments with this approach led to a substantial performance drop. Therefore, we only
explored the pooled bottleneck representation further.
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Extraction of Radiomic Features
The approach to enrich the clinical data with radiomic features R is inspired by the work
of Burian et al. [29]. These radiomics can automatically extracted from the output of our
segmentation network YSeg, e.g., by calculating the disease burden of the lung for a given
pathology. Since segmentation masks and radiomics are highly interpretable, this aids the
intrinsic interpretability of our method for both patient retrieval in the graph and validation
of intermediate image representations.

6.3.3 Multimodal Feature Fusion

Our approach to multimodal representation learning for clinical decision support leverages
the image patient data in two complementary ways. First, we extract radiomics features from
the segmented pathology regions, converting the image information into tabular data. This
allows for an early fusion with patient clinical data, enabling the construction of a patient
population graph using both imaging and non-imaging information (see Section 3.3.1). This
graph structure captures task-specific patient similarities based on their imaging and clinical
characteristics. Second, we perform a joint fusion of latent image features derived from the
bottleneck representation of the U-Net architecture with the extracted radiomics features and
clinical data. This allows for an end-to-end optimization of the feature fusion most relevant to
the task, resulting in comprehensive node features for each patient in the population graph.

The three modalities fused are latent image features zI,i extracted from the input image data
xI,i ∈ XI , radiomics features ri ∈ R derived from the segmented regions, and clinical data
xC,i ∈ XC . All of them are propagated through the graph and contribute to the classification
task performed for each patient node vi. Including clinical data XC is particularly valuable,
as it provides complementary information that may not be captured by the imaging-based
features alone (see Section 2.1). By incorporating the latent bottleneck features zI,i from
the U-Net architecture, our approach enables end-to-end optimization of the image features,
allowing for the learning of more expressive representations in addition to hand-crafted
radiomics. We apply a learnable linear transformation to the features from each modality to
align their dimensionality for equal contribution. This projects them onto a common feature
space of dimension Ff . The transformed features are then combined using an aggregation
function Ψ to obtain the fused representation zf,i that is subsequently utilized within the
graph network:

zf,i = Ψ (σ (ΘIzI,i) , σ (ΘRri) , σ (ΘCxC,i)) , (6.1)

where σ denotes a non-linear activation function, and ΘI ∈ RFI ×Ff , ΘR ∈ RFR×Ff , and ΘC ∈
RFC×Ff are learnable linear transformation matrices that map the input feature dimensions
FI , FR, and FC to the common dimension Ff , respectively.

6.3.4 Patient Outcome Prediction

Our proposed method for multimodal representation learning in clinical decision support
systems employs graph attention layers (GAT) [237] as the foundation for graph processing.
At the same time, our approach allows for other graph convolutional networks. GATs offer
several advantages, including effective neighborhood processing, the ability to perform direct
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inference on unseen data samples, and the preservation of filter localization while maintaining
low computational complexity. Our graph-based approach allows for the effective incorpora-
tion of clinical patient data XC and radiomics R into the learning process by constructing the
graph based on the similarity of tabular features and creating a neighborhood N(i) for each
fused representation zf,i. This enables the aggregation of features from patients with likely
similar outcomes across multiple hops in the patient neighborhood. Each Graph Attention
Network (GAT) layer in our model aggregates a 1-hop neighborhood within the graph G(V,E)
for every vertex vi. The transformation of a vertex representation within a GAT layer considers
the representation itself and the feature vectors of its neighboring vertices. The update of the
fused feature representation zf,i within a GAT layer is computed as follows:

z′
f,i =

P

∥
p=1

σ

 ∑
j∈N(i)

αp
ijΘpzf,j

 (6.2)

where αp
ij is the learned attention coefficient for attention head p, encoding the importance

of zf,j in the 1-hop neighborhood N(i) for the update of zf,i, and Θp is a learned linear
transformation. αp

ii represents the self-attention coefficient. Consequently, the transformation
of representation zf,i does not solely rely on the representation itself but also receives weighted
contributions from all neighboring representations zf,j ∈ N(i). This process has the potential
to stabilize the predictions for patients whose initial representations may be uncharacteristic of
their corresponding class but are localized within the correct data cluster in the graph. At the
same time, the attention mechanism allows for less influence from patients who are wrongly
clustered in the neighborhood. Moreover, this can enhance interpretability by showing which
patients were considered the most in the feature refinement as highlighted in Figure 6.5. In
the final step, the refined multimodal representation zf,i is passed to a linear layer to predict
the outcome Y .

6.4 Experiments

6.4.1 Multimodal COVID-19 Datasets

KRI Dataset
The KRI dataset, an in-house dataset, comprises 132 patients, building upon the previous
dataset of 65 patients reported by Burian et al. [29]. The data was collected retrospectively,
adhering to the local institutional review board’s guidelines and approval (ethics approval
111/20 S-KH). The patient cohort included 88 males and 44 females, ranging from 24 to
99 years of age, with an average age of 63. All patients were hospitalized at our institution
between April 3rd and September 5th, 2020, and had a confirmed diagnosis of COVID-19
based on polymerase chain reaction (PCR) testing. Among the 132 patients, 53 required
admission to ICU for further management. Of these ICU patients, 38 necessitated machine-
assisted ventilation, and tragically, 19 patients succumbed to the disease. ICU admission
criteria included the presence of at least one of the following symptoms: a respiratory rate
exceeding 30 breaths per minute, peripheral oxygen saturation below 93%, an invasively

6.4 Experiments 51



Tab. 6.1. An overview of feature extraction backbones and classifiers used for evaluation with the according
modalities used as patient features and similarity metric. Images refer to the image features extracted
with an image encoder. Radiomics are the radiomics calculated on the predicted segmentation. Clinical
data encompasses vital signs, blood test results, and demographics. U-GAT is compared to a set of
end-to-end methods using only clinical data (MLP-Clinical), images (ResNet18), and a U-GAT variant
without auxiliary segmentation but a simple ResNet18 instead (ResNet18-GAT). Additionally, we perform
experiments on image embeddings extracted from a frozen U-Net, pretrained on the same segmentation
task, denoted as U-Net*. Multitasking refers to the joint optimization of classification and segmentation.
[121]

Patient modalities Patient similarity

Architecture Multitasking Multimodal Images Radiomics Clinical Radiomics Clinical

MLP-Clinical - - - - ✓ - -

RF-Clinical - - - - ✓ - -

ResNet18 - - ✓ - - - -

ResNet18-GAT - ✓ ✓ - ✓ - ✓

U-Net*+RF - ✓ - ✓ ✓ - -

U-Net*+KNN - ✓ - ✓ ✓ ✓ ✓

U-Net*+MLP - ✓ ✓ ✓ ✓ - -

U-Net*+GraphSAGE - ✓ ✓ ✓ ✓ ✓ ✓

U-GAT* - ✓ ✓ ✓ ✓ ✓ ✓

U-GAT ✓ ✓ ✓ ✓ ✓ ✓ ✓

measured PaO2/FiO2 ratio less than 300 mmHg (1 mmHg = 0.133 kPa), respiratory failure
requiring mechanical ventilation support, cardiovascular shock, or failure of various other
organ systems. Upon admission to the hospital, the most common presenting symptoms were
fever (66%), coughing (45%), dyspnea (33%), and gastrointestinal manifestations (15%).
The mean percutaneous oxygen saturation level was 93.4 ± 7.1%, and the average body
temperature was 37.7± 1.0°C. Notably, oxygen saturation levels differed significantly between
patients admitted to the ICU and those who were not (90.7± 10.2% vs. 95.0± 3.5%), as well
as between patients who required mechanical ventilation and those who did not (89.4± 10.5%
vs. 94.8± 4.9%). Blood tests were performed at the time of admission, and the results, along
with statistical analyses and t-test comparisons, are presented in Tables 6.2, 6.3, and 6.4.

Non-contrast, low-dose chest CT scans were performed using a 256-row MDCT scanner (iCT,
Philips Healthcare, Best, The Netherlands) upon patient admission. The scans were acquired
with the patient in full inspiration and arms raised. Various parameters were collected to
evaluate patient outcomes, including ICU admission, need for mechanical ventilation, and
survival. No distinction was made regarding whether these outcomes occurred immediately
upon hospital admission or later during the patient’s stay. Expert radiologists with 4-8 years
of experience manually segmented the total lung volume, healthy lung tissue, ground-glass
opacities (GGO), consolidations, and pleural effusions on each CT scan. Differentiating
between pleural effusion and consolidation on a voxel-wise basis was considered challenging
even for senior reviewers, as both have similar Hounsfield unit ranges [128]. Moreover,
pleural effusion was present in only 38 out of 132 patients and, when present, accounted for
an average of 4.1% of the lung volume (1.2% for all patients). Consequently, we combined the
pleural effusion and consolidation classes into a single category termed other pathologies. The
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Tab. 6.2. KRI dataset - Blood test results upon hospital admission for the 53 ICU patients and the 79 non-ICU
patients. The total number of patients (n) is less than the overall study population (n = 132) due to
missing data for certain individuals. Statistical significance at the 5% level is indicated by *. [121]

ICU (n=53) No ICU (n=79)

Blood value Average Std. Dev. n Average Std. Dev. n p

Leukocytes (G/L) 8.4 4.9 53 6.7 4.1 79 0.03*

Lymphocytes (G/L) 19.3 46.9 48 22.6 35.3 75 0.65

Thrombocytes (G/L) 226.6 100.1 53 228.5 116.8 79 0.92

C-reactive protein (CRP. mg/dL) 12.19 9.30 53 6.10 6.26 78 <0.01*

Creatinine (mg/dL) 1.56 1.67 53 4.17 26.50 78 0.48

D-Dimer (µg/mL) 5467 12801 41 1952 5570 67 0.05

Lactate dehydrogenase (LDH. U/L) 468.6 329.5 48 358.4 368.4 75 0.09

Creatinine kinase (U/L) 427.3 1167.2 48 225.3 777.2 74 0.25

Troponine-T (ng/mL) 0.071 0.161 25 0.097 0.323 34 0.71

Interleukin 6 (IL-6. pg/mL) 120.5 117.5 35 104.1 388.7 60 0.81

Tab. 6.3. KRI dataset - Blood test results at hospital admission for the 38 patients requiring ventilation and the 94
patients who did not. The total n is less than the overall study population (n = 132) owing to missing
data for some patients. Significant differences at the 5% level are denoted by *. [121]

Ventilation (n=38) No Ventilation (n=94)

Blood value Average Std. Dev. n Average Std. Dev. n p

Leukocytes (G/L) 7.9 3.7 38 7.2 4.8 94 0.44

Lymphocytes (G/L) 13.1 7.9 35 24.6 46.8 88 0.15

Thrombocytes (G/L) 209.8 102.3 38 235.0 112.7 94 0.23

C-reactive protein (CRP. mg/dL) 13.54 9.80 38 6.53 6.43 93 <0.01*

Creatinine (mg/dL) 1.42 0.66 38 3.81 24.28 93 0.55

D-Dimer (µg/mL) 5622 14484 29 2429 6019 79 0.11

Lactate dehydrogenase (LDH. U/L) 454.1 241.9 36 379.6 393.5 87 0.29

Creatinine kinase (U/L) 533.7 1354.8 35 212.7 718.0 87 0.09

Troponine-T (ng/mL) 0.049 0.089 19 0.104 0.316 40 0.47

Interleukin 6 (IL-6. pg/mL) 138.2 126.4 24 100.7 358.5 71 0.62
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Tab. 6.4. KRI dataset - Blood test results upon hospital admission for the 113 surviving patients and the 19
deceased patients. The sum of n is lower than the total study population (n = 132) due to incomplete
data for certain individuals. Statistically significant differences at the 5% level are indicated by *. [121]

Passed (n=19) Survived (n=113)

Blood value Average Std. Dev. n Average Std. Dev. n p

Leukocytes (G/L) 9.8 6.7 19 7.0 3.9 113 0.01*

Lymphocytes (G/L) 11.3 8.3 17 22.9 42.9 106 0.27

Thrombocytes (G/L) 201.4 99.2 19 232.2 111.6 113 0.26

C-reactive protein (CRP. mg/dL) 11.06 8.98 19 8.14 7.99 112 0.15

Creatinine (mg/dL) 1.57 0.79 19 3.37 22.13 112 0.72

D-Dimer (µg/mL) 6388 12076 13 2862 8644 95 0.19

Lactate dehydrogenase (LDH. U/L) 607.3 500.1 17 368.4 318.7 106 0.01*

Creatinine kinase (U/L) 843.2 1878.8 17 217.6 673.0 105 0.01*

Troponine-T (ng/mL) 0.120 0.216 13 0.077 0.279 46 0.61

Interleukin 6 (IL-6. pg/mL) 143.7 181.9 11 105.8 330.1 84 0.71

Tab. 6.5. KRI dataset -Radiomic features extracted from manually segmented admission CT scans. Statistical
significance at the 5% level is denoted by *. [121]

Radiomic Average Std. Dev. Average Std. Dev. p

ICU (n=53) No ICU (n=79)

Healthy lung 65.2% 25.9% 92.1% 9.2% <0.01*

GGO 22.7% 16.4% 6.2% 7.1% <0.01*

Other pathologies 12.1% 14.0% 1.9% 4.2% <0.01*

Ventilation (n=38) No Ventilation (n=94)

Healthy lung 61.2% 22.5% 89.4% 16.1% <0.01*

GGO 25.7% 14.9% 7.7% 10.1% <0.01*

Other pathologies 13.1% 13.1% 3.2% 7.9% <0.01*

Passed (n=19) Survived (n=113)

Healthy lung 70.0% 20.5% 83.2% 22.0% 0.02*

GGO 22.0% 17.2% 11.1% 13.2% <0.01*

Other pathologies 8.0% 9.7% 5.7% 10.8% 0.39
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complete dataset is available upon request for research purposes within the scope of the BFS
project AZ-1429-20C.

iCTCF Dataset

To demonstrate the robustness and generalizability of our approach, we have extended our
evaluation to a larger, publicly available dataset: the iCTCF dataset [170] (referred to as
the "external" dataset). This dataset comprises 1,521 patients and includes high-resolution
CT images, clinical data, and patient outcomes. However, unlike the KRI annotations, the
iCTCF dataset does not provide image annotations for different lung pathologies. As our
work aims to triage COVID-19 patients, we focused on predicting the severity of outcomes
in PCR-positive COVID-19 patients and excluded the control group. This resulted in a total
of 894 patients, with 620 patients experiencing mild (Type I) outcomes and 274 patients
experiencing severe (Type II) outcomes [170]. Due to the absence of CT image annotations in
the iCTCF dataset, we employed a U-Net model, pretrained on a diverse dataset of lung CT
slices [80, 202, 259] by Hofmanninger [98], to generate lung masks. Additionally, we used a
nnU-Net model developed by Isensee et al.[109], which was pretrained on the COVID-19 Lung
CT Lesion Segmentation Challenge dataset[201], to infer pathology annotations. Using these
annotations, we extracted the radiomic feature COVID-19 burden, representing the percentage
of the lungs affected by COVID-19-related pathologies.

6.4.2 Implementation Details

We assessed the performance of our method on the KRI dataset using a nested 5-fold cross-
validation approach [3], with stratification based on ICU labels. Nested cross-validation
involves two evaluation loops: an outer loop for testing and an inner loop for validation. One
fold was designated as the test set in each of the five outer loops, while the remaining four
folds were utilized for training and validation. Within the four inner loops, three folds were
allocated for training, and one was used for validation. This process was iterated until all
possible combinations were employed for testing and validation, resulting in 20 repetitions.

In the experiments presented here, following the approach of Burian et al. [29], we utilized
static lung CT images acquired at the time of admission in combination with the following
clinical features and blood test results: age, sex, body temperature, percutaneous oxygen
saturation, leukocytes, lymphocytes, C-reactive protein (CRP), creatine, D-Dimer, lactate
dehydrogenase (LDH), creatine kinase, troponin T, interleukin 6 (IL-6), and thrombocytes.
The outcomes of interest were the need for mechanical ventilation, ICU admission, and
patient survival (mortality), all of which were modeled as binary classification tasks. Our
primary focus was on evaluating the performance of the ICU prediction task, with additional
experiments conducted on the ventilation and mortality outcome tasks.

The chest CT images were sampled during the experiments using ten equidistant slices
(Z = 10), resulting in nine subvolumes per patient. For each patient, a random subvolume
was selected during the training phase. Due to the presence of only one test patient per batch,
the pre-computed image features and radiomics of the other patients could be utilized. In the
testing phase, a batch graph was constructed using one test node and 18 neighboring nodes
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from the training set, serving as a context for the new patient. We chose concatenation as the
modality aggregation function ψ for all experiments.

For the iCTCF dataset, we adopted the evaluation approach by Ning et al. [170] and split
the data using a 10-fold cross-validation scheme. In each run, eight folds were allocated
for training, while the remaining two were used for validation and testing. As only a single
radiomic feature, the COVID-19 burden of the lung was available. We concatenated this
extracted radiomic with the clinical data and did not process it separately. We encoded
the resulting tabular data into a joint embedding vector of size 64 for each patient. Due
to the presence of numerous features in the dataset, many of which exhibited low mutual
information with the target outcome, we selected only those features with estimated mutual
information higher than 0.05 for graph construction. All available clinical features were
utilized as patient node features. We ended the training with early stopping after 5 epochs
with no loss improvement.

U-GAT network Architecture

To accommodate the small input image size of 96 × 96 pixels, the initial filter size of the
convolutions was reduced to 32, as opposed to the original size of 64. The model was
trained using a batch size of 18 patients, with each patient represented by ten equidistant
slices randomly sampled along with the corresponding clinical data. Before being passed
to the classification head, the concatenated feature vector Z, comprising image, radiomics,
and clinical features, underwent batch normalization and a 10% dropout. We chose not to
backpropagate the classification loss through the extracted radiomics R over the U-Net output,
as it significantly deteriorated the image segmentation performance. We evaluated three
approaches for feature fusion Ψ: concatenation, averaging, and max pooling. Based on the
performance evaluation conducted on the validation set, concatenation yielded marginally
better results than the other two approaches, albeit without a statistically significant difference.
Consequently, we adopted the concatenation approach for the experiments performed in this
study. See Section 3.3.1 for more details on pooling operations.

The graph-based classification head consists of a Graph Attention Network (GAT) with two
layers, five attention heads, and a dropout rate of 10%. In the first layer, each node feature
vector, which has an input size of 96, is refined to a feature size of 64. The final node
classification layer further reduces the feature size to match the number of classification labels.
For all binary classification outputs, a sigmoid activation function is applied.

For the segmentation and image feature extraction backbone, we opted for the classical 2D
U-Net architecture proposed by Ronneberger et al.[199], with several modifications to the
double convolution blocks. We added a batch normalization layer after each activation to
facilitate faster convergence. Additionally, we applied one-pixel padding in each convolution
layer to ensure alignment between the network’s input and output image sizes. The final layer
of the U-Net consisted of a one-dimensional convolution, which reduced the feature maps to
the number of output classes, followed by a softmax layer. To train the segmentation network,
we employed the Dice loss introduced by Milletari[163], while a binary cross-entropy (BCE)
loss was used for the classification task.
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Graph Construction
Drawing inspiration from the work of Parisot et al. [179], we define the similarity Sim(u, v)
between two nodes u and v in the graph by applying a radial basis function (RBF) kernel to
their distance. The RBF kernel is parameterized by the mean distance µ, which is calculated
over the training set to ensure a data-driven approach to capturing the underlying structure of
the graph

Sim(u, v) = exp
(
−ω(u, v)

2µ2

)
. (6.3)

We constructed the KNN graph using the mutual information-weighted distance metric in-
troduced in Section 6.3.1 for the following experiments. This method was selected after
comparing its performance to other graph construction techniques on the validation set. The
weighted Euclidean distance (Minkowski distance of order p = 2) was chosen as the distance
metric ω, with each feature dimension weighted by its estimated mutual information with
the corresponding outcome label. The mutual information was estimated using the approach
proposed by Ross et al. [200], which involves averaging the results of 30 repetitions using
three nearest neighbors. We compared the mutual information-weighted KNN graph against a
Pearson correlation-weighted KNN and an unweighted KNN to assess the impact of feature
weighting. Different manually selected feature subsets were evaluated for the unweighted
setup, as shown in Table 6.8. A hyperparameter search on the validation set determined the
optimal number of neighbors k used in the graph construction process.

Training Details
All experiments were performed using PyTorch 1.7.0 [180] and PyTorch Geometric 1.7.0 [74],
with the Adam optimizer configured with a base learning rate of 5× 10−4 and a weight decay
of 3× 10−5. The models were trained on an NVIDIA Titan V 12GB GPU, utilizing Polyaxon for
the KRI dataset. An epoch was defined as 80 patients, and the training duration was set to
a minimum of 25 epochs for end-to-end cases and 5 epochs when using a pretrained U-Net,
denoted as U-Net, in the experiments. The training was terminated if the validation loss did
not improve for five consecutive epochs after reaching the minimum number of epochs. In the
end-to-end experiments involving joint segmentation and classification, a pretraining schedule
was employed based on its observed benefits in preliminary experiments. The classification
loss was set to zero for the initial 20 epochs, while the segmentation loss was trained solely on
the lung masks for the first 10 epochs and then on all segmentation labels for an additional 10
epochs. For estimating mutual information and constructing the KNN graph, the scikit-learn
library 0.24.1 [183] was utilized. Correlation calculations were performed using SciPy 1.6.2
[238], and NumPy 1.18.2 [91] was employed for all distance calculations. Using default
parameters, the Random Forest implementation was based on scikit-learn 0.24.1 [183].

6.4.3 Ablative Testing and Baselines

To assess the impact of the various components in our method, we present ablative results
on the test set, focusing on two main aspects: the image and radiomics feature extraction
performed by the U-Net and the GAT classification. We compare the end-to-end U-GAT feature
extraction with features obtained from a simple frozen U-Net trained on the same annotations
without multi-tasking and the end-to-end image features from a ResNet18 architecture, as
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introduced by He et al. [92]. It is crucial to note that radiomics were not incorporated into
the ResNet18-GAT architecture since ResNet18 does not generate segmentations. To evaluate
the effectiveness of GAT, we compare it with the following alternative classification methods:
Here is the rewritten itemized list:

• Weighted K-nearest neighbors (KNN): A standard weighted k-nearest neighbor classifier
from the scikit-learn library, which employs the inverse Euclidean distance of all features
as the similarity metric for selecting neighbors and weighting their labels [183].

• Multilayer Perceptron (MLP): A simple neural network classifier consisting of a hidden
layer with 64 units, followed by a leaky ReLU activation function and a 10% dropout
rate.

• GraphSAGE: A variant of our method that replaces the GAT operator with GraphSAGE,
a similar Graph Convolutional Network (GCN) that does not incorporate an attention
mechanism, as proposed by Hamilton et al. [90].

To investigate the benefits of multimodal learning further, we compare the performance of
unimodal and multimodal approaches by evaluating an MLP classifier using either clinical
data or image features extracted by a ResNet18 only. Table 6.1 summarizes the data types
utilized in each method, facilitating a comprehensive understanding of the input modalities
and their impact on the classification results.

U-GAT Ensemble and Random Forest
Random Forest, an ensemble method, is an effective classifier for small datasets due to its
robustness against overfitting, as discussed in Section 3.2.4. Additionally, Random Forests
offer the benefit of interpretability, making them an attractive choice for many applications.
Previous studies by Burian et al. [29] and Chao et al. [40] have successfully employed Random
Forests to utilize tabular radiomics and clinical data for predicting ICU admission, as discussed
in Section 6.2.1. In this experiment, we focus on the task of ICU prediction and investigate
whether an ensemble of our proposed model can enhance its performance by increasing its
resilience to overfitting. We also compare the performance of our ensemble approach to the
well-established Random Forest classifier. To create an ensemble, we average the predicted
probabilities of the four models trained on the inner loops of the nested cross-validation and
evaluate their performance on the five test sets of the outer loop of the nested cross-validation.
This approach allows us to assess the generalization capabilities of the ensemble and compare
it to the individual models and the Random Forest classifier.

6.4.4 Metrics

The primary metrics for evaluating the binary classification of outcome predictions are av-
erage precision (AP) and the area under the receiver operating characteristic curve (AUC).
These metrics are chosen due to their independence from specific classification thresholds,
providing a comprehensive assessment of the model’s discriminative power. Considering
the severe class imbalance present in all tasks, the F1 score (F1) is selected as the main
threshold-dependent metric. Additionally, the balanced accuracy score (bACC), sensitivity,
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and specificity are reported in the ensemble experiments to provide a more comprehensive
view of the model’s performance. For all threshold-dependent metrics, the optimal threshold
is determined using the validation results and maximizing Youden’s J statistic [263], calcu-
lated as J = sensitivity + specificity− 1. All binary classification metrics are computed using
scikit-learn 0.24.1 [183].

To evaluate the segmentation performance of our multitasking approach, we quantify the
overlap between segmented regions and ground truth using the Dice score (DS), which
assesses the spatial agreement between the predicted and actual segmentations.

6.5 Results and Discussion

6.5.1 Population Graph Construction

In the first set of experiments on our KRI dataset, we optimized the population graph con-
struction method. This involved evaluating various feature selections and distance weights
to improve the KNN-based graph construction. We found that connecting each node with its
seven nearest neighbors provided optimal results based on a hyperparameter search using a
simple, unweighted KNN classifier. To weight features in the distance calculation of the similar-
ity metric used for KNN neighbor selection, we employed two measures: mutual information
and Pearson correlation. Table 6.6 presents the top 10 features based on the average of both
measures for the ICU task. While some features exhibited a Pearson correlation > 0.3 and
mutual information > 0.1 in the ICU and ventilation tasks, the mortality task demonstrated
significantly lower values, highlighting the inherent difficulty of the task. Across all tasks, the
percentage of healthy lung tissue displayed the highest mutual information. The results in
Table 6.8 confirmed that our proposed mutual information-based weighting method achieved
the best performance, particularly for the ICU task, with an AP of 0.722± 0.096 and an AUC
of 0.757± 0.142. Comparing our approach with manual feature selection, such as using only
clinical data, revealed that incorporating all available features is most effective. However,
estimating mutual information can further assist in identifying the most relevant features
and assigning them higher weights in the similarity metric. The external dataset reinforced
the significance of radiomic data, with the COVID-19 burden exhibiting the highest mutual
information with the severity labels (see Table 6.7). One of the key advantages of employing a
weighted distance for KNN graph construction is its adaptability to each task without requiring
prior knowledge. Figure 6.2 illustrates the graph for each task on the KRI dataset, both
with and without weighting the distance measure using mutual information. In addition to
improving classification performance, an effective similarity measure can be utilized to identify
relevant patients who have been treated in the past, supporting physicians’ decision-making
process by enabling them to analyze the disease progression in them.

6.5.2 U-GAT Evaluation

Table 6.9 presents the results of our next set of experiments, which evaluate the different
components of the proposed method and compare them to baseline approaches. Our multi-
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Tab. 6.6. KRI dataset - Top 10 features ranked by their mutual information and Pearson correlation for each task,
calculated as the average across the training sets of all repetitions. For the multilabel setup, the mutual
information between each feature and the ordinal regression of outcome severity is estimated. [121]

Task Feature Category Mutual information Pearson correlation

ICU Healthy lung (%) Radiomics 0.244± 0.052 −0.596± 0.033

ICU Ground-glass opacity (%) Radiomics 0.184± 0.043 +0.577± 0.026

ICU Other pathologies (%) Radiomics 0.144± 0.055 +0.471± 0.048

ICU C-reactive protein Clinical 0.104± 0.038 +0.372± 0.071

ICU Interleukin 6 Clinical 0.091± 0.023 +0.091± 0.137

ICU Age Clinical 0.087± 0.031 +0.018± 0.062

ICU Lymphocytes Clinical 0.047± 0.027 −0.062± 0.112

ICU Temperature Clinical 0.043± 0.040 −0.016± 0.116

ICU Serum creatinine Clinical 0.041± 0.045 +0.009± 0.125

ICU Thrombocytes Clinical 0.039± 0.037 −0.007± 0.060

ICU Creatine kinase (total) Clinical 0.037± 0.040 +0.113± 0.110

Ventilation Healthy lung (%) Radiomics 0.212± 0.033 −0.581± 0.030

Ventilation Ground-glass opacity (%) Radiomics 0.170± 0.022 +0.585± 0.026

Ventilation Other pathologies (%) Radiomics 0.159± 0.055 +0.428± 0.051

Ventilation Interleukin 6 Clinical 0.114± 0.048 +0.109± 0.130

Ventilation C-reactive protein Clinical 0.082± 0.047 +0.395± 0.070

Ventilation Temperature Clinical 0.082± 0.044 +0.031± 0.118

Ventilation Age Clinical 0.059± 0.037 +0.056± 0.053

Ventilation Serum creatinine Clinical 0.055± 0.034 −0.020± 0.063

Ventilation Lactate dehydrogenase Clinical 0.053± 0.028 +0.104± 0.060

Ventilation Percutaneous oxygen saturation Clinical 0.052± 0.017 −0.285± 0.074

Ventilation Creatine kinase (total) Clinical 0.045± 0.046 +0.160± 0.106

Mortality Healthy lung (%) Radiomics 0.061± 0.040 −0.210± 0.093

Mortality C-reactive protein Clinical 0.048± 0.034 +0.126± 0.072

Mortality Lymphocytes Clinical 0.034± 0.040 −0.095± 0.030

Mortality Percutaneous oxygen saturation Clinical 0.033± 0.038 −0.023± 0.068

Mortality Interleukin 6 Clinical 0.031± 0.013 +0.068± 0.096

Mortality D-dimer Clinical 0.030± 0.023 +0.122± 0.117

Mortality Temperature Clinical 0.022± 0.026 −0.014± 0.068

Mortality Lactate dehydrogenase Clinical 0.019± 0.024 +0.246± 0.070

Mortality Sex Clinical 0.019± 0.010 −0.150± 0.041

Mortality Ground-glass opacity (%) Radiomics 0.018± 0.023 +0.265± 0.079

Mortality Other pathologies (%) Radiomics 0.016± 0.024 +0.083± 0.100

Multilabel Healthy lung (%) Radiomics 0.274± 0.063 −0.548± 0.051

Multilabel Ground-glass opacity (%) Radiomics 0.190± 0.052 +0.550± 0.042

Multilabel Other pathologies (%) Radiomics 0.173± 0.057 +0.407± 0.066

Multilabel Interleukin 6 Clinical 0.105± 0.040 +0.098± 0.133

Multilabel Sex Clinical 0.104± 0.110 −0.167± 0.052

Multilabel C-reactive protein Clinical 0.100± 0.043 +0.352± 0.068

Multilabel Lymphocytes Clinical 0.062± 0.044 −0.116± 0.046

Multilabel Age Clinical 0.057± 0.028 +0.057± 0.062

Multilabel Percutaneous oxygen saturation Clinical 0.047± 0.055 −0.233± 0.069

Multilabel Troponin T Clinical 0.040± 0.021 +0.068± 0.103

Multilabel Temperature Clinical 0.036± 0.038 −0.015± 0.108
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Tab. 6.7. iCTCF dataset - Top 10 features ranked by their mutual information with the outcome severity (Type
I vs. Type II) and Pearson correlation, averaged across the training sets of all ten folds. The overall
mutual information and Pearson correlation values are lower than the tasks in our in-house dataset. The
COVID-19 burden radiomic feature, extracted from the U-Net and equivalent to one minus the healthy
lung percentage, consistently ranks among the most important features. [121]

Task Feature Category Mutual information Pearson correlation

iCTCF Severity Neutrophil percentage (NEP) Clinical 0.074± 0.011 0.315± 0.016

iCTCF Severity COVID-19 burden Radiomic 0.067± 0.011 0.376± 0.021

iCTCF Severity Lymphocyte percentage (LYP) Clinical 0.066± 0.014 −0.293± 0.017

iCTCF Severity Lymphocyte count (LY) Clinical 0.066± 0.018 −0.229± 0.029

iCTCF Severity Prothrombin time (PT) Clinical 0.045± 0.013 0.063± 0.011

iCTCF Severity Calcium (CA) Clinical 0.043± 0.008 −0.242± 0.015

iCTCF Severity D-dimer (DD) Clinical 0.032± 0.008 0.225± 0.015

iCTCF Severity Albumin (ALB) Clinical 0.032± 0.006 −0.269± 0.021

iCTCF Severity Basophil percent (BAP) Clinical 0.030± 0.007 −0.062± 0.011

iCTCF Severity Neutrophil count (NE) Clinical 0.030± 0.016 0.220± 0.018

Tab. 6.8. Comparison of edge features and their weighting schemes for distance calculation, evaluated on the
validation set of the KRI dataset. [121]

Task Architecture Distance features Distance feature weights AP AUC

ICU U-GAT* age, sex - 0.512± 0.109 0.573± 0.109

ICU U-GAT* clinical - 0.671± 0.152 0.720± 0.135

ICU U-GAT* radiomics - 0.670± 0.145 0.720± 0.116

ICU U-GAT* all - 0.704± 0.080 0.733± 0.073

ICU U-GAT* all Pearson correlation 0.697± 0.122 0.751± 0.088

ICU U-GAT* all Mutual information 0.722± 0.096 0.757± 0.142
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Fig. 6.3. Boxplot visualization of the Dice scores for the segmentation results of different methods on the KRI
dataset. The multitasking approaches are compared with single-task segmentation. Although the
auxiliary segmentation task improves classification results, the segmentation performance is lower in all
multitask settings compared to the U-Net optimized solely for segmentation. [121]
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Tab. 6.9. Ablative testing and comparison of the proposed method with an MLP using only clinical data and a
ResNet18 using only image data as input for all tasks. U-GAT* denotes the proposed method using image
and radiomic features extracted from a frozen U-Net trained on the same annotations as the end-to-end
U-GAT. Values marked with † indicate statistical significance (p < 0.05) based on Wilcoxon’s rank test
comparing the proposed method with each baseline. [121]

Dataset Task Architecture AP AUC F1

KRI ICU MLP-Clinical 0.577± 0.109† 0.654± 0.104† 0.560± 0.107†

KRI ICU ResNet18 0.670± 0.097 0.716± 0.077 0.560± 0.084†

KRI ICU U-Net*+KNN 0.632± 0.113 0.677± 0.112 0.519± 0.131†

KRI ICU U-Net*+MLP 0.615± 0.127† 0.687± 0.128 0.612± 0.085

KRI ICU U-Net*+GraphSAGE 0.628± 0.114† 0.690± 0.107† 0.574± 0.085†

KRI ICU ResNet18-GAT 0.637± 0.165 0.678± 0.160 0.595± 0.084†

KRI ICU U-GAT* 0.672± 0.129 0.725± 0.107 0.651± 0.104

KRI ICU + Seg. U-GAT 0.699± 0.149 0.743± 0.103 0.661± 0.084

KRI Ventilation MLP-Clinical 0.527± 0.167 0.692± 0.109† 0.475± 0.188

KRI Ventilation ResNet18 0.573± 0.127 0.715± 0.086† 0.390± 0.160†

KRI Ventilation U-Net*+KNN 0.527± 0.180† 0.674± 0.112† 0.368± 0.192†

KRI Ventilation U-Net*+MLP 0.587± 0.183 0.741± 0.119 0.488± 0.134

KRI Ventilation U-Net*+GraphSAGE 0.603± 0.151 0.758± 0.109 0.481± 0.205

KRI Ventilation ResNet18-GAT 0.570± 0.152 0.689± 0.152† 0.423± 0.178†

KRI Ventilation U-GAT* 0.618± 0.137 0.788± 0.106 0.592± 0.130

KRI Vent. + Seg. U-GAT 0.644± 0.142 0.788± 0.112 0.539± 0.179

KRI Mortality MLP-Clinical 0.261± 0.135 0.544± 0.134 0.224± 0.152

KRI Mortality ResNet18 0.210± 0.116† 0.461± 0.155† 0.155± 0.138

KRI Mortality U-Net*+KNN 0.257± 0.137 0.512± 0.166 0.184± 0.147

KRI Mortality U-Net*+MLP 0.252± 0.157 0.502± 0.191 0.190± 0.157

KRI Mortality U-Net*+GraphSAGE 0.270± 0.143 0.568± 0.180 0.236± 0.163

KRI Mortality ResNet18-GAT 0.247± 0.151 0.520± 0.156 0.184± 0.157

KRI Mortality U-GAT* 0.271± 0.137 0.549± 0.188 0.230± 0.172

KRI Mort. + Seg. U-GAT 0.287± 0.186 0.586± 0.187 0.199± 0.173

iCTCF Severity MLP-Clinical 0.556± 0.099 0.735± 0.068 0.539± 0.064

iCTCF Severity ResNet18 0.525± 0.140 0.739± 0.083 0.513± 0.102

iCTCF Severity U-Net*+KNN 0.456± 0.070† 0.705± 0.060 0.318± 0.129†

iCTCF Severity U-GAT* 0.558± 0.102 0.740± 0.096 0.505± 0.114

iCTCF Severity U-GAT 0.593± 0.106 0.763± 0.085 0.521± 0.109
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Tab. 6.10. iCTCF Dataset - Comparison of test set DICE scores between U-Net and U-GAT on the iCTCF dataset.
The joint optimization of segmentation and classification leads to a minor decrease in segmentation
metrics. [121]

Architecture Segmentation Classification Dice lung Dice COVID-19

U-Net ✓ - 0.984 ± 0.002 0.738 ± 0.019

U-GAT ✓ ✓ 0.970 ± 0.038 0.718 ± 0.027
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Fig. 6.4. KRI dataset - Ensemble results for the ICU task on the KRI dataset: receiver operating characteristic
(ROC) and precision-recall curves comparing inner cross-validation loop ensembles of Random Forest
and the proposed U-GAT method. Each narrow curve represents the results of one of the 5 test sets.
The average of these curves is estimated with the bold curve, and the shaded area depicts its standard
deviation. The confusion matrices on the right include the predictions for all patients across all 5 test
folds with optimized thresholds. The corresponding metrics of these confusion matrices are visualized
with filled circles in the curve diagrams.

modal method outperforms the unimodal MLP, which is limited to using only clinical data as
input. A similar trend is observed when restricting the model to solely utilize imaging data,
as is the case for the ResNet18 method. In this scenario, our proposed methods consistently
outperform ResNet18 across all tasks, highlighting the advantages of a multimodal approach.
U-GAT achieves a higher AP than the other methods in all ablations, including replacing
the U-Net with a ResNet18 and replacing the GAT with an MLP or a GraphSAGE. These
results demonstrate the value of leveraging similar patients from the training set to refine the
features of test patients. Comparable findings are observed on the external dataset, where
U-GAT attains a higher AP of 0.593± 0.106 compared to the single modality models MLP and
ResNet18, which achieve 0.556± 0.099 and 0.525± 0.140, respectively, further emphasizing
the benefits of multimodal learning.

The joint end-to-end training of the segmentation and classification tasks appears to slightly
improve the AP for all tasks. However, as shown in Figure 6.3, the average Dice score is lower
in all multitask setups compared to the segmentation single-task setup. In this configuration,
both the ICU prediction and the ventilation prediction reached their highest AP values of
0.699± 0.149 and 0.644± 0.142, respectively. The end-to-end multitasking of the classification
of all labels and segmentation only benefited the mortality task, achieving the highest AP of
0.289± 0.138 and AUC of 0.620± 0.175 in this setup (see Table 6.11).
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Tab. 6.11. KRI dataset - Results for the multitasking of pathology segmentation and the prediction of three patient
outcomes (ICU admission, need for ventilation, and mortality) on the KRI dataset. The graph construction
is based on the ordinal regression of outcome severity. Each outcome prediction is modeled as a non-
exclusive binary classification, i.e., a multilabel problem. The mortality task is the only task benefiting
from this multitask setup. [121]

Task Architecture AP AUC bACC** F1**

ICU U-GAT 0.649± 0.128 0.697± 0.116 0.642± 0.097 0.569± 0.163

Ventilation U-GAT 0.622± 0.127 0.774± 0.094 0.681± 0.102 0.503± 0.188

Mortality U-GAT 0.289± 0.138 0.620± 0.175 0.536± 0.133 0.216± 0.174

Tab. 6.12. Comparative analysis of ICU outcome prediction on the KRI dataset: U-GAT versus its cross-validation
ensemble, a random forest model using only clinical data, and another random forest model incorporating
all available tabular data, including radiomics extracted with a pretrained U-Net. [121]

Architecture AP AUC bACC F1 Sens. Spec.

RF-Clinical 0.635± 0.098 0.707± 0.086 0.624± 0.056 0.519± 0.070 0.475± 0.131 0.773± 0.175

U-Net*+RF 0.729± 0.089 0.774± 0.057 0.716± 0.075 0.649± 0.011 0.651± 0.177 0.781± 0.166

U-GAT ensemble 0.745± 0.137 0.770± 0.098 0.735± 0.111 0.700± 0.114 0.736± 0.067 0.734± 0.174

The mortality task generally yields worse results, which can be primarily attributed to the
severe data imbalance present for this task, with only 19 out of 132 positive samples. Further-
more, we observe low mutual information between the radiomics and clinical features and the
mortality outcome (see Table 6.6), suggesting that the features might not be sufficiently predic-
tive for this specific task. Several relevant clinical aspects closely related to multiorgan failure,
such as heart, kidney, and liver parameters, were unavailable in the datasets. The evaluation
on the external dataset reveals a similar trend, where joint end-to-end training of severity
classification and pathology segmentation with U-GAT increases the AP from 0.558± 0.102 to
0.593± 0.106 compared to U-GAT*, which uses segmentations from a frozen U-Net trained on
the same annotations.

Multitasking Evaluation
To investigate the potential synergies between segmentation and classification tasks, as
well as the simultaneous prediction of different patient outcomes, we conducted additional
experiments exploring the interdependence of these tasks. The results presented in Table 6.11
demonstrate that joint segmentation can benefit classification performance. However, only
the mortality prediction task exhibited improvement among the patient outcomes when all
outcomes were predicted concurrently. These findings suggest that while multitasking can offer
advantages in certain scenarios, the specific combination of tasks and their interrelationships
play a crucial role in determining the extent of the benefits observed.

U-GAT Ensemble and Random Forest
In line with the discussion in Section 6.4.3, we compare our method against Random Forests,
which have been employed in previous works to perform classification by fusing tabular
radiomics with clinical data. The comparison, presented in Table 6.12, highlights the improve-
ment in U-GAT’s average precision from 0.699 ± 0.149 to 0.745 ± 0.137 when an ensemble
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CT slice

ICU Healthy (Prediction) GGO (Prediction) Other Path. (Prediction) IL-6 CRP Attention

Test Patient yes 81.1% (76.9%) 16.9% (20.5%) 2.0% (2.3%) 89.0 16.2 0.159

Max. Attention yes 49.7% (74.5%) 25.3% (19.1%) 24.9% (6.4%) 135.0 13.3 0.134

Fig. 6.5. Visualization of the neighborhood attention of GAT for a single test patient from the KRI dataset. Left:
Batch graph showing the attention scores of the test patient’s neighbors after two hops. The line thickness
corresponds to the attention score of each neighbor. Right: CT images, segmentation ground truth, and
predicted segmentation of a single axial and coronal slice from the test patient and its neighbor with the
maximum attention score. Bottom: Most important features for the test patient and the neighbor with
maximum attention, with the radiomics predicted by the pretrained U-Net shown in brackets. [121]

approach is used. This enhancement allows U-GAT to slightly outperform the Random Forest,
which achieves an average precision of 0.729± 0.089. These results suggest that ensembling
our method increases its resilience to overfitting, yielding performance comparable to that
of a Random Forest. The AP and AUC metrics are higher in the respective Random Forest
models. However, the U-GAT ensemble exhibits the highest balanced accuracy, F1 score,
and sensitivity, while the Random Forest ensemble demonstrates the highest specificity. The
standard deviations and the receiver operating characteristic (ROC) and precision-recall curves
in Figure 6.4 reveal that although the averages of both ensembles are similar, the U-GAT
ensemble has a wider spread with outliers in both directions. A Wilcoxon signed-rank test did
not indicate a significant difference in AP or AUC between the two ensembles.

6.5.3 Interpretability and Graph Attention

In addition to its performance advantage over GraphSAGE, using GAT in our model offers
another significant benefit. The attention mechanism learns to identify the most relevant
neighbors in the graph for the prediction task, providing valuable insights into the model’s
decision-making process. By analyzing the attention scores, we can gain a better understanding
of the patients that the model considers most influential for individual outcome predictions.

The connections within the patient population graph can help uncover new information about
poorly understood diseases and provide valuable insights to physicians. When combined with

6.5 Results and Discussion 65



the segmentation results, our attention mechanism allows clinicians to inspect the model’s
output and decision-making process, potentially increasing their confidence in the predictions.
For each of the two GAT layers, the model assigns attention scores to the neighbors of each
node in the graph. These scores determine the extent to which the node representation after
the layer will be based on the representations of its different one-hop neighbors. The attention
scores can be conceptualized as a weighted directed adjacency matrix A ∈ [0, 1]N×N , where
N is the number of nodes in the batch and all rows in A sum to 1. By multiplying the attention
matrices of both layers, we obtain a matrix that shows how the representation of a node is
influenced by its two-hop neighborhood, i.e., all nodes that are at most two edges away.

The qualitative results for the test patient shown in Figure 6.5 demonstrate that the attention
mechanism successfully assigns high importance to neighbors of the same class and lower
importance to those of the opposite class, effectively refining the neighborhood constructed by
the KNN algorithm. Moreover, we observe that the attention mechanism does not necessarily
assign high attention to neighbors particularly similar in their radiomic or clinical features.
Unlike a simple KNN classifier, which can only base its predictions on feature similarity, our
method can identify the most relevant neighbors that go beyond simple correlations and
are connected through more complex patterns. This ability to capture orthogonal informa-
tion embedded in the KNN graph sets our approach apart and contributes to its improved
performance.

6.5.4 Challenges and Outlook

There is room for improvement in our model’s capability of segmenting infrequent lung
pathologies, such as pleural effusion, and predicting imbalanced outcomes, particularly
mortality. While weighting the patient distance metric with mutual information effectively
improved the graph construction and the elevated features that align with established ra-
diological findings, it is important to acknowledge the remaining challenges. The mutual
information exhibits a substantial standard deviation throughout tasks and is notably lower for
the mortality prediction task. This observation highlights the inherent complexity of predicting
mortality and suggests a potential lack of informative features given the available features in
the dataset. These challenges can be attributed to the limited size of the patient cohort and
the scarcity of annotated data for certain pathologies and outcomes. Future studies should
focus on expanding the patient cohort and incorporating more comprehensive clinical data to
address these limitations.

6.6 Conclusion

We propose U-GAT, an end-to-end methodology that integrates CT lung scans, clinical data,
and radiomics to form a multimodal patient graph for outcome prediction in COVID-19
patients. The Graph Attention Network (GAT) processes this graph, stabilizing and supporting
predictions based on similar patients. Automatically extracted radiomics from the generated
segmentation improve performance over baselines, and the auxiliary segmentation of COVID-
19 pathologies enhances outcome prediction accuracy. Our novel feature weighting using
mutual information enables task-specific patient clustering, allowing the model to learn from
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similar cases. The GAT’s attention mechanism provides interpretability, giving clinicians
insights into the model’s decision-making process.

U-GAT mirrors the clinical reasoning process, sharing similarities with the exemplar theory
of clinical reasoning (Section 2.1.3). The patient representations and attention mechanisms
are analogous to how clinicians retrieve and focus on relevant exemplars from memory when
faced with a new case. Visualizing the considered patient neighborhood and intermediate
image information like segmentation output and radiomics for both the evaluated and related
patients gives insights into the model’s reasoning and can provide helpful information for
clinicians. In particular, a detailed view of most similar previous patients with the highest
attention, as shown in Figure 6.5, could retrieve relevant information for clinicians offering a
pathway towards clinical reasoning support.

Integrating imaging, clinical data, and radiomics aligns with integrated diagnostics (Sec-
tion 2.1), capturing the complex relationships and patterns clinicians synthesize during
diagnosis. However, developing accurate, transparent, and robust predictive models for
complex clinical scenarios remains challenging, particularly with limited data. While U-GAT
emulates certain aspects of clinical reasoning, further research must refine and validate this
methodology in real-world settings and with data at scale. Future work should expand the
patient cohort, incorporate more comprehensive clinical data, and explore techniques for
handling imbalanced data and infrequent pathologies.
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7Structured and Unstructured
Clinical Knowledge

The previous Chapter 4 explored using experiential knowledge for clinical decision support
with deep learning, focusing on how multimodal patient information can be used to model
relationships in a population graph and how this graph can subsequently be processed for
decision-making. This part shifts focus to the types of knowledge available about individ-
ual patients and how this knowledge can be tested against hypotheses formed using prior
knowledge in clinical reasoning support, particularly radiological decision-making.

In Chapter 8, we investigate how large amounts of unstructured but paired multimodal
data can be used to train a contrastive pre-training model (see Section 3.3.3), enabling the
extraction of structured findings from chest X-rays with only a few training examples of filled
structured reporting templates.
Building upon this work, Chapter 9 extends the method using a classification-by-description
approach in a zero-shot fashion that does not require any labeled samples. Here, we test
hypotheses of predefined findings in chest X-rays by estimating the probability of radiological
observations associated with each finding according to prior knowledge. The approach resem-
bles an analytical top-down method while accounting for the uncertainties of compositional
image observations.

As seen in Section 3.1, various structured patient information can be used in clinical decision-
making, such as demographics, vital signs, blood lab results, standardized diagnosis codes,
radiological findings, and patient outcomes. The availability of well-structured information
is crucial, as it forms the basis for retrospective clinical trials, generating new insights for
evidence-based medicine and serving as a supervision signal for machine learning models.
However, a significant challenge for data-driven systems is that a lot of data is not structured
in this way, and even when structured, it may not be standardized or aggregatable due to
interoperability issues [193]. A similar distinction applies to formal knowledge (Section 2.1.4),
which can be stored as unstructured text or in structured formats like knowledge graphs and
databases.

7.1 Standardization and Structured Reporting

Various standardization systems have been introduced in medicine at both national and
international levels to address the challenges of unstructured and non-standardized data. The
most common method of radiology reporting involves typing or dictating an unstructured
free-text report. While this approach requires no additional tools, it can be time-consuming,
and the lack of standardization hinders retrospective analysis and the use of reported findings
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for machine learning. In contrast, structured reporting involves filling structured reports that
are either standardized based on consensus within the medical community or can be easily
matched to standardized reports. [66, 76]

The Radiological Society of North America (RSNA) has developed several standards to promote
structured reporting and interoperability [130]. These include:

• RadLex1, a comprehensive lexicon incorporating radiology-specific terms such as
anatomy, diseases, and imaging findings;

• RadElement2, a framework for Common Data Elements (CDEs) that provides a stan-
dardized way to define report elements, promoting consistency and facilitating research;
and

• RadReport3, a web-based library offering best-practice report templates encoded using
the MRRT profile.

MRRT, which stands for Management of Radiology Report Templates, has been developed by
the Integrating the Healthcare Enterprise (IHE) committee to enable the interoperability of
reporting templates across organizations and countries. These efforts have been joined by the
European Society of Radiology (ESR) and the German Society of Radiologists (DRG), which
has also started providing templates for various clinical applications4, similar to the American
RadReport website [132].

7.1.1 Structured Reporting in Deep Learning

Standardized reports can be modeled in various ways for deep learning. Beyond the simple
one-hot encoding of clinical findings [190, 222] that do not capture any dependencies, as
discussed in Section 8.1.1, various graph-based approaches such as RadGraph [110] and
ImaGenome [253] have been proposed. These approaches model the content of reports with
a fixed set of nodes and relationships between them, describing the presence, location, and
attributes of radiological findings found in chest X-ray reports.
In FLEXR, presented in Chapter 8, we predict triplets extracted from ImaGenome resembling
granular findings that could be part of a structured reporting template. Additionally, we
perform experiments using a real-life structured reporting template from RadReport on the
severity of cardiomegaly. In our work Prior-RadGraphFormer [254], we propose an image-to-
graph model that integrates a knowledge graph containing all possible graph combinations
to generate a patient-specific radiology graph that could be used to either fill a structured
reporting template or generate an unstructured free-text report.
Another approach to modeling structured reporting is mimicking the interaction of a radiologist
with a structured reporting user interface as a series of question-and-answer pairs for a given
radiological image. In this direction, we present a hierarchical VQA dataset for structured
reporting and a baseline for it in our work Rad-ReStruct [185].

1https://radlex.org/
2https://www.radelement.org/
3https://radreport.org/
4https://www.befundung.drg.de/
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7.1.2 Evaluating the Clinical Correctness of Reports

Another important aspect of structured reports is that they offer a much more effective and
granular evaluation of the clinical correctness of automatically generated radiology reports.
This section discusses the implications of this in detail, and while mainly addressing chest
X-rays, the conclusions can be transferred to report generation for other medical applications.
As we discuss in our work RaDialog [186], automatic radiology report generation from chest X-
ray images has been extensively researched. However, evaluating these methods has primarily
relied on NLP metrics created for machine translation applications. The problem with these
metrics is that while they may be effective in evaluating the reporting style and use of correct
medical terms, they are notoriously misleading when assessing clinical correctness. This issue
is highlighted by Pino et al. [190], who demonstrated that a simple negation of a sentence
leads to similar NLP metrics while obviously changing the clinical implications dramatically.
Similarly, Babar et al. [7] showed that a report generation method that does not even consider
the given X-ray image can produce competitive NLP metrics.

To remedy this, more recent works have adopted a range of methods to assess the clinical
correctness of reports. The most established metric for evaluating the clinical correctness of
generated reports in chest X-rays is to extract the CheXpert [108] classification labels from
the generated report and compare them with the labels extracted from the ground truth.
Commonly, the CheXbert labeler [215] is used for this purpose, and the metric is called the
clinical efficacy (CE) score.
To evaluate the correctness of more granular findings than just high-level CheXbert labels,
Yu et al. [264] introduced a new metric based on the presence of clinical entities and their
relationships in RadGraph, namely RadGraph F1 and RadCliQ. The latter combines RadGraph
F1 with the commonly used NLP metrics.
With Rad-ReStruct [185], we have proposed a challenging VQA benchmark that aims to assess
the granular image understanding of radiological vision-language models and multimodal
LLMs by modeling structured reporting as a VQA task.

7.1 Standardization and Structured Reporting 73





8Contrastive Language-Image
Pre-training for Structured
Reporting of Chest X-rays

Contents

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

8.1.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

8.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

8.2.1 Log-Sum-Exp Sign Loss . . . . . . . . . . . . . . . . . . . . . . . . 79

8.2.2 Contrastive Language-Image Pre-training . . . . . . . . . . . . . . 80

8.2.3 Cross-modal Similarity Metric . . . . . . . . . . . . . . . . . . . . 80

8.3 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

8.3.1 Structured Reporting Dataset . . . . . . . . . . . . . . . . . . . . . 81

8.3.2 Implementation and Training Details . . . . . . . . . . . . . . . . 83

8.3.3 Few-shot Classification . . . . . . . . . . . . . . . . . . . . . . . . 85

8.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

8.4.1 Ablation and Cardiomegaly Grading . . . . . . . . . . . . . . . . . 86

8.4.2 Localization of Pathologies . . . . . . . . . . . . . . . . . . . . . . 86

8.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

8.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

8.1 Introduction

The process of documentation and report writing often consumes a significant portion of
radiologists’ time, diverting their attention from addressing individual patient needs [100,
172]. Structured reporting has emerged as a highly valued approach in radiology, offering
the potential to streamline this process and standardize the content and terminology of
radiological reports. As defined by Nobel et al. [171], structured reporting is an IT-based
method that facilitates the import and organization of medical content into a standardized
format, enabling the representation of clinical findings in a structured manner.

As discussed in the previous chapter, adopting structured reporting and standardized re-
ports has gained support from prominent radiology societies, including RSNA and ESR. This
endorsement stems from the numerous benefits of structured reporting, such as improved
communication, enhanced machine readability of reports, and time efficiency. These advan-
tages have far-reaching implications for quality assurance processes, clinical trials, and the
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Fig. 8.1. The proposed Few-shot classification with Language Embeddings for chest X-ray Reporting (FlexR)
method builds on self-supervised pre-training to accurately predict fine-grained radiological findings,
requiring only a limited number of high-quality annotations. The approach consists of three main stages:
(1) contrastive language-image pre-training on a dataset containing radiology images paired with their
corresponding unstructured reports, (2) encoding of radiological findings extracted from structured
reports, and (3) fine-tuning of the resulting language embeddings to optimize the specific structured
reporting task. This process enables the efficient extraction of clinical knowledge from unlabelled,
unstructured patient data. [122]

internationalization of medical data, as well as the promotion of evidence-based medicine as
discussed in Section 2.1.4.

While numerous deep-learning approaches have been proposed for automated reporting, most
focus on generating free-text reports rather than structured ones. Although these generated
free-text reports offer potential advantages, they may be subject to the same limitations as
manually written free-text reports. These include a lack of standardization and challenges in
evaluating clinical accuracy [190]. This lack of standardization can also hinder the effective
use of written reports as a supervision signal for data-driven decision-support systems.

To address the challenges outlined above, we introduce FlexR [122], an adaptable few-shot
learning approach designed to predict fine-grained clinical findings for structured reporting.
The proposed method leverages self-supervised pre-training on a large dataset of chest X-rays
paired with their corresponding free-text radiology reports. By extracting knowledge from
this vast collection of unstructured data, FlexR enables the prediction of structured findings
defined by sentences within reporting templates, which can be easily modified to suit specific
requirements. Our study’s results demonstrate that FlexR can accurately predict the severity
of cardiomegaly and localize pathologies in chest X-rays, even when trained with a limited
number of image-level annotations.

�
Contributions:

• We introduce a novel few-shot model for classifying clinical findings to fill
structured reports that can easily be adapted to other reporting templates.

• We demonstrate the potential of contrastive language-image pre-training
on chest X-rays for structured reporting.

• We evaluate the method on two structured reporting tasks: pathology
localization and severity grading of cardiomegaly.
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8.1.1 Related Work

The rapid advancements in deep learning and natural language processing (NLP) have paved
the way for significant progress in predicting findings and generating radiology reports from
X-ray images [101, 243]. This section will focus on the most relevant literature in structured
report generation, joint language-image embeddings, and few-shot learning in data-scarce
scenarios.

Structured Report Generation

While most radiology report generation research has been focused on the free-text, only a
limited number of studies have explored the automation of structured reporting. Pino et al.
[190] introduced a structured report generation approach that utilizes a classification model
to identify high-level pathologies and select appropriate sentences from a predefined template.
This method demonstrates the potential for generating standardized reports that can be
easily integrated into clinical workflows while lacking details of a typically written report.
Bhalodia et al. [21] employed an object detection algorithm to localize pneumonia and predict
additional attributes of the lesions, which could be adapted to a structured reporting setting.
Closest to our approach but using full supervision, Syeda-Mahmood et al. [222] classified
clinical findings in X-ray images at a fine-grained level using a one-hot-encoded vector, which
was then used to retrieve similar reports for the generation of free-text reports.

Joint Language-Image Embeddings

In addition to the CLIP approaches discussed in Section 3.3.3, the generation of vision-
language representations has been explored for various tasks in the radiology domain. For
instance, Yan et al. [258] investigated weakly-supervised contrastive pre-training for report
generation, while Chauhan et al. [43] employed joint embeddings for pulmonary edema
assessment. Additionally, Liao et al. [145] utilized mutual information maximization for chest
X-ray classification, and Huang et al. [106] proposed an attention-based contrastive learning
approach.

Recent studies have also explored various approaches to capture the hierarchical relationships
among pathologies in medical imaging. For instance, Pham et al. [189] and Chen et al.
[46] proposed methods to model the hierarchical structure of pathologies, enabling a more
accurate representation of the complex relationships between different medical conditions.
Graph Convolutional Networks (GCNs) have also emerged as a promising technique for
leveraging label dependencies in medical image analysis tasks [44, 269]. These GCN-based
approaches aim to model pathology dependencies in a graph to improve the performance and
interpretability of the models. Furthermore, Zhang et al. [269] introduced a novel method
that combines a pre-constructed disease knowledge graph with a report generation module,
allowing for the joint learning of visual features and the modeling of relationships between
diseases. This approach demonstrates the potential of integrating formal knowledge (see
Section 2.1.4) with deep learning.
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Few-shot Learning

Few-shot learning has the potential to address the challenge of limited annotated data in
medical imaging tasks, particularly in the context of chest X-ray diagnosis. By leveraging the
power of few-shot learning, models can learn to make accurate predictions using only a small
number of labeled examples. Paul et al. [182] proposed a discriminative autoencoder ensemble
that operates in a few-shot setting, demonstrating its effectiveness in diagnosing chest X-rays.
Similarly, Jia et al. [114] explored the potential of few-shot learning for generating reports on
rare diseases, where obtaining large amounts of labeled data is often impractical.

Recent advancements in zero-shot learning have also shown promise in medical image analysis,
particularly using CLIP (Contrastive Language-Image Pre-training) models. These models
can make predictions based solely on text embeddings of pathologies without requiring any
labeled image data. Seibold et al. [209] and Tiu et al. [230] successfully applied CLIP-based
zero-shot classification to chest X-rays using language prompts that describe diseases and
their negation. Additionally, Huang et al. [106] and Boecking et al. [25] demonstrated the
effectiveness of their improved pre-training techniques in both zero-shot and few-shot settings
for predicting chest pathologies.

While these studies have made significant contributions to the field, it is important to note that
they primarily focus on classifying the multi-label presence of pathologies or the generation
of unstructured reports. In contrast, the work presented here aims to go beyond simple
classification by predicting fine-grained labels, such as disease localization and severity
grading, which are crucial for providing clinicians with more comprehensive and actionable
insights upon which to reason.

8.2 Method

The proposed Few-shot classification with Language Embeddings for chest X-ray Reporting
(FlexR) method leverages self-supervised pre-training to predict structured, fine-grained
clinical findings from radiology images using text prompts. By leveraging large amounts of
unstructured radiology data, FlexR aims to accurately predict radiological findings with few
annotated images. The method involves extracting sentences from a structured radiology
report template, defining them as potential clinical findings, and projecting them onto a joint
language-image embedding space. Using a few annotated samples, these embeddings can be
further optimized. At test-time, the fine-tuned language embeddings similar to the encoded
image are predicted to fill the structured reporting template. Figure 8.1 illustrates the three
key steps of the FlexR method:

1. Contrastive language-image pre-training (CLIP) on a dataset of unlabeled radiology
reports and image pairs: we use radiology-specific image and text encoders to initialize our
custom CLIP model and pretrain on radiology data.

2. Generating language embeddings of clinical findings: The FlexR method extracts
individual sentences from the structured reporting template, representing all possible options,
and encodes them using our CLIP text encoder. This process yields a text embedding Ti
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for each clinical finding. For example, when detecting and grading cardiomegaly in chest
radiographs, the prompts could be formulated as shown in Table 8.1, such as There is mild
cardiomegaly.

3. Fine-tuning the classifier: The final classifier, which is the output of the FlexR approach,
comprises our CLIP image encoder that generates the embedding Ii of the input image
and the embeddings W = T1, T2, . . . , TC , which are initialized by the text embeddings of
the radiological findings and then fine-tuned in the previous step. Here, C denotes the
number of clinical findings defined by the structured reporting template. The cosine similarity
s = s1, s2, . . . , sC between Ii and each clinical finding in W is computed to classify the input
image.

In the final step of the FlexR method, the computed similarities are transformed into predic-
tions by establishing thresholds for mutually non-exclusive findings and selecting the highest
similarity for exclusive findings, such as clinical gradings. It is crucial to recognize that, in
addition to encoding the presence of clinical pathologies, the FlexR method also encodes the
absence of findings as separate embedding, e.g., The lungs are clear.

The FlexR method leverages that many textual prompts share common information with other
sentences from similar parts of the structured reporting template. This shared information
provides a useful clustering of medically similar findings and captures label dependencies.
For example, the prompts lung opacity in the left lung and lung opacity in the upper left lung
have nearly identical language embeddings due to their semantic similarity. In rare cases, it
was observed that two different prompts might even have the same embedding when using
the initialization W . To address this issue and ensure that different prompts result in distinct
language embeddings, the FlexR method proposes optimizing the clinical finding embeddings
in W and the image encoder using the Log-Sum-Exp Sign loss.

8.2.1 Log-Sum-Exp Sign Loss

To optimize the clinical finding embeddings initialized by the text encoder, we propose using
the Log-Sum-Exp Sign (LSES) loss function, as introduced by Jin et al. [116]. The labels
of each clinical finding are denoted as y = y1, y2, . . . , yC , where yi ∈ 1,−1, indicating the
presence or absence of a clinical finding in the report, respectively. Given the cosine similarity
s between the image and finding embeddings, the LLSES loss is defined as

LLSES = log
(

1 +
C∑

i=1
e−yiγsi

)
. (8.1)

The LSES loss inherently assigns higher weights to misclassified classes while leaving the
embeddings of correctly initialized classes largely unaltered. The hyperparameter γ allows
for the adjustment of this effect, further increasing the loss for misclassified embeddings
and decreasing it for well-classified embeddings. This mechanism has proven effective in
classification tasks with long-tailed distributions, such as human-object interaction recognition
[116], making it well-suited for the long-tailed distribution often encountered in structured
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reporting (see Figure 8.2). In the LLSES loss, 1 is added to the summands to ensure a lower
bound of 0 for the loss.

By employing the LSES loss, the FlexR method can effectively optimize the clinical finding
embeddings, prioritizing the correction of misclassified embeddings while preserving the
quality of well-initialized embeddings. This approach helps to improve the accuracy and
robustness of the predictions, particularly in scenarios with imbalanced class distributions,
which are common in structured radiology reporting.

The Log-Sum-Exp (LSE) function is defined as

LSE = log
(

C∑
i=1

exi

)
, (8.2)

serves as a smooth approximation of the maximum function max x1, x2, . . . , xi, with the
softmax function being its derivative. By setting xi = −yiγsi, the LSE function assigns the
highest loss to classes that are either present in the report but have a low similarity with the
image embedding or have a high similarity but are not present in the report. Simultaneously,
the softmax gradient helps to maintain the stability of the correctly initialized class weights.
This behavior makes the LSE function particularly well-suited for optimizing the clinical
finding embeddings in the FlexR method.

8.2.2 Contrastive Language-Image Pre-training

FlexR builds on the multimodal embeddings of contrastive language-image pre-training (CLIP)
[194], as introduced in Section 3.3.3, that has been demonstrated to be effective for various
downstream tasks such as human-object interaction recognition [116]. However, at the time
of this work, no models were available that had been trained on a comparable scale for chest
radiographs and their corresponding reports. To address this gap, we explored strategies for
fine-tuning CLIP on chest radiographs and training a similar model from scratch by initializing
both the text and image encoder with domain-specific pretrained models.

8.2.3 Cross-modal Similarity Metric

The FlexR method employs a fully connected layer without bias to compute the cosine
similarity between the input image embedding and the language embeddings of the clinical
finding prompts. To ensure a well-defined and differentiable similarity metric, both the initial
text embeddings and the image embeddings are normalized, and the dot product between
these normalized embeddings is calculated using the linear layer. This approach allows
the embeddings of the radiological findings to be optimized during training, enhancing the
predictions of poorly initialized classes. Algorithm 1 presents the pseudo-code for a PyTorch
implementation of the prompt similarity module, defined as a subclass of nn.Linear and
initialized with the text embeddings of each finding description:
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Algorithm 1: Prompt Similarity Pytorch Module

class PromptSimilarity(nn.Linear)
method __init__(prompt_embeddings)

out_features, in_features← prompt_embeddings.shape;
call super().__init__(in_features, out_features, bias=False);
self.weight.data← F.normalize(prompt_embeddings);

method forward(x)
x← F.normalize(x);
x← super().forward(x);
return x;
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Fig. 8.2. The class distribution in the MIMIC-CXR / ImaGenome task, which involves localizing nine pathologies
across 29 anatomical locations, exhibits a long-tailed pattern. The classes, arranged in order of increasing
frequency of occurrence and displayed on a logarithmic scale, demonstrate a significant imbalance,
with a few classes appearing much more frequently than other classes in the dataset and severely
underrepresented classes on the left. [122]

8.3 Experimental Setup

This section provides a detailed description of the experimental setup and the dataset used in
our study. We perform domain-specific contrastive pre-training and evaluate the performance
of the FlexR method on two structured reporting tasks: assessing the severity of cardiomegaly
and localizing pathologies in chest X-rays. Additional information can be found in the
appendix.

8.3.1 Structured Reporting Dataset

The dataset employed in this study is the MIMIC-CXR-JPG v2.0.0 [117], which is derived
from the MIMIC-CXR dataset. The MIMIC-CXR dataset consists of 377,110 chest radiographs
associated with 227,827 imaging studies and free-text reports [81, 118]. To obtain labels for
structured reports, we utilize the Chest ImaGenome [253], a medical scene graph dataset
containing 242,072 anatomy-centered scene graphs for the MIMIC-CXR image data. The
Chest ImaGenome dataset provides 1,256 combinations of relation annotations between 29
anatomical locations and their attributes.
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Fig. 8.3. Extraction of structured findings from ImaGenome[253]: Structured reporting elements resembling
common data elements (CDEs) are extracted from the ImaGenome knowledge graph by first extracting
triplets and then rephrasing them as sentences. [122]

Pathology Localization Reporting Template

Due to the limited availability of publicly accessible reporting templates with annotations,
we model the localization of pathologies in chest radiographs as a surrogate reporting task.
This task, introduced by AnaXNet [2] and ImaGenome [253], provides annotations for the
MIMIC-CXR dataset in the form of graphs. The objective is to detect and localize 9 pathologies:
Lung Opacity, Pleural Effusion, Atelectasis, Enlarged Cardiac Silhouette, Pulmonary Edema/Hazy
Opacity, Pneumothorax, Consolidation, Fluid Overload/Heart Failure, and Pneumonia.

The dataset encompasses 29 anatomical locations, including various regions of the lung, hilar
structures, costophrenic angle, mediastinum, cardiac silhouette, and trachea. We extract the
triplet of pathology located in the anatomical site from the provided graph for each patient.
This process, shown in Figure 8.3, results in 98 unique combinations of pathology and location
for all patients out of the 162 possible combinations. To create the template sentences used as
an initialization of the classifier, we join the pathology and location with the phrase "in the",
for example, "Consolidation in the left lung".

Cardiomegaly Severity Reporting Template

For the assessment of cardiomegaly severity, we use the TLAP-endorsed structured reporting
template "Chest Xray - 2 Views"1 illustrated in Figure 8.4. The exact sentences from this
template are used as language embeddings, and the associated labels are extracted from the
MIMIC-CXR dataset using simple keyword matching. Table 8.1 presents the prompts and their
distribution within the dataset.

Data Processing

To train and evaluate the FlexR method, we utilize the data split provided by ImaGenome,
which includes both Posterior-Anterior (PA) and Anterior-Posterior (AP) radiographs. After
preprocessing, the dataset consists of 166,512 training images, 23,952 validation images,
and 47,389 test images. The image processing pipeline is implemented using MONAI 0.8.0.
All images are resized to a consistent resolution of 224x224 pixels, with padding applied if
necessary, and their pixel values are scaled to the range [-1, 1].

1created by Penn Medicine: https://radreport.org/home/144/2011-10-21%2000:00:00
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Template

Lung 

Heart

The heart is normal in size.

The heart is top normal in size.

There is mild cardiomegaly.

There is moderate cardiomegaly.

There is marked cardiomegaly.

There is severe cardiomegaly.
Mediastinum 

Findings 

Impressions … 

… 

Structured 
Reporting

The lungs are clear.

… 

Fig. 8.4. RadReport data elements for severity of cardiomegaly: Structured reports can be represented as a
hierarchy of findings often organized by organs of interest.

Several image augmentation techniques are employed during training to improve the model’s
robustness and generalization ability. These augmentations include random cropping, ensuring
that at least 75% of the original image size is retained; random rotation, allowing for angles
up to ±15°; color jittering, with a brightness variation of 10%; and contrast and saturation
variations of 20%.

The corresponding reports are augmented by randomly sampling a sentence containing a
finding from the ImaGenome scene graph. For healthy patients with no findings, a random
sentence from the full report is sampled instead. This augmentation strategy helps to expose
the model to a diverse range of clinical findings and their associated textual descriptions,
enhancing its ability to learn meaningful representations and make accurate predictions.

8.3.2 Implementation and Training Details

All networks in this study are trained using PyTorch 1.10 and PyTorch Lightning 1.5.10 in
native mixed precision. The transformer-based models and tokenizers are implemented using
the Hugging Face library (transformers 4.16.2). A single NVIDIA A40 GPU is used for training
all classification models. The DenseNet and Vision Transformer classifiers are trained for 25
epochs, following the hyperparameters used in [2]: an Adam optimizer with a learning rate of
1e-4 and an unweighted binary cross-entropy loss.

The FlexR models are fine-tuned for 10 epochs using a learning rate of 1e-4, an AdamW
optimizer without weight decay, and a learning rate scheduler with cosine annealing decay
and a 1-epoch linear warmup. During the fine-tuning process, all weights, including those
of the image encoder, are optimized. Experiments involving fine-tuning only the language
embeddings and zero-shot inference did not yield useful results and were therefore excluded
from the study. The model with the best performance on the validation set is selected for
testing. After a hyperparameter search on the localized pathology task with values of 50, 100,
and 150, the γ parameter of the LSES loss is set to 50 for all experiments.

An epoch exposes the model to 128 images per class in the context of few-shot learning. The
same number of images is chosen per class during sampling to ensure comparability while
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accessing the entire dataset. A batch size of 256 is used for the classification baselines and
FlexR fine-tuning. All experiments are repeated 5 times with different random seeds, and the
average results are reported.

The DenseNet121 baseline is trained using a cross-entropy loss for the cardiomegaly severity
assessment task. To enable a fair comparison with our custom CLIP model, the DenseNet121
used as a baseline in the two few-shot tasks is also initialized with a model pre-trained on
detecting pathologies in MIMIC-CXR without localization.

Pre-training details

We utilize all reports and images in the MIMIC-CXR training set for contrastive pre-training.
Initial experiments involving fine-tuning the original CLIP model with a ViT-16/B backbone
[65] using the original CLIP tokenizer and text encoder resulted in severe overfitting. To
address this issue, we replace the image and text encoders with domain-specific pre-trained
encoders: DenseNet121 (DN121) [102] pre-trained on the detection of pathologies and
SciBERT (SB) [17] pre-trained on a large corpus of scientific text. Contrastive pre-training
with these encoders demonstrates better generalization, and consequently, we employ this
model for all subsequent experiments, comparing it with the initially fine-tuned, unmodified
ViT-B/16-CLIP model. Additional pre-training details are provided in the appendix.

The CLIP models are fine-tuned on all radiology reports and chest X-ray images in the MIMIC-
CXR training dataset using 8 NVIDIA A40 GPUs for 300 epochs with a batch size of 128. An
AdamW optimizer is used with a learning rate 5e-6, no weight decay on the normalization
layer and bias, and a weight decay of 0.1 on all other parameters. The learning rate is decayed
using a single cosine annealing schedule with a 1-epoch linear warmup. The Hugging Face
library (transformers 4.16.2) implements the vision-language models.

Initially, we fine-tuned the weights provided by OpenAI for the ViT-B/16-CLIP configuration2.
However, upon observing overfitting on the MIMIC-CXR dataset, we replace the image encoder
with a DenseNet121 and the language encoder with SciBERT3. The DenseNet121 is pre-trained
on the detection of pathologies without localization (see Section 8.3.3) on the MIMIC-CXR
training set. As the embedding dimensions of the image and text encoders may differ, their
embeddings are projected to a joint embedding size of 512 using a linear layer.

Following the original CLIP paper [194] and its implementation in Hugging Face, we calculate
the cosine similarity between the text and image embeddings and apply a contrastive loss
to encourage similarity between corresponding pairs of text and image inputs while pushing
apart non-corresponding pairs. Specifically, the contrastive loss is a cross-entropy loss applied
to both the rows and columns of the similarity matrix, and the average of these two losses is
used for backpropagation.

2https://huggingface.co/openai/clip-vit-base-patch16
3https://huggingface.co/allenai/scibert_scivocab_uncased
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Tab. 8.1. Grading for cardiomegaly severity in the Chest Xray - 2 Views RadReport template with the label support
extracted from MIMIC-CXR reports. [122]

Severity Initialization prompt Training Validation Testing

Normal The heart is normal in size. 3140 478 943

Top Normal The heart is top normal in size. 635 72 160

Mild There is mild cardiomegaly. 6084 809 1816

Moderate There is moderate cardiomegaly. 8696 1164 2619

Severe There is severe cardiomegaly. 2231 335 676

Marked There is marked cardiomegaly. 246 36 85

21032 2894 6299

8.3.3 Few-shot Classification

This study’s leading set of experiments focuses on evaluating the effectiveness of the FlexR
method in utilizing knowledge extracted through contrastive pre-training for the few-shot
classification of fine-grained clinical findings. We deliberately reduce the training data and
evaluate the models in an N-shot setting to assess the model’s performance in scenarios with
limited annotated data. N-shot refers to using N annotated samples per class. Furthermore, to
establish an upper bound for the model’s performance, we compare the results obtained in
the few-shot settings with those achieved using all available annotated data. This comparison
provides valuable insights into the potential performance gap between few-shot learning and
fully supervised learning, as well as the effectiveness of the FlexR method in bridging this gap
by leveraging knowledge acquired through contrastive pre-training.

Severity of Cardiomegaly

The first few-shot experiment evaluates the model’s ability to adapt to a new structured
reporting workflow defined by an existing reporting template. The performance of the
FlexR method and other baseline models is evaluated using the area under the receiver
operating characteristic curve (AUC). This metric comprehensively assesses the model’s
ability to discriminate between different cardiomegaly severity levels across various decision
thresholds. Using an existing structured reporting template and extracting labels from the
MIMIC-CXR dataset, this experiment aims to simulate a realistic scenario where the FlexR
method is applied to a new structured reporting workflow. Taking exact sentences from the
template as language embeddings ensures the model is evaluated on clinically relevant and
meaningful prompts.

Pathology Localization

Following the approach of Agu et al. [2], we calculate the area under the receiver operating
characteristic curve (AUC) for all possible locations of each pathology and average them to
obtain a single location-sensitive AUC per pathology. This evaluation metric comprehensively
assesses the model’s ability to detect and localize pathologies across anatomical sites. The
pathology localization task is employed in the ablation study as it offers more available anno-
tations than other tasks. By modeling the localization of pathologies as a surrogate reporting
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task, we can evaluate the performance of the FlexR method and other baseline models in a
clinically relevant context, even without extensively annotated reporting templates.

8.4 Results

8.4.1 Ablation and Cardiomegaly Grading

The ablation study, summarized in Table 8.2, focuses on the task of localizing pathologies
and demonstrates that the FlexR model outperforms both the random initialization without
language embeddings and the ViT-B/16-CLIP backbone fine-tuned on the MIMIC-CXR dataset.
These results confirm the superior generalization capability of the domain-adapted CLIP model
and highlight the importance of initializing the model with language embeddings for improved
few-shot performance. Furthermore, FlexR surpasses the performance of a naïve transfer
learning baseline using a DenseNet121 pre-trained on detecting non-localized pathologies. As
the number of samples seen per class increases, the performance gap between FlexR and the
other models diminishes.

The second part of Table 8.2 presents the results of detecting and grading cardiomegaly severity
using language embeddings extracted from a real-world RadReport reporting template. In the
1-shot learning scenario, FlexR increases the area under the receiver operating characteristic
curve (AUC) of 0.06 compared to the naïve transfer learning baseline. This improvement
grows to 0.07 in the 5-shot learning setting. Interestingly, the DenseNet121 model optimized
using cross-entropy loss required oversampling of underrepresented classes to achieve a
performance similar to that of FlexR. In contrast, FlexR reached its best AUC of 0.82 without
oversampling when trained on all available data. This observation could be attributed to the
inherent class weighting property of the LSES loss function employed by FlexR.

These findings underscore the effectiveness of the FlexR method in adapting to new structured
reporting workflows and accurately grading the severity of cardiomegaly, even in few-shot
learning scenarios. Furthermore, the ablation study shows the effectiveness of the domain-
adapted CLIP model and the initialization with language embeddings before fine-tuning.

8.4.2 Localization of Pathologies

FlexR performs better than transfer learning with a pre-trained DenseNet121 in the few-shot
setting of localized pathology detection. Specifically, FlexR achieves a 0.07 higher area under
the receiver operating characteristic curve (AUC) for 1-shot learning and a 0.08 increase
for 5-shot learning. Table 8.3 compares the performance of FlexR with global classification
baselines and object detection-based methods that utilize the full training data. To establish
an upper bound for the AUC, we report the performance of image encoders used for global
pathology detection without localizing the diseases. As expected, the few-shot methods do not
reach the AUC of AnaXNet, which leverages all available training data, is fully supervised with
bounding box annotations, and refines features extracted from high-resolution image crops.
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Tab. 8.2. Ablation study of the FlexR method using different backbones and weight initializations for pathology
localization, along with results for cardiomegaly grading compared to naïve transfer learning. The
evaluation metric is mean AUC. N-shot indicates the number of annotated samples per class used for
training. The proposed approach is highlighted in bold. [122]

Method Backbone Pretraining 1-shot 5-shot 10-shot 100-shot sampled all

Ablation on localizing pathologies

MLP DN121 pathologies 0.67 0.69 0.71 0.76 0.77 0.84

FlexR ViT-B/16-CLIP CLIP 0.66 0.70 0.73 0.75 0.77 -

FlexR DN121+SB random init. 0.67 0.72 0.75 0.79 0.81 -

FlexR DN121+SB CLIP 0.74 0.77 0.78 0.80 0.81 0.84

Grading task: Cardiomegaly severity prediction

MLP DenseNet121 pathologies 0.59 0.65 0.68 0.75 0.79 0.73

FlexR DN121+SB CLIP 0.65 0.72 0.74 0.77 0.78 0.82

Tab. 8.3. Comparison of FlexR against baselines using all available data, with and without pathology localization,
as well as naïve transfer learning in the few-shot setting. The evaluation metric is AUC, and N-shot refers
to the number of annotated samples per class used for training. The proposed method is marked in
bold [122].
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Multi-label classification with no localization on global view using all data

DenseNet169 [2] 0.91 0.94 0.86 0.92 0.92 0.93 0.86 0.87 0.84 0.89

DenseNet169 0.87 0.90 0.79 0.86 0.85 0.83 0.75 0.77 0.75 0.82

DenseNet121 0.88 0.91 0.81 0.87 0.87 0.87 0.79 0.80 0.77 0.84

ViT-B16 0.88 0.91 0.80 0.87 0.86 0.85 0.77 0.78 0.76 0.83

Fully supervised object detection with bounding boxes and high-resolution crops using all data

FasterR-CNN [2] 0.84 0.89 0.77 0.85 0.87 0.77 0.75 0.81 0.71 0.80

AnaXNet [2] 0.88 0.96 0.92 0.99 0.95 0.80 0.89 0.98 0.97 0.93

Few-shot, detector-free localization on global view (224 × 224)

DenseNet121 1-shot 0.70 0.76 0.64 0.77 0.70 0.60 0.66 0.62 0.58 0.67

DenseNet121 5-shot 0.72 0.78 0.66 0.78 0.73 0.64 0.67 0.64 0.62 0.69

DenseNet121 (all data)0.83 0.89 0.79 0.87 0.84 0.89 0.83 0.81 0.82 0.84

FlexR 1-shot 0.72 0.83 0.69 0.82 0.77 0.72 0.74 0.73 0.67 0.74

FlexR 5-shot 0.75 0.84 0.71 0.82 0.79 0.78 0.76 0.73 0.71 0.77

FlexR (all data) 0.82 0.89 0.78 0.87 0.84 0.90 0.83 0.80 0.81 0.84
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Still, the results highlight the effectiveness of the FlexR method in detecting and localizing
pathologies in few-shot learning scenarios. Despite the limited training data, FlexR outper-
forms the transfer learning approach with a pre-trained DenseNet121, demonstrating its ability
to adapt efficiently to new pathologies and anatomical locations. However, it is important to
acknowledge that the few-shot methods, including FlexR, do not achieve the same level of
performance as fully supervised object detection methods like AnaXNet, which benefit from
the supervision signal of bounding box annotations for each pathology. Nevertheless, the
superior performance of FlexR in the few-shot setting underscores its potential for flexible
adaptation to new structured reporting tasks and its ability to provide accurate pathology
detection and localization with limited annotated data.

8.5 Discussion

Modeling radiology report generation as a classification task offers several advantages, such
as allowing for a direct evaluation of the clinical correctness of reports and aligning with the
growing adaptation of structured reporting and standardized reports. However, capturing the
nuances of radiology reports requires a highly fine-grained classification of clinical findings.
While unstructured data, such as free-text reports, are abundant, detailed, structured, and
high-quality annotations are scarce. To address this challenge, we have introduced a method
that leverages unstructured data to learn and predict fine-grained clinical findings using only
a few annotated samples per class. Our results demonstrate that our method can be easily
adapted to hospital-specific reporting templates and outperforms the baseline in the severity
assessment of cardiomegaly and the localization of pathologies in chest X-rays in a few-shot
learning setting.

It is important to note that self-supervised pre-training with CLIP and FlexR is only feasible
when large amounts of domain-specific image-text pairs are available, which may not be true
in all medical applications. Additionally, our results indicate that using all available labels for
training outperforms few-shot learning approaches. Therefore, if possible, all labels should
be utilized during training. Specifically, our findings suggest that the localization of diseases
in chest X-rays is better suited for a specialized object-detection-based model that uses full
supervision with bounding boxes. Unlike the approaches proposed by Seibold et al. [209] and
Tiu et al. [230], our method employs only a single negative prompt, representing a healthy
patient without any findings, rather than negative prompts for every pathology. Adapting this
strategy to include two reference embeddings could potentially improve the performance in
detecting diseases.

Moreover, label dependencies (e.g., located in the left lung and lower left lung) have been
modeled implicitly in FlexR through the similarity of text in prompts. These dependencies
could be explicitly modeled in the future to further enhance the method’s performance.
Ultimately, the greatest potential for improvement lies in refining the pre-training of joint
vision-language representations. This objective can be achieved by utilizing additional data
or developing improved methodologies to address the severe class imbalance of clinical
findings.
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A publicly available, standardized reporting template for chest X-rays, featuring a high level of
detail and corresponding annotations for datasets like MIMIC-CXR, is essential to facilitate
a more comprehensive evaluation of structured reporting in the future. While Wu et al.
[253] and Jain et al. [110] provide highly detailed, structured annotations in the form of
graphs, there is a need for a translation of these annotations to a real-life reporting template.
Establishing a benchmark for comprehensive, structured reporting would facilitate future
research in this direction, enabling the development and comparison of advanced automated
radiology report generation methods.

8.6 Conclusion

In this work, we emphasize the importance of developing methods for structured reporting
in radiology, as standardized reports can formalize the evaluation of knowledge embedded
in the representations of neural networks. To address this need, we propose the Few-shot
classification with Language Embeddings for chest X-ray Reporting (FlexR) method, which
leverages self-supervised pre-training with CLIP to predict fine-grained clinical findings for a
given radiology image.

Our results demonstrate that, even with limited image-level annotations, the FlexR method can
effectively predict the structured reporting subtasks of cardiomegaly severity assessment and
localizing pathologies in chest X-rays in a few-shot learning setting. These findings highlight
the potential of our approach to enable the generation of detailed, standardized radiology
reports with minimal annotated data, thereby facilitating the adoption of structured reporting
in clinical practice.

The extraction of fine-grained radiological findings from images instead of directly predicting
a disease with a deep learning model is important. It allows us to intuitively verify the
correct image understanding of a model. In addition to facilitating structured reporting, these
detailed findings can also be integrated with other non-imaging patient information in clinical
reasoning support systems. With the advancement of multimodal, self-supervised pre-training
methods and the ability of LLMs to extract structured information from unstructured text, we
will be able to model the structured reporting task on a large scale in the future.
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9.1 Introduction

Computer-aided diagnosis (CAD) systems have emerged as valuable tools in medical diagnosis,
but their effectiveness is constrained by the requirement for extensive labeled data for their
training. This limits their adaptation to clinical applications with limited data like rare and
emerging diseases [75, 192]. Furthermore, it does not allow for flexible integration in new
clinical environments, such as adapting to new reporting templates or to changed guidelines
with new definitions of radiological findings. To address these challenges, recent research has
explored zero-shot [25, 106, 209, 230, 244] and few-shot [25, 106, 122] learning techniques.
These approaches leverage contrastive pre-training [194, 271] on paired radiology reports
and images, demonstrating performance comparable to radiologists [230]. However, the
black-box nature of these models and the lack of detailed findings limit their interpretability
and application. This is important since providing diagnostic explanations using radiological
findings can be essential for building trust in the system and enabling radiologists to validate
the results [156] as motivated in Section 2.2.3.

Drawing inspiration from the successful application of large language models (LLMs) in pre-
dicting image descriptors for natural images [160], we present Xplainer [184]. This method
adapts a classification-by-description method of vision-language models to the multi-label
setting of classifying radiological findings in medical images. In this approach, the model is
tasked with classifying the presence of descriptive observations that a radiologist would look
for in a radiograph to confirm a suspected diagnosis. This design choice enables the model
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to form a set of radiological findings that must be present in the image to confirm or reject
the hypothesis of a suspected disease, testing them against the given image using similarity
measures. Xplainer’s approach resembles the deductive, analytical aspect of clinical reasoning
discussed in Section 2.1.3 by breaking down the diagnosis into more interpretable image
observations that can be verified and documented. This model provides inherent interpretabil-
ity, as the final prediction is based on the probabilities of the underlying image observations,
providing a clear and transparent decision-making process. The prior knowledge in the form
of textual descriptions is first generated by an LLM and then refined by a radiologist.

To assess the effectiveness of Xplainer, we conduct evaluations on two well-established
chest X-ray datasets: CheXpert [108] and ChestX-ray14 [242]. Our results in these datasets
demonstrate that Xplainer offers better performance while providing detailed decision-making
insights. In summary, Xplainer introduces a novel approach to zero-shot classification in
radiology that enhances both interpretability and diagnostic performance.

�
Contributions:

• We introduce Xplainer, a novel framework for explainable zero-shot diag-
nosis from X-ray images, adapting a classification-by-description approach
to mirror the analytical reasoning process of radiologists.

• We integrate formal knowledge about the diseases and their manifestations
in the form of radiological text descriptions in the model.

• Our work demonstrates that classifying descriptive observations, instead
of directly predicting a diagnosis, improves performance and provides
intrinsic explainability.

• We show that Xplainer outperforms previous zero-shot methods on the
CheXpert and ChestX-ray14 datasets.

9.2 Methodology

9.2.1 Model Overview

We introduce Xplainer, an intrinsically interpretable zero-shot approach for diagnosing patholo-
gies from X-ray images employing a classification-by-description approach. The objective
is the multi-label classification of radiological findings in an image i given a set of clinical
observations op1−n

per pathological finding p.

Our zero-shot approach builds upon BioVil [25], a pretrained vision-language model for
radiology as described in Section 3.3.3. Using the language and vision encoders from BioVil,
we compute the cosine similarity between an input image i and each of N pre-defined clinical
observations op1−N

describing a pathology. By normalizing this similarity to a range from 0
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consolidation of lung tissue
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no interstitial opacities
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consolidation of lung tissue
air bronchograms
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Joint
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Fig. 9.1. Xplainer overview: Observation probabilities are calculated using contrastive CLIP prompting and then
utilized to make an explainable diagnosis prediction, providing insights into the model’s decision-making
process. [184] Reproduced with permission from Springer Nature.

to 1, we calculate the observation probabilities Ppos(oi) for every observation. Similarly, we
calculate probabilities for the absence of all observations Pneg(oi) by defining negated prompts
for each observation. The final probability of an observation P (oi) is determined using the
softmax over the positive and negative probabilities. Based on these positive probabilities,
we calculate a joint probability to determine the probability of the presence of a pathology
P (p):

log(P (p)) =
N∑

i=1
log(P (oi))÷N (9.1)

The process of calculating the log probability of the presence of a pathology is repeated for all
pathologies we aim to diagnose in the image. Our method is inherently explainable by directly
extracting the pathology diagnosis prediction from the observation probabilities, producing
both a diagnosis prediction and the estimated X-ray observations that led to that prediction.
Furthermore, the observation probabilities provide insights into which observations the model
primarily considers for its diagnosis, enhancing the interpretability of the decision-making
process. Figure 9.1 presents an overview of our framework, illustrating the steps involved in
the explainable zero-shot classification-by-description approach for diagnosing pathologies
from X-ray scans.

To incorporate multiple images of a single patient, we calculate each image’s positive and
negative observation probabilities and then average these probabilities before computing the
final pathology probability. This approach allows the model to consider information from
multiple views or time points, providing a more comprehensive assessment of the patient’s
condition.
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9.2.2 Prompt Engineering

The success of zero-shot classification depends heavily on the alignment between the con-
trastive pre-training and the task at hand [194]. Since BioVil [25] was trained on pairs of
X-ray images and reports, it is crucial to phrase prompts in a way that closely resembles the
style of radiology reports. To generate our descriptive prompts, we utilize ChatGPT [42],
querying it to describe observations found in X-rays that could appear in a radiological report
indicating a pathology. These prompts are then refined with the assistance of a radiologist
who verifies and adapts the observation descriptors. The final lists of descriptors per chest
X-ray class are presented in Table 9.1.

Radiology reports often include both the presence and absence of specific observations. When
comparing a prompt with an image embedding, the model may struggle to differentiate
between an observation’s positive and negative occurrence due to their similar formulation.
Previous research [209, 230] has demonstrated that introducing contrastive prompts can
address this issue. By prompting the model with both a positive and a negated formulation, we
don’t have to define a threshold. Instead, we can apply a softmax over them. We further adapt
our prompts in two additional steps to align our prompts with the text in radiology reports.
First, we include a disease indication, as radiology reports typically contain observations and
conclusions. This reduces the ambiguity since a single observation (e.g., lung opacity) can be
indicative of multiple pathologies (e.g., pneumonia, atelectasis, or edema). Additionally, we
phrase all our observations in a style that resembles an actual report by adding "There is/are"
before each observation. The resulting prompt structure for all observations is as follows:
"There is/are (no) <observation> indicating <pathology>."

Finally, we compare our observation-based prompting with a baseline using contrastive
pathology-based prompts. Similar to previous works, only two prompts are used in this
setting: one positive and one negative for each pathology. To demonstrate the benefit of
observation-based, contrastive prompting with disease indication and report style, we compare
the following styles of prompting:

• Pathology-based: (No) <pathology>
• Basic: Only positive prompt per pathology: <observation>
• Contrastive: (No) <observation>
• Pathology Indication: (No) <observation> indicating <pathology>
• Report Style: There is/are (no) <observation> indicating <pathology>

9.3 Experiments and Results

We evaluate Xplainer in a zero-shot setting on two widely used chest X-ray datasets: CheXpert
[108] and ChestX-ray14 [242]. CheXpert provides a validation set with 200 patients and a
test set with 500 patients, encompassing 14 classes, including "No Finding", "Support Devices",
and 12 pathology labels. ChestX-ray14 is evaluated on 14 pathology labels using a test set
of 25,596 images. For both datasets, we perform multi-label classification and assess the
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Tab. 9.1. Descriptors for each pathology used in the Xplainer framework, showcasing the detailed radiological
findings that contribute to the diagnosis prediction and explainability of the model. [184] Reproduced
with permission from Springer Nature.

enlarged
cardiomediastinum

increased width of the heart shadow, widened mediastinum, abnormal contour of the
heart border, fluid or air within the pericardium, mass within the mediastinum

cardiomegaly increased size of the heart shadow, enlargement of the heart silhouette, increased
diameter of the heart border, increased cardiothoracic ratio, displaced or elevated
diaphragm

lung opacity increased density in the lung field, whitish or grayish area in the lung field, obscured or
blurred margins of the lung field, loss of normal lung markings within the opacity, air
bronchograms within the opacity, fluid levels within the opacity, silhouette sign loss with
adjacent structures

lung lesion consolidation of lung tissue, pleural effusion, cavities or abscesses in the lung, abnormal
opacity or shadow in the lung, irregular or blurred margins of the lung

edema blurry vascular markings in the lungs, enlarged heart, kerley b lines, increased interstitial
markings in the lungs, widening of interstitial spaces

consolidation loss of lung volume, increased density of lung tissue, obliteration of the diaphragmatic
silhouette, presence of opacities, blunting or loss of sharpness of costophrenic angles

pneumonia consolidation of lung tissue, pleural effusion, air bronchograms, cavitation, interstitial
opacities

atelectasis increased opacity, volume loss of the affected lung region, displacement of the diaphragm,
blunting of the costophrenic angle, shifting of the mediastinum

pneumothorax tracheal deviation, deep sulcus sign, increased radiolucency, flattening of the hemidi-
aphragm, absence of lung markings, shifting of the mediastinum

pleural effusion blunting of costophrenic angles, opacity in the lower lung fields, mediastinal shift,
reduced lung volume, presence of meniscus sign or veil-like appearance

pleural other pleural thickening, pleural calcification, pleural masses or nodules, pleural empyema,
pleural fibrosis, pleural adhesions

fracture visible breaks in the continuity of the bone, misalignments of bone fragments, widening
or narrowing of the bone, displacements of bone fragments, disruptions of the cortex or
outer layer of the bone, visible callus or healing tissue, fracture lines that are jagged or
irregular in shape, multiple fracture lines that intersect at different angles

support devices /
foreign objects

artificial joints or implants, stents or other vascular devices, prosthetic devices or limbs,
breast implants, radiotherapy markers or seeds

infiltration irregular or fuzzy borders around white areas, blurring, hazy or cloudy areas, increased
density or opacity of lung tissue, air bronchograms

mass calcifications or mineralizations, dark areas or voids in the scan, shadowing, distortion
or compression of tissues, anomalous structure or irregularity in shape

nodule nodular shape that protrudes into a cavity or airway, distinct edges or borders, calcifica-
tions or speckled areas, small round oral shaped spots, white shadows

emphysema flattened hemidiaphragm, pulmonary bullae, hyperlucent lungs, horizontalisation of ribs,
barrel chest

fibrosis reticular shadowing of the lung peripheries, volume loss, thickened and irregular inter-
stitial markings, bronchial dilation, shaggy heart borders

pleural thickening thickened pleural line, loss of sharpness of the mediastinal border, calcifications on the
pleura, lobulated peripheral shadowing, loss of lung volume

hernia bulge or swelling in the abdominal wall, protrusion of intestine or other abdominal
tissue, swelling or enlargement of the herniated sac or surrounding tissues, retro-cardiac
air-fluid level, thickening of intestinal folds

performance using the Area Under the ROC curve (AUC) between the positive pathology
probabilities and the corresponding labels.
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Tab. 9.2. AUC scores for zero-shot pathology classification on CheXpert and ChestX-ray14 datasets, comparing
different prompting approaches. Results marked with * indicate in-domain testing, as the underlying
CLIP model was also trained on the ChestX-ray14 dataset, while the other results report out-of-domain
performance. [184] Reproduced with permission from Springer Nature.

CLIP pre-training data CheXpert ChestX-ray14

val test test

CheXzero [230] MIMIC N/A 74.73 -

Seibold et al. [209] MIMIC 78.86 N/A 71.23

Seibold et al. [209] MIMIC, PadChest, ChestX-ray14 83.24 N/A 78.33*

Xplainer MIMIC 84.92 80.58 71.73

Table 9.2 presents our results compared to previously proposed zero-shot pathology prediction
approaches. For the CheXpert dataset, we compare our performance with Seibold et al. [209]
on the validation set, as they only reported validation performance. When comparing with
CheXzero [230] and evaluating on the ChestX-ray14 dataset, we use the test set results. Our
approach outperforms both previous works in an out-of-domain setting, where the zero-shot
inference is performed on a dataset different from the one used to train the underlying CLIP
model. These state-of-the-art results on both datasets demonstrate the effectiveness of our
observation-based modeling approach, which aligns with the importance of incorporating
clinical knowledge and reasoning into clinical decision support, as discussed in Section 2.2.
Table 9.3 provides a detailed breakdown of our results per pathology and dataset, offering
further insights into the performance of our method.

9.3.1 Ablation Studies

Our ablation studies examine the effect of prompt design and the impact of using multiple
views on the performance of Xplainer. Table 9.4 presents the results on the CheXpert validation
set using different prompting styles. We find that pathology-based prompting, which achieves
an AUC of 76.14%, performs considerably worse than observation-based prompting, which
shows an AUC of 84.92%. This result further emphasizes the benefit of observation-based
prompting, aligning with the importance of incorporating detailed clinical knowledge in the
reasoning process as discussed in Section 2.1.4. When comparing basic observation-based
prompting, which uses only positive prompts per observation, to contrastive prompting, we
observe a substantial performance gap. This difference highlights the importance of using
negative prompts to differentiate between positive and negative occurrences of observations for
effective decision-making. This is reminiscent of the semantic qualifiers used by experienced
clinicians described in Section 2.1.3. We also demonstrate the impact of formulating our
prompts with pathology indication and in report style. Adding pathology indication to
contrastive observation-based prompting improves performance, reaching an AUC of 84.35%.
Lastly, incorporating report style in the prompts leads to the highest AUC of 84.92%, suggesting
that a contrastive observation-based prompt with pathology indication and report style is the
most effective approach for zero-shot prediction of findings in X-ray.
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Tab. 9.3. AUC per chest X-ray class of clinical findings on the CheXpert validation and test set as well as the
ChestX-ray14 test set. [184] Reproduced with permission from Springer Nature.

CheXpert Val CheXpert Test ChestX-ray14

No Finding 88.82 89.94 -

Enlarged Cardiomediastinum 79.23 80.60 -

Cardiomegaly 78.62 83.32 79.71

Lung Opacity 88.18 91.76 -

Lung Lesion 91.46 69.33 -

Edema 84.84 84.55 81.46

Consolidation 91.56 85.89 71.87

Pneumonia 85.68 83.73 70.83

Atelectasis 84.64 85.46 66.86

Pneumothorax 78.09 83.75 72.18

Pleural Effusion 88.72 89.30 79.11

Pleural Other 83.92 58.67 -

Fracture - 60.47 -

Infiltration - - 68.81

Mass - - 70.28

Nodule - - 64.74

Emphysema - - 74.02

Fibrosis - - 62.25

Pleural Thickening - - 67.44

Hernia - - 74.60

Support Devices / Foreign Objects 80.25 81.15 -

Furthermore, we compare the performance of prompts directly generated by ChatGPT with
our expert-refined prompts, as shown in Table 9.5. The refinement process involved removing
irrelevant, redundant, or incorrect descriptors from the ChatGPT-generated prompts. We
observed an improvement in performance after refining the prompts, indicating that incorpo-
rating domain knowledge can further enhance the effectiveness of our method. This aligns
with the importance of integrating clinical expertise and knowledge into clinical decision
support systems, as discussed in Section 2.2. However, it is worth noting that even the
unrefined ChatGPT prompts perform remarkably, demonstrating the potential of combining
the knowledge embedded in large, generic language models with specialized domain-specific
vision-language models. This highlights the value of leveraging recent NLP advances for
incorporating textual knowledge and multimodal representation learning to develop more
accurate and explainable models for clinical applications (see Chapter 3).

For the "No Finding" class, we compare two approaches: (1) defining specific prompts such as
"Clear lung fields" or "Normal heart size and shape" to classify "No Finding," (prompting) and
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Tab. 9.4. Comparison of different prompting styles on the CheXpert validation set, demonstrating the effectiveness
of contrastive observation-based prompting with pathology indication and report style. [184] Reproduced
with permission from Springer Nature.

AUC

Contrastive pathology-based Prompting 76.14

Observation-based Prompting:

Basic Prompt 58.65

Contrastive Prompt 77.00

+ pathology Indication 84.35

+ Report Style 84.92

Tab. 9.5. Comparison of ChatGPT-generated prompts and prompts refined with the help of a senior radiologist,
showing the benefit of incorporating domain knowledge into prompt engineering. [184] Reproduced
with permission from Springer Nature.

CheXpert Val CheXpert Test ChestX-ray14

ChatGPT prompts 83.61 79.94 71.40

Refined Prompts 84.92 80.58 71.73

(2) modeling it as the absence of all the other 13 labels (rule-based). As shown in Table 9.6, a
rule-based modeling of this class yields better results. This observation suggests that there
may not be a clearly defined set of observations that a radiologist would consistently mention
in their report to indicate a healthy X-ray scan. The absence of abnormal findings, rather
than the presence of specific normal observations, appears to be a more reliable indicator
of the "No Finding" class. This approach aligns with the clinical reasoning process of ruling
out hypotheses about pathologies in the differential, based on the presence or absence of
radiological signs, as discussed in Section 2.1.3.

In the final part of our ablation study, we explore the impact of using a single frontal view
versus different aggregation methods of all available views on pathology detection. The
aggregation process begins by calculating the positive and negative observation probabilities
for each image. In the Maximum aggregation approach, the highest observation probability is
selected. The rationale behind this method is that certain perspectives may provide a clearer
view of an observation, and the model’s most confident perspective should be prioritized.
However, integrating multiple views equally can offer complementary insights into image

Tab. 9.6. Comparison of modeling the "No Finding" label using explicit prompts or a rule-based definition as the
absence of other findings, demonstrating the effectiveness of the rule-based approach. [184] Reproduced
with permission from Springer Nature.

AUC - No Finding

Explicit Prompting 79.64

Rule-based 88.82

98 Chapter 9 Zero-shot Classification of Chest X-rays with Deductive Reasoning on Radiological Findings



Tab. 9.7. Comparison of single-view inference and different methods for multi-view aggregation, highlighting the
advantage of averaging observation probabilities across multiple views. [184] Reproduced with permission
from Springer Nature.

mean AUC

Frontal view 84.19

Maximum 84.77

Mean 84.92

observations. To capitalize on this type of multi-view information, we evaluate the Mean
aggregation technique, where observation probabilities are averaged across multiple images.
Table 9.7 presents the results, demonstrating the superiority of Mean aggregation, while both
aggregation methods surpass the performance of relying on a single image.

9.3.2 Qualitative Results

Figure 9.2 presents qualitative examples of our model’s predictions, demonstrating the inter-
pretability and plausibility of the classification-by-description approach. In the true positive
prediction, the model accurately detects most descriptors and identifies "Mass in the medi-
astinum" as the primary indication for enlarged cardiomediastinum. For the true negative
case, the model correctly detects none of the descriptors, confirming the absence of abnormal
findings. However, in the false positive example, the model’s mistake is easily identifiable.
It detects air bronchograms with relatively high certainty but fails to detect consolidation.
This error is readily apparent to a radiologist, as air bronchograms are findings that typically
co-occur with consolidation (i.e., air-filled bronchi in consolidated areas). By providing the
combination of descriptors that led to the decision, our approach substantially improves
explainability and enables radiologists to quickly validate the model’s reasoning.

In the false negative case, the model misses the presence of a pacemaker but detects some kind
of implant, indicating that it understands the presence of a foreign object but cannot identify
it specifically. This scenario highlights how the model’s predictions, even when incorrect, can
provide valuable insights into its decision-making process, facilitating error detection and
interpretation by radiologists. However, this example also reveals a limitation of the current
reasoning process: the probabilities of the detailed radiological findings should not simply
be averaged. Instead, they should be analyzed for dependency and relevance. For instance,
the presence of any foreign object should trigger the "Support Devices" class, whereas, in
our method, the absence of breast implants incorrectly negates the presence of a correctly
detected artificial joint. This suggests that future work should investigate more sophisticated
aggregation of descriptor probabilities.

Overall, the classification-by-description approach employed by Xplainer facilitates a plausibil-
ity check of specific inference results and enhances the understanding of error sources. This
aligns with the importance of explainability and interpretability in clinical decision support
systems, as discussed in Section 2.2.3, enabling radiologists to validate and trust the model’s
predictions.
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TP: Enlarged Cardiomediastinum with a probability of 0.58 TN: Edema with a probability of 0.15

FP: Pneumonia with a Probability 0.51 FN: Support Devices with a probability of 0.48

Fig. 9.2. Qualitative results of Xplainer, demonstrating the interpretability and plausibility of the classification-by-
description approach. The model’s predictions, even when incorrect, provide valuable insights into its
decision-making process, facilitating error detection and interpretation by radiologists. [184] Reproduced
with permission from Springer Nature.

9.4 Discussion

One limitation of modeling a joint probability is the assumption that all descriptors appear
simultaneously and have equal importance. While this simplification leads to good results, it
may not always hold true, as a pathology can present with varying signs. Moreover, there may
be inter-dependencies between the descriptors, where certain combinations of descriptors
have a stronger correlation with the presence of a disease than others. For example, in the
case of support devices, the presence of a single support device is sufficient for the label to be
positive. A straightforward solution to address this is to consider only the top-k descriptor
probabilities. We demonstrate experimentally on the CheXpert validation set that using only
the top-1 probability can increase the AUC for support devices from 80.25% to 80.41%.
Relaxing this assumption and considering the varying importance and complex relationships
between descriptors is an important direction for future research.

As an initial step towards modeling descriptor importance, we explore a supervised, out-of-
domain approach using a Naive Bayes classifier trained on the MIMIC-CXR dataset [118]. This
classifier predicts findings using the descriptor probabilities as input, learning more complex
interactions between the decomposed probabilities than simple averaging in the log space.
While this requires annotation for the findings, these can be extracted from the reports using
the CheXpert labeler [108]. We observe a slight performance increase on the CheXpert test set
from 80.58% to 81.37% AUC, indicating that the descriptor importance learned on MIMIC can
be partially transferred to an out-of-domain dataset. This finding suggests that incorporating
domain knowledge and leveraging large-scale datasets can improve the generalizability and
adaptability of diagnostic models, aligning with the objectives of integrating experiential and
formal clinical knowledge into decision support systems discussed in Section 2.1.4. In future
research, the reasoning of how each radiological finding in the image contributes to predicted
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classes could also be performed by an LLM and integrated with other non-image information
about the patient for holistic reasoning.

Using descriptors in Xplainer provides a flexible and adaptive approach to automated diagnosis
prediction. The detection of observations using descriptions allows our model to predict a
disease without relying on labeled data. This could be leveraged to adapt the model to novel or
rare diseases that might be unknown or uncommon but show known symptom characteristics.
This could also allow for the adaption of the model to special patient populations, where the
importance of descriptors may vary.

9.5 Conclusion

In this work, we introduced Xplainer, a novel and effective zero-shot approach for chest X-ray
diagnosis prediction that explains the model’s decision. Our approach makes predictions with-
out needing label supervision by leveraging BioVil, a pretrained, domain-specific CLIP model,
and employing contrastive observation-based prompting. Xplainer significantly outperformed
previous zero-shot methods on the CheXpert and Chest-Xray14 datasets, demonstrating its
effectiveness and potential for clinical application. Our findings emphasize the crucial role
of designing informative prompts in improving model performance. The ablation studies
revealed that incorporating disease indication and report style formulation into observation-
based prompts substantially enhances performance, highlighting the importance of aligning
prompts with the domain-specific language used in medical reports. Moreover, using con-
trastive prompts, which explicitly contrast positive and negative examples, significantly boosts
performance. This approach mirrors the analytical reasoning process employed by clinicians,
as discussed in Section 2.1.3.

We anticipate that the principles employed in Xplainer can be extended to other medical
imaging domains and have practical applications in real-world clinical settings. By providing
accurate and explainable diagnostic predictions, Xplainer has the potential to support clinicians
in their decision-making process and improve patient outcomes. Furthermore, the flexibility
and adaptability of our descriptor-based approach enable its deployment in diverse clinical
contexts, including novel diseases and specific patient populations.

In conclusion, Xplainer leverages the pretraining of a vision-language model on large amounts
of unstructured radiology data to enable the reasoning over structured image findings. Guided
by in-domain expertise, this results in a competitive zero-shot method that provides intrinsic
interpretability of its reasoning. This gives a glimpse into the future intersection between
foundation models for medical domain understanding and large language models. While
medical foundation models could close the gap between language and highly specialized
domains like medical images or genetics, a large language model may put findings into
perspective by integrating them with prior knowledge and providing interactive reasoning.
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10Interpretability

The final step of the deductive reasoning approach of Xplainer we discussed in Chapter 9
can be considered intrinsically interpretable due to the transparent contribution of each
concept to the final prediction. However, we still need to trust the model’s formation of
these concepts. Moreover, it could be argued that an end-to-end optimized approach might
outperform this zero-shot method given sufficient labels. Therefore, it is worth exploring
post-hoc interpretation approaches that explain deep learning models that are not restricted by
requirements of intrinsic interpretability - assuming there is a trade-off to be made. Returning
to our analogy of an experienced clinician who can make an intuitive diagnosis instantly, it is
clear that, as patients, we would still like to follow the reasoning to some extent. Moreover, the
reasoning behind the decision might also be required for legal and documentation purposes.
We argue that interpreting the decision-making of a well-performing deep learning model
could reveal additional information about the input image beyond primary output labels
[205], guiding the user’s attention or pre-filling detailed structured reporting templates, as we
discussed in Chapter 7.

In this part, we will provide a high-level overview of interpretability methods and then, in
Chapter 11, delve into the post-hoc interpretation of a deep neural network for detecting
vertebral fractures using a semantic concept activation method. This approach differs from
the Xplainer we discussed in Chapter 9, where we first predicted concepts and then used them
for final classification. In contrast, this method aims to discover concepts that contributed to
the classification retrospectively.

Zhang et al. [270] categorize the research on the interpretability of deep learning models
along three dimensions. The first distinction lies in the previously discussed difference
between post-hoc methods and methods intrinsically interpretable by design. Second, various
types of explanations with increasing levels of explanatory power exist. Example-based
explanations, such as the prototypical networks we discussed in Section 4.1, explain their
decisions by identifying relevant prototypes or examples that can be used to illustrate similar
image features. Feature attributions, the most prevalent approach in medical image analysis,
attempt to visualize which regions in the input image contribute the most to the classification
output without providing insights into the inner workings of neural networks [123]. The next
level of explanatory power focuses on understanding hidden semantics within the network.
Building upon Network Dissection [15], our work described in Chapter 11 falls into this
category, aiming to match activated concepts within the neural network that correspond
to clinical concepts a radiologist would search for in an image. According to Zhang et al.
[270], the highest level of explanatory power is offered by logic rules, such as decision
trees and rules, which we have already explored in the introductory sections. Also, the
generation of counterfactuals has a strong explanatory power as we have shown in our recent
work on ordinal counterfactuals for the detection of vertebral body fractures using diffusion
autoencoders [120]. The final distinction they provide is between explanations made on a
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local input space level (an individual sample) and those made on a global level, i.e., explaining
the network as a whole, such as the presence of rules or concepts. In the following chapter,
we will explore both local and global explanations.
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11.1 Introduction

Osteoporosis is a prevalent disease in the elderly population, affecting millions of individuals
worldwide [36, 95]. The early detection of incidental osteoporotic fractures in routine
computed tomography (CT) scans is crucial, as these fractures often remain asymptomatic
for an extended period [85]. Moreover, osteoporotic fractures are independent predictors
of subsequent fractures, with a significantly increased risk and mortality rate [37, 158].
The consequences of osteoporotic fractures include substantial socioeconomic impacts and
a diminished quality of life for affected individuals [23, 38, 88, 111]. Despite the clinical
importance of these fractures, a significant proportion of osteoporotic fractures are not
adequately reported in radiological findings of routine CT scans, potentially due to the
increasing workload of radiologists [12, 246].

In the older population, distinguishing between osteoporotic and malignant fractures is
essential, as they have different prognoses and treatment approaches. However, differentiating
between these fracture types at the vertebral body level using standard imaging techniques is
often challenging and may require further diagnostic procedures, such as biopsies [68, 257].
Applying deep learning models for automated fracture detection can address these issues and
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lead to standardized fracture classifications, which radiologists currently use inconsistently.
However, as discussed in Section 2.2.3, most deep learning models are black-box systems that
do not provide insights into their decision-making processes. Exploring the internal workings
of these models can enable the investigation of failure cases and, when addressed, enhance
the robustness and trustworthiness of the system. Recent research has revealed that neural
networks trained for classification tasks can learn abstract semantic concepts similar to the
patterns used by humans to differentiate images [15]. If the concepts discovered in vertebral
fracture classification align with clinicians’ image features, they could also be employed to
determine fracture types and generate automatic image descriptions and diagnostic reasoning
for report generation. This approach is similar to an experienced clinician making an intuitive
assessment (System 1, inductive reasoning - see Section 2.1.3) of a fracture type and then
retrospectively looking for radiological findings that support his conclusions, either writing
this in a report or explaining his diagnosis to a patient.

Interpretable diagnosis has primarily been investigated using feature attribution (saliency)
approaches [123], such as class activation maps [272]. These interpretations reveal the
location of important features for prediction. While feature attribution is a valuable tool
for verifying the network’s inference mechanism, it does not provide additional information
regarding the prediction. Furthermore, knowing only the location of important features is not
helpful for fracture diagnosis, as it is easy to identify the fracture location. Instead, it is more
interesting to understand "what" features are important for the diagnosis.

Drawing inspiration from the network dissection technique [15] and its applications in chest
radiography [123] and mammography [252], in our work [71], we analyze the inner workings
of a neural network and the correspondence to semantic concepts on both a local input space
and global level. In the global setting, we compute the output of the last convolutional layer
for all input data and identify neurons that exhibit a strong correlation with the output value
associated with fractures. We then ask clinicians to identify the concepts associated with
highly correlated activations by examining the inputs most strongly activating those neurons.
This setting provides a comprehensive understanding of the concepts learned by the network
and whether they align with the concepts used by clinicians. In the single-inference setting,
we identify the highly activated convolutional neurons for a single input and visualize their
associated concepts by presenting the top images that activate each neuron. This setting
enables users to gain a conceptual understanding of the model’s decision-making process. We
analyze both settings using the open-source VerSe [211] dataset and a larger private dataset
from our hospital. These concept-based interpretations serve as a foundation for the broader
goal of explainable diagnosis and the generation of radiology reports. The primary objectives
of this work are to investigate the features utilized by the network for fracture diagnosis,
determine their overlap with clinical knowledge, and explore how they can be employed to
enhance the verbosity and explainability of fracture diagnosis.

11.2 Related Work
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Contributions:

• We propose a method to identify activated neurons in 3D CNN that are
highly correlated with vertebral fracture detection, enabling the assessment
of their correspondence to clinical concepts.

• We qualitatively evaluate the identified concepts with medical experts.

• We introduce a visual explanation approach for the network’s decision-
making process by highlighting the most relevant concepts for classifying a
given sample.

Vertebral Fracture Detection

Numerous approaches have been proposed for automatically detecting vertebral fractures.
Most of these methods employ Convolutional Neural Networks (CNNs) on Computer Tomog-
raphy (CT) spine images. However, there are notable exceptions, such as [232], which utilizes
tabular data extracted from CT images in a Random Forest, and [47, 167], which focuses on
detecting fractures in X-rays.

Both 2D and 3D methods have been explored for fracture detection. 2D methods often rely on
feature aggregation using Recurrent Neural Networks to model inter-slice dependencies [11,
231]. Husseini et al. [107] operate on reformatted 2D slices in the sagittal view and perform
fracture grading using a specialized loss. Pisov et al. [191] perform a key point detection for
measuring the compression of each vertebra, using this for both fracture grading and detection.
Nicolaes et al. [169] pioneered using 3D convolutions for vertebral fracture detection, focusing
on detecting fractures at the voxel level and then post-processing the results. Chettrit et al.
[50] proposed to model the inter-volume dependencies with a sequential model, and [261]
employed a 3D model to detect osteoporotic fractures on a patient level.

In addition to fracture detection and grading, recent studies by Li et al. [143] and Feng et
al. [73] have explored the distinction between benign and malignant vertebral fractures.
Despite the growing body of research on vertebral fracture detection, the interpretability
of these models remains unexplored mainly, except Yilmaz et al. [262], which investigated
the usefulness of attribution maps in osteoporotic fracture discrimination. Our work differs
methodologically from [15, 123] because we do not utilize an annotation dataset. Instead,
we identify neurons that correlate highly with the output under investigation. We investigate
a different medical domain and explore distinct research questions, such as the features
contributing to true and false positives.

11.2.1 Interpretability

The interpretability of models in the domain of vertebral fracture diagnosis has been explored
to a limited extent. Yilmaz et al. [262] interpret models using feature attribution (saliency)
approaches to identify regions in the input contributing to the prediction. Feature attribution is
the predominant approach in most medical image analysis applications [123]. However, these
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methods have limitations in revealing information about the model’s decision-making mech-
anism. Furthermore, the feature attribution problem remains largely unsolved, and despite
the existence of various attribution approaches (e.g., CAM [272], LRP[164], DeepSHAP[152],
IBA [208, 268]), there is often disagreement among the methods regarding the identified
important features [268]. This disagreement poses a challenge for domain experts utilizing
these attribution methods. Consequently, there is a need for reliable interpretation approaches
that provide more information beyond simply identifying "which region is important." The
Network Dissection approach [15] offers a different approach by identifying the concepts
encoded by the network’s internal units (neurons). Drawing motivation from this approach,
Wu et al. [252] identify the concepts encoded by networks for diagnosis in mammography
images. In contrast, Khakzar et al. [123] perform dissection on chest x-ray models and
investigate research questions such as the clinical concepts networks capture when trained on
COVID-19 severity scores.

11.3 Methodology

11.3.1 Vertebral Fracture Detection

The vertebral fracture detection task is formulated as a binary classification problem, where
the positive class indicates the presence of a fracture. The network function is represented
as fΘ(x) : RH×W ×D → R, and the predicted probability is obtained by applying the sigmoid
function to the network output, i.e., ŷ = sigmoid(fΘ(x)). We employ a 3D U-Net architecture
[51] for the vertebral fracture classification task, modifying its upsampling path by replacing it
with a fully connected layer for classification similar to the image feature extraction described
in Section 6.3 and [121] sans the decoder used for segmentation. Preliminary experiments
with a DenseNet [102] yielded similar classification performance (0.937 AUC compared to
0.933 for the 3D-UNet) for this task. However, due to its erratic learning curves and inferior
results in downstream tasks, such as detecting vertebral fractures in public datasets, we opted
against using this architecture. Binary Cross Entropy (BCE) is the loss function for training
the model.

11.3.2 Extraction of Semantic Concepts

In neural networks, each neuron responds to a particular input pattern, and this response
pattern can be interpreted as the neuron’s associated concept. In the context of convolutional
neural networks (CNNs), a neuron can be considered an entire activation map or an individual
activation unit within the map. Given that all activation units within a single activation map
serve the same function, differing only in their spatial locations, they collectively represent
a single concept [15]. This property allows us to treat an activation map as a unified
representation of a specific concept, enabling the analysis and interpretation of the learned
features within the CNN.

Let A ∈ RH
′
×W

′
×K represent the tensor of output activations from the network’s final

convolutional layer, where H
′

and W
′

denote the spatial dimensions, and K signifies the
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number of channels in this layer. To identify the most relevant units, we first analyze the
distribution of activations for each unit ak. We then establish a threshold Tk for each unit k such
that the probability of its activation exceeding this threshold is 0.005, i.e., P (ak > Tk) = 0.005
[15]. Based on these thresholds, we construct a binary segmentation mask Mk(xxx) for each unit
k and input xxx, defined as Mk(xxx) := Ak(xxx) > Tk. This mask indicates whether the activation
of unit k exceeds its corresponding threshold for the given input. Finally, we define the set of
enabled units Ex for an input xxx as Ex := {k |

∑
Mk(xxx) > 0}, which includes all units whose

activations exceed their respective thresholds for the input xxx.

Positive Prediction Correlation
Certain units within the network may encode concepts that are particularly informative for
determining whether a sample is fractured. These units correlate more strongly with true
positive predictions than others. To identify such units, we introduce positive prediction
correlation as:

ck :=
∑

x∈P ⊮Ex(k)
|P |

(11.1)

where P represents the set of all positive samples, and ⊮ denotes the indicator function.
By ranking the units based on their positive prediction correlation values, we can identify
the units that are most strongly associated with true positive predictions. For instance, if
ck1 > ck2 > ..., then unit k1 exhibits the highest correlation with true positive predictions,
followed by unit k2, and so on.

11.3.3 Concept Correlation at Inference

Given the diverse nature of defects observed in fractured vertebrae, varying concepts may be
relevant during inference for different samples. To compute the relevance of each unit k in the
context of a specific input xxx, we introduce a measure called inference relevance as follows:

rk :=
∑

Mk(xxx)⊙Ak(xxx) (11.2)

For example, if rk1 > rk2 for units k1 and k2, then unit k1 is more relevant than unit k2 for
the inference of xxx. To visualize the highly correlating concepts for a specific sample xxx, we
first compute the inference relevance inference relevance for each unit and then display the
activation maps Ak1(x), Ak2(x), and so on, in descending order of their inference relevance
values.

11.4 Experimental Setup

Data Preparation
We train the network on two datasets: the VerSe dataset [211] and an in-house dataset
collected at Klinikum rechts der Isar and Klinikum der Universität München in Munich,
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Germany. The in-house dataset includes 465 patients with a median age of 69 (±12) years.
It contains a diverse collection of CT scans with varying fields of view, scanner settings,
and a mix of healthy and fractured vertebrae, including cases with metallic implants and
foreign materials. Combining both datasets creates a comprehensive collection of CT images
featuring healthy and fractured vertebrae with osteoporotic or malignant fractures acquired
using different CT scanners. To mitigate the class imbalance inherent in the data, we employ
undersampling of negative samples and oversampling of positive (fractured) samples during
training. This approach ensures a balanced class distribution within each training epoch. As
osteoporotic and malignant fractures are relatively rare in cervical vertebrae (C1-C7), these
vertebrae are excluded from the dataset.

For each vertebra, we extract 3D patches of size 96 × 96 × 96 with a resolution of 1mm.
These patches are centered on the vertebral body and aligned along the spine by orienting
the vertical axis with a spline constructed using the vertebral centroids provided by the
dataset, following an approach similar to [107]. The intensity values of the resulting patches
are cropped to a Hounsfield Unit range of [−1000, 1000] and then scaled to [0, 1]. We apply
data augmentation during training to enhance the network’s robustness and generalization
ability. These augmentations include intensity transformations (Gaussian noise, smoothing,
and contrast adjustment) and substantial spatial transformations (similarity transformation
and elastic deformation). The data preprocessing and augmentation steps are implemented
using the NiBabel 3.2.1 and MONAI 0.8.0 libraries.

Implementation Details

The 3D U-Net is implemented using PyTorch Lightning 1.5.10 and PyTorch 1.10.2. The model
is trained with the Adam optimizer, employing a learning rate of 0.001 without weight decay.
The training process is terminated if the validation F1 score does not improve for 50 epochs,
serving as an early stopping criterion. Dropout regularization with a probability of 0.3 is
applied during training.

11.5 Results and Discussion

Before we dissect the activated semantic concepts, we assess our model’s predictive perfor-
mance in detecting vertebral fractures. Then, we qualitatively evaluate the clinical soundness
of extracted concepts and how these concepts affect an individual inference.

11.5.1 Vertebral Fracture Detection

To assess the performance of our vertebral fracture detection model, we employ threshold-
dependent evaluation metrics, namely F1-score and accuracy. Additionally, we consider
threshold-independent metrics such as the area under the curve (AUC) and average precision
(AP). We conduct five separate training runs for each model and report the mean and standard
deviation of the metrics.
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Tab. 11.1. Evaluation of the trained neural networks’ performance on the test holdout of the VerSe dataset and
the combined dataset, which includes VerSe and proprietary data obtained from Klinikum rechts der
Isar and Klinikum der Universität München. The VerSe dataset consists of 3,920 non-cervical vertebrae,
with 254 fractures, while the combined dataset encompasses 10,675 T1-L5 vertebrae, including 1,246
fractures. [71] Reproduced with permission from Springer Nature.

Training Testing F1 (%) Acc. (%) AUC (%) AP (%)

VerSe VerSe 71.2± 10.8 78.2± 12.0 84.5± 9.1 76.4± 14.5
VerSe, in-house VerSe 86.1± 2.6 90.9± 1.690.9± 1.690.9± 1.6 96.2± 0.996.2± 0.996.2± 0.9 94.1± 1.6
VerSe, in-house VerSe, in-house 88.0± 0.788.0± 0.788.0± 0.7 88.0± 0.4 94.7± 0.5 95.0± 0.495.0± 0.495.0± 0.4

Networks trained solely on the VerSe dataset demonstrate performance comparable to simplis-
tic 2D vertebral fracture detection methods applied to the same dataset [107]. However, these
networks highly rely on favorable random seed initialization and fail to produce detector units
with distinctive patterns. To overcome these limitations, we train a network using an expanded
dataset that combines VerSe with proprietary data acquired from Klinikum rechts der Isar
and Klinikum der Universität München. As shown in Table 11.1, this network consistently
performs better and yields detector units exhibiting diverse patterns. The following sections
will thoroughly examine the characteristics and implications of these patterns.

11.5.2 Clinical Evaluation of Semantic Concepts

After training the network on the expanded dataset, we employ an extended version of
Network Dissection [15] to extract its semantic concepts in 3D space. To focus on the most
informative units, we select the top ten detector units that highly correlate with true positive
predictions, as described in Section 11.3.2. We generate a single-slice collage of 25 highly
activating fractured samples for each unit, providing an overview of the units’ activation
patterns. Additionally, we export all 2D slices and three-dimensional NIfTI files for the five
samples with the highest activation levels, enabling a comprehensive analysis.

To assess the clinical relevance of these detector units, we consult two clinical experts with a
combined experience of 22 years in spine imaging. Excluding three units lacking immediate
associations, we present the remaining detector units in Figure 11.1, ranked by their correlation
and corresponding clinical explanations. The provided samples showcase a diverse range of
detector unit activations, with each unit demonstrating consistent patterns across multiple
samples. These units primarily focus on the main vertebra, even if some activation occurs in
the surrounding regions. The observed patterns align with the bone anatomy and manifest
in clinically significant locations. Since severe fractures are associated with superior and
inferior vertebral endplate changes, most activations are found in these areas. Although
multiple detector units target these regions, they concentrate on different locations and exhibit
varying sizes of regions of interest, with some units incorporating additional information
from the intervertebral discs and adjacent vertebrae. These findings are clinically meaningful
for detecting moderate and severe vertebral deformations (Genant grade 1 or higher [78]),
indicating that our network has learned concepts with clinical relevance.
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Rank Sample Activations Clinical Concepts

1 Abnormal endplate and interver-
tebral disc shapes

2 Primarily defects of the inferior
endplate, associated with severe
fractures

5 Abnormal endplate shapes with
partial observation of adjacent in-
ferior vertebrae

7 Central defect of the superior
endplate, commonly observed in
compression fractures, with par-
tial observation of adjacent infe-
rior vertebrae

8 Observation of the spongiosa in
the primary vertebrae as well as
the adjacent superior one

9 Injury to the middle column
of the vertebral bodies, associ-
ated with clinically significant
myelon compression and consec-
utive paresis

10 Abnormal endplate and interver-
tebral disc shapes

Fig. 11.1. Visualization of the detector units most highly correlated with a true positive prediction and clinical
experts’ interpretation of their activations. All displayed samples are fractured and represented by a slice
with high activation after thresholding. [71] Reproduced with permission from Springer Nature.

For the omitted cases, we observe either statistically insignificant activations (i.e., Mk(xxx) = 000)
or sporadic activations that lack clear patterns, despite their high correlation with true positive
predictions. However, such detector units constitute a minority and can be disregarded in
favor of those exhibiting tangible patterns.

11.5.3 Single-Inference Concept Visualization

Having validated the network’s ability to learn clinically relevant concepts, we aim to provide
further insight into its decision-making process by offering visual explanations for individual
inferences. To achieve this, we propose a system that visualizes the concepts deemed most
important by the network during inference.
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Unit 22 111 301 122 277 197

Relevance 1 2 3 4 5 . . . 10

Corr. Rank 280 33 149 29 162 466

Fig. 11.2. Visualization of the most relevant detector units during the classification of the sample shown on the
left, which the network correctly identifies as fractured. Each detector unit is represented by a single
slice activation for that specific sample, and its ranking is based on its high correlation with true positive
predictions. The visualization reveals that the network uses concepts associated with wedge-shaped
deformity and incorporates information from an adjacent vertebra. [71] Reproduced with permission from
Springer Nature.

Utilizing the method described in Section 11.3.3, we identify the units representing the most
relevant concepts and retrieve their corresponding top activating images from our combined
dataset. For each unit, we present two visualizations: (i) activations for the input sample and
(ii) the activations for its top images. This approach shows the user a detector unit’s response
for a given input image and the concept activation in a larger context. Both visualizations
display a single slice with high activation levels after thresholding. Figure 11.2 gives an
example for (i), demonstrating the network’s use of diverse concepts like the wedge-shaped
deformity and the incorporation of information from an adjacent vertebra.

This visualization allows users to understand the network’s decision-making process better
and identify relevant semantic concepts. This can build trust in the system, detect biases,
and potentially be used to extract more granular findings than the supervision signal of
fractures.

11.6 Conclusion

In this work, we showed that a 3D CNN can learn a diverse set of concepts to detect vertebral
body fractures. To evaluate the relevance of these concepts, we introduce a method to
identify concepts that highly correlate with fracture detection. We then evaluated how these
discovered concepts overlap with clinically relevant semantic concepts and described the
discovered concepts with clinical experts. Finally, we proposed a visualization method that
displays the concepts used for an individual sample and explored how this can give the user
insight into the decision-making process of the model.

In future research, semantically similar concepts could be grouped with annotations or text
supervision and leveraged for the extraction of granular radiological findings in structured
reporting or for providing semantically meaningful explanations in the form of concept
activations. In the context of clinical reasoning, this approach demonstrates the post-hoc
interpretation of a data-driven system similar to the retrospective explanation of an intuitive
decision that may have come into question. Such systems might be used to gain a deeper image
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understanding when confronted with uncertain predictions that require further assessment of
detailed image features and their integration with other modalities.

116 Chapter 11 Explaining Vertebrae Fracture Detection with Semantic Concept Activations



Part V

Conclusion and Outlook





12Conclusion

This thesis set out to explore the potential of advancing multimodal deep learning methods
to support clinicians in their clinical decisions and reasoning. After detailing the clinical
decision process (Chapter 2) and laying out the fundamentals of multimodal deep learning
(Chapter 3), we addressed this challenge threefold: integration of multimodal patient data
to create comprehensive patient representations, incorporation of prior knowledge into deep
learning models to leverage existing medical expertise, and improving the understanding of
the decision-making process of deep learning models, enhancing their interpretability and
trustworthiness.

Modelling Multimodal Patient Data and Attention-based Reasoning

U-GAT (Chapter 6) combines approaches from a range of deep learning research topics,
including multimodal learning, multitask learning, and graph deep learning on population
graphs, to solve a challenging problem of COVID-19 outcome prediction with limited data. In
addition, we segmented lung pathologies in the input CT images, which served as an auxiliary
supervision signal and allowed us to extract tabular image information in the form of radiomics.
This enabled us to integrate the modalities on two different levels of abstraction: tabular data
(radiomics) and latent representations. Combining radiomics with clinical patient information
allows us to model the inter-patient relationship in a population graph that was further
processed using multimodal latent features for each node. By clustering previous patients in a
graph based on their outcomes and selecting the most relevant patients using an attention
mechanism, we model clinicians’ retrieval process when making intuitive decisions based on
their recollection of similar patients. By visualizing the attention and graph neighborhood, we
can provide insight into this inductive reasoning of the deep learning model.

Incorporation of Prior Formal Knowledge in the Reasoning Process

In ToxNet (Chapter 5), we demonstrated that integrating both the database of previous
patients and matching patient symptoms with clinical literature improves the prediction
of intoxication. This approach showcases the value of combining experiential with formal
knowledge in decision support systems. The improved performance highlights that such
decision support systems can be effective in high-stakes, time-critical situations, as in an
emergency hotline setting where clinicians may not have the time to consider all available
data or resort to analytical reasoning based on literature. In Xplainer (Chapter 9), we showed
that the classification-by-description approach provides intrinsic interpretability and is a highly
effective zero-shot method. This method outperformed previous approaches that were already
competitive with radiologists, demonstrating the power of integrating prior formal knowledge
into the reasoning process.
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Reasoning over Fine-grained Semantic Image Concepts
We viewed reasoning over semantic concepts in radiological images from two perspectives:
the top-down, analytical approach of Xplainer, where we test the image for the presence of
predefined image observations, and the bottom-up approach of concept activations (Chap-
ter 11). Here, we directly predict high-level image findings, such as vertebral fractures,
and retrospectively analyze the neural activations for semantic concepts. The extraction of
detailed and structured concepts from a diagnostic image is highly relevant for several reasons:
First, these fine-grained findings are crucial for the holistic decision-making process since
they can be put into perspective with other non-imaging biomarkers to support or reject a
hypothesis formed solely on image information. Second, such semantic concepts could match
the elements of standardized reports, which clinicians use to document their reasoning for
radiological findings in structured reporting. In the future, this reasoning could facilitate an
interactive reporting process. Third, reasoning correctly over low-level image concepts to
arrive at a diagnostic decision is a powerful metric for assessing a clinical decision support
system’s image understanding, which clinicians can intuitively verify.

In summary, this thesis contributes to advancing holistic clinical decision support by address-
ing the integration of multimodal patient data, the incorporation of prior knowledge, and
the improvement of model interpretability. By exploring novel approaches that align with
clinicians’ cognitive processes and provide insights into the reasoning behind the models’
decisions, we have taken essential steps toward creating trustworthy and effective clinical
reasoning support systems.
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13Outlook

The field of deep learning is advancing at an unprecedented rate. During the final stages
of this research, a new paradigm emerged: large-scale foundation models, particularly
highlighted by generative models for images and text. In language tasks such as clinical
text summarization [233], large language models (LLMs) have already surpassed human
performance and demonstrated their ability to pass medical exams [173]. Furthermore, our
recent works on multimodal LLMs on conversational radiology reporting [186] and knowledge-
guided surgery understanding [176] have demonstrated that these foundation models can
be adapted to highly specialized domains. However, given the complexity and multimodal
nature of clinical decision-making, the application of LLMs in clinical reasoning remains a
challenge [86]. This section provides an outlook on how the findings from this thesis could
impact multimodal LLMs and outlines potential pathways for future research.

Clinical Reasoning on Multimodal Data in Large Language Models
The beauty of operating in the language space is that we can naturally describe the quintessence
of most other modalities relevant to clinical decision-making since this is how medical doctors
communicate. A large amount of patient information, such as the chief concern, patient history,
and various reports, is already expressed as text within the electronic health record (EHR).
Tabular data can be described by categories or binned and relatively easily expressed in words.
For example, a blood value could be described as normal, low, extremely high, etc., depending
on its relevance to the clinical decision at hand. As discussed in Sections 2.1.2 and 3.1, this
tabular information can also include a variety of diagnostic tests and genetic information.
For medical images, as demonstrated in RaDialog [186] and described earlier, fine-grained
findings can be extracted as standardized or unstructured reports, thereby expressing visual
information in language.

However, as emphasized in Section 2.1.2, clinical observations are not black and white, and
every finding is associated with uncertainty. Since integrating text in the context prompt
of LLMs is essentially a form of early fusion (see Section 3.3.1), all the disadvantages of
this method apply, such as the lack of interaction during feature extraction and the absence
of task-specific optimization. To address these challenges, we must find ways to express
uncertainty on different abstraction levels and understand how it propagates through the
decision process. One remedy to this is encoding images, as done in RaDialog, or tabular
data, as done in HeLM [18], in the token space of a large language model and performing an
end-to-end optimization resembling a joint fusion strategy as explored in this work.

For effective use of multimodal data, an LLM could be trained to operate as an agent with
the objective of reducing the uncertainty of the diagnostic differential by asking for missing
diagnostic tests and continuously integrating new information until a confident diagnosis or
treatment recommendation can be made. This approach would enable the LLM to actively sup-
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port the clinical reasoning process, mimicking how clinicians gather and analyze information
to arrive at a diagnosis.

Foundation Models and the Integration of Experiential and Formal Knowledge
The breakthroughs of foundation models have largely been achieved by using large-scale, pub-
licly available non-medical data. However, if we overcome the challenges of interoperability
and data protection [193] and manage to train foundation models on large-scale medical data,
these models could become a powerful way to create multimodal patient representations. The
contrastive models explored in this thesis are just a precursor to future developments when
larger amounts of data and many different patient modalities could be used for pretraining, as
opposed to just radiology reports and images. ImageBind [79] has demonstrated that multiple
modalities can be joined in this process, and recent generative models like CoDi [227] and
Emu [220] have shown the potential of integrating multiple modalities both as input and
generated output. Such holistic patient representations could be used for the integration of
exemplar knowledge by retrieving relevant embeddings and then providing text information
for further processing in an LLM, similar to the retrieval in CXR-RePaiR [69].

Formal knowledge can be incorporated in a straightforward manner by retrieving an in-depth
article about a rare disease or by retrieving a clinical guideline for a common disease. This
can be implemented using retrieval augmented generation (RAG) [140]. An alternative to
RAG and unstructured knowledge is the use of knowledge graphs and reasoning on graphs
(ROG), as introduced by Luo et al. [153]. These approaches provide powerful tools for
sampling relevant and discrete knowledge about a particular problem. However, ensuring
that the reasoning follows these guidelines remains a challenge. While rule-based systems
offer high interpretability, they often fall short in performance, as we have discussed earlier.
This dilemma naturally leads us to the next question: how can we model both intuitive and
analytical reasoning to balance interpretability and performance?

Mimicking the Dual System for Clinical Reasoning Support
A key insight of this thesis is that both intuitive (data-driven) and analytical (knowledge-
driven) types of reasoning have their place in a clinician’s mind and a machine’s algorithm.
For future systems, we should not only consider the ends of the continuum but also their
interplay. An experienced doctor will make most decisions intuitively, particularly under time
pressure, and an automated system should do the same using data-driven principles. However,
when faced with high uncertainty, like with rare diseases or contradicting diagnostic tests,
these systems could interactively support medical doctors in reasoning by compensating for
the limitations of the human mind, such as processing vast amounts of experiential data and
finding patterns in a multitude of complex patient data.

As these collaborative methods continue to evolve and be refined, they have the potential to
significantly improve patient outcomes and bring us closer to making healthcare accessible
and personalized for everyone.
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Video-CT MAE: Self-supervised Video-CT Domain Adaptation
for Vertebral Fracture Diagnosis
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Keicher, Accepted for presentation at Medical Imaging with Deep Learning, 2024.

Early and accurate diagnosis of vertebral body anomalies is crucial for effectively treating
spinal disorders, but the manual interpretation of CT scans can be time-consuming and error-
prone. While deep learning has shown promise in automating vertebral fracture detection,
improving the interpretability of existing methods is crucial for building trust and ensuring
reliable clinical application. Vision Transformers (ViTs) offer inherent interpretability through
attention visualizations but are limited in their application to 3D medical images due to reliance
on 2D image pretraining. To address this challenge, we propose a novel approach combining
the benefits of transfer learning from video-pretrained models and domain adaptation with
self-supervised pretraining on a task-specific but unlabeled dataset. Compared to naive transfer
learning from Video MAE, our method shows improved downstream task performance by 8.3
in F1 and a training speedup of factor 2. This closes the gap between videos and medical
images, allowing a ViT to learn relevant anatomical features while adapting to the task domain.
We demonstrate that our framework enables ViTs to effectively detect vertebral fractures in a
low data regime, outperforming CNN-based state-of-the-art methods while providing inherent
interpretability. Our task adaptation approach and dataset not only improve the performance
of our proposed method but also enhance existing self-supervised pretraining approaches,
highlighting the benefits of task-specific self-supervised pretraining for domain adaptation.
The code for our method and dataset creation is publicly available.

ORacle: Large Vision-Language Models for Knowledge-Guided
Holistic OR Domain Modeling

E. Özsoy*, C. Pellegrini*, M. Keicher, and N. Navab, arXiv Preprint 2404.07031, 2024 (*Equal
contribution.)
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Every day, countless surgeries are performed worldwide, each within the distinct settings of
operating rooms (ORs) that vary not only in their setups but also in the personnel, tools, and
equipment used. This inherent diversity poses a substantial challenge for achieving a holistic
understanding of the OR, as it requires models to generalize beyond their initial training
datasets. To address this challenge, we introduce ORacle, an advanced vision-language model
designed for holistic OR domain modeling. ORacle incorporates multi-view and temporal
capabilities and can leverage external knowledge during inference, enabling it to adapt
to previously unseen surgical scenarios. This capability is further enhanced by our novel
data augmentation framework, which significantly diversifies the training dataset, ensuring
ORacle’s proficiency in applying the provided knowledge effectively. In rigorous testing,
including scene graph generation and downstream tasks on the 4D-OR dataset, ORacle not
only demonstrates state-of-the-art performance but does so requiring less data than existing
models. Furthermore, its adaptability is displayed through its ability to interpret unseen views,
actions, and appearances of tools and equipment. This demonstrates ORacle’s potential to
significantly enhance the scalability and affordability of OR domain modeling and opens a
pathway for future advancements in surgical data science. We will release our code and data
upon acceptance.

Prior-RadGraphFormer: A Prior-Knowledge-Enhanced
Transformer for Generating Radiology Graphs from X-Rays

Y. Xiong, J. Liu, K. Zaripova, S. Sharifzadeh, M. Keicher*, and N. Navab*, Graphs in Biomed-
ical Image Analysis, and Overlapped Cell on Tissue Dataset for Histopathology, 2024 (*Equal
contribution.)

The extraction of structured clinical information from free-text radiology reports in the form of
radiology graphs has been demonstrated to be a valuable approach for evaluating the clinical
correctness of report-generation methods. However, the direct generation of radiology graphs
from chest X-ray (CXR) images has not been attempted. To address this gap, we propose a
novel approach called Prior-RadGraphFormer that utilizes a transformer model with prior
knowledge in the form of a probabilistic knowledge graph (PKG) to generate radiology graphs
directly from CXR images. The PKG models the statistical relationship between radiology
entities, including anatomical structures and medical observations. This additional contextual
information enhances the accuracy of entity and relation extraction. The generated radiology
graphs can be applied to various downstream tasks, such as free-text or structured reports
generation and multi-label classification of pathologies. Our approach represents a promising
method for generating radiology graphs directly from CXR images, and has significant potential
for improving medical image analysis and clinical decision-making. Our code is open sourced
at https://github.com/xiongyiheng/Prior-RadGraphFormer.
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Semantic Latent Space Regression of Diffusion Autoencoders
for Vertebral Fracture Grading

M. Keicher*, M. Atad*, D. Schinz, A. S. Gersing, S. C. Foreman, S. S. Goller, J. Weissinger, J.
Rischewski, A.-S. Dietrich, B. Wiestler, J. S. Kirschke, and N. Navab, arXiv Preprint 2303.12031,
presented at iMIMIC 2023 - Workshop on Interpretability of Machine Intelligence in Medical
Image Computing at MICCAI, 2023 (*Equal contribution. Best paper award.)

Vertebral fractures are a consequence of osteoporosis, with significant health implications for
affected patients. Unfortunately, grading their severity using CT exams is hard and subjective,
motivating automated grading methods. However, current approaches are hindered by im-
balance and scarcity of data and a lack of interpretability. To address these challenges, this
paper proposes a novel approach that leverages unlabelled data to train a generative Diffusion
Autoencoder (DAE) model as an unsupervised feature extractor. We model fracture grading
as a continuous regression, which is more reflective of the smooth progression of fractures.
Specifically, we use a binary, supervised fracture classifier to construct a hyperplane in the
DAE’s latent space. We then regress the severity of the fracture as a function of the distance
to this hyperplane, calibrating the results to the Genant scale. Importantly, the generative
nature of our method allows us to visualize different grades of a given vertebra, providing
interpretability and insight into the features that contribute to automated grading.

RaDialog: A Large Vision-Language Model for Radiology
Report Generation and Conversational Assistance

C. Pellegrini*, E. Özsoy*, B. Busam, N. Navab, and M. Keicher, arXiv Preprint 2311.18681,
2023 (*Equal contribution.)

Conversational AI tools that can generate and discuss clinically correct radiology reports for
a given medical image have the potential to transform radiology. Such a human-in-the-loop
radiology assistant could facilitate a collaborative diagnostic process, thus saving time and
improving the quality of reports. Towards this goal, we introduce RaDialog, the first thoroughly
evaluated and publicly available large vision-language model for radiology report generation
and interactive dialog. RaDialog effectively integrates visual image features and structured
pathology findings with a large language model (LLM) while simultaneously adapting it
to a specialized domain using parameter-efficient fine-tuning. To keep the conversational
abilities of the underlying LLM, we propose a comprehensive, semi-automatically labeled,
image-grounded instruct dataset for chest X-ray radiology tasks. By training with this dataset,
our method achieves state-of-the-art clinical correctness in report generation and shows
impressive abilities in interactive tasks such as correcting reports and answering questions,
serving as a foundational step toward clinical dialog systems. Our code is available on github:
https://github.com/ChantalMP/RaDialog.
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Vol2Flow: Segment 3D Volumes Using a Sequence
of Registration Flows

A. Bitarafan, M. F. Azampour, K. Bakhtari, M. Soleymani Baghshah, M. Keicher, and N. Navab,
Medical Image Computing and Computer Assisted Intervention – MICCAI, 2022.

This work proposes a self-supervised algorithm to segment each arbitrary anatomical structure
in a 3D medical image produced under various acquisition conditions, dealing with domain
shift problems and generalizability. Furthermore, we advocate an interactive setting in the
inference time, where the self-supervised model trained on unlabeled volumes should be
directly applicable to segment each test volume given the user-provided single slice annotation.
To this end, we learn a novel 3D registration network, namely Vol2Flow, from the perspective
of image sequence registration to find 2D displacement fields between all adjacent slices within
a 3D medical volume together. Specifically, we present a novel 3D CNN-based architecture
that finds a series of registration flows between consecutive slices within a whole volume,
resulting in a dense displacement field. A new self-supervised algorithm is proposed to learn
the transformations or registration fields between the series of 2D images of a 3D volume.
Consequently, we enable gradually propagating the user-provided single slice annotation
to other slices of a volume in the inference time. We demonstrate that our model substan-
tially outperforms related methods on various medical image segmentation tasks through
several experiments on different medical image segmentation datasets. Code is available at
https://github.com/AdelehBitarafan/Vol2Flow.

Reproduced with permission from Springer Nature.

Longitudinal Self-Supervision for COVID-19 Pathology
Quantification

T. Czempiel, C. Rogers, M. Keicher, M. Paschali, R. Braren, E. Burian, M. Makowski, N. Navab,
T. Wendler, and S. T. Kim, arXiv Preprint 2203.10804, 2022.

Quantifying COVID-19 infection over time is an important task to manage the hospitalization
of patients during a global pandemic. Recently, deep learning-based approaches have been
proposed to help radiologists automatically quantify COVID-19 pathologies on longitudinal
CT scans. However, the learning process of deep learning methods demands extensive training
data to learn the complex characteristics of infected regions over longitudinal scans. It is
challenging to collect a large-scale dataset, especially for longitudinal training. In this study,
we want to address this problem by proposing a new self-supervised learning method to
effectively train longitudinal networks for the quantification of COVID-19 infections. For this
purpose, longitudinal self-supervision schemes are explored on clinical longitudinal COVID-19
CT scans. Experimental results show that the proposed method is effective, helping the model
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better exploit the semantics of longitudinal data and improve two COVID-19 quantification
tasks.

U-PET: MRI-based Dementia Detection with Joint Generation
of Synthetic FDG-PET Images

M. Kollovieh*, M. Keicher*, S. Wunderlich, H. Burwinkel, T. Wendler, and N. Navab, arXiv
Preprint 2206.08078, 2022 (*Equal contribution.)

Alzheimer’s disease (AD) is the most common cause of dementia. An early detection is crucial
for slowing down the disease and mitigating risks related to the progression. While the
combination of MRI and FDG-PET is the best image-based tool for diagnosis, FDG-PET is
not always available. The reliable detection of Alzheimer’s disease with only MRI could be
beneficial, especially in regions where FDG-PET might not be affordable for all patients. To
this end, we propose a multi-task method based on U-Net that takes T1-weighted MR images
as an input to generate synthetic FDG-PET images and classifies the dementia progression of
the patient into cognitive normal (CN), cognitive impairment (MCI), and AD. The attention
gates used in both task heads can visualize the most relevant parts of the brain, guiding the
examiner and adding interpretability. Results show the successful generation of synthetic
FDG-PET images and a performance increase in disease classification over the naive single-task
baseline.

ToxNet: an artificial intelligence designed for decision support
for toxin prediction

T. Zellner, K. Romanek, C. Rabe, S. Schmoll, S. Geith, E.-C. Heier, R. Stich, H. Burwinkel,
M. Keicher, D. Bani-Harouni, N. Navab, S.-A. Ahmadi, and F. Eyer, Clinical Toxicology, 2022.

BACKGROUND Artificial intelligences (AIs) are emerging in the field of medical informatics in
many areas. They are mostly used for diagnosis support in medical imaging but have potential
uses in many other fields of medicine where large datasets are available.
AIM To develop an artificial intelligence (AI) “ToxNet”, a machine-learning based computer-
aided diagnosis (CADx) system, which aims to predict poisons based on patient’s symptoms
and metadata from our Poison Control Center (PCC) data. To prove its accuracy and compare
it against medical doctors (MDs).
METHODS The CADx system was developed and trained using data from 781,278 calls
recorded in our PCC database from 2001 to 2019. All cases were mono-intoxications. Patient
symptoms and meta-information (e.g., age group, sex, etiology, toxin point of entry, weekday,
etc.) were provided. In the pilot phase, the AI was trained on 10 substances, the AI’s prediction

133



was compared to naïve matching, literature matching, a multi-layer perceptron (MLP), and the
graph attention network (GAT). The trained AI’s accuracy was then compared to 10 medical
doctors in an individual and in an identical dataset. The dataset was then expanded to 28
substances and the predictions and comparisons repeated.
RESULTS In the pilot, the prediction performance in a set of 8995 patients with 10 substances
was 0.66 ± 0.01 (F1 micro score). Our CADx system was significantly superior to naïve
matching, literature matching, MLP, and GAT (p < 0.005). It outperformed our physicians
experienced in clinical toxicology in the individual and identical dataset. In the extended
dataset, our CADx system was able to predict the correct toxin in a set of 36,033 patients with
28 substances with an overall performance of 0.27 ± 0.01 (F1 micro score), also significantly
superior to naïve matching, literature matching, MLP, and GAT. It also outperformed our MDs.
CONCLUSION Our AI trained on a large PCC database works well for poison prediction in
these experiments. With further research, it might become a valuable aid for physicians in
predicting unknown substances and might be the first step into AI use in PCCs.

AI for Doctors—A Course to Educate Medical Professionals in
Artificial Intelligence for Medical Imaging

D. M. Hedderich, M. Keicher, B. Wiestler, M. J. Gruber, H. Burwinkel, F. Hinterwimmer,
T. Czempiel, J. E. Spiro, D. Pinto dos Santos, D. Heim, C. Zimmer, D. Rückert, J. S. Kirschke,
and N. Navab, Healthcare, 2021.

Successful adoption of artificial intelligence (AI) in medical imaging requires medical profes-
sionals to understand underlying principles and techniques. However, educational offerings
tailored to the need of medical professionals are scarce. To fill this gap, we created the course
“AI for Doctors: Medical Imaging”. An analysis of participants’ opinions on AI and self-perceived
skills rated on a five-point Likert scale was conducted before and after the course. The partici-
pants’ attitude towards AI in medical imaging was very optimistic before and after the course.
However, deeper knowledge of AI and the process for validating and deploying it resulted in
significantly less overoptimism with respect to perceivable patient benefits through AI (p =
0.020). Self-assessed skill ratings significantly improved after the course, and the appreciation
of the course content was very positive. However, we observed a substantial drop-out rate,
mostly attributed to the lack of time of medical professionals. There is a high demand for
educational offerings regarding AI in medical imaging among medical professionals, and
better education may lead to a more realistic appreciation of clinical adoption. However, time
constraints imposed by a busy clinical schedule need to be taken into account for successful
education of medical professionals.
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Longitudinal Quantitative Assessment of COVID-19 Infection
Progression from Chest CTs

S. T. Kim, L. Goli, M. Paschali, A. Khakzar, M. Keicher, T. Czempiel, E. Burian, R. Braren,
N. Navab, and T. Wendler, Medical Image Computing and Computer Assisted Intervention –
MICCAI, 2021.

Chest computed tomography (CT) has played an essential diagnostic role in assessing patients
with COVID-19 by showing disease-specific image features such as ground-glass opacity and
consolidation. Image segmentation methods have proven to help quantify the disease and
even help predict the outcome. The availability of longitudinal CT series may also result in
an efficient and effective method to reliably assess the progression of COVID-19, monitor
the healing process and the response to different therapeutic strategies. In this paper, we
propose a new framework to identify infection at a voxel level (identification of healthy
lung, consolidation, and ground-glass opacity) and visualize the progression of COVID-19
using sequential low-dose non-contrast CT scans. In particular, we devise a longitudinal
segmentation network that utilizes the reference scan information to improve the performance
of disease identification. Experimental results on a clinical longitudinal dataset collected in
our institution show the effectiveness of the proposed method compared to the static deep
neural networks for disease quantification.

Reproduced with permission from Springer Nature.

GLOWin: A Flow-based Invertible Generative Framework for
Learning Disentangled Feature Representations in Medical
Images

A. Sankar*, M. Keicher*, R. Eisawy, A. Parida, F. Pfister, S. T. Kim, and N. Navab, arXiv
Preprint 2103.10868, 2021 (*Equal contribution.)

Disentangled representations can be useful in many downstream tasks, help to make deep
learning models more interpretable, and allow for control over features of synthetically
generated images that can be useful in training other models that require a large number of
labelled or unlabelled data. Recently, flow-based generative models have been proposed to
generate realistic images by directly modeling the data distribution with invertible functions. In
this work, we propose a new flow-based generative model framework, named GLOWin, that is
end-to-end invertible and able to learn disentangled representations. Feature disentanglement
is achieved by factorizing the latent space into components such that each component learns
the representation for one generative factor. Comprehensive experiments have been conducted
to evaluate the proposed method on a public brain tumor MR dataset. Quantitative and
qualitative results suggest that the proposed method is effective in disentangling the features
from complex medical images.
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TeCNO: Surgical Phase Recognition with Multi-stage Temporal
Convolutional Networks

T. Czempiel, M. Paschali, M. Keicher, W. Simson, H. Feussner, S. T. Kim, and N. Navab,
Medical Image Computing and Computer Assisted Intervention – MICCAI, 2020.

Automatic surgical phase recognition is a challenging and crucial task with the potential
to improve patient safety and become an integral part of intra-operative decision-support
systems. In this paper, we propose, for the first time in workflow analysis, a Multi-Stage
Temporal Convolutional Network (MS-TCN) that performs hierarchical prediction refinement
for surgical phase recognition. Causal, dilated convolutions allow for a large receptive field
and online inference with smooth predictions even during ambiguous transitions. Our method
is thoroughly evaluated on two datasets of laparoscopic cholecystectomy videos with and
without the use of additional surgical tool information. Outperforming various state-of-the-art
LSTM approaches, we verify the suitability of the proposed causal MS-TCN for surgical phase
recognition.

Reproduced with permission from Springer Nature.

Continual Class Incremental Learning for CT Thoracic
Segmentation

A. Elskhawy, A. Lisowska, M. Keicher, J. Henry, P. Thomson, and N. Navab, Workshop on
Domain Adaptation and Representation Transfer, and Distributed and Collaborative Learning,
2020.

Deep learning organ segmentation approaches require large amounts of annotated training
data, which is limited in supply due to reasons of confidentiality and the time required for
expert manual annotation. Therefore, being able to train models incrementally without having
access to previously used data is desirable. A common form of sequential training is fine
tuning (FT). In this setting, a model learns a new task effectively, but loses performance on
previously learned tasks. The Learning without Forgetting (LwF) approach addresses this issue
via replaying its own prediction for past tasks during model training. In this work, we evaluate
FT and LwF for class incremental learning in multi-organ segmentation using the publicly
available AAPM dataset. We show that LwF can successfully retain knowledge on previous
segmentations, however, its ability to learn a new class decreases with the addition of each
class. To address this problem we propose an adversarial continual learning segmentation
approach (ACLSeg), which disentangles feature space into task-specific and task-invariant
features. This enables preservation of performance on past tasks and effective acquisition of
new knowledge.

Reproduced with permission from Springer Nature.
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