
Technische Universität München
TUM School of Computation, Information and Technology

Fault Injection Analysis of Embedded Cryptography

Attacks and Solutions

Michael Gruber

Vollständiger Abdruck der von der TUM School of Computation, Information and Technology
der Technischen Universität München zur Erlangung eines

Doktors der Ingenieurwissenschaften (Dr.-Ing.)

genehmigten Dissertation.

Vorsitz:
Prof. Dr.-Ing. Hussam Amrouch

Prüfende der Dissertation:
1. Prof. Dr.-Ing. Georg Sigl
2. Prof. Jean-Max Dutertre

Die Dissertation wurde am 15.04.2024 bei der Technischen Universität München eingereicht und
durch die TUM School of Computation, Information and Technology am 04.09.2024 angenommen.

To my family, past, present, and future

Abstract

Physical attacks on cryptographic implementations have become a serious threat over the last
years. The reason for this recent trend is that modern cryptography was proven to be secure
against cryptanalytic attack vectors due to rigorous standardization processes which involve years
of cryptanalysis.

In contrast, the security assumptions of the standardization processes only hold if an attacker has
no further knowledge about the internals, i.e., in a black-box scenario. Therefore, if an attacker
has access to the implementation in form of a physical device, he also has access to additional
knowledge, i.e., side-channel leakage which violates the black-box scenario.

With the growing number of interconnected devices and the rise of the Internet of Things (IoT),
the need for secure communications is ubiquitous. Consequently, the requirement of ubiquitous
secure communication results in devices running cryptography within reach of a possible attacker.

The objective of this work is to investigate the application of state-of-the-art fault attacks, viz.
Differential Fault Analysis (DFA), Persistent Fault Analysis (PFA), Algebraic Fault Analysis
(AFA), and Statistical Ineffective Fault Analysis (SIFA), on state-of-the-art cryptography, i.e.,
candidates of the CAESAR and LWC competition, in order to evaluate the threat posed by Fault
Injection Analysis (FIA).

This work’s contributions are threefold: As a first main contribution we evaluated how faulty
behavior can be caused on modern microcontroller by Electromagnetic Fault Injection (EMFI).
As a second main contribution we propose: The DFA of the lightweight block cipher KLEIN.
The PFA of the Authenticated Encryption with Associated Data (AEAD) schemes Deoxys-
II, OCB, and COLM. The SIFA of the AEAD scheme Gimli. The AFA of the AEAD scheme
Subterranean 2.0. As a third main contribution we evaluated how cryptography can be protected
from FIA and Side-Channel Analysis (SCA). To do so we propose a novel generic solution for
simultaneous protection against SCA and FIA of arbitrary order. We combine Domain-Oriented
Masking (DOM) and Repetition Codes (REPs) in an orthogonal way and call this approach
Domain Oriented Masking with REPetiton codes (DOMREP). The resistance against SCA and
FIA can be scaled independently of each other, for the protection against higher-order SCA and
the injection of multiple faults including SIFA. Furthermore, we propose a novel open-source tool
called TOFU which synthesizes VCD simulation traces into power traces, with adjustable leakage
models. The functionality of TOFU was verified by a CPA of an AES hardware implementation.

i

Kurzfassung

Physikalische Angriffe auf kryptografische Implementierungen sind in den letzten Jahren zu ei-
ner ernsthaften Bedrohung geworden. Der Grund für diesen jüngsten Trend ist die Tatsache,
dass sich die moderne Kryptografie aufgrund strenger Standardisierungsprozesse, die jahrelange
Kryptoanalysen beinhalten, als sicher gegenüber kryptoanalytischen Angriffsvektoren erwiesen
hat.

Im Gegensatz dazu gelten die Sicherheitsannahmen des Standardisierungsprozesses nur, wenn
ein Angreifer keine weiteren Kenntnisse über die Interna hat, d.h. in einem Black-Box-Szenario.
Wenn also ein Angreifer Zugang zur Implementierung in Form eines physischen Geräts hat, hat
er damit auch Zugang zu zusätzlichem Wissen, d.h. zu Seitenkanalinformationen, welche die
Annahmen des Black-Box-Szenario verletzen.

Mit der wachsenden Zahl miteinander verbundener Geräte und dem Aufkommen des Internet of
Things (IoT) ist der Bedarf an sicherer Kommunikation allgegenwärtig. Folglich führt die Anfor-
derung einer allgegenwärtigen sicheren Kommunikation dazu, dass Geräte welche Kryptografie
ausführen in die Reichweite eines möglichen Angreifers kommen.

Das Ziel dieser Arbeit ist es, die Anwendung moderner Fehlerangriffe, nämlich Differential Fault
Analysis (DFA), Persistent Fault Analysis (PFA), Algebraic Fault Analysis (AFA) und Statistical
Ineffective Fault Analysis (SIFA), auf moderne Kryptografie, d.h. Kandidaten des CAESAR
und LWC Wettbewerbs, um die von Fault Injection Analysis (FIA) ausgehende Bedrohung zu
bewerten.

Die Beiträge dieser Arbeit sind dreigeteilt: Als ersten Hauptbeitrag haben wir untersucht, wie
fehlerhaftes Verhalten auf modernen Mikrocontrollern durch Electromagnetic Fault Injection
(EMFI) verursacht werden kann. Als zweiten Hauptbeitrag schlagen wir vor: Die DFA der
leichtgewichtigen Blockchiffre KLEIN. Die PFA der Authenticated Encryption with Associated
Data (AEAD)-Schemata Deoxys-II, OCB und COLM. Die SIFA des AEAD-Schemas Gimli.
Die AFA des AEAD-Schemas Subterranean 2.0. Als dritten Hauptbeitrag haben wir untersucht,
wie Kryptografie vor FIA und Side-Channel Analysis (SCA) geschützt werden kann. Zu diesem
Zweck schlagen wir eine neuartige generische Lösung für den gleichzeitigen Schutz gegen SCA
und FIA beliebiger Ordnung vor. Dazu kombinieren wir Domain-Oriented Masking (DOM) und
Repetition Codes (REPs) auf orthogonale Weise und nennen diesen Ansatz Domain Oriented
Masking with REPetiton codes (DOMREP). Die Widerstandsfähigkeit gegen SCA und FIA kann
unabhängig voneinander skaliert werden, um den Schutz gegen SCA höherer Ordnung und die
Injektion von Mehrfachfehlern einschließlich SIFA zu gewährleisten. Darüber hinaus schlagen
wir ein neuartiges Open-Source-Tool namens TOFU vor, welches VCD-Simulationsspuren in
Energieverbrauchsspuren mit einstellbaren Leckagemodellen synthetisiert. Die Funktionalität
von TOFU wurde durch die CPA einer AES-Hardware-Implementierung verifiziert.

iii

Acknowledgment

First of all, I would like to thank Prof. Dr.-Ing. Georg Sigl for giving me the opportunity to
pursue a Ph.D. in a supportive environment with the necessary freedom to follow my own research
interests.

I would like to thank my colleagues at the Chair for Security in Information Technology for
making these years a very memorable time in my life.

I would like to thank my office mates Lars Tebelmann, Thomas Schamberger, and Tim Music
for the many discussions about attacks, countermeasures, and many other things.

I would like to thank Marion Zillner, Harry Olm, and Priv.-Doz. Dr.-Ing. habil. Michael Pehl for
their daily support in all kinds of organizational and technical matters.

Finally, I would like to thank my family for their constant support.

v

List of Publications

Journal Articles

TIFS 2021 Michael Gruber et al. “DOMREP–An Orthogonal Countermeasure for Arbitrary
Order Side-Channel and Fault Attack Protection”. In: IEEE Transactions on Information Foren-
sics and Security 16 (2021), pp. 4321–4335. doi: 10.1109/TIFS.2021.3089875 [Gru+21]

Conference Proceedings

FDTC 2017 Oscar M. Guillen, Michael Gruber, and Fabrizio De Santis. “Low-Cost Setup
for Localized Semi-invasive Optical Fault Injection Attacks”. In: Constructive Side-Channel
Analysis and Secure Design. Springer International Publishing, 2017, pp. 207–222. doi: 10.

1007/978-3-319-64647-3_13 [GGS17]

COSADE 2019 Michael Gruber and Bodo Selmke. “Differential Fault Attacks on KLEIN”.
in: The Urban Book Series. Springer Singapore, 2019, pp. 80–95. doi: 10.1007/978-3-030-

16350-1_6 [GS19]

FDTC 2019 Michael Gruber, Matthias Probst, and Michael Tempelmeier. “Persistent Fault
Analysis of OCB, DEOXYS and COLM”. in: 2019 Workshop on Fault Diagnosis and Tolerance
in Cryptography (FDTC). 2019, pp. 17–24. doi: 10.1109/FDTC.2019.00011 [GPT19]

ISVLSI 2020 Michaela Brunner et al. “Logic Locking Induced Fault Attacks”. In: 2020 IEEE
Computer Society Annual Symposium on VLSI (ISVLSI). 2020, pp. 114–119. doi: 10.1109/

ISVLSI49217.2020.00030 [Bru+20]

HOST 2020 M. Gruber, M. Probst, and M. Tempelmeier. “Statistical Ineffective Fault Anal-
ysis of GIMLI”. in: 2020 IEEE International Symposium on Hardware Oriented Security and
Trust (HOST). 2020, pp. 252–261. doi: 10.1109/HOST45689.2020.9300260 [GPT20]

NTMS 2021 Patrick Karl and Michael Gruber. “A Survey on the Application of Fault Analy-
sis on Lightweight Cryptography”. In: 2021 11th IFIP International Conference on New Tech-
nologies, Mobility and Security (NTMS). 2021, pp. 1–3. doi: 10.1109/NTMS49979.2021.

9432667 [KG21]

FDTC 2021 Michael Gruber, Patrick Karl, and Georg Sigl. “Algebraic Fault Analysis of Sub-
terranean 2.0”. In: 2021 Workshop on Fault Detection and Tolerance in Cryptography (FDTC).
2021, pp. 45–55. doi: 10.1109/FDTC53659.2021.00016 [GKS21]

vii

https://doi.org/10.1109/TIFS.2021.3089875
https://doi.org/10.1007/978-3-319-64647-3_13
https://doi.org/10.1007/978-3-319-64647-3_13
https://doi.org/10.1007/978-3-030-16350-1_6
https://doi.org/10.1007/978-3-030-16350-1_6
https://doi.org/10.1109/FDTC.2019.00011
https://doi.org/10.1109/ISVLSI49217.2020.00030
https://doi.org/10.1109/ISVLSI49217.2020.00030
https://doi.org/10.1109/HOST45689.2020.9300260
https://doi.org/10.1109/NTMS49979.2021.9432667
https://doi.org/10.1109/NTMS49979.2021.9432667
https://doi.org/10.1109/FDTC53659.2021.00016

CHES 2022 Jonas Ruchti, Michael Gruber, and Michael Pehl. “When the Decoder Has to Look
Twice: Glitching a PUF Error Correction”. In: IACR Transactions on Cryptographic Hardware
and Embedded Systems 2022.3 (2022), 26–70. doi: 10.46586/tches.v2022.i3.26-70. url:
https://tches.iacr.org/index.php/TCHES/article/view/9694 [RGP22]

ASP-DAC 2023 Mathieu Gross et al. “FPGANeedle”. In: Proceedings of the 28th Asia
and South Pacific Design Automation Conference. ACM, 2023. doi: 10 . 1145 / 3566097 .

3568352 [Gro+23]

COSADE 2023 Tobias Holl, Katharina Bogad, and Michael Gruber. “Whiteboxgrind – Auto-
mated Analysis of Whitebox Cryptography”. In: Constructive Side-Channel Analysis and Secure
Design. Springer Nature Switzerland, 2023, pp. 221–240. doi: 10.1007/978-3-031-29497-

6_11 [HBG23]

DDECS 2024 Michael Mildner et al. “Fault-Simulation-Based Flip-Flop Classification for Re-
verse Engineering”. In: 2024 27th International Symposium on Design & Diagnostics of Elec-
tronic Circuits & Systems (DDECS). 2024, pp. 53–56. doi: 10.1109/DDECS60919.2024.

10508905 [Mil+24]

HOST 2024 Matthias Probst et al. “DOMREP II”. in: 2024 IEEE International Symposium on
Hardware Oriented Security and Trust (HOST). 2024, pp. 112–121. doi: 10.1109/HOST55342.
2024.10545417 [Pro+24b]

FDTC 2024 Matthias Probst et al. “ Switch-Glitch : Location of Fault Injection Sweet Spots
by Electro-Magnetic Emanation ”. In: 2024 Workshop on Fault Detection and Tolerance in
Cryptography (FDTC). Los Alamitos, CA, USA: IEEE Computer Society, Sept. 2024, pp. 22–27.
doi: 10.1109/FDTC64268.2024.00011. url: https://doi.ieeecomputersociety.org/10.

1109/FDTC64268.2024.00011 [Pro+24a]

Miscellaneous

IACR Eprint 2022 Michael Gruber and Georg Sigl. TOFU - Toggle Count Analysis made
simple. Cryptology ePrint Archive, Report 2022/129. https://ia.cr/2022/129. 2022 [GS22]

viii

https://doi.org/10.46586/tches.v2022.i3.26-70
https://tches.iacr.org/index.php/TCHES/article/view/9694
https://doi.org/10.1145/3566097.3568352
https://doi.org/10.1145/3566097.3568352
https://doi.org/10.1007/978-3-031-29497-6_11
https://doi.org/10.1007/978-3-031-29497-6_11
https://doi.org/10.1109/DDECS60919.2024.10508905
https://doi.org/10.1109/DDECS60919.2024.10508905
https://doi.org/10.1109/HOST55342.2024.10545417
https://doi.org/10.1109/HOST55342.2024.10545417
https://doi.org/10.1109/FDTC64268.2024.00011
https://doi.ieeecomputersociety.org/10.1109/FDTC64268.2024.00011
https://doi.ieeecomputersociety.org/10.1109/FDTC64268.2024.00011
https://ia.cr/2022/129

List of Abbreviations

AD Associated Data

AE Authenticated Encryption

AEAD Authenticated Encryption with Associated Data

AES Advanced Encryption Standard

AFA Algebraic Fault Analysis

ANF Algebraic Normal Form

CAESAR Competition for Authenticated Encryption: Secu-
rity, Applicability, and Robustness

CMOS Complementary Metal-Oxide-Semiconductor

CNF Conjunctive Normal Form

CPA Correlation Power Analysis

CPU Central Processing Unit

CRT Chinese Remainder Theorem

DDT Differential Distribution Table

DES Data Encryption Standard

DFA Differential Fault Analysis

DMR Dual Modular Redundancy

DOM Domain-Oriented Masking

DOMREP Domain Oriented Masking with REPetiton codes

DPA Differential Power Analysis

DRM Digital Rights Managment

DUT Device under Test

ECC Error Correction Code

EDC Error Detection Code

EM Electro-Magnetic

EMFI Electromagnetic Fault Injection

EPFA Enhanced Persistent Fault Analysis

FA Fault Analysis

FDT Fault Distribution Table

FIA Fault Injection Analysis

FPGA Field Programmable Gate Array

GCM Galois/Counter Mode

GHDL G Hardware Design Language

HD Hamming Distance

HW Hamming Weight

IC Integrated Circuit

IFA Ineffective Fault Analysis

ix

List of Abbreviations

IoT Internet of Things

LASCAR Ledger’s Advanced Side Channel Analysis Reposi-
tory

LFI Laser Fault Injection

LFSR Linear Feedback Shift Register

LWC Lightweight Cryptography

MAC Message Authentification Code

MPC Multi Party Computation

MPFA Multiple Faults-Based Persistent Fault Analysis

NIST National Institute of Standards and Technology

NLFSR Nonlinear Feedback Shift Register

NMOS N-Type Metal-Oxide-Semiconductor

PA Power Analysis

PC Programm Counter

PFA Persistent Fault Analysis

PMOS P-Type Metal-Oxide-Semiconductor

PRNG Pseudorandom Number Generator

PRP Pseudorandom Permutation

REP Repetition Code

RSA Rivest-Shamir-Adleman

SAE Subterranean Authenticated Encryption

SCA Side-Channel Analysis

SEFA Statistical Effective Fault Analysis

SEI Squared Euclidean Imbalance

SFA Statistical Fault Analysis

SHFA Statistical Hybrid Fault Analysis

SIFA Statistical Ineffective Fault Analysis

SNR Signal to Noise Ratio

SP-Box Substitution Permutation Box

SPN Substitution Permutation Network

TA Template Attacks

TI Threshold Implementation

TOFU TOggle Foul-Up

TPM Trusted Platform Module

TVLA Test Vector Leakage Assesment

UART Universal Asynchronous Receiver Transmitter

VCD Value Change Dump

VHDL Very High Speed Integrated Circuit Hardware De-
scription Language

XOF Subterranean-XOF

x

List of Figures

2.1. Inputs and Outputs of a Block Cipher . 5
2.2. Inputs and Outputs of a Authenticated Encryption with Associated Data (AEAD)

scheme . 6

3.1. Attack Models . 10

4.1. Overview of the EMFI setup. 14
4.2. STM32F051R8T6 EMFI Setup . 15
4.3. STM32F051R8T6 Chip Layout . 15
4.4. Fault Characterization Map – State . 17
4.5. Fault Characterization Map – Key Schedule . 18

6.1. Substitution Layer Differential Fault Analysis (DFA) 26
6.2. Substitution Layer Persistent Fault Analysis (PFA) 27
6.3. Distribution of a faulty S-box S∗ . 28
6.4. SIFA Background . 29

7.1. Fault propagation for a single-byte fault injected between MBR−2 and MBR−1. 38
7.2. Fault propagation of a single-byte fault in round 10 of the KLEIN-64 key schedule. 39
7.3. Fault propagation through the state of KLEIN. 40
7.4. Remaining brute force complexity (64-bit) key length). 45

8.1. COLM0 Encryption of intermediate message blocks 48
8.2. Deoxys-BC-256 Encryption . 50
8.3. Deoxys-II Tag Generation . 51
8.4. Deoxys-II Message Encryption . 51
8.5. PFA on the last round of Deoxys-BC-256. 52
8.6. OCB Tag Generation . 53
8.7. OCB Message Encryption . 54
8.8. PFA on OCB’s last incomplete message block . 55
8.9. PFA on tag generation Deoxys-II - single byte . 57
8.10. PFA on encryption Deoxys-II - single byte . 57

9.1. Gimli Sponge Construction . 61
9.2. Fault Injection Location Gimli . 62
9.3. Fault Injection Location Substitution Permutation Box (SP-Box) 62
9.4. Dependencies of b220,7 . 64
9.5. Dependencies of b210,7 . 65
9.6. Histogram of intermediate values b . 66
9.7. Histogram of intermediate values b220,0−7 . 66
9.8. Ineffectiveness rate rineff of different fault models 69
9.9. Advantage - Attack on round 22 . 70
9.10. Squared Euclidean Imbalance (SEI) - Hypotheses, round 22 70

xi

List of Figures

9.11. Advantage - Attack on round 21 . 70
9.12. SEI - Hypotheses, round 21 . 71

10.1. Subterranean 2.0 round function. 75
10.2. Fault differential zi split into multiple blocks mi. 79
10.3. Comparison of ordered and random fault locations for p = 26, p = 27 85

12.1. DOM-indep multiplier GF(2). 96

13.1. First Order DOMREP Protected Multiplier . 103
13.2. Majority Vote Mutual Update Step . 105
13.3. Protected Majority Vote . 106
13.4. Side-channel leakage assessment of the protected Gimli hardware implementation:

(a)-(b) example raw measurements, (d)-(f) TVLA results with fixed key and fixed-
vs-random nonce for 200,000 measurements and different levels of protection. . . 109

14.1. Running Time Comparison . 115
14.2. AES Workflow – Synthesis . 117
14.3. AES Workflow – Analysis using 10 000 Traces . 118
14.4. ChipWhisperer Measurement Setup . 119
14.5. Trace – Program Counter . 119
14.6. Advanced Encryption Standard (AES) Correlation Power Analysis (CPA), Chip-

Whisperer (CW), Unicorn (UC) . 120

xii

List of Tables

4.1. LANGER EMFI Specifications . 14
4.2. EMFI Parameters DFA KLEIN . 16

6.1. FDTs of 2-bit variables . 31

7.1. The 4 bit S-box of KLEIN. 34

8.1. Applicability of PFA . 55
8.2. Requirements for each Attack Strategy . 56
8.3. Number of needed encryptions. 56

9.1. Dependencies of br0,7 for different injection locations 63

10.1. Equation system overhead for cipher description 78
10.2. Equation system overhead for fault description 82
10.3. SAE cycle count for arbitrary AD and PT segment lengths. 83
10.4. Average solving time [s] for different fault positions 86
10.5. Average solving time [s] for different fault widths 86
10.6. Comparison of known and unknown fault location 87
10.7. Comparison of empty message and Ethernet frame encryption 88
10.8. Comparison of Trivium and Subterranean 2.0 . 89

11.1. Fault Injection Analysis (FIA) Strategy Comparison 92

12.1. Overview of Countermeasures and their Resistance against Statistical Ineffective
Fault Analysis (SIFA), and Side-Channel Analysis (SCA). 98

13.1. Summary of combined Countermeasures . 107
13.2. Overhead of Combined Countermeasures . 111

14.1. TOggle Foul-Up (TOFU) Settings Summary . 114

15.1. This Work’s Contributions . 123

xiii

Contents

Abstract i

Kurzfassung iii

Acknowledgment v

List of Publications vii

List of Abbreviations ix

List of Figures xi

List of Tables xiii

1. Introduction 1

2. Cryptographic Preliminaries 5
2.1. Block Ciphers . 5
2.2. Authenticated Encryption . 5

I. Threats 7

3. Overview 9
3.1. Attack Model . 9
3.2. Attack Vector . 10
3.3. Attack Invasiveness . 10
3.4. Attack Locality . 11

4. Electromagnetic Fault Injection 13
4.1. Electromagnetic Fault Injection Setup . 13
4.2. Practical Evaluation . 13

4.2.1. Attack Settings . 14
4.2.2. Classification . 14
4.2.3. Attack Results . 16

4.3. Summary . 16

5. Side Channel Analysis 19
5.1. CMOS Power Consumption . 19
5.2. Leakage Models . 19
5.3. Correlation Power Analysis . 20
5.4. Test Vector Leakage Assessment . 20

xv

Contents

II. Attacks 23

6. Overview 25
6.1. Differential Fault Analysis . 25
6.2. Persistent Fault Analysis . 26
6.3. Statistical Ineffective Fault Analysis . 28
6.4. Algebraic Fault Analysis . 32

7. Differential Fault Analysis of KLEIN 33
7.1. KLEIN . 34

7.1.1. The Round Function . 34
7.1.2. SubNibbles . 34
7.1.3. RotateNibbles . 34
7.1.4. MixNibbles . 35
7.1.5. Key Schedule . 35
7.1.6. Modified Representation . 35
7.1.7. Notation . 35

7.2. Attack on the Encryption . 36
7.3. Attack on the Key Schedule . 37

7.3.1. Fault Propagation . 38
7.3.2. Fault Exploitation . 40
7.3.3. State Recovery . 42

7.4. Simulation and Discussion . 44
7.4.1. Simulation . 44
7.4.2. Discussion . 44

7.5. Summary . 45

8. Persistent Fault Analysis of COLM, Deoxys-II, and OCB 47
8.1. COLM . 48

8.1.1. Structure . 48
8.1.2. PFA of COLM . 49

8.2. Deoxys-II . 49
8.2.1. Structure . 50
8.2.2. PFA of Deoxys-II . 51

8.3. OCB . 53
8.3.1. Structure . 53
8.3.2. PFA of OCB . 54

8.4. Results . 55
8.5. Summary . 56

9. Statistical Ineffective Fault Analysis of Gimli 59
9.1. Gimli . 60

9.1.1. Gimli-Permutation . 60
9.1.2. Gimli-AEAD . 60

9.2. SIFA of Gimli . 61
9.2.1. Fault Injection Location . 61
9.2.2. Calculation of Intermediate Values . 62
9.2.3. Fault Model . 65
9.2.4. Attack Strategy . 65

xvi

Contents

9.3. Results . 68
9.3.1. Influence of fault width on ineffectiveness rate 68
9.3.2. Attack on b220,7 . 69
9.3.3. Attack on b210,7 . 69

9.4. Summary . 71

10.Algebraic Fault Analysis of SAE 73
10.1. Subterranean 2.0 . 74

10.1.1. Subterranean Permutation . 74
10.1.2. Subterranean Authenticated Encryption 75

10.2. AFA of Subterranean SAE . 76
10.3. Generation of Fault Equations . 78

10.3.1. Intermediate State Differential . 79
10.3.2. Known Fault Location . 79
10.3.3. Unknown Fault Location . 80
10.3.4. Summary of the Number of Fault Equations 81

10.4. Obtaining Faulty Outputs . 81
10.4.1. The temporal fault position p . 82
10.4.2. The spatial fault location l . 82
10.4.3. The fault width w . 83

10.5. Results . 83
10.5.1. Fault Model . 84
10.5.2. Non-Empty Message . 87
10.5.3. Comparison with Trivium . 88

10.6. Summary . 89

11.FIA Strategy Comparison 91

III. Solutions 93

12.Overview 95
12.1. Side-Channel Analysis Countermeasures . 95
12.2. Fault Injection Analysis Countermeasures . 96
12.3. Combined Countermeasures . 97

12.3.1. Comparison of Combined Countermeasures 98
12.3.2. Countermeasures against SIFA-2 . 99

13.DOMREP a Combined Countermeasure against FIA and SCA 101
13.1. DOMREP Design Rationales . 101

13.1.1. Orthogonal Protection . 102
13.1.2. DOMREP Fundamentals . 102
13.1.3. Resistance against SCA . 103
13.1.4. Resistance against SIFA . 103
13.1.5. DOMREP Summary . 106
13.1.6. DOMREP Comparison . 106

13.2. Gimli . 107
13.3. Results . 107

13.3.1. Side-Channel Analysis . 108
13.3.2. Fault Injection Analysis . 110

xvii

Contents

13.3.3. Overhead . 111
13.4. Summary . 111

14.TOFU Toggle Count Analysis of Cryptographic Implementations 113
14.1. TOFU . 114
14.2. Performance . 114
14.3. Workflow . 115
14.4. Exemplary Workflow . 116

14.4.1. Simulation . 116
14.4.2. Synthesis . 116
14.4.3. Analysis . 116
14.4.4. Evaluation . 117

14.5. Leakage Simulation versus Leakage Measurement 118
14.5.1. Measurement . 118
14.5.2. Simulation . 118
14.5.3. Analysis . 120
14.5.4. Evaluation . 120

14.6. Summary . 121

15.Conclusion 123

Bibliography 125

xviii

1. Introduction

Cryptography has evolved from its beginnings as a kind of secret science into a well-studied field
of research. In the beginning there were two approaches to encipher messages: Transposition
Ciphers, and Substitution Ciphers. In the first approach the cipher’s output is the same as
the input only the order is scrambled by a specific pattern, e.g., Scytale, the latter approach
substitutes every input by a specific output, e.g., Caesar Cipher. While both approaches can be
computed by pen and paper, they can also be broken by brute force.

With the broad availability of modern cryptography it is no longer possible to break cryptograhy
by brute force. Therefore, attacks on the actual implementation of cryptographic algorithms
have become an appealing alternative target.

In order to develop new cryptographic standards, cryptography is usually evaluated in rigorous
standardization processes, as it was done with the Advanced Encryption Standard (AES), the
successor to the Data Encryption Standard (DES). Two recent standardization processes are the
Competition for Authenticated Encryption: Security, Applicability, and Robustness (CAESAR)
and the Lightweight Cryptography (LWC) competition.

CAESAR The National Institute of Standards and Technology (NIST) recommends AES in
Galois/Counter Mode (GCM) for Authenticated Encryption with Associated Data (AEAD)
[Dwo07]. However, in recent years, there were some doubts about the security and ease of side-
channel resistant implementations of AES-GCM. Consequently, the CAESAR, was announced
in 2013 as an initiative by a group of international cryptographers. Its goal was to identify
a portfolio of Authenticated Encryption (AE) schemes that offer advantages over AES-GCM,
and are suitable for widespread adoption [Cae]. In three rounds, the number of candidates was
narrowed down from over 50 submissions to six finalists; optimized for three use cases: As-
con and ACORN for lightweight applications, AEGIS-128 and OCB for high-speed applications,
and Deoxys-II and COLM for applications that require additional resistance against nonce mis-
use scenarios. With the announcement of the finalists in February 2019, CAESAR provides
the most recent, well tested ciphers for authenticated encryption with associated data. Among
these finalists, AEGIS, COLM, Deoxys-II, and OCB share the same wells studied permutation
P = MixColumns ◦ ShiftRows ◦ SubstituteBytes as AES. The final CAESAR portfolio an-
nounced by NIST: Ascon and ACORN for lightweight applications; AEGIS-128 and OCB for
high-performance applications; Deoxys-II and COLM for defense in depth.

LWC With the growing number of interconnected devices and the rise of the Internet of Things
(IoT), the need for secure communications is ubiquitous. While today’s cryptographic algorithms
are well suited for high-end computers such as servers or desktops, their performance decreases
dramatically when used on small, resource-constrained devices. Consequently, the NIST launched
an open standardization project for lightweight cryptography in 2017 [McK+16]. In 2019, the
tremendous amount of 57 round 1 submissions confirms the need and interest of lightweight
cryptography. NIST focuses on small, but secure algorithms that provide both AEAD and hash

1

1. Introduction

functionality. Additional features like post-quantum resistance or ease of side-channel and fault-
attack resistant implementations are desirable, but not mandatory. In 20023, Ascon was chosen
as winner of the LWC as it meets the needs of most use cases where lightweight cryptography is
required.

Motivation Physical attacks on cryptographic implementations have become a serious threat
over the last years. The reason for this recent trend can be attributed to the fact that modern
cryptography has proven to be secure against cryptanalytic attack vectors as modern cryptog-
raphy undergoes rigorous evaluation processes, e.g., CAESAR and LWC. Typically, the security
assumption of the evaluation processes only hold in a black box scenario, where an attacker
has no further knowledge about the underlying implementation’s state. In contrast, when an
implementation is attacked we assume a so-called gray box scenario, i.e., an attacker can ob-
serve information through possible side-channels, e.g., power, time, electromagnetic emanation,
and also faulty computations. The existence of a side channel allows an attacker to mount
Side-Channel Analysis (SCA).

The most commonly exploited side channel is the power side channel which is always present
due to the data-dependent power consumption of CMOS logic. In its simplest form Power
Analysis (PA) can be mounted by directly measuring the power consumption through a shunt
resistor. By the comparison of multiple measurements with a hypothetical power consumption
of intermediate values based on a certain key hypothesis, Differential Power Analysis (DPA)
allows a direct retrieval of the used secret [KJJ99]. More sophisticated attacks such as Template
Attacks (TA) [CRR03] include a profiling phase, where the leakage characteristic of certain values
is estimated with the use of a fully controllable device. Typical countermeasures against Power
Analysis include masking, which splits the processed intermediate values into several random
shares making the power consumption statistically independent of the processed secret [ISW03;
GMK16].

Furthermore, an attacker might also be able to disturb the correct processing of a cryptographic
algorithm resulting in faulty computations. Faulty computations can also be seen as another kind
of side channel that enable an attacker to gain knowledge from the faulty processing of secret
data. The exploitation of faulty processed data was proposed by Boneh et al. in their seminal
work [BDL00]. Fault Injection Analysis (FIA) usually aims for a modification of the processed
data or the control flow during a cryptographic operation in order to reduce the underlying
mathematical problem to a simpler one. The most common type of FIA is Differential Fault
Analysis (DFA) which requires knowledge of multiple faulted encryptions and a correct one
[BS97; BDL97]. In contrast, Statistical Ineffective Fault Analysis (SIFA), as introduced by
Dobraunig et al. [Dob+18b], requires only an intermediate state with a biased distribution, i.e.,
a distribution deviating from the uniform distribution. Even worse, SIFA can break traditional
countermeasures against FIA like detection-based or infection-based countermeasures due to its
ineffective nature, as this kind of countermeasures assume effective faults.

Objective This work revolves around the FIA of candidates of the CAESAR and LWC compe-
tition from a theoretical (fault exploitation) and practical perspective (fault injection), and the
protection against FIA. Consequently, this work’s objective can be formulated as a set of three
questions:

2

How to inject faults on modern microcontroller?

How to exploit the observed faulty behavior on the implementation of modern cryptography ?

How to prevent fault injection analysis and power analysis simultaneously?

Especially the last question should be given utmost importance, since, e.g., an implementation
with power consumption independent of the processed data is still vulnerable to fault attacks.

Organization The remainder of this work is structured as follows:

Chapter 2 introduces the necessary cryptographic background.

Chapter 3 classifies attacks by attacker model, attack vector, and invasiveness.

Chapter 4 provides results of Electromagnetic Fault Injection (EMFI) on a microcontroller.

Chapter 5 introduces the necessary background of Side-Channel Analysis (SCA).

Chapter 6 introduces the necessary background of Fault Injection Analysis (FIA).

Chapter 7 introduces the Differential Fault Analysis (DFA) of KLEIN.
The results presented in this chapter are based on [GS19].

Chapter 8 introduces the Persistent Fault Analysis (PFA) of COLM, Deoxys-II, and OCB.
The results presented in this chapter are based on [GPT19].

Chapter 9 introduces the Statistical Ineffective Fault Analysis (SIFA) of GIMLI.
The results presented in this chapter are based on [GPT20].

Chapter 10 introduces the Algebraic Fault Analysis (AFA) of the Subterranean Authenticated
Encryption (SAE) scheme.
The results presented in this chapter are based on [GKS21].

Chapter 12 provides a survey of the state-of-the-art countermeasures against physical attacks.

Chapter 13 introduces Domain Oriented Masking with REPetiton codes (DOMREP) a combined
countermeasure for the protection of cryptographic implementations.
The results presented in this chapter are based on [Gru+21].

Chapter 14 introduces TOggle Foul-Up (TOFU) an open-source tool for the toggle analysis of
cryptographic implementations.
The results presented in this chapter are based on [GS22].

Chapter 15 concludes this work followed by a brief summary of its main contributions.

3

2. Cryptographic Preliminaries

As this work revolves around physical attacks on cryptography we will briefly summarize the
necessary cryptographic prerequisites which are required by the following chapters.

2.1. Block Ciphers

Symmetric cryptography usually consists of building blocks the smallest of which are usually
block ciphers. These so-called block ciphers can also be considered as a keyed bijection with a
specified security level, e.g., for AES [FIP01] either 128 bit, 128 bit, and 256 bit. Block ciphers
can operate in two directions, i.e., encryption E , and decryption D. Therefore, in a mathematical
notation where k denotes the key size, and BS the block cipher’s block size block ciphers can be
expressed as:

E : {0, 1}k × {0, 1}BS → {0, 1}BS

D : {0, 1}k × {0, 1}BS → {0, 1}BS

A graphical representation of a encryption E using a key K is shown in Fig. 2.1, as one can
see a plaintext P is transformed into a ciphertext C. Block ciphers are only able to achieve
confidentiality, if integrity is also required it is necessary to employ AE. Furthermore, it is
possible to construct AE schemes from block ciphers, e.g., AES-GCM.

P

K E

C

Figure 2.1.: Inputs and Outputs of a Block Cipher

2.2. Authenticated Encryption

Today’s communication protocols do not only require confidentiality, but also authenticity. This
can be achieved by combining an encryption scheme with a Message Authentification Code
(MAC). AE combines these traditionally separated functionalities into one single algorithm.
Additionally, AEAD can process Associated Data (AD), that needs to be authenticated, but must

5

2. Cryptographic Preliminaries

P AD

NK E

C T

Figure 2.2.: Inputs and Outputs of a AEAD scheme

not be encrypted, e.g., header information in a network protocol. Figure 2.2 shows the inputs
and the outputs of an AEAD scheme (encryption), which will be introduced in the following:
Formally, let K ∈ {0, 1}k denote a secret key, N ∈ {0, 1}ν a nonce, AD ∈ {0, 1}∗ associated
data, P ∈ {0, 1}∗ a plaintext, T ∈ {0, 1}t an authentication tag, and C ∈ {0, 1}∗ a ciphertext,
where k, ν, t ≥ 1. Therefore, AEAD is a triple (K, E ,D), with a key-generation procedure K
that returns a random K, an encryption algorithm EK(N,AD,P), and a decryption algorithm
DK(N,AD,C, T), where E outputs a tuple (C, T), and D outputs either the plaintext P or the
void symbol ⊥ if T is invalid:

E : {0, 1}k × {0, 1}ν × {0, 1}∗ × {0, 1}∗ → {0, 1}∗ × {0, 1}t

D : {0, 1}k × {0, 1}ν × {0, 1}∗ × {0, 1}∗ × {0, 1}t → {0, 1}∗ ∪ {⊥}

Consequently, AEAD is able to ensure confidentiality, integrity, and authenticity.

6

Part I.

Threats

7

3. Overview

In the following chapter, physical attacks on cryptography are classified according to attack
model, attack vector, attack invasiveness, and attack locality.

3.1. Attack Model

In general, there are three different attack models as shown in Fig. 3.1, where the inputs and
outputs observable by an attacker are colored red.

Black Box Model The first attack model is the so-called black box model as shown in Fig. 3.1a.
In the black box model an attacker is capable of observing the input respectively the output
of a cryptographic algorithm, e.g., a cipher. This model is also the model which deals with a
cryptanalytic attacker which tries to gain knowledge by choosing the input respectively the output
of a cipher to his advantage. Common techniques to analyze a cipher are, e.g., linear cryptanalysis
as introduced by Matsui et al. [Mat94], and differential cryptanalysis as introduced by Biham
et al. [BS93]. Most cryptanalytic approaches share in common that the cipher is assumed to be
an oracle which can be queried an arbitrary number of times in order to statistically evaluate
possible weaknesses.

Gray Box Model The second attack model is the so-called gray box model as shown in Fig. 3.1b.
In the gray box model an attacker is capable of observing the input respectively the output of a
cryptographic algorithm, e.g., a cipher. Additionally, an attacker is able to observe some kind of
side-channel information L, which is in the general case partial information about cyrptographic
algorithm’s state. Side channels are in general the result of the physical implementation of a
cipher which are not considered in the black box model. These side chanels can be of different
nature and will be further discussed in Section 3.2. The fact that a possible attacker can access
a device which runs an implementation of a cipher enables the possibility to mount physical
attacks.

White Box Model The third attack model is the so-called white box model as shown in Fig. 3.1c.
In the white box model an attacker is capable of observing the input respectively the output,
and the internals of a cryptographic algorithm, e.g., a cipher. Even though this might sound
counter-intuitive on the first-hand white box cryptography is frequently used in Digital Rights
Managment (DRM) schemes if a device lacks a secure key storage, e.g., Trusted Platform Module
(TPM). The first so-called white box implementation of the DES was proposed by [Cho+03a]
but was as expected soon shown to be vulnerable by cryptanalytic approaches by Wyseur et al.
[Wys+07]. Chow et al. also proposed a white box implementation of AES in [Cho+03b] which
was also shown to be vulnerable to cryptanalytic attacks by Billet et al. [BGEC04].

Consequence Cryptographic implementations violate the assumptions of the black box model
and must be secured against a gray box attacker.

9

3. Overview

P

C

K E

(a) Black Box Model

P

C

K LE

(b) Gray Box Model

P

C

E

(c) White Box Model

Figure 3.1.: Attack Models

3.2. Attack Vector

In order to mount an attack which is based on the assumptions of a gray box model several attack
vectors can be utilized. The most relevant for this work are either FIA or SCA which will be
briefly introduced now, and extensively in the following chapters.

Side Channel Analysis According to the gray box model an attacker is able to observe some
kind of side-channel information L, this side-channel information can be of different nature, e.g.,
timing information [Koc96] power consumption [KJJ99], electromagnetic emanation [KS05], and
acoustic emanation [GST14].

Fault Injection Analysis According to the gray box model an attacker is able to observe some
kind of side-channel information L, while usually in the literature only passive measurements
are considered as a side channel, also the information gathered by faulty computations can
be considered as a side channel. Boneh et al. proposed in their seminal work [BDL00] the
exploitation of faulty computations.

3.3. Attack Invasiveness

The invasiveness of a physical attack can be taken into account, with three different levels of
invasiveness usually being assumed in the state of the art.

Non-invasive Attacks In the non-invasive attack setting an attacker is not required to perform
a modification of the Device under Test (DUT). Furthermore, the application of a non-invasive
attack is non-destructive, i.e., such attacks do not cause permanent damage to the DUT.

Semi-Invasive Attacks In the semi-invasive attack setting an attacker is required to perform
slight modifications of to the DUT. These slight modifications of the device can be, e.g., the
removal of decoupling capacitors to mount glitch attacks or sophisticated SCA which requires
partial decapsulation of the DUT.

Fully-Invasive Attacks In the fully-invasive attack setting an attacker is required to perform a
significant modification of the DUT. These substantial modifications of the device can be, e.g.,
the removal of a DUT’s package to apply probing or forcing or the permanent manipulation of
the DUT’s functionality in an exploitable manner.

10

3.4. Attack Locality

3.4. Attack Locality

The locality of a physical attack can also be taken into account, with the state of the art usually
distinguishing between two different levels of locality.

Global Attacks In the global attack setting, an attacker can either observe global behavior or
manipulate the DUT globally. If the attack vector is based on SCA an example would be the
PA based on a shunt resistor. Contrary, if the attack vector is based on FIA an example would
be a power glitch.

Localized Attacks In the localized attack setting, an attacker can either observe local behavior
or manipulate the DUT locally. If the attack vector is based on SCA an example would be
an attack which utilizes a near field Electro-Magnetic (EM) emanation probe. Contrary, if the
attack vector is based on FIA an example would be Laser Fault Injection (LFI).

11

4. Electromagnetic Fault Injection

Electro-Magnetic (EM) fields can be used to inject faults, therefore a fault injection which is based
on this effect is called Electromagnetic Fault Injection (EMFI). EM fields can travel through
the packaging materials and thus, removing the package of the chip is not necessarily required.
However, doing so helps the attacker recognize the features in the Integrated Circuit (IC), making
it easier to find the correct point to induce a fault, i.e., by partially removing the encapsulation
of the chip, the attacker is able to identify areas of interest where to inject faults (like memories
or buses). Moreover, removing grounded metal plates used in some packages may increase the
effectiveness of the attacks as they might act as EM shields. Neve et al. [Nev+03] describe their
experiments with a low-cost setup, using a camera flashgun connected to hand-made coils, to
generate EM pulses capable of modifying data values in memories and the address bus. A lower
cost alternative comes from Schmidt et al. [SH07], who used a spark-gap generator from a gas
lighter to manually create high frequency sparks instead of magnetic fields. Due to the high
charge change caused by the spark gap a strong EM burst is generated, which can be used to
temporarily disrupt the device. They were able to affect the program flow as well as the memory
contents (SRAM and Flash). Dehbaoui et al. [Deh+12] presented a more sophisticated EM
fault injection setup, capable of producing pulses with low jitter, wide voltage ranges and high
accuracy timing. Their setup is composed of a pulse generator, EM coils, and a motorized X-Y-Z
table. However, specific details on the equipment used were not given. In order to showcase the
capabilities of EMFI we will now introduce an exemplary EMFI setup and apply DFA to KLEIN
as proposed in Chapter 7.

4.1. Electromagnetic Fault Injection Setup

An overview of the used setup is shown in Fig. 4.1. A measurement PC is the central component
of the setup in charge of controlling the interaction of all the components. As we are using a fault
injection technique which relies on localized effects, hence the setup uses a motorized table to
position the injection probe at a specific location. The DUT is controlled via a UART interface.
Furthermore, we utilize a debugger to gather additional information about the operational state
of the DUT. A trigger signal is generated by the DUT and forwarded to a control unit which
triggers the pulsed EM emanation. As mentioned before several EMFI setups exist, in order to
compare them Toulemont et al. proposed a simple protocol for the comparision of EMFI setups
[Tou+20], which we also used in this work. All results of Section 4.2 are obtained using a EMFI
setup manufactured by LANGER [LAN]. The most important characteristics as specified by
[Tou+20] of the used setup are summarized in Table 4.1.

4.2. Practical Evaluation

In order to demonstrate the capabilities of EMFI we will now apply DFA to KLEIN. The at-
tack’s theoretical background will be explained later in Chapter 7. As KLEIN is designed to be
a lightweight cipher [GNL12] we opted for a software implementation written in C running on
a small ARM Cortex M0 microcontroller. The microcontroller used as DUT is a STM32F051R8T6

13

4. Electromagnetic Fault Injection

PCXYZ-Table Debugger

Control UnitEMFI DUT

USB

USB UART

USB

USB

Trigger

Powercycle

SWD

Figure 4.1.: Overview of the EMFI setup.

Dimension Value

Probe Diameter 500µm
Magnetic Flux Density ≤ 50mT

Pulse: Rise Time ≤ 2 ns

Pulse: Rate 0.1Hz - 20.0 kHz

Pulse: Polarity +/−/alternating
Pulse: Voltage ≤ 500V

Table 4.1.: LANGER EMFI Specifications

which features 64 kB of flash memory and 8 kB of SRAM running at a nominal frequency of
8MHz. In order to minimize the side effects of the induced faulty behavior we disabled periph-
erals which are not necessary for operation. Generally the decapsulation is optional using EMFI,
but we decided to use a decapsulated chip in order to evaluate which components of the chip
are prone to a faulty behavior according to our fault model. The decapsulated microcontroller
is shown in Fig. 4.3 where all the components are labeled according to [OT17]. A closeup of the
EMFI setup’s injection coil right above the decapsulated DUT is shown in Fig. 4.2. During the
operation of the EMFI setup the injector is lowered to achieve a more localized fault injection.

4.2.1. Attack Settings

During the practical evaluation of the attack we found the following settings in terms of temporal,
spatial, and EMFI configuration to work best with our setup. A summary of the used settings
for the DFA of KLEIN is shown in Table 4.2. Both attacks as specified in Chapter 7 are feasible
with similar settings, where only the step width for the temporal injection locations differs for
the attack on the state steps of 250 ns, respectively for the attack on the key schedule 50 ns.
This translates into 456 injections at each location (spatial) on the chip for the attack on the
state, respectively 108 injections at each location (spatial) on the chip for the attack on the key
schedule.

4.2.2. Classification

After finding suitable settings for the injection we decided to classify the observed faulty behavior
of the microcontroller into 3 different categories: exploitable faults are faults which occurred

14

4.2. Practical Evaluation

EMFI Injector

STM32F051R8T6

Figure 4.2.: STM32F051R8T6 EMFI Setup

ARM Cortex M0 Core

SRAM

Flash

AnalogRegulators/Peripherals

Figure 4.3.: STM32F051R8T6 Chip Layout

15

4. Electromagnetic Fault Injection

Dimension Value

Time Vary temporal location in steps of 250 ns (State)

Vary temporal location in steps of 50 ns (Key Schedule)

Space Area of 2.5mm by 2.5mm

0.1mm per step (675 locations)

EMFI Discharge voltage of 330V

Discharge duration of 10 ns

Table 4.2.: EMFI Parameters DFA KLEIN

according to the fault model of the attack carried out, unusable faults are faults which do not
comply with the fault model, and resets of the microcontroller which can also not be exploited.

4.2.3. Attack Results

As shown in Figs. 4.4a and 4.5a we were able to conduct the attack on the state and the attack on
the key schedule as described in Chapter 7, with a reasonable repeatability as shown in Figs. 4.4b
and 4.5b. The fault exploitation probability as shown in Figs. 4.4b and 4.5b is calculated as
the number of exploitable faults divided by the total number of injections per spatial location.
Furthermore, if the decapsulated microcontroller as shown in Fig. 4.3 is compared with fault
injection maps as shown in Figs. 4.4 and 4.5 it becomes clear which components of the chip
cause the most faults according to the fault model, namely the ARM Cortex M0 Core, and the
Regulators/Peripherals. If the faults are injected into the analog components like ADC, DAC
no (observable) faults occur at all.

4.3. Summary

We showcased the capabilities of a commercial EMFI setup with the DFA of KLEIN. The
EMFI setup was able to inject localized faults in an ARM Cortex M0 microcontroller namely
a STM32F051R8T6, with high spatial precision and percentual repeatability of more than 5%.
The investment for such a setup is much lower than the needed for a professional laser station,
and still lower than the one typically needed for side-channel analysis lab equipment. Further-
more, the rise of self build EMFI setups as proposed by [CH17; AH20; O’F19] indicates a trend
towards EMFI as a fault injection mechanism. Therefore, EMFI based fault attacks should have
a higher impact during risk assessments than what was previously considered reasonable.

16

4.3. Summary

0 0.5 1 1.5 2 2.5

0

0.5

1

1.5

2

2.5

x position (mm)

y
p
o
si
ti
on

(m
m
)

no effect
fault

unusable
reset

(a) Fault Classification

0 0.5 1 1.5 2 2.5

0

0.5

1

1.5

2

2.5

x position (mm)

y
p
os
it
io
n
(m

m
) > 5%

> 4%

> 3%

> 2%

> 1%

> 0%

= 0%

(b) Fault Exploitation Probability

Figure 4.4.: Fault Characterization Map – State

17

4. Electromagnetic Fault Injection

0 0.5 1 1.5 2 2.5

0

0.5

1

1.5

2

2.5

x position (mm)

y
p
o
si
ti
on

(m
m
)

no effect
fault

unusable
reset

(a) Fault Classification

0 0.5 1 1.5 2 2.5

0

0.5

1

1.5

2

2.5

x position (mm)

y
p
os
it
io
n
(m

m
) > 5%

> 4%

> 3%

> 2%

> 1%

> 0%

= 0%

(b) Fault Exploitation Probability

Figure 4.5.: Fault Characterization Map – Key Schedule

18

5. Side Channel Analysis

This chapter introduces the necessary preliminaries of SCA, i.e., leakage models, power con-
sumption of Complementary Metal-Oxide-Semiconductor (CMOS) circuits, Test Vector Leakage
Assesment (TVLA), and Correlation Power Analysis (CPA).

5.1. CMOS Power Consumption

According to [Ins97] the power consumption P of CMOS circuits can be divided into static power
consumption PS and dynamic power consumption PD as shown in Equation (5.1). Static leakage
current occurs since N-Type Metal-Oxide-Semiconductor (NMOS) and P-Type Metal-Oxide-
Semiconductor (PMOS) transistors are not perfectly switching. The static power consumption
can be calculated as the product of the leakage current ICC and the supply voltage VCC and is
therefore assumed to be independent of switching activities. The dynamic power consumption PD

can be divided into transient power consumption PT and capacitive-load power consumption PL

which is proportional to the output’s capacitive load CL. The dynamic power dissipation capac-
itance Cpd is defined as the equivalent internal capacitance of a device calculated, by measuring
the operating current without load capacitance. Transient power consumption occurs when the
input to the gate changes which is indicated by fI . Switching the value of the gate output leads
to the charging or discharging of the output capacitance which is indicated by fO. Furthermore,
Nswitches denotes the number of switching inputs or outputs. Although static power consump-
tion is significantly less than dynamic power consumption, static power consumption can also
cause side-channel leakage, as shown by Khairallah et al. [Kha+18].

P = PS + PD

PS = VCC × ICC

PD = PT + PL

PT = Cpd × VCC
2 × fI ×Nswitches

PL = CL × VCC
2 × fO ×Nswitches

(5.1)

5.2. Leakage Models

A simplification of the power consumption calculation outlined in Section 5.1 are leakage models
[BCO04]. These leakage models directly translate processed data into a hypothetical power
consumption, the most common ones are the HammingWeight (HW), and the Hamming Distance
(HD). The calculation of the HW, and the HD for processing the data sequence {D1, D2, ..., Dm}
with n-bit data words Di = d

(i)
1 d

(i)
2 ...d

(i)
n is shown in Eq. (5.2), where every d

(i)
n represents a

single bit.

19

5. Side Channel Analysis

HW (Di) =

n∑
j=1

d
(i)
j

HD(Di, Di+1) = HW (Di ⊕Di+1)

(5.2)

The most common leakage model used is the HW as it requires no knowledge about previously
processed data in contrast to the HD cf. Eq. (5.2).

5.3. Correlation Power Analysis

DPA is a type of side-channel attack proposed in 1999 by Kocher et al. [KJJ99] and is based on
partitioning. A similar attack called CPA which uses correlation as a distinguisher was proposed
by Brier et al. in 2004 [BCO04]. For a CPA attack, the power consumption of a cryptographic
operation is measured multiple times, e.g., different plaintexts with the same key for AES. Next,
an intermediate value depending on known values, as well as an unknown key byte is chosen.
A possible intermediate value t during the encryption of AES is the output of the first round’s

S-box, i.e., t = S(k
(0)
0 ⊕ p0). For all key hypotheses of the key byte k

(0)
0 , the intermediate value

is calculated. By the application of a leakage model to the intermediate value, the correlation
of all key hypotheses with the measured power traces can be calculated. The correct key byte is
then identified by the hypothesis which results in the highest absolute correlation.

5.4. Test Vector Leakage Assessment

In order to examine the resistance of an implementation against Side-Channel Analysis (SCA)
the presence of possible side-channel information, also called “leakage”, has to be evaluated.
Methods based on calculating the Signal to Noise Ratio (SNR) [Man04] or the correlation [DS16]
of intermediate variables require assumptions about exploitable intermediate states or a specific
hypothesis model. Another commonly used approach is Test Vector Leakage Assesment (TVLA)
a methodology that uses Welch’s t-test to statistically evaluate the presence of side-channel
leakage does not require prior knowledge about the investigated implementation or intermediate
values [Goo+11; SM15]. Welch’s t-test evaluates whether the distributions of two sets Q0 and
Q1 with respective means µ0 and µ1 and variances s0 and s1 differ significantly from each other.
The resulting t-value is calculated as

t =
µ0 − µ1√
s20
n0

+
s21
n1

, (5.3)

where n0 and n1 denote the respective cardinalities of the sets. A high t-value corresponds
to a low probability to accept the null hypothesis that both sets were drawn from the same
distribution. Usually a threshold of |t| > 4.5 is defined to reject the null hypothesis with a
confidence of > 0.99999 and is taken as an indicator for possible side-channel leakage.
For leakage evaluations the non-specific or fixed-vs.-random t-test can be applied: The evalu-

ator measures the power consumption of multiple algorithm executions with a fixed secret, while
randomly choosing the input data of subsequent measurements to have a fixed or random value.
Measurements are then split into a set Q0 with fixed input data and a set Q1 with random
input data. Finally, the t-value according to Eq. (5.3) is calculated for each point in time. If
the result indicates that both sets can be distinguished (|t| > 4.5), the implementation exhibits

20

5.4. Test Vector Leakage Assessment

side-channel leakage, which can potentially be used to mount an SCA attack. Otherwise, the
implementation can be considered secured for first-order univariate attacks with the evaluated
amount of traces. As the t-value is computed for each measurement sample individually it allows
for identifying points of interest for an attack.
In order to evaluate univariate higher-order leakage and therefore the side-channel resistance

against higher-order attacks, Eq. (5.3) can be extended by data preprocessing. For hardware
implementations, where data is processed in parallel, mean-free squared measurements X ′ =
(X − µ)

2
are a suitable preprocessing to reveal univariate second-order side-channel leakage. In

addition, it is also possible to directly compute the higher-order statistical moments as described
in [SM15].

21

Part II.

Attacks

23

6. Overview

The origin of the research field FIA is based on the observation of May and Woods that radioac-
tive radiation produced by the elements that a chip’s package is made from causes undesirable
behavior [MW78]. The deliberate exploitation of such faults was proposed by Boneh et al. in
their seminal work [BDL97]. This approach was later refined by Boneh et al. and thus the first
fault attack was applied to the Rivest-Shamir-Adleman (RSA) asymmetric cryptosystem which
uses the Chinese Remainder Theorem (CRT) for faster computation [BDL00]. In this attack, a
single faulty signature is sufficient to recover the entire private key. The fact that a single faulty
signature is enough to break RSA implementations was an early indicator that FIA is a powerful
type of attack. In the following, the most important types of FIA are presented in short form,
each of which will be applied to a cipher in the remainder of this work.

6.1. Differential Fault Analysis

The most common type of FIA is the so-called Differential Fault Analysis (DFA), which is based
on the approach of evaluating tuples of correct and faulty encryptions. This type of fault attack
was first applied to DES by Biham and Shamir [BS97]. The proposed attack was able to recover
the whole DES key using between 50 and 200 tuples of correct and faulty encryptions. A similar
attack was conducted by Piret and Quisquater on AES, where the complete key can be recovered
after only two tuples of correct and faulty encryption [PQ03]. Furthermore, Tunstall et al. were
even able to recover a complete AES key with a single fault [TMA11].

The simplest representation of the last round of a Substitution Permutation Network (SPN)
based cipher is shown in Fig. 6.1, similar to the final round of AES, where the last AddRoundKey
takes place after SubBytes. In order to recover the unknown value X an attacker can exploit
knowledge about the substitution layer, i.e., S-box. To do so an attacker performs the same
encryption twice one time without the influence of a fault which results in X, and a second time
under the influence of fault prior to the S-box which results in a faulty value X as shown in
Eq. (6.1).

X = S−1(Y) +K

X = S−1(Y) +K
(6.1)

The calculation of the output differential ∆Y (sum on GF(2)) does not require any prior knowl-
edge nor hypotheses as it only depends on a correct ciphertext C and a faulty one C as shown
in Eq. (6.2).

∆Y = ∆C = C + C (6.2)

Subsequently, the attacker computes the difference ∆X of a correct X and a faulty encryption
X as shown in Eq. (6.3), as one can see the key K cancels itself out as addition is self-inverse.

25

6. Overview

X , X , ∆X

S

+

Y , Y , ∆Y

K (const)

C , C , ∆C

DDT

Figure 6.1.: Substitution Layer DFA

∆X = X +X

∆X = S−1(Y) + S−1(Y)

∆X = S−1(Y) + S−1(Y +∆Y)

(6.3)

Finally, the information based on the Differential Distribution Table (DDT) is exploited to sort
out impossible intermediate states, i.e., discard hypotheses of X which result in impossible tuples
of differentials ∆X and ∆Y . By the repetition of this approach an attacker ends up with a unique
intermediate state which is in fact the correct intermediate state. The correct intermediate state
can then be used to calculate the target partial subkey, i.e., the last round key.

6.2. Persistent Fault Analysis

Another type of FIA is Persistent Fault Analysis (PFA) which was introduced by Zhang et
al. as an approach to attack block ciphers that require repeated access to stored constants
[Zha+18]. In contrast to DFA where each execution of a cryptographic function (e.g. each
encryption) requires a fault injection, for Persistent Fault Analysis (PFA) it is sufficient to inject
a single, persistent fault. While differential fault attacks alter a computed, intermediate value,
PFA aims to alter a (stored) constant, e.g., a S-box entry, or to manipulate the generation of
a constant, e.g., the computation of a S-box. This has the advantage of not requiring multiple
fault injections during runtime, but only one during the generation of the constant which now is
under the influence of a persistent fault. A simplified substitution layer of a SPN based cipher
is shown in Fig. 6.2. The input of the b-bit wide S-box S is xj , i.e., the jth word of the state.
The output of the S-box is yj . The involved round key and the resulting ciphertext are called kj
and cj , respectively. This can also be expressed as cj = kj + yj , where yj = S[xj]. Furthermore,
the distribution probability of the S-box’s output and the ciphertext is denoted by P (yj) and

26

6.2. Persistent Fault Analysis

xj S +
yj

kj

cj

Figure 6.2.: Substitution Layer PFA

P (cj), respectively. For a well-designed cipher we can assume: P (yj = i) = 2−b ∀ i ∈ [0, (2b−1)].
If one element of the S-box is faulted, e.g., S[0] the former correct value S[0] = v is changed
to S∗[0] = v∗ where v ̸= v∗. For the remainder of this section we assume the attacked S-box
is the one used by AES where b = 8. Consequently, the probability P (yj = v) is zero, and
the probability P (yj = v∗) is doubled to 21−b = 2

256 . All other values yj still have the same
probability P (yj) = 2−b = 1

256 . Since the key kj is fixed, the distribution of yj and cj are related,
which is expressed in Eq. (6.4).

P (cj) = P (yj + kj). (6.4)

Let t ∈ [0, (2b−1)] denote each possible value of cj . Then, the value of t occurring least frequent
and most frequent are denoted tmin and tmax, respectively.
There are three possible attack strategies:

1. As tmin can be determined and the original value of the S-box v is known, the key can be
extracted with the following equation:

kj = v + tmin (6.5)

2. The values of t ̸= tmin can be used to eliminate impossible key candidates, under the
assumption v is known:

kj ̸= v + t (6.6)

3. If v∗ is known, tmax can be used to determine kj :

kj = v∗ + tmax (6.7)

The first and the second strategy are analytical approaches. In contrast, strategy three is a
statistical approach, which requires enough faulty ciphertexts to ensure tmax converges 2b−1. An
example where the probabilities of all possible values t in relation to the number of encryptions
for a faulty S-box S∗ (with one faulty entry) is shown in Fig. 6.3. The red line corresponds
to the original value v. The blue line corresponds to v∗. The gray lines represent all other
values. It can be seen, that the relative frequency of v∗ approaches asymptotically the calculated
probability 2

256 and v is constant zero. All other values stabilize at 1
256 . It must be noted, that

all strategies require the structure depicted in Fig. 6.2 for the last round. If there is an additional
permutation layer in the last round, appropriate measures must be taken to counteract the effect
of the permutation layer as we will show in Chapter 7. In summary PFA is able to extract the
round key k which is added right after the substitution layer (during the last round), as shown
in Fig. 6.2. If the addition of the key is followed by the addition of a variable, PFA is only able
to recover the sum of the variable and the key, we denote this by R. However, we will show how
to further process R to recover the actual key in Chapter 8.

27

6. Overview

0.2 0.4 0.6 0.8 1

·104

0

0.5

1

1.5
·10−2

Faulty Encryptions

P
ro
b
ab

il
it
y

Figure 6.3.: Distribution of a faulty S-box S∗

6.3. Statistical Ineffective Fault Analysis

Another type of FIA is Statistical Ineffective Fault Analysis (SIFA) which was proposed by
Dobraunig et al., originally intended to attack symmetric cryptography [Dob+18b]. SIFA can
be seen as the combination of Ineffective Fault Analysis (IFA), as proposed by Clavier and
Christophe [Cla07], and Statistical Fault Analysis (SFA) as proposed by Fuhr et al. [Fuh+13].
The basics of SIFA are explained in detail below.

Background As SIFA combines the advantages of its predecessors IFA and SFA we will now
briefly compare them in terms of the required fault model, key recovery, and the ability to
overcome countermeasures.

Fault Model Both attacks differ in their assumed fault model. The required fault model of
IFA, is rather specific, e.g., Clavier et al. proposed a fault model where the computation of
an XOR results always in a zero value [Cla07]. By forcing the output of an operation to a
specific value, the attacker can distinguish, if the output of the faulty operation is equal to the
fault free output. Subsequently, if the faulted output equals the correct output, an ineffective
fault occurred. Figure 6.4 (IFA) shows this behavior, where the computation of an XOR
always returns zero as in [Cla07]. The downside of the assumed fault model is the fact that
the required fault model is difficult to achieve in practice, especially with low-cost equipment
cf. Guillen et al. [GGS17]. In contrast, the assumptions of the required fault model for a
SFA are loose as the only requirement for a successful SFA is a biased intermediate state as
shown by Fuhr et al. [Fuh+13]. As shown in Fig. 6.4 (SFA) an attacker injects a fault after
the computation of f1 and before f2, where fi | i ∈ {1, 2} denotes parts of the cryptographic
operation.

Key Recovery Both attacks differ significantly in how they recover the key. In IFA the recov-

28

6.3. Statistical Ineffective Fault Analysis

IFA

Key

Plain

f

Cipher

XOR-0

E

(E)

SFA

f1

f2

Key

Key

Plain

Cipher

State’ −→ biased

E

E

SIFA

f1

f2

Key

Key

Plain

Cipher

State’ −→ biased
but State’=State

E

Figure 6.4.: SIFA Background

ery of the correct target partial sub key is strictly analytical. Contrary, in SFA a statistical
approach is used where the deviation from the uniform distribution is used as metric to dis-
tinguish the correct target partial subkey. One of the main benefits of the statistical approach
in SFA, is the immunity to noisy faults, i.e., injections that do not comply with the required
fault model.

Countermeasures Generally, there are two possible approaches to the design of counter-
measures against FIA: detection-based countermeasures and infection-based countermeasures
[PCM15; Zha+16b]. The most common form of detection-based countermeasures is temporal
redundancy, where an encryption or decryption is performed twice. If the results do not match,
a fault occurred and appropriate measures like a system-reset can be taken. The infection-
based countermeasure applies additional operations in order to increase the fault propagation
to a level where an attack is no longer feasible. As a result, IFA is able to overcome the most
common countermeasures against fault attacks as the fault does not alter the result of the
computation. In contrast, SFA can be thwarted by countermeasures based on either detection
or infection as the injected fault does alter the result of the computation.

Foundations of Statistical Ineffective Fault Analysis SIFA evaluates the statistical distribution
of intermediate values and identifies appropriate key candidates with a statistical distinguisher.
We assume that a fault only corrupts a part s of an intermediate state. The partial intermediate
state after a fault injection is denoted by s′. The alteration of s → s′ | s ̸= s′ results in a
faulty computation and will affect the outcome of the cryptographic algorithm. However, an
alteration s→ s′ | s′ = s does not affect the outcome of the cryptographic algorithm. This type

29

6. Overview

of alteration is referred to as an ineffective fault. Such ineffective faults can be exploited, if they
cause a biased distribution in the intermediate value.
We now introduce the reasoning behind a biased distribution of an intermediate value. If we

assume a single bit intermediate value denoted by s prior to a fault injection and consequently s′

the same intermediate value after a fault injection. The deviation from the uniform distribution
depends on how the fault is coupled into the intermediate value. For our example we assume a
coupling based on a random logical OR, i.e., S′ = S ∨ F . Furthermore, we can assume that the
cryptographic algorithm under attack is a Pseudorandom Permutation (PRP), so we can also
assume that Eq. (6.8) holds, i.e., the probability of the intermediate value s and the fault f being
either zero or one is equal.

P (S = 0) = P (S = 1) = 0.5

P (F = 0) = P (F = 1) = 0.5
(6.8)

Consequently, the only case where s′ = 0 holds is the specific case where s = 0 and f = 0, in all
other cases s′ = 1. The according probabilities for all the cases are shown in Eq. (6.9).

P (S′ = 0) = P (S = 0, F = 0) = 0.25

P (S′ = 1) = 1 − P (S′ = 0)

P (S′ = 1) = P (S = 0 ∧ F = 1) + P (S = 1 ∧ F = 0) + P (S = 1 ∧ F = 1)

P (S′ = 1) = 0.75

(6.9)

As one can see the probability for the intermediate value after a fault injection s′ to be zero
is lower by a factor of three compared for the probability of the state to equal one. If this
reasoning is extended to multiple bit states the transition probabilities can be visualized with
Fault Distribution Tables (FDTs).
The six exemplary FDTs in Table 6.1 show the transition probability of two-bit intermediate

values for six typical fault models. The FDTs shown in Table 6.1 are generated under the
assumption of a Random Or coupling as introduced above, a Random And coupling where
S′ = S ∧F , a Stuck at Zero where S′ = 0, a Probabilistic Bit Flip coupling where S′ = S +F , a
Random Fault coupling where S′ = F , and a Bit Flip coupling where S′ = S + 1 .

In order to apply SIFA, the diagonal of such a table (marked in blue) must differ from the
uniform distribution. This holds true for Tables 6.1a to 6.1d. The table’s entries which are not
colored blue denote the probability of effective faults.
By injecting a fault in an operation an intermediate value of n-bit is affected. The intermediate

value is represented by the two random variables S and S′, before and after the injected fault.
This means the intermediate value is denoted by the random variable S when no faults are
present and S′ otherwise. Both random variables can take values s ∈ S = {0, ..., 2n − 1}. The
probabilities of the individual entries of the FDT are calculated as shown in Eq. (6.10), where s
corresponds to the values in the rows and s′ to the values in the columns of Table 6.1.

ps(s
′) := P (S′ = s′ | S = s). (6.10)

The elements of the diagonal of an FDT correspond to the probabilities for different ineffective
faults as shown in Eq. (6.11).

ps′(s
′) := P (S′ = s′ | S = s′). (6.11)

We assume the FDT is not known to the attacker. Nevertheless, it is still possible to exploit the
diagonal’s deviation from the uniform distribution. Since we assume the presence of a (detection-
based) countermeasure we will state the statistical model explicitly for this scenario. Here, the

30

6.3. Statistical Ineffective Fault Analysis

(a) Random Or

s′

00 01 10 11

s

00 1
4

1
4

1
4

1
4

01 0 1
2

0 1
2

10 0 0 1
2

1
2

11 0 0 0 1

(b) Random And

s′

00 01 10 11

s

00 1 0 0 0

01 1
2

1
2

0 0

10 1
2

0 1
2

0

11 1
4

1
4

1
4

1
4

(c) Stuck at Zero

s′

00 01 10 11

s

00 1 0 0 0

01 1 0 0 0

10 1 0 0 0

11 1 0 0 0

(d) Probabilistic Bit Flip

s′

00 01 10 11

s

00 4
9

2
9

2
9

1
9

01 4
9

2
9

2
9

1
9

10 4
9

2
9

2
9

1
9

11 4
9

2
9

2
9

1
9

(e) Random Fault

s′

00 01 10 11

s

00 1
4

1
4

1
4

1
4

01 1
4

1
4

1
4

1
4

10 1
4

1
4

1
4

1
4

11 1
4

1
4

1
4

1
4

(f) Bit Flip

s′

00 01 10 11

s

00 0 0 0 1

01 0 0 1 0

10 0 1 0 0

11 1 0 0 0

Table 6.1.: FDTs of 2-bit variables

attacker has only access to samples where the intermediate values under attack fulfill S ≡ S′.
Under the assumption, that S is uniformly distributed with P(S = s) = 2−n = 1

|S| , the rate of

ineffective faults rineff can be calculated as shown in Eq. (6.12).

rineff = P (S′ ≡ S) =
∑

s′ ∈ S

ps′(s
′)

|S| (6.12)

The diagonal of the FDT can be expressed as conditional distribution as shown in Eq. (6.13). This
distribution is later estimated by an attacker, as neither the diagonal nor S′ can be observed.

pineff(s
′) = P (S′ = s′ | S′ ≡ S) =

ps′(s
′)

|S| · rineff
(6.13)

However, it is possible to calculate the hypothetical distribution pH of S′H under the assump-
tion of a fixed key hypothesis kH . By using the correct key guess kH the correct distribution
pineff(s

′) = pH=correct(s
′) is observed. In order to distinguish it from incorrect key guesses,

we assume that all distributions of incorrect key hypotheses kH=wrong are close to the uniform
distribution, i.e., pH=wrong(s

′) ≈ θ(s′) = 2−n. The distinguisher D(pH) is used to rank the
key candidates according to their distance to θ(s′). The chi-squared (χ2) test as introduced by
Pearson [Pea00], is used to calculate a metric for the difference of two probability distribution

31

6. Overview

function a and b, both with values x ∈ X and N samples as shown in Eq. (6.14)

χ2(a, b) = N
∑
x∈X

(a(x)− b(x))2

b(x)
. (6.14)

Since incorrect key guesses follow the uniform distribution, we can use the χ2 metric to distinguish
distributions resulting from the correct key hypothesis pH=correct and a uniform distribution θ
caused by an incorrect hypothesis. This leads to the χ2-distinguisher as shown in Eq. (6.15).

D(pHi) = CHI(pHi) := χ2(pHi , θ) (6.15)

Alternatively, a scaled version of CHI, the Squared Euclidean Imbalance (SEI) [Riv09] as shown
in Eq. (6.16), can be used.

D(pHi) = SEI(pHi) =
1

|S| ·N · CHI(pHi
) (6.16)

Where N denotes the number of observed decryptions under the influence of ineffective faults.

SIFA Fault Models In general, SIFA’s fault model can be divided into two versions, viz. SIFA-1
and SIFA-2 [Sah+20]. Both versions of SIFA differ in their assumption of how and where a fault
is injected:
The SIFA-1 fault model assumes that a fault injection causes a statistical bias in n shares of a

masking scheme which affects the state variable, without affecting all shares of a bit simultane-
ously. Masking schemes are frequently used as a countermeasure against SIFA-1 cf. Section 12.3.
In contrast, the SIFA-2 fault model assumes a random fault during the computation of a

cryptographic algorithm’s sub-function, e.g., the computation of an S-box which means that all
shares of a masked implementation are affected.

6.4. Algebraic Fault Analysis

Algebraic cryptanalysis is based on the idea to express a cipher as an equation system, and solve
it which is the equivalent of breaking a cipher. Back in 2002, Courtois and Pieprzyk were able
to show, that the conversion of a cipher into an overdefined system of algebraic equations poses
a threat to cryptographic systems [CP02]. In fact, an overdefined equation system is easier to
solve and might lead to a sub-exponential increase in security with a growing number of rounds
of an iterated cipher. As a consequence of [CP02], increasing the round function’s complexity or
the number of rounds is recommended to ensure that a cipher cannot be broken by brute-force
within a feasible amount of time. Consequently, additional information is required to reduce
the complexity of the equation system to solve it in a reasonable amount of time.
In Algebraic Fault Analysis (AFA) this additional information in the form of equations is

gathered from knowledge based on fault injections which characterize the fault injection and
fault propagation. If the additional equations are combined with the equations gathered from
the cipher representation, the additional equations ensure that the whole equation system can
be solved in a feasible time, this approach is called AFA.
In order to automatically solve the algebraic representation of a cipher a combination of

tools can be used: BOSPHORUS [Cho+18] to convert the Algebraic Normal Form (ANF)-
representation into a Conjunctive Normal Form (CNF)-representation while simultaneously op-
timizing the equation system, and CryptoMiniSat [SNC09] to solve the optimized system.

32

7. Differential Fault Analysis of KLEIN

Exchange of information in computer networks often requires the use of cryptography, to ensure
the integrity of messages, the confidentiality of the message or the authenticity of the commu-
nication partner. However, the computational effort caused by cryptographic algorithms can be
prohibitive for resource constrained devices. A typical example for this class of devices are IoT
devices. These are often low-power sensor nodes, which are deployed over a large area and submit
measurement data to some back-end system. Each node is battery powered and is thus very lim-
ited in its energy consumption. For these applications lightweight block ciphers were developed in
recent years. The idea is to offer a symmetric block cipher (since asymmetric ciphers are always
more costly in terms of performance), with a security level that does not have many reserves,
but at a much smaller computational overhead. The most prominent example for lightweight
block ciphers is PRESENT [Bog+] but many other proposals have been developed, e.g., KLEIN
as proposed by Gong et al. [GNL12]. In this chapter we apply DFA to the lightweight block
cipher KLEIN.

State of the art To the best of our knowledge, there are no publications about the DFA of
KLEIN which targets either an intermediate state or an intermediate round key1. In contrast,
Yoshikawa et al. developed a generic attack based on the manipulation of the control flow [Yos+],
where an attacker aims to increase the number of rounds artificially using a fault injection. As
shown by Yoshikawa et al. this attack requires one faulty ciphertext and one correct ciphertext
to recover the last round key of KLEIN with a key size of 64 bit.

Contribution We introduce two different DFAs on the lightweight cipher KLEIN. The first fault
attack requires an attacker to inject faults into the state of the encryption process. This attack
method works on all variants of KLEIN. Furthermore, we present a second attack on the key
schedule, which works only on the variant of KLEIN using a 64 bit key. This attack enables the
attacker to determine the key with 4 fault injections. For both attacks we prove the according
efficiency by means of simulations.

Organization Chapter 7 is structured as follows: In Section 7.1 the basic working principle
of the KLEIN cipher is described. Section 7.2 explains the attack based on the fault injection
into the encryption, whereas Section 7.3 explains the attack on the key schedule of KLEIN-64.
A discussion of the performance of both attack strategies is given in Section 7.4. Section 7.5
concludes the DFA of KLEIN.

1There are two additional publications in chinese: A DFA by Wang et al. [WRZ16] and a DFA by Cunyan et
al. [CYX15]. However, the latter obviously uses the generic approach of injecting single-bit faults before the
last S-box operation to exploit the differential distribution table (cf. the appendix of the original KLEIN
publication [GNL12]) and discard key hypotheses which lead to impossible differentials.

33

7. Differential Fault Analysis of KLEIN

7.1. KLEIN

KLEIN [GNL12] is a SPN-based cipher similar to other state-of-the-art block ciphers (e.g. AES
or PRESENT) and features three different security levels with according key sizes of 64, 80 and
96 bit. For all three variants a block size of 64 bit is used, only the number of rounds performed
and the key schedule differs. However, in contrast to AES, KLEIN is not operating on bytes,
but on 4 bit wide nibbles. In the following we will give a very brief description of the general
structure and the individual round functions.

7.1.1. The Round Function

The cipher is composed from R ∈ {12, 16, 20} executions of the round function, depending on
the key size of 64 bit, 80 bit or 96 bit. Each round i utilizes a round key ski, which is derived
from the previous round key through the KeySchedule function. Basic building blocks of each
round are the functions AddRoundKey, SubNibbles, RotateNibbles and MixNibbles. Algorithm 1
shows the general structure of the KLEIN cipher.

Algorithm 1 The structure of the KLEIN cipher.

sk1 ← KEY
STATE ← PLAINTEXT
for i = 1 to R do

AddRoundKey(STATE, ski)
SubNibbles(STATE)
RotateNibbles(STATE)
MixNibbles(STATE)

ski+1 ← KeySchedule(ski, i)
end for
CIPHERTEXT ← AddRoundKey(STATE, skR+1)

7.1.2. SubNibbles

The SubNibbles function is the nonlinear permutation step of KLEIN which ensures nibble-wide
diffusion. A notable property of the used 4 bit S-box function S is the fact that it is involutive,
i.e., S(x) = S−1(x) ∀ x ∈ {0, ..., 15}. This saves the costs for the implementation of an inverse
S-box. The S-box is given in Table 7.1.

Table 7.1.: The 4 bit S-box of KLEIN.

Input: 0 1 2 3 4 5 6 7 8 9 A B C D E F

Output: 7 4 A 9 1 F B 0 C 3 2 6 8 E D 5

7.1.3. RotateNibbles

The RotateNibbles function rotates the full 16 Nibbles wide input [n0, n1, . . . , n15] by two bytes
(4 Nibbles) to the left:

[n0, n1, . . . , n15]→ [n4, n5, . . . , n15, n0, n1, n2, n3, n4]

34

7.1. KLEIN

7.1.4. MixNibbles

The MixNibbles function is a linear mapping that ensures state-wide diffusion. It subdivides
the input state into two arrays2 of 4 bytes (8 nibbles [n0, . . . , n7] and [n8, . . . , n15]) which are
interpreted as polynomials in F8

2. The multiplication with the permutation matrix is calculated
modulo the reduction polynomial x4 + 1. MixNibbles uses thereby the exact same 4 × 4 bytes
permutation matrix that is used in the AES:

ni+1
0 ||ni+1

1 ni+1
8 ||ni+1

9

ni+1
2 ||ni+1

3 ni+1
10 ||ni+1

11

ni+1
4 ||ni+1

5 ni+1
12 ||ni+1

13

ni+1
6 ||ni+1

7 ni+1
14 ||ni+1

15

 =


2 3 1 1

1 2 3 1

1 1 2 3

3 1 1 2

×

ni
0||ni

1 ni
8||ni

9

ni
2||ni

3 ni
10||ni

11

ni
4||ni

5 ni
12||ni

13

ni
6||ni

7 ni
14||ni

15


7.1.5. Key Schedule

KLEIN’s key schedule reuses the SubNibbles functions from the round function. The key schedule
is composed from a cyclic left shift by two nibbles (one byte), followed by a Feistel network.
Subsequently, four nibbles (two bytes) are substituted by the SubNibbles function and the round
constant i is added to the fifth and sixth nibble (third byte). Figure 7.2 depicts the structure of
the key schedule for 3 iterations. In contrast to the round function the key schedule works in a
byte oriented way, as all operations are performed on a multiple of two nibbles.

7.1.6. Modified Representation

To simplify the explanation of our attack and to deal with the application of the last round’s
MixNibbles, it is necessary to slightly change the representation of the last round function, since
one nibble of the resulting ciphertext is influenced by several nibbles of the last round key.
Unlike AES, KLEIN does not omit the MixNibbles operation in the last round [GNL12]. The
effects of omitting the last MixColumns in the AES were extensively studied by Dunkelman et
al. in [DK10]. The last AddRoundKey step and the previous MixNibbles step are therefore
swapped, the modified representation of KLEIN is shown in Algorithm 2. Since MixNibbles
is a linear function, it holds that MixNibbles(a + b) = MixNibbles(a) + MixNibbles(b), the
same reasoning can also be applied to the AddroundKey function. Therefore, we can exchange
the AddRoundKey and the MixNibbles step, if we substitute the added round key ski with
MixNibbles(ski). As a result of the exchanged order of AddRoundKey and MixNibbles, it is
also necessary to apply the inverse MixNibbles function to the last round key RKR+1 prior to
the addition to the state RBR. Furthermore, for the sake of simplicity from now on we will
represent KLEIN in a byte-oriented view, in contrast to the originally proposed nibble-oriented
view. In fact SubNibbles is the only function, which actually operates on nibbles. However, the
application of a 4 bit S-box on two nibbles can be replaced by a compound 8 bit S-box without
loss of generality, if no particular properties of the 4 bit S-box are considered. Therefore, in
the following we represent the KLEIN’s state as an array of bytes, which is transformed by the
functions SubBytes, MixBytes and RotateBytes.

7.1.7. Notation

Throughout the remaining sections we will use the following notation. An intermediate state
of KLEIN is named according to the abbreviation of the function which was applied to the
intermediate state last, i.e., ARKx is the state after the application of AddRoundKey during

2|| denotes a concatenation

35

7. Differential Fault Analysis of KLEIN

Algorithm 2 The structure of the modified KLEIN cipher.

sk1 ← KEY
STATE ← PLAINTEXT
for i = 1 to R− 1 do

AddRoundKey(STATE, ski)
SubNibbles(STATE)
RotateNibbles(STATE)
MixNibbles(STATE)

ski+1 ← KeySchedule(ski, i)
end for
AddRoundKey(STATE, skR)
SubNibbles(STATE)
RotateNibbles(STATE)

skR+1 ← KeySchedule(skR, R)

AddRoundKey(STATE, invMixNibbles(skR+1))
CIPHERTEXT ←MixNibbles(STATE)

round x. A subscript refers to a specific byte of the state. The states of the key schedule are
abbreviated as RKx. A multiplication of two bytes is done as defined in the AES [FIP01].

Faulted values are indicated by an overline (eg. the faulty byte ARK
R−1
0).

7.2. Attack on the Encryption

The proposed attack strategy is quite similar to those formerly published on AES by Piret et
al. [PQ03], Tunstall et al. [TMA11] and Mukhopadhyay et al. [Muk09]. Unlike those, this attack
is split into two separate parts, each revealing 32 bits of the corresponding round key. As
mentioned in Section 7.1.6, it is also possible to compute all operations of KLEIN on byte level,
contrary to Algorithm 2, we will use this alternative representation to simplify the description
of our proposed DFA. The attack on the encryption works on all three variants of KLEIN. A
random single-byte fault is injected into the state between MBR−2 and RBR−1. We opted for
a random single-byte fault model, as KLEIN should be a lightweight cipher [GNL12] which are
often implemented on 8-bit platforms. As a result of using a 8-bit platform random, single-byte
faults can be achieved easily, e.g., due to an instruction skip [GGS17]. This fault will lead to a
completely corrupted ciphertext, affecting all 8 bytes. Figure 7.1 shows the propagation for two
different faults, injected either into the left half cf. Fig. 7.1a or the right half cf. Fig. 7.1b of the
state. The faulted byte is indicated by f . We will now outline the attack for a fault injection
which affects the left half of the state MBR−1. After the application of MixBytes in round R−1,
the former single-byte fault has spread over all four bytes of the left half. Since MixBytes is a
linear function (cf. Section 7.1.6), the resulting fault can be described as a byte-wise multiple
of f : Depending on which byte position before MixBytes was faulted, the individual bytes after
MixBytes inherit an additive fault with the values f , 2f or 3f . These multiples of the same
value f can be exploited to formulate a set of equations. An attacker cannot obtain f directly by
reverse calculating from the ciphertext, as he is only able to observe the transformed version of f ,
i.e., Fi, i ∈ {0, 1, 2, 3} after passing through the four S-boxes. But the attacker can describe an
implicit relationship, of the S-box’s input and output fault, the following equations demonstrate

36

7.3. Attack on the Key Schedule

this for the case depicted in Fig. 7.1a:

SubBytes(ARKR+1
6 +RKR+1

6) + SubBytes(ARK
R+1

6 +RKR+1
6)

= 2 ·
(
SubBytes(ARKR+1

7 +RKR+1
7) + SubBytes(ARK

R+1

7 +RKR+1
7)

)
(7.1)

SubBytes(ARKR+1
7 +RKR+1

7) + SubBytes(ARK
R+1

7 +RKR+1
7)

= SubBytes(ARKR+1
0 +RKR+1

0) + SubBytes(ARK
R+1

0 +RKR+1
0) (7.2)

SubBytes(ARKR+1
1 +RKR+1

1) + SubBytes(ARK
R+1

1 +RKR+1
1)

= 3 ·
(
SubBytes(ARKR+1

7 +RKR+1
7) + SubBytes(ARK

R+1

7 +RKR+1
7)

)
(7.3)

Each equation combines two different bytes and therefore uses a hypothesis over two different
key-bytes (RKR+1

i , RKR+1
j) ∀ (i, j) ∈ {(6, 7), (0, 7), (1, 7)}. Thus, the attacker has a set of three

equations depending on four different key-bytes. Since this set of equations is under-determined,
there is no unique solution. However, the attacker can use these equations to discard all those
4-byte key-hypotheses, which do not solve this set of equations. Therefore, all possible keys are
stored in a set of hypotheses. Using the result of an additional fault injection with a different
fault f , the attacker can discard those keys in the set of hypotheses, which do not fulfill the
new equations. The computational complexity of this step can be significantly reduced from 232

by testing only those 4-byte key hypotheses, where the individual four key bytes were tested as
valid. Since the attacker usually does not know which of the four possible byte positions were
faulted, all four options have to be tested. However, the resulting increase in complexity of a
factor of 4 does not present a problem. The question of which half of the state was faulted
(a single example for both cases is depicted in Fig. 7.1a and Fig. 7.1b), can be determined by
applying the inverse MixBytes function to the observable fault at the output, i.e., the addition
of the correct and faulty ciphertext. In order to reveal the full 64-bit round key, the attacker can
choose to inject another fault at a different position to run the attack on both halves of the key,
or to determine the missing 32 bit part with the brute-force approach.

7.3. Attack on the Key Schedule

In our proposed attack on the key schedule, the attacker is expected to induce a random byte
fault ∆ into the key state RKR−2, which corrupts the byte RKR−2

5 as shown in Fig. 7.2. The
proposed fault model and location was chosen to be within a path through the key schedule
free of nonlinear functions, which results in a partial cancellation of the fault during round R.
Choosing a fault injection location that results in partial cancellation of the injected fault is
advantageous to keep complexity during the attack low and to limit the fault in the key schedule
state to a single byte. The fault injection into the key schedule empowers a fault propagation
into both halves of the state simultaneously, due to the Feistel-like structure of the key schedule
where one half of the key state is added to the other half. One has to keep in mind after a
fault injection into the key schedule the fault spreads throughout the key schedule and after an
AddRoundKey operation also in the state. The approach of the attack can be divided as usual
into three parts fault propagation, fault exploitation and state recovery.

37

7. Differential Fault Analysis of KLEIN

0 1 2 3 4 5 6 7

MBR-2

f

0 1 2 3 4 5 6 7

ARKR-1

f

0 1 2 3 4 5 6 7

SBR-1

f

0 1 2 3 4 5 6 7

RBR-1

f

0 1 2 3 4 5 6 7

MBR-1

2 · f f f 3 · f

0 1 2 3 4 5 6 7

ARKR

2 · f f f 3 · f

0 1 2 3 4 5 6 7

SBR

F0 F1 F2 F3

0 1 2 3 4 5 6 7

RBR

F2 F3 F0 F1

0 1 2 3 4 5 6 7

ARKR+1

F2 F3 F0 F1

0 1 2 3 4 5 6 7

MBR

(a) Fault in Byte 2

0 1 2 3 4 5 6 7

MBR-2

f

0 1 2 3 4 5 6 7

ARKR-1

f

0 1 2 3 4 5 6 7

SBR-1

f

0 1 2 3 4 5 6 7

RBR-1

f

0 1 2 3 4 5 6 7

MBR-1

2 · f f f 3 · f

0 1 2 3 4 5 6 7

ARKR

2 · f f f 3 · f

0 1 2 3 4 5 6 7

SBR

F0 F1 F2 F3

0 1 2 3 4 5 6 7

RBR

F0 F1 F2 F3

0 1 2 3 4 5 6 7

ARKR+1

F0 F1 F2 F3

0 1 2 3 4 5 6 7

MBR

(b) Fault in Byte 6

Figure 7.1.: Fault propagation for a single-byte fault injected between MBR−2 and MBR−1.

7.3.1. Fault Propagation

The propagation of the faulty byte is based on two parts, the propagation through the key
schedule and the propagation through the state of KLEIN.

Key schedule Under the assumption of a random byte fault model, the byte RKR−2
5 is per-

turbed with a fault ∆, as shown in Fig. 7.2. After the fault injection, both halves are rotated
byte-wise to the left by 1. During the Feistel step, the faulted byte spreads to both halves of the
key state RKR−1. As one can see the path chosen avoids nonlinear functions, therefore the bytes
RKR−1

0 , RKR−1
4 are both under the influence of the same fault ∆. Due to the Feistel structure

of the key schedule the fault ∆ of byte RKR
7 is canceled out as a result of the addition of both

halves (∆ + ∆ = 0). During the last iteration of the key schedule from round R to R + 1 the
single-byte fault ∆ passes through one S-box, as a result the byte RKR+1

6 is the only byte in the
key schedule’s state with a fault different from ∆. In total there are four distinct locations during
the last three iterations of the key schedule where the faults are fed into the state of KLEIN, the
four locations are indicated by a lighting symbol under each faulted byte, as shown in Fig. 7.2.

State During the round key addition in round R − 1 the state ARKR−1 is perturbed at first,
with the fault ∆ at indices 0 and 4 as shown in Fig. 7.3. After passing through the S-boxes
the fault ∆ is transformed into the faults f1 and f2. Applying a shift to the state does not
change the faults. As a result of passing one faulty byte on each half (i.e. RBR−1) through
the MixBytes operation, each byte of the state MBR−1 is now influenced by multiples of the
fault either {1, 2, 3} times the original fault f1, f2. After the addition with the round key RKR,
the byte ARKR

3 is now faulted with f1 + ∆. After the application of SubBytes the faults are
transformed into the faults Fi, i ∈ {0, 1, 2, 3M, 4, 5, 6, 7}. The suffix M indicated that the fault
is masked by another fault introduced from subsequent AddRoundKey applications. As a result
of the last AddRoundKey operation, the whole right half of the state ARKR+1 is perturbed again

38

7.3. Attack on the Key Schedule

0 1 2 3 4 5 6 7∆ RKR-2

≪ ≪

0 1 2 3 4 5 6 7∆

+

R
ou

n
d
R
−

1

+ i S S

0 1 2 3 4 5 6 7∆ ∆

E E

RKR-1

≪ ≪

0 1 2 3 4 5 6 7∆ ∆

+

R
ou

n
d
R

+ i S S

0 1 2 3 4 5 6 7∆

E

RKR

≪ ≪

0 1 2 3 4 5 6 7∆

+

R
ou

n
d
R
+
1

+ i S S

p

0 1 2 3 4 5 6 7S(∆)

E

RKR+1

Figure 7.2.: Fault propagation of a single-byte fault in round 10 of the KLEIN-64 key schedule.

39

7. Differential Fault Analysis of KLEIN

0 1 2 3 4 5 6 7

ARKR-1

∆ ∆

0 1 2 3 4 5 6 7

SBR-1

f2 f1

0 1 2 3 4 5 6 7

RBR-1

f1 f2

0 1 2 3 4 5 6 7

MBR-1

f1 3 · f1 2 · f1 f1 f2 3 · f2 2 · f2 f2

0 1 2 3 4 5 6 7

ARKR

f1 3 · f1 2 · f1 f1 +∆ f2 3 · f2 2 · f2 f2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

SBR

F0 F1 F2 F3M F4 F5 F6 F7

0 1 2 3 4 5 6 7

RBR

F2 F3M F4 F5 F6 F7 F0 F1

0 1 2 3 4 5 6 7

ARKR+1

F2 F3M F4 F5 F6M F7M F0M F1M

0 1 2 3 4 5 6 7

MBR

Figure 7.3.: Fault propagation through the state of KLEIN.

with a fault coming from the key schedule. After the application of AddRoundKey the faults
are transformed into the faults which are observable Fi, i ∈ {0M, 1M, 2, 3M, 4, 5, 6M, 7M}. The
disturbance of the whole right half of the state occurs due to the modified variant of KLEIN where
the AddRoundKey and MixBytes operation are swapped. Swapping both functions requires an
application of MixBytes to the round key RKR+1, prior to the execution of AddRoundKey in
round R+ 1.

7.3.2. Fault Exploitation

In order to recover the last round key which is in the case of KLEIN-64 also the master key as
the key schedule is invertible, we have to recover the state ARKR which is KLEIN’s state before
the SubBytes function in round R. After the recovery of ARKR we can calculate the last round
key using the ciphertext C as shown in Eq. (7.4).

RKR+1 = RBR +ARKR+1

RKR+1 = RBR + inverseMixBytes(C)
(7.4)

Since the S-boxes are the only nonlinear elements of KLEIN this will provide us a filtering
mechanism for wrong state hypotheses. As an example of how to derive the required equations
we will demonstrate this for the fault F0 in detail. The fault F0 is defined as the result of

adding the bytes SBR
0 and SB

R

0 . We can express SBR
0 as an application of SubBytes to ARKR

0 ,
respectively ARKR

0 + f1 in the faulted case as shown in Eq. (7.5).

F0 = SBR
0 + SB

R

0

F0 = SubBytes(ARKR
0) + SubBytes(ARK

R

0)

F0 = SubBytes(ARKR
0) + SubBytes(ARKR

0 + f1)

(7.5)

40

7.3. Attack on the Key Schedule

Analogous to F0 we express F1 as shown in Eq. (7.6), both equations for either F0 or F1 depend
on the fault f1, which is not observable.

F1 = SubBytes(ARKR
1) + SubBytes(ARKR

1 + 3 · f1) (7.6)

The equations for F2 and F3 are constructed similarly, but this time the equation for F3 depends
also on the injected fault ∆ as shown in Eq. (7.7).

F2 = SubBytes(ARKR
2) + SubBytes(ARKR

2 + 2 · f1)
F3 = SubBytes(ARKR

3) + SubBytes(ARKR
3 + f1 +∆)

(7.7)

Equation (7.8) is a special case, because it is the only equation set where the faults F4 and F5 are
not overlaid with another fault coming from the key schedule (self cancellation of ∆) therefore
this equation set will be the starting point for the state recovery.

F4 = SubBytes(ARKR
4) + SubBytes(ARKR

4 + f2)

F5 = SubBytes(ARKR
5) + SubBytes(ARKR

5 + 3 · f2)
(7.8)

Equation (7.9) is constructed similarly to Eq. (7.8), this time the equations are influenced by the
fault f2 and a multiple of f2. The faults F6 and F7 can not be observed due to the addition of
the faulty round key RKR+1, the same holds also for the faults F0 and F1.

F6 = SubBytes(ARKR
6) + SubBytes(ARKR

6 + 2 · f2)
F7 = SubBytes(ARKR

7) + SubBytes(ARKR
7 + f2)

(7.9)

As a result of not being able to observe the output faults Fi where i ∈ {0, 1, 6, 7}, we intro-
duce helper variables FiM , which are observable at the output as shown in Eq. (7.10). These
helper variables are composed from the unobservable faults Fi and the addition of the MixBytes
transformed fault which passed through the S-box. Also, we introduce another helper variable
p which represents the actual value of RKR+1

6 before the application of the S-box as shown in
Fig. 7.2.

F0M = F0 + E · (SubBytes(p) + SubBytes(p+∆))

F1M = F1 + 9 · (SubBytes(p) + SubBytes(p+∆))

F6M = F6 +D · (SubBytes(p) + SubBytes(p+∆))

F7M = F7 +B · (SubBytes(p) + SubBytes(p+∆))

(7.10)

Additionally, the relationships between the injected fault and the transformed faults are shown
in Eq. (7.11), which describes the relationships between f1, f2 ,∆ and two state bytes from the
round R − 1. These equations aim to eliminate wrong hypotheses for the injected fault ∆, the
actual values of ARKR−1

0 and ARKR−1
4 are not of interest.

f1 = SubBytes(ARKR−1
4) + SubBytes(ARKR−1

4 +∆)

f2 = SubBytes(ARKR−1
0) + SubBytes(ARKR−1

0 +∆)
(7.11)

Having formulated an equation for every byte of the state ARKR as shown in Eqs. (7.5) to (7.10),
and the relationships between the injected fault and intermediate faults as shown in Eq. (7.11),
we will now provide a description of how to recover the state ARKR−1 in several steps.

41

7. Differential Fault Analysis of KLEIN

7.3.3. State Recovery

To recover the state ARKR the attacker has to solve several sets of equations. At first, the
attacker calculates the fault state F which is composed of the values:
Fi, i ∈ {0M, 1M, 2, 3M, 4, 5, 6M, 7M}. To do so an addition of the correct ciphertext C and the
faulty ciphertext C is transformed with the inverse MixBytes operation as shown in Eq. (7.12).
The position of the faults Fi throughout the state of KLEIN is also shown in Fig. 7.3.

F = inverseMixBytes(C) + inverseMixBytes(C) (7.12)

Throughout the attack’s description we use a shorthand notation for the addition of a correct
S-box with a faulty one, filter(x, f) = SubByte(x) + SubByte(x + f). The SubByte function
refers to the substitution of a single-byte using KLEIN’s S-box. As we are unable to recover the
whole state at once we apply a divide and conquer strategy. Therefore, as a preliminary step,
we define the set P = {0, ..., 255} with p ∈ P which represents all possible values of an eight bit
variable. Furthermore, we assume that each byte of the state ARKR is initialized with P , i.e.,
ARKR

i = P ∀ i ∈ {0, ..., 7}. While one faulty encryption is processed there will also be sets
containing hypotheses for the faults f1, f2 and ∆, in contrast to the sets of state bytes these
sets are only valid while processing one faulty encryption, as the next encryption is probably
under the influence of another fault. The following steps are repeated for all faulty encryptions,
in order to decrease the number of hypotheses in the sets. The attacker starts with the recovery
of ARKR

4 , ARKR
5 , using Eq. (7.8). As one can see the equation set depends on five different

variables, the known value of the faults F4, F5, the unknown values ARKR
4 , ARKR

5 and the
unknown fault f2. The system of equations is then used to reduce the solution space for ARKR

4 ,
ARKR

5 and f2 using an exhaustive search with all unknown variables as search space. The first
step of the attack is shown in Eq. (7.13). Hypotheses that satisfy both conditions are kept as
valid hypotheses.

Tposs = {ARKR
4 ×ARKR

5 × {1, ..., 255}}
Tvalid = {(x, y, f) ∈ Tposs | F4 ≡ filter(x, f) ∧ F5 ≡ filter(y, 3 · f)}
ARKR

4 = { x | (x, y, f) ∈ Tvalid }
ARKR

5 = { y | (x, y, f) ∈ Tvalid } (7.13)

f2 = { f | (x, y, f) ∈ Tvalid }

Now that the attacker has gained knowledge of the fault f2, he can process the second equation
of Eq. (7.11). He iterates through all possible values of ARKR−1

0 ∈ {0, ..., 255} and stores the
valid hypotheses for ∆. The description of the second part of the attack is shown in Eq. (7.14).

Tposs = {f2 ×ARKR−1
0 × {1, ..., 255}}

Tvalid = {(f, x, δ) ∈ Tposs | f ≡ filter(x, δ)}
∆ = { δ | (f, x, δ) ∈ Tvalid }

(7.14)

As a result of having knowledge of ∆ the attacker aims now to recover the state bytes ARKR
2 ,

ARKR
3 to do so the attacker has to solve Eq. (7.7) in the same manner as in the first step, as a

result the attacker gains additional knowledge of the faults f1. The third part of the attack is

42

7.3. Attack on the Key Schedule

shown in Eq. (7.15).

Tposs = {ARKR
2 ×ARKR

3 ×∆× {1, ..., 255}}
Tvalid = {(x, y, δ, f) ∈ Tposs | F2 ≡ filter(x, 2 · f) ∧ F3 ≡ filter(y, f + δ)}
ARKR

2 = { x | (x, y, δ, f) ∈ Tvalid }
ARKR

3 = { y | (x, y, δ, f) ∈ Tvalid } (7.15)

f1 = { f | (x, y, δ, f) ∈ Tvalid }

Now that the attacker has also knowledge of the fault f1 he can process the first equation of
Eq. (7.11) using another exhaustive search to shrink the number of possible hypotheses for ∆,
under the assumption of ARKR−1

4 ∈ {0, ..., 255}. The algorithmic description of the fourth part
of the attack is shown in Eq. (7.16).

Tposs = {f1 ×ARKR−1
4 ×∆}

Tvalid = {(f, x, δ) ∈ Tposs | f ≡ filter(x, δ)}
∆ = { δ | (f, x, δ) ∈ Tvalid }

(7.16)

During the recovery of ARKR
0 ,ARKR

1 , ARKR
6 and ARKR

7 the attacker faces the problem that
the faults Fi, i ∈ {0, ..., 7}\{2, 4, 5} do not take into account that the observable faults from the
output are composed from several faults coming from the key schedule and the state. Also, the
faulted byte p (the MixBytes transformed fault) from the key schedule, influences the right half.
Therefore, the attacker needs to apply the correction from Eq. (7.10) and combine the equations
with Eq. (7.5) and Eq. (7.9). The algorithmic description for the recovery of ARKR

0 ,ARKR
1 is

shown in Eq. (7.17).

Tposs = {ARKR
0 ×ARKR

1 × P ×∆× f1}
Tvalid = {(x, y, p, δ, f) ∈ Tposs | F0M + E · filter(p, δ) ≡ filter(x, f)∧

F1M + 9 · filter(p, δ) ≡ filter(y, f)}
ARKR

2 = { x | (x, y, p, δ, f) ∈ Tvalid }
ARKR

3 = { y | (x, y, p, δ, f) ∈ Tvalid } (7.17)

P = { p | (x, y, p, δ, f) ∈ Tvalid }

The recovery of ARKR
6 and ARKR

7 as shown in Eq. (7.18) is similar to the bytes ARKR
0 and

ARKR
1 .

Tposs = {ARKR
6 ×ARKR

7 × P ×∆× f2}
Tvalid = {(x, y, p, δ, f) ∈ Tposs | F6M +D · filter(p, δ) ≡ filter(x, 2 · f) ∧

F7M +B · filter(p, δ) ≡ filter(y, f)}
ARKR

6 = { x | (x, y, p, δ, f) ∈ Tvalid }
ARKR

7 = { y | (x, y, p, δ, f) ∈ Tvalid } (7.18)

P = { p | (x, y, p, δ, f) ∈ Tvalid }

An attacker has to repeat all the steps mentioned above for each faulted encryption, in order
to reduce the number of hypotheses (state bytes) until it becomes feasible to brute force the
remaining complexity (key space), which will be discussed in the next section.

43

7. Differential Fault Analysis of KLEIN

7.4. Simulation and Discussion

We will now discuss the performance of the attacks. To do, so we will determine the number
of required ciphertexts to reduce the remaining complexity (keyspace) to a certain threshold.
We opted to implement the simulation of the faulty ciphers in Python, and the attacks as C

extension for Python. The attacks were performed on an Intel(R) Core(TM) i7-6700 CPU @

3.40GHz based desktop computer. The amount of RAM required during the attack is negligible,
on average the attack takes five minutes on the computer we used depending on the injected
fault.

7.4.1. Simulation

To evaluate the performance of each attack we performed several simulations, using the following
approach. For every iteration of the simulation we generated 100 faulty ciphertexts using one
random plaintext, 100 was found to be a reliable upper bound for the maximum number of
required faulty ciphertexts. Afterwards we launched the attacks and stored the complexity of
the key space in bits for every processed faulty ciphertext during the attack. The remaining
brute force complexity was defined as power of two of the product of the cardinality of the state
byte sets3. We then repeated the previous step 500 times to get significant data. Additionally,
we have addressed the issue of faults, which do not comply with the required fault model. This
results in an empty set of remaining key candidates for both attacks. To overcome this issue an
attacker can partition the set of faulty ciphertexts and test the subsets separately until he will
find a set containing only ciphertexts according to the fault model. The result of the attack’s
simulation is shown in Fig. 7.4, where one can see the number of faulty ciphertexts on the x-
axis, and the remaining brute force complexity on the y-axis. The three different plots in each
subfigure are either the maximum, mean or minimum complexity. As a result of the simulation
it was found out that the attack on the state requires five faulted encryptions on average to
reduce the brute-force complexity of the last round key from 264 to 232 on average, as shown in
Fig. 7.4a (we opted to attack only on one half of the state therefore the maximum complexity
starts at 232). For the attack on the key schedule it was found out that four faulted encryptions
are required on average to reduce the remaining brute-force complexity of the last round key
from 264 to 232 on average as shown in Fig. 7.4b.

7.4.2. Discussion

As the structure of KLEIN is similar to the AES [FIP01] we will compare the attack on the state
with the attacks of [PQ03; Muk09; TMA11], and the attack on the key schedule with the attacks
of [CY03; AM11; Kim12]. Our attack on the state of KLEIN performs worse in terms of required
faulty encryptions than the attack on the state of AES by [PQ03; Muk09; TMA11]. This can
be attributed to the structure of KLEIN’s round function where a fault injected into one half of
the state does not spread to the other half, in contrast to the AES. But still only four faulted
encryptions (on the same half) are required to deduce the last round key of KLEIN as shown in
Fig. 7.4a. Our attack on the key schedule performs worse in terms of required faulty encryptions
if compared to the attacks of [CY03; AM11; Kim12]. This can be attributed to the key schedule
of KLEIN which is based on a Feistel network where a fault does not create a sufficient avalanche
effect which results in an immediate corruption of a whole half of the key schedule. After only
one faulty encryption the complexity of the key space was decreased on average to 256.9. If we
assume a complexity of 232 to be the upper bound for a brute force attack as in [AM11], this

3i.e. for the attack on the key schedule, complexity = 2
∏7

i=0 |ARKR
i |

44

7.5. Summary

0 2 4 6 8 10

0

5

10

15

20

25

30

Number of faulty ciphertexts

R
em

ai
n
in
g
B
ru
te

F
or
ce

C
om

p
le
x
it
y
2
n

max complexity
mean complexity
minimum complexity

(a) Attack on the encryption (half key).
0 10 20 30 40 50 60 70

0

10

20

30

40

50

60

Number of faulty ciphertexts
R
em

ai
n
in
g
B
ru
te

F
o
rc
e
C
om

p
le
x
it
y
2
n

max complexity
mean complexity
minimum complexity

(b) Attack on the key schedule.

Figure 7.4.: Remaining brute force complexity (64-bit) key length).

results in four faulty encryptions with a complexity of 229.0 on average as shown in Fig. 7.4b.
Additionally, one noteworthy detail of Fig. 7.4b is the maximum complexity which remains 1 bit,
even if we evaluate the simulation up to 100 faulted encryptions, but an increased number of
key hypothesis by a factor of two can be neglected. To justify our upper bound of complexity of
232 for both attacks we will focus on the scenario where KLEIN-64 is used to generate a MAC
[GNL12]. The attacker aims to forge a message within a limited amount of time and resources.
Therefore, we evaluated how long it takes to perform 232 encryptions, using a C implementation
of KLEIN as a result it was found out this takes 4.6 h on average, which seems to be a reasonable
tradeoff between complexity and required faulty encryptions.

7.5. Summary

In this chapter we demonstrated the DFA of KLEIN’s round function, and the first key schedule
based DFA of KLEIN-64. Furthermore, we validated the performance of our attacks by simula-
tion, and evaluated the remaining brute force complexity, with respect to the number of faulted
encryptions. As a result it was found out, an attacker is able to reduce the key space from 64 bit
to 32 bit, with only five fault injections into the round function, and with four faults injected into
a specific byte in the key schedule. Both attacks can be conducted without knowing the actual
plaintext. It is sufficient to know that the same plaintext was processed.

45

8. Persistent Fault Analysis of COLM,
Deoxys-II, and OCB

The most common type of FIA is DFA which exploits differences of correct and faulty encryptions.
Unfortunately the exploitation of differences is also the major drawback of DFA as this requires
an attacker to obtain tuples of correct and faulty encryptions. Furthermore, it is necessary
to inject precise faults which adhere to the algorithm-specific fault model at runtime for every
encryption. In contrast to DFA, PFA as introduced by Zhang et al. only requires a fault
injection with a persistent effect, i.e., the fault is present at runtime [Zha+18]. Due to the
persistent nature of the fault, it is not necessary to perform fault injections at runtime. Since
no faults need to be injected at runtime, this type of attack is particularly suitable for scenarios
where countermeasures prevent frequent fault injection.

State of the art Prior to this work, PFA was only applied to AES-128 by Zhang et al. [Zha+18].
They were also able to successfully attack a fault hardened implementation based on the Dual
Modular Redundancy (DMR) countermeasure, which is a common countermeasure against fault
attacks. Furthermore, Xu et al. were even able to enhance the performance of PFA with their
Enhanced Persistent Fault Analysis (EPFA) approach by the exploitation of leakage in deeper
rounds with the objective to lower the number of required ciphertexts [Xu+21]. Additionally,
Tang and Liu extended PFA to Multiple Faults-Based Persistent Fault Analysis (MPFA) to
deal with the fact that low cost fault injection techniques cf. Guillen et al. [GGS17] usually
are imprecise in terms of achievable fault model [TL22]. MPFA enables an attacker to exploit
persistent faults even several occur at once. Multiple persistent faults at once also lower the
computational complexity and the number of required ciphertexts.

Contribution We present the PFA of three AEAD schemes selected for the final portfolio of
the CAESAR competition. The schemes in the final portfolio which we analyzed for their sus-
ceptibility to PFA are COLM, Deoxys-II, and OCB, which use AES or derivatives as underlying
cryptographic primitive. As COLM, Deoxys-II, and OCB are AEAD schemes we especially
aimed to find possible locations to mount PFA in AEAD schemes. Additionally, we evaluate how
effectively PFA can be applied to COLM, Deoxys-II, and OCB by means of simulation.

Organization The rest of this chapter is structured as follows: Section 8.1 introduces COLM and
the application of PFA. Section 8.2 introduces Deoxys-II and the application of PFA. Section 8.3
introduces OCB and the application of PFA. Section 8.4 summarizes the results for the PFA of
the AEAD schemes COLM, Deoxys-II, and OCB which were obtained by means of simulation.
Section 8.5 provides a summary of the results for the proposed PFA of COLM, Deoxys-II, and
OCB.

47

8. Persistent Fault Analysis of COLM, Deoxys-II, and OCB

8.1. COLM

COLM was introduced by Andreeva et al. in 2016 [And+16]. It is an encrypt-linear-mix-encrypt
mode of AES. There are two variants of COLM: COLM127 primarily designed as a high-speed
cipher, and COLM0 primarily designed as a defense in depth cipher. As COLM was selected to
be part of the final CAESAR portfolio as a defense in depth cipher, we focus on COLM0 and
further simply refer to it as COLM. However, the attack can also be mounted on COLM127.
Operations in COLM are performed in GF (2n). Addition is thereby achieved by bitwise XOR
which is denoted by +. Multiplication of two polynomials a(x), b(x) ∈ GF (2n) is defined as
a(x) · b(x) mod f(x). The result of the polynomial multiplication is reduced with reduction
polynomial f(x) = x128 + x7 + x2 + x+ 1, in GF (2128).

8.1.1. Structure

The encryption of COLM is shown in Fig. 8.1. EK denotes the AES encryption of a 128 bit
data block with a 128 bit key K. The initialization vector IV is calculated as the sum of all AD

M1

M2

Mi

+

+

+

21 · L

22 · L

2i · L

EK

EK

EK

IV

ρ

ρ

...

ρ

..

.

EK

EK

EK

+

+

+

21 · L2

22 · L2

2i · L2

C1

C2

Ci

x1

x2

xi

st1

st2 = st′1

st3 = st′2

sti = st′i−1

sti+1 = st′i

y0

y1

yi

Figure 8.1.: COLM0 Encryption of intermediate message blocks

blocks, where every AD block is first added to a multiple of a mask and then encrypted with EK .
However, the concrete value is not needed for the attack. The masks involved in the encryption
process are defined as L = EK(0) and L2 = 32 · L. The linear mixing function ρ transforms x
and st to y and st′ as shown in Eq. (8.1).

y = x+ 3 · st
st′ = x+ 2 · st. (8.1)

During the encryption the following steps are performed for each message block Mi where i ∈
[1, l − 1]: First, a mask 2i · L is added to each message block Mi. Then, an AES-encryption

48

8.2. Deoxys-II

EK with key K is performed on the result. Afterwards, the linear mixing function ρ is applied,
and another AES-encryption is performed. Finally, the output mask 2i · L2 is added. The
padded encryption and masking of the last message block is not relevant to the PFA and thus
not described in this work.

8.1.2. PFA of COLM

As COLM is using AES as the underlying block cipher, the principles of PFA can be applied.
Our attack targets the encryption stage of COLM. Since COLM adds a mask to the AES output,
PFA can only extract the sum of the last round key k and the current mask 2i ·L2. This sum is
denoted by Ri as shown in Eq. (8.2)

Ri = k + 2i · L2 (8.2)

To overcome this problem two different values of Ri are required: Rl = k + 2l · L2 and Rr =
k+2r ·L2, where l ̸= r and l, r ∈ [1,m+1]. The addition of these two values leads to Eq. (8.3),
which can be solved for L2 as shown in Eq. (8.4), as additions + and multiplications · are
distributive in GF (2n).

Rl +Rr = (k + 2l · L2) + (k + 2r · L2) = (2l + 2r) · L2 (8.3)

L2 = (2l + 2r)−1 · (Rl +Rr) (8.4)

As L2 is known, the last round key k can be calculated as shown in Eq. (8.5).

k = Ri + 2i · L2 (8.5)

Finally, the inverted key schedule of AES is used to calculate the master key K.

Example We use the first and second message block to obtain the key: First, the mask L2 is
calculated as shown in Eqs. (8.6) and (8.7)

R1 +R2 = (k + 21 · L2) + (k + 22 · L2) = 6 · L2 (8.6)

L2 = 6−1 · (R1 +R2) (8.7)

Next, the multiplicative inverse 6−1 in GF (2128) is calculated. Finally, the last round key of EK

can be computed as shown in Eq. (8.8).

k = R1 + 21 · L2 (8.8)

The PFA-based attack, which was applied to COLM0, can also be applied to COLM127 with
minor modifications, during the processing of the masks.

8.2. Deoxys-II

Deoxys-II is a two pass, nonce misuse resistant, tweakable AEAD scheme proposed by Jean et al.
[Jea+16] it provides 128 bit security with respect to both privacy and authenticity. The attack
we present on Deoxys-II only applies to Deoxys-II-128-128, which has a key and tweak size of
128 bit and uses the underlying block cipher Deoxys-BC-256. For the rest of this work we simply
refer to them as Deoxys-II and Deoxys-BC.

49

8. Persistent Fault Analysis of COLM, Deoxys-II, and OCB

P

T

K

XORRC0

+

h′

h′ LFSR2

f

XORRC1

+

h′

h′ LFSR2

f

.....

.....

.....

XORRC13

+

h′

h′ LFSR2

f

XORRC14

+ C

STK0 STK1 STK13

TKk
14

TKt
14

STK14

Figure 8.2.: Deoxys-BC-256 Encryption

8.2.1. Structure

Fig. 8.2 shows Deoxys-BC which is denoted as ET
K(P), where a single encryption is invoked on

the plaintext P with a key K and a tweak T . The round function f of Deoxys-BC is similar to
the round function of AES. A single round of Deoxys-BC is composed of the following operations:
AddRoundTweakey (ATK), the addition of the sub tweakey; SubBytes (SB), a non-linear S-box;
ShiftRows (SR), a row-wise shift; and MixBytes (MB), a matrix multiplication. Consequently, a
single round of Deoxys-BC is defined as f = MB◦SR◦SB◦ATK. The most significant difference
to AES is the key schedule which is replaced by a tweakable round key addition based on the
TWEAKEY framework [JNP14]. During each round of Deoxys-BC, the key K and the tweak
T are updated by a permutation h′ and a Linear Feedback Shift Register (LFSR), specifically
LFSR2 as shown in Fig. 8.2. The definition of the permutation h′ is shown in Eq. (8.9) where
each byte of the state is replaced by another one according to their indices. The definition of the
LFSR LFSR2 is shown in Eq. (8.10) where a single byte x gets permuted on a bit-level where
xi ∀ i ∈ {0, ..., 7} denotes the i-th bit. Furthermore, a round constant RCi is added to the state
during each round of the tweakey schedule as shown in Fig. 8.2.

h′ :


0 4 8 12

1 5 9 13

2 6 10 14

3 7 11 15

 7→

1 5 9 13

6 10 14 2

11 15 3 7

12 0 4 8

 (8.9)

LFSR2 :

(x7 ∥ x6 ∥ x5 ∥ x4 ∥ x3 ∥ x2 ∥ x1 ∥ x0)

7→

(x6 ∥ x5 ∥ x4 ∥ x3 ∥ x2 ∥ x1 ∥ x0 ∥ x7 + x5)

(8.10)

In the first pass of Deoxys-II the authentication is performed. In the second pass the generated
authentication tag is then used as part of the tweak for the encryption.

Tag Generation Figure 8.3 shows the tag generation. The function int() returns the input
as a unsigned integer representation, i.e., a bit string. First, each message block Mi, i ∈ [1, l]
is encrypted with key K and tweak T = 0000||int(i). Then, all encrypted blocks are added
together. We omit the authentication of the AD, as it only adds the additional value Auth to the

50

8.2. Deoxys-II

Auth

M1

E
(0010∥int(1))
K

+

M2

E
(0010∥int(2))
K

+ ...

Ml

E
(0010∥int(l))
K

+ E
(00010000∥Nonce)
K

tag

Figure 8.3.: Deoxys-II Tag Generation

08∥Nonce

E
(1∥tag)
K

+ M1

C1

08∥Nonce

E
(1∥tag+1)
K

+ M2

C2

...

08∥Nonce

E
(1∥tag+(l−1))
K

+ Ml

Cl

Figure 8.4.: Deoxys-II Message Encryption

XOR-tree. Finally, the result is encrypted once more with the nonce being part of the tweak.
The output of the encryption is the tag.

Message Encryption Figure 8.4 shows the encryption. In contrast to the authentication not
the message blocks are encrypted using ET

K , but a zero-padded nonce is encrypted. While the
key K stays the same for all blocks, the tweak T depends on the previously generated tag and
the current block number i ∈ [1, l]. The so encrypted nonce is then added to the message block
Mi to generate the cipher block Ci. This leads to Eq. (8.11).

Ci = Mi + E
1∥tag+int(i−1)
K (08 ∥ N) (8.11)

8.2.2. PFA of Deoxys-II

In the following section we will outline how to apply PFA on either the generation of the tag or
the message encryption.

Preliminaries In order to mount a PFA successfully, it is necessary to have access to the sub-
stitution layer’s output, i.e., the S-box, as shown by the Zhang et al. [Zha+18]. This is not the
case in Deoxys-II, as it performs an additional ATK with STK14 after the last round function
f13 for key whitening. To overcome this problem, it is necessary to apply minor modifications to

51

8. Persistent Fault Analysis of COLM, Deoxys-II, and OCB

TKk
13

TKt
13

S13

h′

h′ LFSR 2

SB SR MB

XOR RC14

+ S14 = C

TKk
14

TKt
14

STK14

Figure 8.5.: PFA on the last round of Deoxys-BC-256.

the standard PFA approach: Fig. 8.5 shows the last steps of the Deoxys-BC. As it can be seen,
they do not match the steps in Fig. 6.2. Therefore, we swap SR and SB notional, such that
f ′ = MB ◦SB ◦SR ◦ATK. As both functions only operate on bytes, f ′ is equivalent to f . Still,
the output of the substitution layer of Deoxys-BC is not directly accessible, because the linear
MB operation is not omitted in the last round, like the MixColumns operation is in AES. Since
MB and ATK are linear functions with respect to GF (2), the order of execution can also be
notionally swapped cf. Section 7.1.6. Therefore, the structure is essentially the same as shown
in Fig. 6.2. However, now we must not add STK14 but the inverseMB(STK14) to counteract
the effect of the shifted MB on the key. Algorithm 3 shows the modified last round. It is behav-
iorally equivalent to the original last round. Furthermore, the effects of the tweakey schedule

Algorithm 3 Modified last round Deoxys-BC

ATK(State, STK13)
SR(State)
SB(State)
STK14 ← TweaKeySchedule
ATK(State, inverseMB(STK14)
Cipher ←MB(State)

must be taken into account: the result returned by the PFA equals inverseMB(STK14). To
reveal the last round key STK14, MB must be applied again. When performing the PFA, not the
ciphertext, but the inverseMB(C) is used as the input to the PFA. Accordingly, not STK14 but
inverseMB(STK14) is revealed, which can easily tansformed to STK14 by applying the regular
MB. To recalculate the key K, the sub tweakey must be split into the round tweak TKt

14 and the
round key TKk

14. The round tweak TKt
14 can be computed from the publicly known tweak T0

by applying h′ and LFSR2 14 times as shown in Fig. 8.2. Now that STK14, TK
t
14, and RC14

are known, the last round tweak TKk
14 can be calculated as shown in Eq. (8.12).

TKk
14 = TKt

14 +RC14 + STK14 (8.12)

This is also visualized in Fig. 8.5: the green colored values are known, the yellow values are under
attack. There are two possible targets in Deoxys-II to mount a PFA: either the tag generation
or the message encryption.

52

8.3. OCB

Checksum

Offset L$

Associated Data

+

EK

+

HASH

Tag

Figure 8.6.: OCB Tag Generation

Attack on the Message Encryption As depicted in Fig. 8.4, each message block can be en-
crypted separately. Thus, a PFA can be mounted on any block, as long as tag, Mi and Ci are
known. In order to access the output of the encryption EK

T , it is necessary to add the message
block Mi to the corresponding cipher block Ci. Thus, in contrast to the original PFA, the PFA
on Deoxys-II is not a ciphertext only attack, as it requires a ciphertext-plaintext pair. After
mounting a PFA, that takes the effects of MB in the last round into account, the key K0 can be
recalculated by applying the inverted h′ and LFSR2 functions 14 times.

Attack on the Tag Generation: Alternatively, the last encryption ET
K , of the tag generation,

marked in yellow in Fig. 8.3 can be attacked. It calculates the tag as shown in Eq. (8.13).

tag← EK(0001 ∥ 04 ∥ N, intermediateTag) (8.13)

In this case an attacker only requires knowledge about the Nonce and the tag in order to mount
the PFA. Therefore, making the PFA on Deoxys-II a tag-only attack again.

8.3. OCB

OCB is a mode of operation for AES proposed by Krovetz and Rogaway [KR16]. For the rest of
this work we refer to the version of OCB which uses AES with a key length of 128 bit by OCB.

8.3.1. Structure

The Structure of OCB can be decomposed into two building blocks: the authentication of the
AD and the message encryption.

Message Authentication Figure 8.6 shows the tag generation. The associated data is authen-
ticated by a HASH function that returns either the hash over the AD, or the zero string 0128 for
empty AD. The message is authenticated by a standard AES encryption EK : First, all (padded)
message blocks are added to form the Checksum. Then, two additional masks (Offsetl and L$) are
added. Next, the result is encrypted by a standard AES encryption EK . Finally, both outputs
are added again to form the tag.

53

8. Persistent Fault Analysis of COLM, Deoxys-II, and OCB

Complete last block i

Pi +Offseti

EK

+ Offseti

Ci

Incomplete last block i

Offset∗

EK

+

P∗

C∗

[1, ..., bitlen(P∗)]

[1, ..., bitlen(P∗)]

Figure 8.7.: OCB Message Encryption

Message Encryption Figure 8.7 shows the encryption of both complete and partial message
blocks. The encryption of a complete message block Mi is based on the addition of a mask
Offseti prior to the application of EK . After the encryption of the message block with EK , the
same mask Offseti is added again to the intermediate result which then forms the ciphertext.
The encryption of a partial message block M∗ differs significantly: For a partial message block,
the ciphertext C∗ is calculated as the addition of the last plaintext block P∗ with the encrypted
mask Offset∗ using EK .

8.3.2. PFA of OCB

PFA can be applied either to the encryption of the last incomplete message block or on the
calculation of the tag, when no associated data is used. Both attacks reduce the attack to the
standard PFA of AES, as proposed by [Zha+18]. Consequently, the input of EK is not needed
for the attack.

Attack on the message encryption Similar to the attack of Dobraunig et al. [Dob+16b], we
also attack the encryption of the last incomplete message block. Since no mask is used when
encrypting the last incomplete message block, this is a convenient attack target. The processing
of the last message block M∗ is shown in Fig. 8.8. The values, that are used for the attack,
are colored in yellow. First, the offset Offset∗ is encrypted with AES. Then, the result of the
encryption is xored with the last plaintext block. If the last plaintext-block and the resulting
cipher is known, the output of the AES is known up to the length of the last plaintext-block.
The original PFA on AES leads to a partial key recovery, where the length depends on the length
of the last message block. The number of remaining key candidates #K can be calculated as
shown in Eq. (8.14)

#K = 2(128−bitlen(P∗)) (8.14)

By choosing a large last block, the brute force effort can be minimized. During our simulations
we assumed bitlen(P∗) = 120, therefore 256 key candidates remain.

Attack on the tag generation The PFA can also be applied to the tag generation, if no AD is
processed by OCB. An empty AD results in adding 0128 to the result of an AES encryption EK

54

8.4. Results

Offset∗

EK

+

P∗

C∗

[1, ..., bitlen(P∗)]

[1, ..., bitlen(P∗)]

Figure 8.8.: PFA on OCB’s last incomplete message block

Table 8.1.: Applicability of PFA

Cipher-Family Version Applicable

Deoxys-II Deoxys-II-128-128 ✓

Deoxys-II-256-128 ✗

OCB with AES-128, all tag-sizes* ✓

with AES-192, all tag-sizes ✗

with AES-256, all tag-sizes ✗

COLM COLM0 ✓

COLM127 ✓

* Attack on Tag-generation: Brute force effort 2128−Taglen

in the last step of the tag generation. Therefore, EK can be attacked with the standard PFA.

8.4. Results

In the following section we will discuss the results of applying PFA to Deoxys-II, OCB and
COLM. We verified the efficiency of the attacks by means of simulation. Due to the reason that
Deoxys-II, OCB and COLM use AES or a slightly modified version of AES as underlying block
cipher, the results are similar to the results of Zhang et al. [Zha+18]. The biggest challenge
during the application of PFA to AEAD schemes is to map the prerequisites of PFA onto the
AEAD scheme under attack. Table 8.1 shows which versions of Deoxys-II, OCB and COLM are
vulnerable to PFA. As there are several functions within an AEAD scheme that can be attacked,
i.e., the tag generation and message encryption, the attacks target different functions. Table 8.2
summarizes the different strategies. We will now outline the results of our simulations at the
example of Deoxys-II, for simplicity reasons we used the analysis strategy where tmin can be
determined and the original value of the S-box v is known, Zhang et al. refered to his approach
as Strategy I [Zha+18]. Furthermore, we assume a single altered S-box entry. Fig. 8.9 shows
the average (1000 attacks) number of candidates for a key byte, for a PFA applied to the tag

generation of Deoxys-II. As one can see in Fig. 8.9 approximately 1600 faulty tags are required

55

8. Persistent Fault Analysis of COLM, Deoxys-II, and OCB

Table 8.2.: Requirements for each Attack Strategy

Cipher Attacked Function Requirements

Deoxys-II Tag-Generation Faulty tags, nonce

Message-Encryption Tags, faulty cipher and

plain-texts

OCB Tag with AD empty Faulty tags

Incomplete Message-Block Incomplete cipher- and

corresponding plain-texts

COLM Message-Encryption Faulty cipher-texts

Table 8.3.: Number of needed encryptions.

Cipher Attack Strategy navg

Deoxys-II Tag-Generation 2139.00

Message-Encryption 2274.83

OCB Tag without AD 2270,58

Last incomplete Message-Block 2248.38

COLM Message-Encryption 2078.28

on average to reveal the correct (NK = 1) key byte, also it becomes clear that there is barely a
difference between the average of 1000 attacks and one particular attack. When attacking the
underlying encryption scheme, which usually processes more than one message block, we can
extract more information about the key per authenticated encryption compared to an attack
on the tag. As an example if ten messages blocks are processed per authenticated encryption,
only a tenth of the number of faulty tags, i.e., 160 is required to determine the correct key byte.
This is shown in Fig. 8.10. The results of our simulations for an attack on the whole key are
summarized in Table 8.3 where one can see the average number of required encryptions or tag
generations navg, with respect to the attack strategy. In order to compare the attack on the tag
generation with the attack on the encryption (which usually encrypts more than one message
block) we encrypted only a single block of data, i.e., 128 bit per authenticated encryption.

8.5. Summary

The fact that PFA can be applied to AEAD schemes with minor modifications should be con-
sidered a threat. This is mainly due to the fact that the fault model assumed by PFA is rather
simple to achieve, i.e., a faulted constant which is processed during a cryptographic operation.
Especially when we consider resource constraint devices where it may be necessary to gener-
ate S-boxes dynamically instead of a lookup table. Furthermore, one of the main benefits when
working with PFA is the fact that no fault injections are required at runtime, which again reflects

56

8.5. Summary

500 1,000 1,500

0

100

200

Faulty Tags

N
k

Possible key candidates averaged over 1000 attacks
Possible key candidates for one attack

Figure 8.9.: PFA on tag generation Deoxys-II - single byte

0 50 100 150 200

0

50

100

150

200

250

Faulty Encryptions

N
k

Figure 8.10.: PFA on encryption Deoxys-II - single byte

57

8. Persistent Fault Analysis of COLM, Deoxys-II, and OCB

the persistent nature of the fault model introduced by the authors of [Zha+18].

58

9. Statistical Ineffective Fault Analysis of
Gimli

Statistical Ineffective Fault Analysis (SIFA) was proposed by Dobraunig et al. [Dob+18b]. The
main advantage of SIFA is the fact that the only requirement is an intermediate state with a
biased distribution, i.e., a distribution that deviates from the uniform distribution. Also, in
contrast to DFA it is not necessary to have tuples of faulty and correct encryptions. SIFA is
based on the idea to combine two different kinds of FIA in order to benefit from the advantages
of both approaches. The two FIAs in question are the so called Ineffective Fault Analysis (IFA)
as proposed by Clavier [Cla07], and Statistical Fault Analysis (SFA) as proposed by Fuhr et
al. [Fuh+13]. The main benefit of IFA is the ability to overcome countermeasures due to the
ineffective nature of the assumed fault model. The main benefit of SFA is the ability to deal
with noisy fault injections, i.e., fault injections which do not adhere to the specified fault model.
Consequently, SIFA can break traditional countermeasures against fault attacks like detection-
based or infection-based countermeasures due to the ineffective nature of the faults required
by SIFA. Also, the robustness against noisy fault injection makes SIFA especially suitable for
scenarios where no precise fault model can be achieved, e.g, faults generated by a low-cost fault
injection setup cf. Guillen et al. [GGS17].

An improvement to SIFA was proposed by Vafaei et al. in order to increase the number
of exploitable faults the bias caused by effective faults is evaluated which is therefore called
Statistical Effective Fault Analysis (SEFA) [Vaf+22]. Furthermore, Vafaei et al. proposed the
combination of SIFA and SEFA which is referred to be Statistical Hybrid Fault Analysis (SHFA)
[Vaf+22]. SHFA can be regarded as adaptive attack strategy which automatically chooses either
SIFA or SEFA according to the achievable injected faults.

State of the art So far the priciples of SIFA were applied to a variety of cryptographic algo-
rithms ranging from block ciphers as AES [Dob+18b] to authenticated encryption schemes like
Ketje, Keyak [Dob+18a] and Ascon [RAD19]. Therefore, SIFA was proven to be a versatile
type of FIA that can be mounted on block ciphers and AEAD schemes as well.

Contributions We present the first SIFA of Gimli [Ber+17]. Gimli was a second round can-
didate of the LWC standardization process initiated by the National Institute of Standards and
Technology (NIST) [NIS17]. Additionally, we verify the efficiency of our attacks by means of
simulation. In addition, we evaluate the influence of the fault model on the rate of ineffective
faults.

Organization Chapter 9 is structured as follows: Section 9.1 presents the NIST-LWC candidate
Gimli. Section 9.2 introduces our SIFA on Gimli. Section 9.3 provides the results of our
proposed attack on Gimli which were obtained by means of simulation. Section 9.4 provides a
summary of the conducted SIFA on the NIST-LWC candidate.

59

9. Statistical Ineffective Fault Analysis of Gimli

9.1. Gimli

Gimli is a suite of cryptographic primitives based on the Gimli-permutation proposed by Bern-
stein et al. [Ber+17]. It participates in the NIST lightweight cryptographic project for authenti-
cated encryption and hash. In this chapter, we focus on the Gimli-Cipher, a family of AEAD
schemes.

9.1.1. Gimli-Permutation

Gimli’s permutation is based on a 384-bit-state. As shown in Eq. (9.1), the state is defined as a
3× 4 matrix: the rows are denoted by a, b, c; the columns are denoted by 0, 1, 2, 3; the round
is denoted by r. For example a111 denotes to the second 32 bit word before the execution of the
11th round.

State :=

ar0 ar1 ar2 ar3
br0 br1 br2 br3
cr0 cr1 cr2 cr3

 (9.1)

Algorithm 4 describes how this state is permuted during 24 consecutive rounds. The rounds are
enumerated in reverse order, i.e, the permutation starts with round 24 and ends with round 1.
During each round, the state is first substituted and permuted (SP-Box). Every second round,
the state is mixed linearly (alternating between either a small swap or a big swap). Finally, every
fourth round, a constant is added.

Algorithm 4 Gimli Permutation
function Permute(a, b, c) ▷ Input State

for r = 24 downto 1 do
for j = 0 to 3 do

ta ← aj <<< 24 ▷ SP-Box
tb ← bj <<< 9
tc ← cj

aj ← tc ⊕ tb ⊕ ((ta & tb)≪ 3)
bj ← ta ⊕ tb ⊕ ((ta | tc)≪ 1)
cj ← ta ⊕ (tc ≪ 1)⊕ ((tb & tc)≪ 3)

end for

if r mod 4 = 0 then
a0||a1||a2||a3 ← a1||a0||a3||a2 ▷ Small Swap

else if r mod 4 = 2 then
a0||a1||a2||a3 ← a2||a3||a0||a1 ▷ Big Swap

end if

if r mod 4 = 0 then
a0 ← a0 ⊕ 0x9e377900⊕ r ▷ Constant Addition

end if

end for
return (a, b, c) ▷ Output State

end function

9.1.2. Gimli-AEAD

Gimli-Cipher is a sponge based AEAD scheme with a rate of 128 bit and a capacity of 256 bit.
The rate matches a, the capacity matches the concatenation of b and c. Fig. 9.1 depicts the four
phases during an AEAD. As the exploited fault is ineffective in respect to the output, the exact
behavior of the AEAD scheme is secondary and a brief description of the four phases is sufficient:

60

9.2. SIFA of Gimli

Nonce128

Key256

P
e
rm

u
ta

ti
o
na

b ∥ c

+

AD1

P
e
rm

u
ta

ti
o
n

ADs

0103 ∥ 1 ∥ 024

+ +

P
e
rm

u
ta

ti
o
n

...

...

+

M1s1

P
e
rm

u
ta

ti
o
n

Mnsn

+ +
0103 ∥ 1 ∥ 024

P
e
rm

u
ta

ti
o
n

...

...

Tag128

Initialization Processing of AD Processing of Plaintext Finalization

Figure 9.1.: Gimli Sponge Construction

First, the state is initialized with a 128 bit nonce, and the 256 bit key as shown in Eq. (9.2).

Nonce: a240 ... a243 ← n0 n1 n2 n3

Key: b240 ... b243 ||c240 ... c243 ← k0 k1 ... k7
(9.2)

Second, the associated data blocks ADi are absorbed in chunks of 128 bit. Subsequently, the
message block key si is squeezed. Depending on the mode, either the ciphertext Ci = Mi⊕ si or
the plaintext Mi = Ci⊕si is generated. In any case, next, the plaintext Mi is absorbed. Finally,
the tag is calculated. Between all phases and absorbed blocks the Gimli-permutation is invoked.
Incomplete blocks are padded. Additionally, there is a domain separation between the processing
of AD, the processing of plaintext, and finalization. For decryption, the tag is not output, but
compared to the received tag. If both tags match, the plaintext is released, otherwise, the empty
string is output.

9.2. SIFA of Gimli

We target the decryption of Gimli because AEAD schemes only release the plaintext if the
computed tag matches the original tag. This behavior can be exploited to distinguish between
effective and ineffective faults, as an effective fault results in a tag mismatch.

9.2.1. Fault Injection Location

For the SIFA of Gimli we evaluated different locations where an induced ineffective fault can
be exploited. Similar to the attacks on Ketje and Keyak [Dob+18a], we use the nonce and a
hypothesis of the target partial subkey kH to calculate an intermediate value of Gimli. In general,
this is possible for any intermediate value during the decryption of Gimli. However, in order to
reduce the number of involved key-bits of the intermediate value and the number of hypotheses
NH , it is desirable to attack the early rounds of the first Gimli-Permutation. Fig. 9.2 shows an
attack mounted during the initialization phase. When we target the first Gimli-Permutation,
we can choose from one of the 24 rounds. The Substitution Permutation Box (SP-Box) of the
Gimli-Permutation poses the best attack target, due to the involved non-linearity. A possible
position to inject an ineffective fault into the SP-Box is colored red in Fig. 9.3. We mount the

61

9. Statistical Ineffective Fault Analysis of Gimli

E
Nonce128

Key256

P
e
rm

u
ta

ti
o
na

b ∥ c

+

AD1

P
e
rm

u
ta

ti
o
n

ADs

0103 ∥ 1 ∥ 024

+ +

P
e
rm

u
ta

ti
o
n

...

...

+

M1s1

P
e
rm

u
ta

ti
o
n

Mnsn

+ +
0103 ∥ 1 ∥ 024

P
e
rm

u
ta

ti
o
n

...

...

Tag128

Figure 9.2.: Fault Injection Location Gimli

arj brj crj

<<< 24 <<< 9

≪ 1

&

≪ 2

≥ 1

≪ 1

&

≪ 3

+ +E +

cr−1j br−1j → biased ar−1j

b̂r−1j = br−1j

Figure 9.3.: Fault Injection Location SP-Box

attack on a biased brj , however a similar reasoning can be applied for a biased arj or crj . The
attacked round is a trade-off between the number of recoverable key-bits nkeybits and number
of possible key hypotheses NH . The earlier the attack, the simpler are the equations for the
intermediate values, but also fewer key bits can be revealed. The later the attack, the higher is
the number of involved key bits nkeybits and thus, more hypotheses NH must be checked. The
number of hypotheses NH grows exponentially with the number of involved key bits nkeybits as
shown in Eq. (9.3).

NH ∼ 2nkeybits (9.3)

In order to determine the exact number of involved key bits the dependencies of an intermediate
value must be traced back to the initialization phase where the state gets initialized using the
known nonce and the unknown key.

9.2.2. Calculation of Intermediate Values

The dependencies of an intermediate value under attack are related to the fault injection location.
We will demonstrate an attack of bit br0,7. Hereby br0,7 denotes the seventh bit of the word br0
during round r. The resulting dependencies of br0,7 with respect to the according injection location
are shown in the second row of Table 9.1.

62

9.2. SIFA of Gimli

r nkeybits Dependencies of br0,7

23 2 br=23
0,7 = k0,31 ⊕ n0,15 ⊕ (n0,14 | k4,6)

br=22
0,7 = k0,21 ⊕ n0,6 ⊕ (n0,5 | k4,29)⊕ k5,15 ⊕ k1,6⊕

22 11 ⊕(n1,20 & k1,3)⊕ c15 ⊕ [(k5,14 ⊕ k1,5 ⊕ (n1,19 &

& k1,2)⊕ c14) | (n0,14 ⊕ k4,5 ⊕ (k4,4 & k0,27))]

21 37 cf. Eq. (9.4)

Table 9.1.: Dependencies of br0,7 for different injection locations

br=21
0,7 = br=22

0,30 ⊕ ar=22
0,15 ⊕ (ar=22

0,14 | cr=22
0,6)

br=22
0,30 = br=23

0,21 ⊕ ar=23
0,15 ⊕ (ar=23

0,5 | cr=23
0,29)

ar=22
0,15 = cr=23

0,15 ⊕ br=23
0,6 ⊕ (ar=23

0,20 & br=23
0,3)

ar=22
0,14 = cr=23

0,14 ⊕ br=23
0,5 ⊕ (ar=23

0,19 & br=23
0,2)

cr=22
0,6 = ar=23

0,14 ⊕ cr=23
0,5 ⊕ (cr=23

0,4 & br=23
0,27)

br=23
0,21 = k0,12 ⊕ n0,29 ⊕ (n0,28 | k4,20)

ar=23
0,6 = k5,6 ⊕ k1,29 ⊕ (n1,11 & k1,26)⊕ c6

ar=23
0,5 = k5,5 ⊕ k1,28 ⊕ (n1,10 & k1,25)⊕ c5

cr=23
0,29 = n0,5 ⊕ k4,28 ⊕ (k4,27 & k0,18)

cr=23
0,15 = n0,23 ⊕ k4,14 ⊕ (k4,13 & k0,4)

br=23
0,06 = k0,29 ⊕ n0,14 ⊕ (n0,13 | k4,5)

ar=23
0,20 = k5,20 ⊕ k1,11 ⊕ (n1,25 & k1,8)⊕ c20

br=23
0,03 = k0,26 ⊕ n0,11 ⊕ (n0,10 | k4,2)

cr=23
0,14 = n0,22 ⊕ k4,13 ⊕ (k4,12 & k0,3)

br=23
0,05 = k0,28 ⊕ n0,13 ⊕ (n0,12 | k4,4)

ar=23
0,19 = k5,19 ⊕ k1,10 ⊕ (n1,24 & k1,7)⊕ c19

br=23
0,2 = k0,25 ⊕ n0,10 ⊕ (n0,9 | k4,1)

ar=23
0,14 = k5,14 ⊕ k1,5 ⊕ (n1,19 & k1,2)⊕ c14

cr=23
0,05 = n0,13 ⊕ k4,4 ⊕ (k4,3 & k0,26)

cr=23
0,04 = n0,12 ⊕ k4,3 ⊕ (k4,2 & k0,25)

br=23
0,27 = k0,18 ⊕ n0,3 ⊕ (n0,2 | k4,26)

(9.4)

A fault injection in the very first round, i.e., after round 24, to attack the bit b230,7 only affects

63

9. Statistical Ineffective Fault Analysis of Gimli

a24 ---- 4-6- --18 ---- ---- ---- ---- ----

b24 -82- ---- ---- --6c ---- ---- ---- ----

c24 2--- --3- ---- c--- ---- ---- ---- ----

a23 ---- c --- ---- ---- ---- ---- ---- ----

b23 4 --- ---- ---- ---- ---- ---- ---- ----

c23 ---- -- 4 - ---- ---- ---- ---- ---- ----

a22 ---- ---- ---- ---- ---- ---- ---- ----

b22 ---- -- 8 - ---- ---- ---- ---- ---- ----

c22 ---- ---- ---- ---- ---- ---- ---- ----

...

Round 23

Round 24 (+ Small Swap)

Figure 9.4.: Dependencies of b220,7

two key bits and therefore, does not offer a big advantage in terms of recoverable key bit this
is shown in the first row of Table 9.1. If the fault is injected one round later, i.e., after round
23, eleven key bits are involved in the computation of the bit b220,7 this is shown in the second
row of Table 9.1. By biasing the intermediate bit b210,7 again a round later, an attacker can
utilize 37 involved key-bits, some of the involved key-bits can only be recovered in the form of
a sum denoted in blue. Involved key-bits lead to a dependency due to the path along which
they properagate through the Gimli-Permutation. The bit wise dependencies after each Gimli-
round are visualized similarly to Dobraunig et al. [DEM15]. Involved bits, i.e., dependencies are
represented by a 1 independent bits are represented by ’0’ or ’-’, e.g., c=1100 means that only
bit 3 and 2 of this nibble are involved in a computation. The position of the key is colored in
green and the nonce in blue. Fig. 9.4 shows, which bits are involved in the computation of the
intermediate bit b220,7 which is colored in red. Even though 11 bits of the key are involved in the
calculation of the intermediate value b220,7, not all of them can be identified distinctively due to
linear dependencies of the involved key bits. Eq. (9.5) shows these linear dependencies. Each of
the three sums are affected by three different key bits. Therefore, only the sums ks1, ks2 and
ks3, but not the individual key bits can be recovered.

ks1 = k0,21 ⊕ k5,15 ⊕ k1,6

ks2 = k5,14 ⊕ k1,5

ks3 = k4,5 ⊕ (k4,4 & k0,27)

(9.5)

Consequently, an attack on the intermediate value b220,7 reveals only the key bits k4,29, k1,3 and
k1,2. However, the key sums can also be used to build hypotheses. This results in an advantage
of 26 compared to brute-forcing each individual bit of the involved key bits. An attack on the
intermediate state b210,7 already involves 37 key bits. Taking linear dependencies into account, the
number of hypotheses is 222. A graphical representation of the dependencies of b210,7 is shown in
Fig. 9.5 Going one round further (b200,7) increase the number of involved key bits to 168. However,
testing 2168 hypotheses is not feasible in a reasonable amount of time. Thus, the attack on the
intermediate states in rounds 22 and 21 offer a reasonable trade-off between the number of
hypotheses and recoverable key bits.

64

9.2. SIFA of Gimli

a24 3-c- 7e2c -3-8 -c-- ---- ---- ---- ----

b24 36-4 1-18 36-- -da4 ---- ---- ---- ----

c24 1c1- 7-3e ---8 4-6- ---- ---- ---- ----

a23 -- 18 4 - 6 - ---- ---- ---- ---- ---- ----

b23 - 82 - -- 6c ---- ---- ---- ---- ---- ----

c23 2 --- c - 3 - ---- ---- ---- ---- ---- ----

a22 ---- c --- ---- ---- ---- ---- ---- ----

b22 4 --- ---- ---- ---- ---- ---- ---- ----

c22 ---- -- 4 - ---- ---- ---- ---- ---- ----

a21 ---- ---- ---- ---- ---- ---- ---- ----

b21 ---- -- 8 - ---- ---- ---- ---- ---- ----

c21 ---- ---- ---- ---- ---- ---- ---- ----

...

Round 22 (+ Big Swap)

Round 23

Round 24 (+ Small Swap)

Figure 9.5.: Dependencies of b210,7

9.2.3. Fault Model

In Section 6.3 the influence of some typical fault models onto the FDT’s was shown in Table 6.1
at the example of a two bit intermediate state. However, the fault models are not limited to 2-bit
but can be applied to words with variable width w. Since we cannot choose the word-width of the
implementation of Gimli but still want to evaluate the distribution of a single bit, it is important
to evaluate, if a byte based fault model also biases each bit separately. For example a fault of
width w = 8 is the equivalent to a byte based fault model. We simulated faults with w = 8
according to the probabilistic bit flip fault model where a flip from 1→ 0 occurs with probability
P1→0 = 2

3 and a flip 0 → 1 with probability P0→1 = 1
3 . This biased bit flip probabilities for a

one bit intermediate value b result in the histogram shown in Fig. 9.6 This behavior is the same
as the FDT shown in Table 6.1d which depicts the two dimensional case. The bias of the 8-bit
intermediate value b220,0−7 caused by an ineffective fault is shown in Fig. 9.7. The nearly normal
distributed values without any fault are colored in green whereas all values leading to ineffective
faults are colored in blue. If one compares the histogram as shown in Fig. 9.7 with the previously
introduced FDTs as shown in Table 6.1, it becomes clear that this distribution can be attacked
due to the deviation from the uniform distribution which is directly recognizable. Based on the
simulations as shown in Fig. 9.7 we decided to use a byte based fault model, i.e., w = 8 during
the explanation of the attack strategy.

9.2.4. Attack Strategy

For the attack it is necessary to generate decryptions under the influence of an ineffective fault.
As a result of Gimli being a AEAD scheme the collected decryptions are all under the influence
of an ineffective fault otherwise there would be no output due to a tag mismatch. After a
sufficient number of decryptions Nd is obtained we calculate the hypothetical intermediate bit

65

9. Statistical Ineffective Fault Analysis of Gimli

0 1
0

20

40

60

80

100

Value of b

R
at
e
of

o
cc
u
ra
n
ce

%

% of intermediate bit b0 without fault

% of intermediate bit b0 with ineffective fault

Figure 9.6.: Histogram of intermediate values b

0x00 0x40 0x80 0xc0 0xff
0

1

2

3

4

5

6

7

8

Byte value vb

R
a
te

of
o
cc
u
ra
n
ce

in
%

% of intermediate values without fault

% of intermediate values with ineffective fault

Figure 9.7.: Histogram of intermediate values b220,0−7

66

9.2. SIFA of Gimli

inter. The calculation of the intermediate bit is done with respect to the possible key hypotheses
and all obtained nonces n. The distribution of inter is then ranked by according to the SEI.
Now that each hypothetical distribution has been assigned an SEI, the correct key hypothesis
can be identified as the one with the largest SEI. The algorithmic representation of the attack is
shown in Algorithm 5. First the hypothetical intermediate values are calculated for all possible
keys. Then for each key hypothesis the SEI of the intermediate distribution is calculated and
stored. If a new SEI is greater than or equal to the old one the corresponding key hypothesis
is used as the new correct hypothesis. After all hypotheses have been processed, the algorithm
terminates. In our attack strategy, it is necessary to choose an appropriate intermediate value

Algorithm 5 SIFA of Gimli
NH ← 2nkeybits

n[Nd]← loadNonces()
maxSEI ← 0
corrHypo ← 0
for i = 0 to NH do

for j = 0 to Nd do
inter[i][j]← calcIntermediateBit(i, n[j])

end for

SEI[i]← calcSEI(inter[i][∗])

if SEI[i] ≥ maxSEI then
maxSEI ← SEI[i]
corrHypo ← i

end if
end for
return corrHypo

to attack as the involved key bits which can be recovered for each intermediate value differ. As
introduced in Section 9.2.2, it is possible to calculate some key bits directly and some key bits
only in the form of a sum. The computation of the intermediate state b220,7 involves 11 key bits
as shown in the dependency equations in Table 9.1. However, 8 key bits influence b220,7 only in
the form of a sum as shown in Eq. (9.5). The computation of b220,7 involves nkeybits = 11 but only
hypotheses on 6 key bits are required as the remaining key bits only appear in the form of a
sum. Therefore, the number of hypotheses NH shrinks from 211 to 26. As a result three key-bits
k4,29, k1,3 and k1,2 can be determined uniquely. The same effect also occurs when we target
the intermediate value at the same position one round later, i.e., b210,7. The computation of the
intermediate state b210,7 involves 37 key bits as shown in the dependency equations in Table 9.1.
Therefore, 15 key-bits k4,26, k4,20, k4,5, k4,4, k4,3, k4,2, k4,1, k1,26, k1,25, k1,8, k1,7, k1,2, k0,26, k0,25
and k0,18 can be determined uniquely. Furthermore, the sum of 22 key bits in the form of 7 sum
can be determined. From the 37 involved key bits we are able to obtain an advantage of 22 bits
compared to the brute force effort over all involved key bits. Due to some ambiguity in the large
equation for b210,7 the SIFA reveals three candidates with the same SEI after 340 decryptions under
the influence of ineffective faults. The ambiguity is caused by some nonce bits that do not differ
when they cause an ineffective fault. Although the described ambiguity is present, there is always
the correct key-hypothesis among those three candidates. By the injection of 8-bit ineffective
fault, hypotheses can be build on 8 intermediate bits that can be evaluated simultaneously with
almost no extra computational effort. With this we get an advantage of at most 8 · 6 = 48 bits
when attacking round 22 and at most 8 · 22 = 176 bits when attacking round 21. In order to
obtain the complete key which is loaded during the initialization phase of Gimli it is necessary
to repeat the proposed attacks with varying intermediate states under attack until all key bits
are recovered.

Due to the fact that we are also able to recover the sums of certain key-bits the real effectiveness

67

9. Statistical Ineffective Fault Analysis of Gimli

of our attack is higher than the stated values which provide the worst case estimation. The
required number of ineffective faults to recover the whole key involves building up an equation
system, which also exploits the knowledge gained from the sums of key bits. As a result of the
complicated estimation for the full key recovery, we opted to use the more intuitive variant (worst
case estimation). The worst case estimation is calculated as the division of the size of the full
key by the number of recoverable key bits.

9.3. Results

Now that we have clarified the prerequisites for the attack, we will present the results. First we
will evaluate the influence of the fault width w on the ineffectiveness rate of the injected faults.
Second the obtained results for the attack on b220,7 and b210,7 are presented. Both attacks exploit
the bias of an ineffective fault with fault width w = 8 bit injected after round 23 respectively 22
under the assumption of a probabilistic bit flip fault model.

9.3.1. Influence of fault width on ineffectiveness rate

SIFA exploits the bias present in an intermediate state independently of the assumed fault model.
In practice, it is usually assumed that an attacker has no information about the FDT which is
caused by the ineffective fault injection. Nevertheless, the only prerequisite for a successful
attack is that an intermediate value follows a biased distribution. The biased distribution is
indicated by the diagonal of the FDT which follows a non-uniform distribution as shown in
Table 6.1. Furthermore, we typically cannot choose the target architecture where Gimli-AEAD
is run on, which can either be a software implementation running on a microcontroller or a
hardware implementation running on a FPGA or ASIC. If we consider the case of a software
implementation of Gimli-AEAD, then the fault width w will be the same as the word with
of the micro-controller. If we consider a hardware implementation of Gimli-AEAD the fault
width w is usually dependent of the implementation. In the following we use the typical fault
models Random And, Stuck at Zero, and Probabilistic Bit Flip exemplary to simulate a fault on a
software implementation, the same reasoning can also be applied to hardware implementations.
Faults are injected during round 23 of the first Gimli-Permutation on state b220 . The width
w of the fault ranges from 1 to 32 bit with w ∈ {1, 4, 8, 16, 32}. By calculating the number of
ineffective faults nineff divided by the number of total encryptions N we obtain the ineffectiveness
rate as shown in Eq. (9.6).

rineff =
nineff

N
. (9.6)

The ineffectiveness rate rineff with respect to the fault width w is shown in Fig. 9.8. As one can
see the ineffectiveness rate rineff decreases almost linearly with the assumed fault width w. The
linear decrease of the ineffectiveness rate occurs independently of the three fault models. The
ineffectiveness rate of the Probabilistic Bit Flip fault model is dependent on the assumed bit flip
probabilities we decided to use this model to provide a worst case estimation. In practice this
means that attacking a 32-bit software implementation of Gimli, should be feasible according
to Fig. 9.8. Especially the Random And model offers a significant rate of ineffective faults at
w = 32 bit. However, due to the very low ineffectiveness rate for the other fault models, a number
of more than 109 total encryptions is required for the attack. For the sake of simplicity further
simulations where done with a fault width w = 8 bit in order to minimize the computational
effort of generating ineffective faults. The computational effort is not based on the size of the
underlying word, but the rate of ineffective faults with respect to the assumed fault width and
the round under attack.

68

9.3. Results

0 5 10 15 20 25 30 35

10−11

10−9

10−7

10−5

10−3

10−1

Fault width w

In
eff

ec
ti
ve
n
es
s
ra
te

r i
n
eff

Random And

Stuck at Zero

Probabilistic Bit Flip

Figure 9.8.: Ineffectiveness rate rineff of different fault models

9.3.2. Attack on b220,7

The attack on the intermediate state b220,7 is able to retrieve the involved key bits correctly after
approximately 180 ineffective faults. The number of required encryptions under the influence of
an ineffective fault is shown in Fig. 9.10 where we used the SEI as statistical metric. In Fig. 9.10
the best wrong hpyothesis is colored red and the correct hypothesis in blue. Furthermore, it is
important to notice, that after the point both are crossing line, the correct hypothesis keeps a
significantly higher value. Figure 9.9 shows the advantage over brute forcing when increasing the
number of decryptions with ineffective faults. The maximum advantage is defined as the number
of unique definable parameters when attacking the single bit b220,7, i.e., the three key-bits and
the three sum-values therefore the maximal advantage of the attack on round 21 can be 6 bit.
The unstable advantage at the beginning is caused by multiple key hypotheses with similar SEI
values, which leads to frequent change of the key hypothesis having the current maximum SEI.
Although the correct key hypothesis is retrieved after 180 ineffective faults, some bits of a wrong
hypothesis still are equal to the corresponding bits in the correct guess leading to an advantage
of less than 6 bits. An attack on b220,7 is able to recover three key-bits uniquely which equals
3

256 ≈ 1% of the whole key.

9.3.3. Attack on b210,7

The attack on the intermediate state b210,7 is able to retrieve the involved key bits correctly
after approximately 340 ineffective faults. Again, the number of required encryptions under
the influence of an ineffective fault is shown in Fig. 9.12 where we used the SEI as statistical
metric. In Fig. 9.12 the best wrong hpyothesis is colored red and the correct hypothesis in blue.
Fig. 9.11 shows the advantage over brute forcing when increasing the number of decryptions with
ineffective faults. The possible advantage when attacking b210,7 is 22-bits at max. Although the
hypothesis with highest SEI changes frequently when using less than 340 ineffective faults, the
correct key-guess has the maximal SEI after obtaining it. An attack on b210,7 is able to recover 15

key-bits uniquely which equals 15
256 ≈ 6% of the whole key.

69

9. Statistical Ineffective Fault Analysis of Gimli

100 200 300 400 500 600
0

2

4

6

Decryptions with ineffective faults

A
d
va
n
ta
ge

in
B
it
s

Figure 9.9.: Advantage - Attack on round 22

100 200 300 400 500 600

0.25

0.3

0.35

0.4

Decryptions with ineffective faults

S
E
I

SEI of best wrong hypothesis

SEI of correct hypothesis

Figure 9.10.: SEI - Hypotheses, round 22

200 400 600 800 1,000 1,200
0

10

20

Decryptions with ineffective faults

A
d
va
n
ta
ge

in
B
it
s

Figure 9.11.: Advantage - Attack on round 21

70

9.4. Summary

200 400 600 800 1,000 1,200

0.25

0.3

0.35

0.4

Decryptions with ineffective faults

S
E
I

SEI of best wrong hypothesis

SEI of correct hypothesis

Figure 9.12.: SEI - Hypotheses, round 21

9.4. Summary

In this chapter we presented the SIFA of the AEAD scheme Gimli (Gimli-24-Cipher). Fur-
thermore, we investigated the influence of the fault width w on the rate of ineffective faults rineff.
The fact that SIFA can be applied to the AEAD scheme Gimli should be considered a threat.
This is mainly due to the fact that the fault model assumed by SIFA is rather simple to achieve,
i.e., a biased intermediate value which is processed during a cryptographic operation. Due to the
ineffective characteristic common countermeasures against fault attacks can be circumvented by
SIFA.

71

10. Algebraic Fault Analysis of SAE

Algebraic Fault Analysis (AFA) as introduced by Courtois et al. [CJW10] can be seen as a
combination of algebraic cryptanalysis and DFA. A necessary prerequisite for AFA is to describe
the cipher as an equation system, where additional equations describe the effects of the fault
injection which then allow to solve the equation system. This transformation is most effective
when applied to sparse systems of equations of low algebraic degree. As a consequence, ciphers
operating on small state sizes and round functions of low algebraic degree are attractive targets
for AFA. A class of ciphers which fulfills the above requirements is referred to as lightweight
cryptography, which typically features small state sizes and operations with low algebraic degree
allowing for area and energy efficient implementations. As the IoT advances, the demand for such
primitives increases as more and more small and low-cost devices need to be able to communicate
securely. To promote this requirement, the NIST initiated the Lightweight Cryptography (LWC)
competition for lightweight authenticated encryption and hash applications back in 2018. This
competition aimed to evaluate lightweight ciphers based on their performance, area, energy, and
power requirements in order to define a new standard for LWC. Consequently, in 2023 the NIST
announced the decision to standardize Ascon, as proposed by Dobraunig et al. [Dob+16a].
Ascon was chosen for standardization because it meets the needs of most use cases where
lightweight cryptography is required. Another promising candidate which made it into the second
round of the LWC competition is the Subterranean 2.0 cipher suite, as proposed by Daemen et
al. [DMR19].

State of the art Courtois et al. [CJW10] proposed AFA and demonstrated the capabilities, at
the example of DES. Zhang et al. successfully applied AFA to DES using a single fault [Zha+13a].
Due to their small states, lightweight block ciphers are frequently attacked using AFA. For
instance LED was attacked in [JKP12; Zha+12; Zha+13b; Zha+13a]. Other block ciphers
which were also attacked by AFA are GOST [Zha+14], Katan [Que14], and Piccolo [Zha+13a].
However, AFA is not limited to block ciphers. Stream ciphers are also susceptible to AFA, e.g.,
Trivium was attacked by Mohamed et al. [MBB11]. Furthermore, hash functions can also be
attacked, as Luo et al. demonstrated with their AFA of SHA-3 [Luo+17].

Contribution In this chapter we apply AFA to the Subterranean Authenticated Encryption
(SAE) scheme in order to extract the secret key, and evaluate how different fault models affect
the performance of our attack, we verify our claims by means of simulation. Furthermore, we
extend the framework proposed by Zhang et al. [Zha+16a] in a hardware-centric manner.

Organisation The rest of this chapter is structured as follows: Section 10.1 introduces the SAE
scheme. Section 10.2 explains the concrete realization of the attack. Section 10.3 explains how the
required fault equations are generated. Section 10.4 explains how the faulty outputs are obtained.
Section 10.5 provides the results of the proposed AFA on Subterranean 2.0. Section 10.6 provides
a summary of the AFA applied to SAE.

73

10. Algebraic Fault Analysis of SAE

10.1. Subterranean 2.0

The Subterranean 2.0 cipher suite was introduced by Daemen et al. [DMR19] which is suitable
for authenticated encryption, hashing, stream encryption, and MAC computation. The Sub-
terranean permutation is optimized for power- and resource efficient hardware implementations
without compromising efficiency for software implementations. Two primitives of the Subter-
ranean 2.0 cipher suite were candidates in the second round of the NIST LWC competition.
The Subterranean-XOF (XOF) cipher was a candidate for the hashing category, while the Sub-
terranean Authenticated Encryption (SAE) scheme was a candidate in the AEAD category. The
SAE scheme is presented here and will then serve as the target for our attack. For simplicity
reasons, we will omit specification details that are not required to understand the SAE scheme.

10.1.1. Subterranean Permutation

The Subterranean 2.0 cipher suite is based on a 257-bit state and a single-round permutation.
Every bit si of the state is denoted by an index i ∈ [0, 256]. In the following we will use a
shorthand notation for the state indices si ≡ si mod 257, i.e., from a mathematical point of view
the last bit of the state is consecutive to the first bit of the state. The permutation consists only
of additions and multiplications in GF(2). Therefore, the operations are directly realized by XOR,
and AND gates. The round function R is composed of four different layers, viz. a non-linear layer
χ, an inversion layer ι, a mixing layer θ, and a transposition layer π, as shown in Eq. (10.1).

R = π ◦ θ ◦ ι ◦ χ (10.1)

The different layers are shown in Eq. (10.2) are described in detail next.

χ : si ← si + (si+1 + 1)si+2

ι : si ← si + δi

θ : si ← si + si+3 + si+8

π : si ← s12i

(10.2)

Non-linear Layer The non-linear χ layer is designed to be a sparse, shift-invariant mapping
of algebraic degree 2. Sparse means, it generates each output bit by using only 3 (in this case)
consecutive state bits. The low algebraic degree is beneficial when implementing countermeasures
like Boolean masking, as they tend to become more complex with increasing algebraic degree
[GMK16].

Inversion Layer The inversion layer ι introduces asymmetry into the permutation, by inverting
only the 0-th bit of the state. δi refers to the Kronecker delta such that δi = 1 if i = 0 and δi = 0
otherwise.

Mixing Layer The mixing layer θ is calculated as the sum ,i.e., XOR of three state bits having
an offset of 0, 3 and 8.

Transposition Layer The transposition layer π places bits that are 12 positions away from each
other next to each other using the mapping si ← s12i. In addition to that, neighboring bits are
moved 150 positions apart from each other. As 150 · 12 mod 257 = 1 it follows s150j ← sj .

74

10.1. Subterranean 2.0

s256 . . . s31 s30 s29 s28 s27 s26 s25 s24 s23 s22 s21 . . . s0

s256 . . . s76 s75 s74 s73 s72 s71 s70 s69 s68 s67 s66 . . . s0

r

χ

ι

θ

π

r + 1

Figure 10.1.: Subterranean 2.0 round function.

Round Function The structure of the resulting round function R is shown in Fig. 10.1. It can
be seen that, state bit s66 at round r + 1 depends on 9 bits of the previous state at round r.
In the χ-layer, there are three AND gates with one inverted input whose output is added to one
unmodified state bit. The results of all three additions are then summed up in the θ step. In
the ι-layer, the 0-th state bit features an additional inverter before summing it up. The π layer
is then realized by permutating the summed output of the θ layer. The permutation of SAE
consists of a single invocation of R. Therefore, the round function is also the permutation. For
the sake of simplicity, not all gates of each layer between the rounds are shown in Fig. 10.1.

10.1.2. Subterranean Authenticated Encryption

Subterranean operates in the so-called duplex -mode [Ber+12a], i.e., the round function is applied
and afterwards, a 33−bit input σ is injected into the state. This σ string consist of input data
up to a length of 32 bits which is 10∗-padded to 33 bits. As a consequence the injection rate is
33−bit. Between each duplex call, 64 bits are extracted from the state. These 64 bits are split
into 32 pairs. Summing up the bits of each pair then forms a 32−bit output z, which is used
as key stream. As introduced in Section 2.2 AEAD schemes process a secret key k, a nonce n,
associated data ad and some plaintext pt as input, which is then processed into a ciphertext ct and
a corresponding tag t. For the SAE scheme, the key k, nonce n and tag t all have the same length
of 128−bit. The associated data ad and plaintext pt or ciphertext ct have variable length which
implies the necessity of padding. It is also possible to process empty messages, i.e., messages
where either and or the length of ad and pt/ct equals zero. The pseudocode representation of the
SAE scheme is given in Algorithm 6, where in the case of encryption the input x is the plaintext
and the output y is the ciphertext, and vice versa in the case of decryption.
The SAE scheme can be divided into 3 different phases, Initialization, Processing, and Finaliza-
tion, which are described in detail below:

Initialization The state absorbs the key k and nonce n, and an initial permutation is applied.
Calling absorb(a,op) splits the input a into 32−bit words and performs consecutive duplex calls
for each such word, until the input a is completely absorbed, if op equals None data is only

75

10. Algebraic Fault Analysis of SAE

Algorithm 6 Subterranean SAE

function Subterranean SAE(op, k, n, ad, x, t′), op ∈ {enc, dec}
s← 0257 ▷ Initialization
s.absorb(k, None)
s.absorb(n, None)
s.blank(8)
s.absorb(ad, None) ▷ Processing
y ← s.absorb(x, op)
s.blank(8) ▷ Finalization
t← s.squeeze(4)
if op == dec && t ̸= t′ then

(y, t) = (ϵ, ϵ)
end if
return (y, t)

end function

absorbed into the state and not extracted. After absorbing the last word of a, an empty duplex
call is performed in case the last input word is not strictly shorter 32 bits. The key and nonce
are 128−bit both and thus, require 4 duplex calls plus one empty call each. This results in
2 × (4 + 1) duplex calls. Finally, the blank(8) call performs another 8 empty duplex calls for
initial permutation.

Processing The associated data ad is absorbed first. Consecutive duplex calls absorb the data
in 32−bit words before an optional duplex call required for padding is performed. Afterwards,
when encrypting or decrypting the input x, the output y is obtained as y = x ⊕ z, where x
is either plaintext pt or ciphertext ct, and z is the key stream. In addition to that, the input
is absorbed into the state, whereas absorb(x, op) makes sure, that the bits being written into
the state correspond to their ct representation. Again, the absorption finishes with an optional
duplex call for padding.

Finalization In order to ensure a strong dependence of the state from the processed input bits,
blank(8) performs another 8 empty duplex calls. Finally, the squeeze(a) function generates the
according tag by performing empty duplex calls and taking bits of the keystream z until enough
are obtained to form the tag t. As the tag is 128−bit, squeezing it requires 4 duplex calls.
Depending on the operation, i.e, encryption or decryption, the cipher then either outputs the
message with corresponding tag t, or respectively verifies the tag t′ and only outputs the message
if the tags t and t′ match.

10.2. AFA of Subterranean SAE

To mount AFA it is necessary to represent Subterranean as an equation system. Consequently,
we will show, how to derive the equations for both the cipher and the fault injections. In this
section we will derive an ANF representation for the 4 phases of SAE, i.e., the initialization, the
data absorption, output generation and tag generation phase. State variables are denoted as sxi ,
where i ∈ [0, 256] refers to the state index and x refers to the point in time, which can be either
a clock cycle p or a variable t denoting a temporal location.

76

10.2. AFA of Subterranean SAE

Initialization During the first phase of the SAE scheme the state s is initialized to zero. This
results in 257 equations introducing the initial 257 state variables.

s0i = 0 , ∀i ∈ [0, 256] (10.3)

Data Absorption The duplex element is the core of the Subterranean 2.0 cipher suite and
performs the round function and σ-injection. As shown in Eqs. (10.1) and (10.2), the round
function only consists of logical AND- and XOR-operations. The construction of an equivalent
ANF representation is therefore straightforward. Only the χ-layer equation must be expanded
to get rid of the parentheses.
For SAT-solving, it is beneficial to keep the equations rather sparse. Splitting up equations with

many terms into multiple equations with fewer terms accelerates the solving process. Therefore,
the round function is divided into two equations. The χ- and ι-steps make up the first equation,
the θ- and π-steps the second one. This is shown in Eqs. (10.4) and (10.5), where the state
variables during round p are processed forming two new sets of intermediate state variables:

st0i = spi + spi+1s
p
i+2 + spi+2 + δi , ∀i ∈ [0, 256] (10.4)

st1i = st012i + st012i+3 + st012i+8 , ∀i ∈ [0, 256] (10.5)

This results in 2 additional equations and variables per state bit, i.e., 514 equations and variables
in total.
The σ-injection is then modeled by the addition of the input bits σi to the previously generated

variables of st1i . One has to keep in mind that, not all bits of the 33−bit input string σ necessarily
correspond to the input message. The last input word per message segment is strictly shorter
than 32−bit and is 10∗-padded to 33−bit. Adding the 0-padding to the state does not change
the value and therefore, does not result in additional equations. As a result, only the bits up to
(and including) the 1-padded bit require additional equations. For simplicity, let σvalid be the
set of all the bits σi that require these additional equations. The σ-injection is then formulated
as an equation system as shown in Eq. (10.6).

sp+1
i =

{
st1i + σi ∀i ∈ {indices of faulted bits} ∧ σi ∈ σvalid

st1i , otherwise
(10.6)

With that, every such equation representing a valid input bit then introduces 2 new variables:
one for the new state bit sp+1

i and one variable representing the value of the input bit σi ∈ σvalid.
Note, that in the case of plaintext injection, a variable representing σi is introduced in the output
generation phase. Similarly, for the 1-padded bit the value is directly assigned such that no extra
variable for σi is introduced. Therefore, for every σi ∈ σvalid, one equation with either 1 or 2 new
variables is introduced. Note that the case sp+1

i = st1i does not result in an additional equation,
as the last updated state variable is st1 anyway.

Output Generation The output generation refers to the generation of the ciphertext ct or
plaintext pt in case of an encryption respectively decryption. During the Data Absorption, the
input x is split into distinct 32−bit words, such that one input word of up to 32 bits can be
processed at a time cf. Algorithm 6. Every output bit yi is then the sum of the input bit xi

and the key stream bit, which itself is the sum of two state bits as shown in Eq. (10.7).

yi = xi + sp124i + sp−124i , ∀xi ∈ x[n] (10.7)

Every processed bit then results in one such equation. For every equation, two new variables
are introduced: one representing yi and one representing xi. This allows to abstract the ANF
generation from the actual input message values.

77

10. Algebraic Fault Analysis of SAE

Tag Generation In order to generate the 128−bit tag, four consecutive 32−bit words from the
key stream must be extracted. Every 32−bit keystream word is obtained as shown in Eq. (10.8)

ti = sp124i + sp−124i , ∀i ∈ [0, 31] (10.8)

Therefore, every bit of the tag adds one additional equation with one new variable for each bit
of the tag ti. This results in 128 new equations and variables in total. After the extraction of
every word, a duplex call is required which adds more equations and variables. Although the
SAE scheme defines a final duplex call after extracting the last part of the tag, there is no reason
to generate equations for that as they do not provide additional knowledge.

Summary of the Equation based Representation The number of equations and variables repre-
senting the cipher are summarized in Table 10.1. In addition to the previously described phases,
the number of equations required for assigning the variables of the known input and output is
added. Every bit of the input and output actually results in one equation setting the corre-
sponding variable to either 0 or 1. This overhead will be eliminated during the preprocessing
step when solving the equation system.

Phase Equation # Equations # Variables

Initialization Eq. (10.3) 257 257

Output Generation Eq. (10.7)1 |x| 2× |x|
Data Absorbtion

(per cycle)
Eqs. (10.4) and (10.5) 2× 257 2× 257

Eq. (10.6) 2 |σvalid| 2× |σvalid| − 1

Tag Squeezing Eq. (10.8) 128 128

Assignments - |n|+ |pt|+ |ct|+ |tag| -

1 |x| size of cipher input, i.e., of plaintext or ciphertext
2 |σvalid| number of valid bits σi absorbed in corresponding duplex calls

Table 10.1.: Equation system overhead for cipher description

10.3. Generation of Fault Equations

Modeling the fault injection adds additional equations and variables. To specify the injected
fault, we will introduce the following parameters:
The fault model fault model which can either be a Guaranteed Bit Flip or a Random Bit Flip.

The temporal fault position p, which refers to the clock cycle in which the fault is injected. The
spatial fault location l which refers to the bit position in the state register where the fault is
injected, such that 0 ≤ l < 257. The fault width w is the number of adjacent bits affected by the
fault injection. In addition to that, it is further distinguished whether l is known or unknown.
The fault injection can then be seen as an addition (GF (2)) of a w−bit wide fault mask to the

state at the bit location l during clock cycle p. According to the fault model, the w−bit vector
is either filled with all 1 in the case of a Guaranteed Bit Flip, or randomly chosen bit values in
the case of a Random Bit Flip.
Zhang et al. introduced a generalized framework to apply AFA on block ciphers [Zha+16a].

They derived fault equations independent of the underlying cipher and it’s operations. In this

78

10.3. Generation of Fault Equations

z0 z256 z255 · · · z5 z4 z3 z2 z1 z0

. . .
m0

m1

m2

m3

m4

m255

m256

Figure 10.2.: Fault differential zi split into multiple blocks mi.

chapter, their way of expressing the fault injection is extended to comply not only with the Ran-
dom Bit Flip, but also with the Guaranteed Bit Flip model. In addition to that, this framework is
modified to model a hardware-centric approach such that it allows for overlapping fault locations
over consecutive fault injections.

10.3.1. Intermediate State Differential

AFA is designed to exploit one correct and multiple faulty outputs in order to deduce the in-
termediate state at the fault injection’s location (temporal, spatial). To do so, the difference
induced by the fault must be modeled. If we let si denote the correct state bits and s′i the
corrupted state bits after the fault injection. The difference between the correct and the faulty
bit is then denoted as zi. With that in mind, the fault differential can be described as:

zi = si + s′i , ∀i ∈ [0, 256] (10.9)

This adds one equation with 2 new variables each in order to represent zi and s′i, i.e., 257
equations and 514 variables in total. The variables for si are already introduced during the
generation of the equation system for the correct computation.
In the next step, the state differential z = z256| . . . |z0 is divided into 257 blocks mi of size

w, which overlap for w > 1. Every block mi can be seen as a possible location for the fault
injection. For software implementations, the processed blocks are usually aligned, as a CPU only
operates on a specific (native) word size. When injecting a fault in a certain clock cycle, only
the processed word might be faulted. However, the Subterranean 2.0 primitives are especially
tailored towards hardware implementations. Thus, it is assumed that all the state operations
occur in the same clock cycle. As a consequence, the fault injection can occur at every possible
state slice which means that the blocks overlap. Figure 10.2 illustrates this division of z into the
blocks mi for the case where w = 2. For blocks that contain bits zi with i > 256, the index is
flipped such that it continues with z0, z1 etc. In the following, blocks which are not affected by
the fault injections are indexed as mj , whereas a block affected by the fault is referred to as ml.

10.3.2. Known Fault Location

To make use of the fault differential z, some information on its characteristic is required. If the
fault location l is known, we can deduce for all correct blocks mj , the corresponding bits zi ∈ mj

are zero. Assuming a fault model based on a Guaranteed Bit Flip, the faulty bits zi ∈ ml are all
1. This is shown in Eqs. (10.10) and (10.11), respectively.
In the case of a Random Bit Flip, however, only the fact that a fault occurred in a certain

block ml is known, but not which bits actually flipped. Therefore, a variable ul is introduced,
that indicates that block ml is faulty. As shown in Eq. (10.12), ul is generated by multiplying
all inverted bits zi ∈ ml that correspond to the faulty block ml. An inverted zi is zero, if the

79

10. Algebraic Fault Analysis of SAE

state bit si flipped, i.e., si ̸= s′i. Multiplying all inverted zi and setting the result ul to zero then
implies that at least one bit is faulty.

zi = 0 , ∀zi ∈ mj (10.10)

zi = 1 , ∀zi ∈ ml, Guaranteed Bit Flip (10.11)

ul =
∏

zi∈ml

(1 + zi) = 0 , Random Bit Flip (10.12)

10.3.3. Unknown Fault Location

For unknown fault locations, none of the zi can be assigned a specific value directly, as it is
unclear which bits of the state differential z are affected by the fault. Again, the equations for
the two fault models are slightly different.

Guaranteed Bit Flip As the fault cannot be located, for every block mi a variable ui is intro-
duced indicating whether block mi is faulty or not. This is achieved by the multiplication of all
variables zk corresponding to the same block mi, as shown in Eq. (10.13). The faulty block ml is
the only block exclusively containing variables with zk = 1. As a consequence, it follows ul = 1,
while for all the fault-free blocks mj it holds uj = 0. The later is because every fault-free block
mj contains at least one variable zk = 0. In Eq. (10.14), all the variables ui are inverted and
multiplied. Inverting means, that for the faulty block ml it holds (1+ul) = 0. For all the correct
blocks mj it holds (1 + uj) = 1. Multiplying all these variables and setting the result to zero
then states that there must be at least one faulty block. Finally, generating all possible pairs of
uiuk and setting the result to zero also states that there is at most one faulty block, as always
one unfaulty block mj with uj = 0 is part of the multiplication. This is calculated as shown in
Eq. (10.15).

ui =
∏

zk∈mi

zk , ∀i ∈ [0, 256] (10.13)

0 =

256∏
i=0

(1 + ui) (10.14)

0 = uiuk , ∀i, k , 0 ≤ i < k ≤ 256 (10.15)

Random Bit Flip Similar to the Guaranteed Bit Flip model, variables ui are introduced to
indicate whether block mi is faulty or not. However, for the random fault, one cannot assume
that all bits in the fault mask are set. Simply multiplying all zk of a block mi would therefore
quite likely result in all ui including ul of the faulted block ml being zero. The only exception
is a fault injection where every bit in ml is faulted, which occurs only with probability 2−w.
To cope with that behavior, the bits zk are first inverted and then multiplied to generate ui,
as shown in Eq. (10.16). As a result, it is ui = 0 as soon as one bit in mi is flipped, whereas
for all unaffected blocks it is ui = 1. With that, the fact that there must be at least one faulty
block can be expressed by multiplying all block variables ui and setting the result to zero. This
is expressed in Eq. (10.17).
The fact that ui = 0 as soon as one bit of a block mi is flipped also implies, that for overlapping

blocks, up to 2w− 1 different blocks are faulted. As a consequence, it is not possible to identify
at most one faulty block. To express this behavior, it is necessary to multiply 2w inverted block
variables and to set the result to zero. This ensures that for every combination of 2w blocks, at

80

10.4. Obtaining Faulty Outputs

least one block mj is fault-free such that (1 + uj) = 0. Equation (10.18) then expresses the fact
that there are at most 2w − 1 faulty blocks.

ui =
∏

zk∈mi

(1 + zk) , ∀i ∈ [0, 256] (10.16)

0 =

256∏
i=0

ui (10.17)

0 = (1 + ui) . . . (1 + uk) , ∀i, k | 0 ≤ i < k ≤ 256 (10.18)

As a consequence of Eq. (10.18), a fault injection with different fault models and information
on the location can be fully described. Comparing Eqs. (10.13) to (10.15) with Eqs. (10.16)
to (10.18) shows, that the structure of the equations is quite similar. A significant difference is
the number of multiplied block variables in order to limit the number of faulty blocks.

10.3.4. Summary of the Number of Fault Equations

The number of equations and variables introduced by the corresponding fault model is summa-
rized in Table 10.2. Let N denote the number of tuples uiuk as described in Eq. (10.15) (respec-
tively (1 + ui)...(1 + uk) as described in Eq. (10.18)). N is calculated as shown in Eq. (10.19).
In our specific case of Subterranean, n = 257 is the number of blocks and k the number of ui

variables that are multiplied. For the Guaranteed Bit Flip model, this would lead to k = 2
independent of the fault width w, because there is only one single faulty block. For the Random
Bit Flip model however, 2w − 1 blocks can be faulty and therefore, k = 2w.

N =

(
n

k

)
=

n!

k! (n− k)!
, 0 ≤ k < n (10.19)

The cipher equations modeling Subterranean 2.0 are of a maximum degree of 2, but generating
fault equations can result in equations of degree up to 257 (e.g. Eqs. (10.14) and (10.17)). As
introduced in Section 6.4, obtaining the solution of an equation system benefits most from sparse
and low-degree equations. The function red(n, d) returns the number of equations required to
substitute an expression of degree n with multiple expressions of degree d. For d = 2, every
equation with a degree greater than 2 is reduced, i.e., the equation is split into multiple equations
of max degree 2. Pairs of variables representing the result of the degree 2 equations are then
multiplied again. The iterative application of this reduction step ensures that the correctness of
the equations is retained while ensuring a low-degree equations. In this chapter, the function
red(n, 2) is applied, to ensure a maximum degree of 2.

10.4. Obtaining Faulty Outputs

The application of AFA makes it necessary to generate an equation system which represents
the cipher- and fault equations. In addition to that, an attacker is required to obtain a single
correct and several faulty outputs for the same input. To obtain faulty outputs, the SAE Python
reference implementation [DMR19] was incorporated into a simulation framework which allows
to simulate the fault injection with different values for p, l, and w. We will now discuss reasonable
choices of these parameters.

81

10. Algebraic Fault Analysis of SAE

Bit Flip Model Equation # Equations # Variables

Both Eq. (10.9) 257 514

Known Fault Location l

Guaranteed Eqs. (10.10) and (10.11) 257 -

Random
Eq. (10.10) 257− w -

Eq. (10.12) w + red(w, 2) + 1 w + red(w, 2)

Unknown Fault Location l

Guaranteed

Eq. (10.13) 257× red(w, 2) 257× red(w, 2)

Eq. (10.14) 257 + 265 257 + 264

Eq. (10.15) 2N N

Random

Eq. (10.16) 257× (1 + red(w, 2)) 257× (1 + red(w, 2))

Eq. (10.17) 265 264

Eq. (10.18) 257 +N(red(2w, 2) + 1) 257 +N × red(2w, 2)

Table 10.2.: Equation system overhead for fault description

10.4.1. The temporal fault position p

The overall number of clock cycles required for the computation of the SAE scheme is data
dependent. It depends on the size of the associated data and the message to either encrypt or
decrypt. In Table 10.3, the data dependent number of clock cycles is shown for an encryption
with respect to the number of processed words. During the first cycle 0, the state is initialized
to all-zero. The key k is then absorbed in 32−bit words ki in four consecutive cycles. In the
5-th cycle, an empty duplex call (padding) is performed, as every message segment must include
one final non-full input word. The same then applies for the nonce n, followed by 8 duplex calls
with empty input which ensure enough diffusion.
Afterwards, starting at cycle p = 19, the associated data is absorbed. It takes at least one

clock cycle for the last, non-full (eventually empty) input word. For every full 32−bit input
word, an additional clock cycle is required. This is denoted by x, which is the sum of the 19-th
clock cycle and the number of full AD-words. In the same way, the number of cycles required
by the plaintext absorption is calculated and denoted by y. It starts at cycle x + 1, requires at
least one cycle for the final non-full word and adds an additional clock cycle for every full 32−bit
plaintext word.
After another 8 empty duplex calls, the tag is squeezed in 4 consecutive cycles. Note, that for

a decryption, the same amount of cycles is required, however the input/output sections of the
plaintext/ciphertext are exchanged. Therefore, 33 cycles are required to compute the tag for a
single, empty input. The earlier the fault is injected, the stronger is the fault propagation and
more bits of the generated output tag are affected. However, this also results in a larger equation
system, because more clock cycles are modeled. Therefore, we opted for a fault injection into the
last cycle before the tag is generated (y + 8 in Table 10.3), which in this case would be p = 27.

10.4.2. The spatial fault location l

The fault location l refers to the state indices at which the faults are injected with l ∈ [0, 256]. A
multi-bit fault affects w consecutive bits, i.e., state bits sl to sl+w−1. To choose a suitable value

82

10.5. Results

Cycle p Function Input Output

0 init() - -

1 . . . 5 absorb(K) k0, . . . , k3 -

6 . . . 10 absorb(N) n0, . . . , n3 -

11 . . . 18 blank(8) - -

19 . . . x absorb(AD) ad0, . . . , adn -

x+ 1 . . . y absorb(PT) pt0, . . . , ptn ct0, . . . , ctn
y + 1 . . . y + 8 blank(8) - -

y + 9 . . . y + 12 squeeze(4) - t0, . . . , t3

x = 19 +#full AD words, y = x+ 1 +#full PT words

Table 10.3.: SAE cycle count for arbitrary AD and PT segment lengths.

for l, two strategies are considered: l can be chosen either randomly or in an ordered fashion. As
the name suggests, for the random fault location a value l ∈ [0, 256] is randomly chosen. In case
of the ordered location, the first computation is faulted at location 0, the second at location 1, the
third at location 2 and so on. Both strategies differ in their effect on the tag if they are injected
in one of the last few cycles as the effect of a fault also depends on the value of the current state.
The difference between the two different fault injection strategies originates from the structure
of the Subterranean 2.0 round function itself. As shown in Section 10.1.1, every state bit is
computed from 9bits of the previous state. Because these bits are partially neighbored, two
fault injections at adjacent locations l will have an intersection in the set of fault-affected bits.
Two faults with a large difference in their location l will affect disjunct state bits and therefore,
propagate faster. This might also cause more linear dependencies and result in more efficient
equation systems, in terms of resources required for finding the solution. Therefore, it is expected
that the random strategy for choosing l benefits the solving process compared to the ordered
strategy.

10.4.3. The fault width w

The choice of the fault width is closely related to the attacker’s capabilities. Not every fault
injection method is capable of injecting faults of arbitrary precision. Therefore, we distinguish
between local and global injection. A local fault injection refers to a fault injection, that target
single bits at defined locations in the state. In [SA03] for example, it was shown how single SRAM
cells can be flipped using laser fault injection. In contrast to local fault injection, global fault
injection may affect many bits with a single fault injection. In the context of the Subterranean
2.0 ciphers, a clock glitch during the computation can be seen as the injection of a 257−bit
random fault. This of course yields less information on the exact fault effect, however is easily
achievable in terms of assumed fault model.

10.5. Results

In the following we will evaluate the performance of our proposed attack on the Subterranean
SAE scheme with respect, to the underlying fault model. The objective of our attack is twofold.
At first we aim to recover Subterranean’s state and after the recovery of the state compute the
secret key based on the internal state. This is achieved by analyzing the difference between the

83

10. Algebraic Fault Analysis of SAE

cipher’s correct and faulty outputs. For the sake of comparability/simplicity, the cipher processes
an empty message during every experiment, if not explicitly stated otherwise. The choice for an
empty message has two reasons: First, an empty message results in the smallest possible equation
system when considering the whole SAE scheme. Processing such a message requires 33 clock
cycles. Second, the 128−bit tag output is the output an attacker is always able to obtain from
the SAE scheme. As a consequence, at least 128 bits of the keystream are available independent
of the processed data.

For every result outlined in the next subsections, 20 instances of CryptoMiniSat were run on
a workstation with 2 Intel Xeon E5-2670 v3 processors running at 2.30GHz base frequency. If
no solution of the equation system is found within 12 h, the experiment was aborted and the
according equation system was labeled as unsolvable.

10.5.1. Fault Model

The assumed fault model is crucial for a successful attack and can be adjusted by several pa-
rameters like fault location l, fault position p and the fault width w. The influence of each is
evaluated in the following.

Fault Location l The fault location l is assumed to be known to the attacker which essentially
models a rather powerful attacker that is capable of injecting multiple faults at predefined parts
of the state.

There are two options for deciding where to inject the faults, i.e., the ordered- and random
location. Ordered location means, that the first fault is injected at state bit s0, the second at s1
etc. The random strategy, however, randomly chooses values for l.

Several experiments were conducted evaluating both strategies for a fault width w = 1 at
position p = 27. The choice of p ensures that the fault affects the generation of the whole tag.
Simulation-based results of this scenario are shown in Fig. 10.3, where Fig. 10.3a depicts the
average solving time depending on the number of fault injections for the ordered fault locations,
and Fig. 10.3b for the random fault locations, respectively. It can be observed, that for more
than 10 fault injections, the solving times only differ slightly. However, with fewer fault injections
the random strategy clearly outperforms the ordered strategy. The solving time for the ordered
strategy increases rapidly with 6 fault injections. With fewer, the system becomes unsolvable
within the predefined 12 h. In contrast to that, the random strategy, does only slightly increase
for these numbers of samples and is even solvable within seconds for 5 fault injections. As
indicated by Fig. 10.3a, the solving time increases exponentially when decreasing the amount
of output samples. Therefore, even for the random location strategy, the system is not solvable
within 12 h for less than 5 samples.

When injecting faults at earlier rounds, the fault propagates further and thus, the number
of wrong bits in the resulting tag increases for both strategies. Nevertheless, the intermediate
state differences still behave differently, as ordered fault injections have an intersecting set of bits
affected by the fault. That this effect still dominates is also shown in Fig. 10.3 for p = 26. It
clearly shows that for both strategies, the solving time increases with fewer samples. In addition
to that, a minimum of 6 fault injections are required for the random strategy and 7 for the
ordered strategy. This shows, that independent of the position p, the random strategy yields
better results. When comparing the subplots of Fig. 10.3, it is also observable that the position
p of the fault injection has an influence on the system’s solving time. The scale for the average
solving time increases when injecting the faults at earlier rounds. The effect of the position p
will be subject in the following experiments.

84

10.5. Results

0 5 10 15 20 25
10−1

100

101

102

103

104

Fault Injections

A
v
g.

so
lv
in
g
ti
m
e
[s
]
lo
g
sc
al
e

p = 27
p = 26

(a) Ordered Strategy

0 5 10 15 20 25
10−1

100

101

102

103

Fault Injections

A
v
g.

so
lv
in
g
ti
m
e
[s
]
lo
g
sc
al
e

p = 27
p = 26

(b) Random strategy

Figure 10.3.: Comparison of ordered and random fault locations for p = 26, p = 27

Fault Position p The choice of the fault position p correlates with the amount of equations
added by each fault injection. The earlier a fault is injected, the more cycles are computed until
the tag is squeezed. Injecting the fault too late has the effect that parts of the tag are already
computed and thus, do not provide any new information. As a result, it seems most beneficial
to inject a fault one cycle prior to generating the first word of the tag, denoted by p = 27. To
verify this assumption, the influence of the fault position p is evaluated for p = 26 to p = 29.
The early fault injection at p = 26 increases the equation system and the effect of the propagated
fault. Nevertheless, the exploitable output and thus, amount of keystream bits stays constant.
Injecting faults at p = 28 means, the first 32-bit word of the tag is the sum of the correctly
generated tag word and the injected fault. For the later p = 29, the first word of the tag is
correct as it was extracted before the fault injection and the second word is again, the fault
added to the correctly computed word. With respect to the results in the previous experiments,
the location l is randomly chosen. The results are shown in Table 10.4. It clearly verifies the
assumption that the optimal cycle for the fault injection is p = 27, i.e., one cycle before the
tag generation starts. Injecting the fault at an earlier cycle then requires one additional output
sample to solve the problem and also increases the solving time. Injecting the fault one cycle
later, i.e., at p = 28 does not require more faulted outputs but significantly increases the solving
time. However, injecting the fault even later at p = 29 clearly amplifies the negative effects.

Despite the increasing effort required to find the solution, injecting faults at early positions
would have additional benefits: If the fault is injected before the nonce, or before the nonce’s last
word is absorbed, an attacker could satisfy the unique nonce requirement of the SAE scheme by
mimicking nonce effects by a fault injection. In addition to that, it would allow the exploitation
of more differences in the keystream bit when injecting the fault before data encryption or
decryption.

Fault Width w The definition of the fault width depends on the attackers capabilities and
resources. Flipping a single bit requires a precise laser injection, whereas a 257−bit fault might
be achieved by glitching the whole circuit during computation. This, of course, is less precise
and can easily be reproduced if an attacker knows at which point in time the computation starts.

In the following experiments, the effect of the fault width w for both the Guaranteed Bit Flip

85

10. Algebraic Fault Analysis of SAE

Fault Injections
Fault Positions

p = 26 p = 27 p = 28 p = 29

4 - - - -

5 - 3.45 3336.91 -

6 3462.58 3.18 245.03 -

8 0.20 1.31 1.48 -

12 2.98 1.64 11.80 -

16 0.82 0.41 1.36 -

20 1.56 3.83 2.31 11391.08

Table 10.4.: Average solving time [s] for different fault positions

Fault Injections
Guaranteed Bit Flip Random Bit Flip

w = 1 w = 4 w = 8 w = 4 w = 8

4 - - - - -

5 3.45 1.63 1.70 6391.27 -

6 3.18 4.81 8.98 396.39 1538.26

8 1.31 3.45 3.12 5.44 313.42

12 1.64 4.78 4.00 2.11 3.99

16 0.41 2.69 1.46 1.14 8.46

20 3.83 8.99 2.40 11.28 0.80

Table 10.5.: Average solving time [s] for different fault widths

and the Random Bit Flip fault model was examined. The fault location l was randomly chosen
and the position p was set to p = 27. Table 10.5 lists the results for a 1−bit fault, a 4−bit and
an 8−bit fault. Note, that for w = 1, both fault models are equal, as there can be only one bit
set in the fault mask.

It can be observed, that the 1-bit fault yields to the best results, i.e., 5 fault injections are
sufficient to solve the equation system within seconds. For the Guaranteed Bit Flip, 5 fault
injections still suffice to extract the key for larger fault widths. However, for the Random Bit
Flip model the time increases significantly when reducing the number of fault injections. For
w = 8, at least 6 fault injections are required to solve the problem within 12 h. That is, because
an increasing width w means that there are more possible realizations of the fault mask. In fact,
there are 2w−1 different fault masks which might have occurred. Thus, guessing the correct one
requires more effort with increasing w.

Similar to previous results, the tables of the Random Bit Flip model are shifted towards an
increasing number of fault injections when modifying w. However, for the Guaranteed Bit Flip
model, all results are in the range of a few seconds and differ only slightly. This clearly shows
the benefit of the a priori knowledge on the fault mask of the Guaranteed Bit Flip. Due to the
fact that the value of the fault is known, the solver does not need to evaluate different fault
masks. From an analytical point of view, the equation for the Random Bit Flip block variable
ul as shown in Eq. (10.12) is of degree w, i.e., if w increases, the equations degree also does.

86

10.5. Results

Fault Injections Avg. time [s]

4 -

5 3.45

6 3.18

8 1.31

12 1.64

16 0.41

20 3.83

(a) Location l known

Fault Injections Avg. time [s]

19 -

20 14,925.87

21 15,683.94

22 16,664.07

23 1,285.66

24 1,953.17

25 6,584.75

(b) Location l unknown

Table 10.6.: Comparison of known and unknown fault location

Unknown Fault Location l The fault model can be further relaxed by assuming that the
location l is unknown, under the assumption that only the position p and width w are known to
the attacker. Respecting the previous results, they are set to p = 27 and w = 1, l is randomly
chosen. As described in Section 10.3.3, an unknown fault location has a significant overhead
compared to the known location. The main reason for that is due to Eq. (10.18). It states, that
there are at least 2w− 1 faulty blocks, which results in 32, 896 additional expressions for w = 1.
A direct comparison of the known and unknown fault location is shown in Table 10.6. The re-

sults for the known fault location as obtained by previous measurements are stated in Table 10.6a,
whereas the results for the unknown fault location are shown in Table 10.6b.
It can be observed, that the unknown fault location yields worse results: Not only the solving

time increases, but also number of fault injections that are required to find the solution within
12 h. In addition to that, the solving time varies significantly. Whereas the solving times for
the known location differ only in a few seconds, it increases up to thousands of seconds for the
unknown location. Due to computational constraints, it is not feasible to evaluate more than
25 fault injections as the number of variables in the resulting equation system would exceed the
capabilities of BOSPHORUS [Cho+19].

Fault Evaluation Summary The above evaluation shows, that the fault parameters have a
significant influence on the complexity of the attack. The optimal fault parameter set turned
out to be a Guaranteed Bit Flip model in conjunction with a known but randomly chosen fault
location l. Furthermore, the fault is applied at the location l, just one cycle before the tag
generation, where the fault width w should be as small as possible, i.e., w = 1. Injecting the
faults one cycle before the output is generated, results in the least amount of unusable overhead.

10.5.2. Non-Empty Message

The previous results focused on the evaluation of the fault model when considering the compu-
tation of an empty message. It has been shown, that injecting the fault at earlier clock cycles
negatively affects the performance of the attack. Another question that might come up is, how
the overall number of clock cycles influences the results. To evaluate this case, an Ethernet frame
with 14 bytes of associated data and 50 bytes of plaintext is used as an example. According to
Table 10.3, the Ethernet frame requires 15 additional duplex calls compared to an empty mes-
sage. The faults of width w = 1 are injected at random but known locations. The fault positions
are p = 42 for the Ethernet frame message and p = 27 for the empty message. Both positions
correspond to the last clock cycle before the tag is generated. A comparison of the Ethernet

87

10. Algebraic Fault Analysis of SAE

Avg. solving time [s]

Fault Injections Empty Message Ethernet Frame

4 - -

5 3.45 2,640.9

6 3.18 1,133.43

8 1.31 368.2

12 1.64 485.32

16 0.41 656.25

20 3.83 212.29

Table 10.7.: Comparison of empty message and Ethernet frame encryption

message and the empty message is shown in Table 10.7. The results show, that the solving time
increases for the Ethernet frame. As the equation system becomes larger with every additional
duplex call, this result has been expected. In addition to that, the amount of output bits an
attacker obtains does not necessarily improve the attacks’ performance. For the Ethernet frame,
50 bytes have been encrypted, which corresponds to 400 bits of available keystream material.
Nevertheless, these bits are equal for both, the correct and faulted encryptions. That is, because
the fault is injected at a later position. As a result, there are no dependencies between the
keystream bits of the faulted and correct computation introduced by the plaintext encryption.
The actual exploitable output remains the 128−bit authentication tag.

10.5.3. Comparison with Trivium

In the following, this chapter’s results are compared with AFA results of Trivium [MBB11].
Trivium’s design rational is similar to the one of Subterranean 2.0, i.e., a lightweight, hardware
tailored stream cipher. Table 10.8 shows a comparison of Trivium and Subterranean 2.0 and
the results of the attacks. Although Subterranean’s internal state is smaller, it features a larger
key size than Trivium. For the results of both ciphers, single bit faults at known positions
and locations are assumed. It shows, that the attack on Trivium required less fault injections
but more keystream bits. Depending on this number of bits, the key was recovered between
a fraction of a second and slightly more than two minutes. For the attack on Subterranean
2.0, it was assumed that only the keystream bits of the 128 bit tag are available to an attacker.
Nevertheless, the key was also recoverable within a few seconds.

Despite the fact that Trivium and Subterranean 2.0 are both lightweight and hardware tailored
stream ciphers, a quantitative comparison of the AFA results shown above must be taken with
care. That is, because not only their internal state or key sizes differ, but also the calculation of
the state update differs. In fact, the Subterranean 2.0 core element updates the whole state in
every clock cycle, where each new state bit depends on 9 previous state bits. However, Trivium
consists of 3 Nonlinear Feedback Shift Registers (NLFSRs). In each clock cycle, one bit per
register is updated by taking 5 previous state bits into account. The remaining bits in the
registers are simply shifted by one position. The difference in the internal structure significantly
affects the number of equations required to describe the cipher. Besides that, the tools used to
conduct the attack differ.

88

10.6. Summary

Trivium [MBB11] Subterranean 2.0

State size [bit] 288 257

Key size [bit] 80 128

ANF/CNF conversion ANF2CNF [AS10] BOSPHORUS

SAT-Solver MiniSat CryptoMiniSat

AFA Results

No. Faults 2 5

No. Key bits 420− 800 128

Solving time [s] 0.127− 138.653 3.45

Table 10.8.: Comparison of Trivium and Subterranean 2.0

10.6. Summary

In this chapter we presented the AFA of the SAE scheme which is part of the Subterranean 2.0
cipher suite. To conduct the proposed attack the SAE scheme was transformed into an equation
system. Furthermore, the equation system was then augmented with additional equations which
model the effect and propagation of the injected fault. Under the assumption of the optimal
fault model, the proposed attack successfully recovers the secret key of Subterranean 2.0 in less
than four seconds using only five fault injections. By analyzing the effects of different fault
parameters, it was shown that the accuracy of the injected error is crucial for the complexity of
the resulting equation system. Precise fault injections allow an optimized system of equations
to be solved in seconds, requiring only a few fault injections. In contrast, when relaxing the
fault model, significantly more time and fault injections are required to find the solution. As we
considered only the exploitation of the tag, evaluating the influence on the number of additional
keystream bits might be of interest for further research.

89

11. FIA Strategy Comparison

We will now compare the Fault Injection Analysis (FIA) strategies used in Part II based on
their key characteristics: The underlying Evaluation Strategy which can either be analytical or
statistical, usually statistical strategies require more samples than analytical ones. The Fault
Model defines the degree to which the attacked algorithm can deviate from its specified behavior.
The Robustness against noisy fault injection, i.e., fault injections which do not adhere to the
specified Fault Model. The inherent capability of the FIA type to overcome Countermeasures. A
comparison of the key characteristics with respect to the FIA strategy is shown in Table 11.1.

Differential Fault Analysis (DFA) A type of FIA which exploits information gained from the
difference between a correct and faulty encryption is DFA. The Evaluation Strategy of DFA is
purely analytical and therefore prone to failure if the physical fault injection mechanism may
cause noisy fault injections. Consequently, the Robustness of DFA is rather low. Furthermore,
the Fault Model is rather strict and usually specific to the algorithm under attack, e.g., the
processing of AES is byte-wise. Consequently, most DFAs of AES assume a single byte fault or
a fault of multiple bytes as Fault Model.

Persistent Fault Analysis (PFA) A type of FIA which exploits information gained from the
manipulation of constants which are used during an encryption is PFA. The Evaluation Strategy
of PFA is either analytical or statistical and therefore more resistant against failure if the physical
fault injection mechanism may cause noisy fault injections. Consequently, the Robustness of PFA
is higher than the one of DFA. Furthermore, the Fault Model is rather strict and as usual specific
to the algorithm under attack but only a single fault injection with a persistent fault is required.
Also, the persistent nature of the Fault Model enables an attacker to overcome countermeasures
which are based on, e.g., either infection or detection.

Statistical Ineffective Fault Analysis (SIFA) A type of FIA which exploits information gained
from ineffective faults, i.e., faults that cause a behavior which does not deviate from a correct
encryption is SIFA. The Evaluation Strategy of SIFA is purely statistical and therefore robust to
failure if the physical fault injection mechanism may cause noisy fault injections. Consequently,
the Robustness of SIFA is very high. Furthermore, the Fault Model is rather easy to achieve as
the only assumption is that the distribution of an intermediate value is not uniform. Also, the
ineffective nature of the assumed faults enables an attacker to overcome many countermeasures
which were proposed prior to the introduction of SIFA.

Algebraic Fault Analysis (AFA) A type of FIA which exploits information gained from correct
and faulty encryption is AFA, the approach is similar to DFA, but the effects of a fault injection
are exploited by suitable tooling. The Evaluation Strategy of AFA is purely analytical and there-
fore prone to failure if the physical fault injection mechanism may cause noisy fault injections.
Consequently, the Robustness of AFA is rather low. The biggest advantage of AFA is the way
how the key is recovered as this is done automatically by specialized tools.

91

11. FIA Strategy Comparison

Table 11.1.: FIA Strategy Comparison

Characteristic

Analysis Evaluation Strategy Fault Model Robustness Overcome Countermeasures

DFA analytical − − −
PFA analytical/statistical + + +

SIFA statistical ++ ++ ++

AFA analytical 0 0 −

92

Part III.

Solutions

93

12. Overview

The protection of an implementation against potential attacks makes it necessary to implement
appropriate countermeasures. These countermeasures can be categorized into three types: Coun-
termeasures against SCA, countermeasures against FIA, and combined countermeasures which
provide protection against SCA and FIA simultaneously. In the following we will provide an
overview of the three different types of countermeasures.

12.1. Side-Channel Analysis Countermeasures

Resistance against SCA is typically achieved using masking schemes, a common approach to
prevent SCA is boolean masking [ISW03] or Threshold Implementation (TI) [NRR06].

A rather versatile masking approach is Domain-Oriented Masking (DOM) as introduced by
Gross et al. [GMK16]. DOM is designed to be a scalable, secure masking scheme which is
also efficient in terms of required randomness [GMK16]. In addition to that, it prevents leakage
caused by glitches by inserting additional registers. In DOM, an arbitrary value x is split into a
number of shares each corresponding to a different share domain. Share domains are independent
of each other, e.g., shares from a domain A are independent of shares of a domain B. Therefore,
for a two share implementation Eq. (12.1) holds.

x = Ax +Bx and y = Ay +By (12.1)

As for conventional masking schemes, d-th order security is achieved by d+ 1 shares. In DOM
values are split into d+ 1 share domains. As linear functions only process a single share, they are
typically easy to implement. However, non-linear functions require multiple shares and therefore
cross the borders of different share domains, i.e., a value is calculated based on values from
different domains. Having two shared values x and y as shown in Eq. (12.1), a multiplication of
x and y results in the terms as shown in Eq. (12.2).

z = x× y

= AxAy +AxBy +BxAy +BxBy

(12.2)

All terms in Eq. (12.2) are uncritical as the terms either contain only shares of a single domain or
shares of different domains but from the different values x and y. However, considering the case
where x = y, the cross domains terms AxBx and BxAx are identical which results in a violation
of the independence property, i.e., the cross domain terms cancel each other out. Therefore, a
random term R is added to terms which cross domains as shown in Fig. 12.1. The additional
register stage after the share addition is required to prevent glitch based leakage.

A reason that makes DOM very efficient in terms of randomness is that in case the inputs x
and y are independently shared, the same random share can be used to refresh both cross-domain
terms AxBy and BxAy.

95

12. Overview

Domain A Domain B

× ×

+

FF

+

× ×

+

FF

+

Ax Ay By Bx

R

Az Bz

Figure 12.1.: DOM-indep multiplier GF(2)

12.2. Fault Injection Analysis Countermeasures

Being able to systematically fault the computation and collect the corrupted outputs of a cipher
is a mandatory precondition to apply FIA. As a consequence, a cipher can be protected against
FIA, by ensuring that an attacker has no access to faulted outputs. Such countermeasures are
traditionally divided into three approaches: Detection, Infection, and Error-Correction.

Detection This kind of countermeasure tries to detect faults occurring during the computa-
tion. This is usually accomplished by implementing some kind of redundancy mechanisms. For
instance, when computing a result twice and comparing the outputs, a fault in one of the com-
putations would be detected because the results differ. If two computations are equally faulted,
the attack cannot be detected. In that case, at least three redundant computations are required
to detect the attack. In fact, a result must be computed k + 1 times in order to detect up to
k faulted computations. In [BE+04], Bar-El et al. provide an overview of some mechanisms to
implement detection-based countermeasures. If a fault is actually detected, the output can be
discarded and appropriate steps like a system reset can be initiated.

Infection This kind of countermeasure typically “infects”, i.e., randomizes the output if a fault
occurs. The randomization ensures that the faulted output is useless for an attacker. An advan-
tage of an infection-based approach is that no comparison between different computation results
is required. In addition to that, it overcomes the problem that faulting multiple redundant
computations will pass the final check before outputting the result. For example, Gierlichs et
al. showed a mechanism based on dummy rounds to propagate the fault and infect the cipher’s
state in case a fault occurred [GST12].

Error-Correction This kind of countermeasure is typically implemented on a bit-level, i.e., every
bit of a cipher’s internal state is encoded into a codeword. As a result, every fault will be corrected
as long as the fault injection does not exceed the code’s error correction capabilities. The simplest
form of error correction based countermeasure is a Error Correction Code (ECC) built from a
repetition code, where each bit of the state is repeated 2k + 1 times to form a codeword. This

96

12.3. Combined Countermeasures

code is then capable of correcting up to k faults per bit. As a result, an attacker can only obtain
correct outputs and thus, cannot exploit faulty outputs nor distinguish between effective and
ineffective faults. Consequently, a countermeasure based on ECC to defend against SIFA was
proposed by Breier et al. [Bre+19a].

12.3. Combined Countermeasures

To this date, several combined countermeasures have been proposed that aim to provide resis-
tance against both SCA and FIA. Most of them combine a masking scheme against SCA with
either a detection or an infection mechanism against FIA. In the following, a brief description
on state-of-the-art countermeasures is provided.

De Cnudde et al. [DN16] extended the Private Circuits-II scheme of Ishai et al. [Ish+06], we
will refer to this countermeasure as PC-II+. The main idea behind this countermeasure is to
use a threshold implementation for side-channel resistance in an encoded form. That is, every
shared value is encoded using a Manchester encoding, i.e., a shared value x will be encoded to
a two-bit codeword (x, x), such that there is only two valid codewords, i.e., (1, 0) and (0, 1).
A flipped bit caused by an attacker would result in an invalid codeword which then would be
detected. Additional error cascading gates can be implemented to invalidate the output such
that an attacker does not obtain information on the faulted ciphertext.

A similar approach was proposed in the hardware-tailored combined countermeasure ParTI
introduced by Schneider et al. [SMG16]. ParTI uses threshold implementations against SCA
and Error Detection Codes (EDCs) for fault detection. As the name indicates, the parity part
of an input is generated in a first step. Successively, the expected output of the target function
is calculated in a so-called predictor. This predictor is designed to be identical to the target
function, however with a parity de-/encoder before and afterwards. The output of the predictor
is then transformed to an error vector in a check-and-combine step to detect a potential fault.

Reparaz et al. proposed CAPA in 2018, a countermeasure against physical attacks stemming
from the domain of Multi Party Computation (MPC) [Rep+18]. According to the CAPA coun-
termeasure, every sensitive value x is accompanied by an information theoretic MAC tag τx.
Both, the sensitive value x and the corresponding MAC tag τx are transformed into a shared
representation using boolean masking. In addition to that, the whole circuit is split up into
different parts, so-called tiles where each tile stores and processes only one share. However, some
operations require multiple shares. Therefore, a protocol is implemented that broadcasts locally
randomized versions of the shares such that every tile can operate on all the shares. Due to this
broadcasting, each tile can check the correctness of the MAC tag and thus, errors are detected as
long as at least one tile is not faulted. CAPA provides provable security, however at a large cost
of required randomness. That is because the operations (beaver -operations) require auxiliary
data, so-called beaver -tuples.

Another countermeasure which uses information theoretic MAC tags is Masks and Macs in-
troduced by De Meyer et al. in 2019 [De +19]. The countermeasure combines boolean masking
against SCA with information theoretic MAC tag checking and infection against Fault Analysis
(FA). Every sensitive value x is accompanied by an information theoretic MAC tag τx, both
present in shared form. All the operations in the cipher are performed on both the shared data
and MAC tag. That allows to perform an error check on the computed MAC tag and the desired
MAC tag. If they differ, an error occurred and a random mask is added to infect the cipher
output. Due to the nature of the MAC tags, it’s difficult to infect both the data and the MAC
tag such that both correspond to each other.

Furthermore, the countermeasure introduced by Breier et al. [Bre+19b] which directly ad-

97

12. Overview

dresses SIFA can be seen as a more general approach of countering SIFA. The basic principle is
to use ECCs such that an attacker cannot distinguish between correct and faulted ciphertexts.
This prevents to collect a set of biased ciphertexts. Although error correction codes are inher-
ently limited in the number of faults they can correct, the authors state that this is not a big
concern against SIFA. Injecting multiple faults in the same byte would lower the ineffectivity
rate and thus automatically throttle the performance of SIFA.

Table 12.1 summarizes the state-of-the-art countermeasures and states the underlying principle
and the resistance against different types of attacks, i.e., SCA, SIFA-1, and SIFA-2.

Countermeasure Principle Protection against

PC-II+
[DN16]

Masking combined with encoding of masked shares.
Invalid codewords invalidates output.

SCA (masking)
SIFA-1 (masking)
Effective Faults (Encoding)

ParTI
[SMG16]

Threshold implementation combined with
Error-Detection-Code (EDC).

SCA (masking)
SIFA-1 (masking)
Effective Faults (EDC)

CAPA
[Rep+18]

Masking is combined with MAC tags in a MPC related
manner. The circuit is split in different tiles where each
tile works on a single share of sensitive value and tag.
Intermediate shares are broadcasted and every tile
checks correctness.

SCA (masking)
SIFA-I (masking)
Effective Faults

Masks & Macs
[De +19]

Masking combined with information theoretic MACs for
infection (Harder to inject faults that result in valid
MAC corresponding to faulted ciphertext). Can be
extended to include detection mechanism.

SCA (masking)
SIFA-1 (masking)
Effective Faults (MAC tag)

Encode
[Bre+19b]

Error correcting gates to prevent effectiv, ineffective
faults.

SIFA-1 (ECC Gate)
SIFA-2 (ECC Gate)
Effective Faults (ECC Gate)

Toffoli
[Dae+19]

Use invertible building blocks, based on Toffoli gates
where a fault during the computation does not cancel
out.

SCA (masking)
SIFA-1 (masking)
SIFA-2 (Toffoli Gates)
Effective Faults (Toffoli
Gates)

Transform-and-
Encode
[Sah+20]

Transform state into another independent state (can be
realized by masking). Apply error correction on
transformed state.

SCA (masking)
SIFA-1 (masking)
SIFA-2 (ECC)
Effective Faults (ECC)

RS-Mask
[RAD20]

Transform state into another independent state (can be
realized by masking). Apply infection mechanism on
transformed state.

SCA (masking)
SIFA-1 (masking)
SIFA-2 (infection)
Effective Faults (infection)

Table 12.1.: Overview of Countermeasures and their Resistance against SIFA, and SCA.

12.3.1. Comparison of Combined Countermeasures

PC-II+ [DN16] makes use of masking and encodes the shares to detect invalid codewords. As-
suming a secure masking scheme, protection against SCA and SIFA-1 is provided. In addition to
that, effective faults changing the ciphers output are detected by the encoding. However, SIFA-2
is expected to be applicable, as the corruption of functions is not specifically covered by PC-II+.

ParTI [SMG16] follows a similar approach, i.e., using TI in combination with EDC, the same

98

12.3. Combined Countermeasures

arguments as stated for PC-II+ apply.

The authors of CAPA [Rep+18] made use of masking in combination with information theoretic
MAC tags to make the infection algorithm more robust to fault attacks. Again, a secure masking
scheme (not leaking information on sensitive values) prevents SCA and SIFA-1. The fact that
the difference in actual MAC tag and desired MAC tag is used for infection, protects also against
effective faults. However, comparing the faulted, randomized output with a correct output still
allows collecting biased ciphertexts under the influence of SIFA-2 faults.

As the combination of masking and information theoretic MAC tags is also chosen in Masks
and Macs, the same assumptions on protection capabilities hold.

The approach of Breier et al. [Bre+19b] is based on the idea of error-correcting-gates which
allow the correction of effective faults. Due to that, an attacker does not really know whether
the fault was effective or ineffective. This makes this classification superfluous and an attacker
cannot collect biased ciphertexts. This inherently protects against both types of SIFA. However,
an attacker is not limited to the ECC capabilities of correcting a certain amount of errors, as
mentioned in [Sah+20]. As a result injecting multiple faults in the same codeword would lower
the ineffectivity rate and thus automatically throttle the performance of SIFA.

12.3.2. Countermeasures against SIFA-2

All the countermeasures discussed so far do not provide protection against SIFA under the
assumption of the SIFA-2 fault model. As the main focus of our proposed countermeasure lies
on the resistance against SCA, SIFA-1, and SIFA-2 we will now introduce the state-of-the-art
countermeasures which fulfill these requirements, i.e., the last three entries of Table 12.1.

The first countermeasure proposed by Daemen et al. [Dae+19] introduces two methods to
protect a cipher against SIFA. Daemen et al. showed that although a masked implementation is
used, an ineffective fault in a single share can depend on a native value. This dependency is caused
by one share affecting multiple non-linear gates. They show one method to counter SIFA by using
building blocks based on invertible gates so called Toffoli gates, such that faults manipulate only
a single operation or share. Therefore, faults can either be detected or otherwise an incomplete
part of shares is influenced so an attacker can not get information from an ineffective fault. The
second method proposed by Daemen et al. is based on the idea to detect faults in shares affecting
multiple non-linear gates. As a result, resistance against m-fault injections SIFA, when using
m+ 1 shares can be achieved with higher implementation cost.

The second scheme which fulfills these requirements is Transform-and-Encode as proposed by
Saha et al. [Sah+20]. The idea is to transform the internal state into a computing domain
such that a bias injected by faults does not affect the original state. This transformation can be
realized by classical masking schemes. The approach has the benefit of providing side-channel
resistance as well. However, if a fault is injected directly in an operation and not in the state, this
transformation is not sufficient. Therefore, Transform-and-Encode makes use of error correction
in order to prevent an attacker from distinguishing between correct and ineffectively faulted
cipher outputs.

The third scheme which fulfills these requirements is called RS-Mask introduced by Ramezan-
pour et al. [RAD20]. The main idea of this protection scheme is to map intermediate states to
a so-called random space (RS). Computations are then carried out on the random space which
provides inherent protection against SCA as the underlying principle of RS-Masks is essentially
masking. After the computation, the intermediate state is transformed back into the former state
space. The random space transformation also takes care of the randomization of data which is
also used as countermeasure against SIFA.
Both approaches have in common that to overcome SCA and SIFA it is necessary to combine a

99

12. Overview

countermeasure against SCA with a mechanism to overcome SIFA, in both schemes masking also
hinders SIFA-1. Transform-and-Encode [Sah+20] hinders SIFA-2 using error correction based on
duplication codes, in contrast RS-Mask [RAD20] uses intrinsic redundancy as an infection based
countermeasure which randomizes the output of the computation.
A summary of the countermeasures, and their underlying principles is shown in Table 12.1.

Furthermore, a comparison to our approach is shown in Table 13.1. From now on we will only
focus on the last two rows of Table 12.1, as they are the only ones which fulfill the requirement
to protect against SCA, SIFA-1, SIFA-2, and provide numbers1 for a protected implementation
which we can compare our proposed countermeasure with. One noteworthy detail of Table 12.1
is that SIFA countermeasures which hinder SIFA-1 by masking schemes, are inherently protected
against SCA as well.
Every countermeasure shown in Table 12.1 which uses some kind of masking scheme can be

seen as a possible instantiation of the Transform step of Transform-and-Encode. Furthermore,
every countermeasure which uses some kind of ECC can be seen as a possible instantiation of the
Encode step of Transform-and-Encode. Therefore, Transform-and-Encode is the abstract gener-
alization of the design rationales behind every countermeasure which should provide simultaneous
protection against SCA, SIFA-1, SIFA-2, and effective faults.
Consequently, we will also use the principles of Transform-and-Encode as a starting point for

the design rationale of DOMREP cf. Section 13.1.

1Unfortunately [Dae+19] doesn’t provide concrete numbers for an implementation.

100

13. DOMREP a Combined Countermeasure
against FIA and SCA

As previously introduced in Chapter 12 the protection of cryptographic implementations requires
suitable countermeasures. Subsequently, combined countermeasures have become a necessity for
protection of an implementation against both kind of attacks. Recently, the NIST performed
a standardization of LWC. One of the second round candidates of this standardization process
was Gimli. Therefore, we selected Gimli as a proof of concept for our proposed combined
countermeasure Domain Oriented Masking with REPetiton codes (DOMREP).

Contributions: We propose DOMREP, a combined countermeasure against SCA and FIA. In
contrast to state-of-the-art combined countermeasures DOMREP provides independently scal-
able arbitrary-order protection against SCA and FIA including SIFA. We present a secured
hardware architecture of Gimli protected by DOMREP. We evaluate the overhead created by
DOMREP for Gimli with parameters of protection for different orders of side-channel and fault
attacks and compare the principles to the state of the art. Furthermore, we verify the resistance
of our Gimli implementation against SCA using TVLA, and the resistance against SIFA by
fault emulation. In addition, we provide a guideline of how to perform error correction in the
presence of an attacker. In DOMREP we take this problem into account by adding redundancy
to the error correction step itself. Also, we consider three different attacker models which require
different error correction strategies. Furthermore, we provide guidelines how and where to apply
DOMREP.

Organization: The rest of this chapter is structured as follows: Section 13.1 explains our design
rationals for the construction of DOMREP. In Section 13.2 we introduce the AEAD schemeGimli
briefly. Section 13.3 provides the results of the application of our proposed countermeasure on
Gimli. Finally, Section 13.4 provides a summary of our proposed countermeasure DOMREP.

13.1. DOMREP Design Rationales

Subsequently, to the discussion of state-of-the-art countermeasures which also provide resistance
against SIFA in Section 12.3.2, we will outline the design rationales of our proposed counter-
measure Domain Oriented Masking with REPetiton codes (DOMREP). We will also introduce
the concept of orthogonal protection which combines countermeasures against SCA and FIA
simultaneously. The main reasoning behind a combined countermeasure which protects simul-
taneously against SCA and SIFA can usually be reduced to the general approach to combine a
masking scheme with a suitable error correction scheme [Sah+20; RAD20]. Therefore, we opted
for a similar approach, i.e., Domain-Oriented Masking (DOM) in conjunction with Repetition
Codes (REPs).

101

13. DOMREP a Combined Countermeasure against FIA and SCA

13.1.1. Orthogonal Protection

As we aim to create a combined countermeasure which provides simultaneous protection against
SCA and FIA we designed DOMREP orthogonally. By orthogonal protection we refer to the
property that the security assumptions against SCA and FIA can be tuned independent of
each other, i.e., orthogonally. The DOMREP protected domain is composed of two nested
domains, i.e., the side-channel protected DOM domain nested into the fault attack protected
REP domain. The DOM domain does not provide exploitable side-channel leakage, and the
REP domain cannot be manipulated by fault injections. We can therefore deduce that the
DOMREP domain is protected against SCA and FIA. Furthermore, as the DOM domain and
the REP domain are separated from each other we can tune the resistance against attacks
independently. The principle of encapsulated domains is generic and can therefore be applied
to a variety of algorithms. The only prerequisite is that the different domains can be separated
and each domain can be protected using a suitable principle. The main reasoning behind the
choice to embed the DOM-protected domain into the REP-protected domain is the fact that it is
the natural approach of avoid leakage first and then ensure there is no corruption, even though
the reverse order would also be possible. In order to implement an orthogonal arbitrary order
protection scheme it is necessary to fulfill two conditions: The different protection domains must
be encapsulated and interconnected securely. The order of protection of the separate domains
can be scaled independently.
In the following we will outline the details of how both domains can be encapsulated securely
with each other.

13.1.2. DOMREP Fundamentals

For protection against SCA we utilize DOM as a masking scheme. As DOM is a generic approach
of protecting multipliers against side-channel leakage it scales well for higher orders of protection,
only the architecture of the multipliers is adapted accordingly. Implementations protected against
higher-order attacks require more multiplications and therefore more randomness. The order of
protection with DOM against SCA is denoted as dDOM ∈ N0, where dDOM = 0 equals a
configuration unprotected against SCA. As a result, n = dDOM + 1 domains are required to
achieve the degree of protection.
In order to protect against SIFA respectively FIA in general, we opted for a repetition code as

error correction mechanism to prevent the collection of effective and ineffective faulted encryp-
tions. One of the reason for that is again the generic scalability of a repetition code in terms of
redundancy and the straightforward assumptions of the attacker model. The order of protection
against SIFA using a REP is denoted with dREP ∈ N0 , where dREP = 0 equals a configuration
unprotected against SIFA. A codeword of order dREP has a length k = 2 dREP +1 and provides
protection against dREP faults. As a result, the representation of a single bit is based on n
domains, each share repeated k times. For example the instance of DOMREP with dDOM = 1
and dREP = 1 where every processed bit i can be represented as a 2 × 3-matrix as shown in
Eq. (13.1).

i :=

(
A0 A1 A2

B0 B1 B2

)
, (13.1)

The domains are oriented column-wise and the codewords are oriented row-wise, where the
original value of bit i equals the majority vote of the sum of all domains Am ⊕ Bm where
m ∈ {0, 1, 2}. In the non-faulty case, each element of a row holds the same value. As an
example, we consider the protected multiplication of two bits α := β × γ. The structural
representation of the multiplication which provides resistance against first-order SCA and FIA

102

13.1. DOMREP Design Rationales

is shown in Fig. 13.1. The actual multiplication (blue block) is performed three times and the
result of the multiplication in different domains is then feed into the error correction block, i.e.,
majority vote (red block). For example the input of the first DOM protected multiplier consists
from βA0

, βB0
, γA0

, γB0
the index zero refers to the first redundant codeword, furthermore A

or B refers to the DOM domain. The input to the remaining other two multipliers is specified
analogously. Due to the structure of DOMREP a manipulation of a multiplier gets corrected
during the ECC, i.e., the majority vote which provides the resistance against SIFA or in general
FIA. That means that the possible corrupted outputs of the multipliers (α̂Am

, α̂Am
) respectively

(α̂Bm
, α̂Bm

) with m ∈ {0, 1, 2} are getting corrected that αAm
= ECC(α̂A0

, α̂A1
, α̂A2

) for all
m ∈ {0, 1, 2}. How to ensure the correctness of the output of the ECC even if the ECC is under
attack will be discussed in Section 13.1.4.

βA0
βB0

γA0
γB0 βA1

βB1
γA1

γB1 βA2
βB2

γA2
γB2

DOM-0 DOM-1 DOM-2

ECC

DOMREPαA0
αB0

αA1
αB1

αA2
αB2

α̂A0
α̂B0

α̂A1
α̂B1

α̂A2
α̂B2

Figure 13.1.: First Order DOMREP Protected Multiplier

In contrast to the protection of a non-linear gate, the protection of a linear operation, i.e., an
addition (GF (2)) which translates to a logical exclusive or is straight forward as this operation
can be applied to all the domains separately, followed by an error correction step as described in
the following. For example if one would like to calculate the addition of two variables α := β+γ,
this is done via the addition of the variables domains.

13.1.3. Resistance against SCA

The resistance of DOMREP against SCA is purely based on the assumptions of the underlying
masking scheme. Therefore, the SCA resistance of DOMREP is based on the assumptions of
DOM as introduced by Gross et al. [GMK16]. The ECC replicates the masked data using the
repetition code. In our proposed variant of DOMREP this does not exhibit leakage as the share
domains are still separated. Only the codewords of a single domain are corrected mutually.

13.1.4. Resistance against SIFA

The reason why we opted for the use of repetition codes to protect against SIFA is based on the
assumptions of the SIFA-1 respectively SIFA-2 fault model. Due to the principles of the encap-
sulated domains it is not necessary that the implementation of the underlying DOM multiplier is
resistant against faults, as if one computation fails, the corrupted computation will be corrected
using the majority vote after the redundant multiplication.

To achieve protection against SIFA-1 based faults it is necessary to ensure that no intermediate
bit (value) can be biased. If we recall the example representation of a single bit in DOMREP
as shown in Eq. (13.1) one bit is split up into different domains, e.g., A, B. Furthermore, if we

103

13. DOMREP a Combined Countermeasure against FIA and SCA

neglect the repetition code for the following proof of the resistance against SIFA-1 one bit v can
be calculated as

v = A+B + · · · . (13.2)

For resistance against SIFA-1 it is necessary to ensure that no value v is biased. The following
proof for the absence of a bias in a bit v is based on Matsui’s pilling up lemma [Mat94]. The
probability for one share domain to equal one is

P (A = 1) =
1

2
+ ϵA , (13.3)

where ϵA is the influence of a possible bias. According to Matsui’s pilling up lemma [Mat94], the
probability of the sum of all domains can be calculated as

P (V = 0) = P (A+B + · · · = 0) =
1

2
+ ϵV , (13.4)

where the bias ϵV of the resulting value v is calculated as

ϵV = 2n−1
n∏

i=1

ϵi . (13.5)

If we now consider the structure of Eq. (13.5) it becomes clear that the bias ϵV of the addition
equals zero as long as a single share domain has a zero bias ϵi = 0. Therefore, DOM can be
used as a countermeasure against an attacker under the SIFA-1 fault model, following the same
reasoning as in [Sah+20; RAD20].
In DOMREP the resistance against the SIFA-2 fault model is based on two principles, the

redundancy of data, and the redundancy of functions.
The redundancy of the data can be achieved straight forward if the state (of Gimli) is repli-

cated according to the length of the repetition code k. Therefore, to achieve first-order protection
dREP=1 against an attacker which attacks under the assumption of a SIFA-2 fault model it is
necessary to replicate a single bit v three times, for second-order protection it is necessary to
replicate v five times, in general v must be replicated 2dREP + 1 times, where dREP equals the
order of protection. The repetition code is applied on bit level, i.e., every bit is represented as a
codeword of size k = 2dREP + 1 bit. Therefore, the error correction capability ncorrectablefaults

can be calculated as shown in Eq. (13.6)

ncorrectablefaults =

⌊
k − 1

2

⌋
(13.6)

The reason why we opted for the usage of a repetition code is based on the fact that all the
redundancy provided by a repetition code is basically a full copy of the original data. As a result
it is possible to not only detect and correct errors caused by effective fault injections, but it
becomes also possible to apply functions redundantly.
The redundancy of the underlying data, i.e., the state of Gimli is a necessary precondition

to apply all operations of the Gimli permutation in a redundant manner. To achieve protection
against SIFA-2 based faults it is necessary to protect the sub functions of the Gimli permutation.
This means it is necessary to compute all the sub functions redundantly according to the length
of the codeword k.
Using repetition codes to protect against SIFA has several benefits and also one major draw-

back. One of the main benefits of the repetition code is the scalability, i.e., repetition codes can
be seen as a generic approach of protection against manipulations under the SIFA-1 and SIFA-2

104

13.1. DOMREP Design Rationales

fault model. The biggest drawback is obviously the increased resource requirement with increas-
ing order of protection. For generic higher-order SIFA-secured implementations, it is sufficient to
increase the codeword length of DOMREP. A similar approach was used by Breier et al. using
a 3-Repetition-Hamming-Code [Bre+19b] but without the goal to protect against SCA as well.

Due to the inherent structure of DOMREP and the according redundancy of data and functions
DOMREP provides resistance against SIFA. However, it is still possible to inject a fault into the
computation of the majority vote. To overcome the problem of having a single majority vote
under attack it is necessary to decrease the attack surface of the majority vote as well. In
order to do so every bit of the codeword is computed by one majority vote from all the bits in
the codeword. Therefore, we use k majority votes per codeword each updating one bit of the
codeword, the mutual update process is shown in Fig. 13.2.

k̂A0 k̂A1 k̂A2

ECC ECC ECC

kA0 kA1 kA2

Figure 13.2.: Majority Vote Mutual Update Step

The whole structure of a protected multiplier is shown in Fig. 13.1 where the ECC part of
the whole structure is shown in detail in Fig. 13.2. At the example of a single domain one can
see the probably corrupted outputs of the multipliers α̂A0

, α̂A1
and α̂A2

for all m ∈ {0, 1, 2}
are fed into the error correction where the mutual updates kAm

= ECC(α̂A0
, α̂A1

, α̂A2
) for all

m ∈ {0, 1, 2} are calculated.

However, it is still necessary to consider how the mutual update is implemented, the three
different possibilities are shown in Fig. 13.3 where dREP = 1. The first possibility as shown
in Fig. 13.3a is the straightforward approach where at a single point in time three different
instances of the majority vote are executed in parallel, this has the benefit of the smallest
overhead in time. From a performance point of view the approach shown in Figure 13.3a is the
most suitable one for hardware implementations. In contrast, in Fig. 13.3b one instance of the
majority vote is executed in three different points in time, which has the benefit of having less
resource requirements but a larger overhead in time. From an implementation point of view the
approach shown in Figure 13.3b is the most suitable one for software implementations. The last
configuration, depicted in Fig. 13.3c, is the most robust one as the three different instances of the
majority vote are utilized at three different points in time. The choice of the configurations is
depending on the threat model, i.e., if we assume an attacker who will use a fault attack based on
a global effect like glitching it is necessary to spread the computation in time like in Figs. 13.3b
and 13.3c. On the other hand if we assume an attacker who uses laser fault injection it becomes
necessary to spread the majority vote in space like in Figs. 13.3a and 13.3c where three different
instances of the majority vote are used for the mutual error correction step. The majority vote
based on the architecture shown in Fig. 13.3c provides the robust security assumptions in terms
of time and space, but also requires the most resources in time and space.

105

13. DOMREP a Combined Countermeasure against FIA and SCA

ECC-1

ECC-2

ECC-3

1

(a) Variant one

ECC-1

ECC-1

ECC-1

1 2 3

(b) Variant two

ECC-1

ECC-2

ECC-3

1 2 3

(c) Variant three

Figure 13.3.: Protected Majority Vote

13.1.5. DOMREP Summary

The resistance against a passive attacker is build upon the underlying masking scheme DOM and
can be scaled to arbitrary order by an increasing the number of domains. The resistance against
an active attacker is based on several properties. The first line of defense against an attacker
under the assumption of a SIFA-1 based fault model is established by the masking scheme. The
second line of defense against an attacker under the assumption of a SIFA-2 based fault model
is based on the approach to calculate redundant functions on redundant data. To ensure the
integrity of the underlying data the error correction is also performed redundantly according to
the threat model.

13.1.6. DOMREP Comparison

Followed by the introduction of DOMREP we will now compare our proposed countermeasure
with the state-of-the-art countermeasures as introduced in Section 12.3.2. The main benefit of
DOMREP is that the resistance against passive SCA and active FIA, and SIFA can be tuned
independently according to the assumed attacker.

Orthogonality One of the main design goals of DOMREP was the ability to scale the level of
protection against possible threats, in order to ensure this kind of ability we designed DOMREP
orthogonal, i.e., scale the resistance against SCA and FIA independent of each other. The ability
to scale is ensured by the orthogonal composition of DOM and REP which enables, e.g., changing
the order of protection in our proposed Gimli design by changing a parameter prior to synthesis.
In contrast, Saha et al. [Sah+20] and Ramezanpour et al. [RAD20] et al. do not mention the
importance of free scalability.

SCA - Resistance The general approach to protect against SCA is the use of a suitable mask-
ing scheme. Saha et al. [Sah+20] mention that most masking schemes fulfill the properties
required by their Transform operation. Similarly, Ramezanpour et al. [RAD20] designed their
countermeasure to be used with most masking schemes. In contrast, we designed DOMREP to
be explicitly used with DOM, as this masking scheme was especially designed to be free from
glitches and requires less randomness compared to other masking schemes [GMK16]. Further-
more, we evaluated the resistance of DOMREP against SCA on an implementation of Gimli,
in contrast to Saha et al. [Sah+20] (Present) and Ramezanpour et al. [RAD20] (AES), as we
would like to show that DOMREP is also suitable for sponge-based cryptography.

106

13.2. Gimli

SIFA-1 - Resistance The resistance against SIFA under the assumption of a SIFA-1 based fault
model is achieved by the utilization of masking this approach is used by the schemes of Saha
et al. [Sah+20] , Ramezanpour et al. [RAD20], and our work. Saha et al. describe masking
as a possible implementation of their Transform operation. Similarly, Ramezanpour et al. use
masking as a possible implementation of their random space transformation.

SIFA-2 - Resistance Compared with Saha et al. [Sah+20] where the resistance against SIFA-2
is based on their Encode operations which is essentially an error correction step. Ramezanpour
et al. [RAD20] hinders SIFA-2 using the intrinsic redundancy introduced by their RS-Mask as
error detection in combination with an infection based mechanism. In contrast, we follow a
slightly different approach against SIFA-2 based attacks as we use the combination of redundant
computation on redundant data and mutual error correction this provides protection even if the
error correction itself is under attack.
A comparison of the state-of-the-art countermeasures functional principles with the proposed

one is shown in Table 13.1.

Protection against

Scheme SCA SIFA-1 SIFA-2

TaE [Sah+20] masking masking ECC
RS-Mask [RAD20] masking masking Infection
This work masking masking Redundancy of Data and Functions

Table 13.1.: Summary of combined Countermeasures

13.2. Gimli

We will now briefly justify why we have chosen Gimli as a proof of concept, for a detailed
description of Gimli cf. Section 9.1. The main reason to showcase DOMREP at the example of
Gimli is twofold:
First, the structure of Gimli allows the implementation of the domain-independent variant of

the multiplier proposed by Gross et al. [GMK16] as the inputs of the multipliers are independent
and therefore independently shared. As a result, less randomness is required in comparison to
other masking schemes [GMK16].
Secondly Gimli’s permutation only operates on GF (2) therefore a multiplication is the equiv-

alent of a logical AND. In order to protect Gimli against SCA and SIFA it is necessary to protect
the core component of Gimli, i.e., the permutation. A closer look at the permutation reveals
that Gimli’s permutation consists only of logical AND, OR and XOR. The logical OR can be trans-
formed into its AND representation by the application of De Morgan’s law. The operations of
the permutation can be protected using DOMREP as introduced in the previous section. The
interaction of the permutation and the duplex mode [Ber+12b] consists only of logical XORs.
A detailed description of the hardware architecture of Gimli is given in [Gru+21], in contrast

we will focus on DOMREP itself.

13.3. Results

We evaluate the effectiveness of the DOMREP countermeasure following the hardware architec-
ture from [Gru+21]. The countermeasure is implemented with n = 2 shares and repetition code

107

13. DOMREP a Combined Countermeasure against FIA and SCA

length k = 3 on a CW305 Target Board featuring an Artix-7 (XC7A100TFTG256) running at a
clock frequency of fclk=1MHz. To verify the resistance of the protected Gimli implementation
against SCA and FIA, we provide results for TVLA and fault emulations in Section 13.3.1 and
Section 13.3.2 respectively.

13.3.1. Side-Channel Analysis

The side-channel resistance of DOMREP is provided by Domain-Oriented Masking (DOM) as
described in Section 12.1. In order to evaluate the side-channel security of our protected im-
plementation, a PicoScope 6402D USB oscilloscope is used to perform trace measurements at
a sampling frequency of fs=156.25MHz. We acquire power measurements through the SMA
jack of the CW305 board, that provides the voltage drop of the FPGA’s internal supply voltage
over a 100mΩ shunt amplified by a 20 dB low-noise amplifier. We did not use associated data
and plaintext for all measurements. Thus, according to Fig. 9.1, only three permutations are
processed: one during the initialization, one after associated data padding and a final one during
the finalization of the tag. For trace alignment, a trigger event is output by the DUT after each
permutation.

To ensure that the transmission of DOM-shared data to or from the DUT does not cause
any leakage, we scrambled the communication with the DUT. We opted for this approach as
transitional leakage, i.e., the HD between DOM-shares is caused when the shares are transmitted
sequentially over the same bus, e.g., Universal Asynchronous Receiver Transmitter (UART). In
our measurements, this type of leakage only occurs before and after the computation of Gimli.
To prevent this transitional leakage, the data is scrambled before it is transmitted to the DUT,
i.e., additional random masks are added to the shares. The random masks are generated by a
Pseudorandom Number Generator (PRNG). We used the 32-bit version of Xorshift as proposed
by Marsaglia et al. [Mar03]. As the data is only scrambled during the transmission, Gimli still
operates on the descrambled data.

In Figs. 13.4a and 13.4b several raw measurements are depicted, with and without scrambling
respectively. All measurements are aligned with respect to the first trigger that occurs at the
end of the first permutation. The three Gimli permutations can be clearly distinguished. Before
the first permutation, the key and nonce are loaded into the state, after the last permutation,
the tag is generated. Both operations are visible through regular peaks. Note that the time for
loading and tag finalization takes twice as long if scrambling is enabled. This is due to the extra
data registers used to avoid glitches as described in [Gru+21].

In Figs. 13.4c to 13.4e the TVLA results (c.f. Section 5.4) for the protected Gimli implementa-
tion with different levels of countermeasures are shown. For each scenario 200,000 measurements
are used, where for each measurement the key takes the same value and the nonce is randomly
chosen to be either a random or fixed value. For all results |t| > 4.5 indicates side-channel
leakage that is represented as an orange line. While a high t-value does not guarantee an attack
to actually be possible, for a protected design t-values above the threshold should not occur.

First, Fig. 13.4e shows the TVLA results when countermeasures are disabled by setting all
mask values to zero. The t-values exceed the threshold of 4.5 during all permutations and during
loading and tag finalization. These results indicate that without further protection side-channel
leakage occurs for the Gimli hardware implementation. Furthermore, the measurement setup is
verified, i.e., it allows for acquiring measurements to detect leakage with TVLA.

Second, in Fig. 13.4c the TVLA results for the protected implementation, but without scram-
bling of the data during transmission, are depicted. Note that there are no t-values above the
threshold during the permutation, while for the loading and finalization phases leakage can be
observed. As outlined in [Gru+21], this leakage stems from transitional Hamming distance leak-

108

13.3. Results

−100 −50 0 50 100
Time [clock cycles]

−40

−20

0

20

A
m
pl
itu

de
[m

V
]

load perm1 perm2 perm3 tag

(a) Measurements (w/o scrambling)

−100 −50 0 50 100
Time [clock cycles]

−40

−20

0

20

A
m
pl
itu

de
[m

V
]

load perm1 perm2 perm3 tag

(b) Measurements (incl. scrambling)

−100 −50 0 50 100
Time [clock cycles]

0

20

40

60

80

100

120

|t|

load perm1 perm2 perm3 tag

(c) Countermeasures w/o scrambling

−100 −50 0 50 100
Time [clock cycles]

0

2

4

6

8

10
|t|

load perm1 perm2 perm3 tag

(d) Countermeasures incl. scrambling

−100 −50 0 50 100
Time [clock cycles]

0

200

400

600

800

|t|

load perm1 perm2 perm3 tag

(e) Countermeasures disabled

−100 −50 0 50 100
Time [clock cycles]

0

5

10

15

|t|

load perm1 perm2 perm3 tag

(f) Countermeasures incl. scrambling (2nd or-
der)

Figure 13.4.: Side-channel leakage assessment of the protected Gimli hardware implementation:
(a)-(b) example raw measurements, (d)-(f) TVLA results with fixed key and fixed-
vs-random nonce for 200,000 measurements and different levels of protection.

109

13. DOMREP a Combined Countermeasure against FIA and SCA

age between two consecutive shares that are transferred over the same 32-bit bus to or from
the CryptoCore. Most importantly, the results highlight that the protection mechanisms of
DOMREP are indeed working as the countermeasure is aimed at protecting the permutations.

Finally, Fig. 13.4d confirms that the scrambling introduced in [Gru+21] entirely removes the
transitional Hamming distance leakage during data transmission. In other words, using scram-
bling no univariate first-order leakage can be detected from data transmission until tag finaliza-
tion. Additionally, the second-order TVLA in Fig. 13.4f indicates univariate second-order leakage
during the permutations and data transmission. This is expected for a first-order secured hard-
ware implementation with n = 2 shares and confirms the degree of protection.

13.3.2. Fault Injection Analysis

In order to verify the integrity of the DOMREP protected implementation of Gimli against FIA,
the hardware implementation was attacked by means of fault emulation to simulate the strongest
possible attacker which is able to influence single bits.

The SIFA of Gimli was already shown in Chapter 9. The proposed attack is able to attack
the initialization phase of Gimli where the 256-bit key and the 128-bit nonce are loaded into
the state as shown in Fig. 9.1. During the initialization phase two different rounds of the Gimli
permutation can be chosen for an attack, i.e., round 22, 21 where round 24 denotes the first
round.

In order to analyze the resistance of the FPGA design against SIFA, the error-correction
capabilities must be evaluated. If we assume the implementation is able to correct all injected
faults an attacker cannot distinguish between correct and faulty samples and thus cannot apply
SIFA respectively FIA. We therefore assume that an attacker is capable to locally inject faults
with bit-level precision, i.e., the strongest possible attacker.

In order to verify the resistance of DOMREP against FIA, and SIFA-1, several state bits
were either tied to a fixed value (persistent) or inverted (transient) such that a fault injection
is simulated, i.e., fault emulation. Applying these manipulations to the inputs of the ECC
modules showed, that all faults were corrected successfully as far as they didn’t exceed the
repetition code’s correction capabilities, i.e., correcting k faults for a codeword length of 2k+ 1.
That means, a first-order secure design with a codeword length of 3 is able to correct 1 fault
per codeword. This allows to correct up to 384 faults per state share, as long as no codeword
is faulted twice. If multiple faults per codeword are injected, increasing the codeword length
accordingly allowed to correct all faults. This approach was validated in simulation as well as on
the hardware itself using fault emulation.

The resistance of DOMREP against SIFA-2 was verified with either a modification of the
ECC module or the DOM protected AND gate in order to create a faulty codeword. Due to the
fact that every bit of a codeword is (mutually) updated with a separate ECC module, this only
leads to one faulty bit in the resulting codeword which is corrected in the following cycle. By
manipulating either some bits on the ECC modules output, or the output of the DOM protected
AND gate, this behavior can be verified. In case the faults were injected in some intermediate
rounds of the permutation, the faults were corrected as expected using the mutual update step
as shown in Fig. 13.2. Again, if multiple faults were injected, the codeword length had to be
increased accordingly. Contrarily, when faulting the 0-th codeword bit in the last round, the
cipher will output the faulty value. That is because the faults will not be corrected after the
last round and the cipher always outputs the 0-th bit of a codeword. Nevertheless, this is no
issue from a security point of view, as this would mean that an attacker modifies the computed
output.

Therefore, SIFA is not applicable as long as the assumed attacker is not able to overcome

110

13.4. Summary

the capabilities of the repetition code. However, if the attacker is able to inject global faults by
applying for instance clock glitching, then all bits of a codeword or all ECC instances updating one
codeword might be faulted. In order to mitigate this, the error-correction must be implemented
sequentially such that every bit of a codeword is updated in a consecutive clock cycle as shown
in Fig. 13.3. Glitching the circuit once would then only lead to single bit errors which will be
corrected in consecutive rounds. As updating a codeword of length k then requires k cycles, the
resulting throughput is decreased by a factor of 1/k.

13.3.3. Overhead

The introduced overhead of DOMREP is shown in Table 13.2. Where the overhead is shown
as a scalar factor based on the comparison of an unprotected implementation with a first order
secure implementation (SCA, SIFA-1, SIFA-2, and effective faults). Furthermore, the overhead
is compared to the schemes of Saha et al. [Sah+20] and Ramezanpour et al. [RAD20]. As one
can see, the countermeasure of Ramezanpour et al. introduces the lowest overhead due to the
infective nature. In contrast, DOMREP scales similarly to the countermeasure of Saha et al.
[Sah+20].

First-Order

Cipher Metric unprotected SCA-secure SCA, FIA-secure

Present [Sah+20] GE 1.0 [Pos+11] 4.96 15.41

AES [RAD20] Area 1.0 1.70 3.47

Gimli
LUT 1.0 2.51 8.05
REG 1.0 4.78 11.96

Table 13.2.: Overhead of Combined Countermeasures

13.4. Summary

In this chapter we introduced DOMREP, a new robust solution for the simultaneous protec-
tion against SCA and FIA. Within DOMREP the individual countermeasures DOM and REP
can be scaled independently in order to address the required security levels against side-channel
and fault injection attacks according to application needs. In order to evaluate the side-channel
resistance of our proposed countermeasure we protected a Gimli implementation to be first-
order secure. TVLA results show an absence of any exploitable side-channel leakage using up to
200,000 measurements. As a fault attack model we addressed the most powerful attack model,
i.e., SIFA-1 and SIFA-2 by means of fault emulation, which did not result in exploitable measure-
ments. The overhead introduced by DOMREP requires a careful evaluation of the protection
requirements. Fortunately, due to the orthogonality of the two schemes, the parameters can be
chosen independently which allows for a very good adaptation.

111

14. TOFU Toggle Count Analysis of
Cryptographic Implementations

Unprotected cryptographic implementations can cause potential side channels, due to data-
dependent execution time or data-dependent power consumption. The most commonly used
side channel is the device’s power consumption. One approach to exploit this data-dependent
power consumption is DPA as introduced by Kocher et al. [KJJ99]. Data-dependent power con-
sumption occurs due to the physical properties of hardware, i.e., power consumption of CMOS
circuits cf. Section 5.1. To verify the presence of leakage, one can measure the device’s power
consumption during the execution of a cryptographic algorithm and apply either DPA or TVLA.
However, this approach has the disadvantage that some hardware is required to run the algo-
rithm, as well as a device to record the power consumption, such as an oscilloscope. Furthermore,
the measurements acquired by an oscilloscope are noisy by nature. An alternative to measuring
a real device is to simulate it, which results in completely noiseless measurements that are also
reproducible.

Related Work Veshchikov et al. proposed a simulator called SAVRASCA for the AVR archi-
tecture [VG17]. Mc Cann et al. proposed another simulator called ELMO [MOW17]. ELMO was
developed as a profiled simulator and is specifically targeted at the ARM Cortex-M0 architecture.
Another approach was taken by Le Corre et al. [CGD18] with their simulator MAPS which was
tailored for the ARM Cortex-M3 architecture. MAPS was build based on the VHDL model of an
ARM Cortex-M3 microcontroller where the pipeline was analyzed for instructions which exhibit
data-dependent power consumption. In contrast, Sadhukhan et al. [Sad+19] focused on hard-
ware implementations and proposed an SCA resistant design flow, they also proposed a toggle
count based leakage model. Furthermore, Wamser et al. were able to show a toggle count based
CPA of the AES [Wam19] using the VCD2R package available for the R programming language
[Wam].

Contributions In this chapter we propose TOggle Foul-Up (TOFU), a versatile open-source
tool to synthesize Value Change Dump (VCD) [IEE06] simulation traces into power traces, with
an adjustable leakage model. Furthermore, we propose a security evaluation workflow based only
on open-source tools. We verify the capabilities of TOFU at the example of the CPA of an AES
hardware and software implementation. Although TOFU shares some similarities with VCD2R

the focus of TOFU is on performance and the evaluation of protected implementations.

Organization The rest of this chapter is structured as follows: Section 14.1 introduces TOFU.
Section 14.2 evaluates TOFU’s performance. Section 14.3 introduces the proposed workflow,
while Section 14.4 showcases the workflow at the example of an AES hardware implementation.
Section 14.5 compares traces of an AES software implementation obtained by either simulation
or measurement using the proposed workflow. Finally, Section 14.6 concludes this chapter.

113

14. TOFU Toggle Count Analysis of Cryptographic Implementations

Key Description

vcdGlob Glob to find VCD files.
signalsFileNameLiterals Signals used for the leakage synthesis.
leakageModel Leakage model used for the synthesis.
window Use only samples from a window.
windowFrom Specify window start.
windowTo Specify window stop.
valueExtractFunction Name of function which extracts values.
valueExtractIndex Store the trace index as value.
writeTraces Store traces in file or memory.
writeTracesBatchSize How many traces to write at once.
traceFileName Filename of the generated traces.
format Format of the generated traces.

Table 14.1.: TOFU Settings Summary

14.1. TOFU

As TOFU is intended to be a helpful utility for research and teaching, the source code can be
found here1. We will now introduce the most important settings of TOFU used during trace
synthesis. TOFU is implemented in Python, but parsing is done in C++ alternatively parsing
can be done in Python as well, which is helpful for testing, e.g., new leakage models. There are
various settings which can be passed to TOFU, the most important ones are shown in Table 14.1.
A regular expression describing the VCD files to parse is given by vcdGlob. Supported leakage
models are either HW, or HD and can be chosen by leakageModel. It is possible to filter the
signals used for the leakage generation by specifying them in signalsFileNameLiterals. The value
of a signal can be extracted for any timestamp by specifying a valueExtractFunction. This can
for instance be used to extract the value of, e.g., plaintexts, keys, or ciphertexts. Furthermore,
values for multiple signals can be extracted as a single value, which is for instance useful if the
plaintext consists of multiple signals like in masking. Alternatively, valueExtractIndex can be
used as value extraction function, which is useful in TVLA [GGJR+11] for the differentiation
between traces with fixed plaintext and random plaintext, based on the index of the current trace.
If window is set, the generated leakage is restricted to all timestamps between windowFrom and
windowTo which also speeds up the synthesis. Setting writeTraces to true indicates that the
generated traces should be written to the file given by traceFileName with the batch size of
writeTracesBatchSize. TOFU’s default file format is HDF5, which is also the default format of
Ledger’s Advanced Side Channel Analysis Repository (LASCAR), other formats can be specified
with format. New file formats can be easily integrated thanks to the modular architecture

14.2. Performance

In order to evaluate the performance of TOFU in terms of synthesis speed we evaluated the
required time to parse VCD files of different sizes. Additionally, we used either the Python based
parser, or the C++ version. Using C++ instead of Python is motivated by higher performance,
which mainly arises due to the C++ code being compiled and optimized. Moreover, C++ offers
more control than Python, for instance through pointers and manual memory management.

1https://gitlab.lrz.de/tueisec/tofu

114

https://gitlab.lrz.de/tueisec/tofu

14.3. Workflow

341kB 2.1MB 33.0MB 90.8MB 278.6MB
0

100

200

300

400

0.02 0.06 0.83 2.4 5.060.27 2.58
34.4

102.6

419.2

File Size

R
u
n
n
in
g
T
im

e
in

S
ec
on

d
s

C++ Python

Figure 14.1.: Running Time Comparison

Besides using a different programming language, the C++ implementation employs additional
optimizations. Firstly, VCD files are memory-mapped, thus allowing for fast read operations of
the VCD file. This is because no system calls are necessary, among others. The time required
by the C++ implementation to parse a VCD file only increases proportionally to the size of the
VCD file, i.e., O(n). For instance, if parsing a 5MB file takes 1 s, then parsing a 10MB file should
take about 2 s. This can only be achieved by constant lookup times of the values of symbols in
the value change section of the VCD file. These lookups are necessary for calculating the leakage.
For this reason, the C++ implementation uses a hash table which gives average constant-time
insertion and search. Figure 14.1 compares the running time of the C++ implementation with the
Python implementation for different VCD file sizes. For a better comparison, the time required
for LASCAR to write the resulting traces is omitted. As one can see the required running time
for the C++ implementation grows linearly with respect to the file size. TOFU was successfully
used during the development of DOMREP cf. Chapter 13 which is indicated by the biggest file
of Table 14.1.

14.3. Workflow

One of the main objectives of this chapter was to specify a workflow which is only based on open-
source tools. The necessary steps of the workflow can be formulated as: Simulation, Synthesis,
and Analysis.

Simulation For a hardware implementation the Simulation step (behavioral) is based on G
Hardware Design Language (GHDL) an open-source VHDL simulator developed by Gingold et
al. [Gin]. GHDL compiles Very High Speed Integrated Circuit Hardware Description Language
(VHDL) files directly to machine code and allows native execution to allow high speed simula-
tions. We have also verified the Simulation step of the workflow with Vivado 2020.2, which en-
ables also simulations which take hardware specific delays into account, e.g., post-implementation
simulation. For a software implementation the Simulation step is based on Unicorn an open-
source Central Processing Unit (CPU) emulator based on QEMU.

115

14. TOFU Toggle Count Analysis of Cryptographic Implementations

Synthesis The Synthesis step is based on TOFU as introduced in this chapter. Prior to the
Synthesis suitable settings must be chosen as specified in Section 14.1.

Analysis The Analysis step is based on LASCAR an open-source framework developed by
Ledger [Led]. LASCAR is a versatile SCA framework which supports several SCA attacks, e.g.,
DPA, and CPA. Furthermore, LASCAR provides a convenient container format based on HDF5
to store, and access acquired traces.

14.4. Exemplary Workflow

In the following section we will now outline the workflow introduced in Section 14.3 at the
example of a CPA of an AES hardware implementation2 written in VHDL using 10 000 traces.
The AES implementation under attack applies all S-boxes simultaneously.

14.4.1. Simulation

The TOFU repository contains a testbench for the implementation of AES, which can be used
as a basis for other VHDL projects. The integration of the AES’s testbench and GHDL was
done with parallelism in mind, to utilize several processor cores. Unfortunately, GHDL does not
allow vectors as parameters [Gin]. Instead, it is possible to pass multiple integers as parameters
and combine them into a vector. Passing parameters to the GHDL simulation avoids repetitive
recompiling of the VHDL source to native code. The generation of the random plaintexts required
by the CPA is done in a pseudo-random manner where a random number generator is seeded
deterministically.

14.4.2. Synthesis

In order to demonstrate a subset of TOFU’s features we have done several syntheses. For the
leakage model we either used the HW, or HD. Also, for the filtering, i.e., signalsFileNameLiterals
we either used all signals available in the VCD file, or only the signals of the first S-box’s output
only. The corresponding VCD has a size of 26 kB. The synthesized trace for an exemplary AES
encryption (unfiltered) is shown in Fig. 14.2a under the assumption of a HW leakage model,
while Fig. 14.2c shows the same encryption under the assumption of a HD leakage model. In
contrast, if only the signals from the first S-box’s output are used for the synthesis this is shown
in Fig. 14.2b under the assumption of a HW leakage model, while Fig. 14.2d shows the same
encryption under the assumption of a HD leakage model where the values take values between
zero and eight as one may expect due to the S-box used in AES. Noteworthy, in Fig. 14.2c, and
Fig. 14.2d every second sample has a value of zero, as the circuit is only sensitive to the clock’s
rising edge. The circuit’s sensitivity to the clock’s rising edges can also be used to fasten up the
Analysis step if every second sample is discarded which results in a smaller power trace.

14.4.3. Analysis

In the last step of the proposed workflow the Analysis takes place, i.e., in the context of a
CPA on AES the first round key is attacked (encryption). As usual, the CPA assumes the HW
as underlying leakage model, the whole CPA is conducted by LASCAR. For the analysis we
consider two different cases, i.e., traces generated from either all signals (unfiltered) or only the

2The AES VHDL implementation can be found inside TOFU’s repository.

116

14.4. Exemplary Workflow

0 5 10 15 20 25 30
Sample

800

850

900

950

V
al

u
e

(a) Leakage all Signals, HW

0 5 10 15 20 25 30
Sample

2

2

3

4

4

V
al

u
e

(b) Leakage S-box, HW

0 5 10 15 20 25 30
Sample

0

100

200

300

400

500

V
al

u
e

(c) Leakage all Signals, HD

0 5 10 15 20 25 30
Sample

0

1

2

3

4

5

6

V
al

u
e

(d) Leakage S-box, HD

Figure 14.2.: AES Workflow – Synthesis

first S-box’s output (filtered). The unfiltered correlation progression plot for all key hypotheses is
shown in Fig. 14.3a, as one can see the absolute value of correlation of the correct key hypothesis
converged to approximately 0.25 after 1000 traces.

14.4.4. Evaluation

According to Brier et al. the maximum value of 0.25 can also be calculated as shown in Eq. (14.1),
where ρWH denotes the Pearson correlation coefficient ρWH = {x ∈ R | − 1 ≤ x ≤ 1 } [BCO04].
Especially for the case of AES l = 8 denotes a byte among a state of m = 128 bits

ρWHl/m
= ρWH

√
l

m
(14.1)

Consequently, for the unfiltered case the maximum absolute correlation is calculated as shown
in Eq. (14.2), which confirms TOFU’s correct behavior.

|ρWH8/128max| =
√

8

128
= 0.25 (14.2)

Respectively for the filtered case Fig. 14.3b shows that the absolute correlation of the correct
key hypothesis converges to 1.0 instantly cf. Eq. (14.3).

|ρWH8/8max| =
√

8

8
= 1 (14.3)

None of the other 15 bytes can be recovered from such filtered traces correctly as the correlation of
the remaining bytes does not converge towards a value in their respective correlation progression
plots.

117

14. TOFU Toggle Count Analysis of Cryptographic Implementations

1 2 3 4 5 6 7 8 9 10
Number of Traces ×103

0.00

0.05

0.10

0.15

0.20

0.25

C
or

re
la

ti
on

(a) Correlation, HW

1 2 3 4 5 6 7 8 9 10
Number of Traces ×103

0.0

0.2

0.4

0.6

0.8

1.0

C
or

re
la

ti
on

(b) Correlation filtered, HW

Figure 14.3.: AES Workflow – Analysis using 10 000 Traces

14.5. Leakage Simulation versus Leakage Measurement

We will now compare the power traces of an AES software implementation obtained either by
simulation or by actual measurements. As the measured and simulated power traces differ by
length and shape, we decided to use a comparison approach based on the Pearson correlation
calculated for each set of traces during a CPA [BCO04].

14.5.1. Measurement

The measured traces are obtained with the help of a ChipWhisperer (Lite), which also contains
a STM32-F303RCT7 as DUT [OC14]. The ChipWhisperer features hardware for power analysis,
device programming, glitching, and serial communication. Furthermore, the ChipWhisperer uses
a 10 bit ADC with a 105MS/s sampling rate combined with an amplifier with up to 55 dB gain
to measure small signals with ease. The used measurement setup is shown in Fig. 14.4.

14.5.2. Simulation

The simulated traces are obtained using a combination of two tools, Unicorn [Uni] and TOFU.
In order to generate power traces from a software implementation, it is necessary to simulate
the DUT’s CPU and track the CPU’s state accordingly. To achieve this, we used Unicorn
[Uni]. Unicorn is designed to be a lightweight, multi-platform, multi-architecture CPU emulator
framework based on the QEMU emulation engine. The state of the CPU as well as the memory
is dumped in a suitable format for further processing, i.e., VCD. As a first step, we used Unicorn
to simulate an AES implementation and dumped the state into a VCD file. As a second step, we
used TOFU to synthesise power traces from the generated VCD simulation traces. The ability
to observe register values and memory values makes it possible to visualize the contents over
time. The content of the Programm Counter (PC) register is shown in Fig. 14.5, as one can see
the key schedule takes place in the beginning followed by the key whitening and the subsequent
ten rounds of AES. Noteworthy, the omission of MixColumns in the last round is visible as well.
The used simulation environment3 tracks the whole memory and the state of all registers which
makes a reasonable choice as a proof of concept in order to tune the simulations to reflect actual
measurements one may, e.g., only track memory read and write operations.

3The simulation environment to track the state of the DUT as well as the used software implementation of AES
can be found inside TOFU’s repository.

118

14.5. Leakage Simulation versus Leakage Measurement

Figure 14.4.: ChipWhisperer Measurement Setup

0 5000 10000 15000 20000
Sample

0x8000000

0x8000100

0x8000200

0x8000300

0x8000400

0x8000500

0x8000600

A
d

d
re

ss

Figure 14.5.: Trace – Program Counter

119

14. TOFU Toggle Count Analysis of Cryptographic Implementations

0 5000 10000 15000
Sample

400

600

800

1000

V
al

u
e

(a) Traces CW

10 40 70 100 130 160 190 220 250 280
Number of Traces

0.2

0.4

0.6

0.8

1.0

C
or

re
la

ti
on

(b) Correlation Progression CW

0 50 100 150 200 250
Key Hypothesis

0.0

0.2

0.4

0.6

0.8

1.0

C
or

re
la

ti
on

(c) Maximum Correlation CW

0 5000 10000 15000 20000
Sample

200

400

600

800

1000

V
al

u
e

(d) Traces UC

10 40 70 100 130 160 190 220 250 280
Number of Traces

0.2

0.4

0.6

0.8

1.0

C
or

re
la

ti
on

(e) Correlation Progression UC

0 50 100 150 200 250
Key Hypothesis

0.0

0.2

0.4

0.6

0.8

1.0

C
or

re
la

ti
on

(f) Maximum Correlation UC

Figure 14.6.: AES CPA, ChipWhisperer (CW), Unicorn (UC)

14.5.3. Analysis

The AES implementation under attack is written in C. For simplicity reasons we opted for a 8 bit
implementation of AES as this makes optical inspection easier than an implementation based
on T-tables [FIP01]. The generation of the random plaintexts required by the CPA is done in a
pseudo-random fashion, where a random number generator is seeded deterministically. Therefore,
the measurement approach and the simulation approach use exactly the same plaintexts during
each run. In addition, the multiplications required by the MixColumns operation of AES are
implemented as a lookup table to ensure a constant time implementation of AES, which is
particularly helpful during analysis as it results in less temporal jitter. As usual, CPA assumes
the HW as the underlying leakage model [BCO04]. The whole CPA is performed by LASCAR
[Led]. The measured traces are shown in Fig. 14.6a, while the simulated traces are shown in
Fig. 14.6d, as one can see both figures clearly show the ten rounds of AES. One may notice the
slope at the beginning of Fig. 14.6d, which is caused by the key schedule which increases the HW
of the memory. The corresponding correlation progression plots are shown in Fig. 14.6b for the
measurement and in Fig. 14.6e for the simulation. Contrary to what one might expect, the right
key hypothesis can be determined earlier in the measurements ≈ 40 than in the simulations ≈ 70,
which is due to the fact that we tracked all registers and the entire memory, which introduces
additional noise. The plots computed from all traces (first key byte) are shown in Fig. 14.6c
for the measurement and in Fig. 14.6f for the simulation. The maximum correlation for the
measurements is ≈ 0.9, respectively for the simulations ≈ 0.5.

14.5.4. Evaluation

The results obtained from the simulation prove that our approach to leakage simulation does
indeed work as expected and exhibits exploitable leakage. However, the simulation-based results
show less leakage than expected despite the completely noiseless environment during the simu-

120

14.6. Summary

lation. The main reason for this discrepancy between simulation and measurement is that our
simulation is completely hardware independent and does not reflect the real switching behavior of
an actual microcontroller. In contrast, when the leakage of a simulated hardware implementation
is attacked, the results match the expected cf. Section 14.4

14.6. Summary

In this chapter we presented TOFU, a versatile tool for the synthesis of power traces from VCD
files with different leakage models. In addition, we evaluated the running time of TOFU with
respect to different VCD file sizes, and implementations of TOFU. Furthermore, we proposed
a workflow which only relies on open-source tools to verify the security of an implementation.
The open-source based workflow was successfully verified with the CPA of an AES hardware and
software implementation.

121

15. Conclusion

Physical attacks on cryptographic implementations have become a serious threat over the last
years. The reason for this recent trend can be attributed to the fact that modern cryptography
is proven to be secure against cryptanalytic attack vectors, due to rigorous standardization
processes. In contrast, the security assumptions of the standardization process only hold if an
attacker has no further knowledge about the internals, i.e., in a black-box scenario, cf. Section 3.1.
Consequently, if a cryptographic implementation is attacked we assume a gray-box where an
attacker has access to additional knowledge, i.e., side-channel leakage which is acquired by either
SCA or FIA.

The objective of this work was to investigate the application of state-of-the-art fault attacks, viz.
DFA, PFA, AFA, and SIFA, on state-of-the-art cryptography, i.e., candidates of the CAESAR
and LWC competition, to evaluate the threat posed by FIA. Usually, FIA is considered out of
reach for an attacker with a low budget but in contrast as shown by Guillen et al. [GGS17] it is
indeed possible to achieve rather precise fault injections even with a low budget. Furthermore, as
demonstrated in Chapter 4, EMFI can be utilized to introduce precise and repeatable localized
faults. Achieving suitable faulty behavior enables an attacker to mount the attacks introduced in
this work cf. Part II. To defend against these attacks, it is necessary to implement cryptography
in a protected manner with an appropriate countermeasure, as introduced in Chapter 13. Since
FIA is only one of many threat-vectors for cryptographic implementations, it is also necessary
to protect against other threat-vectors such as SCA at the same time.

Contributions This work’s contributions can be categorized into three different types: Threats,
Attacks, and Solutions. An overview of the different contributions is shown in Table 15.1.
Furthermore, a detailed recap is given in the following.

Chapter Type Publication Contribution

4 Threat unpublished EMFI evaluation of an ARM Cortex M0 microcontroller

7 Attack [GS19] Differential Fault Analysis (DFA) of KLEIN

8 Attack [GPT19] Persistent Fault Analysis (PFA) of COLM

8 Attack [GPT19] Persistent Fault Analysis (PFA) of Deoxys-II

8 Attack [GPT19] Persistent Fault Analysis (PFA) of OCB

9 Attack [GPT20] Statistical Ineffective Fault Analysis (SIFA) of Gimli

10 Attack [GKS21] Algebraic Fault Analysis (AFA) of SAE

13 Solution [Gru+21] DOMREP – Combined Countermeasure

14 Solution [GS22] TOFU – Toggle Count Analysis

Table 15.1.: This Work’s Contributions

123

15. Conclusion

Chapter 4 showcased the capabilities of a commercial EMFI setup with the DFA of KLEIN
based on Chapter 7. The EMFI setup was able to inject localized faults in an ARM Cortex M0
microcontroller, with high spatial precision and repeatability.

Chapter 7 introduced two DFAs of the lightweight block cipher KLEIN. Variant one targets
the intermediate state of the cipher. Using at least five faulty ciphertexts, the attacker is able
to determine the last round key. The second variant, which can only applied to KLEIN-64,
injects a byte-fault in the key schedule and requires at least four faulty ciphertexts in order
to determine the whole key. We verified the efficiency of both attack methods by means of
simulation. Furthermore, we conducted the attacks practically on a microcontroller using EMFI.

Chapter 8 introduced the PFA of Deoxys-II, OCB, and COLM. We showed how to extend the
original PFA to fit the needs of AE schemes and what makes them vulnerable to PFA. The
targets for our attack on Deoxys-II was either the tag generation, or the message encryption.
The targets for our attack on OCB was either the tag generation without associated data, or
the message encryption of the last incomplete message block. The targets for our attack on
Deoxys-II was either the tag generation, or the message encryption.

Chapter 9 introduced how the principles of SIFA can be applied to Gimli, an AE scheme partic-
ipating the NIST-LWC competition. We identified two possible rounds during the initialization
phase of Gimli to mount our attack. If we attacked the first location we are able to recover 3 bits
of the key uniquely and the parity of 8 key-bits organized in 3 sums using 180 ineffective faults
per biased single intermediate bit. If we attacked the second location we are able to recover 15
bits of the key uniquely and the parity of 22 key-bits organized in 7 sums using 340 ineffective
faults per biased intermediate bit.

Chapter 10 introduced how the principles of AFA can be applied to the AE scheme Subterranean
2.0, a second round candidate of the NIST-LWC competition. In order to find the optimal
parameters for a fault injection we investigated the fault model’s influence on the solving time.
The optimal fault parameters turned out as a single bit flip fault in conjunction with a known
but randomly chosen fault location, where the fault is applied just one cycle before the tag
generation. Conducting our proposed attack with optimal fault parameters requires only five
fault injections to recover the secret key of Subterranean 2.0 in less than four seconds.

Chapter 13 introduced a novel generic solution for simultaneous protection against SCA and FIA
of arbitrary order. We combined DOM and REP in an orthogonal way and call this approach
DOMREP. The resistance against SCA and FIA can be scaled independently of each other, for
the protection against higher-order SCA and the injection of multiple faults including SIFA. We
developed the generic concept of orthogonal protection, and implemented the DOMREP concept
on Gimli. Our implementation of Gimli was verified to be resistant against univariate first-
order side-channel attacks by TVLA. The resistance against SIFA was verified by means of fault
emulation of single as well as multiple bit faults.

Chapter 14 introduced a novel open-source tool called TOFU which synthesizes VCD simulation
traces into power traces, with adjustable leakage models. Additionally, we proposed a workflow
which is only based on open-source tools. The functionality of TOFU and the proposed workflow
was verified by a CPA of an AES hardware and software implementation.

124

Bibliography

[AH20] Karim M. Abdellatif and Olivier Hériveaux. SiliconToaster: A Cheap and Pro-
grammable EM Injector for Extracting Secrets. Cryptology ePrint Archive, Pa-
per 2020/1115. https://eprint.iacr.org/2020/1115. 2020. url: https:
//eprint.iacr.org/2020/1115.

[AM11] Sk Subidh Ali and Debdeep Mukhopadhyay. “Differential Fault Analysis of AES-
128 Key Schedule Using a Single Multi-byte Fault”. In: Smart Card Research and
Advanced Applications. Springer Berlin Heidelberg, 2011, pp. 50–64. doi: 10.1007/
978-3-642-27257-8_4.

[And+16] Elena Andreeva et al. “COLM v1”. In: Submission to the CAESAR Competition
(2016).

[AS10] Martin Albrecht and Mate Soos. anf2cnf.py. https://bitbucket.org/malb/
research-snippets/src/master/anf2cnf.py. 2010.

[BCO04] Eric Brier, Christophe Clavier, and Francis Olivier. “Correlation Power Analy-
sis with a Leakage Model”. In: Cryptographic Hardware and Embedded Systems -
CHES 2004. Ed. by Marc Joye and Jean-Jacques Quisquater. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2004, pp. 16–29. isbn: 978-3-540-28632-5.

[BDL00] Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. “On the Importance of
Eliminating Errors in Cryptographic Computations”. In: Journal of Cryptology
14.2 (2000), pp. 101–119. doi: 10.1007/s001450010016.

[BDL97] Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. “On the Importance of
Checking Cryptographic Protocols for Faults (Extended Abstract)”. In: Advances
in Cryptology - EUROCRYPT ’97, International Conference on the Theory and
Application of Cryptographic Techniques, Konstanz, Germany, May 11-15, 1997,
Proceeding. 1997, pp. 37–51. doi: 10.1007/3- 540- 69053- 0_4. url: http:
//dx.doi.org/10.1007/3-540-69053-0_4.

[BE+04] Hagai Bar-El et al. The Sorcerer’s Apprentice Guide to Fault Attacks. Cryptology
ePrint Archive, Report 2004/100. Version 20040507:081456. https://eprint.
iacr.org/2004/100. May 2004. url: https://eprint.iacr.org/2004/100/
20040507:081456.

[Ber+12a] Guido Bertoni et al. “Duplexing the Sponge: Single-Pass Authenticated Encryp-
tion and Other Applications”. In: Selected Areas in Cryptography. Springer Berlin
Heidelberg, 2012, pp. 320–337. doi: 10.1007/978-3-642-28496-0_19.

[Ber+12b] Guido Bertoni et al. “Duplexing the Sponge: Single-Pass Authenticated Encryption
and Other Applications”. In: Selected Areas in Cryptography. Ed. by Ali Miri and
Serge Vaudenay. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 320–
337. isbn: 978-3-642-28496-0.

[Ber+17] Daniel J Bernstein et al. “Gimli: a cross-platform permutation”. In: International
Conference on Cryptographic Hardware and Embedded Systems. Springer. 2017,
pp. 299–320.

127

https://eprint.iacr.org/2020/1115
https://eprint.iacr.org/2020/1115
https://eprint.iacr.org/2020/1115
https://doi.org/10.1007/978-3-642-27257-8_4
https://doi.org/10.1007/978-3-642-27257-8_4
https://bitbucket.org/malb/research-snippets/src/master/anf2cnf.py
https://bitbucket.org/malb/research-snippets/src/master/anf2cnf.py
https://doi.org/10.1007/s001450010016
https://doi.org/10.1007/3-540-69053-0_4
http://dx.doi.org/10.1007/3-540-69053-0_4
http://dx.doi.org/10.1007/3-540-69053-0_4
https://eprint.iacr.org/2004/100
https://eprint.iacr.org/2004/100
https://eprint.iacr.org/2004/100/20040507:081456
https://eprint.iacr.org/2004/100/20040507:081456
https://doi.org/10.1007/978-3-642-28496-0_19

Bibliography

[BGEC04] Olivier Billet, Henri Gilbert, and Charaf Ech-Chatbi. “Cryptanalysis of a White
Box AES Implementation”. In: Selected Areas in Cryptography. Springer Berlin
Heidelberg, 2004, pp. 227–240. doi: 10.1007/978-3-540-30564-4_16.

[Bog+] A. Bogdanov et al. “PRESENT: An Ultra-Lightweight Block Cipher”. In: Cryp-
tographic Hardware and Embedded Systems - CHES 2007. Springer Berlin Heidel-
berg, pp. 450–466. doi: 10.1007/978-3-540-74735-2_31.

[Bre+19a] Jakub Breier et al. A Countermeasure Against Statistical Ineffective Fault Analysis.
Cryptology ePrint Archive, Report 2019/515. Version 20190920:022400. https:
//eprint.iacr.org/2019/515. Sept. 2019. url: https://eprint.iacr.org/
2019/515/20190920:022400.

[Bre+19b] Jakub Breier et al. “A Countermeasure Against Statistical Ineffective Fault Anal-
ysis”. In: (2019), pp. 1–5.

[Bru+20] Michaela Brunner et al. “Logic Locking Induced Fault Attacks”. In: 2020 IEEE
Computer Society Annual Symposium on VLSI (ISVLSI). 2020, pp. 114–119. doi:
10.1109/ISVLSI49217.2020.00030.

[BS93] Eli Biham and Adi Shamir. Differential Cryptanalysis of the Data Encryption Stan-
dard. Springer New York, 1993. doi: 10.1007/978-1-4613-9314-6.

[BS97] Eli Biham and Adi Shamir. “Differential fault analysis of secret key cryptosys-
tems”. In: Advances in Cryptology — CRYPTO ’97. Ed. by Burton S. Kaliski.
Berlin, Heidelberg: Springer Berlin Heidelberg, 1997, pp. 513–525. isbn: 978-3-
540-69528-8.

[Cae] CAESAR: Competition for Authenticated Encryption: Security, Applicability, and
Robustness. http://competitions.cr.yp.to/caesar.html. Last accessed:
2022-09-07. 2012.

[CGD18] Yann Le Corre, Johann Großschädl, and Daniel Dinu. “Micro-architectural Power
Simulator for Leakage Assessment of Cryptographic Software on ARM Cortex-M3
Processors”. In: Constructive Side-Channel Analysis and Secure Design. Springer
International Publishing, 2018, pp. 82–98. doi: 10.1007/978-3-319-89641-0_5.

[CH17] Ang Cui and Rick Housley. “BADFET: Defeating Modern Secure Boot Using
Second-Order Pulsed Electromagnetic Fault Injection”. In: 11th USENIX Work-
shop on Offensive Technologies (WOOT17). USENIX Association. 2017.

[Cho+03a] Stanley Chow et al. “A White-Box DES Implementation for DRM Applications”.
In: Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2003, pp. 1–15.
doi: 10.1007/978-3-540-44993-5_1.

[Cho+03b] Stanley Chow et al. “White-Box Cryptography and an AES Implementation”. In:
Selected Areas in Cryptography. Springer Berlin Heidelberg, 2003, pp. 250–270.
doi: 10.1007/3-540-36492-7_17.

[Cho+18] Davin Choo et al. “BOSPHORUS: Bridging ANF and CNF Solvers”. In: (Dec.
2018). arXiv: http://arxiv.org/abs/1812.04580v1 [cs.LO].

[Cho+19] Davin Choo et al. “Bosphorus: Bridging ANF and CNF Solvers”. In: Proceedings
of Design, Automation, and Test in Europe(DATE). Mar. 2019.

[CJW10] Nicolas T Courtois, Keith Jackson, and David Ware. “Fault-algebraic attacks on
inner rounds of DES”. In: E-Smart’10 Proceedings: The Future of Digital Security
Technologies. Strategies Telecom and Multimedia. 2010.

128

https://doi.org/10.1007/978-3-540-30564-4_16
https://doi.org/10.1007/978-3-540-74735-2_31
https://eprint.iacr.org/2019/515
https://eprint.iacr.org/2019/515
https://eprint.iacr.org/2019/515/20190920:022400
https://eprint.iacr.org/2019/515/20190920:022400
https://doi.org/10.1109/ISVLSI49217.2020.00030
https://doi.org/10.1007/978-1-4613-9314-6
http://competitions.cr.yp.to/caesar.html
https://doi.org/10.1007/978-3-319-89641-0_5
https://doi.org/10.1007/978-3-540-44993-5_1
https://doi.org/10.1007/3-540-36492-7_17
https://arxiv.org/abs/http://arxiv.org/abs/1812.04580v1

Bibliography

[Cla07] Christophe Clavier. “Secret external encodings do not prevent transient fault anal-
ysis”. In: International Workshop on Cryptographic Hardware and Embedded Sys-
tems. Springer. 2007, pp. 181–194.

[CP02] Nicolas T. Courtois and Josef Pieprzyk. “Cryptanalysis of Block Ciphers with
Overdefined Systems of Equations”. In: Lecture Notes in Computer Science. Springer
Berlin Heidelberg, 2002, pp. 267–287. doi: 10.1007/3-540-36178-2_17.

[CRR03] Suresh Chari, Josyula R. Rao, and Pankaj Rohatgi. “Template Attacks”. In: Cryp-
tographic Hardware and Embedded Systems - CHES 2002. Springer Berlin Heidel-
berg, 2003, pp. 13–28.

[CY03] Chien-Ning Chen and Sung-Ming Yen. “Differential Fault Analysis on AES Key
Schedule and Some Countermeasures”. In: Information Security and Privacy. Springer
Berlin Heidelberg, 2003, pp. 118–129. doi: 10.1007/3-540-45067-x_11.

[CYX15] Fan Cunyang, Wei Yuechuan, and Pan Xiaozhong. “A DIFFERENTIAL FAULT
ANALYSIS METHOD FOR KLEIN CIPHER”. In: Computer Application and
Software 32 (June 2015). doi: 10.3969/j.issn.1000-386x.2015.06.069.

[Dae+19] Joan Daemen et al. “Protecting against Statistical Ineffective Fault Attacks”. In:
Cryptology ePrint Archive Report 2019/536 (2019), pp. 1–27. url: https : / /
eprint.iacr.org/2019/536.

[De +19] Lauren De Meyer et al. “M&M: Masks and Macs against Physical Attacks”. In:
TCHES 2019.1 (2019), pp. 25–50. doi: 10.13154/tches.v2019.i1.25-50.

[Deh+12] Amine Dehbaoui et al. “Electromagnetic Transient Faults Injection on a Hardware
and a Software Implementations of AES”. In: 2012 Workshop on Fault Diagnosis
and Tolerance in Cryptography, Leuven, Belgium, September 9, 2012. 2012, pp. 7–
15. doi: 10.1109/FDTC.2012.15. url: http://dx.doi.org/10.1109/FDTC.
2012.15.

[DEM15] Christoph Dobraunig, Maria Eichlseder, and Florian Mendel. Heuristic Tool for
Linear Cryptanalysis with Applications to CAESAR Candidates. Cryptology ePrint
Archive, Report 2015/1200. https://eprint.iacr.org/2015/1200. 2015.

[DK10] Orr Dunkelman and Nathan Keller. The Effects of the Omission of Last Round’s
MixColumns on AES. Cryptology ePrint Archive, Report 2010/041. https://
eprint.iacr.org/2010/041. 2010.

[DMR19] Joan Daemen, Pedro Maat Costa Massolino, and Yann Rotella. The Subterranean
2.0 cipher suite. https://csrc.nist.gov/Projects/lightweight-cryptography/
round-2-candidates. 2019.

[DN16] Thomas De Cnudde and Svetla Nikova. “More Efficient Private Circuits II through
Threshold Implementations”. In: Proceedings - 2016 Workshop on Fault Diagno-
sis and Tolerance in Cryptography, FDTC 2016. IEEE, 2016, pp. 114–124. isbn:
9781509011087. doi: 10.1109/FDTC.2016.15.

[Dob+16a] Christoph Dobraunig et al. “Ascon v1.2”. In: Submission to the CAESAR Compe-
tition (2016).

[Dob+16b] Christoph Dobraunig et al. “Practical Fault Attacks on Authenticated Encryption
Modes for AES.” In: IACR Cryptology ePrint Archive 2016 (2016), p. 616.

[Dob+18a] Christoph Dobraunig et al. Fault Attacks on Nonce-based Authenticated Encryp-
tion: Application to Keyak and Ketje. Cryptology ePrint Archive, Report 2018/852.
https://eprint.iacr.org/2018/852. 2018.

129

https://doi.org/10.1007/3-540-36178-2_17
https://doi.org/10.1007/3-540-45067-x_11
https://doi.org/10.3969/j.issn.1000-386x.2015.06.069
https://eprint.iacr.org/2019/536
https://eprint.iacr.org/2019/536
https://doi.org/10.13154/tches.v2019.i1.25-50
https://doi.org/10.1109/FDTC.2012.15
http://dx.doi.org/10.1109/FDTC.2012.15
http://dx.doi.org/10.1109/FDTC.2012.15
https://eprint.iacr.org/2015/1200
https://eprint.iacr.org/2010/041
https://eprint.iacr.org/2010/041
https://csrc.nist.gov/Projects/lightweight-cryptography/round-2-candidates
https://csrc.nist.gov/Projects/lightweight-cryptography/round-2-candidates
https://doi.org/10.1109/FDTC.2016.15
https://eprint.iacr.org/2018/852

Bibliography

[Dob+18b] Christoph Dobraunig et al. “SIFA: Exploiting Ineffective Fault Inductions on Sym-
metric Cryptography”. In: IACR Transactions on Cryptographic Hardware and
Embedded Systems (2018), pp. 547–572.

[DS16] François Durvaux and François-Xavier Standaert. “From Improved Leakage De-
tection to the Detection of Points of Interests in Leakage Traces”. In: Advances in
Cryptology – EUROCRYPT 2016. Springer Berlin Heidelberg, 2016, pp. 240–262.
doi: 10.1007/978-3-662-49890-3_10.

[Dwo07] Morris Dworkin. Recommendation for Block Cipher Modes of Operation: Galois/Counter
Mode (GCM) for Confidentiality and Authentication. SP 800-38D: National Insti-
tute of Standards and Technology, 2007.

[FIP01] NIST FIPS. “197: Advanced Encryption Standard (AES)”. In: Federal information
processing standards publication 197.441 (2001), p. 0311.

[Fuh+13] Thomas Fuhr et al. “Fault attacks on AES with faulty ciphertexts only”. In: 2013
Workshop on Fault Diagnosis and Tolerance in Cryptography. IEEE. 2013, pp. 108–
118.

[GGJR+11] Benjamin Jun Gilbert Goodwill, Josh Jaffe, Pankaj Rohatgi, et al. “A testing
methodology for side-channel resistance validation”. In: NIST non-invasive attack
testing workshop. Vol. 7. https://csrc.nist.gov/csrc/media/events/non-
invasive- attack- testing- workshop/documents/08_goodwill.pdf. 2011,
pp. 115–136.

[GGS17] Oscar M. Guillen, Michael Gruber, and Fabrizio De Santis. “Low-Cost Setup for
Localized Semi-invasive Optical Fault Injection Attacks”. In: Constructive Side-
Channel Analysis and Secure Design. Springer International Publishing, 2017,
pp. 207–222. doi: 10.1007/978-3-319-64647-3_13.

[Gin] Tristan Gingold. GHDL. https://github.com/ghdl/ghdl. Accessed: 2021-07-11.

[GKS21] Michael Gruber, Patrick Karl, and Georg Sigl. “Algebraic Fault Analysis of Subter-
ranean 2.0”. In: 2021 Workshop on Fault Detection and Tolerance in Cryptography
(FDTC). 2021, pp. 45–55. doi: 10.1109/FDTC53659.2021.00016.

[GMK16] Hannes Gross, Stefan Mangard, and Thomas Korak. Domain-Oriented Masking:
Compact Masked Hardware Implementations with Arbitrary Protection Order. Cryp-
tology ePrint Archive, Report 2016/486. Version 20161115:152528. https : / /

eprint.iacr.org/2016/486. Nov. 15, 2016. url: https://eprint.iacr.
org/2016/486/20161115:152528.

[GNL12] Zheng Gong, Svetla Nikova, and YeeWei Law. “KLEIN: A New Family of Lightweight
Block Ciphers”. In: RFID. Security and Privacy. Springer Berlin Heidelberg, 2012,
pp. 1–18. doi: 10.1007/978-3-642-25286-0_1.

[Goo+11] Gilbert Goodwill et al. “A testing methodology for side-channel resistance valida-
tion”. In: NIST non-invasive attack testing workshop. Vol. 7. 2011, pp. 115–136.

[GPT19] Michael Gruber, Matthias Probst, and Michael Tempelmeier. “Persistent Fault
Analysis of OCB, DEOXYS and COLM”. In: 2019 Workshop on Fault Diagnosis
and Tolerance in Cryptography (FDTC). 2019, pp. 17–24. doi: 10.1109/FDTC.
2019.00011.

[GPT20] M. Gruber, M. Probst, and M. Tempelmeier. “Statistical Ineffective Fault Anal-
ysis of GIMLI”. In: 2020 IEEE International Symposium on Hardware Oriented
Security and Trust (HOST). 2020, pp. 252–261. doi: 10.1109/HOST45689.2020.
9300260.

130

https://doi.org/10.1007/978-3-662-49890-3_10
https://csrc.nist.gov/csrc/media/events/non-invasive-attack-testing-workshop/documents/08_goodwill.pdf
https://csrc.nist.gov/csrc/media/events/non-invasive-attack-testing-workshop/documents/08_goodwill.pdf
https://doi.org/10.1007/978-3-319-64647-3_13
https://github.com/ghdl/ghdl
https://doi.org/10.1109/FDTC53659.2021.00016
https://eprint.iacr.org/2016/486
https://eprint.iacr.org/2016/486
https://eprint.iacr.org/2016/486/20161115:152528
https://eprint.iacr.org/2016/486/20161115:152528
https://doi.org/10.1007/978-3-642-25286-0_1
https://doi.org/10.1109/FDTC.2019.00011
https://doi.org/10.1109/FDTC.2019.00011
https://doi.org/10.1109/HOST45689.2020.9300260
https://doi.org/10.1109/HOST45689.2020.9300260

Bibliography

[Gro+23] Mathieu Gross et al. “FPGANeedle”. In: Proceedings of the 28th Asia and South
Pacific Design Automation Conference. ACM, 2023. doi: 10 . 1145 / 3566097 .
3568352.

[Gru+21] Michael Gruber et al. “DOMREP–An Orthogonal Countermeasure for Arbitrary
Order Side-Channel and Fault Attack Protection”. In: IEEE Transactions on In-
formation Forensics and Security 16 (2021), pp. 4321–4335. doi: 10.1109/TIFS.
2021.3089875.

[GS19] Michael Gruber and Bodo Selmke. “Differential Fault Attacks on KLEIN”. In: The
Urban Book Series. Springer Singapore, 2019, pp. 80–95. doi: 10.1007/978-3-
030-16350-1_6.

[GS22] Michael Gruber and Georg Sigl. TOFU - Toggle Count Analysis made simple.
Cryptology ePrint Archive, Report 2022/129. https://ia.cr/2022/129. 2022.

[GST12] Benedikt Gierlichs, Jörn-Marc Schmidt, and Michael Tunstall. “Infective Compu-
tation and Dummy Rounds: Fault Protection for Block Ciphers without Check-
before-Output”. In: Progress in Cryptology – LATINCRYPT 2012. Springer Berlin
Heidelberg, 2012, pp. 305–321. doi: 10.1007/978-3-642-33481-8_17.

[GST14] Daniel Genkin, Adi Shamir, and Eran Tromer. “RSA Key Extraction via Low-
Bandwidth Acoustic Cryptanalysis”. In: Advances in Cryptology – CRYPTO 2014.
Springer Berlin Heidelberg, 2014, pp. 444–461. doi: 10.1007/978-3-662-44371-
2_25.

[HBG23] Tobias Holl, Katharina Bogad, and Michael Gruber. “Whiteboxgrind – Automated
Analysis of Whitebox Cryptography”. In: Constructive Side-Channel Analysis and
Secure Design. Springer Nature Switzerland, 2023, pp. 221–240. doi: 10.1007/
978-3-031-29497-6_11.

[IEE06] IEEE. “IEEE Standard for Verilog Hardware Description Language”. In: IEEE Std
1364-2005 (Revision of IEEE Std 1364-2001) (2006), pp. 1–590. doi: 10.1109/
IEEESTD.2006.99495.

[Ins97] Texas Instruments. “CMOS Power Consumption and Cpd Calculation”. In: SCAA035B
June (1997). https://www.ti.com/lit/an/scaa035b/scaa035b.pdf.

[Ish+06] Yuval Ishai et al. “Private Circuits II: Keeping Secrets in Tamperable Circuits”. In:
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics). Vol. 4004 LNCS. 2006, pp. 308–
327. isbn: 3540345469. doi: 10.1007/11761679_19.

[ISW03] Yuval Ishai, Amit Sahai, and David Wagner. “Private Circuits: Securing Hardware
against Probing Attacks”. In: Lecture Notes in Computer Science (including sub-
series Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
2729 (2003), pp. 463–481. issn: 03029743.

[Jea+16] Jérémy Jean et al. “Deoxys v1.41”. In: Submitted to the CAESAR Competition
(2016).

[JKP12] Philipp Jovanovic, Martin Kreuzer, and Ilia Polian. An Algebraic Fault Attack
on the LED Block Cipher. Cryptology ePrint Archive, Report 2012/400. Ver-
sion 20120723:115821. https://eprint.iacr.org/2012/400. July 2012. url:
https://eprint.iacr.org/2012/400/20120723:115821.

131

https://doi.org/10.1145/3566097.3568352
https://doi.org/10.1145/3566097.3568352
https://doi.org/10.1109/TIFS.2021.3089875
https://doi.org/10.1109/TIFS.2021.3089875
https://doi.org/10.1007/978-3-030-16350-1_6
https://doi.org/10.1007/978-3-030-16350-1_6
https://ia.cr/2022/129
https://doi.org/10.1007/978-3-642-33481-8_17
https://doi.org/10.1007/978-3-662-44371-2_25
https://doi.org/10.1007/978-3-662-44371-2_25
https://doi.org/10.1007/978-3-031-29497-6_11
https://doi.org/10.1007/978-3-031-29497-6_11
https://doi.org/10.1109/IEEESTD.2006.99495
https://doi.org/10.1109/IEEESTD.2006.99495
https://www.ti.com/lit/an/scaa035b/scaa035b.pdf
https://doi.org/10.1007/11761679_19
https://eprint.iacr.org/2012/400
https://eprint.iacr.org/2012/400/20120723:115821

Bibliography

[JNP14] Jérémy Jean, Ivica Nikolić, and Thomas Peyrin. “Tweaks and Keys for Block
Ciphers: The TWEAKEY Framework”. In: Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 2014, pp. 274–288. doi: 10.1007/978-3-662-45608-
8_15.

[KG21] Patrick Karl and Michael Gruber. “A Survey on the Application of Fault Analysis
on Lightweight Cryptography”. In: 2021 11th IFIP International Conference on
New Technologies, Mobility and Security (NTMS). 2021, pp. 1–3. doi: 10.1109/
NTMS49979.2021.9432667.

[Kha+18] Mustafa Khairallah et al. On Hardware Implementation of Tang-Maitra Boolean
Functions. Cryptology ePrint Archive, Report 2018/667. https://ia.cr/2018/
667. 2018.

[Kim12] Chong Hee Kim. “Improved Differential Fault Analysis on AES Key Schedule”. In:
IEEE Transactions on Information Forensics and Security 7.1 (2012), pp. 41–50.
doi: 10.1109/tifs.2011.2161289.

[KJJ99] Paul Kocher, Joshua Jaffe, and Benjamin Jun. “Differential Power Analysis”.
In: Advances in Cryptology — CRYPTO’ 99. Springer Berlin Heidelberg, 1999,
pp. 388–397. doi: 10.1007/3-540-48405-1_25.

[Koc96] Paul C. Kocher. “Timing Attacks on Implementations of Diffie-Hellman, RSA,
DSS, and Other Systems”. In: Advances in Cryptology — CRYPTO ’96. Springer
Berlin Heidelberg, 1996, pp. 104–113. doi: 10.1007/3-540-68697-5_9.

[KR16] Ted Krovetz and Phillip Rogaway. “OCB v1.1”. In: Submission to the CAESAR
Competition (2016).

[KS05] François Koeune and François-Xavier Standaert. “A Tutorial on Physical Security
and Side-Channel Attacks”. In: Foundations of Security Analysis and Design III.
Springer Berlin Heidelberg, 2005, pp. 78–108. doi: 10.1007/11554578_3.

[LAN] LANGER. ICI HH500-15 L-EFT Datasheet. https://www.langer-emv.de/en/
download/94/820/ici-hh500-15-l-eft-pulse-magnetic-field-source.pdf.
Accessed: 2022-06-01.

[Led] Ledger. LASCAR. https://github.com/Ledger- Donjon/lascar. Accessed:
2021-07-11.

[Luo+17] Pei Luo et al. Algebraic Fault Analysis of SHA-3. Cryptology ePrint Archive, Re-
port 2017/113. Version 20170214:183445. https://eprint.iacr.org/2017/113.
Feb. 2017. url: https://eprint.iacr.org/2017/113/20170214:183445.

[Man04] Stefan Mangard. “Hardware Countermeasures against DPA – A Statistical Anal-
ysis of Their Effectiveness”. In: Topics in Cryptology – CT-RSA 2004. Springer
Berlin Heidelberg, 2004, pp. 222–235.

[Mar03] George Marsaglia. “Xorshift RNGs”. In: Journal of Statistical Software 8.14 (2003).
doi: 10.18637/jss.v008.i14.

[Mat94] Mitsuru Matsui. “Linear Cryptanalysis Method for DES Cipher ”. In: Lecture
Notes in Computer Science (including subseries Lecture Notes in Artificial Intelli-
gence and Lecture Notes in Bioinformatics) 765 LNCS (1994), pp. 386–397. issn:
16113349. doi: 10.1007/3-540-48285-7_33.

132

https://doi.org/10.1007/978-3-662-45608-8_15
https://doi.org/10.1007/978-3-662-45608-8_15
https://doi.org/10.1109/NTMS49979.2021.9432667
https://doi.org/10.1109/NTMS49979.2021.9432667
https://ia.cr/2018/667
https://ia.cr/2018/667
https://doi.org/10.1109/tifs.2011.2161289
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/3-540-68697-5_9
https://doi.org/10.1007/11554578_3
https://www.langer-emv.de/en/download/94/820/ici-hh500-15-l-eft-pulse-magnetic-field-source.pdf
https://www.langer-emv.de/en/download/94/820/ici-hh500-15-l-eft-pulse-magnetic-field-source.pdf
https://github.com/Ledger-Donjon/lascar
https://eprint.iacr.org/2017/113
https://eprint.iacr.org/2017/113/20170214:183445
https://doi.org/10.18637/jss.v008.i14
https://doi.org/10.1007/3-540-48285-7_33

Bibliography

[MBB11] Mohamed Saied Emam Mohamed, Stanislav Bulygin, and Johannes Buchmann.
“Using SAT Solving to Improve Differential Fault Analysis of Trivium”. In: Com-
munications in Computer and Information Science. Springer Berlin Heidelberg,
2011, pp. 62–71. doi: 10.1007/978-3-642-23141-4_7.

[McK+16] Kerry McKay et al. Report on lightweight cryptography. Tech. rep. National Insti-
tute of Standards and Technology, 2016.

[Mil+24] Michael Mildner et al. “Fault-Simulation-Based Flip-Flop Classification for Re-
verse Engineering”. In: 2024 27th International Symposium on Design & Diagnos-
tics of Electronic Circuits & Systems (DDECS). 2024, pp. 53–56. doi: 10.1109/
DDECS60919.2024.10508905.

[MOW17] David McCann, Elisabeth Oswald, and Carolyn Whitnall. “Towards Practical
Tools for Side Channel Aware Software Engineering: ’Grey Box’ Modelling for
Instruction Leakages”. In: 26th USENIX Security Symposium (USENIX Security
17). Vancouver, BC: USENIX Association, Aug. 2017, pp. 199–216. isbn: 978-1-
931971-40-9. url: https://www.usenix.org/conference/usenixsecurity17/
technical-sessions/presentation/mccann.

[Muk09] Debdeep Mukhopadhyay. “An Improved Fault Based Attack of the Advanced En-
cryption Standard”. In: Progress in Cryptology – AFRICACRYPT 2009. Springer
Berlin Heidelberg, 2009, pp. 421–434. doi: 10.1007/978-3-642-02384-2_26.

[MW78] Timothy C. May and Murray H. Woods. “A New Physical Mechanism for Soft Er-
rors in Dynamic Memories”. In: 16th International Reliability Physics Symposium.
IEEE, 1978. doi: 10.1109/irps.1978.362815.

[Nev+03] Michael Neve et al. “Memories: A Survey of Their Secure Uses in Smart Cards”. In:
2nd International IEEE Security in Storage Workshop (SISW 2003), Information
Assurance, The Storage Security Perspective, 31 October 2003, Washington, DC,
USA. 2003, pp. 62–72. doi: 10.1109/SISW.2003.10004. url: http://dx.doi.
org/10.1109/SISW.2003.10004.

[NIS17] NIST. NIST-LWC: NIST Lightweight Cryptography (LWC) standardization pro-
cess. https://csrc.nist.gov/Projects/lightweight- cryptography. Last
accessed: 2022-09-07. 2017.

[NRR06] Svetla Nikova, Christian Rechberger, and Vincent Rijmen. “Threshold Implemen-
tations Against Side-Channel Attacks and Glitches”. In: Lecture Notes in Com-
puter Science (including subseries Lecture Notes in Artificial Intelligence and Lec-
ture Notes in Bioinformatics) 4307 LNCS (2006), pp. 529–545. issn: 16113349.

[OC14] Colin O’Flynn and Zhizhang (David) Chen. “ChipWhisperer: An Open-Source
Platform for Hardware Embedded Security Research”. In: IACR Cryptology ePrint
Archive 2014 (2014), p. 204. url: https://eprint.iacr.org/2014/204.

[O’F19] Colin O’Flynn. “MIN()imum Failure: EMFI Attacks against USB Stacks”. In:
13th USENIX Workshop on Offensive Technologies (WOOT 19). Santa Clara, CA:
USENIX Association, Aug. 2019. url: https://www.usenix.org/conference/
woot19/presentation/oflynn.

[OT17] Johannes Obermaier and Stefan Tatschner. “Shedding too much Light on a Micro-
controller’s Firmware Protection”. In: 11th USENIX Workshop on Offensive Tech-
nologies (WOOT 17). Vancouver, BC: USENIX Association, 2017. url: https:
//www.usenix.org/conference/woot17/workshop-program/presentation/

obermaier.

133

https://doi.org/10.1007/978-3-642-23141-4_7
https://doi.org/10.1109/DDECS60919.2024.10508905
https://doi.org/10.1109/DDECS60919.2024.10508905
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/mccann
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/mccann
https://doi.org/10.1007/978-3-642-02384-2_26
https://doi.org/10.1109/irps.1978.362815
https://doi.org/10.1109/SISW.2003.10004
http://dx.doi.org/10.1109/SISW.2003.10004
http://dx.doi.org/10.1109/SISW.2003.10004
https://csrc.nist.gov/Projects/lightweight-cryptography
https://eprint.iacr.org/2014/204
https://www.usenix.org/conference/woot19/presentation/oflynn
https://www.usenix.org/conference/woot19/presentation/oflynn
https://www.usenix.org/conference/woot17/workshop-program/presentation/obermaier
https://www.usenix.org/conference/woot17/workshop-program/presentation/obermaier
https://www.usenix.org/conference/woot17/workshop-program/presentation/obermaier

Bibliography

[PCM15] Sikhar Patranabis, Abhishek Chakraborty, and Debdeep Mukhopadhyay. “Fault
Tolerant Infective Countermeasure for AES”. In: Security, Privacy, and Applied
Cryptography Engineering. Springer International Publishing, 2015, pp. 190–209.
doi: 10.1007/978-3-319-24126-5_12.

[Pea00] Karl Pearson. “X. On the criterion that a given system of deviations from the prob-
able in the case of a correlated system of variables is such that it can be reasonably
supposed to have arisen from random sampling”. In: The London, Edinburgh, and
Dublin Philosophical Magazine and Journal of Science 50.302 (1900), pp. 157–175.
doi: 10.1080/14786440009463897.

[Pos+11] Axel Poschmann et al. “Side-Channel Resistant Crypto for Less than 2,300 GE”.
In: J. Cryptology 24 (2011), pp. 322–345. doi: 10.1007/s00145-010-9086-6.

[PQ03] Gilles Piret and Jean-Jacques Quisquater. “A Differential Fault Attack Technique
against SPN Structures, with Application to the AES and Khazad”. In: Lecture
Notes in Computer Science. Springer Berlin Heidelberg, 2003, pp. 77–88. doi:
10.1007/978-3-540-45238-6_7.

[Pro+24a] Matthias Probst et al. “ Switch-Glitch : Location of Fault Injection Sweet Spots
by Electro-Magnetic Emanation ”. In: 2024 Workshop on Fault Detection and
Tolerance in Cryptography (FDTC). Los Alamitos, CA, USA: IEEE Computer
Society, Sept. 2024, pp. 22–27. doi: 10 . 1109 / FDTC64268 . 2024 . 00011. url:
https://doi.ieeecomputersociety.org/10.1109/FDTC64268.2024.00011.

[Pro+24b] Matthias Probst et al. “DOMREP II”. In: 2024 IEEE International Symposium
on Hardware Oriented Security and Trust (HOST). 2024, pp. 112–121. doi: 10.
1109/HOST55342.2024.10545417.

[Que14] Frank Quedenfeld. Algebraic Fault Analysis of Katan. Cryptology ePrint Archive,
Paper 2014/954. https://eprint.iacr.org/2014/954. 2014. url: https:
//eprint.iacr.org/2014/954.

[RAD19] Keyvan Ramezanpour, Paul Ampadu, and William Diehl. “A Statistical Fault
Analysis Methodology for the Ascon Authenticated Cipher”. In: 2019 IEEE In-
ternational Symposium on Hardware Oriented Security and Trust (HOST). IEEE,
2019. doi: 10.1109/hst.2019.8741029.

[RAD20] K. Ramezanpour, P. Ampadu, and W. Diehl. “RS-Mask: Random Space Masking
as an Integrated Countermeasure against Power and Fault Analysis”. In: 2020
IEEE International Symposium on Hardware Oriented Security and Trust (HOST).
2020, pp. 176–187. doi: 10.1109/HOST45689.2020.9300266.

[Rep+18] Oscar Reparaz et al. “CAPA: The Spirit of Beaver against Physical Attacks”. In:
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics) 10991 LNCS (2018), pp. 121–
151. issn: 16113349. doi: 10.1007/978-3-319-96884-1_5.

[RGP22] Jonas Ruchti, Michael Gruber, and Michael Pehl. “When the Decoder Has to
Look Twice: Glitching a PUF Error Correction”. In: IACR Transactions on Cryp-
tographic Hardware and Embedded Systems 2022.3 (2022), 26–70. doi: 10.46586/
tches.v2022.i3.26-70. url: https://tches.iacr.org/index.php/TCHES/
article/view/9694.

[Riv09] Matthieu Rivain. “Differential Fault Analysis on DES Middle Rounds”. In: Lecture
Notes in Computer Science. Springer Berlin Heidelberg, 2009, pp. 457–469. doi:
10.1007/978-3-642-04138-9_32.

134

https://doi.org/10.1007/978-3-319-24126-5_12
https://doi.org/10.1080/14786440009463897
https://doi.org/10.1007/s00145-010-9086-6
https://doi.org/10.1007/978-3-540-45238-6_7
https://doi.org/10.1109/FDTC64268.2024.00011
https://doi.ieeecomputersociety.org/10.1109/FDTC64268.2024.00011
https://doi.org/10.1109/HOST55342.2024.10545417
https://doi.org/10.1109/HOST55342.2024.10545417
https://eprint.iacr.org/2014/954
https://eprint.iacr.org/2014/954
https://eprint.iacr.org/2014/954
https://doi.org/10.1109/hst.2019.8741029
https://doi.org/10.1109/HOST45689.2020.9300266
https://doi.org/10.1007/978-3-319-96884-1_5
https://doi.org/10.46586/tches.v2022.i3.26-70
https://doi.org/10.46586/tches.v2022.i3.26-70
https://tches.iacr.org/index.php/TCHES/article/view/9694
https://tches.iacr.org/index.php/TCHES/article/view/9694
https://doi.org/10.1007/978-3-642-04138-9_32

Bibliography

[SA03] Sergei P. Skorobogatov and Ross J. Anderson. “Optical Fault Induction Attacks”.
In: Cryptographic Hardware and Embedded Systems - CHES 2002. Springer Berlin
Heidelberg, 2003, pp. 2–12. doi: 10.1007/3-540-36400-5_2.

[Sad+19] Rajat Sadhukhan et al. “Count Your Toggles: a New Leakage Model for Pre-Silicon
Power Analysis of Crypto Designs”. In: Journal of Electronic Testing 35.5 (2019),
pp. 605–619. doi: 10.1007/s10836-019-05826-8.

[Sah+20] Sayandeep Saha et al. “A Framework to Counter Statistical Ineffective Fault Anal-
ysis of Block Ciphers Using Domain Transformation and Error Correction”. In:
IEEE Transactions on Information Forensics and Security 15 (2020), pp. 1905–
1919. doi: 10.1109/tifs.2019.2952262.

[SH07] Jörn-Marc Schmidt and Michael Hutter. “Optical and EM Fault-Attacks on CRT-
based RSA: Concrete Results”. In: Austrian Workshop on Microelectronics – Aus-
trochip 2007, Graz, Austria, October 11. Ed. by Karl Christian Posch and Johannes
Wolkerstorfer. ISBN 978-3-902465-87-0. Verlag der Technischen Universität Graz,
2007, pp. 61–67.

[SM15] Tobias Schneider and Amir Moradi. “Leakage Assessment Methodology”. In: Lec-
ture Notes in Computer Science. Springer Berlin Heidelberg, 2015, pp. 495–513.
doi: 10.1007/978-3-662-48324-4_25.

[SMG16] Tobias Schneider, Amir Moradi, and Tim Güneysu. “ParTI - Towards Combined
Hardware Countermeasures against Side-Channel and Fault-Injection Attacks”. In:
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics) 9815 (2016), pp. 302–332. issn:
16113349. doi: 10.1007/978-3-662-53008-5_11.

[SNC09] Mate Soos, Karsten Nohl, and Claude Castelluccia. “Extending SAT Solvers to
Cryptographic Problems”. In: Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2009, pp. 244–257. doi: 10.1007/978-3-642-02777-2_24.

[TL22] Honghui Tang and Qiang Liu. “MPFA: An Efficient Multiple Faults-Based Per-
sistent Fault Analysis Method for Low-Cost FIA”. In: IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems 41.9 (2022), pp. 2821–
2834. doi: 10.1109/tcad.2021.3117512.

[TMA11] Michael Tunstall, Debdeep Mukhopadhyay, and Subidh Ali. “Differential Fault
Analysis of the Advanced Encryption Standard Using a Single Fault”. In: In-
formation Security Theory and Practice. Security and Privacy of Mobile Devices
in Wireless Communication. Springer Berlin Heidelberg, 2011, pp. 224–233. doi:
10.1007/978-3-642-21040-2_15.

[Tou+20] J. Toulemont et al. A Simple Protocol to Compare EMFI Platforms. Cryptology
ePrint Archive, Paper 2020/1277. https://eprint.iacr.org/2020/1277. 2020.
url: https://eprint.iacr.org/2020/1277.

[Uni] Unicorn. Unicorn Engine. https://github.com/unicorn- engine/unicorn.
Accessed: 2023-03-01.

[Vaf+22] Navid Vafaei et al. “Statistical Effective Fault Attacks: The Other Side of the
Coin”. In: IEEE Transactions on Information Forensics and Security 17 (2022),
pp. 1855–1867. doi: 10.1109/tifs.2022.3172634.

[VG17] Nikita Veshchikov and Sylvain Guilley. “Use of Simulators for Side-Channel Anal-
ysis”. In: 2017 IEEE European Symposium on Security and Privacy Workshops
(EuroS&PW). IEEE, 2017. doi: 10.1109/eurospw.2017.59.

135

https://doi.org/10.1007/3-540-36400-5_2
https://doi.org/10.1007/s10836-019-05826-8
https://doi.org/10.1109/tifs.2019.2952262
https://doi.org/10.1007/978-3-662-48324-4_25
https://doi.org/10.1007/978-3-662-53008-5_11
https://doi.org/10.1007/978-3-642-02777-2_24
https://doi.org/10.1109/tcad.2021.3117512
https://doi.org/10.1007/978-3-642-21040-2_15
https://eprint.iacr.org/2020/1277
https://eprint.iacr.org/2020/1277
https://github.com/unicorn-engine/unicorn
https://doi.org/10.1109/tifs.2022.3172634
https://doi.org/10.1109/eurospw.2017.59

Bibliography

[Wam] Markus Stefan Wamser. VCD2R. https://github.com/wamserma/VCD2R. Ac-
cessed: 2022-02-13.

[Wam19] Markus Stefan Wamser. “Serialisation of Inversion-Based S-Boxes”. Dissertation.
München: Technische Universität München, 2019.

[WRZ16] Y.-J Wang, Q.-Y Ren, and S.-Y Zhang. “Differential Fault Attack on lightweight
Block Cipher Klein”. In: Tongxin Xuebao/Journal on Communications 37 (Oct.
2016), pp. 111–115. doi: 10.11959/j.issn.1000-436x.2016256.

[Wys+07] Brecht Wyseur et al. “Cryptanalysis of White-Box DES Implementations with
Arbitrary External Encodings”. In: Selected Areas in Cryptography. Springer Berlin
Heidelberg, 2007, pp. 264–277. doi: 10.1007/978-3-540-77360-3_17.

[Xu+21] Guorui Xu et al. “Pushing the Limit of PFA: Enhanced Persistent Fault Analysis on
Block Ciphers”. In: IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems 40.6 (2021), pp. 1102–1116. doi: 10.1109/tcad.2020.
3048280.

[Yos+] Hideki Yoshikawa et al. “Round Addition DFA on Lightweight Block Ciphers with
On-The-Fly Key Schedule”. In: -2006.9 (), p. 1. issn: eISSN:1307-6892. url: http:
//waset.org/abstracts/.

[Zha+12] Xinjie Zhao et al. Algebraic Differential Fault Attacks on LED using a Single Fault
Injection. Cryptology ePrint Archive, Report 2012/347. Version 20120622:195638.
https://eprint.iacr.org/2012/347. June 2012. url: https://eprint.iacr.
org/2012/347/20120622:195638.

[Zha+13a] Fan Zhang et al. “Improved Algebraic Fault Analysis: A Case Study on Piccolo and
Applications to Other Lightweight Block Ciphers”. In: Constructive Side-Channel
Analysis and Secure Design. Springer Berlin Heidelberg, 2013, pp. 62–79. doi:
10.1007/978-3-642-40026-1_5.

[Zha+13b] Xinjie Zhao et al. “Improving and Evaluating Differential Fault Analysis on LED
with Algebraic Techniques”. In: 2013 Workshop on Fault Diagnosis and Tolerance
in Cryptography. IEEE, 2013. doi: 10.1109/fdtc.2013.14.

[Zha+14] Xinjie Zhao et al. “Algebraic Fault Analysis on GOST for Key Recovery and
Reverse Engineering”. In: 2014 Workshop on Fault Diagnosis and Tolerance in
Cryptography. IEEE, 2014. doi: 10.1109/fdtc.2014.13.

[Zha+16a] Fan Zhang et al. “A Framework for the Analysis and Evaluation of Algebraic Fault
Attacks on Lightweight Block Ciphers”. In: IEEE Transactions on Information
Forensics and Security 11.5 (2016), pp. 1039–1054. doi: 10.1109/tifs.2016.
2516905.

[Zha+16b] Jinbao Zhang et al. “Against fault attacks based on random infection mechanism”.
In: IEICE Electronics Express 13.21 (2016), pp. 20160872–20160872.

[Zha+18] Fan Zhang et al. “Persistent Fault Analysis on Block Ciphers”. en. In: IACR Trans-
actions on Cryptographic Hardware and Embedded Systems Volume 2018 (2018),
Issue 3–. doi: 10.13154/tches.v2018.i3.150-172.

136

https://github.com/wamserma/VCD2R
https://doi.org/10.11959/j.issn.1000-436x.2016256
https://doi.org/10.1007/978-3-540-77360-3_17
https://doi.org/10.1109/tcad.2020.3048280
https://doi.org/10.1109/tcad.2020.3048280
http://waset.org/abstracts/
http://waset.org/abstracts/
https://eprint.iacr.org/2012/347
https://eprint.iacr.org/2012/347/20120622:195638
https://eprint.iacr.org/2012/347/20120622:195638
https://doi.org/10.1007/978-3-642-40026-1_5
https://doi.org/10.1109/fdtc.2013.14
https://doi.org/10.1109/fdtc.2014.13
https://doi.org/10.1109/tifs.2016.2516905
https://doi.org/10.1109/tifs.2016.2516905
https://doi.org/10.13154/tches.v2018.i3.150-172

	Abstract
	Kurzfassung
	Acknowledgment
	List of Publications
	List of Abbreviations
	List of Figures
	List of Tables
	Contents
	Introduction
	Cryptographic Preliminaries
	Block Ciphers
	Authenticated Encryption

	Threats
	Overview
	Attack Model
	Attack Vector
	Attack Invasiveness
	Attack Locality

	Electromagnetic Fault Injection
	Electromagnetic Fault Injection Setup
	Practical Evaluation
	Attack Settings
	Classification
	Attack Results

	Summary

	Side Channel Analysis
	CMOS Power Consumption
	Leakage Models
	Correlation Power Analysis
	Test Vector Leakage Assessment

	Attacks
	Overview
	Differential Fault Analysis
	Persistent Fault Analysis
	Statistical Ineffective Fault Analysis
	Algebraic Fault Analysis

	Differential Fault Analysis of KLEIN
	KLEIN
	The Round Function
	SubNibbles
	RotateNibbles
	MixNibbles
	Key Schedule
	Modified Representation
	Notation

	Attack on the Encryption
	Attack on the Key Schedule
	Fault Propagation
	Fault Exploitation
	State Recovery

	Simulation and Discussion
	Simulation
	Discussion

	Summary

	Persistent Fault Analysis of COLM, Deoxys-II, and OCB
	COLM
	Structure
	PFA of COLM

	Deoxys-II
	Structure
	PFA of Deoxys-II

	OCB
	Structure
	PFA of OCB

	Results
	Summary

	Statistical Ineffective Fault Analysis of Gimli
	Gimli
	Gimli-Permutation
	Gimli-AEAD

	SIFA of Gimli
	Fault Injection Location
	Calculation of Intermediate Values
	Fault Model
	Attack Strategy

	Results
	Influence of fault width on ineffectiveness rate
	Attack on b220,7
	Attack on b210,7

	Summary

	Algebraic Fault Analysis of SAE
	Subterranean 2.0
	Subterranean Permutation
	Subterranean Authenticated Encryption

	AFA of Subterranean SAE
	Generation of Fault Equations
	Intermediate State Differential
	Known Fault Location
	Unknown Fault Location
	Summary of the Number of Fault Equations

	Obtaining Faulty Outputs
	The temporal fault position p
	The spatial fault location l
	The fault width w

	Results
	Fault Model
	Non-Empty Message
	Comparison with Trivium

	Summary

	FIA Strategy Comparison

	Solutions
	Overview
	Side-Channel Analysis Countermeasures
	Fault Injection Analysis Countermeasures
	Combined Countermeasures
	Comparison of Combined Countermeasures
	Countermeasures against SIFA-2

	DOMREP a Combined Countermeasure against FIA and SCA
	DOMREP Design Rationales
	Orthogonal Protection
	DOMREP Fundamentals
	Resistance against SCA
	Resistance against SIFA
	DOMREP Summary
	DOMREP Comparison

	Gimli
	Results
	Side-Channel Analysis
	Fault Injection Analysis
	Overhead

	Summary

	TOFU Toggle Count Analysis of Cryptographic Implementations
	TOFU
	Performance
	Workflow
	Exemplary Workflow
	Simulation
	Synthesis
	Analysis
	Evaluation

	Leakage Simulation versus Leakage Measurement
	Measurement
	Simulation
	Analysis
	Evaluation

	Summary

	Conclusion
	Bibliography

